WO2013117680A1 - Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat - Google Patents

Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat Download PDF

Info

Publication number
WO2013117680A1
WO2013117680A1 PCT/EP2013/052511 EP2013052511W WO2013117680A1 WO 2013117680 A1 WO2013117680 A1 WO 2013117680A1 EP 2013052511 W EP2013052511 W EP 2013052511W WO 2013117680 A1 WO2013117680 A1 WO 2013117680A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
substrate
film
substance
particle
Prior art date
Application number
PCT/EP2013/052511
Other languages
English (en)
Inventor
Olivier Dellea
Philippe Coronel
Simon Frédéric DESAGE
Pascal Fugier
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to EP13703079.7A priority Critical patent/EP2812125B1/fr
Priority to KR1020147025273A priority patent/KR20140135733A/ko
Priority to US14/375,532 priority patent/US9636704B2/en
Priority to JP2014556068A priority patent/JP6101711B2/ja
Publication of WO2013117680A1 publication Critical patent/WO2013117680A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/30Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant
    • B05D2401/32Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant applied as powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention relates to the field of processes for the deposition of particles on a substrate, preferably in scrolling.
  • the particle size may be between a few nanometers and several hundred micrometers.
  • the particles, preferably of spherical shape, may for example be silica particles.
  • the invention essentially relates to a structuring step of the particle film after it has been deposited on the substrate, this structuring aiming, for example, to integrate other particles, and / or objects.
  • Another possibility consists in preserving recessed areas of particles, surrounded by the remainder of the ordered film deposited on the substrate.
  • a hybrid device associates by definition on the same substrate objects having various functions, for example electronic, optical, electro-optical, piezoelectric, thermoelectric, mechanical, etc.
  • active electronic components such as transistors, microprocessors, integrated circuits, etc. ;
  • passive components of the electronics such as resistors, capacitors, diodes, photodiodes, coils, conductive tracks, welding preforms, etc. ;
  • optical components such as lenses, microlenses, diffraction gratings, filters, etc. ;
  • nano or micrometric particles or aggregates active or passive, for example of the oxides, polymers, metals, semiconductors, Janus type (particles having two faces of different types or properties), nanotubes, etc.
  • the invention relates to the integration of objects whose dimensions extend:
  • the invention has applications in the field of fuel cells, optics, photonics, polymer coating, chips, MEMs, surface structuring for organic electronics and photovoltaics. etc.
  • the subject of the invention is a method for depositing particles on a substrate, preferably in a scrolling manner, comprising the following steps:
  • the invention thus provides a simple and effective solution for structuring a film of ordered particles after it has been deposited on the substrate, while using a liquid conveyor making this process tolerant to possible errors in the handling and / or deposition of the substance. Indeed, in case of error, it can be easily corrected when the particles are still on the carrier liquid, before they are deposited on the substrate.
  • the invention offers great flexibility of implementation.
  • the structuring step of the film aims for example to integrate different particles, and / or objects, or simply to leave empty the recessed areas of particles of particles.
  • the recessed area when it comes to filling the recessed area with other particles, they are preferably different from those of the film previously made on the carrier liquid, for example with a composition and / or a distinct size. This allows in particular to form a film with gradients.
  • said substance comprises a polymerizable compound, which is polymerized after it has been deposited on the compact particle film.
  • any polymerizable substance is quite suitable for the context of transfer of particles by liquid conveyor.
  • any polymerizable substance is able to adapt to the differences in levels between the particles of the film.
  • This substance once polymerized, thus forms one or more solid units which are then intended to be removed, with the particles adhering to it.
  • Other types of substances performing similar functions may be retained, without departing from the scope of the invention.
  • the polymerization is carried out by any technique deemed appropriate by those skilled in the art, preferably thermal or optical. It is complete or partial before step (c), or initiated after this step. In all cases, it is preferentially done so that after the polymerization, substantially all the particles in contact with the substance adhere sufficiently to the latter so that during removal of this substance, it carries with it these same particles, tearing them off the substrate. Only certain particles located at the periphery of the patterns may possibly remain stuck on the substrate, without departing from the scope of the invention.
  • the removal of the polymerized substance is preferably carried out by peeling, manually with appropriate tools, or in an automated manner.
  • the substance that adheres to the particles in contact remains sufficiently flexible to withstand any bending during the passage of the transfer zone to the substrate.
  • the diameter of the cords / points obtained may be between a few tens of microns and several millimeters.
  • said substance is in the form of a liquid or a paste.
  • said substance has a hydrophobic character, and preferably also in the solid state polymerized.
  • the carrier liquid is not water
  • the substance is immiscible with the carrier liquid.
  • said substance is based on silicone resin, epoxy resin, and / or polyurethane resin.
  • the ratio between the large particle size of the compact film and that of the objects subsequently housed in the recessed areas of the film deposited on the substrate is between 10 4 and 10 8 .
  • the particles forming the compact film may have a large dimension of the order of 1 nm to 500 ⁇ m, while the objects may have a large dimension of up to about 30 cm.
  • the particles of the compact film are silica beads approximately 1 ⁇ m in diameter. It is nevertheless noted that the film may be heterogeneous, that is to say comprise balls of different sizes.
  • each object has a large dimension greater than 0.2 cm, and preferably less than 30 cm.
  • This last value can be adapted according to the width of the deposited film. Indeed, the large size of each object can to reach a value close to the final width of this film.
  • Objects of micrometric or nanometric size may also be used, without departing from the scope of the invention.
  • the object subsequently incorporated into the film may be of any shape, not necessarily flat, possibly having one or more radii of curvature, for example less than 5 cm, or else incorporating studs that are useful for the connectivity.
  • the shapes can be varied, but are preferably homogeneous.
  • sensors comprising detection elements (for example particles), one or more energy recovery systems (photovoltaic cell, piezoelectric film). electric, fuel cell), an energy storage system (micro-battery), an information management system (silicon chip), a communication system (RFID chip), electrical connection elements ( conductive tracks), electronic components (resistors, capacitors), solder elements (preforms).
  • detection elements for example particles
  • energy recovery systems photovoltaic cell, piezoelectric film
  • electric, fuel cell an energy storage system (micro-battery)
  • an information management system silicon chip
  • RFID chip communication system
  • electrical connection elements conductive tracks
  • electronic components resistor, capacitors
  • solder elements preforms
  • the compact particle film the concept of which is for example disclosed in the Sachin Kinge document, “Self-Assembling Nanoparticles at Surfaces and Interfaces", ChemPhysChem 2008, 9, 20-42, can be obtained on the surface of the carrier liquid by any technique known to those skilled in the art, for example by compression, and / or dipole-dipole interaction, and / or magnetic field, etc.
  • the dipole-dipole interaction technique applies to faceted particles, for example tetrahedral, cubic or octahedral particles. With these forms, dipole-dipole interactions play an important role in particle organization. The dipole moments are generated inside these particles, because of the differences of polarity between the facets.
  • the magnetic field organization technique is used with magnetic nanoparticles that can be ordered using an intense magnetic field, generating strong interactions between the particles.
  • the compression technique is in particular known from the document Lucio Isa et al., "Particle Lithography from Colloidal Self-Assembly at Liquid_Liquid Interfaces", acsnano, VOL. 4 ⁇ NO. 10 ⁇ 5665-5670 ⁇ 2010 document Markus Retsch, "Manufacture of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air / Water Interface", Macromol. Chem. Phys. 2009, 210, 230-241, or further from Maria Bardosova, "The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres", Adv. Mater. 2010, 22, 3104-3124.
