JP6226901B2 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
JP6226901B2
JP6226901B2 JP2015045499A JP2015045499A JP6226901B2 JP 6226901 B2 JP6226901 B2 JP 6226901B2 JP 2015045499 A JP2015045499 A JP 2015045499A JP 2015045499 A JP2015045499 A JP 2015045499A JP 6226901 B2 JP6226901 B2 JP 6226901B2
Authority
JP
Japan
Prior art keywords
winding
synchronous generator
voltage
phase
exciter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015045499A
Other languages
English (en)
Other versions
JP2016167903A (ja
Inventor
朗子 田渕
朗子 田渕
藤井 俊行
俊行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015045499A priority Critical patent/JP6226901B2/ja
Publication of JP2016167903A publication Critical patent/JP2016167903A/ja
Application granted granted Critical
Publication of JP6226901B2 publication Critical patent/JP6226901B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は、発電システムに関し、特に、交流励磁機の界磁巻線が多相巻線である交流励磁ブラシレス励磁装置を備えた発電システムに関するものである。
一般に、同期発電機は回転子界磁巻線に直流電流を供給し、回転子側で作る磁束により発生する誘導起電力を固定子側で出力する。回転子界磁巻線を励磁する代表的な方法としてサイリスタ励磁方式とブラシレス交流励磁方式がある。
このうちブラシレス交流励磁方式は、固定子側の界磁巻線と、発電機の回転軸と直結している回転子側の電機子巻線とからなる交流励磁機の電機子巻線に誘起する電流を、回転整流器で整流して発電機の界磁巻線に供給するものである。一般に発電機定格運転時に交流励磁機の界磁巻線に印加する電圧は直流である。
同期発電機の起動方法として、発電機を静止型周波数変換器(SFC:Static Frequency Converter。以下SFCと略記する)を用いて発電機の電機子電流の周波数を徐々に上昇させていく、すなわち電動機として加速していく方法がある。
ブラシレス交流励磁方式では交流励磁機の界磁巻線に印加する電圧が直流で界磁電流を一定に保った場合、発電機の静止時には発電機の界磁電流を流すことができず、発電機速度に応じて発電機の界磁電流が変化する。このため、発電機の起動時には交流励磁機に直流励磁を適用することはできない。
SFCを用いて起動する場合に、交流励磁機を使用するために、巻線形誘導電動機を交流励磁機として使用しているものがある(例えば特許文献1参照)。発電機の回転数が所定値以下のとき交流励磁機の界磁巻線に交流電圧を印加し、所定値以上のとき交流励磁機の界磁巻線の接続を変更してサイリスタ励磁装置から直流電圧を印加している。また、発電機の始動時に交流励磁機の三相巻線に固定側と逆の交流磁界が発生する構成としているものがある(例えば特許文献2参照)。また、低速回転時に使用するブラシレス励磁機用のSFCを設けているものがある(例えば特許文献3参照)。ブラシレス励磁機用のSFCは、回転子からみた回転磁界の相対的な回転速度を常に定格回転速度に保つような周波数で、一定振幅の電流を励磁機の固定子界磁巻線に印加している。
特開平4−96698号公報 特開2013−236480号公報 特開平7−245998号公報
このような交流ブラシレス励磁装置および発電システムにおいては、発電機をSFCで起動する時には交流励磁機の多相界磁巻線に交流電圧を与え、定格運転時には交流励磁機の多相界磁巻線に直流電圧を与えることが求められ、交流励磁と直流励磁で交流励磁機の界磁巻線結線を変更することになる。しかしながら、結線を変更することにより、各界磁巻線の負荷にアンバランスが生じるという問題があった。更には発電機回転数の変化に伴いブラシレス励磁装置の出力特性が変化してしまうという問題があった。
本発明は、このような課題を解決するためになされたものであり、多相界磁巻線を有する交流励磁機を直流励磁する際にも各界磁巻線の負荷を均等に保ち、発電機回転数が変化しても出力を一定に制御することのできるブラシレス励磁装置を備えた発電システムを得ることを目的としている。
この発明に係る発電システムは、
電源から供給される交流電力を可変電圧あるいは可変周波数の三相交流電力として出力する電力変換器と、
一次側に三相巻線を、二次側に第一の単相巻線と第二の単相巻線を有し、前記三相巻線は前記電力変換器の出力端に接続され、前記電力変換器からの三相交流電力を入力すると前記第一の単相巻線と前記第二の単相巻線に互いに位相差を有する交流電力を出力するスコット変圧器と、
電源から供給される交流電流を整流するサイリスタ励磁装置と、
一次側にd軸巻線とq軸巻線、二次側に回転型多相巻線を有する交流励磁機と、
一次側に、前記サイリスタ励磁装置の出力線、前記第一の単相巻線、および前記第二の単相巻線が接続され、二次側に、前記d軸巻線とq軸巻線が接続されるとともに、前記d軸巻線と前記第一の単相巻線または前記第二の単相巻線とを接続し、前記q軸巻線と他方の単相巻線とを接続する第一の接続、あるいは前記d軸巻線とq軸巻線とを直列に接続し、その両端に前記サイリスタ励磁装置の出力線を接続する第二の接続の何れかを選択して励磁方式の切替えを行う励磁方式切替え装置と、
前記回転型多相巻線に接続され、前記交流励磁機からの多相出力を整流する回転整流器と、
同期発電機界磁巻線、同期発電機電機子巻線を有し、前記同期発電機界磁巻線が前記回転整流器の出力端子に接続される同期発電機と、
前記同期発電機電機子巻線に接続された場合に、前記同期発電機の回転子の位置に応じた周波数と位相の電流出力を前記同期発電機電機子巻線に流すように駆動される静止型周波数変換器と、
前記電力変換器の出力電圧を検出するための電圧検出器と、
前記電圧検出器で検出された電圧を基に前記同期発電機の界磁電圧を推定する同期発電機界磁電圧推定部と、
を備え、
前記静止型周波数変換器が前記同期発電機電機子巻線に接続された場合に、前記励磁方式切替え装置で前記第一の接続を選択して前記d軸巻線とq軸巻線がdq直交軸を構成して、前記d軸巻線とq軸巻線に可変電圧あるいは可変周波数の電力を印加することで前記交流励磁機を交流励磁し、前記同期発電機の通常運転時には、前記サイリスタ励磁装置で電源からの交流電流を整流するとともに、前記励磁方式切替え装置で前記第二の接続を選択して前記d軸巻線と前記q軸巻線を直列接続して前記交流励磁機を直流励磁するものである。
また、この発明に係る発電システムは、
電源から供給される交流電力を可変電圧あるいは可変周波数の二組の単相交流電力として出力する第一の単相出力と第二の単相出力を有する電力変換器と、
