WO2013118234A1 - 薄膜半導体装置の製造方法及び薄膜半導体装置 - Google Patents

薄膜半導体装置の製造方法及び薄膜半導体装置 Download PDF

Info

Publication number
WO2013118234A1
WO2013118234A1 PCT/JP2012/008462 JP2012008462W WO2013118234A1 WO 2013118234 A1 WO2013118234 A1 WO 2013118234A1 JP 2012008462 W JP2012008462 W JP 2012008462W WO 2013118234 A1 WO2013118234 A1 WO 2013118234A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
semiconductor
thin film
intrinsic
Prior art date
Application number
PCT/JP2012/008462
Other languages
English (en)
French (fr)
Inventor
有宣 鐘ヶ江
西田 健一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/003,946 priority Critical patent/US9209309B2/en
Publication of WO2013118234A1 publication Critical patent/WO2013118234A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • the present invention relates to a method for manufacturing a thin film semiconductor device and a thin film semiconductor device.
  • a thin film semiconductor device called a thin film transistor (TFT) is used in an active matrix display device such as a liquid crystal display device and a solid-state imaging device such as a digital camera.
  • the TFT is used as a switching element for selecting a pixel, a driving transistor for driving the pixel, a driver outside the panel, or the like.
  • an organic EL display having an organic EL element using an organic material EL is a current-driven display device unlike a voltage-driven liquid crystal display. Is in a hurry.
  • a thin film transistor has a structure in which a gate electrode, a semiconductor layer (channel layer), a source electrode, and a drain electrode are formed on a substrate, and a silicon thin film is generally used for the channel layer.
  • a bottom-gate thin film transistor in which a gate electrode is formed on the substrate side of a channel layer is used as a thin film transistor that can be easily reduced in cost.
  • Bottom gate type thin film transistors are roughly classified into two types: a channel etching type thin film transistor in which the channel layer is etched and a channel protection type (etching stopper type) thin film transistor that protects the channel layer from the etching process.
  • the channel protective thin film transistor can prevent damage to the channel layer due to the etching process, and can suppress increase in variation in characteristics in the substrate surface.
  • a channel protective thin film transistor is advantageous for high definition because a channel layer can be thinned and a parasitic resistance component can be reduced to improve on-state characteristics.
  • the channel protection type thin film transistor is suitable for a drive transistor in a current drive type organic EL display device using an organic EL element, for example.
  • the thin film transistor for driving the organic EL element is preferably a polycrystalline silicon TFT using polycrystalline silicon having excellent current driving capability. For this reason, in a stacked TFT, a high current driving capability can be obtained by forming the semiconductor layer, the source, and the drain from polycrystalline silicon.
  • a p-type TFT when an amorphous silicon film is used for the source and drain, the resistance value becomes extremely high. For this reason, when forming a p-type TFT and a CMOS-type TFT using the p-type TFT, it is preferable to use a polycrystalline silicon TFT.
  • a display device has been developed in which a driving circuit having a CMOS structure, which is advantageous for low power consumption, is uniformly formed in a plane using a multi-layer TFT using a polycrystalline semiconductor.
  • CMOS structure which is advantageous for low power consumption
  • the source and drain contacts have a structure in which a p + type layer and an n + type layer are stacked, and therefore each of the source and drain becomes a diode. Therefore, when a voltage is applied to the gate electrode, a reverse voltage is always applied to either the source or the drain. Therefore, a desired current does not flow between the source and drain of the p-type TFT due to the current characteristics of the diode. As a result, the performance of the TFT deteriorates.
  • an object of the present invention is to provide a method for manufacturing a thin film semiconductor device and a thin film semiconductor device with improved TFT performance.
  • a method for manufacturing a thin film semiconductor device is a method for manufacturing a thin film semiconductor device having two thin film transistor portions, comprising: preparing a substrate; Forming a gate electrode on the substrate, forming a gate insulating film on the substrate and the gate electrode, and facing each of the two gate electrodes on the gate insulating film through the gate insulating film Forming a first semiconductor layer and a second semiconductor layer having a region as a channel region, and a first channel protective layer formed by a coating method over the first semiconductor layer and the second semiconductor layer And forming a first contact layer on the first channel protection layer and above the first semiconductor layer, each of which has a first conductivity type.
  • the length of the first semiconductor layer in the channel direction is equal to the length of the first contact layer in the channel direction
  • the length of the second semiconductor layer in the channel direction is equal to the second length of the second semiconductor layer.
  • the present invention it is possible to provide a method for manufacturing a thin film semiconductor device and a thin film semiconductor device with improved TFT performance.
  • FIG. 1 is a schematic diagram showing the configuration of the thin film semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing one step of the method for manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 3 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 4 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 5 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 6 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 7 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 8 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 9 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 10 is a schematic diagram showing one step in the method of manufacturing the thin film semiconductor device according to the first embodiment.
  • FIG. 11 is a diagram illustrating the operation of the thin film semiconductor device according to the first embodiment.
  • FIG. 12 is a schematic diagram showing a configuration of a thin film semiconductor device according to a modification of the first embodiment.
  • FIG. 13 is a schematic diagram showing the configuration of the thin film semiconductor device according to the second embodiment.
  • FIG. 14 is a TEM image when the cross section of the thin film semiconductor device according to the second embodiment is observed in a bright field.
  • FIG. 14 is a TEM image when the cross section of the thin film semiconductor device according to the second embodiment is observed in a bright field.
  • FIG. 15 is a schematic diagram showing the configuration of the thin film semiconductor device according to the third embodiment.
  • FIG. 16 is a partially cutaway perspective view of the organic EL display device according to the embodiment.
  • FIG. 17 is a diagram illustrating a circuit configuration of a pixel using the thin film semiconductor device according to the embodiment.
  • FIG. 18 is a schematic diagram showing a configuration example of a conventional thin film semiconductor device.
  • the back channel is a path of a parasitic current passing through the vicinity of the interface with the channel protective layer side in the channel layer from the source electrode to the drain electrode.
  • a leakage current is generated in the thin film semiconductor device.
  • the off-characteristics are deteriorated, so that there is a problem that the performance of the TFT is lowered in the configuration of the channel protection type thin film transistor.
  • FIG. 18 is a cross-sectional view showing a configuration of a conventional display device.
  • This display device includes an n-type TFT and a p-type TFT.
  • the 18 includes a gate electrode 432, a gate insulating film, an active layer, an n-type source 440a, and an n-type drain 440b on a substrate 412n.
  • the p-type TFT 442 includes a gate electrode 433, a gate insulating film, an active layer, a p-type source 437a, and a p-type drain 437b on a substrate 412p.
  • the n + type formed simultaneously with the formation of the n type source 440a and the n type drain 440b of the n type TFT 441, respectively.
  • a layer 440 is formed.
  • the contacts of the p-type source 437a and the p-type drain 437b have a configuration in which a p + type layer 437 and an n + type layer 440 are stacked. That is, each of the p-type source 437a and the p-type drain 437b is a diode. Therefore, when a voltage is applied to the gate electrode 433, a reverse voltage is always applied to either the p-type source 437a or the p-type drain 437b. Therefore, a desired current does not flow between the source and drain of the p-type TFT 442 due to the current characteristics of the diode, and the performance of the TFT deteriorates.
  • the present invention realizes a method for manufacturing a thin film semiconductor device and a thin film semiconductor device with improved TFT performance.
  • a manufacturing method of a semiconductor thin film device is a manufacturing method of a thin film semiconductor device having two thin film transistor portions, a step of preparing a substrate, a step of forming a gate electrode on the substrate, A step of forming a gate insulating film on the substrate and the gate electrode; and a region on the gate insulating film facing each of the two gate electrodes through the gate insulating film as a channel region A step of forming a semiconductor layer and a second semiconductor layer, and a first channel protective layer and a second channel protective layer formed by a coating method above the first semiconductor layer and the second semiconductor layer, respectively.
  • first contact layer Forming a first contact layer on the first channel protection layer and above the first semiconductor layer, the first semiconductor layer having a first conductivity type; Layered The length in the channel direction and the length in the channel direction of the first contact layer are the same, and the length in the channel direction of the second semiconductor layer and the length in the channel direction of the second channel protective layer Etching the first semiconductor layer and the second semiconductor layer so as to have the same length, a second conductivity type different from the first conductivity type, and the second channel protective layer Forming a second contact layer on the top and a part of a side surface of the second semiconductor layer; forming a source electrode on a part of the first contact layer and the second contact layer; Forming a drain electrode on another part of the first contact layer and the second contact layer so as to face the source electrode.
  • the current characteristics between the source and the drain can be improved.
  • the semiconductor layer and the contact layer can be directly contacted, so that the current characteristics between the source and the drain are further improved. Can do. Thereby, a thin film semiconductor device with improved TFT performance can be provided.
  • a thin film semiconductor device having a CMOS structure having an optimum structure that matches the characteristics of the n-type TFT and the p-type TFT can be formed.
  • CMOS structure using low-temperature polysilicon LTPS
  • the number of masks for implanting impurities can be reduced. Therefore, the cost for manufacturing a CMOS configuration can be reduced.
  • the average crystal grain size of the first contact layer and the second contact layer may be smaller than the average crystal grain size of the channel region.
  • the off-current can be reduced in the semiconductor thin film device.
  • Each of the first semiconductor layer and the second semiconductor layer includes a semiconductor film and an amorphous intrinsic semiconductor layer formed above the semiconductor film, and the first conductivity type is n
  • the second conductivity type may be a p-type.
  • the amorphous intrinsic The semiconductor layer is disposed in the current path (electron path) between the source and drain electrodes. That is, a current path passing through the amorphous intrinsic semiconductor layer can be formed. Since the amorphous intrinsic semiconductor layer has a high resistance value, the amount of voltage drop in the amorphous intrinsic semiconductor layer increases, and the voltage applied to the channel decreases. Therefore, according to this configuration, even in the case of an n-type TFT in which it is difficult to reduce the off current, the off current can be suppressed.
  • a current path (carrier path) that does not pass through the amorphous intrinsic semiconductor layer is formed by forming the second contact layer on the side surface of the semiconductor layer. be able to. Thereby, the on-current can be increased in the p-type TFT.
  • the on-current can be kept high in the p-type TFT while reducing the off-current in the n-type TFT.
  • the first semiconductor layer and the second semiconductor layer includes a semiconductor film and an amorphous intrinsic semiconductor layer, and forms the first semiconductor layer and the second semiconductor layer.
  • the step includes a tenth step of forming the intrinsic semiconductor layer at least on the channel region, and the energy levels at the lower ends of the conduction bands of the semiconductor film and the intrinsic semiconductor layer are represented by E CP and E C1 , respectively.
  • the intrinsic semiconductor layer may be formed so that E CP ⁇ E C1 .
  • the positive fixed charge of the channel protective layer is offset by the charge density of negative carriers at the localized level density (trap density) of the intrinsic semiconductor layer.
  • electric field shielding can be performed.
  • the formation of a back channel can be suppressed and the leakage current at the time of OFF can be suppressed, so that the OFF characteristics can be improved.
  • the occurrence of the kink phenomenon which is a phenomenon in which the drain current increases rapidly, can be suppressed.
  • a first intrinsic semiconductor film is formed on the semiconductor film, and a second intrinsic semiconductor film is formed on the first intrinsic semiconductor film.
  • the first intrinsic semiconductor film and the second intrinsic semiconductor film may be formed of an amorphous silicon film.
  • an intrinsic semiconductor layer having a different crystallization rate can be easily formed as the distance from the vicinity of the surface of the semiconductor film increases.
  • formation of a back channel due to positive fixed charges contained in the channel protective layer is suppressed, and off characteristics are improved. Can do.
  • the first intrinsic semiconductor film and the second intrinsic semiconductor film are continuously formed in the same vacuum apparatus, and the first intrinsic semiconductor film
  • the first intrinsic semiconductor film and the second intrinsic semiconductor film may be formed so that the crystallization rate is larger than the crystallization rate of the second intrinsic semiconductor film.
  • the reverse polarity film is exposed to the contact portion even once. And dopants constituting the n-type semiconductor and the p-type semiconductor do not move to the opposite polarity film. Therefore, a high performance TFT can be formed.
  • the first intrinsic semiconductor film and the second intrinsic semiconductor film so that the crystallization rate of the first intrinsic semiconductor film is larger than the crystallization rate of the second intrinsic semiconductor film, E CP ⁇ E C1 can be easily set.
  • the second contact layer is formed on the first channel protective layer, on the side surface of the first semiconductor layer, and on the first contact layer. And a step of removing the second contact layer formed above the first contact layer.
  • the contact layer and the n-type contact layer are not stacked in the p-type TFT, the current characteristics between the source and the drain can be improved. Further, by forming a contact layer on the top surface, side surface of the channel protective layer, and part of the side surface of the semiconductor layer, the contact layer serves as an electric field relaxation layer when the drain current is large. The current can be reduced and the reliability of the thin film semiconductor device can be improved. Further, since the semiconductor layer and the contact layer can be in direct contact, the contact portion where the semiconductor layer and the contact layer are in direct contact is mainly effective as a current inlet. Thereby, a thin film semiconductor device with improved TFT performance can be provided.
  • the film thickness of the first contact layer is made larger than the film thickness of the second contact layer formed in the step of forming the second contact layer. You may form thickly.
  • a semiconductor thin film device is a thin film semiconductor device including at least a first thin film transistor portion and a second thin film transistor portion, and the first thin film transistor portion includes a first gate electrode, A first insulating film located on the first gate electrode; a first semiconductor layer having a channel region as a region facing the first gate electrode and the first gate electrode; A first contact layer having a first conductivity type formed in contact with at least a part of the semiconductor layer; a first source electrode formed on the first contact layer; and the first contact.
  • Second An insulating film, the second gate electrode, a second semiconductor layer having a channel region as a region facing through the second insulating film, and at least a part of a side surface of the semiconductor layer are formed.
  • the p-type contact layer and the n-type contact layer are not stacked in the p-type TFT, the current characteristics between the source and the drain can be improved.
  • the semiconductor layer and the contact layer can be in direct contact with each other, so that the current characteristics between the source and the drain can be improved. it can. Thereby, a thin film semiconductor device with improved TFT performance can be provided.
  • CMOS transistor having an optimum structure that matches the characteristics of the n-type TFT and the p-type TFT.
  • CMOS structure using low-temperature polysilicon LTPS
  • the number of masks for implanting impurities can be reduced. Therefore, the cost for manufacturing a CMOS configuration can be reduced.
  • the average crystal grain size of the first contact layer and the second contact layer may be smaller than the average crystal grain size of the channel region.
  • the off-current can be reduced in the semiconductor thin film device.
  • the first thin film transistor portion includes a first channel protective layer above the first semiconductor layer, and in the first thin film transistor portion, the length of the channel protective layer in the channel direction is The channel region of the first semiconductor may be shorter than the length in the channel direction.
  • the second thin film transistor portion includes a second channel protective layer above the second semiconductor layer, and the second thin film transistor portion has a length in the channel direction of the second channel protective layer.
  • the length of the second semiconductor layer in the channel direction may be the same length.
  • CMOS transistor having an optimum structure that matches the characteristics of the n-type TFT and the p-type TFT.
  • Each of the first semiconductor layer and the second semiconductor layer includes a semiconductor film and an amorphous intrinsic semiconductor layer formed above the semiconductor film, and the first conductivity type is n
  • the second conductivity type may be a p-type.
  • the p-type TFT can keep the on-current high while reducing the off-current in the n-type TFT by separately forming the structure in the p-type TFT and the n-type TFT.
  • first contact layer and the second contact layer may be formed above the first channel protective layer and the second channel protective layer, respectively.
  • the contact layer and the n-type contact layer are not stacked in the p-type TFT, the current characteristics between the source and the drain can be improved. Further, by forming a contact layer on the top surface, side surface of the channel protective layer, and part of the side surface of the semiconductor layer, the contact layer serves as an electric field relaxation layer when the drain current is large. The current can be reduced and the reliability of the thin film semiconductor device can be improved. Further, since the semiconductor layer and the contact layer can be in direct contact, the contact portion where the semiconductor layer and the contact layer are in direct contact is mainly effective as a current inlet. Thereby, a thin film semiconductor device with improved TFT performance can be provided.
  • the first insulating film and the second insulating film may be continuous.
  • the channel protective layer may be made of an organic material.
  • the thin film semiconductor device may be a complementary thin film semiconductor device.
  • At least one of the first semiconductor layer and the second semiconductor layer includes a semiconductor film and an amorphous intrinsic semiconductor layer formed between the semiconductor film and the channel protective layer. May be.
  • the semiconductor film may be made of crystalline silicon, and the intrinsic semiconductor layer may be made of amorphous silicon.
  • the positive fixed charge of the channel protective layer is offset by the charge density of negative carriers at the localized level density (trap density) of the intrinsic semiconductor layer.
  • electric field shielding can be performed.
  • the formation of a back channel can be suppressed and the leakage current at the time of OFF can be suppressed, so that the OFF characteristics can be improved.
  • E CP and E C1 the energy levels at the lower ends of the conduction bands of the semiconductor film and the intrinsic semiconductor layer are E CP and E C1 , respectively, E CP ⁇ E C1 may be satisfied.
  • the intrinsic semiconductor layer includes a first intrinsic semiconductor film formed on the semiconductor film and a second intrinsic semiconductor film formed on the first intrinsic semiconductor film.
  • the intrinsic semiconductor film and the second intrinsic semiconductor film may have different electron affinities.
  • an intrinsic semiconductor layer having a different crystallization rate can be easily formed as the distance from the vicinity of the surface of the semiconductor film increases.
  • formation of a back channel can be suppressed and off characteristics can be improved.
  • first intrinsic semiconductor film and the second intrinsic semiconductor film may be mainly composed of silicon and may have different band gaps.
  • the energy level E C1 at the lower end of the conduction band can be adjusted.
  • each of the first intrinsic semiconductor film and the second intrinsic semiconductor film may be an amorphous silicon film.
  • the crystallization rate of the first intrinsic semiconductor film may be larger than the crystallization rate of the second intrinsic semiconductor film.
  • the energy level E CP at the lower end of the conduction band of the semiconductor film and the energy level E C1 at the lower end of the conduction band of the first intrinsic semiconductor film are the same as the semiconductor film and the first intrinsic semiconductor. You may adjust so that a spike may not generate
  • the semiconductor thin film device is a thin film semiconductor device including two thin film transistor portions, each of the two thin film transistor portions including a gate electrode and a gate insulating film positioned on the gate electrode A semiconductor layer located on the gate insulating film and having a channel region as a region facing the gate electrode through the gate insulating film, and a contact formed in contact with a part above the semiconductor layer A layer, a source electrode formed on the contact layer, and a drain electrode formed on the contact layer so as to face the source electrode, and one of the contact layers of the two thin film transistor portions and the 2
  • the other contact layer of the two thin film transistor portions has a different conductivity type.
  • the p-type contact layer and the n-type contact layer are not stacked in the p-type TFT, the current characteristics between the source and the drain can be improved. Thereby, a thin film semiconductor device with improved TFT performance can be provided.
  • CMOS structure using low-temperature polysilicon LTPS
  • the number of masks for implanting impurities can be reduced. Therefore, the cost for manufacturing a CMOS configuration can be reduced.
  • FIG. 1 is a schematic diagram showing a configuration of a thin film semiconductor device 100 according to an embodiment of the present invention.
  • 4A is a top view
  • FIG. 3B is a cross-sectional view taken along the line AA ′ in FIG.
  • a thin film semiconductor device 100 is a thin film semiconductor device having two thin film transistor portions 100a and 100b having opposite polarities, and the thin film transistor portions 100a and 100b are formed on a substrate. 110, a gate electrode 111a and a gate electrode 111b formed on the substrate 110, and a gate insulating film 112 formed on the substrate 110 and the gate electrodes 111a and 111b. ) Configure the device.
  • the thin film transistor portion 100a which is one of the two thin film transistor portions, is a transistor portion having an n-type conductivity type.
  • the thin film transistor portion 100a is formed above the gate electrode 111a and includes a semiconductor layer having a channel region and a part above the semiconductor layer.
  • the drain electrode 120b is formed.
  • a channel protective layer 115a is formed above the semiconductor layer.
  • the semiconductor layer includes a semiconductor film 113a and an intrinsic semiconductor layer 114a formed between the semiconductor film 113a and the channel protective layer 115a.
  • the source electrode 120a and the drain electrode 120b correspond to the first source electrode and the first drain electrode in the present invention, respectively.
  • the contact layers 116a and 116b correspond to the first contact layer in the present invention.
  • the thin film transistor portion 100b which is the other of the two thin film transistor portions, is a transistor portion having p-type conductivity.
  • the thin film transistor portion 100b is formed above the gate electrode 111b and is formed over the semiconductor layer having a channel region and part of the side surface of the semiconductor layer.
  • Contact layers 117b and 117c having a p-type conductivity type that is a second conductivity type opposite in polarity to the first conductivity type, a source electrode 120c formed on the contact layer 117b, and a contact layer 117c are formed in contact with each other.
  • a drain electrode 120d formed to face the source electrode 120c is provided thereon.
  • a channel protective layer 115b is formed above the semiconductor layer.
  • the semiconductor layer includes a semiconductor film 113b and an intrinsic semiconductor layer 114b formed between the semiconductor film 113b and the channel protective layer 115b.
  • the source electrode 120c and the drain electrode 120d correspond to the second source electrode and the second drain electrode in the present invention, respectively.
  • the contact layers 117b and 117c correspond to the second contact layer in the present invention.
  • the substrate 110 is a glass substrate made of a glass material such as quartz glass, non-alkali glass, and high heat resistant glass. Note that in order to prevent impurities such as sodium and phosphorus contained in the glass substrate from entering the semiconductor films 113a and 113b, a silicon nitride film (SiN x ), silicon oxide (SiO y ), or An undercoat layer made of a silicon oxynitride film (SiO y N x ) or the like may be formed. In addition, the undercoat layer may play a role of mitigating the influence of heat on the substrate 110 in a high-temperature heat treatment process such as laser annealing.
  • the film thickness of the undercoat layer can be, for example, about 100 nm to 2000 nm.
  • the gate electrodes 111a and 111b are patterned in a predetermined shape on the substrate 110.
  • the gate electrodes 111a and 111b can have a single layer structure or a multilayer structure such as a conductive material and an alloy thereof, for example, molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), titanium. (Ti), chromium (Cr), molybdenum tungsten (MoW), or the like.
  • the film thickness of the gate electrodes 111a and 111b can be, for example, about 20 to 500 nm.
  • the gate insulating film 112 is formed over the gate electrodes 111a and 111b. In this embodiment, the gate insulating film 112 is formed over the entire surface of the substrate 110 so as to cover the gate electrodes 111a and 111b.
  • the gate insulating film 112 is, for example, a single layer film of silicon oxide (SiO y ), silicon nitride (SiN x ), silicon oxynitride film (SiO y N x ), aluminum oxide (AlO z ), or tantalum oxide (TaO w ). Or it can comprise by these laminated films.
  • the thickness of the gate insulating film 112 can be set to, for example, 50 nm to 300 nm.
  • the semiconductor films 113a and 113b are included as the semiconductor layer serving as the channel region of the TFT, it is preferable to use silicon oxide as the gate insulating film 112. This is because in order to maintain good threshold voltage characteristics in the TFT, it is preferable that the interface state between the semiconductor films 113a and 113b and the gate insulating film 112 is good, and silicon oxide is suitable for this. It is.
  • the semiconductor films 113a and 113b are semiconductor layers that are located on the gate insulating film 112 and have a region facing the gate electrodes 111a and 111b through the gate insulating film 112 as a channel region.
  • the semiconductor films 113a and 113b are semiconductor films formed of a crystalline silicon thin film 113 formed over the gate insulating film 112, and carrier movement is controlled by the voltages of the gate electrodes 111a and 111b. It has a predetermined channel region which is a region.
  • the channel length of the TFT is defined as the width of the channel protective layers 115a and 115b.
  • the semiconductor films 113a and 113b are, for example, crystalline silicon thin films having a crystalline structure, and are made of a microcrystalline silicon thin film or a polycrystalline silicon thin film.
  • the semiconductor films 113a and 113b can be formed by crystallizing non-crystalline amorphous silicon (amorphous silicon).
  • the semiconductor films 113a and 113b may be amorphous silicon films or films containing amorphous silicon.
  • a silicon thin film having a mixed crystal structure of amorphous silicon (non-crystalline silicon) and crystalline silicon can be obtained.
  • a semiconductor layer having amorphous silicon above crystalline silicon may be used.
  • at least the predetermined channel regions of the semiconductor films 113a and 113b are preferably formed of a film having a high proportion of crystalline silicon.
  • the film thickness of the semiconductor films 113a and 113b can be about 20 nm to 100 nm, for example.
  • the principal plane orientation of the silicon crystals contained in the semiconductor films 113a and 113b is preferably [100]. Thereby, semiconductor films 113a and 113b having excellent crystallinity can be formed.
  • the average crystal grain size of crystalline silicon in the semiconductor films 113a and 113b is about 5 nm to 1000 nm, and the semiconductor films 113a and 113b have a polycrystal having an average crystal grain size of 100 nm or more as described above, or an average Microcrystals called microcrystals ( ⁇ c) having a crystal grain size of 10 nm to 100 nm are also included.
  • the intrinsic semiconductor layers 114a and 114b are intrinsic semiconductor layers formed on the semiconductor films 113a and 113b, and specifically, are amorphous silicon films that are not intentionally doped with impurities.
  • the intrinsic semiconductor layers 114a and 114b are formed on the semiconductor films 113a and 113b so as to be in contact with the upper surfaces of the semiconductor films 113a and 113b.
  • the thickness of the intrinsic semiconductor layers 114a and 114b can be about 20 nm. Note that a preferable range of the thickness of the intrinsic semiconductor layers 114a and 114b is 20 nm to 140 nm.
  • the semiconductor films 113a and 113b and the intrinsic semiconductor layers 114a and 114b are E CP and E C1 , respectively, the semiconductor films 113a and 113b and the intrinsic semiconductor layer 114a And 114b are configured to satisfy the relationship of E CP ⁇ E C1 .
  • the intrinsic semiconductor layers 114a and 114b are configured to have different crystallization rates as the deposition proceeds and the distance from the vicinity of the surfaces of the semiconductor films 113a and 113b increases.
  • the crystallization rate of the intrinsic semiconductor layers 114a and 114b in the vicinity of the surfaces of the semiconductor films 113a and 113b is larger than the crystallization rate of the intrinsic semiconductor layers 114a and 114b in the portion far from the vicinity of the surfaces of the semiconductor films 113a and 113b. It is preferable to be configured as follows. By making the crystallization rate in this way, E CP ⁇ E C1 can be easily achieved .
  • Intrinsic semiconductor layers 114a and 114b in this embodiment include crystalline silicon grains having a crystal grain size of 5 nm to 100 nm. Further, the crystallization ratio in the thickness direction of the intrinsic semiconductor layers 114a and 114b is gradually increased as the semiconductor films 113a and 113b are approached. In this embodiment, the crystal grain size of the crystalline silicon grains of the intrinsic semiconductor layers 114a and 114b is increased. Gradually increases toward the semiconductor films 113a and 113b. On the other hand, the intrinsic semiconductor layers 114a and 114b at portions away from the vicinity of the surfaces of the semiconductor films 113a and 113b are not crystallized, and the crystallization rate is zero.
  • the crystallization rate means the degree to which the structure of the silicon semiconductor film is crystallized, for example, when the semiconductor film is mainly composed of silicon.
  • the crystallization rate can be expressed, for example, by the size of the crystal grain size as described above, or by the size of the density at the same crystal grain size.
  • the crystallization rate can be expressed as a crystallization rate due to only a crystalline component or as a crystallization rate due to a crystalline component and an amorphous component (amorphous component).
  • the intrinsic semiconductor layers 114a and 114b are formed of intrinsic amorphous silicon that is not intentionally doped with impurities.
  • the structure of the amorphous silicon film is composed of only an amorphous amorphous component.
  • the structure of the amorphous silicon film in this embodiment includes a microcrystalline crystal component.
  • the contact layers 116a and 116b are formed in part above the semiconductor film 113a, and the semiconductor film 113a includes the intrinsic semiconductor layer 114a (amorphous intrinsic semiconductor layer).