  • This compression technique also comprises the inclined ramp solution described in document CA 2 695 449.
  • the method according to the invention preferably implements an inclined ramp for particle circulation, attached to an inlet of the transfer zone, and on which said carrier liquid is also intended to circulate.
  • the method preferably incorporates a thermal annealing step to facilitate the deposition and adhesion of these particles on the substrate.
  • FIG. 1 shows a deposition installation according to a preferred embodiment of the present invention, in schematic section taken along line I-I of FIG. 2;
  • FIG. 2 represents a schematic view from above of the depot installation shown in FIG. 1;
  • FIGS 3 to 9 show different stages of a deposition process implemented using the installation shown in the preceding figures, according to a preferred embodiment.
  • FIG. 1 we can see a facility 1 for the transfer of particles on a substrate, preferably in scroll.
  • This transfer similar to a deposit, is carried out by forming a compact film of particles on a carrier liquid, which film is then deposited on the substrate before being structured according to the needs encountered, as will be detailed below.
  • the installation 1 comprises a device 2 for dispensing particles 4, whose size may be between a few nanometers and several hundred micrometers.
  • the particles preferably of spherical shape, may for example be silica particles.
  • Other particles of interest can be made of metal or metal oxide as Platinum, TiO2, polymer such as polystyrene or PMMA, carbon, etc.
  • the particles are silica spheres of about 1 ⁇ in diameter, stored in solution in the dispensing device 2.
  • the proportion of the medium is about 7 g of particles per 200 ml solution, here butanol.
  • the particles shown in the figures adopt a diameter greater than their actual diameter.
  • the dispensing device 2 has a controllable injection nozzle 6, about 500 ⁇ in diameter.
  • the installation also comprises a liquid conveyor 10, incorporating an inclined ramp 12 of particle circulation, and a substantially horizontal transfer zone 14, or even having a slight inclination so as to promote the emptying of the installation, if necessary.
  • the upper end of the inclined ramp is designed to receive the particles injected from the dispensing device 2.
  • This ramp is straight, inclined at an angle between 5 and 60 °, preferably between 10 and 30 °, allowing the particles to be conveyed to the transfer zone 14.
  • a carrier liquid 16 flows on this ramp 12, into the transfer zone.
  • This liquid 16 can also be re-circulated using one or two pumps 18, between the transfer zone 14 and the upper end of the ramp.
  • This is preferably a deionized water, on which the 4 particles can float. Nevertheless, it is possible to favor a new liquid via an open circulation circuit. It can also be a combination of several immiscible liquids.
  • the lower end of this same ramp is connected to an inlet of the particle transfer zone 14.
  • This inlet 22 is located at an inflection line 24 showing the junction between the surface of the carrier liquid present on the plane inclined of the ramp 12, and the surface of the carrier liquid present on the horizontal part of the transfer zone 14.
  • the particle inlet 22 is spaced apart from a particle outlet 26 by means of two lateral flanges 28 holding the carrier liquid 16 in the zone 14. These flanges 28, opposite and at a distance from one another , extend parallel to a main direction of flow of the carrier liquid and particles in the installation, this direction being shown schematically by the arrow 30 in Figures 1 and 2.
  • the zone 14 therefore takes the form of a corridor or an open path to its entry and exit, even if other geometries could be adopted, without departing from the scope of the invention.
  • the bottom of the downstream portion of the transfer zone has a plate 27 slightly inclined upstream relative to the horizontal direction, for example a value of the order of 5 to 10 °. It is the downstream end of this same plate 27, also called “blade”, which partly defines the output of the particles 26.
  • the installation 1 is also provided with a substrate conveyor 36, for putting the substrate 38 in motion.
  • This substrate can be rigid or flexible. In the latter case, it can be set in motion on a roll 40 whose axis is parallel to the outlet 26 of the zone 14, near which it is located. Indeed, the substrate 38 is intended to run very close to the outlet 26, so that the particles reaching this outlet can be easily transferred to this substrate, via a capillary bridge 42, also called meniscus, which connects it to the carrier liquid 16.
  • the substrate may be in direct contact with the transfer zone without departing from the scope of the invention. The capillary bridge mentioned above is then no longer required.
  • the width of the substrate corresponds to the width of the zone 14 and its outlet 26. It is a width L 1 which also corresponds to the maximum width of the particle film that it is possible to deposit on the substrate. This width can be of the order of 25 to 30 cm. The width of the substrate on which the particles must be deposited may, however, be less than the width L1.
  • the capillary bridge 42 is provided between the carrier liquid 16 which is located at the outlet 26, and a portion of the substrate 38 which follows the guide / driving roller 40.
  • the projecting angle A formed between the horizontal direction 46 and the portion of the substrate 38 on which the particle film and the objects must be deposited, is greater than 160 °, and even more preferably close to 180 °, for example of the order of 175 °.
  • a particle deposition method according to one embodiment will now be described with reference to Figures 3 to 9.
  • the injection nozzle 6 is activated to begin dispensing the particles 4 on the ramp 12. This involves implementing an initial step of filling the transfer zone 14 with the particles 4, with the carrier liquid 16 already at the required level in the zone 14.
  • the particles dispensed by the device 2 circulate on the ramp 12, then enter the zone 14 in which they disperse, as shown schematically in Figures 3 and 4.
  • the upstream front of particles 54 rises on the ramp 12 so that it is situated at a given horizontal distance "d" from the inflection line 24, as shown in FIG.
  • the distance "d” can be of the order of 30 mm.
  • the particles 4 are ordered in the transfer zone and on the ramp 12, on which they are automatically arranged without assistance, thanks in particular to their kinetic energy and to the capillary forces used at the moment of the impact. on the front 54.
  • the scheduling is such that the compact film obtained has a so-called "compact hexagonal" structure, in which each particle 4 is surrounded and contacted by six other particles 4 in contact with each other. It is then indifferently spoken of compact film of particles, or film of ordered particles.
  • a patterning step 70 is carried out on the film 4, by depositing a substance 72 on the particles.
  • each pattern 70 takes the form of a cord following a closed line, but could alternatively take any other form deemed appropriate according to the needs encountered, such as a point shape or a surface shape.
  • FIG. 6 shows an example of several patterns 70 defined with the aid of the substance 72 deposited, making it possible to maintain, with respect to each other, the particles wetted by this substance 72, which is here preferably of the type comprising a polymerizable compound.
  • this substance 72 which is here preferably of the type comprising a polymerizable compound.
  • the particles 4 located internally and externally with respect to the contours 72 in the form of cords remain ordered.
  • the deposit of the polymerizable substance is carried out for example using a dispensing nozzle (not shown).
  • the substance 72 Upon arrival in contact with the particles, the substance 72 is able to adapt to the topography of the ordered film, and adheres to the particles 4 it covers.
  • the polymerizable compound is, for example, a silicone resin, an epoxy resin, and / or a polyurethane resin.
  • the polymerization is carried out conventionally, for example thermally and / or optically, and is preferably carried out, at least in part, when the substance is still in the transfer zone, not yet deposited on the substrate.
  • the substance 72 is then in the form of liquid or paste, to which particles may optionally be added before dispensing.
  • the substance is retained so that it allows a certain flexibility of the bead during the transfer on the substrate, in order to support the bending during the passage of the transfer zone to the substrate, and this in because of the inclination A of the substrate relative to the horizontal direction. This flexibility must remain after the partial or complete polymerization of the bead in the transfer zone, before transfer to the substrate.