前記第一の単相出力が一次巻線に接続される第一の単相変圧器と、前記第二の単相出力が一次巻線に接続される第二の単相変圧器と、
電源から供給される交流電流を整流するサイリスタ励磁装置と、
一次側にd軸巻線とq軸巻線、二次側に回転型多相巻線を有する交流励磁機と、
一次側に、前記サイリスタ励磁装置の出力線、前記第一の単相変圧器の二次巻線、および前記第二の単相変圧器の二次巻線が接続され、二次側に、前記d軸巻線とq軸巻線が接続されるとともに、前記d軸巻線と前記第一の単相変圧器の二次巻線または前記第二の単相変圧器の二次巻線とを接続し、前記q軸巻線と他方の二次単相巻線とを接続する第一の接続、あるいは前記d軸巻線とq軸巻線とを直列に接続し、その両端に前記サイリスタ励磁装置の出力線を接続する第二の接続の何れかを選択して励磁方式の切替えを行う励磁方式切替え装置と、
前記回転型多相巻線に接続され、前記交流励磁機からの多相出力を整流する回転整流器と、
同期発電機界磁巻線、同期発電機電機子巻線を有し、前記同期発電機界磁巻線が前記回転整流器の出力端子に接続される同期発電機と、
前記同期発電機電機子巻線に接続された場合に、前記同期発電機の回転子の位置に応じた周波数と位相の電流出力を前記同期発電機電機子巻線に流すように駆動される静止型周波数変換器と、
前記電力変換器の出力電圧を検出するための電圧検出器と、
前記電圧検出器で検出された電圧を基に前記同期発電機の界磁電圧を推定する同期発電機界磁電圧推定部と、
を備え、
前記静止型周波数変換器が前記同期発電機電機子巻線に接続された場合に、前記励磁方式切替え装置で前記第一の接続を選択して前記d軸巻線とq軸巻線がdq直交軸を構成して、前記d軸巻線とq軸巻線に可変電圧あるいは可変周波数の電力を印加することで前記交流励磁機を交流励磁し、前記同期発電機の通常運転時には、前記サイリスタ励磁装置で電源からの交流電流を整流するとともに、前記励磁方式切替え装置で前記第二の接続を選択して前記d軸巻線と前記q軸巻線を直列接続して前記交流励磁機を直流励磁するものである。
この発明によれば、交流励磁機の入力を可変電源とすることで、SFC起動時における発電機回転速度上昇に伴う発電機界磁電流の変動を抑制し、一定値に制御することが可能となり、かつ、SFC起動時において、発電機界磁電圧を推定できるため、発電機界磁電圧を検出する必要がない。この結果、小型、低コスト化された発電システムの提供が可能となる。
本発明の実施の形態1による交流ブラシレス励磁装置を備えた発電システムの一例を示す構成図である。 本発明の実施の形態1による交流ブラシレス励磁装置を備えた発電システムの詳細を示す構成図である。 図2の電力変換器の構成図である。 図3のインバータ制御部のブロック図である。 図4の発電機界磁電圧制御部のブロック図である。 図4のインバータ電流制御部のブロック図である。 本発明の実施の形態1による交流励磁機のdq軸等価回路を示す図である。 本発明の実施の形態1によるスコット変圧器の等価回路を示す図である。 本発明の実施の形態1による回転整流器と同期発電機界磁巻線の等価回路を示す図である。 本発明の実施の形態2によるインバータ制御部のブロック図である。 本発明の実施の形態3によるインバータ制御部のブロック図である。 図11の同期発電機界磁電圧推定値補正部のブロック図である。 図12のテーブルの一例を示す図である。 本発明の実施の形態4による交流ブラシレス励磁装置を備えた発電システムの一例を示す構成図である。
以下に、本発明にかかる交流ブラシレス励磁装置を備えた発電システムの実施の形態を図面に基づいて詳細に説明する。なお、この発明は、この実施の形態だけに限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる交流ブラシレス励磁装置を備えた発電システムの一例を示す構成図である。発電システム100は、同期発電機1と交流ブラシレス励磁装置2と回転整流器3と静止型周波数変換器(SFC)4を備えるものである。同期発電機1は、界磁巻線型で同期発電機電機子巻線21と同期発電機界磁巻線22を備えるものである。交流ブラシレス励磁装置2の交流出力は、回転整流器3に接続され、回転整流器3で整流された後、同期発電機界磁巻線22を直流励磁する。通常の発電時は、発電電力を同期発電機電機子巻線21の出力線6を介して送電している。開閉器5は通常の発電時は開路されている。同期発電機1の起動時は、開閉器5を閉路して電源7から電力を供給されるSFC4を同期発電機電機子巻線21に接続し、加速していく。ここで、電源7は例えば発電所内の電源系統に接続された図示しない変圧器の出力に相当する。変圧器の出力電圧はSFC4の入力に適合する電圧となっている。
交流ブラシレス励磁装置2は、交流励磁機11と、電力変換器12と、励磁方式切替え装置13と、サイリスタ励磁装置14と、三相交流から2組の単相交流を得ることができる変圧器であるスコット変圧器15を備える。
交流励磁機11は、交流励磁機電機子巻線23と交流励磁機d軸界磁巻線24と交流励磁機q軸界磁巻線25で構成される。以降では交流励磁機界磁巻線24、25とまとめて呼ぶことがある。交流励磁機電機子巻線23は回転子であって、同期発電機1の回転軸と直結されている。交流励磁機電機子巻線23は三相巻線で交流ブラシレス励磁装置2の交流出力となっている。交流励磁機界磁巻線24、25は固定子である。これらの固定子は二相巻線構成であって、励磁方式切替え装置13と接続されている。なお、上記交流励磁機界磁巻線24、25のd軸、q軸は、入れ替わっても同様の説明が成り立つ。
励磁方式切替え装置13は、交流励磁機界磁巻線24、25の直流励磁と交流励磁を切替える装置である。直流励磁を行う際は、開閉器34a、34bを開路し、35a、35b、35cを閉路する。このとき交流励磁機界磁巻線24、25は直列接続される。交流励磁を行う際は、開閉器34a、34bを閉路し、35a、35b、35cを開路する。このとき交流励磁機界磁巻線24、25は、上述のように交流励磁機のdq直交軸を構成する。励磁方式切替え装置13の入力部には、サイリスタ励磁装置14の出力とスコット変圧器15の出力とが接続される。直流励磁を行う際には、サイリスタ励磁装置14の出力が交流励磁機界磁巻線24、25に接続される。交流励磁を行う際には、スコット変圧器15の出力が交流励磁機界磁巻線24、25に接続される。
同期発電機1の通常運転時には電源9から供給される交流電流をサイリスタ励磁装置14で整流し、交流励磁機11は直流励磁で動作させる。ここで、電源9は例えば交流励磁機11の回転軸に直結された図示しない永久磁石発電機により供給される。また、発電所内の電源系統から図示しない変圧器を介して供給することもできる。
なお、ここでは交流励磁機11を直流励磁で動作させる際にサイリスタ励磁装置14を用いたが、電源9から供給される交流を入力とし直流を出力して交流励磁機界磁巻線24、25に直流電流を流すことのできる電圧形電力変換器など別の形態の整流器を使用することができるのは自明である。
次に、同期発電機1の起動時について説明する。電源8は電力変換器12に電力を供給する。電源8は例えば発電所内の電源系統から図示しない変圧器を介して得る。電力変換器12は例えばダイオード整流器31と平滑コンデンサ32と電圧形三相インバータ33からなる。電圧形三相インバータ33は例えば自己消弧型半導体スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)と逆並列に接続されたダイオードにより構成される。さらに、ここには示さないが、IGBTのゲート信号を生成したり、保護機能を担ったりする制御部を有することも明らかである。制御部はさらに発電システム100内の図示しない検出器(例えば、電流検出器、電圧検出器、速度検出器などが挙げられる)や他の制御手段との信号の授受を行う機能を備えることもある。また、ダイオード整流器31の入力や出力にリアクトルが接続されることもあるのは言うまでもない。