  • the layer 114a is disposed in a current path (electron path) between the source and drain electrodes. That is, in the thin film transistor portion 100a that is an n-type TFT, a current path passing through the intrinsic semiconductor layer 114a can be formed. Since the intrinsic semiconductor layer 114a, which is an amorphous intrinsic semiconductor layer, has a high resistance value, the amount of voltage drop in the intrinsic semiconductor layer 114a increases and the voltage applied to the channel decreases. Therefore, according to this configuration, even in the case of an n-type TFT in which it is difficult to reduce the off current, the off current can be suppressed.
  • the thin film transistor portion 100b which is a p-type TFT since it is easy to reduce off-state current in a p-type semiconductor, in the thin film transistor portion 100b which is a p-type TFT, contact layers 117b and 117c are formed on the side surface of the semiconductor film 113b, whereby an amorphous intrinsic semiconductor is formed. A current path (carrier path) that does not pass through the intrinsic semiconductor layer 114b that is a layer can be formed. Thereby, the on-current can be increased in the p-type TFT.
  • the p-type TFT and the n-type TFT have different structures as described above, so that the off-current is reduced in the thin-film transistor portion 100a that is an n-type TFT, and the thin-film transistor portion 100b that is a p-type TFT. Then, the on-current can be kept high.
  • the channel protective layers 115a and 115b are channel protective layers that protect the semiconductor layers including the channel region (semiconductor films 113a and 113b, intrinsic semiconductor layers 114a and 114b). That is, the channel protective layers 115a and 115b function as channel etching stopper (CES) layers, and the semiconductor in the channel region is subjected to an etching process when forming the pair of contact layers 116a and 116b and the pair of contact layers 117b and 117c.
  • the films 113a and 113b and the intrinsic semiconductor layers 114a and 114b have a function of preventing etching.
  • the channel protective layers 115a and 115b are formed above the channel region and on the semiconductor layer.
  • the channel protective layers 115a and 115b are formed in regions directly above the intrinsic semiconductor layers 114a and 114b and corresponding to the channel regions.
  • the length of the channel protective layer 115a in the channel direction is shorter than the length of the semiconductor layer in the channel direction.
  • the length of the channel protective layer 115b in the channel direction is the same as the length of the semiconductor layer in the channel direction.
  • the length of the channel protective layer in the channel direction refers to the length of the channel protective layers 115a and 115b in the channel direction on the surfaces of the intrinsic semiconductor layers 114a and 114b.
  • the length of the channel protective layer in the channel direction is the same as the length of the semiconductor layer in the channel direction” means that the length of the channel protective layers 115a and 115b is approximately the same in consideration of variations caused by etching. Including some cases.
  • the channel protective layers 115a and 115b mainly contain a material containing silicon, oxygen, and carbon, and are formed by a coating method. In this embodiment mode, the channel protective layers 115a and 115b are formed by patterning and solidifying a photosensitive coating type material.
  • the organic material constituting the channel protective layers 115a and 115b includes, for example, an organic resin material, a surfactant, a solvent, and a photosensitive agent.
  • the channel protective layer may be mainly composed of an inorganic material.
  • an SOG (Spin On Glass) material typified by BPSG (Boron Phosphorus Silicon Glass) which is a SiO 2 film containing boron and phosphorus may be used as the channel protective layer.
  • Examples of the organic resin material that is the main component of the channel protective layers 115a and 115b include photosensitive or non-photosensitive organic materials including one or more of polyimide, acrylic, polyamide, polyimide amide, resist, benzocyclobutene, and the like.
  • a resin material can be used.
  • As the surfactant a surfactant made of a silicon compound such as siloxane can be used.
  • As the solvent an organic solvent such as propylene glycol monomethyl ether acetate or 1,4-dioxane can be used.
  • As the photosensitizer a positive photosensitizer such as naphthoquinone diazite can be used. Note that the photosensitive agent contains not only carbon but also sulfur.
  • the above organic material is formed using a coating method such as a spin coating method.
  • a coating method such as a spin coating method.
  • the channel protective layers 115a and 115b can be formed not only by a coating method but also by other methods such as a droplet discharge method.
  • an organic material having a predetermined shape can be selectively formed by using a printing method that can form a predetermined pattern such as screen printing or offset printing.
  • the film thickness of the channel protective layers 115a and 115b is, for example, 300 nm to 1000 nm.
  • the lower limit of the film thickness of the channel protective layers 115a and 115b is determined in consideration of a margin due to etching and suppression of the influence of fixed charges in the channel protective layers 115a and 115b.
  • the upper limit of the thickness of the channel protective layers 115a and 115b is a process accompanying an increase in a step difference between the pair of contact layers 116a and 116b, the pair of contact layers 117b and 117c, the source electrodes 120a and 120c, and the drain electrodes 120b and 120d. It is determined in consideration of suppressing a decrease in reliability.
  • the pair of contact layers 116a and 116b are made of an amorphous semiconductor film containing impurities at a high concentration, and are formed on the channel protective layer 115a. That is, the pair of contact layers 116a and 116b is formed above the channel region of the semiconductor film 113a with the channel protective layer 115a interposed therebetween. Further, the pair of contact layers 116a and 116b are disposed to face each other with a predetermined interval. Note that “on the channel protective layer” on which the contact layer is formed means at least part of the upper surface and the side surface of the channel protective layer.
  • one of the pair of contact layers 116a and 116b (for example, the contact layer 116a) is formed so as to straddle one end portion of the channel protective layer 115a and the intrinsic semiconductor layer 114a.
  • the channel protective layer 115a is formed so as to cover the upper and side surfaces at one end of the channel protective layer 115a and the upper surface of the intrinsic semiconductor layer 114a in one side surface region of the channel protective layer 115a.
  • the other of the pair of contact layers 116a and 116b (for example, the contact layer 116b) is formed so as to straddle the other end of the channel protective layer 115a and the intrinsic semiconductor layer 114a, and the channel protective layer 115a. Are formed so as to cover the upper and side surfaces of the other end portion of the first semiconductor layer and the upper surface of the intrinsic semiconductor layer 114a in the other side surface region of the channel protective layer 115a.
  • the pair of contact layers 116a and 116b covers a part of the channel protective layer 115a and is formed in contact with a part above the intrinsic semiconductor layer 114a constituting the semiconductor layer.
  • the contact layers 116a and 116b serve as an electric field relaxation layer when the drain current is large. Therefore, the off-current between the source and the drain is reduced, and the reliability of the thin film semiconductor device 100 is improved. Can be achieved.
  • the contact layers 116a and 116b are formed on the upper surface of the channel protective layer 115a functioning as a CES, this effect can be exhibited more. Note that the contact portions where the contact layers 116a and 116b are in contact with part of the side surfaces of the intrinsic semiconductor layer 114a and the semiconductor film 113a constituting the semiconductor layer are mainly effective as current draw ports.
  • This effect is effective for both p-type and n-type semiconductors, but is particularly effective for n-type semiconductors.
  • the pair of contact layers 116a and 116b can be formed of, for example, an n-type semiconductor film in which amorphous silicon is doped with phosphorus (P) as an impurity, and a high concentration impurity of 1 ⁇ 10 19 [atm / cm 3 ] or more. Is an n + layer.
  • the film thickness of the contact layers 116a and 116b can be set to 5 nm to 100 nm, for example.
  • the pair of contact layers 116a and 116b may be composed of two layers of a lower-layer low-concentration electric field relaxation layer (n ⁇ layer) and an upper-layer high-concentration contact layer (n + layer).
  • the low concentration electric field relaxation layer is doped with phosphorus of about 1 ⁇ 10 17 [atm / cm 3 ].
  • the two layers can be formed continuously in a CVD (Chemical Vapor Deposition) apparatus.
  • the pair of contact layers 117b and 117c are made of an amorphous semiconductor film containing impurities at a high concentration, and are formed on the channel protection layer 115b. That is, the pair of contact layers 117b and 117c is formed above the channel region of the semiconductor film 113b with the channel protective layer 115b interposed therebetween. Further, the pair of contact layers 117b and 117c are arranged to face each other with a predetermined interval.
  • one of the pair of contact layers 117b and 117c (eg, the contact layer 117b) is formed so as to straddle one end of the channel protective layer 115b, the intrinsic semiconductor layer 114b, and the semiconductor film 113b.
  • the channel protection layer 115b is formed to cover the upper and side surfaces at one end, the side surface of the intrinsic semiconductor layer 114b and the side surface of the semiconductor film 113b in one side surface region of the channel protection layer 115b.
  • the other of the pair of contact layers 117b and 117c (for example, the contact layer 117c) is formed so as to straddle the other end of the channel protective layer 115a, the intrinsic semiconductor layer 114b, and the semiconductor film 113b.
  • the channel protection layer 115b is formed to cover the upper and side surfaces at the other end, and the side surface of the intrinsic semiconductor layer 114b and the side surface of the semiconductor film 113b in the other side surface region of the channel protection layer 115b.
  • the pair of contact layers 117b and 117c cover part of the channel protective layer 115b and are formed in contact with part of the side surfaces of the intrinsic semiconductor layer 114b and the semiconductor film 113b that form the semiconductor layer.
  • the contact layers 117b and 117c serve as an electric field relaxation layer when the drain current is large, so that the off-current between the source and the drain is reduced and the reliability of the thin film semiconductor device 100 is improved. Can be achieved.
  • the contact layers 117b and 117c are formed on the upper surface of the channel protective layer 115b functioning as the CES, this effect can be exhibited more.
  • the contact portions where the contact layers 117b and 117c are in contact with part of the side surfaces of the intrinsic semiconductor layer 114b and the semiconductor film 113b constituting the semiconductor layer are mainly effective as current inlets.
  • This effect is effective for both p-type and n-type semiconductors, but is particularly effective for n-type semiconductors.
  • the pair of contact layers 117b and 117c can be formed of, for example, a p-type semiconductor film in which amorphous silicon is doped with boron (B) as an impurity, and a high concentration impurity of 1 ⁇ 10 19 [atm / cm 3 ] or more.
  • P + layer containing The film thickness of the contact layers 117b and 117c can be set to, for example, 5 nm to 100 nm.
  • the pair of contact layers 117b and 117c may be composed of two layers, a lower-layer low-concentration electric field relaxation layer (p - layer) and an upper-layer high-concentration contact layer (p + layer).
  • the low concentration electric field relaxation layer is doped with boron of about 1 ⁇ 10 17 [atm / cm 3 ].
  • the two layers can be formed continuously in a CVD (Chemical Vapor Deposition) apparatus.
  • the average crystal grain size of the first contact layers 116a and 116b and the second contact layers 117b and 117c is set to the channel protective layer 115a by utilizing the fact that the contact layer and the channel protective layer can be formed as separate layers as described above. And the average crystal grain size of 115b. Thereby, the off current of the thin film semiconductor device 100 can be reduced.
  • Each of the pair of source electrode 120a and drain electrode 120b in the thin film transistor portion 100a includes a pair of contact layers 116a and 116b on both ends of the channel protective layer 115a and on both sides of the channel protective layer 115a above the channel region of the semiconductor film 113a. Each is formed on top. Further, the pair of source electrode 120a and drain electrode 120b are arranged to face each other with a predetermined interval.
  • the source electrode 120a is formed so as to straddle one end portion (one end portion) of the channel protective layer 115a and the intrinsic semiconductor layer 114a through one contact layer 116a.
  • the drain electrode 120b is formed so as to straddle the other end portion (the other end portion) of the channel protective layer 115a and the intrinsic semiconductor layer 114a via the other contact layer 116b.
  • Each of the pair of source electrode 120c and drain electrode 120d in the thin film transistor portion 100b includes a pair of contact layers 117b on both ends of the channel protective layer 115b and on both sides of the channel protective layer 115b above the channel region of the semiconductor film 113b. And 117c, respectively. Further, the pair of source electrode 120c and drain electrode 120d are arranged to face each other with a predetermined interval.
  • the source electrode 120c is formed so as to straddle one end (one end) of the channel protective layer 115b, the intrinsic semiconductor layer 114b, the semiconductor film 113b, and the gate insulating film 112 through one contact layer 117b.
  • the drain electrode 120d is formed so as to straddle the other end portion (the other end portion) of the channel protective layer 115b, the intrinsic semiconductor layer 114b, the semiconductor film 113b, and the gate insulating film 112 through the other contact layer 117c.
  • the drain electrode 120b and the source electrode 120c are integrally formed. Note that the drain electrode 120b and the source electrode 120c may be electrically connected as long as they are not integrally formed.
  • the source electrodes 120a and 120c and the drain electrodes 120b and 120d can have a single-layer structure or a multilayer structure such as a conductive material and an alloy thereof, such as aluminum (Al) or molybdenum (Mo). , Tungsten (W), copper (Cu), titanium (Ti) and chromium (Cr).
  • the source electrodes 120a and 120c and the drain electrodes 120b and 120d are formed by a three-layer structure of MoW / Al / MoW.
  • the film thicknesses of the source electrodes 120a and 120c and the drain electrodes 120b and 120d can be about 100 nm to 500 nm, for example.
  • FIGS. 2 to 10 are schematic views showing one step of the method of manufacturing the thin film semiconductor device according to the embodiment of the present invention.
  • (a) is a top view
  • (b) is a cross-sectional view taken along line AA ′ of (a).
  • a glass substrate is prepared as the substrate 110 (first step).
  • an undercoat layer made of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, or the like may be formed on the substrate 110 by plasma CVD or the like before forming the gate electrodes 111a and 111b.
  • gate electrodes 111 a and 111 b having a predetermined shape are formed on the substrate 110.
  • a gate metal film made of MoW is formed on the substrate 110 by sputtering, and the gate metal film is patterned using a photolithography method and a wet etching method, thereby forming gate electrodes 111a and 111b having a predetermined shape ( Second step).
  • wet etching of MoW is performed using a chemical solution in which phosphoric acid (HPO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed in a predetermined composition.
  • a gate insulating film 112 is formed to cover the substrate 110 on which the gate electrodes 111a and 111b are formed (third process).
  • the gate insulating film 112 made of silicon oxide is formed by plasma CVD or the like so as to cover the gate electrodes 111a and 111b.
  • silicon oxide is deposited by introducing silane gas (SiH 4 ) and nitrous oxide gas (N 2 O) at a predetermined concentration ratio.
  • a crystalline silicon thin film 113 constituting a semiconductor layer having a channel region is formed on the gate insulating film 112 (fourth step).
  • an amorphous silicon thin film made of amorphous silicon (amorphous silicon) is formed by plasma CVD, etc., and after dehydrogenation annealing, the amorphous silicon thin film is annealed and crystallized to crystallize the thin film. 113 is formed.
  • the amorphous silicon thin film is formed by introducing, for example, silane gas (SiH 4 ) and hydrogen gas (H 2 ) at a predetermined concentration ratio.
  • the amorphous silicon thin film is crystallized by laser annealing using an excimer laser.
  • a laser annealing method using a pulse laser having a wavelength of about 370 to 900 nm, a wavelength of A laser annealing method using a continuous wave laser of about 370 to 900 nm or an annealing method by rapid thermal processing (RTP) may be used.
  • the crystalline silicon thin film 113 may be formed by a method such as direct growth by a CVD (Chemical Vapor Deposition) method.
  • heat of about 1000 ° C. is locally applied.
  • heat of about 350 ° C. is applied to the entire substrate.
  • a hydrogen plasma process is performed on the crystalline silicon thin film 113 to perform a hydrogenation process on silicon atoms in the crystalline silicon thin film 113.
  • hydrogen plasma is generated by radio frequency (RF) power using a gas containing hydrogen gas such as H 2 or H 2 / argon (Ar) as a raw material, and the crystalline silicon thin film 113 is irradiated with the hydrogen plasma. Is done.
  • RF radio frequency
  • Ar argon
  • the amorphous silicon film 114 is formed so that the energy levels at the lower ends of the conduction bands of the crystalline silicon thin film 113 and the amorphous silicon film 114 satisfy the relationship E CP ⁇ E C1 .
  • the crystalline silicon thin film 113 and the amorphous silicon film 114 are continuously formed in the same vacuum apparatus. That is, the crystalline silicon thin film 113 and the amorphous silicon film 114 are formed without breaking the vacuum.
  • an amorphous silicon film is formed on the crystalline silicon thin film 113 under a predetermined film formation condition using plasma CVD or the like, so that the crystalline silicon thin film 113 and the amorphous silicon film 114 are formed.
  • the film formation conditions for example, the RF power density can be made larger or the film formation rate can be made slower than the film formation conditions of the amorphous silicon film when the crystalline silicon thin film 113 is formed.
  • silane gas (SiH 4 ) and hydrogen gas (H 2 ) are introduced at a predetermined concentration ratio, the flow rate of silane gas is 5 to 15 sccm,
  • the amorphous silicon film 114 can be formed by setting the flow rate to 40 to 75 sccm, the pressure to 1 to 3 Torr, the RF power to 0.1 to 0.4 kw / cm ⁇ 2, and the distance between the electrode substrates to 200 to 600 mm. it can.
  • a film is formed with a silane gas flow rate of 10 sccm, a hydrogen gas flow rate of 60 sccm, a pressure of 1.5 Torr, an RF power of 0.25 kw / cm ⁇ 2, and a distance between electrode substrates of 300 mm. .
  • the amorphous silicon film formed in the vicinity of the surface of the crystalline silicon thin film 113 is a crystal of the crystalline silicon thin film 113. It will crystallize naturally by taking over the sex.
  • the amorphous silicon film 114 has an amorphous component whose crystallization rate is zero after the crystallization rate of the amorphous silicon film 114 is reduced as the film formation progresses away from the crystalline silicon thin film 113 and the crystallization rate becomes zero. It becomes the composition which has only.
  • the amorphous silicon film formed near the surface of the crystalline silicon thin film 113 has a higher crystallization rate than the vicinity of the surface of the amorphous silicon film 114 because the crystalline silicon thin film 113 serves as a base layer and crystallization proceeds. Formed to be.
  • the amorphous silicon film 114 having a different crystallization rate can be formed as the distance from the surface of the crystalline silicon thin film 113 is increased by actively switching the film formation conditions during the formation of the amorphous silicon film. For example, as the distance from the surface of the crystalline silicon thin film 113 is increased by changing the concentration ratio or flow rate of the source gas of silane gas (SiH 4 ) and hydrogen gas (H 2 ), or by changing the pressure in the vacuum apparatus. Amorphous silicon films 114 having different crystallization rates can be formed.
  • the amorphous silicon film 114 satisfying the relationship of E CP ⁇ E C1 can be formed.
  • the amorphous silicon film 114 may not be a single layer as described above, but may be a laminated film in which a plurality of amorphous silicon films are laminated.
  • it can be considered as a single film made of amorphous silicon of two layers (a first intrinsic semiconductor film and a second intrinsic semiconductor film) having different crystallization rates.
  • the amorphous silicon film may be formed again by CVD in a vacuum apparatus after being once exposed to the atmosphere and subjected to laser treatment.
  • channel protective layers 115a and 115b having a predetermined shape are formed on the amorphous silicon film 114 (fifth step).
  • a predetermined organic material for forming the channel protective layers 115a and 115b is applied on the amorphous silicon film 114 by a predetermined coating method, and spin coating or slit coating is performed on the entire surface of the amorphous silicon film 114.
  • a protective layer forming film 115 is formed.
  • the film thickness of the material can be controlled by the viscosity of the material and the coating conditions (rotation speed, blade speed, etc.). Note that as a material of the channel protective layer forming film 115, a photosensitive coating material containing silicon, oxygen, and carbon can be used.
  • the channel protective layer forming film 115 is pre-baked at a temperature of about 110 ° C. for about 60 seconds to pre-fire the channel protective layer forming film 115.
  • the solvent contained in the channel protective layer forming film 115 is vaporized.
  • the back surface exposure is performed using the gate electrodes 111a and 111b as a mask, and development is performed to pattern the channel protective layer forming film 115 to form channel protective layers 115a and 115b having a predetermined shape.
  • post-baking is performed on the patterned channel protection layers 115a and 115b at a temperature of 280 ° C. to 300 ° C. for about 1 hour, and the channel protection layers 115a and 115b are finally baked and solidified.
  • part of the components in the channel protective layers 115a and 115b can be vaporized and decomposed to form the channel protective layers 115a and 115b with improved film quality.
  • a contact layer film 116 to be the contact layers 116a and 116b constituting the thin film transistor portion 100a shown in FIG. 1 is formed (sixth step). As shown in FIG. 5, a contact layer film 116 is formed so as to cover the channel protective layers 115a and 115b.
  • the contact layer film 116 made of amorphous silicon doped with an impurity of a pentavalent element such as phosphorus is formed by plasma CVD.
  • the contact layer film 116 may be composed of two layers, a lower-layer low-concentration electric field relaxation layer and an upper-layer high-concentration contact layer.
  • the low-concentration electric field relaxation layer can be formed by doping about 1 ⁇ 10 17 [atm / cm 3 ] phosphorus.
  • the two layers can be formed continuously in a CVD apparatus, for example.
  • the crystalline silicon thin film 113 and the amorphous silicon film 114 are left directly under the channel protective layer 115a and the contact layer film 116 and directly under the channel protective layer 115b. Then, the amorphous silicon film 114 is dug by dry etching (seventh step). Thus, the semiconductor film 113a and the intrinsic semiconductor layer 114a constituting the thin film transistor portion 100a and the semiconductor film 113b and the intrinsic semiconductor layer 114b constituting the thin film transistor portion 100b are formed separately.
  • FIG. 5 shows the shape after the contact layer film 116 is etched, but the sixth step shown in FIG. 5 and the seventh step shown in FIG. 6 are continuously performed in a vacuum state. May be.
  • the depth at which the crystalline silicon thin film 113 and the amorphous silicon film 114 are dug or the end timing of etching is detected by using an EPM (End Point Monitor). Specifically, the state of the interface between the crystalline silicon thin film 113 and the gate insulating film 112 that appears during the etching is monitored. That is, the gate insulating film 112 that is an oxide film is detected in the etching process.
  • EPM End Point Monitor
  • an etching gas containing a halogen element is supplied into a vacuum chamber, and an AC voltage is applied between the counter electrodes to generate plasma discharge in the vacuum chamber.
  • the activated halogen element Radical. Is done.
  • the activated halogen element has a characteristic that the etching rate for the amorphous silicon is high and the etching rate for the silicon oxide film is low.
  • the vacuum chamber Since the radicals frequently form a polymer with amorphous silicon during the period when the amorphous silicon is etched, the vacuum chamber The abundance as a radical in the inside becomes low. Therefore, by monitoring the abundance of the radicals in the vacuum chamber, etching from the amorphous silicon film 114 made of amorphous silicon and the gate insulating film 112 made of silicon oxide film from the crystalline silicon thin film 113 is performed. It becomes possible to grasp the state transition.
  • the abundance of the radical in the vacuum chamber is detected as the emission intensity of a specific wavelength extracted from the emission spectrum of the radical in the etching gas.
  • light emission of a specific wavelength is detected by a photodetector through a wavelength filter.
  • the photodetector is a CCD sensor, for example, and outputs the above-described radical emission intensity to the calculator as a voltage signal.
  • the EPM it is possible to monitor the state of the interface between the crystalline silicon thin film 113 and the gate insulating film 112 that appears at the time of etching, so that the remaining amount of the gate insulating film 112 can be detected. . Accordingly, the depth at which the crystalline silicon thin film 113 and the amorphous silicon film 114 are dug or the end timing of etching is detected, and the crystalline silicon thin film 113 and the amorphous silicon film 114 are formed to a desired depth (for example, the gate insulating film 112). And the depth of the boundary between the crystalline silicon thin film 113).
  • the crystalline silicon thin film 113 and the crystalline silicon thin film 113 and the selective ratio of the amorphous silicon film and the silicon oxide film are high without using EPM, that is, the etching rate for the amorphous silicon film is high and the etching rate for the silicon oxide film is low.
  • the amorphous silicon film 114 may be etched.
  • the configuration of the present invention can be realized by managing the etching time.
  • a Cl-based gas is suitable for the present invention because of its high etching selectivity.
  • a contact layer film 117 for forming the contact layers 117b and 117c of the thin film transistor portion 100b shown in FIG. 1 is formed (eighth step).
  • a contact layer film 117 is formed on the gate insulating film 112 so as to cover the semiconductor films 113a and 113b, the intrinsic semiconductor layers 114a and 114b, the channel protective layer 115b, and the contact layer film 116.
  • the contact layer film 117 made of amorphous silicon doped with an impurity of a trivalent element such as boron is formed by plasma CVD.
  • the contact layer film 117 may be composed of two layers, a lower-layer low-concentration electric field relaxation layer and an upper-layer high-concentration contact layer.
  • the low-concentration electric field relaxation layer can be formed by doping boron of about 1 ⁇ 10 17 [atm / cm 3 ].
  • the two layers can be formed continuously in a CVD apparatus, for example.
  • a contact layer 117a is formed by etching the contact layer film 117 into a predetermined shape. Further, the contact layer film 117 on the thin film transistor portion 100a is removed, and the contact layer film 117 on the gate insulating film 112 is dug by dry etching so that the thin film transistor portions 100a and 100b are separated. Also in this case, by using the above-mentioned EPM, the contact layer film 117 can be dug to a desired depth by detecting the digging amount of the contact layer film 117 or the end timing of etching.
  • the state of the interface between the contact layer film 117 and the gate insulating film 112 that appears during the etching is monitored. That is, the gate insulating film 112 that is an oxide film is detected in the etching process.
  • an etching gas containing a halogen element is supplied into a vacuum chamber, and an AC voltage is applied between the counter electrodes to generate plasma discharge in the vacuum chamber.
  • the contact layer film 117 not covered with the photosensitive resist is etched by the activated halogen element (radical).
  • the activated halogen element has a characteristic that the etching rate for the amorphous silicon is high and the etching rate for the silicon oxide film is low.
  • the vacuum chamber when the degree of vacuum in the vacuum chamber is kept constant, since the radicals frequently form a polymer with amorphous silicon during the period when the amorphous silicon is etched, the vacuum chamber The abundance as a radical in the inside becomes low. Therefore, by monitoring the abundance of the radical in the vacuum chamber, the transition of the etching state from the contact layer film 117 made of amorphous silicon to the gate insulating film 112 made of silicon oxide film can be changed. It becomes possible to grasp.
  • the abundance of the radical in the vacuum chamber is detected as the emission intensity of a specific wavelength extracted from the emission spectrum of the radical in the etching gas.
  • light emission of a specific wavelength is detected by a photodetector through a wavelength filter.
  • the photodetector is a CCD sensor, for example, and outputs the above-described radical emission intensity to the calculator as a voltage signal.
  • the state of the interface between the contact layer film 117 and the gate insulating film 112 appearing at the time of etching can be monitored, so that the remaining amount of the gate insulating film 112 can be detected. it can.
  • the depth of digging the contact layer film 117 or the etching end timing is detected, and the contact layer film 117 is formed to a desired depth (for example, between the gate insulating film 112 and the contact layer film 117).
  • the contact layer 117a can be formed by digging up to the depth of the boundary.
  • the contact layer film 116 may be formed sufficiently thick.
  • the contact layer film 116 may be formed to a thickness of about 80 nm. The performance of the TFT does not deteriorate even when the contact layer film 116 is thickened by about 80 nm.
  • the source electrode 120 a and the drain electrode 120 b are patterned on the contact layer film 116. Further, the source electrode 120c and the drain electrode 120d are patterned on the contact layer 117a (9th step).
  • a source / drain metal film made of a material to be the source electrodes 120a and 120c and the drain electrodes 120b and 120d is formed by sputtering, for example.
  • a resist patterned in a predetermined shape is formed on the source / drain metal film, and the source / drain metal film is patterned by wet etching.
  • the contact layer film 116 and the contact layer 117a function as an etching stopper.
  • source electrodes 120a and 120c and drain electrodes 120b and 120d having a predetermined shape as shown in FIG. 9 can be formed.
  • the contact layer film 116 and the contact layer 117a are patterned by performing dry etching using the source electrodes 120a and 120c and the drain electrodes 120b and 120d as masks.
  • a thin film transistor comprising a pair of contact layers 116a and 116b having a predetermined shape, a pair of contact layers 117b and 117c, and a plurality of semiconductor films of intrinsic semiconductor layers 114a and 114b and semiconductor films 113a and 113b.
  • the portions 100a and 100b can be formed.
  • a Cl-based gas may be used for dry etching.
  • a Cl-based gas is suitable for the present invention because of its high etching selectivity.
  • the thin film semiconductor device 100 can be manufactured.
  • the thin film transistor portion 100a is a semiconductor transistor having n-type conductivity, and the source electrode 120a and the drain electrode 120b are in contact with each other on the upper surface of the intrinsic semiconductor layer 114a included in the semiconductor layer.
  • the thin film transistor portion 100b is a semiconductor transistor having p-type conductivity, and the source electrode 120c and the drain electrode 120d are in contact with the side surfaces of the semiconductor film 113b and the intrinsic semiconductor layer 114b that form the semiconductor layer.
  • CMOS configuration can be realized with a low-cost process.
  • the thin film semiconductor device 100 according to the present embodiment functions effectively as a CMOS transistor.
  • the contact layers 117b and 117c function as an electric field relaxation layer when the drain current is large by forming contact layers on the upper surface and side surfaces of the channel protective layer 115b and part of the side surfaces of the semiconductor layer 113b. Therefore, the off-current between the source and the drain can be reduced, and the reliability of the thin film semiconductor device 100 can be improved.
  • the contact portion where the semiconductor layer 113b and the contact layers 117b and 117c are in direct contact is mainly effective as a current inlet. Therefore, the thin film semiconductor device 100 with improved TFT performance can be provided.
  • the intrinsic semiconductor layer 114b as a back channel layer between the semiconductor film 113b and the channel protective layer 115b, the charge density of negative carriers in the localized level density (trap density) of the intrinsic semiconductor layer 114b can be increased. Electric field shielding can be performed by canceling out the positive fixed charges of the channel protective layer 115b. Thereby, the formation of a back channel can be suppressed and the leakage current at the time of OFF can be suppressed, so that the OFF characteristics can be improved. In addition, the occurrence of the kink phenomenon, which is a phenomenon in which the drain current increases rapidly, can be suppressed.
  • the band gap between the semiconductor film 113b and the intrinsic semiconductor layer 114b is particularly large in a p-type transistor.