  • the substance 72 has a hydrophobic character in the liquid state, so that it remains on the surface of the carrier liquid after its dispensing on the film of particles 4, if the substance reaches the same surface of the carrier liquid. What that is, the substance 72, after its deposit on the film, adheres to the latter because of its composition. After the polymerization, the adhesion of the particles to the substance is enhanced.
  • the substance is also chosen so as to remain insoluble in the liquid carrier liquid, and also in the solid state after polymerization.
  • the polymerization is therefore preferably carried out before transfer onto the substrate, in order to obtain flexible cords, with a diameter preferably of between a few tens of microns and several millimeters, keeping together the particles 4 which are in contact with it and now also the initial form of the motifs.
  • the next step in the process is to trigger the movement of the substrate 38, initiated as soon as the front 54 has reached the required level shown in FIG. 5, and after the deposition of the substance 72.
  • the ordered particle film 4, coated with patterns 70 is then deposited on the substrate 38 by displacement through the outlet 26, by taking the capillary bridge 42, in the manner of that described in document CA 2 695 449. In other words, the displacement of the film 4 can convey the patterns 70.
  • the width of the structured film 4 'shown in FIG. 7 corresponds to the width L1 of the outlet 26, even if a smaller width can be adopted, without departing from the scope of the invention.
  • the substrate is directly in contact with the exit of the particles. It is noted that prior to deposition on the substrate, the ordered particles 4 cover the entire surface of the carrier liquid 16 present in the transfer zone. The ordering of the particles is thus preserved until the deposition at the exit 26 of the zone 14. The conservation of this scheduling ensures the maintenance of a precise relative positioning between the patterns 72, as well as a precise position relative to at the fixed lateral edges 28, until the structured film 4 'is deposited on the substrate.
  • thermal annealing subsequent to the transfer.
  • This thermal annealing is, for example, carried out at 80 ° C., using a low-temperature matt rolling film based on polyester, for example sold under the reference PERFEX-MATT TM, of thickness 125 ⁇ m.
  • the particles 4 sink into the softened film 38, and thus allow direct contact of the objects with the film, which leads to their bonding.
  • the substrate 38 may be of the silicon, glass or piezoelectric film type.
  • the injection of particles and the speed of travel of the substrate are set so that the particle front remains in a substantially identical position.
  • the flow rate of the particles may be of the order of 0.1 ml / min to several ml / min, while the linear speed of the substrate 38, also called the drawing speed, may be of the order of a few mm / min to several hundred mm / min.
  • the supply of particles 4 can be temporarily stopped during the production of the patterns 70, or maintained.
  • the next step consists in removing the substance 72 by peeling, so as to carry with it the particles 4 of the film which adhere to it. During this removal, the removal of the particles concerned reveals recessed areas 74 within the film 4 'deposited on the substrate. The recessed areas 74 then adopt a geometry identical or similar to that of the withdrawn patterns 70, previously made using the substance 72.
  • the recessed areas 74 are filled with objects and / or other particles.
  • each object (not shown) has a large dimension greater than 0.2 cm and less than or equal to L1, that is to say close to 30 cm.
  • the thickness is between about ten micrometers and several tens of millimeters.
  • Some types of objects like solar cells, micro-batteries and organic components have a simple form of square, rectangle, or disc, with a small thickness, and an area of the order of 0.1 to 100 cm 2 .
  • These components may include pads or pins on the face in contact with the liquid to proceed to their connections.
  • Other object types for example for the detection of elements, the generation of energy or the transport of information, can have complex shapes, for example curved or spiral parts.
  • PET Polyethylene terephthalate PET: 3x4cm 2 ; 250 ⁇ thickness; Electronics (PET) with PET gold layer: 1,5x0,9cm 2 ; thickness 250 ⁇ , organic structured surface Au: thickness 30nm
  • Silicon chip 3x3cm 2 thickness 500 ⁇ Electronics lxlcm 2 ; 500 ⁇ thickness
  • Bimetallic metal material 3,5x2cm 2 ; thickness 140 ⁇ Thermal, (eg zinc / copper) 5x1, 6cm 2 ; thickness 200 ⁇ sensors
  • the recessed areas 74 are filled with other particles 4.1, shown diagrammatically in FIG. 9, similar to the particles 4 but of different composition and / or size, preferably injected so as to be in turn ordered in the interior zones filled with .
  • These injections can be performed in any form deemed appropriate by those skilled in the art, for example by microspray, by nozzle, by inkjet, or by conveyor.
  • the conveyor solution for example of the ribbon type or succession of rollers, is also preferentially retained in the case of the integration of objects in the recessed areas, for example to form hybrid devices.
  • the placement of these objects can be achieved using conventional handling or gripping tools adapted to the nature, shape and size of objects, such as clamps.
  • the positioning of the objects / other particles 4.1 is preferably carried out by stopping the scrolling of the substrate as well as the flow of particles from the ramp 12, although it may be otherwise without depart from the scope of the invention.
  • Another example concerns heat exchangers.
  • the structuring of the walls of the exchangers is a means of regulating the heat exchanges.
  • These structures can be made by lithography with a particle mask.
  • the implementation of heterogeneous deposits associating particles of different dimensions makes it possible to obtain geometries usually produced by lithography, and in particular to geometries with particle size gradients.
  • Yet another example relates to chemical sensors.
  • the method described above offers the possibility of associating compact films heterogeneous with particles of different natures, and thus allow the detection of different kinds of gases, chemical species, etc.
  • compact films can be used as a lithography mask to create micro / nanocuves allowing the retention of lubricant on the surface of rubbing objects.
  • the adjustment of the dimensions of these retention micro / nanocuves is a setting parameter of the coefficient of friction.
  • a simple way to change the dimensions of these micro / nanocuves is to use as an etching mask a heterogeneous compact film composed of different particle sizes, easy to obtain with the method specific to the present invention.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L' invention concerne un procédé de dépôt de particules sur un substrat, de préférence en défilement, comprenant les étapes suivantes : (a) réalisation d'un film compact de particules (4) flottant sur un liquide porteur (16) prévu dans une zone de transfert (14) présentant une sortie de particules agencée en regard du substrat; (b) dépôt d'une substance (72) sur le film compact de particules (4), dans la zone de transfert (14); (c) transfert, par la sortie de particules (26) et sur le substrat (38), du film compact de particules (4) revêtu de la substance (72); puis (d) retrait de la substance (72) de manière à emporter avec elle les particules (4) du film qui y adhèrent, afin de créer au moins une zone évidée au sein de ce film déposé sur le substrat.

Description

PROCEDE DE DEPOT D'UN FILM DE PARTICULES SUR UN SUBSTRAT VIA UN CONVOYEUR LIQUIDE, COMPRENANT UNE ETAPE
DE STRUCTURATION DU FILM SUR LE SUBSTRAT
DESCRIPTION
DOMAINE TECHNIQUE
L' invention se rapporte au domaine des procédés pour le dépôt de particules sur un substrat, de préférence en défilement.
Plus précisément, elle concerne le dépôt d'un film de particules ordonnées, de préférence du type monocouche, dont la taille des particules peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme sphérique, peuvent par exemple être des particules de silice.
L' invention se rapporte essentiellement à une étape de structuration du film de particules après son dépôt sur le substrat, cette structuration visant par exemple à y intégrer d'autres particules, et/ou des objets. Une autre possibilité consiste à conserver des zones évidées de particules, entourées par le reste du film ordonné déposé sur le substrat.