電源8から供給された交流電力はダイオード整流器31で整流される。電力変換器12の出力は電圧形三相インバータ33の出力であって、可変電圧あるいは可変周波数の三相交流(いずれか一方の三相交流の場合と両方の三相交流の場合とがある)をスコット変圧器15に入力する。
スコット変圧器15は三相交流から2組の単相交流を得ることができる変圧器であるが、具体的には90°の位相差を持った二相(dq軸)の交流を得る手段として使用している。スコット変圧器15の出力の片方を交流励磁機d軸界磁巻線24に、他方を交流励磁機q軸界磁巻線25に印加することにより、交流励磁機11はdq軸交流励磁で動作させる。
なお、電圧形三相インバータ33の出力電圧は矩形波状であるから、高調波成分を除去して交流励磁機界磁巻線24、25にサージ電圧が印加されることを防いだり、電圧を正弦波状にしたりする目的で、スコット変圧器15の入力側または出力側に高周波成分を除去するフィルタを設けることがある。
次に、交流励磁機11を交流励磁した場合に交流励磁機電機子巻線23に出力電圧が発生する仕組みを説明する。交流励磁機11の極対数をp、交流励磁機界磁巻線24、25に印加する励磁周波数をf1[Hz]とおいた場合、同期速度Ns[r/min]は式(1)のようになる。すべりsは回転速度をN[r/min]とした場合、式(2)で表せる。
Ns=60×f1/p ・・・(1)
s=(Ns−N)/Ns ・・・(2)
静止している場合、すなわちN=0においてはs=1、回転方向と同方向に回転磁界を励磁した場合には、すべりsが減少していき、同期速度N=Nsで回転しているとs=0となる。回転方向と逆方向に回転磁界を励磁した場合にはすべりsが増加していき、N=−Nsで回転しているとs=2となる。交流励磁機電機子巻線23の電圧、すなわち回転整流器3の入力電圧をE2[V]、交流励磁機界磁巻線24、25に印加する電圧をE1[V]としたとき、E2は式(3)のように表せる。
E2=K1×f1×s×E1 ・・・(3)
ただし、K1は一定値である。
さらに、回転方向と逆方向に回転磁界を励磁するとき(N≦0)、回転周波数f2[Hz]は式(4)で示すことができ、f1とf2を用いてすべりを表現すると式(5)のようになる。
f2=−N×p/60 ・・・(4)
s=(f1+f2)/f1 ・・・(5)
なお、E2の周波数はすべり周波数となるから、式(6)で示せる。
s×f1=f1+f2 ・・・(6)
式(3)と式(6)によれば、静止中(s=1)であっても交流励磁(f1≠0)を行えばE2が得られ、回転整流器3の入力に励磁周波数f1[Hz]の交流電流を流すことができるのである。さらに、式(3)によれば、E1が一定であるならばE2は励磁周波数f1とすべりsの積に比例することが明らかである。このため、静止時(s=1)に所定のE2を得たい場合にはf1を大きくとればE1を小さくすることができる。また、回転方向と逆方向に回転磁界を励磁すれば加速に伴いすべりsが大きくなっていくので、f1を一定に保てばE1は小さくなっていく。
次に、起動時の発電システム100の動作を説明する。同期発電機1は、起動開始時には図示しない外部の装置により機械的にトルクを与えられ、例えば3r/min(3min-1)といった極低速で回転している。同期発電機界磁巻線22に起動時に必要な同期発電機界磁電流Ifが流れるような同期発電機界磁電圧Vfが印加されるよう、交流ブラシレス励磁装置2は交流励磁機電機子巻線23の電圧E2を出力する。必要なE2が決定されれば式(3)より交流励磁機界磁巻線24、25に印加する電圧E1が決定する。電力変換器12は決定したE1を得られるような励磁周波数f1、振幅Vinvの電圧を出力する。式(3)からf1を高くすればVinvを小さくできることは明らかである。同期発電機界磁電流Ifが上昇してくると、SFC4は同期発電機1の回転子の位置を検出ないしは推定し、それに応じた周波数と位相の電流を出力し、同期発電機電機子巻線21に印加する。これにより、同期発電機1は徐々に加速していく。
一般に、SFC4は、同期発電機1が上述のような極低速で回転しているときに、同期発電機1の電機子電圧が運転周波数に比例して増加するように、出力電流を与える。これにより、同期発電機1の運転周波数が上昇して、同期発電機1は加速する。このとき、f1を一定に保つ場合には、加速するにつれVinvを低減して同期発電機界磁電圧Vfが一定になるようにする(Vinvが可変電圧である)。あるいは、Vinvを一定に保ちf1を低減してもよいし(f1が可変周波数である)、f1とVinv両方を変化させて同期発電機界磁電圧Vfが一定になるようにしてもよい。
そして、同期発電機1の運転周波数が上昇し運転モード切替え周波数fsg1に達したときの電機子電圧をVsg1とする。この場合の電機子電圧Vsg1は、同期発電機1の電機子電圧の定格値未満であって、例えばSFC4の定格出力電圧である。その後、運転周波数がfsg1を超す領域では、電機子電圧が一定になる条件で運転する。このとき、電機子電圧をVsg1の値を一定に保つために運転周波数に応じてVfを低減していくので、加速するにつれ、より一層、Vinvやf1を低減していくことができる。
なお、ここではVfを一定値から可変値に切替える基準を運転周波数としたが、電機子電圧としてもよいし、発電システム100内の他の制御手段から与えられる信号としてもよいのは言うまでもない。
ここで、同期発電機界磁電圧Vfを一定に制御する方法について説明する。図2は本発明の実施の形態1にかかる交流ブラシレス励磁装置を備えた発電システムの詳細構成図であって、図1の交流ブラシレス励磁装置2を備えた発電システム100の構成図を更に詳細に示したものである。
計器用変圧器26は同期発電機1の電機子電圧Vsを検出するために設けられており、低圧側の電圧をここではVtとする。計器用変圧器26の二次側はY結線となっており、二次側の相電圧Vtu、Vtv、Vtwを電力変換器12に入力する。交流ブラシレス励磁装置2には、さらに、電流検出器16a、16bと電圧検出器17a、17b、17cが設けられており、これらの検出器で得られた検出値を電力変換器12に入力している。
電流検出器16a、16bは電力変換器12の出力電流(インバータ出力電流)Iiu、Iiwを検出するもので、残り一相のIivについては電力変換器12が三相3線式であることから式(7)で演算することにしているが、電流検出器を設けてもよいのは言うまでもない。
Iiv=−Iiu−Iiw ・・・(7)
さらに、電流検出する相はU相とW相に限るものではなく、三相のうちの二相を選択すればよい。電圧検出器17a、17b、17cは電力変換器12の出力相電圧(インバータ出力相電圧)Viu、Viv、Viwを検出する。ここでは相電圧として検出しているが、線間電圧として検出してもよいし、三相のうち二相を検出して残り一相を演算して求めてもよいのは言うまでもない。さらには計器用変圧器26の二次側はY結線ではなくΔ結線でもよい。