  • the difference is large, there may be a problem that current hardly flows between the semiconductor film 113b and the contact layers 117b and 117c.
  • the semiconductor film 113b and the contact layers 117b and 117c can be in direct contact with each other. Therefore, this problem can be solved.
  • CMOS transistor having an optimum structure that matches the characteristics of the n-type TFT and the p-type TFT.
  • the reverse polarity film is never exposed to the contact portion in the manufacturing process, the dopant constituting the n-type semiconductor and the p-type semiconductor does not move to the reverse polarity film, and the performance is high.
  • a TFT can be formed.
  • CMOS structure using low-temperature polysilicon LTPS
  • p-type and n-type TFTs can be separately formed without a step of implanting impurities, which corresponds to the large size that was difficult with conventional LTPS. be able to.
  • the number of masks for implanting impurities can be reduced. Therefore, the cost for manufacturing a CMOS configuration can be reduced.
  • the crystalline silicon thin film 113 and the amorphous silicon film 114 are formed by continuous film formation in the same vacuum apparatus, but the crystalline silicon thin film 113 and the amorphous silicon film 114 May be formed separately according to different film forming conditions in different steps. Thereby, the variation between the elements of the crystalline silicon thin film 113 and the amorphous silicon film 114 can be suppressed, and a thin film semiconductor device suitable for a large panel can be realized.
  • the crystalline silicon thin film 113 and the amorphous silicon film 114 are patterned by simultaneously etching in the same process, but the patterning of the crystalline silicon thin film 113 and the patterning of the amorphous silicon film 114 are performed. May be performed in separate steps.
  • the amorphous silicon film 114 may have the same shape as the crystalline silicon thin film 113 or a different shape.
  • the amorphous silicon film 114 may be formed at least on the channel region.
  • the thin film semiconductor device according to this modification is different from the thin film semiconductor device according to the first embodiment in that the thin film semiconductor device does not include an intrinsic semiconductor layer on the semiconductor layer.
  • the channel protective layer of the thin film semiconductor device is formed of an inorganic material, the influence of the back channel is small, so that the formation of the amorphous silicon film can be omitted.
  • FIG. 12 is a schematic diagram showing a configuration of a thin film semiconductor device 150 according to this modification.
  • 4A is a top view
  • FIG. 3B is a cross-sectional view taken along line B-B ′ in FIG.
  • FIG. 12 the same components as those shown in FIG.
  • the thin film semiconductor device 150 is a thin film semiconductor device having two thin film transistor portions 150 a and 150 b having opposite polarities, and the thin film transistor portions 150 a and 150 b are formed on the substrate 110 and the substrate 110. Formed on the formed gate electrode 111a and gate electrode 111b and the gate insulating film 112 formed on the substrate 110 and the gate electrodes 111a and 111b, a complementary thin film semiconductor (CMOS) device is formed.
  • CMOS complementary thin film semiconductor
  • the thin film transistor portion 150a which is one of the two thin film transistor portions, is a transistor portion having an n-type conductivity type.
  • the thin film transistor portion 150a is formed above the gate electrode 111a and includes a semiconductor layer 213a having a channel region and a semiconductor layer 213a.
  • the drain electrode 120b is formed.
  • a channel protective layer 115a is formed above the semiconductor layer 213a.
  • the semiconductor layer 213a is composed of a crystalline silicon thin film.
  • the source electrode 120a and the drain electrode 120b correspond to the first source electrode and the first drain electrode in the present invention, respectively.
  • the contact layers 116a and 116b correspond to the first contact layer in the present invention.
  • the thin film transistor portion 150b which is the other of the two thin film transistor portions, is a transistor portion having p-type conductivity.
  • the thin film transistor portion 150b is formed above the gate electrode 111b and includes a semiconductor layer 213b having a channel region and a side surface of the semiconductor layer 213b.
  • Contact layers 117b and 117c having a p-type conductivity type that is a second conductivity type opposite in polarity to the first conductivity type, a source electrode 120c formed on the contact layer 117b, and a contact A drain electrode 120d is provided on the layer 117c so as to face the source electrode 120c.
  • a channel protective layer 115b is formed above the semiconductor layer.
  • the semiconductor layer 213b is composed of a crystalline silicon thin film.
  • the source electrode 120c and the drain electrode 120d correspond to the second source electrode and the second drain electrode in the present invention, respectively.
  • the contact layers 117b and 117c correspond to the second contact layer in the present invention.
  • the manufacturing method of the thin film semiconductor device 150 is almost the same as the manufacturing method of the thin film semiconductor device 100 shown in the first embodiment.
  • the thin film semiconductor device 150 can be formed by omitting the step of forming the intrinsic semiconductor layers 114a and 114b.
  • the contact layers 117b and 117c are formed in the electric field relaxation layer when the drain current is large by forming the contact layers 117b and 117c on the upper surface and side surfaces of the channel protective layer 115b and part of the side surfaces of the semiconductor layer 213b Therefore, the off-current between the source and the drain can be reduced and the reliability of the thin film semiconductor device 150 can be improved.
  • the contact portion where the semiconductor layer 213b and the contact layers 117b and 117c are in direct contact is mainly effective as a current inlet. Accordingly, the current characteristics between the source and the drain can be further improved in the thin film transistor portion 150b.
  • CMOS transistor having an optimum structure that matches the characteristics of the n-type TFT and the p-type TFT.
  • CMOS structure using low-temperature polysilicon LTPS
  • p-type and n-type TFTs can be made separately without the step of implanting impurities. Can do.
  • the number of masks for implanting impurities can be reduced. Therefore, the cost for manufacturing a CMOS configuration can be reduced.
  • the thin film semiconductor device according to the present embodiment is different from the thin film semiconductor device according to the first embodiment in that the intrinsic semiconductor layer of the thin film semiconductor device according to the first embodiment is composed of a plurality of intrinsic semiconductor films. is there.
  • a thin film semiconductor device in which an intrinsic semiconductor layer includes a first intrinsic semiconductor film and a second intrinsic semiconductor film will be described as an example.
  • FIG. 13 is a schematic diagram showing the configuration of the thin film semiconductor device according to the present embodiment.
  • 4A is a top view
  • FIG. 4B is a cross-sectional view taken along line C-C ′ in FIG.
  • FIG. 13 the same components as those shown in FIG.
  • the thin film semiconductor device 200 includes a first intrinsic semiconductor film 214a and 214b and a second intrinsic semiconductor film 215a as intrinsic semiconductor layers on the semiconductor films 113a and 113b in the thin film transistors 200a and 200b. And 215b.
  • Each of the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b is an amorphous silicon film (intrinsic amorphous silicon), and more specifically, amorphous that is not intentionally doped with impurities. It is a silicon film.
  • the first intrinsic semiconductor films 214a and 214b are formed on the semiconductor films 113a and 113b so as to be in contact with the upper surfaces of the semiconductor films 113a and 113b.
  • the second intrinsic semiconductor films 215a and 215b are formed on the first intrinsic semiconductor films 214a and 214b in succession to the first intrinsic semiconductor films 214a and 214b.
  • the thicknesses of the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b can both be about 20 nm.
  • the preferable range of the thickness of the first intrinsic semiconductor films 214a and 214b is 10 nm to 100 nm
  • the preferable range of the thickness of the second intrinsic semiconductor films 215a and 215b is 10 nm to 40 nm.
  • the semiconductor films 113a and 113b and the first intrinsic semiconductor films 214a and 214b are respectively E CP and E C1 , the semiconductor films 113a and 113b, The first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b are configured to satisfy the relationship E CP ⁇ E C1 .
  • the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b are configured to have different electron affinities.
  • the electron affinity of the first intrinsic semiconductor films 214a and 214b be larger than that of the second intrinsic semiconductor films 215a and 215b.
  • the electron affinity in the intrinsic semiconductor film is the difference between the vacuum level and the energy level at the lower end of the conduction band. That is, the energy level of the lower end of the conduction band in the intrinsic semiconductor film can be adjusted by the electron affinity.
  • the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b are configured to have different crystallization ratios.
  • the crystallization rate of the first intrinsic semiconductor films 214a and 214b is preferably configured to be larger than the crystallization rate of the second intrinsic semiconductor films 215a and 215b.
  • the first intrinsic semiconductor films 214a and 214b in this embodiment include crystalline silicon grains having a crystal grain size of 5 nm to 100 nm.
  • the crystallization ratio in the thickness direction of the first intrinsic semiconductor films 214a and 214b gradually increases as the semiconductor films 113a and 113b are approached.
  • the crystal grain size of the crystalline silicon grains of the first intrinsic semiconductor films 214a and 214b gradually increases as the semiconductor films 113a and 113b are approached.
  • the second intrinsic semiconductor films 215a and 215b in this embodiment are not crystallized, and the crystallization rate is zero.
  • each of the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b is formed of an amorphous silicon film (intrinsic amorphous silicon) that is not intentionally doped with impurities. ing.
  • the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b are both amorphous silicon films (non-crystalline silicon films), and each intrinsic semiconductor The energy level at the lower end of the conduction band in the film can be different.
  • one of the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b is an amorphous silicon film
  • the other is a crystalline silicon thin film containing crystalline silicon
  • the conduction in each semiconductor film The energy level at the lower end of the band may be different.
  • the structure of the amorphous silicon film is composed only of an amorphous amorphous component, but the amorphous silicon film in the present embodiment may be composed only of an amorphous amorphous component.
  • a crystal component of microcrystal may be included.
  • the first intrinsic semiconductor films 214a and 214b are conductive band adjustments for adjusting the energy level of the lower end of the conduction band between the semiconductor films 113a and 113b and the second intrinsic semiconductor films 215a and 215b. Acts as a layer.
  • the energy level E C1 at the lower end of the conduction band of the first intrinsic semiconductor films 214a and 214b as desired, the occurrence of the kink phenomenon, which is a phenomenon in which the drain current increases rapidly, can be suppressed. Therefore, a thin film semiconductor device with improved TFT performance can be realized.
  • the second intrinsic semiconductor films 215a and 215b formed immediately below the channel protective layers 115a and 115b are composed of an amorphous silicon film having a relatively large band gap. ing. Accordingly, it is possible to suppress the formation of the back channel due to the positive fixed charges included in the channel protective layers 115a and 115b and improve the off characteristics.
  • the channel protective layers 115a and 115b are formed of an organic material, and more fixed charges are included in the channel protective layers 115a and 115b. Therefore, the second intrinsic semiconductor films 215a and 215b It is preferable to use an amorphous silicon film.
  • the energy level of the lower end of the conduction band of the semiconductor film such as the first intrinsic semiconductor films 214a and 214b can be adjusted by changing the electron affinity or the band gap.
  • the energy level E C1 at the lower end of the conduction band in the first intrinsic semiconductor films 214a and 214b the energy level E CP of each semiconductor film becomes E CP ⁇ E It is configured to satisfy the relationship of C1 .
  • the first intrinsic semiconductor films 214a and 214b may be configured to have different band gaps between the first intrinsic semiconductor films 214a and 214b mainly containing silicon and the second intrinsic semiconductor films 215a and 215b. And the energy level of the lower end of the conduction band in the second intrinsic semiconductor films 215a and 215b can be adjusted. In this case, it is preferable that the band gaps of the first intrinsic semiconductor films 214a and 214b be closer to the band gaps of the semiconductor films 113a and 113b than the band gaps of the second intrinsic semiconductor films 215a and 215b. .
  • the energy level at the lower end of the conduction band is made continuous at the junction between the semiconductor films 113a and 113b and the first intrinsic semiconductor films 214a and 214b, and spikes (to the energy level) at the junction. It is possible to suppress the occurrence of a discontinuous portion in which a large difference has occurred. Therefore, the occurrence of the kink phenomenon can be suppressed.
  • the energy level E C1 at the lower end of the conduction band in the first intrinsic semiconductor films 214a and 214b is a crystal of a semiconductor film such as the first intrinsic semiconductor films 214a and 214b mainly containing silicon as described above. It can also be adjusted by changing the conversion rate.
  • the crystallization rate of the first intrinsic semiconductor films 214a and 214b made of an amorphous silicon film is larger than the crystallization rate of the second intrinsic semiconductor films 215a and 215b made of an amorphous silicon film. It is composed.
  • the energy level at the lower end of the conduction band is made continuous, and a spike is generated at the junction. Can be suppressed. Therefore, the occurrence of the kink phenomenon can be suppressed.
  • FIG. 14 is a TEM image when the cross section of the thin film transistor portion 200a of the thin film semiconductor device 200 according to the embodiment of the present invention is observed in a bright field. Note that the conditions for forming the first intrinsic semiconductor film 214a and the second intrinsic semiconductor film 215a in FIG. 14 were the conditions described later.
  • the semiconductor layer in the thin film semiconductor device 200 is a first intrinsic layer consisting of a semiconductor film 113a having a microcrystalline structure having a thickness of 29 nm and an amorphous silicon film having a thickness of 28 nm. It can be seen that the semiconductor film 214a and the second intrinsic semiconductor film 215a made of an amorphous silicon film having a film thickness of 16 nm are formed.
  • the crystallization rate of each semiconductor film increases in the order of the second intrinsic semiconductor film 215a, the first intrinsic semiconductor film 214a, and the semiconductor film 113a.
  • the first intrinsic semiconductor film It can be seen that in 214a, the crystallization rate gradually increases as it approaches the semiconductor film 113a.
  • the manufacturing method of the thin film semiconductor device 200 is the same as the manufacturing method of the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b constituting the intrinsic semiconductor layer. This is the same as the manufacturing method 100. Therefore, only the manufacturing method of the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b will be described below.
  • the first intrinsic semiconductor films 214a and 214b are formed on the channel region of the crystalline silicon thin film 113 after forming the gate electrodes 111a and 111b, the gate insulating film 112, and the crystalline silicon thin film 113 on the substrate 110.
  • a laminated film made of the first amorphous silicon film 214 and the second amorphous silicon film 215 for forming the second intrinsic semiconductor films 215a and 215b is formed.
  • the first energy level at the lower end of the conduction band of the crystalline silicon thin film 113, the first amorphous silicon film 214, and the second amorphous silicon film 215 satisfies the relationship E CP ⁇ E C1 .
  • One amorphous silicon film 214 and a second amorphous silicon film 215 are formed.
  • the first amorphous silicon film 214 and the second amorphous silicon film 215 are continuously formed in the same vacuum apparatus. That is, the first amorphous silicon film 214 and the second amorphous silicon film 215 are formed without breaking the vacuum.
  • the first amorphous silicon film 214 and the second amorphous silicon film 214 are formed by forming an amorphous silicon film on the crystalline silicon thin film 113 under a predetermined film formation condition using plasma CVD or the like.
  • the amorphous silicon film 215 can be continuously formed.
  • the film formation conditions for example, the RF power density can be made larger or the film formation rate can be made slower than the film formation conditions of the amorphous silicon film when the crystalline silicon thin film 113 is formed.
  • silane gas (SiH 4 ) and hydrogen gas (H 2 ) are introduced at a predetermined concentration ratio, the flow rate of silane gas is 5 to 15 sccm, The flow rate is 40 to 75 sccm, the pressure is 1 to 3 Torr, the RF power is 0.1 to 0.4 kw / cm ⁇ 2, and the distance between the electrode substrates is 200 to 600 mm.
  • a laminated film of the amorphous silicon film 215 can be formed.
  • the film was formed with a silane gas flow rate of 10 sccm, a hydrogen gas flow rate of 60 sccm, a pressure of 1.5 Torr, an RF power of 0.25 kw / cm ⁇ 2, and a distance between electrode substrates of 300 mm. .
  • the first amorphous silicon film 214 By depositing the first amorphous silicon film 214 in contact with the crystalline silicon thin film 113 under such deposition conditions, the first amorphous silicon film 214 deposited near the surface of the crystalline silicon thin film 113 is As a result, the crystallinity of the crystalline silicon thin film 113 is inherited, and it is naturally crystallized.
  • the second amorphous silicon film 215 formed on the first amorphous silicon film 214 has a lower crystallization rate in the film as the film formation progresses and the distance from the crystalline silicon thin film 113 decreases, and the crystallization rate increases. After becoming zero, the structure has only an amorphous component having a crystallization rate of zero.
  • the first amorphous silicon film 214 which is an amorphous silicon film formed near the surface of the crystalline silicon thin film 113 is crystallized by using the crystalline silicon thin film 113 as a base layer.
  • the crystallization rate of the lower layer is naturally formed to be larger than the crystallization rate of the upper layer (second amorphous silicon film 215).
  • the first amorphous silicon film 214 and the second amorphous silicon film 215 having different crystallization rates can also be formed by actively switching the film formation conditions during the formation of the amorphous silicon film.
  • the first amorphous silicon having a different crystallization rate by changing the concentration ratio and flow rate of the source gas of silane gas (SiH 4 ) and hydrogen gas (H 2 ), or changing the pressure in the vacuum apparatus.
  • a film 214 and a second amorphous silicon film 215 can be formed.
  • the first amorphous silicon film 214 and the second amorphous silicon film 215 satisfying the relationship of E CP ⁇ E C1 can be formed at the same time.
  • the first amorphous silicon film 214 and the second amorphous silicon film 215 are formed by continuous film formation, so two layers (the first amorphous silicon film 214 and the second amorphous silicon film 215 having different crystallization rates) are formed. ).
  • an intrinsic semiconductor layer including the first amorphous silicon film 214 and the second amorphous silicon film 215 having different electron affinities can be formed.
  • the first amorphous silicon film 214 and the second amorphous silicon film 215 are formed so that the electron affinity of the first amorphous silicon film 214 is larger than the electron affinity of the second amorphous silicon film 215. Can be formed.
  • an intrinsic semiconductor layer including the first amorphous silicon film 214 and the second amorphous silicon film 215 having different band gaps can be formed.
  • the first amorphous silicon film 214 has a band gap that is closer to the band gap of the crystalline silicon thin film 113 than the band gap of the second amorphous silicon film 215. 214 and the second amorphous silicon film 215 can be formed.
  • the crystalline silicon thin film 113, the first amorphous silicon film 214, and the second amorphous silicon film 215 are patterned. Then, the semiconductor films 113a and 113b, the first intrinsic semiconductor films 214a and 214b, and the second intrinsic semiconductor films 215a and 215b are formed.
  • the first intrinsic semiconductor is formed by the first intrinsic semiconductor films 214a and 214b and the second intrinsic semiconductor films 215a and 215b.
  • the first intrinsic semiconductor is formed.
  • the energy level is changed. The position can be adjusted. Accordingly, the current characteristics between the source and the drain can be improved, so that a thin film semiconductor device with good performance can be provided.
  • the first amorphous silicon film 214 and the second amorphous silicon film 215 are formed by continuous film formation in the same vacuum apparatus.
  • the silicon film 214 and the second amorphous silicon film 215 may be separately formed under different film formation conditions in separate steps.
  • variation between the elements of the first amorphous silicon film 214 and the second amorphous silicon film 215 can be suppressed, and a thin film semiconductor device suitable for a large panel can be realized.
  • the crystalline silicon thin film 113, the first amorphous silicon film 214, and the second amorphous silicon film 215 may be patterned by simultaneously etching in the same process, The patterning of the crystalline silicon thin film 113 and the patterning of the first amorphous silicon film 214 and the second amorphous silicon film 215 may be performed in separate steps. In this case, the first amorphous silicon film 214 and the second amorphous silicon film 215 may have the same shape as the crystalline silicon thin film 113 or different shapes. The first amorphous silicon film 214 and the second amorphous silicon film 215 may be formed at least on the channel region.
  • the energy level at the lower end of the conduction band is adjusted in the film formation conditions in the step of forming the first amorphous silicon film 214 and the second amorphous silicon film 215.
  • the electron affinity, the crystallization rate, or the band gap in the first amorphous silicon film 214 and the second amorphous silicon film 215 were changed and adjusted, but the energy level at the lower end of the conduction band was adjusted.
  • the first amorphous silicon film 214 containing silicon as a main component contains impurities such as carbon, thereby reducing the conduction.
  • the first amorphous silicon film containing silicon as a main component 214 may contain impurities such as germanium. Note that in the case where the first amorphous silicon film 214 contains an impurity such as carbon or germanium, the first amorphous silicon film 214 and the second amorphous silicon film 215 are preferably formed in separate steps.
  • the spike since spikes are generated in the conduction band due to electrons accumulated on the drain electrode side, the spike may be suppressed by adjusting the energy level at the lower end of the conduction band. It is also conceivable that spikes are generated in the valence band due to holes accumulated on the source electrode side. In this case, the spike of the valence band is suppressed by adjusting the energy level of the upper end of the valence band in each semiconductor film of the crystalline silicon thin film 113, the first amorphous silicon film 214, and the second amorphous silicon film 215. Also good.
  • each semiconductor is changed.
  • the energy level at the upper end of the valence band in the film can be adjusted.
  • impurities such as germanium (Ge)
  • the valence in the semiconductor film such as the first amorphous silicon film 214 is increased.
  • the energy level at the upper end of the band can also be adjusted.
  • a band offset portion can be generated on the valence band side, so that the energy level at the upper end of the valence band in each semiconductor film such as the first amorphous silicon film 214 is changed. be able to.
  • the thin film semiconductor device according to the present embodiment is different from the thin film semiconductor device according to the first embodiment in that the contact layers of the two thin film transistor portions of the thin film semiconductor device according to the first embodiment are located above the semiconductor layer. It is the point formed in contact with the part.
  • FIG. 15 is a schematic diagram showing the configuration of the thin film semiconductor device according to the present embodiment.
  • 4A is a top view
  • FIG. 4B is a cross-sectional view taken along line D-D ′ in FIG.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals.
  • the thin film semiconductor device 300 is a thin film semiconductor device having two thin film transistor portions 300 a and 300 b having opposite polarities, and the thin film transistor portions 300 a and 300 b are formed on a substrate 310 and a substrate 310. Formed on the formed gate electrode 311a and gate electrode 311b and the gate insulating film 312 formed on the substrate 310 and the gate electrodes 311a and 311b, a complementary thin film semiconductor (CMOS) device is formed.
  • CMOS complementary thin film semiconductor
  • the thin film transistor portion 300a which is one of the two thin film transistor portions, is a transistor portion having an n-type conductivity type.
  • the thin film transistor portion 300a is formed above the gate electrode 311a, and includes a semiconductor layer having a channel region and a part above the semiconductor layer.
  • the drain electrode 320b is formed.
  • a channel protective layer 315a is formed above the semiconductor layer.
  • the semiconductor layer includes a semiconductor film 313a and an intrinsic semiconductor layer 314a formed between the semiconductor film 313a and the channel protective layer 315a.
  • the source electrode 320a and the drain electrode 320b correspond to the first source electrode and the first drain electrode in the present invention, respectively.
  • the contact layers 116a and 116b correspond to the first contact layer in the present invention.
  • the thin film transistor portion 300b which is the other of the two thin film transistor portions, is a transistor portion having a p-type conductivity type.
  • the thin film transistor portion 300b is formed above the gate electrode 311b, and includes a semiconductor layer having a channel region and a part above the semiconductor layer.
  • a drain electrode 320d formed to face the source electrode 320c is provided thereon.
  • a channel protective layer 315b is formed above the semiconductor layer.
  • the semiconductor layer includes a semiconductor film 313b and an intrinsic semiconductor layer 314b formed between the semiconductor film 313b and the channel protective layer 315b.
  • the source electrode 320c and the drain electrode 320d correspond to the second source electrode and the second drain electrode in the present invention, respectively.
  • the contact layers 317a and 317b correspond to the second contact layer in the present invention.
  • the manufacturing method of the thin film semiconductor device 300 is almost the same as the manufacturing method of the thin film semiconductor device 300 shown in the first embodiment. Only different points will be described below.
  • the contact layers 316a and 316b are formed on the amorphous silicon films constituting the intrinsic semiconductor layers 314a and 314b so as to cover the channel protective layers 315a and 315b.
  • An n-type contact layer film is formed.
  • a p-type layer having a polarity opposite to that of the n-type contact layer film is formed on the amorphous silicon film so as to cover the n-type contact layer film and the channel protective layer 315b.
  • a contact layer film is formed.
  • the p-type contact layer film is removed from the n-type contact layer film, and the crystalline silicon thin film and the amorphous silicon layer are dug by dry etching.
  • the semiconductor film 313a and the intrinsic semiconductor layer 314a constituting the thin film transistor portion 300a and the semiconductor film 313b and the intrinsic semiconductor layer 314b constituting the thin film transistor portion 300b are formed separately.
  • only the contact layers 316a and 316b are formed on the intrinsic semiconductor layer 314a, and only the contact layers 317a and 317b are formed on the intrinsic semiconductor layer 314b.
  • the contact layer film, the crystalline silicon thin film and the amorphous silicon film can be digged deeply, or the etching end timing can be detected and precisely controlled, so that the contact layer film, crystal The silicon thin film and the amorphous silicon film can be etched to a desired depth.
  • p-type and n-type TFTs can be formed separately without a step of implanting impurities, compared to a CMOS manufacturing method using low-temperature polysilicon (LTPS). It can correspond to the conversion. In addition, the number of masks for implanting impurities can be reduced. Therefore, the cost for manufacturing a CMOS configuration can be reduced.
  • LTPS low-temperature polysilicon
  • FIG. 16 is a partially cutaway perspective view of the organic EL display device according to the embodiment of the present invention.
  • the thin film semiconductor device described above can be used as a switching transistor, a driving transistor, or a driver arranged outside the panel in an active matrix substrate in an organic EL display device.
  • the organic EL display device 20 includes an active matrix substrate (TFT array substrate) 21, a plurality of pixels 22 arranged in a matrix on the active matrix substrate 21, and an active matrix substrate connected to the pixels 22.
  • a plurality of source lines 27 and gate lines 28 for connecting a circuit (not shown) are provided.
  • the organic EL layer 25 is configured by laminating layers such as an electron transport layer, a light emitting layer, and a hole transport layer.
  • FIG. 17 is a diagram showing a circuit configuration of a pixel using the thin film semiconductor device according to the embodiment of the present invention.
  • the pixel 22 includes a drive transistor 31, a switching transistor 32, an organic EL element 33, and a capacitor 34.
  • the drive transistor 31 is a transistor that drives the organic EL element 33
  • the switching transistor 32 is a transistor for selecting the pixel 22.
  • the source electrode 32S of the switching transistor 32 is connected to the source line 27, the gate electrode 32G is connected to the gate line 28, and the drain electrode 32D is connected to the capacitor 34 and the gate electrode 31G of the drive transistor 31.
  • the drain electrode 31D of the drive transistor 31 is connected to the power supply line 35, and the source electrode 31S is connected to the anode of the organic EL element 33.
  • an organic EL display device using an organic EL element has been described.
  • other display devices using an active matrix substrate such as liquid crystal display devices, solid-state imaging devices, display panels, and mobile terminal panels It can also be applied to other mother boards.
  • the display device configured as described above can be used as a flat panel display and can be applied to an electronic apparatus having any display panel such as a television set, a personal computer, and a mobile phone.
  • the present invention can also be applied to electronic devices such as CMOS sensors, solid-state imaging devices using CMOS sensors, and digital cameras.
  • the thin film semiconductor device and the manufacturing method thereof according to the present invention have been described based on the embodiments.
  • the thin film semiconductor device and the manufacturing method thereof according to the present invention are not limited to the above embodiments. .
  • the contact layers 116a and 116b are n-type contact layers
  • the contact layers 117b and 117c are p-type contact layers.
  • the contact layer having p-type conductivity and the contact layers 117b and 117c may be contact layers having n-type conductivity.
  • CMOS TFT composed of an n-type thin film transistor and a p-type thin film transistor has been described as the thin film semiconductor device.
  • the thin film semiconductor device is, for example, a selection transistor in a pixel circuit.
  • it may be a CMOS TFT used as a driving transistor, or a CMOS TFT used for a driver or the like provided outside the pixel.
  • the thin film semiconductor device described above is not limited to a CMOS type TFT, and one of an n type transistor and a p type transistor may be used as a transistor in a pixel circuit, and the other may be used as a transistor in a driver circuit. Good.
  • the intrinsic semiconductor film is configured such that the crystal grain size of the crystalline silicon grains gradually increases toward the semiconductor film, but the crystalline grains (crystalline silicon) included in the intrinsic semiconductor film The density of the grains may gradually increase toward the semiconductor film. Also in this case, the intrinsic semiconductor film may be configured such that the crystallization ratio in the thickness direction gradually increases toward the semiconductor film.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  • the organic thin film transistor according to the present invention can be widely used for a display device such as a television set, a personal computer, a mobile phone, a solid-state imaging device such as a digital camera, or various other electric devices.
  • a display device such as a television set, a personal computer, a mobile phone, a solid-state imaging device such as a digital camera, or various other electric devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 2つの薄膜トランジスタ部(100a及び100b)を有する薄膜半導体装置(100)であって、薄膜トランジスタ部(100a)は、第1のゲート電極(111a)と、第1のゲート絶縁膜(112)と、第1の半導体膜(113a)と、真性半導体層(114a)と、真性半導体層(114a)の上方の一部に接して形成されたn型の第1のコンタクト層(116a及び116b)と、第1のソース電極(120a)と、第1のドレイン電極(120b)とを備え、薄膜トランジスタ部(100b)は、第2のゲート電極(111b)と、第2のゲート絶縁膜(112)と、第2の半導体膜(113b)と、真性半導体層(114b)と、半導体膜(113b)及び真性半導体層(114b)の側面の一部に接して形成されたp型の第2のコンタクト層(117b及び117c)と、第2のソース電極(120c)と、第2のドレイン電極(120d)とを備える。