Dans le cas de l'intégration d'objets dans le film déposé, il s'agit en particulier de fabriquer des dispositifs à caractère hybride, comme par exemple des capteurs. A titre indicatif, un dispositif hybride associe par définition sur un même substrat des objets ayant diverses fonctions, par exemple électroniques, optiques, électro-optiques, piézo-électriques , thermoélectriques, mécaniques, etc.
Les objets susceptibles d'être intégrés au film de particules sont par exemple :
- des composants électroniques actifs, tels que des transistors, microprocesseurs, circuits intégrés, etc. ;
- des composants passifs de l'électronique, comme des résistances, capacités, diodes, photodiodes, bobines, pistes conductrices, préformes de soudure, etc. ;
des composants optiques, tels que des lentilles, microlentilles, réseaux de diffraction, filtres, etc. ;
- des piles, micro-piles, micro-batteries, photo-détecteurs, cellules solaires, système RFID, etc. ;
des particules ou agrégats nano ou micrométriques, actifs ou passifs, par exemple du type oxydes, polymères, métaux, semi-conducteurs, Janus (particules ayant deux faces de natures ou propriétés différentes), nanotubes, etc.
Plus particulièrement, l'invention concerne l'intégration d'objets dont les dimensions s'étendent :
- pour les composants : de l'échelle microscopique (quelques dizaines de microns) , à l'échelle macroscopique (plus d'une dizaine de centimètres) ; et
pour les particules et agrégats : du nanomètre à plusieurs centaines de microns. Plus généralement, l'invention présente des applications dans le domaine des piles à combustible, de l'optique, de la photonique, du revêtement de polymère, des puces, des MEMs, de la structuration de surface pour l'électronique organique et le photovoltaïque, etc.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Pour le dépôt de films de particules ordonnées, il a récemment été développé une technique de transfert d'un film de particules ordonnées sur un substrat, via un convoyeur liquide. Néanmoins, les techniques usuelles de structuration ne s'avèrent pas adaptées lorsqu'il s'agit de transférer le film sur un substrat par l'intermédiaire d'un convoyeur liquide.
De plus, ces techniques usuelles restent généralement peu tolérantes aux erreurs de manipulation .
EXPOSÉ DE L' INVENTION
L' invention a donc pour but de remédier au moins partiellement aux inconvénients mentionnés ci- dessus. Pour ce faire, l'invention a pour objet un procédé de dépôt de particules sur un substrat, de préférence en défilement, comprenant les étapes suivantes :
(a) réalisation d'un film compact de particules flottant sur un liquide porteur prévu dans une zone de transfert présentant une sortie de particules agencée en regard dudit substrat ;
(b) dépôt d'une substance sur ledit film compact de particules, dans la zone de transfert ; (c) transfert, par ladite sortie de particules et sur ledit substrat, du film compact de particules revêtu de la substance ; puis
(d) retrait de la substance de manière à emporter avec elle les particules du film qui y adhèrent, afin de créer au moins une zone évidée au sein de ce film déposé sur le substrat.
L' invention apporte ainsi une solution simple et efficace permettant de structurer un film de particules ordonnées après son dépôt sur le substrat, tout en utilisant un convoyeur liquide rendant ce procédé tolérant aux éventuelles erreurs de manipulation et/ou de dépôt de la substance. En effet, en cas d'erreur, celle-ci peut être facilement corrigée lorsque les particules sont encore sur le liquide porteur, avant leur dépôt sur le substrat.
Plus généralement, l'invention offre une grande souplesse de réalisation.
L'étape de structuration du film vise par exemple à y intégrer des particules différentes, et/ou des objets, ou tout simplement à laisser vides les zones évidées de particules de particules.
A cet égard, il est indiqué que la substance est déposée de manière à définir au moins un motif, par exemple un point ou un cordon, fermé ou non. En fonction de son diamètre, le cordon peut même être assimilé à un trait. Il peut alternativement s'agir de motifs surfaciques, par exemple en forme de disque, quadrilatère, ou toute autre forme réputée appropriée pour définir ensuite la zone évidée souhaitée. Bien entendu, des motifs différents peuvent se succéder sur le film de particules, sans sortir du cadre de l'invention.
Parmi les objets envisagés pour être placés dans les zones évidées, il est cité des puces en silicium, des micro-batteries, des composants de l'électronique organique, des éléments métalliques, des cellules photovoltaïques , des piles et micro-piles. Ces objets permettent notamment de fabriquer des dispositifs à caractère hybride, comme par exemple des capteurs .
Par ailleurs, lorsqu'il s'agit de remplir la zone évidée à l'aide d'autres particules, celles-ci sont de préférence différentes de celles du film préalablement réalisé sur le liquide porteur, par exemple avec une composition et/ou une taille distinctes. Cela permet notamment de former un film avec des gradients.
De préférence, ladite substance comprend un composé polymérisable, qui est polymérisé après son dépôt sur le film compact de particules.
L'utilisation d'une telle substance polymérisable se révèle tout à fait adaptée au contexte de transfert de particules par convoyeur liquide. En particulier, lors de son application, toute substance polymérisable est capable de s'adapter aux différences de niveaux entre les particules du film.
Cette substance, une fois polymérisée, forme ainsi un ou plusieurs motifs solides qui sont ensuite destinés à être retirés, avec les particules qui y adhèrent. D'autres types de substances assurant des fonctions analogues peuvent être retenus, sans sortir du cadre de l'invention.
Dans le cas préféré d'une substance contenant un composé polymérisable, la polymérisation s'effectue par toute technique réputée appropriée par l'homme du métier, de préférence thermique ou optique. Elle est complète ou partielle avant l'étape (c) , ou bien initiée après cette étape. Dans tous les cas, il est préférentiellement fait en sorte qu'après la polymérisation, sensiblement toutes les particules au contact de la substance adhèrent suffisamment à celle- ci pour que lors du retrait de cette substance, elle emporte avec elle ces mêmes particules, en les arrachant au substrat. Seules certaines particules situées à la périphérie des motifs peuvent éventuellement rester collées sur le substrat, sans sortir du cadre de l'invention.
Le retrait de la substance polymérisée s'effectue de préférence par pelage, de manière manuelle avec des outils appropriés, ou bien de façon automatisée .
De préférence, au moment du transfert sur le substrat, la substance qui adhère aux particules à son contact, qu'elle soit ou non polymérisée, reste suffisamment souple de manière à supporter une éventuelle flexion lors du passage de la zone de transfert au substrat.
En fonction des besoins rencontrés, le diamètre des cordons / points obtenus peut être entre quelques dizaines de microns et plusieurs millimètres. De préférence, ladite substance se présente sous la forme d'un liquide ou d'une pâte.
De préférence, ladite substance présente un caractère hydrophobe, et de préférence aussi à l'état solide polymérisé.
De manière plus générale, tenant notamment compte des cas où le liquide porteur n'est pas de l'eau, il est noté que la substance se révèle non- miscible avec le liquide porteur.
De préférence, ladite substance est à base de résine silicone, de résine époxy, et/ou de résine polyuréthane .
De préférence, le rapport entre la grande dimension des particules du film compact, et celle des objets logés ultérieurement dans les zones évidées du film déposé sur le substrat, est compris entre 104 et 108. A titre d'exemple, les particules formant le film compact peuvent présenter une grande dimension de l'ordre de 1 nm à 500 ym, tandis que les objets peuvent quant à eux présenter une grande dimension allant jusqu'à environ 30 cm.
De préférence, les particules du film compact sont des billes de silice d'environ 1 ym de diamètre. Il est néanmoins noté que le film peut être hétérogène, à savoir comporter des billes de tailles différentes .