図3は図2の電力変換器12の構成図である。図3の電力変換器12はインバータ制御部36を備える。インバータ制御部36には検出値であるVtu、Vtv、Vtw、Iiu、Iiw、Viu、Viv、Viwが入力され、電圧形三相インバータ33のゲート信号が出力される。なお、インバータ制御部36に計器用変圧器26の二次側の相電圧Vtu、Vtv、Vtwを直接入れる必要はなく、別の計器用変圧器を用いるなどしてインバータ制御部36に適したレベルに変換して入力できることは言うまでもない。
また、線間電圧や二相を使用してもよく、最終的にインバータ制御部36に入力された検出値と内部演算により同期発電機1の電機子相電圧Vsu、Vsv、Vswを得ることができればよい。
以下では、インバータ制御部36の構成を説明する。図4は図3のインバータ制御部36のブロック図である。
同期発電機界磁電圧指令値Vfrefは、例えばインバータ制御部36の内部に固定値として保持している。あるいは図示しない他の制御手段から同期発電機1の定数や周囲温度などの状態に応じた値を受け取る場合もある。界磁電圧一定制御時にはVfrefは一定値となるが、回路は誘導性であるから電圧形三相インバータ33の停止状態が解除され、出力電流が0の状態から電圧を出力する初期には、過電流を防ぐためVfrefを徐々に上昇させていくとよい。
同期発電機界磁電圧Vfを同期発電機界磁電圧指令値Vfrefに制御するためには同期発電機界磁電圧Vfの検出値を用いてフィードバック制御を行うのがよい。しかしながら、電力変換器12は静止しているが同期発電機界磁巻線22は回転しているため、同期発電機界磁電圧Vfを直接検出するためには、スリップリングが必要となる。このため、図2の発電システム100においては、同期発電機界磁電圧Vfを直接検出することはせず、同期発電機界磁電圧推定値Vfhを使用して同期発電機界磁電圧Vfを一定に制御する。
Vfrefと同期発電機界磁電圧推定値Vfhは、同期発電機界磁電圧制御部41に入力される。図5は図4の同期発電機界磁電圧制御部41のブロック図である。同期発電機界磁電圧制御部41はフィードバック制御を行い、インバータ電流振幅指令値Iirefを出力する。同期発電機界磁電圧制御器47は、例えば比例積分制御器である。
Iirefは電流振幅として得ているから、インバータ電流指令値生成部42でインバータの各相瞬時値を生成する。インバータ電流指令値生成部42には、さらにインバータ周波数指令値f1refを入力する。Iirefとf1refを用いて式(8)〜式(10)のようにインバータ電流指令値Iiuref、Iivref、Iiwrefを生成す
る。
Iiuref=Iiref×sin(2π×f1ref×t) ・・・(8)
Iivref=Iiref×sin(2π×f1ref×t−2π/3)・・・(9)
Iiwref=Iiref×sin(2π×f1ref×t+2π/3)
・・・(10)
ここで、tは時刻であって、必ずしもSFC4などと同期させる必要はなく、内部で作成してよい。位相に関しても式(8)〜式(10)のように決定する必要はなく、三相平衡であればよい。f1refは固定値として内部で持っていてもよいし、回転速度などシステム状態に応じて変化させてもよい。正弦波演算に関しても、逐次演算を行ってもよいしテーブル参照で求めてもよい。
インバータ電流指令値Iiuref、Iivref、Iiwrefとインバータ出力電流Iiu、Iiv、Iiwはインバータ電流制御部43に入力される。図6は図4のインバータ電流制御部43のブロック図である。インバータ電流制御部43はフィードバック制御を行い、インバータ電圧指令値Viuref、Vivref、Viwrefを出力する。相電流制御部48a、48b、48cは同じ構成であるから、U相の相電流制御部48aを代表例とし、これについて説明する。相電流制御部48aはIiurefとIiuを入力し、フィードバック制御を行いViurefを出力する。インバータ電流制御器49は、比例積分制御器あるいは比例制御器で実現できる。
インバータ電圧指令値Viuref、Vivref、Viwrefはゲート信号生成部44に入力され、電圧形三相インバータ33のIGBTのゲート信号が出力される。ゲート信号生成部44は、電圧形三相インバータ33の出力相電圧がインバータ電圧指令値Viuref、Vivref、Viwref相当になるように、ゲート信号を生成する。例えば、電圧利用率を向上させるため零相電圧を重畳した後、平滑コンデンサ32両端の電圧で規格化し、三角波キャリアと比較する。
なお、ここではインバータ電流指令値生成部42で三相の電流指令値を生成して、インバータ電流制御部43では三相個別に電流制御を行う例を示したが、dq軸上の電流指令値を生成しdq軸上で電流制御を行った後、dq軸から三相に変換してインバータ電圧指令値Viuref、Vivref、Viwrefを求めてもよい。
あるいは、一旦、インバータ出力電流Iiu、Iiv、Iiwからインバータ電流振幅検出値を求めて、インバータ電流振幅指令値Iirefとインバータ電流振幅検出値を用いてインバータ電流振幅制御を行った後、個別の電流制御を行ってもよい。
また、検出値はハードウェアまたはソフトウェアによるローパスフィルタを設けて、ノイズや制御に不要な高周波成分を除去してもよい。
次に、同期発電機界磁電圧推定値Vfhの推定方法を説明する。同期発電機界磁電圧推定値Vfhはインバータ出力相電圧Viu、Viv、Viwと回転子機械角回転角速度推定値ωhから同期発電機界磁電圧推定部46で推定する。
回転子機械角の回転角速度推定値ωhは、計器用変圧器26の二次側の相電圧Vtu、Vtv、Vtwから、回転子機械角の回転角速度推定部45で推定する。Vtu、Vtv、Vtwは概ね同期発電機1の電機子相電圧Vsu、Vsv、Vswの波形と等価とみなせる。今、同期発電機1はSFC4で駆動されているので、電機子相電圧Vsu、Vsv、Vswは高調波を含む波形であるが、基本波周波数は同期発電機1の電気角回転速度とみなしてよい。
また、同期発電機1の極対数は既知であり、一般には1であるから、Vsu、Vsv、VswあるいはVtu、Vtv、Vtwの基本波周波数が推定できれば、回転子機械角回転角速度が推定できる。回転子機械角の回転角速度推定部45は、例えば位相同期器を有し、Vsu、Vsv、VswあるいはVtu、Vtv、Vtwの位相を推定すると共に、回転子機械角の回転角速度推定値ωhを求めて出力する。なお、本実施の形態では回転子機械角の回転角速度を推定することとしたが、速度検出器を設けて、直接、回転子機械角の回転角速度ωを検出してもよいし、SFC4などから検出値を受け取ってもよいのは無論である。
次に、交流励磁機11を交流励磁している際の交流励磁機界磁巻線24、25から見た等価回路を図7に示す。ここで、E1dはd軸界磁電圧、E1qはq軸界磁電圧、E2dはd軸電機子電圧、E2qはq軸電機子電圧、I1dはd軸界磁電流、I1qはq軸界磁電流、I2dはd軸電機子電流、I2qはq軸電機子電流である。つまり、交流励磁機界磁巻線24、25に印加される電圧がE1d、E1qである。交流励磁機電機子巻線23の出力電圧をdq軸で表現したものがE2d、E2qである。RphFは界磁抵抗、RphAは電機子抵抗、LlFは界磁漏れインダクタンス、LlAは電機子漏れインダクタンス、LadFはd軸界磁磁化インダクタンス、LaqFはq軸界磁磁化インダクタンス、LadAはd軸電機子磁化インダクタンス、LaqAはq軸電機子磁化インダクタンス、ωFは界磁励磁周波数、ωAは電機子出力周波数である。
ここで、ωFはインバータ周波数指令値f1refを用いて式(11)のように示せる。ωAはωF、交流励磁機11の極対数p、回転子機械角の回転角速度推定値ωhを用いて式(12)のように示せる。