Description

薄膜半導体装置の製造方法及び薄膜半導体装置
 本発明は、薄膜半導体装置の製造方法及び薄膜半導体装置に関する。
 従来、薄膜トランジスタ(TFT:Thin Film Transistor)と呼ばれる薄膜半導体装置は、液晶表示装置等のアクティブマトリクス方式の表示装置、デジタルカメラ等の固体撮像装置に用いられている。表示装置において、TFTは、画素を選択するスイッチング素子、画素を駆動する駆動トランジスタ、あるいは、パネル外部のドライバ等として用いられる。
 例えば、有機材料のEL(Electro Luminescence)を利用した有機EL素子を有する有機ELディスプレイは、電圧駆動型の液晶ディスプレイと異なり電流駆動型のディスプレイデバイスであることから、優れた性能を有する薄膜トランジスタの開発が急がれている。薄膜トランジスタの構成は、基板上に、ゲート電極、半導体層(チャネル層)、ソース電極及びドレイン電極が形成されたものであり、チャネル層にはシリコン薄膜を用いることが一般的である。
 また、ディスプレイデバイスには、大画面化及び低コスト化も求められている。一般的に、容易に低コスト化が可能な薄膜トランジスタとして、ゲート電極がチャネル層より基板側に形成されたボトムゲート型の薄膜トランジスタが用いられる。
 ボトムゲート型の薄膜トランジスタは、チャネル層がエッチングされるチャネルエッチング型の薄膜トランジスタと、チャネル層をエッチング処理から保護するチャネル保護型(エッチングストッパ型)の薄膜トランジスタとの2つに大別される。このうち、チャネル保護型の薄膜トランジスタは、エッチング処理によるチャネル層へのダメージを防ぐことができ、基板面内で特性ばらつきが増大することを抑制することができる。また、チャネル保護型の薄膜トランジスタは、チャネル層を薄膜化することができ、寄生抵抗成分を低減してオン特性を向上させることができるため、高精細化には有利である。
 このため、チャネル保護型の薄膜トランジスタは、例えば有機EL素子を用いた電流駆動型の有機EL表示装置における駆動トランジスタに適している。
 また、上記したように、有機EL素子は、電流駆動型の素子であるため、この有機EL素子を駆動する薄膜トランジスタは、電流駆動能力に優れる多結晶シリコンを用いた多結晶シリコンTFTが好ましい。このため、積層型のTFTにおいては、半導体層、ソース及びドレインを多結晶シリコンで構成することにより、高い電流駆動能力を得ることができる。また、特に、p型TFTにおいては、非晶質シリコン膜をソース及びドレインに用いた場合には抵抗値が極めて高くなる。このため、p型TFT、及び、p型TFTを用いたCMOS型のTFTを形成する場合には、多結晶シリコンTFTとすることが好ましい。
 このような技術として、多結晶性の半導体を用いた積層型のTFTを用いて、低消費電力化に有利なCMOS型の構成の駆動回路を面内均一に形成した表示装置が開発されている(例えば、特許文献1参照)。
特開2005-108931号公報
 従来のチャネル保護型の薄膜半導体装置では、チャネル保護層に正の固定電荷が存在する。このため、この固定電荷によってチャネル層(結晶シリコン薄膜)にバックチャネルが形成される。
 これにより、薄膜半導体装置にはリーク電流が発生しオフ特性が劣化するため、チャネル保護型の薄膜トランジスタの構成では、TFTの性能が下がるという問題が生じている。
 また、p型TFTにおいては、ソース及びドレインのコンタクトはp+型層とn+型層が積層された構成となるため、ソース及びドレインのそれぞれは、ダイオードとなる。よって、ゲート電極に電圧が印加されると、ソース及びドレインのいずれかに必ず逆方向の電圧がかかるため、ダイオードの電流特性により、p型TFTのソース-ドレイン間には所望の電流が流れず、TFTの性能が下がることとなる。
 上記課題に鑑み、本発明は、TFTの性能を向上した薄膜半導体装置の製造方法及び薄膜半導体装置を提供することを目的とする。
 上記の目的を達成するために、本発明の一態様に係る薄膜半導体装置の製造方法は、2つの薄膜トランジスタ部を有する薄膜半導体装置の製造方法であって、基板を準備する工程と、前記基板上にゲート電極を形成する工程と、前記基板及び前記ゲート電極上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に、前記2つのゲート電極のそれぞれと前記ゲート絶縁膜を介して対向する領域をチャネル領域とする第1の半導体層及び第2の半導体層を形成する工程と、第1の半導体層及び第2の半導体層の上方に、塗布法により形成される第1のチャネル保護層と第2のチャネル保護層をそれぞれ形成する工程と、第1導電型を有し、前記第1のチャネル保護層上及び前記第1の半導体層の上方の一部に第1のコンタクト層を形成する工程と、前記第1の半導体層のチャネル方向の長さと前記第1のコンタクト層のチャネル方向の長さとが同じ長さになるとともに、前記第2の半導体層のチャネル方向の長さと前記第2のチャネル保護層のチャネル方向の長さとが同じ長さになるように、前記第1の半導体層及び前記第2の半導体層をエッチングする工程と、前記第1導電型と異なる第2導電型を有し、前記第2のチャネル保護層上及び前記第2の半導体層の側面の一部に第2のコンタクト層を形成する工程と、前記第1のコンタクト層及び前記第2のコンタクト層上の一部にソース電極を形成するとともに、前記ソース電極と対向するように前記第1のコンタクト層及び前記第2のコンタクト層上の他の一部にドレイン電極を形成する工程と、を含む。
 本発明によれば、TFTの性能を向上した薄膜半導体装置の製造方法及び薄膜半導体装置を提供することができる。
図1は、実施の形態1に係る薄膜半導体装置の構成を示す概略図である。 図2は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図3は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図4は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図5は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図6は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図7は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図8は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図9は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図10は、実施の形態1に係る薄膜半導体装置の製造方法の一工程を示す概略図である。 図11は、実施の形態1に係る薄膜半導体装置の動作を示す図である。 図12は、実施の形態1の変形例に係る薄膜半導体装置の構成を示す概略図である。 図13は、実施の形態2に係る薄膜半導体装置の構成を示す概略図である。 図14は、実施の形態2に係る薄膜半導体装置の断面を明視野によって観察したときのTEM像である。 図15は、実施の形態3に係る薄膜半導体装置の構成を示す概略図である。 図16は、実施の形態に係る有機EL表示装置の一部切り欠き斜視図である。 図17は、実施の形態に係る薄膜半導体装置を用いた画素の回路構成を示す図である。 図18は、従来の薄膜半導体装置の構成例を示す概略図である。
 (本発明の基礎となった知見)
 従来のチャネル保護型の薄膜半導体装置では、チャネル保護層に正の固定電荷が存在する。塗布で形成されたチャネル保護層においては、CVDにより形成されたチャネル保護層と比較して、特に正の固定電荷が多い。このため、この固定電荷によってチャネル層(結晶シリコン薄膜)にバックチャネルが形成される。
 ここで、バックチャネルとは、ソース電極からドレイン電極に向けてチャネル層内におけるチャネル保護層側との界面付近を経由する寄生電流の経路のことである。バックチャネルが形成されることにより、薄膜半導体装置にはリーク電流が発生する。これにより、オフ特性が劣化するため、チャネル保護型の薄膜トランジスタの構成では、TFTの性能が下がるという問題が生じている。
 ここで、図18は、従来の表示装置の構成を示す断面図である。この表示装置は、n型TFT及びp型TFTとを備えている。
 図18におけるn型TFT441は、基板412n上に、ゲート電極432と、ゲート絶縁膜と、活性層と、n型ソース440a及びn型ドレイン440bとを備えている。また、p型TFT442は、基板412p上に、ゲート電極433と、ゲート絶縁膜と、活性層と、p型ソース437a及びp型ドレイン437bとを備えている。また、p型ソース437a及びp型ドレイン437bを構成するp+型層437の上には、それぞれ、n型TFT441のn型ソース440a及びn型ドレイン440bを形成する際に同時に成膜されたn+型層440が形成されている。
 図18に示すように、p型TFT442においては、p型ソース437a及びp型ドレイン437bのコンタクトは、p+型層437とn+型層440が積層された構成となっている。つまり、p型ソース437a及びp型ドレイン437bのそれぞれは、ダイオードとなっている。よって、ゲート電極433に電圧が印加されると、p型ソース437a及びp型ドレイン437bのいずれかに必ず逆方向の電圧がかかることになる。したがって、ダイオードの電流特性により、p型TFT442のソース-ドレイン間には所望の電流が流れず、TFTの性能が下がることとなる。
 そこで、以下に示すように、本発明では、TFTの性能を向上した薄膜半導体装置の製造方法及び薄膜半導体装置を実現する。
 本発明の一態様に係る半導体薄膜装置の製造方法は、2つの薄膜トランジスタ部を有する薄膜半導体装置の製造方法であって、基板を準備する工程と、前記基板上にゲート電極を形成する工程と、前記基板及び前記ゲート電極上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に、前記2つのゲート電極のそれぞれと前記ゲート絶縁膜を介して対向する領域をチャネル領域とする第1の半導体層及び第2の半導体層を形成する工程と、第1の半導体層及び第2の半導体層の上方に、塗布法により形成される第1のチャネル保護層と第2のチャネル保護層をそれぞれ形成する工程と、第1導電型を有し、前記第1のチャネル保護層上及び前記第1の半導体層の上方の一部に第1のコンタクト層を形成する工程と、前記第1の半導体層のチャネル方向の長さと前記第1のコンタクト層のチャネル方向の長さとが同じ長さになるとともに、前記第2の半導体層のチャネル方向の長さと前記第2のチャネル保護層のチャネル方向の長さとが同じ長さになるように、前記第1の半導体層及び前記第2の半導体層をエッチングする工程と、前記第1導電型と異なる第2導電型を有し、前記第2のチャネル保護層上及び前記第2の半導体層の側面の一部に第2のコンタクト層を形成する工程と、前記第1のコンタクト層及び前記第2のコンタクト層上の一部にソース電極を形成するとともに、前記ソース電極と対向するように前記第1のコンタクト層及び前記第2のコンタクト層上の他の一部にドレイン電極を形成する工程と、を含む。
 この構成によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。また、2つの薄膜トランジスタ部の一方において、半導体層の側面の一部にコンタクト層を形成することにより、半導体層とコンタクト層とを直接接触できるため、ソース-ドレイン間の電流特性をより向上することができる。これにより、TFTの性能を向上した薄膜半導体装置を提供することができる。
 また、n型のTFTとp型のTFTそれぞれの特性に合わせた最適の構造を有するCMOS構成の薄膜半導体装置を形成することができる。
 また、不純物を注入する工程なくp型とn型のTFTを作り分けることができるので、低温ポリシリコン(LTPS)によるCMOS構成の製造方法と比較して、従来LTPSでは難しかった大判化に対応することができる。また、不純物を注入するためのマスク数を減少することができる。したがって、CMOS構成を製造するためのコストを低減することができる。
 また、前記第1のコンタクト層及び前記第2のコンタクト層の平均結晶粒径は、前記チャネル領域の平均結晶粒径よりも小さくてもよい。
 この構成によれば、半導体薄膜装置においてオフ電流を低減することができる。
 また、前記第1の半導体層と前記第2の半導体層は、それぞれ、半導体膜と、前記半導体膜の上方に形成された非結晶質の真性半導体層とを備え、前記第1導電型はn型であり、前記第2導電型はp型であってもよい。
 この構成によれば、第1の半導体層の上方の一部に第1のコンタクト層を形成し第1の半導体層が非結晶質の真性半導体層を有する構成であるため、非結晶質の真性半導体層がソース-ドレイン電極間の電流経路(電子パス)に配置されることになる。つまり、非結晶質の真性半導体層を通る電流経路を形成することができる。非結晶質の真性半導体層は抵抗値が高いため、非結晶質の真性半導体層における電圧降下量は大きくなり、チャネルにかかる電圧は低くなる。したがって、この構成によれば、オフ電流の低減を図ることが難しいn型のTFTであっても、オフ電流を抑制することができる。
 さらに、p型半導体ではオフ電流の低減を図りやすいため、半導体層の側面で第2のコンタクト層を形成することにより、非結晶質の真性半導体層を通らない電流経路(キャリアパス)を形成することができる。これにより、p型のTFTにおいてオン電流を高くすることができる。
 このようにp型のTFTとn型のTFTにおいて上記したように構造を作り分けることにより、n型のTFTではオフ電流を低減しつつ、p型のTFTではオン電流を高く保つことができる。
 また、前記第1の半導体層と前記第2の半導体層の少なくとも一方は、半導体膜と、非結晶質の真性半導体層とを備え、前記第1の半導体層及び第2の半導体層を形成する工程において、少なくとも前記チャネル領域上に、前記真性半導体層を形成する第10工程を含み、前記半導体膜及び前記真性半導体層のコンダクションバンドの下端のエネルギー準位をそれぞれ、ECP、EC1とすると、前記真性半導体層を形成する工程において、ECP<EC1となるように前記真性半導体層を形成してもよい。
 この構成によれば、バックチャネル層として、アモルファスシリコン膜を設けることにより、真性半導体層の局在準位密度(トラップ密度)における負キャリアの電荷密度によってチャネル保護層の正の固定電荷を相殺して電界遮蔽を行うことができる。これにより、バックチャネルの形成を抑制することができ、オフ時のリーク電流を抑制することができるので、オフ特性を向上させることができる。また、ドレイン電流が急激に増加する現象であるキンク現象の発生を抑制することができる。
 また、前記真性半導体層を形成する工程において、前記真性半導体層として、前記半導体膜上に第1の真性半導体膜と、前記第1の真性半導体膜上に第2の真性半導体膜とを形成し、前記第1の真性半導体膜及び前記第2の真性半導体膜は、アモルファスシリコン膜によって形成されてもよい。
 この構成によれば、半導体膜の表面付近から遠ざかるに従って結晶化率が異なる真性半導体層を容易に形成することができる。また、第1の真性半導体膜及び第2の真性半導体膜をアモルファスシリコン膜によって形成することで、チャネル保護層に含まれる正の固定電荷によるバックチャネルの形成を抑制してオフ特性を向上させることができる。
 また、前記真性半導体層を形成する工程において、前記第1の真性半導体膜と前記第2の真性半導体膜とを同一の真空装置内で連続して形成するとともに、前記第1の真性半導体膜の結晶化率が前記第2の真性半導体膜の結晶化率よりも大きくなるように、前記第1の真性半導体膜と前記第2の真性半導体膜とを形成してもよい。
 この構成によれば、製造工程において、第1の真性半導体膜と第2の真性半導体膜とを同一の真空装置内で連続して形成するため、コンタクト部分に逆極性膜が一度も曝されることがなく、n型半導体及びp型半導体を構成するドーパントが逆極性膜に相互に移動することがない。したがって、性能の高いTFTを形成することができる。また、第1の真性半導体膜の結晶化率が第2の真性半導体膜の結晶化率よりも大きくなるように、第1の真性半導体膜と第2の真性半導体膜とを形成することで、容易にECP<EC1とすることができる。
 また、前記第2のコンタクト層を形成する工程において、前記第1のチャネル保護層上、前記第1の半導体層の側面、及び前記第1のコンタクト層上に前記第2のコンタクト層を形成する工程と、前記第1のコンタクト層の上方に形成された前記第2のコンタクト層を除去する工程と、を有してもよい。
 この構成によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。また、チャネル保護層の上面、側面及び半導体層の側面の一部にコンタクト層を形成することにより、ドレイン電流が大きいときにコンタクト層が電界緩和層の役割を果たすため、ソース-ドレイン間のオフ電流を低減し薄膜半導体装置の信頼性の向上を図ることができる。また、半導体層とコンタクト層とを直接接触できるため、半導体層とコンタクト層とが直接接触するコンタクト部分は主に電流の引き込み口として有効である。これにより、TFTの性能を向上した薄膜半導体装置を提供することができる。
 また、前記第1のコンタクト層を形成する工程において、前記第1のコンタクト層の膜厚を、前記第2のコンタクト層を形成する工程において形成される前記第2のコンタクト層の膜厚よりも厚く形成してもよい。
 この構成によれば、第1のコンタクト層の上方に形成された第2のコンタクト層を除去する工程において、第1のコンタクト層の厚さが薄くなるのを抑制することができる。
 また、本発明の一態様に係る半導体薄膜装置は、少なくとも第1の薄膜トランジスタ部と第2の薄膜トランジスタ部を有する薄膜半導体装置であって、前記第1の薄膜トランジスタ部は、第1のゲート電極と、前記第1のゲート電極上に位置する第1の絶縁膜と、前記第1のゲート電極と、前記第1の絶縁膜を介して対向する領域をチャネル領域とする第1の半導体層と、前記半導体層の上方の少なくとも一部に接して形成された第1導電型を有する第1のコンタクト層と、前記第1のコンタクト層上に形成された第1のソース電極と、前記第1のコンタクト層上に前記第1のソース電極と対向して形成された第1のドレイン電極とを備え、前記第2の薄膜トランジスタ部は、第2のゲート電極と、前記第2のゲート電極上に位置する第2の絶縁膜と、前記第2のゲート電極と、前記第2の絶縁膜を介して対向する領域をチャネル領域とする第2の半導体層と、前記半導体層の側面の少なくとも一部に接して形成された、前記第1導電型と異なる第2導電型を有する第2のコンタクト層と、前記第2のコンタクト層上に形成された第2のソース電極と、前記第2のコンタクト層上に前記第2のソース電極と対向して形成された第2のドレイン電極とを備える。
 この構成によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。また、2つの薄膜トランジスタ部の一方において、半導体層の側面の一部にコンタクト層を形成することにより、半導体層とコンタクト層とを直接接触できるため、ソース-ドレイン間の電流特性を向上することができる。これにより、TFTの性能を向上した薄膜半導体装置を提供することができる。
 また、n型のTFTとp型のTFTそれぞれの特性に合わせた最適の構造を有するCMOSトランジスタを形成することができる。
 また、不純物を注入する工程なくp型とn型のTFTを作り分けることができるので、低温ポリシリコン(LTPS)によるCMOS構成の製造方法と比較して、従来LTPSでは難しかった大判化に対応することができる。また、不純物を注入するためのマスク数を減少することができる。したがって、CMOS構成を製造するためのコストを低減することができる。
 また、第1のコンタクト層及び前記第2のコンタクト層の平均結晶粒径は、前記チャネル領域の平均結晶粒径よりも小さくてもよい。
 この構成によれば、半導体薄膜装置においてオフ電流を低減することができる。
 また、前記第1の薄膜トランジスタ部は、前記第1の半導体層の上方に第1のチャネル保護層を有し、前記第1の薄膜トランジスタ部において、前記チャネル保護層のチャネル方向の長さは、前記第1の半導体の前記チャネル領域の前記チャネル方向の長さより短くてもよい。
 また、前記第2の薄膜トランジスタ部は、前記第2の半導体層の上方に第2のチャネル保護層を有し、前記第2の薄膜トランジスタ部は、前記第2のチャネル保護層のチャネル方向の長さと前記第2の半導体層の前記チャネル方向の長さとは、同じ長さであってもよい。
 この構成によれば、n型のTFTとp型のTFTそれぞれの特性に合わせた最適の構造を有するCMOSトランジスタを形成することができる。
 また、前記第1の半導体層と前記第2の半導体層は、それぞれ、半導体膜と、前記半導体膜の上方に形成された非結晶質の真性半導体層とを備え、前記第1導電型はn型であり、前記第2導電型はp型であってもよい。
 この構成によれば、p型のTFTとn型のTFTにおいて構造を作り分けることにより、n型のTFTではオフ電流を低減しつつ、p型のTFTではオン電流を高く保つことができる。
 また、前記第1のコンタクト層、及び前記第2のコンタクト層は、それぞれ前記第1のチャネル保護層、前記第2のチャネル保護層の上方に形成されていてもよい。
 この構成によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。また、チャネル保護層の上面、側面及び半導体層の側面の一部にコンタクト層を形成することにより、ドレイン電流が大きいときにコンタクト層が電界緩和層の役割を果たすため、ソース-ドレイン間のオフ電流を低減し薄膜半導体装置の信頼性の向上を図ることができる。また、半導体層とコンタクト層とを直接接触できるため、半導体層とコンタクト層とが直接接触するコンタクト部分は主に電流の引き込み口として有効である。これにより、TFTの性能を向上した薄膜半導体装置を提供することができる。
 また、前記第1の絶縁膜と前記第2の絶縁膜は連続していてもよい。
 また、前記チャネル保護層は、有機材料で構成されていてもよい。
 また、前記薄膜半導体装置は、相補型薄膜半導体装置であってもよい。
 また、前記第1の半導体層及び前記第2の半導体層の少なくとも一方は、半導体膜と、前記半導体膜と前記チャネル保護層との間に形成された非結晶質の真性半導体層とで構成されてもよい。
 また、前記半導体膜は、結晶質シリコンで構成され、前記真性半導体層は、アモルファスシリコンで構成されていてもよい。
 この構成によれば、バックチャネル層として、アモルファスシリコン膜を設けることにより、真性半導体層の局在準位密度(トラップ密度)における負キャリアの電荷密度によってチャネル保護層の正の固定電荷を相殺して電界遮蔽を行うことができる。これにより、バックチャネルの形成を抑制することができ、オフ時のリーク電流を抑制することができるので、オフ特性を向上させることができる。
 また、前記半導体膜及び前記真性半導体層のコンダクションバンドの下端のエネルギー準位をそれぞれ、ECP、EC1とすると、ECP<EC1であってもよい。
 この構成によれば、ドレイン電流が急激に増加する現象であるキンク現象の発生を抑制することができるので、TFTの性能を向上した薄膜半導体装置を実現することができる。
 また、前記真性半導体層は、前記半導体膜上に形成された第1の真性半導体膜と、前記第1の真性半導体膜上に形成された第2の真性半導体膜とで構成され、前記第1の真性半導体膜と前記第2の真性半導体膜とは、電子親和力が異なってもよい。
 この構成によれば、半導体膜の表面付近から遠ざかるに従って結晶化率が異なる真性半導体層を容易に形成することができる。また、第1の真性半導体膜及び第2の真性半導体膜をアモルファスシリコン膜によって形成することで、バックチャネルの形成を抑制してオフ特性を向上させることができる。
 また、前記第1の真性半導体膜と前記第2の真性半導体膜とは、シリコンを主成分とし、バンドギャップがそれぞれ異なってもよい。
 この構成によれば、コンダクションバンドの下端のエネルギー準位EC1を調整することができる。
 また、前記第1の真性半導体膜及び前記第2の真性半導体膜は、それぞれアモルファスシリコン膜であってもよい。
 この構成によれば、塗布法により形成される絶縁膜に含まれる正の固定電荷によるバックチャネルの形成を抑制してオフ特性を向上させることができる。
 また、前記第1の真性半導体膜の結晶化率は、前記第2の真性半導体膜の結晶化率よりも大きくてもよい。
 この構成によれば、容易にECP<EC1とすることができる。
 また、前記半導体膜のコンダクションバンドの下端のエネルギー準位ECPと前記第1の真性半導体膜のコンダクションバンドの下端のエネルギー準位EC1とは、前記半導体膜と前記第1の真性半導体膜との接合部分でスパイクが発生しないように調整されていてもよい。
 この構成によれば、ドレイン電流が急激に増加する現象であるキンク現象の発生を抑制することができるので、TFTの性能を向上した薄膜半導体装置を実現することができる。
 また、本発明の一態様に係る半導体薄膜装置は、2つの薄膜トランジスタ部を有する薄膜半導体装置であって、前記2つの薄膜トランジスタ部のそれぞれは、ゲート電極と、前記ゲート電極上に位置するゲート絶縁膜と、前記ゲート絶縁膜上に位置し、前記ゲート絶縁膜を解して前記ゲート電極と対向する領域をチャネル領域とする半導体層と、前記半導体層の上方の一部に接して形成されたコンタクト層と、前記コンタクト層上に形成されたソース電極と、前記コンタクト層上に前記ソース電極と対向して形成されたドレイン電極とを備え、前記2つの薄膜トランジスタ部の一方の前記コンタクト層と前記2つの薄膜トランジスタ部の他方の前記コンタクト層とは、互いに異なる導電型を有する。
 この構成によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。これにより、TFTの性能を向上した薄膜半導体装置を提供することができる。
 また、不純物を注入する工程なくp型とn型のTFTを作り分けることができるので、低温ポリシリコン(LTPS)によるCMOS構成の製造方法と比較して、従来LTPSでは難しかった大判化に対応することができる。また、不純物を注入するためのマスク数を減少することができる。したがって、CMOS構成を製造するためのコストを低減することができる。
 以下、本発明に係る薄膜半導体装置及びその製造方法について、実施の形態に基づいて説明するが、本発明は、請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。
 (実施の形態1)
 (薄膜半導体装置の構成)
 まず、本発明の実施の形態に係る薄膜半導体装置100の構成について、図1を用いて説明する。図1は、本発明の実施の形態に係る薄膜半導体装置100の構成を示す概略図である。同図における(a)は上面図、(b)は(a)のA-A’線における断面図である。
 図1に示すように、本発明の実施の形態に係る薄膜半導体装置100は、相互に逆極性の2つの薄膜トランジスタ部100a及び100bを有する薄膜半導体装置であって、薄膜トランジスタ部100a及び100bは、基板110と、基板110の上に形成されたゲート電極111a及びゲート電極111bと、基板110、ゲート電極111a及び111bの上に形成されたゲート絶縁膜112の上に形成され、相補型薄膜半導体(CMOS)装置を構成している。
 2つの薄膜トランジスタ部の一方である薄膜トランジスタ部100aは、n型の導電型を有するトランジスタ部であり、ゲート電極111aの上方に形成され、チャネル領域を有する半導体層と、半導体層の上方の一部に接して形成された第1導電型であるn型の導電型を有するコンタクト層116a及び116bと、コンタクト層116a上に形成されたソース電極120aと、コンタクト層116b上にソース電極120aと対向して形成されたドレイン電極120bとを備える。また、半導体層の上方には、チャネル保護層115aが形成されている。さらに、半導体層は、半導体膜113aと、半導体膜113aとチャネル保護層115aとの間に形成された真性半導体層114aとで構成される。ここで、ソース電極120a、ドレイン電極120bはそれぞれ本発明における第1のソース電極、第1のドレイン電極に相当する。また、コンタクト層116a及び116bは、本発明における第1のコンタクト層に相当する。