De préférence, chaque objet présente une grande dimension supérieure à 0,2 cm, et de préférence inférieure à 30 cm. Cette dernière valeur peut être adaptée en fonction de la largeur du film déposé. En effet, la grande dimension de chaque objet peut atteindre une valeur proche de la largeur finale de ce film. Des objets de taille micrométrique ou nanométrique peuvent également être utilisés, sans sortir du cadre de l'invention.
L'objet intégré ultérieurement au film, dont certains exemples ont été cités précédemment, peut être de toute forme, non-nécessairement plane, éventuellement présentant un ou plusieurs rayons de courbure, par exemple inférieur à 5 cm, ou encore intégrant des plots utiles pour la connectique. De même, pour les particules du film, les formes peuvent être variées, mais sont de préférence homogènes.
Par le biais de l'invention, il est également visé la fabrication de dispositifs complexes comme par exemple des capteurs comprenant des éléments de détections (des particules par exemple) , un ou plusieurs systèmes de récupération d'énergie (cellule photovoltaïque, film piézo-électrique, pile à combustible), un système de stockage de l'énergie (micro-batterie) , un système de gestion de l'information (puce en Silicium), un système de communication (puce RFID) , des éléments de liaison électrique (pistes conductrices) , des composants électroniques (résistances, condensateurs) , des éléments de soudure (préformes) . Les objets nécessaires à l'obtention de ces dispositifs sont alors agencés en conséquence sur le film déposé, en lieu et place de la substance retirée, ces objets étant au besoin superposés .
II est par ailleurs noté que le film compact de particules, dont le concept est par exemple divulgué dans le document Sachin Kinge, "Self- Assembling Nanoparticles at Surfaces and Interfaces", ChemPhysChem 2008, 9, 20-42, peut être obtenu à la surface du liquide porteur par toute technique connue de l'homme du métier, par exemple par compression, et/ou interaction dipôle-dipôle, et/ou par champ magnétique, etc.
La technique par interaction dipôle-dipôle s'applique pour les particules à facettes, par exemple tétraédriques , cubiques ou encore octaédriques . Avec ces formes, les interactions dipôle-dipôle jouent un rôle important dans l'organisation des particules. Les moments dipolaires sont générés à l'intérieur de ces particules, à cause des différences de polarité entre les facettes.
La technique d'organisation par champ magnétique est employée avec des nanoparticules magnétiques pouvant être ordonnées en utilisant un champ magnétique intense, générant des interactions fortes entre les particules.
La technique par compression est notamment connue du document Lucio Isa et al., "Particle Lithography from Colloïdal Self-Assembly at Liquid_Liquid Interfaces", acsnano, VOL. 4 NO. 10 5665-5670 2010, du document Markus Retsch, « Fabrication of Large-Area, Transférable Colloïdal Monolayers Utilizing Self-Assembly at the Air/Water Interface", Macromol. Chem. Phys . 2009, 210, 230-241, ou encore du document Maria Bardosova, « The Langmuir- Blodgett Approach to Making Colloïdal Photonic Crystals from Silica Sphères", Adv. Mater. 2010, 22, 3104-3124. Cette technique par compression comprend également la solution à rampe inclinée décrite dans le document CA 2 695 449. Ainsi, le procédé selon l'invention met préférentiellement en œuvre une rampe inclinée de circulation des particules, rattachée à une entrée de la zone de transfert, et sur laquelle ledit liquide porteur est également destiné à circuler.
Une partie de l'énergie nécessaire à l'ordonnancement des particules en régime normal est alors ici amenée par la rampe inclinée transportant le liquide porteur et les particules. D'autres solutions sont néanmoins possibles, comme la mise en mouvement, à l'aide d'une pompe, du liquide porteur sur un plan horizontal dont la partie aval constitue la zone de transfert des particules. Une autre solution consiste à remplacer la pompe par une soufflerie permettant d'appliquer un flux d'air à la surface du liquide porteur, sur lequel flottent les particules à transférer. Comme mentionné ci-dessus, d'autres solutions sont néanmoins envisageables, sans sortir du cadre de l'invention, comme un travail de compression des particules via une technique dite « Langmuir- Blodgett ».
Enfin, postérieurement au transfert sur le substrat, le procédé intègre de préférence une étape de recuit thermique pour faciliter le dépôt et l'adhérence de ces particules sur le substrat.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous. BRÈVE DESCRIPTION DES DESSINS
Cette description sera faite au regard des dessins annexés parmi lesquels ;
- la figure 1 montre une installation de dépôt selon un mode de réalisation préféré de la présente invention, en coupe schématique prise le long de la ligne I-I de la figure 2 ;
la figure 2 représente une vue schématique de dessus de l'installation de dépôt montrée sur la figure 1 ; et
les figures 3 à 9 représentent différentes étapes d'un procédé de dépôt mis en œuvre à l'aide de l'installation montrée sur les figures précédentes, selon un mode de réalisation préféré.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence tout d' abord aux figures 1 et 2, on peut apercevoir une installation 1 pour le transfert de particules sur un substrat, de préférence en défilement. Ce transfert, assimilable à un dépôt, s'effectue en formant un film compact de particules sur un liquide porteur, film qui est ensuite déposé sur le substrat avant d'être structuré en fonction des besoins rencontrés, comme cela sera détaillé ci-après.
L' installation 1 comporte un dispositif 2 de dispense de particules 4, dont la taille peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme sphérique, peuvent par exemple être des particules de silice. D'autres particules d'intérêt peuvent être faites de métal ou d'oxyde de métal comme le Platine, le Ti02, de polymère comme le polystyrène ou le PMMA, de carbone, etc.
Plus précisément, dans le mode de réalisation préféré, les particules sont des sphères de silice d'environ 1 μιη de diamètre, stockées en solution dans le dispositif de dispense 2. La proportion du milieu est d'environ 7 g de particules pour 200 ml de solution, ici du butanol. Naturellement, pour des raisons de clarté, les particules représentées sur les figures adoptent un diamètre supérieur à leur diamètre réel .
Le dispositif de dispense 2 présente une buse d'injection 6 commandable, d'environ 500 μιη de diamètre .
L'installation comporte également un convoyeur liquide 10, intégrant une rampe inclinée 12 de circulation des particules, et une zone de transfert 14 sensiblement horizontale, voire présentant une légère inclinaison de façon à favoriser la vidange de l'installation, le cas échéant. L'extrémité haute de la rampe inclinée est prévue pour recevoir les particules injectées depuis le dispositif de dispense 2. Cette rampe est droite, inclinée d'un angle compris entre 5 et 60°, de préférence entre 10 et 30°, permettant aux particules d'être acheminées vers la zone de transfert 14. De plus, un liquide porteur 16 circule sur cette rampe 12, jusque dans la zone de transfert. Ce liquide 16 peut d'ailleurs être re-circulé à l'aide d'une ou deux pompes 18, entre la zone de transfert 14 et l'extrémité haute de la rampe. Il s'agit ici de préférence d'une eau dé-ionisée, sur laquelle les particules 4 peuvent flotter. Néanmoins, on peut privilégier un liquide neuf via un circuit de circulation ouvert. Il peut aussi s'agir d'une association de plusieurs liquides non-miscibles.
L'extrémité basse de cette même rampe est raccordée à une entrée de la zone de transfert de particules 14. Cette entrée 22 se situe au niveau d'une ligne d'inflexion 24 matérialisant la jonction entre la surface du liquide porteur présent sur le plan incliné de la rampe 12, et la surface du liquide porteur présent sur la partie horizontale de la zone de transfert 14.