ωF=2π×f1ref ・・・(11)
ωA=ωF+p×ωh ・・・・・(12)
交流励磁機界磁巻線24、25にはスコット変圧器15の二次巻線が接続される。スコット変圧器15の等価回路を図8に示す。ここで、Rtrは巻線抵抗、Ltrは漏れインダクタンスで二次側に換算されている。図8の等価回路はdq軸等価回路であって、スコット変圧器15の入力三相をdq軸に換算した後、理想変圧器で電圧を変換しているものである。インバータ出力相電圧Viu、Viv、Viwをdq軸に換算したものがVid、Viq、インバータ出力電流Iiu、Iiv、Iiwをdq軸に換算したものがIid、Iiqである。これらの換算はスコット変圧器15と交流励磁機11の等価回路定数と整合するように行うことは言うまでもない。
交流励磁機電機子巻線23には回転整流器3が接続される。回転整流器3の出力には同期発電機1の同期発電機界磁巻線22が接続される。図9はこの部分の等価回路である。回転整流器3には交流励磁機11の電機子線間の電圧E2、電機子電流I2が入力され、同期発電機界磁電圧Vf、同期発電機界磁電流Ifが出力される。E2の周波数はωAである。Rfは同期発電機界磁抵抗、Lfは同期発電機界磁巻線インダクタンスである。Lfの値はRfの値と比較して十分大きいため、Ifはほぼ一定とみなす。
ここで、回転整流器3がダイオード整流器であるとする。交流電圧を整流したときの平均電圧は電機子線間電圧実効値V2を用いて表すことができる。さらに、交流側のインダクタンスLcやωA、Ifから転流により生じる平均電圧の低下分を考慮する。VfとIfの関係は式(13)のように示せるから、VfはV2、ωA、Lc、Rfを用いた式で表せる。
Vf=Rf×If ・・・(13)
Rfは同期発電機1の定数である。Lcは図7、図8の等価回路より求めることができる。ωAは式(11)、式(12)より、f1refと回転子機械角の回転角速度推定値ωhから導出できる。したがって、E2を導出することができれば同期発電機界磁電圧推定値Vfhを得ることができることがわかる。
図7、図8の等価回路を用いて、抵抗成分を無視するなどして簡略化すれば、Vid、Viqの実効値からE2を推定することができる。つまり、Viu、Viv、Viwとωhが同期発電機界磁電圧推定部46に入力されると、図7、図8、図9の回路から得られた式を用いて計算したVfhが出力されるのである。このとき、スコット変圧器15の変圧比や交流励磁機11の巻数比を考慮して各値を換算するのは無論である。また、定数の一部を可変値としてインダクタンス成分の飽和を考慮したり、回転速度を考慮したりすることができる。
また、ここでは同期発電機界磁電圧推定部46に相電圧瞬時値であるViu、Viv、Viwを入力する例について説明したが、dq軸に変換した後の値や実効値相当を入力することもできるのは言うまでもない。
さらに、図7、図8、図9の回路から得られた式を用いて計算したVfhを直接用いるのではなく、ゲインやオフセット重畳により補正した後の値をVfhとして出力できるのも無論である。
このように、電力変換器12は、可変電圧または可変周波数を出力することができるから、スコット変圧器15では、90°の位相差を持った二相の可変電圧または可変周波数の出力が得られる。スコット変圧器15の出力電圧は励磁方式切替え装置13に入力され、その出力が交流励磁機界磁巻線24、25に印加される。したがって、交流励磁機界磁巻線24、25には90°の位相差を有する可変電圧または可変周波数を入力することができる。
交流励磁機界磁巻線24、25の入力電圧を変化させると回転整流器3の入力となる交流ブラシレス励磁装置2の交流出力が変化するから、Vfを上記に説明したようなSFC4による同期発電機1の起動に適した一定値に制御することができる。なお、ここではSFC4を同期発電機1の起動に用いた場合について説明したが、起動以外の目的でSFC4を用いて同期発電機1を駆動する際にも、本交流ブラシレス励磁装置2を使用することができるのは明らかである。
また、インバータ制御部36が同期発電機界磁電圧制御部41やインバータ電流制御部43を備えるので、同期発電機1の加速に伴い交流励磁機11のすべりが変化した場合にも同期発電機界磁電圧Vfを一定に制御できる。
したがって、交流励磁機11を用いて同期発電機1を励磁していても、SFC4が同期発電機1の電機子電圧が運転周波数に比例して増加するように出力電流を与えている期間に同期発電機界磁電圧Vfを一定に保つことで、同期発電機界磁電流Ifを一定に保つことができ、良好に同期発電機1を加速できる。
さらに、同期発電機界磁電圧Vfを一定に制御しながら、同期発電機1の加速に伴い交流励磁機11の励磁周波数f1を変化させて、交流励磁機11の界磁入力容量を調整することも可能となる。
加えて、インバータ制御部36が同期発電機界磁電圧推定部46を備え、同期発電機界磁電圧推定値Vfhを求めて発電機界磁電圧を一定させる制御に使用するため、同期発電機界磁電圧Vfを検出する必要がないので、スリップリングが不要となり、小型、低コス
ト化を図ることができるうえ、保守性も向上する。
なお、本実施の形態1では同期発電機1の駆動にSFC4を用いる場合について説明したが、同期発電機1を同期電動機として駆動する際に必要となる、回転速度に応じた周波数と振幅の電流を印加することができる電圧形インバータなど、他の電力変換器をSFC4の代わりに用いることができるのは自明である。
さらに、同期発電機1は、タービン等を接続して有効電力を供給するものに限定されず、無効電力のみを供給するものであってもよいことも自明である。
ここで、交流励磁機11の励磁方式を切替えるタイミングについて説明しておく。起動時など回転子機械角の回転角速度ωが低い場合には必要な同期発電機界磁電圧Vfを得るために交流励磁する。ωの上昇に伴い直流励磁でも必要なVfを得ることができるようになれば直流励磁に切替えることができる。そして、少なくとも同期発電機1の通常運転時には従来と同様にサイリスタ励磁装置14を用いて直流励磁する。
以上に説明したように、本実施の形態にかかる交流ブラシレス励磁装置2を備えた発電システム100は、交流励磁機d軸界磁巻線24と交流励磁機q軸界磁巻線25と励磁方式切替え装置13を設けて、交流励磁機11を同期発電機1の起動時に交流励磁し、通常運転時に直流励磁できる。さらに直流励磁を行う際には、交流励磁機d軸界磁巻線24と交流励磁機q軸界磁巻線25を直列接続して、直流電流を流すことから、交流励磁機界磁巻線24、25に流れる電流が等しく、両者で発生する損失がバランスし、温度変化を均等に保つという効果を示す。
本実施の形態の交流ブラシレス励磁装置2を備えた発電システム100は、電力変換器12を備えるため、交流励磁機11の交流励磁機界磁巻線24、25に可変電圧または可変周波数の交流励磁を行うことができる。このため、同期発電機起動時の同期発電機界磁電圧Vfや同期発電機界磁電流Ifを回転速度に関わらず一定値に保つことができる。
また、電力変換器12が可変周波数の交流を出力できるため、商用周波数よりも高い周波数で交流励磁機11の交流励磁機界磁巻線24、25を励磁することができる。このため、同期発電機1の回転速度が低い領域でも交流励磁機11の界磁入力容量低減が図れるという、これまでにない顕著な効果を奏する。その結果、電力変換器12の容量も低減でき、小型、低コスト化が図れる。
更には、直流励磁を行う交流電流をサイリスタ励磁装置14を通常運転時のみ使用する場合には、従来と同じ仕様のものを適用できる。
実施の形態2.