 2つの薄膜トランジスタ部の他方である薄膜トランジスタ部100bは、p型の導電型を有するトランジスタ部であり、ゲート電極111bの上方に形成され、チャネル領域を有する半導体層と、半導体層の側面の一部に接して形成された、第1導電型と逆極性の第2導電型であるp型の導電型を有するコンタクト層117b及び117cと、コンタクト層117b上に形成されたソース電極120cと、コンタクト層117c上にソース電極120cと対向して形成されたドレイン電極120dとを備える。また、半導体層の上方には、チャネル保護層115bが形成されている。さらに、半導体層は、半導体膜113bと、半導体膜113bとチャネル保護層115bとの間に形成された真性半導体層114bとで構成される。ここで、ソース電極120c、ドレイン電極120dはそれぞれ本発明における第2のソース電極、第2のドレイン電極に相当する。また、コンタクト層117b及び117cは、本発明における第2のコンタクト層に相当する。
 以下、本実施の形態に係る薄膜半導体装置100の各構成要素について詳述する。
 基板110は、例えば、石英ガラス、無アルカリガラス、高耐熱性ガラス等のガラス材料からなるガラス基板である。なお、ガラス基板の中に含まれるナトリウムやリン等の不純物が半導体膜113a及び113bに侵入することを防止するために、基板110上にシリコン窒化膜(SiN)、酸化シリコン(SiO)又はシリコン酸窒化膜(SiO)等からなるアンダーコート層を形成してもよい。また、アンダーコート層は、レーザアニールなどの高温熱処理プロセスにおいて、基板110への熱の影響を緩和させる役割を担うこともある。アンダーコート層の膜厚は、例えば100nm~2000nm程度とすることができる。
 ゲート電極111a及び111bは、基板110上に所定形状でパターン形成される。ゲート電極111a及び111bは、導電性材料及びその合金等の単層構造又は多層構造とすることができ、例えば、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、タングステン(W)、チタン(Ti)、クロム(Cr)、及びモリブデンタングステン(MoW)等によって構成することができる。ゲート電極111a及び111bの膜厚は、例えば20~500nm程度とすることができる。
 ゲート絶縁膜112は、ゲート電極111a及び111b上に形成され、本実施の形態では、ゲート電極111a及び111bを覆うように基板110上の全面に形成される。ゲート絶縁膜112は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、シリコン酸窒化膜(SiO)、酸化アルミニウム(AlO)又は酸化タンタル(TaO)の単層膜又はこれらの積層膜によって構成することができる。ゲート絶縁膜112の膜厚は、例えば50nm~300nmとすることができる。
 なお、本実施の形態では、TFTのチャネル領域となる半導体層として半導体膜113a及び113bが含まれているので、ゲート絶縁膜112としては酸化シリコンを用いることが好ましい。これは、TFTにおける良好な閾値電圧特性を維持するためには半導体膜113a及び113bとゲート絶縁膜112との界面状態を良好なものにすることが好ましく、これには酸化シリコンが適しているからである。
 半導体膜113a及び113bは、ゲート絶縁膜112上に位置し、ゲート絶縁膜112を介してゲート電極111a及び111bと対向する領域をチャネル領域とする半導体層である。具体的には、半導体膜113a及び113bは、ゲート絶縁膜112上に形成される結晶シリコン薄膜113で構成される半導体膜であって、ゲート電極111a及び111bの電圧によってキャリアの移動が制御される領域である所定のチャネル領域を有する。TFTのチャネル長は、チャネル保護層115a及び115bの幅として定義される。
 半導体膜113a及び113bは、例えば、結晶性の組織構造を有する結晶シリコン薄膜であって、微結晶シリコン薄膜又は多結晶シリコン薄膜からなる。半導体膜113a及び113bは、この場合、非結晶性の非晶質シリコン(アモルファスシリコン)を結晶化することによって形成することができる。
 また、半導体膜113a及び113bは、アモルファスシリコン膜又はアモルファスシリコンを含む膜であってもよい。例えば、アモルファスシリコン(非結晶シリコン)と結晶性シリコンとの混晶構造を有するシリコン薄膜とすることができる。また、結晶性シリコンの上方にアモルファスシリコンを有する半導体層であってもよい。この場合、優れたオン特性を得るために、少なくとも半導体膜113a及び113bの所定のチャネル領域については、結晶性シリコンの割合が多い膜で構成されていることが好ましい。
 半導体膜113a及び113bの膜厚は、例えば20nm~100nm程度とすることができる。なお、半導体膜113a及び113bに含まれるシリコン結晶の主面方位は[100]であることが好ましい。これにより、結晶性に優れた半導体膜113a及び113bを形成することができる。
 なお、半導体膜113a及び113bにおける結晶シリコンの平均結晶粒径は、5nm~1000nm程度であり、半導体膜113a及び113bには、上記のような平均結晶粒径が100nm以上の多結晶、あるいは、平均結晶粒径が10nm~100nmのマイクロクリスタル(μc)と呼ばれる微結晶も含まれる。
 真性半導体層114a及び114bは、半導体膜113a及び113b上に形成された真性半導体層であり、詳細には、意図的に不純物のドーピングが行われていないアモルファスシリコン膜である。
 真性半導体層114a及び114bは、半導体膜113a及び113bの上面と接するようにして半導体膜113a及び113b上に形成されている。真性半導体層114a及び114bの膜厚は20nm程度とすることができる。なお、真性半導体層114a及び114bの膜厚の好適な範囲は、20nm~140nmである。
 ここで、半導体膜113a及び113b、真性半導体層114a及び114bのコンダクションバンド(伝導帯)の下端のエネルギー準位をそれぞれ、ECP、EC1とすると、半導体膜113a及び113b、真性半導体層114a及び114bは、ECP<EC1の関係を満たすように構成されている。
 また、本実施の形態において、真性半導体層114a及び114bは、成膜が進んで半導体膜113a及び113bの表面付近から遠ざかるに従って結晶化率が異なるように構成されている。この場合、半導体膜113a及び113bの表面付近の真性半導体層114a及び114bの結晶化率が、半導体膜113a及び113bの表面付近から遠ざかった部分の真性半導体層114a及び114bの結晶化率よりも大きくなるように構成することが好ましい。結晶化率をこのようにすることで、容易にECP<EC1とすることができる。
 本実施の形態における真性半導体層114a及び114bは、結晶粒径が5nm以上100nm以下である結晶シリコン粒を含む。また、真性半導体層114a及び114bの厚み方向の結晶化率は半導体膜113a及び113bに近づくに従って漸次高くなっており、本実施の形態では、真性半導体層114a及び114bの結晶シリコン粒の結晶粒径が半導体膜113a及び113bに向かうに従って徐々に大きくなっている。一方、半導体膜113a及び113bの表面付近から遠ざかった部分の真性半導体層114a及び114bは結晶化されておらず、結晶化率はゼロである。
 なお、結晶化率とは、例えば半導体膜がシリコンを主成分とする場合、シリコン半導体膜の組織が結晶化されている度合いを意味する。結晶化率は、例えば、上述のように結晶粒径の大小で表すこともできるし、同一結晶粒径における密度の大小等によっても表すことができる。また、結晶化率は、結晶成分のみによる結晶化率、あるいは、結晶成分と非結晶成分(アモルファス成分)とによる結晶化率として表すことができる。
 本実施の形態において、真性半導体層114a及び114bは、意図的に不純物のドーピングを行っていない真性アモルファスシリコンによって形成されている。なお、一般的に、アモルファスシリコン膜の組織は、非結晶のアモルファス成分のみによって構成されているが、本実施の形態におけるアモルファスシリコン膜の組織には、微結晶の結晶成分も含まれる。
 この構成によると、半導体膜113aの上方の一部にコンタクト層116a及び116bが形成され、半導体膜113aは真性半導体層114a(非結晶質の真性半導体層)を有する構成であるため、この真性半導体層114aはソース-ドレイン電極間の電流経路(電子パス)に配置されることになる。つまり、n型のTFTである薄膜トランジスタ部100aにおいて、真性半導体層114aを通る電流経路を形成することができる。非結晶質の真性半導体層である真性半導体層114aは抵抗値が高いため、真性半導体層114aにおける電圧降下量は大きくなり、チャネルにかかる電圧は低くなる。したがって、この構成によれば、オフ電流の低減を図ることが難しいn型のTFTであっても、オフ電流を抑制することができる。
 さらに、p型半導体ではオフ電流の低減を図りやすいため、p型のTFTである薄膜トランジスタ部100bにおいては、半導体膜113bの側面でコンタクト層117b及び117cを形成することにより、非結晶質の真性半導体層である真性半導体層114bを通らない電流経路(キャリアパス)を形成することができる。これにより、p型のTFTにおいてオン電流を高くすることができる。
 このようにp型のTFTとn型のTFTにおいて上記したように構造を作り分けることにより、n型のTFTである薄膜トランジスタ部100aではオフ電流を低減しつつ、p型のTFTである薄膜トランジスタ部100bではオン電流を高く保つことができる。
 チャネル保護層115a及び115bは、チャネル領域を含む半導体層(半導体膜113a及び113b、真性半導体層114a及び114b)を保護するチャネル保護層である。すなわち、チャネル保護層115a及び115bは、チャネルエッチングストッパ(CES)層として機能し、一対のコンタクト層116a及び116b、一対のコンタクト層117b及び117cを形成するときのエッチング処理時において、チャネル領域における半導体膜113a及び113b、真性半導体層114a及び114bがエッチングされることを防止する機能を有する。
 チャネル保護層115a及び115bは、チャネル領域の上方であって、半導体層の上に形成される。本実施の形態において、チャネル保護層115a及び115bは、真性半導体層114a及び114bの直上であってチャネル領域に対応する領域に形成される。
 詳細には、薄膜トランジスタ部100aでは、チャネル保護層115aのチャネル方向の長さは、半導体層のチャネル方向の長さより短く形成される。また、薄膜トランジスタ部100bでは、チャネル保護層115bのチャネル方向の長さは、半導体層のチャネル方向の長さと同じ長さに形成される。
 ここで、「チャネル保護層のチャネル方向の長さ」とは、真性半導体層114a及び114b面上におけるチャネル保護層115a及び115bのチャネル方向の長さをいう。また、「チャネル保護層のチャネル方向の長さは、半導体層のチャネル方向の長さと同じ」とは、チャネル保護層115a及び115bをエッチングするときのエッチングによるばらつきを考慮し、ほぼ同じ長さである場合を含む。
 また、チャネル保護層115a及び115bは、シリコン、酸素及びカーボンを含む材料を主として含有し、塗布法により形成される。本実施の形態において、チャネル保護層115a及び115bは、感光性塗布型の材料をパターニング及び固化することによって形成する。チャネル保護層115a及び115bを構成する有機材料には、例えば、有機樹脂材料、界面活性剤、溶媒及び感光剤が含まれる。また、チャネル保護層は無機材料を主成分とするものであってもよい。例えば、ボロンとリンが入っているSiO膜であるBPSG(Boron Phosphorus Silicon Glass)等に代表されるSOG(Spin On Glass)材料をチャネル保護層として使用しても良い。
 チャネル保護層115a及び115bの主成分である有機樹脂材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン等の中の1種又は複数種からなる感光性又は非感光性の有機樹脂材料を用いることができる。界面活性剤としては、シロキサン等のシリコン化合物からなる界面活性剤を用いることができる。溶媒としては、プロピレングリコールモノメチルエーテルアセテート又は1,4-ジオキサン等の有機溶媒を用いることができる。また、感光剤としては、ナフトキノンジアジト等のポジ型感光剤を用いることができる。なお、感光剤には、炭素だけではなく硫黄も含まれている。
 チャネル保護層115a及び115bを形成する場合、上記の有機材料をスピンコート法等の塗布法を用いて形成する。なお、チャネル保護層115a及び115bの形成には、塗布法だけではなく、滴吐出法等その他の方法を用いることもできる。例えば、スクリーン印刷やオフセット印刷等の所定のパターンを形成することができる印刷法等を用いることにより、所定形状の有機材料を選択的に形成することもできる。
 チャネル保護層115a及び115bの膜厚は、例えば300nm~1000nmとする。チャネル保護層115a及び115bの膜厚の下限は、エッチングによるマージン及びチャネル保護層115a及び115b中の固定電荷の影響を抑制すること等を考慮して決定される。また、チャネル保護層115a及び115bの膜厚の上限は、一対のコンタクト層116a及び116b、一対のコンタクト層117b及び117cやソース電極120a及び120c、ドレイン電極120b及び120dとの段差の増大に伴うプロセス信頼性の低下を抑制することを考慮して決定される。
 薄膜トランジスタ部100aにおいて、一対のコンタクト層116a及び116bは、不純物を高濃度に含む非晶質半導体膜からなり、チャネル保護層115a上に形成される。つまり、一対のコンタクト層116a及び116bは、半導体膜113aのチャネル領域の上方にチャネル保護層115aを介して形成される。また、一対のコンタクト層116a及び116bは、所定の間隔をあけて対向配置される。なお、コンタクト層が形成される「チャネル保護層上」とは、チャネル保護層の上面、側面のうち少なくとも一部を意味する。
 すなわち、本実施の形態において、一対のコンタクト層116a及び116bのうちの一方(例えば、コンタクト層116a)は、チャネル保護層115aの一方の端部及び真性半導体層114aに跨るようにして形成されており、チャネル保護層115aの一方の端部における上部と側面、及び、チャネル保護層115aの一方の側面側領域における真性半導体層114aの上面を覆うように形成される。
 また、一対のコンタクト層116a及び116bのうちの他方(例えば、コンタクト層116b)は、チャネル保護層115aの他方の端部及び真性半導体層114aに跨るようにして形成されており、チャネル保護層115aの他方の端部における上部と側面、及び、チャネル保護層115aの他方の側面側領域における真性半導体層114aの上面を覆うように形成される。
 つまり、一対のコンタクト層116a及び116bは、チャネル保護層115aの一部を覆い、半導体層を構成する真性半導体層114aの上方の一部に接して形成される。このような構成とすることにより、コンタクト層116a及び116bは、ドレイン電流が大きいときに電界緩和層の役割を果たすため、ソース-ドレイン間のオフ電流を低減し薄膜半導体装置100の信頼性の向上を図ることができる。特に、CESとして機能するチャネル保護層115aの上面にコンタクト層116a及び116bが形成されている場合に、よりこの効果を発揮できる。なお、コンタクト層116a及び116bが半導体層を構成する真性半導体層114a及び半導体膜113aの側面の一部に接しているコンタクト部分は、主に電流の引き込み口として有効である。
 なお、この効果は、p型半導体、n型半導体のいずれにおいても成り立つ効果であるが、特にn型において有効である。
 一対のコンタクト層116a及び116bは、例えば、アモルファスシリコンに不純物としてリン(P)をドーピングしたn型半導体膜によって構成することができ、1×1019[atm/cm]以上の高濃度の不純物を含むn層である。また、コンタクト層116a及び116bの膜厚は、例えば5nm~100nmとすることができる。
 なお、一対のコンタクト層116a及び116bは、下層の低濃度の電界緩和層(n層)と上層の高濃度のコンタクト層(n層)との2層から構成されてもよい。低濃度の電界緩和層には1×1017[atm/cm]程度のリンがドーピングされている。上記2層はCVD(Chemical Vapor Deposition)装置において連続的に形成することが可能である。
 また、薄膜トランジスタ部100bにおいて、一対のコンタクト層117b及び117cは、不純物を高濃度に含む非晶質半導体膜からなり、チャネル保護層115b上に形成される。つまり、一対のコンタクト層117b及び117cは、半導体膜113bのチャネル領域の上方にチャネル保護層115bを介して形成される。また、一対のコンタクト層117b及び117cは、所定の間隔をあけて対向配置される。
 本実施の形態において、一対のコンタクト層117b及び117cのうちの一方(例えば、コンタクト層117b)は、チャネル保護層115bの一方の端部、真性半導体層114b及び半導体膜113bに跨るようにして形成されており、チャネル保護層115bの一方の端部における上部と側面、チャネル保護層115bの一方の側面側領域における真性半導体層114bの側面及び半導体膜113bの側面を覆うように形成される。
 また、一対のコンタクト層117b及び117cのうちの他方(例えば、コンタクト層117c)は、チャネル保護層115aの他方の端部、真性半導体層114b及び半導体膜113bに跨るようにして形成されており、チャネル保護層115bの他方の端部における上部と側面、及び、チャネル保護層115bの他方の側面側領域における真性半導体層114bの側面及び半導体膜113bの側面を覆うように形成される。
 つまり、一対のコンタクト層117b及び117cは、チャネル保護層115bの一部を覆い、半導体層を構成する真性半導体層114b及び半導体膜113bの側面の一部に接して形成される。このような構成とすることにより、コンタクト層117b及び117cは、ドレイン電流が大きいときに電界緩和層の役割を果たすため、ソース-ドレイン間のオフ電流を低減し薄膜半導体装置100の信頼性の向上を図ることができる。特に、CESとして機能するチャネル保護層115bの上面にコンタクト層117b及び117cが形成されている場合に、よりこの効果を発揮できる。なお、コンタクト層117b及び117cが半導体層を構成する真性半導体層114b及び半導体膜113bの側面の一部に接しているコンタクト部分は、主に電流の引き込み口として有効である。
 なお、この効果は、p型半導体、n型半導体のいずれにおいても成り立つ効果であるが、特にn型において有効である。
 一対のコンタクト層117b及び117cは、例えば、アモルファスシリコンに不純物としてボロン(B)をドーピングしたp型半導体膜によって構成することができ、1×1019[atm/cm]以上の高濃度の不純物を含むp層である。また、コンタクト層117b及び117cの膜厚は、例えば5nm~100nmとすることができる。
 なお、一対のコンタクト層117b及び117cは、下層の低濃度の電界緩和層(p層)と上層の高濃度のコンタクト層(p層)との2層から構成されてもよい。低濃度の電界緩和層には1×1017[atm/cm]程度のボロンがドーピングされている。上記2層はCVD(Chemical Vapor Deposition)装置において連続的に形成することが可能である。
 なお、上記したようにコンタクト層とチャネル保護層を別層で形成できることを利用して、第1のコンタクト層116a及び116b、第2のコンタクト層117b及び117cの平均結晶粒径をチャネル保護層115a及び115bの平均結晶粒径よりも小さくすることができる。これにより、薄膜半導体装置100のオフ電流を低減することができる。
 薄膜トランジスタ部100aにおける一対のソース電極120a及びドレイン電極120bのそれぞれは、半導体膜113aのチャネル領域の上方において、チャネル保護層115aの両端部上及びチャネル保護層115aの両側における一対のコンタクト層116a及び116b上にそれぞれ形成される。また、一対のソース電極120a及びドレイン電極120bは、所定の間隔をあけて対向配置される。
 ソース電極120aは、一方のコンタクト層116aを介して、チャネル保護層115aの一方の端部(一端部)及び真性半導体層114aに跨るようにして形成されている。また、ドレイン電極120bは、他方のコンタクト層116bを介して、チャネル保護層115aの他方の端部(他端部)及び真性半導体層114aに跨るようにして形成されている。
 また、薄膜トランジスタ部100bにおける一対のソース電極120c及びドレイン電極120dのそれぞれは、半導体膜113bのチャネル領域の上方において、チャネル保護層115bの両端部上及びチャネル保護層115bの両側における一対のコンタクト層117b及び117c上にそれぞれ形成される。また、一対のソース電極120c及びドレイン電極120dは、所定の間隔をあけて対向配置される。
 ソース電極120cは、一方のコンタクト層117bを介して、チャネル保護層115bの一方の端部(一端部)、真性半導体層114b、半導体膜113b及びゲート絶縁膜112に跨るようにして形成されている。また、ドレイン電極120dは、他方のコンタクト層117cを介して、チャネル保護層115bの他方の端部(他端部)、真性半導体層114b、半導体膜113b及びゲート絶縁膜112に跨るようにして形成されている。また、ドレイン電極120bとソース電極120cは一体に形成されている。なお、ドレイン電極120bとソース電極120cとは、一体に形成されていなくても、電気的に接続された構成であればよい。
 本実施の形態において、ソース電極120a及び120c、ドレイン電極120b及び120dは、導電性材料及びその合金等の単層構造又は多層構造とすることができ、例えば、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)、銅(Cu)、チタン(Ti)及びクロム(Cr)等によって構成される。本実施の形態では、ソース電極120a及び120c、ドレイン電極120b及び120dは、MoW/Al/MoWの三層構造によって形成されている。ソース電極120a及び120c、ドレイン電極120b及び120dの膜厚は、例えば、100nm~500nm程度とすることができる。
 (薄膜半導体装置の製造方法)
 次に、本発明の実施の形態に係る薄膜半導体装置100の製造方法について、図2~図10を用いて説明する。図2~図10は、本発明の実施の形態に係る薄膜半導体装置の製造方法の一工程を示す概略図である。各図における(a)は上面図、(b)は(a)のA-A’線における断面図である。
 まず、図2に示すように、基板110としてガラス基板を準備する(第1工程)。なお、ゲート電極111a及び111bを形成する前に、プラズマCVD等によって基板110上にシリコン窒化膜、シリコン酸化膜、及びシリコン酸窒化膜などからなるアンダーコート層を形成してもよい。
 次に、基板110上に所定形状のゲート電極111a及び111bを形成する。例えば、基板110上にMoWからなるゲート金属膜をスパッタによって成膜し、フォトリソグラフィ法及びウェットエッチング法を用いてゲート金属膜をパターニングすることにより、所定形状のゲート電極111a及び111bを形成する(第2工程)。MoWのウェットエッチングは、例えば、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)及び水を所定の配合で混合した薬液を用いて行う。
 次に、ゲート電極111a及び111bが形成された基板110を覆ってゲート絶縁膜112を形成する(第3工程)。例えば、ゲート電極111a及び111bを覆うようにして酸化シリコンからなるゲート絶縁膜112をプラズマCVD等によって成膜する。酸化シリコンは、例えば、シランガス(SiH)と亜酸化窒素ガス(NO)とを所定の濃度比で導入することで成膜する。
 次に、ゲート絶縁膜112上に、チャネル領域を有する半導体層を構成する結晶シリコン薄膜113を形成する(第4工程)。例えば、アモルファスシリコン(非晶質シリコン)からなる非結晶シリコン薄膜をプラズマCVD等によって成膜し、脱水素アニール処理を行った後に、非結晶シリコン薄膜をアニールして結晶化させることにより結晶シリコン薄膜113を形成する。なお、非結晶シリコン薄膜は、例えば、シランガス(SiH)と水素ガス(H)とを所定の濃度比で導入することで成膜する。
 なお、本実施の形態では、エキシマレーザを用いたレーザアニールによって非結晶シリコン薄膜を結晶化させたが、結晶化の方法としては、波長370~900nm程度のパルスレーザを用いたレーザアニール法、波長370~900nm程度の連続発振レーザを用いたレーザアニール法、又は急速熱処理(RTP)によるアニール法を用いても構わない。また、非結晶シリコン薄膜を結晶化するのではなく、CVD(Chemical Vapor Deposition)法による直接成長などの方法によって結晶シリコン薄膜113を成膜してもよい。なお、レーザアニールにより形成する場合には局所的に1000℃程度、結晶シリコン薄膜113をCVD法で形成する場合には基板全体に350℃程度の熱が加えられる。
 その後、結晶シリコン薄膜113に対して水素プラズマ処理を行うことにより、結晶シリコン薄膜113のシリコン原子に対して水素化処理を行う。水素プラズマ処理は、例えばH、H/アルゴン(Ar)等の水素ガスを含むガスを原料として高周波(RF)電力により水素プラズマを発生させて、当該水素プラズマを結晶シリコン薄膜113に照射することにより行われる。この水素プラズマ処理によって、シリコン原子のダングリングボンド(欠陥)が水素終端され、結晶シリコン薄膜113の結晶欠陥密度が低減して結晶性が向上する。
 次に、図3に示すように、結晶シリコン薄膜113のチャネル領域上に、本発明の真性半導体層である真性半導体層114a及び114bを構成するアモルファスシリコン膜114を形成する(第10工程)。また、この工程では、結晶シリコン薄膜113、アモルファスシリコン膜114のコンダクションバンドの下端のエネルギー準位がECP<EC1の関係を満たすように、アモルファスシリコン膜114を形成する。
 本実施の形態において、結晶シリコン薄膜113とアモルファスシリコン膜114とは同一の真空装置内で連続して成膜している。すなわち、結晶シリコン薄膜113とアモルファスシリコン膜114とは、真空を破らずに成膜される。例えば、結晶シリコン薄膜113を形成した後に、プラズマCVD等を用いて、所定の成膜条件によって結晶シリコン薄膜113上にアモルファスシリコン膜を成膜することで、結晶シリコン薄膜113とアモルファスシリコン膜114とを連続成膜することができる。成膜条件としては、例えば、結晶シリコン薄膜113を形成するときのアモルファスシリコン膜の成膜条件よりもRFパワー密度を大きくしたり成膜レートを遅くしたりした条件とすることができる。
 具体的には、平行平板型RFプラズマCVD装置を用いて、シランガス(SiH)と水素ガス(H)とを所定の濃度比で導入し、シランガスの流量を5~15sccmとし、水素ガスの流量を40~75sccmとし、圧力を1~3Torrとし、RF電力を0.1~0.4kw/cm-2とし、電極基板間距離を200~600mmとして、アモルファスシリコン膜114を成膜することができる。本実施の形態では、シランガスの流量を10sccmとし、水素ガスの流量を60sccmとし、圧力を1.5Torrとし、RF電力を0.25kw/cm-2とし、電極基板間距離を300mmとして成膜する。