L'entrée de particules 22 est espacée d'une sortie de particules 26 à l'aide de deux rebords latéraux 28 retenant le liquide porteur 16 dans la zone 14. Ces rebords 28, en regard et à distance l'un de l'autre, s'étendent parallèlement à une direction principale d'écoulement du liquide porteur et des particules dans l'installation, cette direction étant schématisée par la flèche 30 sur les figures 1 et 2. La zone 14 prend par conséquent la forme d'un couloir ou d'un chemin ouvert à son entrée et à sa sortie, même si d'autres géométries pourraient être adoptées, sans sortir du cadre de l'invention.
Le fond de la partie aval de la zone de transfert présente un plateau 27 légèrement incliné vers l'amont par rapport à la direction horizontale, par exemple d'une valeur de l'ordre de 5 à 10°. C'est l'extrémité aval de ce même plateau 27, également dénommé « blade », qui définit en partie la sortie des particules 26. L'installation 1 est également pourvue d'un convoyeur de substrat 36, destiné à mettre le substrat 38 en défilement. Ce substrat peut être rigide ou souple. Dans ce dernier cas, il peut être mis en mouvement sur un rouleau 40 dont l'axe est parallèle à la sortie 26 de la zone 14, à proximité de laquelle il se situe. En effet, le substrat 38 est destiné à défiler de manière très rapprochée de la sortie 26, afin que les particules atteignant cette sortie puisse être transférées aisément sur ce substrat, via un pont capillaire 42, également dénommé ménisque, qui le relie au liquide porteur 16. Alternativement, le substrat peut être au contact directement de la zone de transfert, sans sortir du cadre de l'invention. Le pont capillaire mentionné ci-dessus n'est alors plus requis.
Dans l'exemple montré sur les figures, la largeur du substrat correspond à la largeur de la zone 14 et de sa sortie 26. Il s'agit d'une largeur Ll qui correspond aussi à la largeur maximale du film de particules qu'il est possible de déposer sur le substrat. Cette largeur peut être de l'ordre de 25 à 30 cm. La largeur du substrat sur lequel doivent être déposées les particules peut cependant être inférieure à la largeur Ll .
Le pont capillaire 42 est assuré entre le liquide porteur 16 qui se situe au niveau de la sortie 26, et une partie du substrat 38 épousant le rouleau de guidage / d'entraînement 40.
De préférence, l'angle saillant A, formé entre la direction horizontale 46 et la partie du substrat 38 sur laquelle le film de particules et les objets doivent se déposer, est supérieure à 160°, et encore plus préférentiellement proche de 180°, par exemple de l'ordre de 175°.
Un procédé de dépôt de particules selon un mode de réalisation va maintenant être décrit en référence aux figures 3 à 9.
Tout d'abord, la buse d'injection 6 est activée pour débuter la dispense des particules 4 sur la rampe 12. Il s'agit de mettre en œuvre une étape initiale de remplissage de la zone de transfert 14, par les particules 4, avec le liquide porteur 16 déjà au niveau requis dans la zone 14.
Durant cette phase d'amorçage, les particules dispensées par le dispositif 2 circulent sur la rampe 12, puis pénètrent dans la zone 14 dans laquelle elles se dispersent, comme cela a été schématisé sur les figures 3 et 4.
Au fur et à mesure que les particules 4 sont injectées sur la rampe 12 et pénètrent dans la zone de transfert 14, elles viennent en butée contre le substrat 38, puis le front amont de ces particules a tendance à se décaler vers l'amont, en direction de la ligne d'inflexion 24. L'injection de particules est poursuivie même après que ce front amont ait dépassé la ligne 24, afin qu'il remonte sur la rampe inclinée 12.
Effectivement, il est fait en sorte que le front amont de particules 54 remonte sur la rampe 12 de manière à ce qu'il se situe à une distance horizontale « d » donnée de la ligne d'inflexion 24, comme montré sur la figure 5. La distance « d » peut être de l'ordre de 30 mm . A cet instant, les particules 4 sont ordonnées dans la zone de transfert et sur la rampe 12, sur laquelle elles s'ordonnent automatiquement, sans assistance, grâce notamment à leur énergie cinétique et aux forces capillaires mises à profit au moment de l'impact sur le front 54. L'ordonnancement est tel que le film compact obtenu présente une structure dite « hexagonale compacte », dans laquelle chaque particule 4 est entourée et contactée par six autres particules 4 en contact entre elles. Il est alors indifféremment parlé de film compact de particules, ou de film de particules ordonnées.
Une fois que les particules ordonnancées 4 formant le film recouvrent l'intégralité du liquide porteur situé dans la zone de transfert 14, il est procédé à une étape de réalisation de motifs 70 sur le film 4, par dépôt d'une substance 72 sur les particules .
Ici, chaque motif 70 prend la forme d'un cordon suivante une ligne fermée, mais pourrait alternativement prendre toute autre forme réputée appropriée en fonction des besoins rencontrés, comme une forme de point ou une forme surfacique.
La figure 6 montre un exemple de plusieurs motifs 70 définis à l'aide de la substance 72 déposée, permettant de maintenir les unes par rapport aux autres les particules mouillées par cette substance 72, qui est ici de préférence du type comprenant un composé polymérisable . Bien entendu, les particules 4 situées intérieurement et extérieurement par rapport aux contours 72 en forme de cordons restent ordonnées. Le dépôt de la substance polymérisable s'effectue par exemple à l'aide d'une buse de dispense (non représentée) . A l'arrivée au contact des particules, la substance 72 est capable de s'adapter à la topographie du film ordonné, et adhère aux particules 4 qu'elle recouvre.
Le composé polymérisable est par exemple une résine silicone, une résine époxy, et/ou une résine polyuréthane . La polymérisation s'effectue de manière classique, par exemple par voie thermique et/ou optique, et s'opère de préférence, au moins en partie, lorsque la substance se trouve encore dans la zone de transfert, pas encore déposée sur le substrat.
La substance 72 se présente alors sous forme de liquide ou de pâte, à laquelle des particules peuvent éventuellement être ajoutées avant sa dispense.
Par ailleurs, il est indiqué que la substance est retenue de manière à ce qu'elle permette une certaine souplesse du cordon lors du transfert sur le substrat, afin de supporter la flexion lors du passage de la zone de transfert au substrat, et ce en raison de l'inclinaison A du substrat par rapport à la direction horizontale. Cette souplesse doit donc subsister après la polymérisation partielle ou totale du cordon dans la zone de transfert, avant le transfert sur le substrat.
De préférence, la substance 72 présente un caractère hydrophobe à l'état liquide, pour que celui- ci reste en surface du liquide porteur après sa dispense sur le film de particules 4, si la substance atteint cette même surface du liquide porteur. Quoi qu'il en soit, la substance 72, après son dépôt sur le film, adhère à ce dernier en raison de sa composition. Après la polymérisation, l'adhérence des particules à la substance est renforcée. De plus, la substance est également choisie de manière à rester insoluble dans le liquide porteur à l'état liquide, et également à l'état solide après polymérisation.
La polymérisation s'effectue donc préférentiellement avant le transfert sur le substrat, afin d'obtenir des cordons souples, de diamètre de préférence compris entre quelques dizaines de microns et plusieurs millimètres, maintenant ensemble les particules 4 qui sont à son contact et maintenant également la forme initiale des motifs.