図10は、本発明の実施の形態2にかかる交流ブラシレス励磁装置を備えた発電システム100の、インバータ制御部36のブロック図である。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分のみ述べる。図4のインバータ制御部36と異なるのは、同期発電機界磁電圧推定部46にインバータ出力相電圧Viu、Viv、Viwと回転子機械角回転角速度推定値ωhに加えて、インバータ出力電流Iiu、Iiv、Iiwも入力されるところである。
インバータ出力電流を用いると、図7、図8、図9の回路から同期発電機界磁電流Ifを求める式が導出できる。これによりIfの推定値も利用して転流により生じる平均電圧の低下分を考慮して同期発電機界磁電圧推定値Vfhを得ることができる。なお、ここでは同期発電機界磁電圧推定部46に三相瞬時値のIiu、Iiv、Iiwを入力する例を説明したが、dq軸に変換した後の値を入力することができるのは言うまでもない。
以上に説明したように、本実施の形態2にかかる交流ブラシレス励磁装置2を備える発電システム100は、同期発電機界磁電圧推定部46にインバータ出力相電圧Viu、Viv、Viwと回転子機械角の回転角速度推定値ωhに加えてインバータ出力電流Iiu、Iiv、Iiwを入力する。したがって、実施の形態1の効果に加えて同期発電機界磁電流Ifを考慮した同期発電機界磁電圧推定値Vfhを得られるという効果を奏する。
実施の形態3.
図11は本発明の実施の形態3にかかる交流ブラシレス励磁装置を備えた発電システム100のインバータ制御部36のブロック図である。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分のみ述べる。図4のインバータ制御部36と異なるのは、同期発電機界磁電圧推定部46から出力された同期発電機界磁電圧推定値Vfhと回転子機械角回転角速度推定値ωhを入力とし、同期発電機界磁電圧補正値Vfh2を出力とする同期発電機界磁電圧の推定値補正部50を備えているところである。同期発電機界磁電圧制御部41にはVfh2が入力され、同期発電機界磁電圧Vfが同期発電機界磁電圧指令値Vfrefになるよう制御される。
同期発電機界磁電圧推定部46は、図7、図8、図9の回路から導出される式でVfhを推定している。このため、実際の値Vfに対しては誤差を有する可能性がある。
まず、Vfh>Vfの誤差を持っている場合について説明する。このときVfhを用いて界磁電圧制御を行うと概ねVfh=Vfrefとなるから、Vf<Vfrefとなって界磁電圧が不足する。逆にVfh<Vfの誤差を持っている場合にはVf>Vfrefとなって界磁電圧が過剰になる。界磁電圧が不足すると同期発電機1の加速が遅くなり、界磁電圧が過剰になると加速が速くなる。
同期発電機1の回転速度変化率はSFC4により起動できる範囲内に維持される必要がある。したがって、同期発電機界磁電圧の推定値補正部50においてVfhを回転速度変化率で補正したVfh2を用いて界磁電圧制御を行うことにする。図12は図11の同期発電機界磁電圧の推定値補正部50のブロック図である。ωhは変化量演算器51に入力される。変化量演算器51は、例えば前回入力値との差分からωhの単位時間あたりの変化量を求めるもので、回転速度変化量dωhを出力する。dωhは絶対値演算器52で正の値である回転速度変化量絶対値|dωh|にされた後、テーブル53に入力され、補正ゲインKdωが決定される。乗算器54は、VfhとKdωを乗算しVfh2を出力する。
図13はテーブル53の一例である。|dωh|が許容される範囲内にある場合はKdω=1を出力し、|dωh|が許容される範囲より大きいとKdω>1、|dωh|が許容される範囲より小さいとKdω<1を出力するようになっている。これにより、|dωh|が大きいとKdω>1が出力されるからVfh2>Vfhとなり、界磁電圧が減少する方向となる。逆に|dωh|が小さいとKdω<1が出力されるからVfh2<Vfhとなり、界磁電圧が増加する方向となる。
なお、テーブル53は、dωhに加えωhに依存してKdωを得る形態としても良いし、演算式でKdωを求めるようにしても良い。
以上説明したように、本実施の形態3にかかる交流ブラシレス励磁装置2を備える発電システム100は、インバータ制御部36に同期発電機界磁電圧の推定値補正部50を備えるため、同期発電機界磁電圧推定値Vfhの誤差が大きく回転速度変化率が望ましい範囲から外れた場合に、推定値を補正することができる。したがって、実施の形態1または実施の形態2の効果に加えて、スリップリングを用いて同期発電機界磁電圧Vfを直接検出しないことに起因して同期発電機界磁電圧推定値VfhがVfに対して誤差を有する場合にも回転速度変化率を調整して同期発電機1をSFC4で駆動できる状態に保つことができるという顕著な効果を示す。
実施の形態4.