 このような成膜条件によって、アモルファスシリコン膜114を結晶シリコン薄膜113と接するように成膜することで、結晶シリコン薄膜113の表面付近に成膜されるアモルファスシリコン膜は、結晶シリコン薄膜113の結晶性を引き継ぐことになって自然と結晶化される。また、アモルファスシリコン膜114は、成膜が進んで結晶シリコン薄膜113から遠ざかるに従って膜中の結晶化率が小さくなり、結晶化率がゼロとなった後は、結晶化率がゼロであるアモルファス成分のみを有する構成となる。つまり、結晶シリコン薄膜113の表面付近に成膜されるアモルファスシリコン膜は、結晶シリコン薄膜113が下地層となって結晶化が進むため、アモルファスシリコン膜114の表面付近に比べて結晶化率が大きくなるように形成される。
 あるいは、アモルファスシリコン膜の成膜中に積極的に成膜条件を切り替えることによっても、結晶シリコン薄膜113の表面付近から遠ざかるにつれて結晶化率の異なるアモルファスシリコン膜114を成膜することもできる。例えば、シランガス(SiH)及び水素ガス(H)の原料ガスの濃度比や流量を変更したり、真空装置内の圧力を変更したりすることで、結晶シリコン薄膜113の表面付近から遠ざかるにつれて結晶化率の異なるアモルファスシリコン膜114を成膜することができる。
 これにより、ECP<EC1の関係を満たすアモルファスシリコン膜114を形成することができる。なお、アモルファスシリコン膜114は、上記したように1層でなくても、複数のアモルファスシリコン膜を積層した積層膜であってもよい。例えば、結晶化率の異なる2層(第1の真性半導体膜と第2の真性半導体膜)のアモルファスシリコンからなる単一膜として考えることもできる。また、プレカーサーとなるアモルファスシリコン膜を形成した後、一度大気に出してレーザ処理をした後、再び真空装置内でCVDによりアモルファスシリコン膜を成膜してもよい。
 次に、アモルファスシリコン膜114上に、所定形状のチャネル保護層115a及び115bを形成する(第5工程)。まず、所定の塗布方式によってチャネル保護層115a及び115bを形成するための所定の有機材料をアモルファスシリコン膜114上に塗布し、スピンコートやスリットコートを行うことによってアモルファスシリコン膜114上の全面にチャネル保護層形成用膜115を成膜する。材料の膜厚は、材料の粘度やコーティング条件(回転数、ブレードの速度など)で制御することができる。なお、チャネル保護層形成用膜115の材料としては、シリコン、酸素及びカーボンを含む感光性塗布型の材料を用いることができる。その後、チャネル保護層形成用膜115に対して約110℃の温度で約60秒間のプリベークを行ってチャネル保護層形成用膜115を仮焼成する。これにより、チャネル保護層形成用膜115に含まれる溶剤が気化する。
 その後、図4に示すように、ゲート電極111a及び111bをマスクとして裏面露光を行い、現像を行うことによってチャネル保護層形成用膜115をパターニングし、所定形状のチャネル保護層115a及び115bを形成する。その後、パターン形成されたチャネル保護層115a及び115bに対して280℃~300℃の温度で約1時間のポストベークを行ってチャネル保護層115a及び115bを本焼成して固化する。これにより、チャネル保護層115a及び115b中の成分の一部が気化及び分解して膜質が改善されたチャネル保護層115a及び115bを形成することができる。
 次に、図1に示した薄膜トランジスタ部100aを構成するコンタクト層116a及び116bとなるコンタクト層用膜116を形成する(第6工程)。図5に示すように、チャネル保護層115a及び115bを覆うようにして、コンタクト層用膜116を形成する。例えば、プラズマCVDによって、リン等の5価元素の不純物をドープしたアモルファスシリコンからなるコンタクト層用膜116を成膜する。
 なお、コンタクト層用膜116は下層の低濃度の電界緩和層と上層の高濃度のコンタクト層との2層から構成されてもよい。低濃度の電界緩和層は1×1017[atm/cm]程度のリンをドーピングすることによって形成することができる。上記2層は、例えばCVD装置において連続的に形成することが可能である。
 次に、図6に示すように、結晶シリコン薄膜113及びアモルファスシリコン膜114がチャネル保護層115aおよびコンタクト層用膜116の直下と、チャネル保護層115bの直下とに残るように、結晶シリコン薄膜113及びアモルファスシリコン膜114をドライエッチングにより掘り込む(第7工程)。これにより、薄膜トランジスタ部100aを構成する半導体膜113a及び真性半導体層114aと、薄膜トランジスタ部100bを構成する半導体膜113b及び真性半導体層114bとが分離して形成される。
 なお、図5はコンタクト層用膜116をエッチングした後の形状を示しているが、図5に示す第6工程と図6に示す第7工程は、真空の状態のままで連続して実施してもよい。
 ここで、結晶シリコン薄膜113及びアモルファスシリコン膜114を掘り込む深さ、又は、エッチングの終了タイミングは、EPM(End Point Monitor)を利用することにより検知する。詳細には、当該エッチング時に現れる結晶シリコン薄膜113とゲート絶縁膜112との界面の状況をモニタする。つまり、酸化膜であるゲート絶縁膜112を、エッチング工程で検知する。
 ドライエッチングを行うためのエッチング装置では、真空槽内にハロゲン元素を含むエッチングガスが供給され、対向電極間に交流電圧が印加されることにより、真空槽内にプラズマ放電が発生する。この真空槽内に薄膜半導体装置100の仕掛品を配置することにより、感光性レジストで覆われていない部分の結晶シリコン薄膜113及びアモルファスシリコン膜114が、活性化されたハロゲン元素(ラジカル)によりエッチングされる。ここで、活性化されたハロゲン元素は、非晶質シリコンに対するエッチングレートが高く、シリコン酸化膜に対するエッチングレートが低いという特性を有する。従って、真空槽内の真空度が一定に保たれている場合、非晶質シリコンがエッチングされている期間には、上記ラジカルは非晶質シリコンと重合物を形成する頻度が高いため、真空槽内でのラジカルとしての存在量は低くなる。よって、上記ラジカルの真空槽内での存在量をモニタすることにより、非晶質シリコンで構成されたアモルファスシリコン膜114および結晶シリコン薄膜113からシリコン酸化膜で構成されたゲート絶縁膜112へのエッチング状態の遷移を把握することが可能となる。
 本発明の薄膜半導体装置100の製造方法では、上記ラジカルの真空槽内での存在量を、エッチングガス中のラジカルの発光スペクトルから抽出される特定波長の発光強度として検出している。具体的には、波長フィルタを介すことにより、特定波長の発光をホトディテクタにより検出させている。ホトディテクタは、例えば、CCDセンサであり、上述したラジカルの発光強度を電圧信号として演算器に出力する。
 このように、EPMを利用することにより、当該エッチング時に現れる結晶シリコン薄膜113とゲート絶縁膜112との界面の状況をモニタすることができるので、ゲート絶縁膜112の残存量を検知することができる。これにより、結晶シリコン薄膜113及びアモルファスシリコン膜114を掘り込む深さ、又は、エッチングの終了タイミングを検知して、結晶シリコン薄膜113及びアモルファスシリコン膜114を所望の深さ(例えば、ゲート絶縁膜112と結晶シリコン薄膜113との境界の深さ)まで掘り込むことができる。
 なお、EPMを使用せず、アモルファスシリコン膜とシリコン酸化膜の選択比が高い、つまり、アモルファスシリコン膜に対するエッチングレートが高くシリコン酸化膜に対するエッチングレートが低いCl系のガスにより、結晶シリコン薄膜113及びアモルファスシリコン膜114をエッチングしてもよい。この場合、エッチング時間を管理することによって、本発明の構成を実現することができる。Cl系のガスはエッチングでの選択比が大きいため、本発明に適している。
 次に、図1に示した薄膜トランジスタ部100bのコンタクト層117b及び117cを構成するためのコンタクト層用膜117を形成する(第8工程)。図7に示すように、半導体膜113a及び113b、真性半導体層114a及び114b、チャネル保護層115b及びコンタクト層用膜116を覆うようにして、ゲート絶縁膜112上にコンタクト層用膜117を形成する。例えば、プラズマCVDによって、ボロン等の3価元素の不純物をドープしたアモルファスシリコンからなるコンタクト層用膜117を成膜する。
 なお、コンタクト層用膜117は下層の低濃度の電界緩和層と上層の高濃度のコンタクト層との2層から構成されてもよい。低濃度の電界緩和層は1×1017[atm/cm]程度のボロンをドーピングすることによって形成することができる。上記2層は、例えばCVD装置において連続的に形成することが可能である。
 次に、図8に示すように、コンタクト層用膜117を所定の形状にエッチングしたコンタクト層117aを形成する。また、薄膜トランジスタ部100a上のコンタクト層用膜117を除去し、薄膜トランジスタ部100aと100bとが分離するようにゲート絶縁膜112上のコンタクト層用膜117をドライエッチングにより掘り込む。この場合も、上記したEPMを用いることにより、コンタクト層用膜117の掘り込み量、又は、エッチングの終了タイミングを検知して、コンタクト層用膜117を所望の深さまで掘り込むことができる。
 詳細には、当該エッチング時に現れるコンタクト層用膜117とゲート絶縁膜112との界面の状況をモニタする。つまり、酸化膜であるゲート絶縁膜112を、エッチング工程で検知する。
 ドライエッチングを行うためのエッチング装置では、真空槽内にハロゲン元素を含むエッチングガスが供給され、対向電極間に交流電圧が印加されることにより、真空槽内にプラズマ放電が発生する。この真空槽内に薄膜半導体装置100の仕掛品を配置することにより、感光性レジストで覆われていない部分のコンタクト層用膜117が、活性化されたハロゲン元素(ラジカル)によりエッチングされる。ここで、活性化されたハロゲン元素は、非晶質シリコンに対するエッチングレートが高く、シリコン酸化膜に対するエッチングレートが低いという特性を有する。従って、真空槽内の真空度が一定に保たれている場合、非晶質シリコンがエッチングされている期間には、上記ラジカルは非晶質シリコンと重合物を形成する頻度が高いため、真空槽内でのラジカルとしての存在量は低くなる。よって、上記ラジカルの真空槽内での存在量をモニタすることにより、非晶質シリコンで構成されたコンタクト層用膜117からシリコン酸化膜で構成されたゲート絶縁膜112へのエッチング状態の遷移を把握することが可能となる。
 本発明の薄膜半導体装置100の製造方法では、上記ラジカルの真空槽内での存在量を、エッチングガス中のラジカルの発光スペクトルから抽出される特定波長の発光強度として検出している。具体的には、波長フィルタを介すことにより、特定波長の発光をホトディテクタにより検出させている。ホトディテクタは、例えば、CCDセンサであり、上述したラジカルの発光強度を電圧信号として演算器に出力する。
 このように、EPMを利用することにより、当該エッチング時に現れるコンタクト層用膜117とゲート絶縁膜112との界面の状況をモニタすることができるので、ゲート絶縁膜112の残存量を検知することができる。これにより、コンタクト層用膜117を掘り込む深さ、又は、エッチングの終了タイミングを検知して、コンタクト層用膜117を所望の深さ(例えば、ゲート絶縁膜112とコンタクト層用膜117との境界の深さ)まで掘り込み、コンタクト層117aを形成することができる。
 また、コンタクト層用膜117のエッチングマージンを確保するために、コンタクト層用膜116を十分厚く形成しておいてもよい。例えば、コンタクト層用膜116を80nm程度の厚さに形成してもよい。なお、TFTの性能は、コンタクト層用膜116を80nm程度厚くしても劣化しない。
 次に、図9に示すように、コンタクト層用膜116上に、ソース電極120a及びドレイン電極120bをパターン形成する。また、コンタクト層117a上に、ソース電極120c及びドレイン電極120dをパターン形成する(第9工程)。この場合、まず、ソース電極120a及び120c、ドレイン電極120b及び120dとなる材料で構成されたソースドレイン金属膜を、例えばスパッタによって成膜する。
 その後、ソースドレイン金属膜上に所定形状にパターニングされたレジストを形成し、ウェットエッチングを施すことによってソースドレイン金属膜をパターニングする。このとき、コンタクト層用膜116、コンタクト層117aがエッチングストッパとして機能する。
 その後、レジストを除去することにより、図9に示すような所定形状のソース電極120a及び120c、ドレイン電極120b及び120dを形成することができる。
 次に、ソース電極120a及び120c、ドレイン電極120b及び120dをマスクとしてドライエッチングを施すことにより、コンタクト層用膜116及びコンタクト層117aをパターニングする。これにより、図10に示すように、所定形状の一対のコンタクト層116a及び116b、一対のコンタクト層117b及び117cと、真性半導体層114a及び114b、半導体膜113a及び113bの複数の半導体膜からなる薄膜トランジスタ部100a及び100bを形成することができる。なお、ドライエッチングには、上記したようにCl系のガスを用いてもよい。Cl系のガスはエッチングでの選択比が大きいため、本発明に適している。
 このようにして、本発明の実施の形態に係る薄膜半導体装置100を製造することができる。以上の工程により、薄膜トランジスタ部100aは、n型の導電型を有する半導体トランジスタであり、ソース電極120a及びドレイン電極120bが、半導体層を構成する真性半導体層114aの上面で接する構成となる。また、薄膜トランジスタ部100bは、p型の導電型を有する半導体トランジスタであり、ソース電極120c及びドレイン電極120dが、半導体層を構成する半導体膜113b及び真性半導体層114bの側面で接する構成となる。
 なお、この構成によれば、低コストプロセスでCMOSの構成を実現できる。
 図11は、薄膜半導体装置100の動作を示す図である。同図は、薄膜半導体装置100のドレイン-ソース間に、電圧Vds=-4.1V、-0.1V、0.1V、4.1Vを印加したときのドレイン電流を示している。図11に示すように、Vdsが閾値を超えるとドレイン電流が増加又は減少していることから、CMOSトランジスタとして有効に機能していることが分かる。
 このように、本実施の形態に係る薄膜半導体装置100は、CMOSトランジスタとして有効に機能することが確認できた。
 以上、本実施の形態に係る薄膜半導体装置100によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。また、薄膜トランジスタ部100bにおいて、チャネル保護層115bの上面、側面及び半導体層113bの側面の一部にコンタクト層を形成することにより、ドレイン電流が大きいときにコンタクト層117b及び117cが電界緩和層の役割を果たすため、ソース-ドレイン間のオフ電流を低減し薄膜半導体装置100の信頼性の向上を図ることができる。また、半導体層113bとコンタクト層117b及び117cとを直接接触できるため、半導体層113bとコンタクト層117b及び117cとが直接接触するコンタクト部分は主に電流の引き込み口として有効である。したがって、TFTの性能を向上した薄膜半導体装置100を提供することができる。
 また、半導体膜113bとチャネル保護層115bとの間に、バックチャネル層として、真性半導体層114bを設けることにより、真性半導体層114bの局在準位密度(トラップ密度)における負キャリアの電荷密度によってチャネル保護層115bの正の固定電荷を相殺して電界遮蔽を行うことができる。これにより、バックチャネルの形成を抑制することができ、オフ時のリーク電流を抑制することができるので、オフ特性を向上させることができる。また、ドレイン電流が急激に増加する現象であるキンク現象の発生を抑制することができる。
 ここで、半導体膜113bとチャネル保護層115bとの間に、バックチャネル層として真性半導体層114bを設けた構成では、特にp型のトランジスタにおいて、半導体膜113bと真性半導体層114bとのバンドギャップの違いが大きいときに、半導体膜113bとコンタクト層117b及び117cとの間に電流が流れにくいという問題が生じ得る。
 しかし、上記した薄膜半導体装置100の薄膜トランジスタ部100bのように、半導体膜113bの側面の一部にコンタクト層117b及び117cを形成することにより、半導体膜113bとコンタクト層117b及び117cとを直接接触できるため、この問題を解消することができる。
 また、n型のTFTとp型のTFTそれぞれの特性に合わせた最適の構造を有するCMOSトランジスタを形成することができる。
 また、製造工程において、コンタクト部分に逆極性膜が一度も曝されることがないので、n型半導体及びp型半導体を構成するドーパントが逆極性膜に相互に移動することがなく、性能の高いTFTを形成することができる。
 また、低温ポリシリコン(LTPS)によるCMOS構成の製造方法と比較して、不純物を注入する工程なくp型とn型のTFTを作り分けることができるので、従来LTPSでは難しかった大判化に対応することができる。また、不純物を注入するためのマスク数を減少することができる。したがって、CMOS構成を製造するためのコストを低減することができる。
 なお、本実施の形態に係る製造方法において、結晶シリコン薄膜113とアモルファスシリコン膜114とは、同一の真空装置内で連続成膜することによって形成したが、結晶シリコン薄膜113とアモルファスシリコン膜114とを別々の工程において異なる成膜条件によって、別々に成膜しても構わない。これにより、結晶シリコン薄膜113及びアモルファスシリコン膜114の素子間のばらつきを抑制することができ、大型パネルに適した薄膜半導体装置を実現することができる。
 また、本実施の形態に係る製造方法において、結晶シリコン薄膜113、アモルファスシリコン膜114は、同一工程で同時にエッチングすることによってパターン形成したが、結晶シリコン薄膜113のパターニングと、アモルファスシリコン膜114のパターニングとを別々の工程で行っても構わない。この場合、アモルファスシリコン膜114は、結晶シリコン薄膜113と同じ形状であってもよいし異なる形状であっても構わないアモルファスシリコン膜114は、少なくともチャネル領域上に形成されていればよい。
 (実施の形態1の変形例)
 次に、本発明の一態様に係る実施の形態1の変形例について説明する。本変形例に係る薄膜半導体装置が、実施の形態1に係る薄膜半導体装置と異なる点は、薄膜半導体装置が半導体層の上に真性半導体層を備えていない点である。例えば、薄膜半導体装置のチャネル保護層が無機材料により形成されている場合には、バックチャネルの影響が少ないため、アモルファスシリコン膜の形成を省略することができる。
 図12は、本変形例に係る薄膜半導体装置150の構成を示す概略図である。同図における(a)は上面図、(b)は(a)のB-B’線における断面図である。なお、図12において、図1に示す構成要素と同じ構成要素には、同じ符号を付している。
 図12に示すように、薄膜半導体装置150は、相互に逆極性の2つの薄膜トランジスタ部150a及び150bを有する薄膜半導体装置であって、薄膜トランジスタ部150a及び150bは、基板110と、基板110の上に形成されたゲート電極111a及びゲート電極111bと、基板110、ゲート電極111a及び111bの上に形成されたゲート絶縁膜112の上に形成され、相補型薄膜半導体(CMOS)装置を構成している。
 2つの薄膜トランジスタ部の一方である薄膜トランジスタ部150aは、n型の導電型を有するトランジスタ部であり、ゲート電極111aの上方に形成され、チャネル領域を有する半導体層213aと、半導体層213aの上方の一部に接して形成された第1導電型であるn型の導電型を有するコンタクト層116a及び116bと、コンタクト層116a上に形成されたソース電極120aと、コンタクト層116b上にソース電極120aと対向して形成されたドレイン電極120bとを備える。また、半導体層213aの上方には、チャネル保護層115aが形成されている。半導体層213aは、結晶シリコン薄膜で構成される。ここで、ソース電極120a、ドレイン電極120bはそれぞれ本発明における第1のソース電極、第1のドレイン電極に相当する。また、コンタクト層116a及び116bは、本発明における第1のコンタクト層に相当する。
 2つの薄膜トランジスタ部の他方である薄膜トランジスタ部150bは、p型の導電型を有するトランジスタ部であり、ゲート電極111bの上方に形成され、チャネル領域を有する半導体層213bと、半導体層213bの側面の一部に接して形成された、第1導電型と逆極性の第2導電型であるp型の導電型を有するコンタクト層117b及び117cと、コンタクト層117b上に形成されたソース電極120cと、コンタクト層117c上にソース電極120cと対向して形成されたドレイン電極120dとを備える。また、半導体層の上方には、チャネル保護層115bが形成されている。半導体層213bは、結晶シリコン薄膜で構成される。ここで、ソース電極120c、ドレイン電極120dはそれぞれ本発明における第2のソース電極、第2のドレイン電極に相当する。また、コンタクト層117b及び117cは、本発明における第2のコンタクト層に相当する。
 また、薄膜半導体装置150の製造方法は、実施の形態1に示した薄膜半導体装置100の製造方法とほぼ同様である。薄膜半導体装置100の製造方法において、真性半導体層114a及び114bを形成する工程を省略することにより、薄膜半導体装置150を形成することができる。
 この構成によれば、p型のTFTにおいてp型のコンタクト層とn型のコンタクト層とが積層されていないので、ソース-ドレイン間の電流特性を向上することができる。また、薄膜トランジスタ部150bにおいて、チャネル保護層115bの上面、側面及び半導体層213bの側面の一部にコンタクト層117b及び117cを形成することによりドレイン電流が大きいときにコンタクト層117b及び117cが電界緩和層の役割を果たすため、ソース-ドレイン間のオフ電流を低減し薄膜半導体装置150の信頼性の向上を図ることができる。また、半導体層213bとコンタクト層117b及び117cとを直接接触できるため、半導体層213bとコンタクト層117b及び117cとが直接接触するコンタクト部分は主に電流の引き込み口として有効である。これにより、薄膜トランジスタ部150bにおいて、ソース-ドレイン間の電流特性をより向上することができる。
 また、n型のTFTとp型のTFTそれぞれの特性に合わせた最適の構造を有するCMOSトランジスタを形成することができる。
 また、低温ポリシリコン(LTPS)によるCMOS構成の製造方法と比較して、不純物を注入する工程なくp型とn型のTFTを作り分けることができるので従来LTPSでは難しかった大判化に対応することができる。また、不純物を注入するためのマスク数を減少することができる。したがって、CMOS構成を製造するためのコストを低減することができる。
 (実施の形態2)
 次に、本発明の一態様に係る実施の形態2について説明する。本実施の形態に係る薄膜半導体装置が実施の形態1に係る薄膜半導体装置と異なる点は、実施の形態1に係る薄膜半導体装置の真性半導体層が複数の真性半導体膜で構成されている点である。本実施の形態では、真性半導体層が第1の真性半導体膜及び第2の真性半導体膜で構成されている薄膜半導体装置を例として説明する。
 図13は、本実施の形態に係る薄膜半導体装置の構成を示す概略図である。同図における(a)は上面図、(b)は(a)のC-C’線における断面図である。なお、図13において、図1に示す構成要素と同じ構成要素には、同じ符号を付している。
 図13に示すように、薄膜半導体装置200は、薄膜トランジスタ部200a及び200bにおいて、半導体膜113a及び113bの上に、真性半導体層として第1の真性半導体膜214a及び214bと第2の真性半導体膜215a及び215bとを備えている。
 第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bは、いずれもアモルファスシリコン膜(真性アモルファスシリコン)であり、詳細には、意図的に不純物のドーピングが行われていないアモルファスシリコン膜である。
 第1の真性半導体膜214a及び214bは、半導体膜113a及び113bの上面と接するようにして半導体膜113a及び113b上に形成されている。また、第2の真性半導体膜215a及び215bは、第1の真性半導体膜214a及び214bと連続して第1の真性半導体膜214a及び214b上に形成されている。第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bの膜厚はいずれも20nm程度とすることができる。なお、第1の真性半導体膜214a及び214bの膜厚の好適な範囲は、10nm~100nmであり、第2の真性半導体膜215a及び215bの膜厚の好適な範囲は、10nm~40nmである。
 ここで、半導体膜113a及び113b、第1の真性半導体膜214a及び214bのコンダクションバンド(伝導帯)の下端のエネルギー準位をそれぞれ、ECP、EC1とすると、半導体膜113a及び113b、第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bは、ECP<EC1の関係を満たすように構成されている。
 また、本実施の形態において、第1の真性半導体膜214a及び214bと第2の真性半導体膜215a及び215bとは、電子親和力が異なるように構成されている。この場合、第1の真性半導体膜214a及び214bの電子親和力が第2の真性半導体膜215a及び215bの電子親和力よりも大きくなるように構成することが好ましい。なお、真性半導体膜における電子親和力とは、真空準位とコンダクションバンドの下端のエネルギー準位との差である。つまり、電子親和力によって、真性半導体膜におけるコンダクションバンドの下端のエネルギー準位を調整することができる。
 また、本実施の形態において、第1の真性半導体膜214a及び214bと第2の真性半導体膜215a及び215bとは、結晶化率が異なるように構成されている。この場合、第1の真性半導体膜214a及び214bの結晶化率が、第2の真性半導体膜215a及び215bの結晶化率よりも大きくなるように構成することが好ましい。結晶化率をこのようにすることで、容易にECP<EC1とすることができる。
 本実施の形態における第1の真性半導体膜214a及び214bは、結晶粒径が5nm以上100nm以下である結晶シリコン粒を含む。また、第1の真性半導体膜214a及び214bの厚み方向の結晶化率は半導体膜113a及び113bに近づくに従って漸次高くなっている。本実施の形態では、第1の真性半導体膜214a及び214bの結晶シリコン粒の結晶粒径が、半導体膜113a及び113bに近づくに従って徐々に大きくなっている。一方、本実施の形態における第2の真性半導体膜215a及び215bは結晶化されておらず、結晶化率はゼロである。
 本実施の形態において、第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bは、いずれも意図的に不純物のドーピングを行っていないアモルファスシリコン膜(真性アモルファスシリコン)によって形成されている。例えば、製造後のTFTにおいて、第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bがいずれもアモルファスシリコン膜(非結晶シリコン膜)のままであって、かつ、各真性半導体膜におけるコンダクションバンドの下端のエネルギー準位が異なるように構成することができる。あるいは、第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bの一方はアモルファスシリコン膜であり他方は結晶性シリコンを含む結晶シリコン薄膜であり、かつ、各半導体膜におけるコンダクションバンドの下端のエネルギー準位が異なるように構成することもできる。なお、一般的に、アモルファスシリコン膜の組織は、非結晶のアモルファス成分のみによって構成されているが、本実施の形態におけるアモルファスシリコン膜は、非結晶のアモルファス成分のみによって構成されていてもよいし、微結晶の結晶成分が含まれるものであってもよい。