L'étape suivante du processus consiste à déclencher le mouvement du substrat 38, initié dès que le front 54 a atteint le niveau requis représenté sur la figure 5, et après le dépôt de la substance 72. Le film de particules ordonnées 4, revêtu des motifs 70, se dépose alors sur le substrat 38 par déplacement à travers la sortie 26, en empruntant le pont capillaire 42, à la manière de celle décrite dans le document CA 2 695 449. En d'autres termes, le déplacement du film 4 permet de convoyer les motifs 70.
Comme évoqué ci-dessus, après le dépôt, la largeur du film structuré 4' montré sur la figure 7 correspond à la largeur Ll de la sortie 26, même si une largeur inférieure peut être adoptée, sans sortir du cadre de l'invention.
De façon encore plus préférée, le substrat est directement au contact de la sortie des particules. Il est noté qu'avant le dépôt sur le substrat, les particules ordonnées 4 recouvrent toute la surface du liquide porteur 16 présent dans la zone de transfert. L'ordonnancement des particules est ainsi conservé jusqu'au moment du dépôt à la sortie 26 de la zone 14. La conservation de cet ordonnancement assure le maintien d'un positionnement relatif précis entre les motifs 72, ainsi qu'une position précise par rapport aux rebords latéraux fixes 28, jusqu'à ce que le film structuré 4' soit déposé sur le substrat.
Pour faciliter le dépôt et l'adhérence des particules 4 sur le substrat 38, de préférence réalisé en polymère, il est prévu un recuit thermique postérieurement au transfert. Ce recuit thermique est par exemple réalisé à 80°C, en utilisant un film mat de laminage basse température à base de polyester, par exemple commercialisé sous la référence PERFEX-MATT™, d'épaisseur 125ym.
L'avantage d'un tel film en tant que substrat est que l'une de ses faces devient collante à la température de l'ordre de 80 °C, ce qui permet de faciliter l'adhérence des particules 4 sur celle-ci.
Plus précisément, à cette température, les particules 4 s'enfoncent dans le film ramolli 38, et permettent ainsi un contact direct des objets avec le film, qui conduit à leur collage.
Alternativement, le substrat 38 peut être du type silicium, verre, ou encore film piézoélectrique .
Au cours du transfert, l'injection de particules et la vitesse de défilement du substrat sont réglées de sorte que le front de particules reste dans une position sensiblement identique. Pour ce faire, le débit de particules peut être de l'ordre de 0,1 ml/min à plusieurs ml/min, tandis que la vitesse linéaire du substrat 38, également dénommée vitesse de tirage, peut être de l'ordre de quelques mm/min à plusieurs centaines de mm/min. Comme évoqué ci-dessus, l'alimentation en particules 4 peut être stoppée temporairement lors de la réalisation des motifs 70, ou bien maintenue.
L'étape suivante, schématisée sur les figures 7 et 8, consiste à retirer la substance 72 par pelage, de manière à emporter avec elle les particules 4 du film qui y adhèrent. Lors de ce retrait, l'enlèvement des particules concernées fait apparaître des zones évidées 74 au sein du film 4' déposé sur le substrat. Les zones évidées 74 adoptent alors une géométrie identique ou similaire à celle des motifs retirés 70, préalablement réalisés à l'aide de la substance 72.
Ensuite, si besoin, les zones évidées 74 sont remplies d'objets et/ou d'autres particules.
A cet égard, les objets peuvent être de différentes sortes, en fonction des applications désirées. Préférentiellement , chaque objet (non représenté) présente une grande dimension supérieure à 0,2 cm et inférieure ou égale à Ll, c'est-à-dire proche 30 cm. L'épaisseur est comprise entre une dizaine de micromètres et plusieurs dizaines de millimètres.
Certains types d'objets comme les cellules solaires, micro-batteries et composants organiques ont une forme simple de carré, de rectangle, ou encore de disque, avec une faible épaisseur, et une superficie de l'ordre de 0,1 à 100 cm2.
Ces composants peuvent comporter des plots ou pinoches sur la face en contact avec le liquide pour procéder à leur connectique. D'autres types objets, visant par exemple la détection d'éléments, la génération d'énergie ou encore le transport de l'information, peuvent avoir des formes complexes, par exemple des parties courbés ou en spirale.
Par ailleurs, le rapport entre la grande dimension des particules 4 et celle des objets logés dans les zones évidées du film 4' est préférentiellement compris entre 104 et 108. En effet, la grande dimension des particules est par exemple de l'ordre de 1 nm à 500 ym, tandis que les objets peuvent présenter une grande dimension allant jusqu'à environ 30 cm.
Le tableau ci-dessous recense quelques exemples préférés pour ces objets.
Nature Dimensions Domaine d'application
Polyéthylène téréphtalate PET : 3x4cm2 ; épaisseur 250μιη ; Electronique (PET) avec couche d'or PET : 1,5x0,9cm2 ; épaisseur 250μιη, organique structurée en surface Au : épaisseur 30nm
Verre avec cellule 25x25mm2 ; épaisseur 1,08mm Cellule photovoltaïque en surface Photovoltaïque
Puce en silicium 3x3cm2 ; épaisseur 500μιη Electronique lxlcm2 ; épaisseur 500μιη
Micro-batterie sur silicium lxlcm2 ; épaisseur 500μιη Stockage énergie
Matériau métallique bilame 3,5x2cm2 ; épaisseur 140μιη Thermique, (ex. : zinc/cuivre) 5x1, 6cm2 ; épaisseur 200μιη capteurs
7x1, 6cm2 ; épaisseur 200μιη Alternativement, les zones évidées 74 sont remplies d'autres particules 4.1, schématisées sur la figure 9, analogues aux particules 4 mais de composition et/ou de taille différentes, de préférence injectées de manière à être à leur tour ordonnées dans les zones intérieures remplies. Ces injections peuvent être réalisées selon toute forme réputée appropriée par l'homme du métier, par exemple par microspray, par buse, par jet d'encre, ou encore par convoyeur.
La solution à convoyeur, par exemple du type ruban ou succession de rouleaux, est aussi préférentiellement retenue dans le cas de l'intégration d'objets dans les zones évidées, par exemple pour former des dispositifs hybrides. Outre la solution de convoyeur, la mise en place de ces objets peut être réalisée à l'aide d'outils de manipulation ou de préhension conventionnels adaptés à la nature, la forme et la dimension des objets, comme des pinces.
Ici encore, il est noté que la mise en position des objets / des autres particules 4.1 s'effectue préférentiellement en arrêtant le défilement du substrat ainsi que le flux de particules provenant de la rampe 12, bien qu'il puisse en être autrement, sans sortir du cadre de l'invention.
Des applications possibles pour le procédé qui vient d'être décrit ont été mentionnées ci-dessus. Des exemples concrets sont également décrits ci- dessous .
Il peut s'agir de la fabrication de cellules photovoltaïques et de composants de type LED/PLED/OLED . Des études récentes ont montré que la structuration des interfaces dans le domaine des composants photovoltaïques, LED, PLED, OLED pouvait apporter au gain significatif en rendement ou en lumière émise. Dans ce cadre, les films compacts de particules sont par exemple utilisés comme éléments de masquage lors des étapes de structuration des interfaces. Les structurations sont opérées généralement au travers des interstices présents entre les particules par des dépôts de matériaux ou par gravure par plasma. Néanmoins certaines zones du substrat doivent être évidées pour, par exemple, laisser libre les zones de contacts électriques ou simplement parce qu'elles n'ont pas de fonction particulière. Par le procédé décrit ci-dessus, il est donc possible de définir avec la substance, sur le liquide, les zones devant être ensuite être évidées de particules, puis d' ôter cette substance après le dépôt du film sur le substrat.