図14は本発明の実施の形態4にかかる交流ブラシレス励磁装置を備えた発電システム100の構成図である。以下、実施の形態1、2、3と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分のみ述べる。図2の交流ブラシレス励磁装置2を備えた発電システム100と異なるのは、電力変換器12が電圧形三相インバータ33の代わりに電圧形単相インバータ37a、37bを備えることと、スコット変圧器15の代わりに単相変圧器18a、18bを備えることである。
この実施の形態4では、単相変圧器18aの二次巻線が、交流励磁機d軸界磁巻線24に接続され、単相変圧器18bの二次巻線が、交流励磁機q軸界磁巻線25に接続されている。単相変圧器18aの一次巻線には電圧形単相インバータ37aの出力、単相変圧器18bの一次巻線には電圧形単相インバータ37bの出力が接続されている。電圧形単相インバータ37a、37bは出力電流の振幅と周波数が等しく、90°の位相差を持つように電圧を出力する。これにより、電圧形三相インバータ33とスコット変圧器15を用いて交流励磁機界磁巻線24、25を交流励磁するのと同様に、電圧形単相インバータ37a、37bと単相変圧器18a、18bを用いて、交流励磁機界磁巻線24、25を交流励磁することができる。
なお、電圧形単相インバータ37a、37bの出力電圧は矩形波状であるから、高調波成分を除去して交流励磁機界磁巻線24、25にサージ電圧が印加されることを防いだり、電圧を正弦波状にしたりする目的で、単相変圧器18a、18bの入力側または出力側に高周波成分を除去するフィルタを設けることがある。
また、ここでは、ダイオード整流器31と平滑コンデンサ32は共通としたが、個別に設けることもできる。さらに、異なる電源から電力を供給することもでき、電圧形単相インバータ37a、37bの出力が絶縁されている場合には、単相変圧器18a、18bは省略してもよい。
電圧形単相インバータ37a、37bの出力には、それぞれ電流検出器16a、16bと電圧検出器17a、17bが設けられている。
電力変換器12はインバータ制御部36を備えており、電圧形単相インバータ37a、37bにゲート信号を与える。インバータ制御部36には、計器用変圧器26の二次側の相電圧Vtu、Vtv、Vtwと、電流検出器16a、16bの検出値Iid、Iiqと、電圧検出器17a、17bの検出値Vid、Viqと、が入力される。インバータ制御部36を構成する図14には図示しないが、インバータ電流指令値生成部42とインバータ電流制御部43は、三相ではなくdq軸として扱い、同様に図示しないゲート信号生成部44においてd軸の電圧指令値から電圧形単相インバータ37aのゲート信号、q軸の電圧指令値から電圧形単相インバータ37bのゲート信号を生成すればよい。
また、同様に図14には図示しないが、同期発電機界磁電圧推定部46にもVid、ViqやIid、Iiqを入力することになるが、これらをdq軸に換算した後の値として扱えばよい。
以上に説明したように、本実施の形態4にかかる交流ブラシレス励磁装置2を備える発電システム100は、電力変換器12が電圧形三相インバータ33の代わりに電圧形単相インバータ37a、37bを備え、スコット変圧器15の代わりに単相変圧器18a、18bを備えたので、実施の形態1から実施の形態3のいずれかにかかる交流ブラシレス励磁装置2を備える発電システム100の効果に加えて、スコット変圧器15を用いることなく、構造が簡単な単相変圧器18a、18bを用いて交流励磁機界磁巻線24、25を交流励磁することができる。なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 同期発電機、2 交流ブラシレス励磁装置、3 回転整流器、4 静止型周波数変換器(SFC)、5 開閉器、6 同期発電機電機子巻線の出力線、7、8、9 電源、
11 交流励磁機、12 電力変換器、13 励磁方式切替え装置、14 サイリスタ励磁装置、15 スコット変圧器、16a、16b 電流検出器、17a、17b 電圧検出器、18a、18b 単相変圧器、21 同期発電機電機子巻線、22 同期発電機界磁巻線、23 交流励磁機電機子巻線、24 交流励磁機d軸界磁巻線、25 交流励磁機q軸界磁巻線、26 計器用変圧器、 31 ダイオード整流器、32 平滑コンデンサ、33 電圧形三相インバータ、34a、34b、35a、35b、35c 開閉器、36 インバータ制御部、37a、37b 電圧形単相インバータ、46 同期発電機界磁電圧推定部、100 発電システム

Claims (5)

  1. 電源から供給される交流電力を可変電圧あるいは可変周波数の三相交流電力として出力する電力変換器と、
    一次側に三相巻線を、二次側に第一の単相巻線と第二の単相巻線を有し、前記三相巻線は前記電力変換器の出力端に接続され、前記電力変換器からの三相交流電力を入力すると前記第一の単相巻線と前記第二の単相巻線に互いに位相差を有する交流電力を出力するスコット変圧器と、
    電源から供給される交流電流を整流するサイリスタ励磁装置と、
    一次側にd軸巻線とq軸巻線、二次側に回転型多相巻線を有する交流励磁機と、
    一次側に、前記サイリスタ励磁装置の出力線、前記第一の単相巻線、および前記第二の単相巻線が接続され、二次側に、前記d軸巻線とq軸巻線が接続されるとともに、前記d軸巻線と前記第一の単相巻線または前記第二の単相巻線とを接続し、前記q軸巻線と他方の単相巻線とを接続する第一の接続、あるいは前記d軸巻線とq軸巻線とを直列に接続し、その両端に前記サイリスタ励磁装置の出力線を接続する第二の接続の何れかを選択して励磁方式の切替えを行う励磁方式切替え装置と、
    前記回転型多相巻線に接続され、前記交流励磁機からの多相出力を整流する回転整流器と、
    同期発電機界磁巻線、同期発電機電機子巻線を有し、前記同期発電機界磁巻線が前記回転整流器の出力端子に接続される同期発電機と、
    前記同期発電機電機子巻線に接続された場合に、前記同期発電機の回転子の位置に応じた周波数と位相の電流出力を前記同期発電機電機子巻線に流すように駆動される静止型周波数変換器と、
    前記電力変換器の出力電圧を検出するための電圧検出器と、
    前記電圧検出器で検出された電圧を基に前記同期発電機の界磁電圧を推定する同期発電機界磁電圧推定部と、
    を備え、
    前記静止型周波数変換器が前記同期発電機電機子巻線に接続された場合に、前記励磁方式切替え装置で前記第一の接続を選択して前記d軸巻線とq軸巻線がdq直交軸を構成して、前記d軸巻線とq軸巻線に可変電圧あるいは可変周波数の電力を印加することで前記交流励磁機を交流励磁し、前記同期発電機の通常運転時には、前記サイリスタ励磁装置で電源からの交流電流を整流するとともに、前記励磁方式切替え装置で前記第二の接続を選択して前記d軸巻線と前記q軸巻線を直列接続して前記交流励磁機を直流励磁することを特徴とする発電システム。
  2. 前記同期発電機界磁電圧推定部は、
    前記同期発電機の電機子電圧を検出するための計器用変圧器と、
    この計器用変圧器で検出された前記電機子電圧の周波数から、前記同期発電機の回転角速度を推定する回転角速度推定部と、を備え、
    前記電圧検出器で検出された電圧と前記回転角速度推定部で推定された回転角速度推定値を基に、前記同期発電機の界磁電圧を推定することを特徴とする請求項1に記載の発電システム。
  3. 前記同期発電機界磁電圧推定部は、
    前記電力変換器の出力電流を検出し、制御信号に変換するための電流検出器を備え、
    前記電圧検出器で検出された電圧と、前記回転角速度推定部で推定された回転角速度推定値と、前記電流検出器で検出された電流と、を基に、前記同期発電機の界磁電圧を推定することを特徴とする請求項2に記載の発電システム。
  4. 前記回転角速度推定値の変化量を求める変化量演算器を備え、
    前記同期発電機界磁電圧推定部で推定された前記同期発電機の界磁電圧推定値を前記変化量演算器で求めた変化量で補正することを特徴とする請求項2または請求項3に記載の発電システム。
  5. 電源から供給される交流電力を可変電圧あるいは可変周波数の二組の単相交流電力として出力する第一の単相出力と第二の単相出力を有する電力変換器と、
    前記第一の単相出力が一次巻線に接続される第一の単相変圧器と、前記第二の単相出力が一次巻線に接続される第二の単相変圧器と、
    電源から供給される交流電流を整流するサイリスタ励磁装置と、
    一次側にd軸巻線とq軸巻線、二次側に回転型多相巻線を有する交流励磁機と、
    一次側に、前記サイリスタ励磁装置の出力線、前記第一の単相変圧器の二次巻線、および前記第二の単相変圧器の二次巻線が接続され、二次側に、前記d軸巻線とq軸巻線が接続されるとともに、前記d軸巻線と前記第一の単相変圧器の二次巻線または前記第二の単相変圧器の二次巻線とを接続し、前記q軸巻線と他方の二次単相巻線とを接続する第一の接続、あるいは前記d軸巻線とq軸巻線とを直列に接続し、その両端に前記サイリスタ励磁装置の出力線を接続する第二の接続の何れかを選択して励磁方式の切替えを行う励磁方式切替え装置と、
    前記回転型多相巻線に接続され、前記交流励磁機からの多相出力を整流する回転整流器と、
    同期発電機界磁巻線、同期発電機電機子巻線を有し、前記同期発電機界磁巻線が前記回転整流器の出力端子に接続される同期発電機と、