 また、第1の真性半導体膜214a及び214bは、半導体膜113a及び113bと第2の真性半導体膜215a及び215bとの間のコンダクションバンドの下端のエネルギー準位を調整するためのコンダクションバンド調整層として機能する。第1の真性半導体膜214a及び214bのコンダクションバンドの下端のエネルギー準位EC1を所望に調整することによって、ドレイン電流が急激に増加する現象であるキンク現象の発生を抑制することができる。従って、TFTの性能を向上した薄膜半導体装置を実現することができる。
 また、本実施の形態に係る薄膜半導体装置200では、チャネル保護層115a及び115bの直下に形成される第2の真性半導体膜215a及び215bが、バンドギャップが比較的に大きいアモルファスシリコン膜によって構成されている。これにより、チャネル保護層115a及び115bに含まれる正の固定電荷によるバックチャネルの形成を抑制してオフ特性を向上させることができる。特に、本実施の形態では、チャネル保護層115a及び115bが有機材料によって構成され、より多くの固定電荷がチャネル保護層115a及び115bに含まれているので、第2の真性半導体膜215a及び215bは、アモルファスシリコン膜によって構成することが好ましい。
 なお、本実施の形態において、第1の真性半導体膜214a及び214b等の半導体膜のコンダクションバンドの下端のエネルギー準位は、電子親和力又はバンドギャップを変更することによって調整することができる。そして、本実施の形態では、第1の真性半導体膜214a及び214bにおけるコンダクションバンドの下端のエネルギー準位EC1を調整することで、各半導体膜のエネルギー準位ECPが、ECP<EC1の関係を満たすように構成している。
 例えば、シリコンを主成分とする第1の真性半導体膜214a及び214bと第2の真性半導体膜215a及び215bとのバンドギャップを異ならせるように構成することで、第1の真性半導体膜214a及び214bと、第2の真性半導体膜215a及び215bとにおけるコンダクションバンドの下端のエネルギー準位を調整することができる。この場合、第1の真性半導体膜214a及び214bのバンドギャップが、第2の真性半導体膜215a及び215bのバンドギャップよりも、半導体膜113a及び113bのバンドギャップに近くなるように構成することが好ましい。この構成により、半導体膜113a及び113bと第1の真性半導体膜214a及び214bとの接合部分において、コンダクションバンドの下端のエネルギー準位を連続的にして、当該接合部分にスパイク(エネルギー準位に大きな差が発生した不連続な部分)が発生することを抑制することができる。よってキンク現象の発生を抑制することができる。
 また、第1の真性半導体膜214a及び214bにおけるコンダクションバンドの下端のエネルギー準位EC1は、上述のとおり、シリコンを主成分とする第1の真性半導体膜214a及び214b等の半導体膜の結晶化率を変更することによっても調整することができる。本実施の形態において、アモルファスシリコン膜からなる第1の真性半導体膜214a及び214bの結晶化率は、アモルファスシリコン膜からなる第2の真性半導体膜215a及び215bの結晶化率よりも大きくなるように構成している。この構成により、半導体膜113a及び113bと第1の真性半導体膜214a及び214bとの接合部分において、コンダクションバンドの下端のエネルギー準位を連続的にして、当該接合部分にスパイクが発生することを抑制することができる。よってキンク現象の発生を抑制することができる。
 図14は、本発明の実施の形態に係る薄膜半導体装置200の薄膜トランジスタ部200aの断面を明視野によって観察したときのTEM像である。なお、図14における第1の真性半導体膜214a、第2の真性半導体膜215aの成膜条件は、後述する条件にて行った。
 図14に示すように、本実施の形態に係る薄膜半導体装置200における半導体層は、膜厚が29nmの微結晶構造の半導体膜113aと、膜厚が28nmのアモルファスシリコン膜からなる第1の真性半導体膜214aと、膜厚が16nmのアモルファスシリコン膜からなる第2の真性半導体膜215aとからなることが分かる。
 また、図14において、各半導体膜の結晶化率は、第2の真性半導体膜215a、第1の真性半導体膜214a、半導体膜113aの順で大きくなっており、特に、第1の真性半導体膜214aにおいては、半導体膜113aに近づくに従って漸次結晶化率が大きくなっていることが分かる。
 次に、本実施の形態に係る薄膜半導体装置200の製造方法について説明する。薄膜半導体装置200の製造方法は、真性半導体層を構成する第1の真性半導体膜214a及び214bと第2の真性半導体膜215a及び215bとの製造方法以外は、実施の形態1に係る薄膜半導体装置100の製造方法と同様である。したがって、以下、第1の真性半導体膜214a及び214bと第2の真性半導体膜215a及び215bとの製造方法についてのみ説明する。
 基板110上にゲート電極111a及び111bと、ゲート絶縁膜112と、結晶シリコン薄膜113とを形成した後、結晶シリコン薄膜113のチャネル領域上に、第1の真性半導体膜214a及び214bを形成するための第1のアモルファスシリコン膜214と第2の真性半導体膜215a及び215bを形成するための第2のアモルファスシリコン膜215とからなる積層膜を形成する。また、この工程では、結晶シリコン薄膜113、第1のアモルファスシリコン膜214及び第2のアモルファスシリコン膜215のコンダクションバンドの下端のエネルギー準位がECP<EC1の関係を満たすように、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを形成する。
 本実施の形態において、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とは同一の真空装置内で連続して成膜している。すなわち、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とは、真空を破らずに成膜される。例えば、結晶シリコン薄膜113を形成した後に、プラズマCVD等を用いて、所定の成膜条件によって結晶シリコン薄膜113上にアモルファスシリコン膜を成膜することで、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを連続成膜することができる。成膜条件としては、例えば、結晶シリコン薄膜113を形成するときのアモルファスシリコン膜の成膜条件よりもRFパワー密度を大きくしたり成膜レートを遅くしたりした条件とすることができる。
 具体的には、平行平板型RFプラズマCVD装置を用いて、シランガス(SiH)と水素ガス(H)とを所定の濃度比で導入し、シランガスの流量を5~15sccmとし、水素ガスの流量を40~75sccmとし、圧力を1~3Torrとし、RF電力を0.1~0.4kw/cm-2とし、電極基板間距離を200~600mmとして、第1のアモルファスシリコン膜214及び第2のアモルファスシリコン膜215の積層膜を成膜することができる。本実施の形態では、シランガスの流量を10sccmとし、水素ガスの流量を60sccmとし、圧力を1.5Torrとし、RF電力を0.25kw/cm-2とし、電極基板間距離を300mmとして成膜した。
 このような成膜条件によって、第1のアモルファスシリコン膜214を結晶シリコン薄膜113と接するように成膜することで、結晶シリコン薄膜113の表面付近に成膜される第1のアモルファスシリコン膜214は、結晶シリコン薄膜113の結晶性を引き継ぐことになって自然と結晶化される。また、第1のアモルファスシリコン膜214の上に成膜される第2のアモルファスシリコン膜215は、成膜が進んで結晶シリコン薄膜113から遠ざかるに従って膜中の結晶化率が小さくなり、結晶化率がゼロとなった後は、結晶化率がゼロであるアモルファス成分のみを有する構成となる。つまり、結晶シリコン薄膜113の表面付近に成膜されるアモルファスシリコン膜である第1のアモルファスシリコン膜214は、結晶シリコン薄膜113が下地層となって結晶化が進む。これにより、自然と下層(第1のアモルファスシリコン膜214)の結晶化率が上層(第2のアモルファスシリコン膜215)の結晶化率よりも大きくなるように形成される。
 あるいは、アモルファスシリコン膜の成膜中に積極的に成膜条件を切り替えることによっても結晶化率の異なる第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを成膜することもできる。例えば、シランガス(SiH)及び水素ガス(H)の原料ガスの濃度比や流量を変更したり、真空装置内の圧力を変更したりすることで、結晶化率の異なる第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを成膜することができる。
 これにより、ECP<EC1の関係を満たす第1のアモルファスシリコン膜214及び第2のアモルファスシリコン膜215を同時に形成することができる。なお第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とは連続成膜によって形成されるので、結晶化率の異なる2層(第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215)からなる単一膜として考えることもできる。
 また、この工程により、電子親和力が異なる第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを含む真性半導体層を形成することができる。本実施の形態では、第1のアモルファスシリコン膜214の電子親和力が第2のアモルファスシリコン膜215の電子親和力よりも大きくなるように、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを形成することができる。
 また、この工程により、バンドギャップが異なる第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを含む真性半導体層を形成することができる。本実施の形態では、第1のアモルファスシリコン膜214のバンドギャップが、第2のアモルファスシリコン膜215のバンドギャップよりも、結晶シリコン薄膜113のバンドギャップに近くなるように、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを形成することができる。
 なお、実施の形態1に示した薄膜半導体装置100と同様に、コンタクト層用膜116を形成した後、結晶シリコン薄膜113、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215をパターニングして、半導体膜113a及び113b、第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bを形成する。
 以上、本実施の形態に係る薄膜半導体装置200によれば、第1の真性半導体膜214a及び214b、第2の真性半導体膜215a及び215bにより真性半導体層が形成されるので、第1の真性半導体膜214a及び214bを形成する第1のアモルファスシリコン膜214、第2の真性半導体膜215a及び215bを形成する第2のアモルファスシリコン膜215の電子親和力、結晶化率又はバンドギャップを変更してエネルギー準位を調整することができる。これにより、ソース-ドレイン間の電流特性を向上することができるので、性能のよい薄膜半導体装置を提供することができる。
 なお、本実施の形態に係る製造方法において、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とは、同一の真空装置内で連続成膜することによって形成したが、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを別々の工程において異なる成膜条件によって、別々に成膜しても構わない。これにより、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215の素子間のばらつきを抑制することができ、大型パネルに適した薄膜半導体装置を実現することができる。
 また、本実施の形態に係る製造方法において、結晶シリコン薄膜113、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215は、同一工程で同時にエッチングすることによってパターン形成してもよいし、結晶シリコン薄膜113のパターニングと、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215のパターニングとを別々の工程で行っても構わない。この場合、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215は、結晶シリコン薄膜113と同じ形状であってもよいし異なる形状であっても構わない。第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215は、少なくともチャネル領域上に形成されていればよい。
 また、本実施の形態に係る製造方法において、コンダクションバンドの下端のエネルギー準位は、第1のアモルファスシリコン膜214及び第2のアモルファスシリコン膜215を成膜する工程において、成膜条件を調整することによって、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215における電子親和力、結晶化率又はバンドギャップを変更して調整したが、コンダクションバンドの下端のエネルギー準位の調整はこれに限らない。例えば、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215を成膜する工程において、シリコンを主成分とする第1のアモルファスシリコン膜214にカーボン等の不純物を含有させることによって、コンダクションバンドの下端のエネルギー準位を調整するように構成しても構わない。あるいは、バレンスバンドの上端のエネルギー準位を調整する場合は、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215を成膜する工程において、シリコンを主成分とする第1のアモルファスシリコン膜214にゲルマニウム等の不純物を含有させてもよい。なお、第1のアモルファスシリコン膜214にカーボンやゲルマニウム等の不純物を含有させる場合、第1のアモルファスシリコン膜214と第2のアモルファスシリコン膜215とを別々の工程で成膜することが好ましい。
 また、本実施の形態では、ドレイン電極側に蓄積する電子によってコンダクションバンドにスパイクが発生することから、コンダクションバンドの下端のエネルギー準位を調整してスパイクを抑制してもよい。また、ソース電極側に蓄積する正孔によってバレンスバンドにスパイクが発生することも考えられる。この場合、結晶シリコン薄膜113、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215の各半導体膜におけるバレンスバンドの上端のエネルギー準位を調整することによって、バレンスバンドのスパイクを抑制してもよい。
 この場合、上述のように、結晶シリコン薄膜113、第1のアモルファスシリコン膜214、第2のアモルファスシリコン膜215の各半導体膜における電子親和力、結晶化率又はバンドギャップを変更することによって、各半導体膜におけるバレンスバンドの上端のエネルギー準位を調整することができる。あるいは、シリコンを主成分とする第1のアモルファスシリコン膜214等の各半導体膜に対して、ゲルマニウム(Ge)等の不純物を含有させることによって、第1のアモルファスシリコン膜214等の半導体膜におけるバレンスバンドの上端のエネルギー準位を調整することもできる。このようにゲルマニウム等を含有させることにより、バレンスバンド側にバンドオフセット部を生じさせることができるので、第1のアモルファスシリコン膜214等の各半導体膜におけるバレンスバンドの上端のエネルギー準位を変化させることができる。
 (実施の形態3)
 次に、本発明の一態様に係る実施の形態3について説明する。本実施の形態に係る薄膜半導体装置が実施の形態1に係る薄膜半導体装置と異なる点は、実施の形態1に係る薄膜半導体装置の2つの薄膜トランジスタ部のそれぞれコンタクト層が、半導体層の上方の一部に接して形成されている点である。
 図15は、本実施の形態に係る薄膜半導体装置の構成を示す概略図である。同図における(a)は上面図、(b)は(a)のD-D’線における断面図である。なお、図15において、図1に示す構成要素と同じ構成要素には、同じ符号を付している。
 図15に示すように、薄膜半導体装置300は、相互に逆極性の2つの薄膜トランジスタ部300a及び300bを有する薄膜半導体装置であって、薄膜トランジスタ部300a及び300bは、基板310と、基板310の上に形成されたゲート電極311a及びゲート電極311bと、基板310、ゲート電極311a及び311bの上に形成されたゲート絶縁膜312の上に形成され、相補型薄膜半導体(CMOS)装置を構成している。
 2つの薄膜トランジスタ部の一方である薄膜トランジスタ部300aは、n型の導電型を有するトランジスタ部であり、ゲート電極311aの上方に形成され、チャネル領域を有する半導体層と、半導体層の上方の一部に接して形成された第1導電型であるn型の導電型を有するコンタクト層316a及び316bと、コンタクト層316a上に形成されたソース電極320aと、コンタクト層316b上にソース電極320aと対向して形成されたドレイン電極320bとを備える。また、半導体層の上方には、チャネル保護層315aが形成されている。さらに、半導体層は、半導体膜313aと、半導体膜313aとチャネル保護層315aとの間に形成された真性半導体層314aとで構成される。ここで、ソース電極320a、ドレイン電極320bはそれぞれ本発明における第1のソース電極、第1のドレイン電極に相当する。また、コンタクト層116a及び116bは、本発明における第1のコンタクト層に相当する。
 2つの薄膜トランジスタ部の他方である薄膜トランジスタ部300bは、p型の導電型を有するトランジスタ部であり、ゲート電極311bの上方に形成され、チャネル領域を有する半導体層と、半導体層の上方の一部に接して形成された、第1導電型と逆極性の第2導電型であるp型の導電型を有するコンタクト層317a及び317bと、コンタクト層317a上に形成されたソース電極320cと、コンタクト層317b上にソース電極320cと対向して形成されたドレイン電極320dとを備える。また、半導体層の上方には、チャネル保護層315bが形成されている。さらに、半導体層は、半導体膜313bと、半導体膜313bとチャネル保護層315bとの間に形成された真性半導体層314bとで構成される。ここで、ソース電極320c、ドレイン電極320dはそれぞれ本発明における第2のソース電極、第2のドレイン電極に相当する。また、コンタクト層317a及び317bは、本発明における第2のコンタクト層に相当する。
 また、薄膜半導体装置300の製造方法は、実施の形態1に示した薄膜半導体装置300の製造方法とほぼ同様である。以下、異なる点のみ説明する。
 図15に示したように、薄膜半導体装置300の製造方法において、チャネル保護層315a及び315bを覆うようにして、真性半導体層314a及び314bを構成するアモルファスシリコン膜上に、コンタクト層316a及び316bを構成するn型のコンタクト層用膜を形成する。その後、アモルファスシリコン膜をドライエッチングにより掘り込む前に、n型のコンタクト層用膜、チャネル保護層315bを覆うように、アモルファスシリコン膜上にn型のコンタクト層用膜と逆極性のp型のコンタクト層用膜を形成する。
 その後、n型のコンタクト層用膜上からp型のコンタクト層用膜を除去するとともに、結晶シリコン薄膜及びアモルファスシリコン層をドライエッチングにより掘り込む。これにより、薄膜トランジスタ部300aを構成する半導体膜313a及び真性半導体層314aと、薄膜トランジスタ部300bを構成する半導体膜313b及び真性半導体層314bとが分離して形成される。また、真性半導体層314a上には、コンタクト層316a及び316bのみが形成され、真性半導体層314b上には、コンタクト層317a及び317bのみが形成される。
 上記したEPMを利用することにより、コンタクト層用膜、結晶シリコン薄膜及びアモルファスシリコン膜を掘り込む深さ、又は、エッチングの終了タイミングを検知して厳密に制御することにより、コンタクト層用膜、結晶シリコン薄膜及びアモルファスシリコン膜を所望の深さまでエッチングすることができる。
 この構成によれば、低温ポリシリコン(LTPS)によるCMOS構成の製造方法と比較して、不純物を注入する工程なくp型とn型のTFTを作り分けることができるので、従来LTPSでは難しかった大判化に対応することができる。また、不純物を注入するためのマスク数を減少することができる。したがって、CMOS構成を製造するためのコストを低減することができる。
 次に、上記の実施の形態に係る薄膜半導体装置を表示装置に適用した例について、図16を用いて説明する。なお、本実施の形態では、有機EL表示装置への適用例について説明する。
 図16は、本発明の実施の形態に係る有機EL表示装置の一部切り欠き斜視図である。上述の薄膜半導体装置は、有機EL表示装置におけるアクティブマトリクス基板のスイッチングトランジスタ、駆動トランジスタ、又は、パネルの外部へ配置されるドライバとして用いることができる。
 図16に示すように、有機EL表示装置20は、アクティブマトリクス基板(TFTアレイ基板)21と、アクティブマトリクス基板21においてマトリクス状に複数配置された画素22と、画素22に接続され、アクティブマトリクス基板21上にアレイ状に複数配置された画素回路23と、画素22と画素回路23の上に順次積層された陽極24、有機EL層25及び陰極26(透明電極)と、各画素回路23と制御回路(不図示)とを接続する複数本のソース線27及びゲート線28とを備える。有機EL層25は、電子輸送層、発光層、正孔輸送層等の各層が積層されて構成されている。
 次に、上記有機EL表示装置20における画素22の回路構成について、図17を用いて説明する。図17は、本発明の実施の形態に係る薄膜半導体装置を用いた画素の回路構成を示す図である。
 図17に示すように、画素22は、駆動トランジスタ31と、スイッチングトランジスタ32と、有機EL素子33と、コンデンサ34とを備える。駆動トランジスタ31は、有機EL素子33を駆動するトランジスタであり、また、スイッチングトランジスタ32は、画素22を選択するためのトランジスタである。
 スイッチングトランジスタ32のソース電極32Sは、ソース線27に接続され、ゲート電極32Gは、ゲート線28に接続され、ドレイン電極32Dは、コンデンサ34及び駆動トランジスタ31のゲート電極31Gに接続されている。
 また、駆動トランジスタ31のドレイン電極31Dは、電源線35に接続され、ソース電極31Sは有機EL素子33のアノードに接続されている。
 この構成において、ゲート線28にゲート信号が入力され、スイッチングトランジスタ32をオン状態にすると、ソース線27を介して供給された信号電圧がコンデンサ34に書き込まれる。そして、コンデンサ34に書き込まれた保持電圧は、1フレーム期間を通じて保持される。この保持電圧により、駆動トランジスタ31のコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が、有機EL素子33のアノードからカソードへと流れる。これにより、有機EL素子33が発光し、所定の画像を表示することができる。
 なお、本実施の形態では、有機EL素子を用いた有機EL表示装置について説明したが、液晶表示装置等、アクティブマトリクス基板が用いられる他の表示装置、固体撮像装置、表示パネル、モバイル端末用パネルのマザー基板等にも適用することができる。特に、このように構成される表示装置については、フラットパネルディスプレイとして利用することができ、テレビジョンセット、パーソナルコンピュータ、携帯電話などのあらゆる表示パネルを有する電子機器に適用することができる。また、CMOSセンサ、CMOSセンサを利用した固体撮像装置、デジタルカメラ等の電子機器にも適用することもできる。
 以上、本発明に係る薄膜半導体装置及びその製造方法について、実施の形態に基づいて説明したが、本発明に係る薄膜半導体装置及びその製造方法は、上記の実施の形態に限定されるものではない。
 例えば、上記した実施の形態では、コンタクト層116a及び116bをn型の導電型を有するコンタクト層、コンタクト層117b及び117cをp型の導電型を有するコンタクト層としたが、コンタクト層116a及び116bをp型の導電型を有するコンタクト層、コンタクト層117b及び117cをn型の導電型を有するコンタクト層としてもよい。
 また、上記した実施の形態では、薄膜半導体装置として、n型の薄膜トランジスタとp型の薄膜トランジスタとで構成されるCMOS型のTFTについて説明したが、薄膜半導体装置は、例えば、画素回路内の選択トランジスタ又は駆動トランジスタとして使用されるCMOS型のTFTであってもよいし、画素外部に設けられたドライバ等に使用されるCMOS型のTFTであってもよい。
 また、上記した薄膜半導体装置は、CMOS型のTFTに限らず、n型のトランジスタ及びp型のトランジスタの一方が画素回路内のトランジスタとして使用され、他方がドライバ回路内のトランジスタとして使用されてもよい。
 また、上記の実施の形態では、真性半導体膜は、その結晶シリコン粒の結晶粒径が半導体膜に向かうに従って漸次大きくなるように構成されているが、真性半導体膜に含まれる結晶粒(結晶シリコン粒)の密度が半導体膜に向かって漸次大きくなるように構成しても構わない。この場合においても、真性半導体膜の厚み方向の結晶化率が半導体膜に向かって漸次高くなるように構成しても構わない。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明に係る有機薄膜トランジスタは、テレビジョンセット、パーソナルコンピュータ、携帯電話などの表示装置、デジタルカメラなどの固体撮像装置又はその他様々な電気機器に広く利用することができる。
 20 有機EL表示装置
 21 アクティブマトリクス基板
 22 画素
 23 画素回路
 24 陽極
 25 有機EL層
 26 陰極
 27 ソース線
 28 ゲート線
 31 駆動トランジスタ
 32 スイッチングトランジスタ
 33 有機EL素子
 34 コンデンサ
 35 電源線
 100、150、200、300 薄膜半導体装置
 100a、100b、150a、150b、200a、200b、300a、300b 薄膜トランジスタ部
 110、310 基板
 111a、111b、311a、311b ゲート電極
 112、312 ゲート絶縁膜
 113 結晶シリコン薄膜
 113a、113b、313a、313b 半導体膜
 114 アモルファスシリコン膜
 114a、114b 真性半導体層
 115 チャネル保護層形成用膜
 115a、115b、315a、315b チャネル保護層
 116、117 コンタクト層用膜
 116a、116b、117a、117b、117c、316a、316b、317a、317b コンタクト層
 120a、120c、320a、320c ソース電極
 120b、120d、320b、320d ドレイン電極
 213a、213b 半導体層
 214 第1のアモルファスシリコン膜
 214a、214b 第1の真性半導体膜
 215 第2のアモルファスシリコン膜
 215a、215b 第2の真性半導体膜