    前記同期発電機電機子巻線に接続された場合に、前記同期発電機の回転子の位置に応じた周波数と位相の電流出力を前記同期発電機電機子巻線に流すように駆動される静止型周波数変換器と、
    前記電力変換器の出力電圧を検出するための電圧検出器と、
    前記電圧検出器で検出された電圧を基に前記同期発電機の界磁電圧を推定する同期発電機界磁電圧推定部と、
    を備え、
    前記静止型周波数変換器が前記同期発電機電機子巻線に接続された場合に、前記励磁方式切替え装置で前記第一の接続を選択して前記d軸巻線とq軸巻線がdq直交軸を構成して、前記d軸巻線とq軸巻線に可変電圧あるいは可変周波数の電力を印加することで前記交流励磁機を交流励磁し、前記同期発電機の通常運転時には、前記サイリスタ励磁装置で電源からの交流電流を整流するとともに、前記励磁方式切替え装置で前記第二の接続を選択して前記d軸巻線と前記q軸巻線を直列接続して前記交流励磁機を直流励磁することを特徴とする発電システム。
JP2015045499A 2015-03-09 2015-03-09 発電システム Active JP6226901B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045499A JP6226901B2 (ja) 2015-03-09 2015-03-09 発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045499A JP6226901B2 (ja) 2015-03-09 2015-03-09 発電システム

Publications (2)

Publication Number Publication Date
JP2016167903A JP2016167903A (ja) 2016-09-15
JP6226901B2 true JP6226901B2 (ja) 2017-11-08

Family

ID=56898868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045499A Active JP6226901B2 (ja) 2015-03-09 2015-03-09 発電システム

Country Status (1)

Country Link
JP (1) JP6226901B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959406B (zh) * 2017-03-17 2024-01-30 中国大唐集团科学技术研究院有限公司华东分公司 用于在低电压下进行发电机铁心磁化的试验装置及其方法
EP3392500B1 (en) * 2017-04-18 2022-07-27 GE Avio S.r.l. Dual-winding synchronous reluctance machine composed of an excitation winding and a separate power winding
JP2019092330A (ja) * 2017-11-16 2019-06-13 Ntn株式会社 ブラシレス同期発電機
CN107979096B (zh) * 2017-12-22 2021-10-01 国电南瑞科技股份有限公司 一种大型调相机启动并网过程中的励磁控制方法
CN112653365B (zh) * 2020-12-04 2022-10-04 南京航空航天大学 三级式无刷同步电机起动过程交直流励磁平滑切换方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496698A (ja) * 1990-08-09 1992-03-30 Toshiba Corp ブラシレス同期機
JPH07245998A (ja) * 1994-03-09 1995-09-19 Hitachi Ltd ブラシレス励磁機を備えた発電設備の始動装置
JPH1127995A (ja) * 1997-06-30 1999-01-29 Kansai Electric Power Co Inc:The ブラシレス励磁機の励磁制御装置
BRPI0408343A (pt) * 2003-03-14 2006-03-21 Abb Research Ltd método de estimativa
JP4805076B2 (ja) * 2006-09-25 2011-11-02 株式会社ダイヘン アーク加工用電源装置
JP4973139B2 (ja) * 2006-11-13 2012-07-11 株式会社明電舎 き電線電圧補償装置
JP5373018B2 (ja) * 2011-09-20 2013-12-18 株式会社日立製作所 風力発電システム
JP2013236480A (ja) * 2012-05-09 2013-11-21 Toshiba Corp 誘導型ブラシレス交流励磁システム
JP6016712B2 (ja) * 2013-06-07 2016-10-26 三菱電機株式会社 交流ブラシレス励磁装置および発電システム

Also Published As

Publication number Publication date
JP2016167903A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6190967B2 (ja) 発電システム
JP6226901B2 (ja) 発電システム
WO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
EP3163743B1 (en) Motor drive device
Song et al. Design of zero-sequence current controller for open-end winding PMSMs considering current measurement errors
JP5333256B2 (ja) 交流回転機の制御装置
EP3910782A1 (en) Power conversion device
Meirinho et al. Fault tolerant control for permanent magnet synchronous motor
JP6113651B2 (ja) 多相電動機駆動装置
Shinohara et al. Comparison of stator flux linkage estimators for PWM-based direct torque controlled PMSM drives
WO2021079919A1 (ja) 電力変換装置
JP2020005404A (ja) 電力変換装置
Shen et al. Flux sliding-mode observer design for sensorless control of dual three-phase interior permanent magnet synchronous motor
Lee et al. A universal restart strategy for induction machines
JP6016712B2 (ja) 交流ブラシレス励磁装置および発電システム
JP6719162B2 (ja) 多相電動機駆動装置
JP6422796B2 (ja) 同期機制御装置及び駆動システム
Mengoni et al. Sensorless multiphase induction motor drive based on a speed observer operating with third-order field harmonics
JP7413926B2 (ja) 制御装置及び電力変換装置
Dong et al. Research on DTC of Permanent Magnet Synchronous Motor Without Flux Linkage Loop
WO2023228885A1 (ja) 駆動制御装置、駆動制御システム及び状態推定方法
Titus et al. Sensorless Vector Control for a Load Commutated Inverter fed Active-Reactive Induction Motor Drive
Alcharea et al. Fault tolerant DTC for six-phase symmetrical induction machine
JP2019030095A (ja) モータ制御装置及びモータ制御方法
Echikh et al. 5-Phase AC induction motor rotor flux oriented control with space vector modulation technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R151 Written notification of patent or utility model registration

Ref document number: 6226901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250