Claims (21)

  1.  2つの薄膜トランジスタ部を有する薄膜半導体装置の製造方法であって、
     基板を準備する工程と、
     前記基板上にゲート電極を形成する工程と、
     前記基板及び前記ゲート電極上にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜上に、前記2つのゲート電極のそれぞれと前記ゲート絶縁膜を介して対向する領域をチャネル領域とする第1の半導体層及び第2の半導体層を形成する工程と、
     前記第1の半導体層及び前記第2の半導体層の上方に、塗布法により形成される第1のチャネル保護層と第2のチャネル保護層をそれぞれ形成する工程と、
     第1導電型を有し、前記第1のチャネル保護層上及び前記第1の半導体層の上方の一部に第1のコンタクト層を形成する工程と、
     前記第1の半導体層のチャネル方向の長さと前記第1のコンタクト層のチャネル方向の長さとが同じ長さになるとともに、前記第2の半導体層のチャネル方向の長さと前記第2のチャネル保護層のチャネル方向の長さとが同じ長さになるように、前記第1の半導体層及び前記第2の半導体層をエッチングする工程と、
     前記第1導電型と異なる第2導電型を有し、前記第2のチャネル保護層上及び前記第2の半導体層の側面の一部に第2のコンタクト層を形成する工程と、
     前記第1のコンタクト層及び前記第2のコンタクト層上の一部にソース電極を形成するとともに、前記ソース電極と対向するように前記第1のコンタクト層及び前記第2のコンタクト層上の他の一部にドレイン電極を形成する工程と、を含む、
     薄膜半導体装置の製造方法。
  2.  前記第1のコンタクト層及び前記第2のコンタクト層の平均結晶粒径は、前記チャネル領域の平均結晶粒径よりも小さい、
     請求項1に記載の薄膜半導体装置の製造方法。
  3.  前記第1の半導体層と前記第2の半導体層は、それぞれ、半導体膜と、前記半導体膜の上方に形成された非結晶質の真性半導体層とを備え、
     前記第1導電型はn型であり、前記第2導電型はp型である、
     請求項1に記載の薄膜半導体装置の製造方法。
  4.  前記第1の半導体層と前記第2の半導体層の少なくとも一方は、半導体膜と、非結晶質の真性半導体層とを備え、
     前記第1の半導体層及び第2の半導体層を形成する工程において、
     少なくとも前記チャネル領域上に、前記真性半導体層を形成する工程を含み、
     前記半導体膜及び前記真性半導体層のコンダクションバンドの下端のエネルギー準位をそれぞれ、ECP、EC1とすると、
     前記真性半導体層を形成する工程において、ECP<EC1となるように前記真性半導体層を形成する、
     請求項1に記載の薄膜半導体装置の製造方法。
  5.  前記真性半導体層を形成する工程において、前記真性半導体層として、前記半導体膜上に第1の真性半導体膜と、前記第1の真性半導体膜上に第2の真性半導体膜とを形成し、
     前記第1の真性半導体膜及び前記第2の真性半導体膜は、アモルファスシリコン膜によって形成される、
     請求項4に記載の薄膜半導体装置の製造方法。
  6.  前記真性半導体層を形成する工程において、前記第1の真性半導体膜と前記第2の真性半導体膜とを同一の真空装置内で連続して形成するとともに、前記第1の真性半導体膜の結晶化率が前記第2の真性半導体膜の結晶化率よりも大きくなるように、前記第1の真性半導体膜と前記第2の真性半導体膜とを形成する、
     請求項5に記載の薄膜半導体装置の製造方法。
  7.  前記第2のコンタクト層を形成する工程において、前記第1のチャネル保護層上、前記第1の半導体層の側面、及び前記第1のコンタクト層上に前記第2のコンタクト層を形成する工程と、
     前記第1のコンタクト層の上方に形成された前記第2のコンタクト層を除去する工程と、
     を有する、
     請求項1に記載の薄膜半導体装置の製造方法。
  8.  前記第1のコンタクト層を形成する工程において、前記第1のコンタクト層の膜厚を、前記第2のコンタクト層を形成する工程において形成される前記第2のコンタクト層の膜厚よりも厚く形成する、
     請求項7に記載の薄膜半導体装置の製造方法。
  9.  少なくとも第1の薄膜トランジスタ部と第2の薄膜トランジスタ部を有する薄膜半導体装置であって、
     前記第1の薄膜トランジスタ部は、
     第1のゲート電極と、
     前記第1のゲート電極上に位置する第1の絶縁膜と、
     前記第1の絶縁膜上に位置し、前記第1の絶縁膜を介して前記第1のゲート電極と対向する領域をチャネル領域とする第1の半導体層と、
     前記半導体層の上方の少なくとも一部に接して形成された第1導電型を有する第1のコンタクト層と、
     前記第1のコンタクト層上に形成された第1のソース電極と、
     前記第1のコンタクト層上に前記第1のソース電極と対向して形成された第1のドレイン電極とを備え、
     前記第2の薄膜トランジスタ部は、
     第2のゲート電極と、
     前記第2のゲート電極上に位置する第2の絶縁膜と、
     前記第2の絶縁膜上に位置し、前記第2の絶縁膜を介して前記第2のゲート電極と対向する領域をチャネル領域とする第2の半導体層と、
     前記半導体層の側面の少なくとも一部に接して形成された、前記第1導電型と異なる第2導電型を有する第2のコンタクト層と、
     前記第2のコンタクト層上に形成された第2のソース電極と、
     前記第2のコンタクト層上に前記第2のソース電極と対向して形成された第2のドレイン電極と、を備える、
     薄膜半導体装置。
  10.  前記第1のコンタクト層及び前記第2のコンタクト層の平均結晶粒径は、前記チャネル領域の平均結晶粒径よりも小さい、
     請求項9に記載の薄膜半導体装置。
  11.  前記第1の薄膜トランジスタ部は、前記第1の半導体層の上方に第1のチャネル保護層を有し、
     前記第1の薄膜トランジスタ部において、前記チャネル保護層のチャネル方向の長さは、前記第1の半導体層の前記チャネル方向の長さより短い、
     請求項9に記載の薄膜半導体装置。
  12.  前記第2の薄膜トランジスタ部は、前記第2の半導体層の上方に第2のチャネル保護層を有し、
     前記第2の薄膜トランジスタ部は、前記第2のチャネル保護層のチャネル方向の長さと前記第2の半導体層の前記チャネル方向の長さとは、同じ長さである、
     請求項9~11のいずれか1項に記載の薄膜半導体装置。
  13.  前記第1の半導体層と前記第2の半導体層は、それぞれ、半導体膜と、前記半導体膜の上方に形成された非結晶質の真性半導体層とを備え、
     前記第1導電型はn型であり、前記第2導電型はp型である、
     請求項9~12のいずれか1項に記載の薄膜半導体装置。
  14.  前記第1のコンタクト層、及び前記第2のコンタクト層は、それぞれ前記第1のチャネル保護層、前記第2のチャネル保護層の上方に形成されている、
     請求項9に記載の薄膜半導体装置。
  15.  前記第1の絶縁膜と前記第2の絶縁膜は連続している、
     請求項9~14のいずれか1項に記載の薄膜半導体装置。
  16.  前記第1の半導体層及び前記第2の半導体層の少なくとも一方は、
     半導体膜と、
     前記半導体膜と前記チャネル保護層との間に形成された非結晶質の真性半導体層とで構成される、
     請求項9~12のいずれか1項に記載の薄膜半導体装置。
  17.  前記半導体膜及び前記真性半導体層のコンダクションバンドの下端のエネルギー準位をそれぞれ、ECP、EC1とすると、
     ECP<EC1である、
     請求項16に記載の薄膜半導体装置。
  18.  前記真性半導体層は、前記半導体膜上に形成された第1の真性半導体膜と、前記第1の真性半導体膜上に形成された第2の真性半導体膜とで構成され、
     前記第1の真性半導体膜と前記第2の真性半導体膜とは、電子親和力が異なる、
     請求項16又は17に記載の薄膜半導体装置。
  19.  前記第1の真性半導体膜の結晶化率は、前記第2の真性半導体膜の結晶化率よりも大きい、
     請求項18に記載の薄膜半導体装置。
  20.  前記半導体膜のコンダクションバンドの下端のエネルギー準位ECPと前記第1の真性半導体膜のコンダクションバンドの下端のエネルギー準位EC1とは、前記半導体膜と前記第1の真性半導体膜との接合部分でスパイクが発生しないように調整されている、
     請求項18に記載の薄膜半導体装置。
  21.  2つの薄膜トランジスタ部を有する薄膜半導体装置であって、
     前記2つの薄膜トランジスタ部のそれぞれは、
     ゲート電極と、
     前記ゲート電極上に位置するゲート絶縁膜と、
     前記ゲート絶縁膜上に位置し、前記ゲート絶縁膜を解して前記ゲート電極と対向する領域をチャネル領域とする半導体層と、
     前記チャネル領域上に位置するチャネル保護層と、
     前記半導体層の上方の一部に接して形成されたコンタクト層と、
     前記コンタクト層上に形成されたソース電極と、
     前記コンタクト層上に前記ソース電極と対向して形成されたドレイン電極とを備え、
     前記2つの薄膜トランジスタ部の一方の前記コンタクト層と前記2つの薄膜トランジスタ部の他方の前記コンタクト層とは、互いに異なる導電型を有する、
     薄膜半導体装置。
     
PCT/JP2012/008462 2012-02-06 2012-12-28 薄膜半導体装置の製造方法及び薄膜半導体装置 WO2013118234A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/003,946 US9209309B2 (en) 2012-02-06 2012-12-28 Method for fabricating thin-film semiconductor device and thin-film semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012023514 2012-02-06
JP2012-023514 2012-02-06

Publications (1)

Publication Number Publication Date
WO2013118234A1 true WO2013118234A1 (ja) 2013-08-15

Family

ID=48947041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008462 WO2013118234A1 (ja) 2012-02-06 2012-12-28 薄膜半導体装置の製造方法及び薄膜半導体装置

Country Status (3)

Country Link
US (1) US9209309B2 (ja)
JP (1) JPWO2013118234A1 (ja)
WO (1) WO2013118234A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001579A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
US20140027762A1 (en) * 2012-07-27 2014-01-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076894A (ja) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd 表示装置及び表示装置の作製方法
WO2009063606A1 (ja) * 2007-11-15 2009-05-22 Sharp Kabushiki Kaisha 薄膜トランジスタ、薄膜トランジスタの作製方法、及び表示装置
JP2010287634A (ja) * 2009-06-09 2010-12-24 Casio Computer Co Ltd トランジスタを有するトランジスタ基板及びトランジスタを有するトランジスタ基板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108931A (ja) 2003-09-29 2005-04-21 Sony Corp 表示装置の製造方法および表示装置
JP2009049384A (ja) * 2007-07-20 2009-03-05 Semiconductor Energy Lab Co Ltd 発光装置
JP5395382B2 (ja) * 2007-08-07 2014-01-22 株式会社半導体エネルギー研究所 トランジスタの作製方法
US20120104403A1 (en) * 2009-07-03 2012-05-03 Sharp Kabushiki Kaisha Thin film transistor and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076894A (ja) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd 表示装置及び表示装置の作製方法
WO2009063606A1 (ja) * 2007-11-15 2009-05-22 Sharp Kabushiki Kaisha 薄膜トランジスタ、薄膜トランジスタの作製方法、及び表示装置
JP2010287634A (ja) * 2009-06-09 2010-12-24 Casio Computer Co Ltd トランジスタを有するトランジスタ基板及びトランジスタを有するトランジスタ基板の製造方法

Also Published As

Publication number Publication date
JPWO2013118234A1 (ja) 2015-05-11
US20140048813A1 (en) 2014-02-20
US9209309B2 (en) 2015-12-08

Similar Documents

Publication Publication Date Title
WO2013118233A1 (ja) 薄膜半導体装置の製造方法及び薄膜半導体装置
US8796692B2 (en) Thin-film semiconductor device and method for fabricating thin-film semiconductor device
US9000437B2 (en) Thin-film semiconductor device including a multi-layer channel layer, and method of manufacturing the same
JP5820402B2 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
US20170125452A1 (en) Semiconductor device
JP5301971B2 (ja) 薄膜トランジスタ、その製造方法、及びこれを含む有機電界発光表示装置
WO2012172617A1 (ja) 薄膜トランジスタ及び薄膜トランジスタの製造方法
WO2012117718A1 (ja) 薄膜半導体装置及びその製造方法
US20130105798A1 (en) Thin-film semiconductor device and method for fabricating thin-film semiconductor device
US20130037808A1 (en) Thin-film transistor device and method for manufacturing thin-film transistor device
US8841678B2 (en) Thin-film transistor device and method for manufacturing thin-film transistor device
US9236254B2 (en) Substrate having thin film and method of thin film formation
WO2013118234A1 (ja) 薄膜半導体装置の製造方法及び薄膜半導体装置
US20130087802A1 (en) Thin film transistor, fabrication method therefor, and display device
US9112034B2 (en) Thin-film semiconductor device and method of manufacturing the same
WO2013008360A1 (ja) 表示装置、表示装置に用いられる薄膜トランジスタ、及び薄膜トランジスタの製造方法
JP5687448B2 (ja) 薄膜トランジスタ及びこれを用いた表示装置、並びに、薄膜トランジスタの製造方法
WO2013001580A1 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
JPWO2013001579A1 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
KR20140039863A (ko) 다결정 규소막 형성 방법, 다결정 규소막을 포함하는 박막 트랜지스터 및 표시 장치
JPWO2013021416A1 (ja) 薄膜半導体装置及び薄膜半導体装置の製造方法
JPWO2012172617A1 (ja) 薄膜トランジスタ及び薄膜トランジスタの製造方法
JPWO2013021426A1 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14003946

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013557262

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868244

Country of ref document: EP

Kind code of ref document: A1