Un autre exemple concerne les échangeurs thermiques. La structuration des parois des échangeurs est un moyen pour régler les échanges thermiques. Ces structurations sont réalisables par lithographie avec un masque de particules. Avec le procédé décrits ci- dessus, la mise en œuvre de dépôts hétérogènes associant des particules de différentes dimensions rend possible l'obtention de géométries habituellement réalisées par lithographie, et notamment à des géométries avec des gradients de tailles de particules.
Encore un autre exemple se rapporte aux capteurs chimiques. Le procédé décrit ci-dessus offre la possibilité d'associer des films compacts hétérogènes avec des particules de différentes natures, et permettent donc la détection de différentes natures de gaz, espèces chimiques, etc.
Enfin, en tribologie, pour les applications mécaniques, des films compacts peuvent être utilisés comme masque de lithographie pour créer des micro/nanocuves permettant la rétention du lubrifiant à la surface des objets en frottement. L'ajustement des dimensions de ces micro/nanocuves de rétention est un paramètre de réglage du coefficient de frottement. Un moyen simple pour changer les dimensions de ces micro/nanocuves est d'utiliser comme masque de gravure un film compact hétérogène composé de différentes tailles de particules, facile à obtenir avec le procédé spécifique à la présente invention.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Procédé de dépôt de particules sur un substrat (38), de préférence en défilement, comprenant les étapes suivantes :
(a) réalisation d'un film compact de particules (4) flottant sur un liquide porteur (16) prévu dans une zone de transfert (14) présentant une sortie de particules (26) agencée en regard dudit substrat (38) ;
(b) dépôt d'une substance (72) sur ledit film compact de particules (4), dans la zone de transfert (14) ;
(c) transfert, par ladite sortie de particules (26) et sur ledit substrat (38), du film compact de particules (4) revêtu de la substance (72) ; puis
(d) retrait de la substance (72) de manière à emporter avec elle les particules (4) du film qui y adhèrent, afin de créer au moins une zone évidée (74) au sein de ce film (4') déposé sur le substrat.
2. Procédé selon la revendication 1, caractérisé en ce que la substance (72) est déposée de manière à définir au moins un motif (70), par exemple un point ou un cordon.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel il est ensuite placé, dans chaque zone évidée (74), au moins un objet ou d'autres particules (4.1) .
4. Procédé selon la revendication 3, dans lequel ledit objet est pris parmi le groupe des puces en silicium, des micro-batteries, des composants de l'électronique organique, des éléments métalliques, des cellules photovoltaïques , des piles et micro-piles.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite substance (72) comprend un composé polymérisable, qui est polymérisé après son dépôt sur le film compact de particules ( 4 ) .
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite substance (72) se présente sous la forme d'un liquide ou d'une pâte.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite substance (72) présente un caractère hydrophobe.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite substance (72) est à base de résine silicone, de résine époxy, et/ou de résine polyuréthane.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il met en œuvre une rampe inclinée (12) de circulation des particules, rattachée à ladite entrée de la zone de transfert, et sur laquelle ledit liquide porteur (16) est également destiné à circuler.
PCT/EP2013/052511 2012-02-10 2013-02-08 Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat WO2013117680A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13703079.7A EP2812125B1 (fr) 2012-02-10 2013-02-08 Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat
KR1020147025273A KR20140135733A (ko) 2012-02-10 2013-02-08 기판 상에 필름을 구조화하는 단계를 포함하는, 액체 컨베이어를 통한 기판 상에 입자 필름을 퇴적하는 방법
US14/375,532 US9636704B2 (en) 2012-02-10 2013-02-08 Method for depositing a particle film onto a substrate via a liquid conveyor, including a step of structuring the film on the substrate
JP2014556068A JP6101711B2 (ja) 2012-02-10 2013-02-08 液体輸送装置を用いて基材上に粒子フィルムを配置し構造形成する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1251256 2012-02-10
FR1251256A FR2986721B1 (fr) 2012-02-10 2012-02-10 Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat

Publications (1)

Publication Number Publication Date
WO2013117680A1 true WO2013117680A1 (fr) 2013-08-15

Family

ID=47678846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052511 WO2013117680A1 (fr) 2012-02-10 2013-02-08 Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat

Country Status (6)

Country Link
US (1) US9636704B2 (fr)
EP (1) EP2812125B1 (fr)
JP (1) JP6101711B2 (fr)
KR (1) KR20140135733A (fr)
FR (1) FR2986721B1 (fr)
WO (1) WO2013117680A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986720B1 (fr) * 2012-02-10 2014-03-28 Commissariat Energie Atomique Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
FR2995228B1 (fr) 2012-09-10 2014-09-05 Commissariat Energie Atomique Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
FR3005432B1 (fr) 2013-05-13 2015-06-05 Commissariat Energie Atomique Procede de depot d'un film compact de particules sur la surface interieure d'une piece presentant un creux delimite par cette surface interieure
FR3006111B1 (fr) 2013-05-24 2016-11-25 Commissariat Energie Atomique Dispositif de conversion d'energie thermique en energie electrique a molecules thermo-sensibles
FR3011751B1 (fr) 2013-10-11 2015-12-25 Commissariat Energie Atomique Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
FR3011752B1 (fr) 2013-10-11 2015-12-25 Commissariat Energie Atomique Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
FR3027449B1 (fr) 2014-10-21 2017-10-20 Commissariat Energie Atomique Procede ameliore de realisation d'interconnexions pour circuit integre 3d

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038623A1 (fr) * 1998-01-30 1999-08-05 Loctite Corporation Procede de formation d'un revetement sur une monocouche de particules et produits ainsi obtenus
WO2001089716A2 (fr) * 2000-05-24 2001-11-29 Nano World Projects Corporation Procede de preparation de monocouches de particules ou de molecules
WO2003095108A1 (fr) * 2002-05-10 2003-11-20 Nanometrix Inc. Procede et appareil d'assemblage bidimensionnel de particules
CN1544308A (zh) * 2003-11-24 2004-11-10 吉林大学 揭起软刻技术进行胶体晶体图案化微加工的方法
US20050281944A1 (en) * 2004-06-17 2005-12-22 Jang Bor Z Fluid-assisted self-assembly of meso-scale particles
CA2695449A1 (fr) 2006-08-02 2008-02-07 Nanometrix Inc. Appareil de transfert modulaire et procede

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362542A (ja) * 1986-09-01 1988-03-18 Canon Inc 成膜方法
JPS63171671A (ja) * 1986-09-24 1988-07-15 エクソン リサーチ アンド エンヂニアリング コムパニー 密にパックされたコロイド粒子の大面積・2次元配置物の製造法
JPH0259069A (ja) * 1988-08-24 1990-02-28 Kanegafuchi Chem Ind Co Ltd パターン化された超薄膜の製法
JPH0417681A (ja) * 1990-05-10 1992-01-22 Canon Inc 成膜装置及び成膜方法
JP3262472B2 (ja) * 1994-04-22 2002-03-04 キヤノン株式会社 ラングミュアーブロジェット膜の製造装置
US5928726A (en) * 1997-04-03 1999-07-27 Minnesota Mining And Manufacturing Company Modulation of coating patterns in fluid carrier coating processes
JPH1142455A (ja) * 1997-05-30 1999-02-16 Canon Inc ラングミュア−ブロジェット膜の製造装置
US7241341B2 (en) * 2002-05-10 2007-07-10 Nanometrix Inc. Method and apparatus for two dimensional assembly of particles
JP4559746B2 (ja) * 2004-01-28 2010-10-13 大日本印刷株式会社 単粒子膜形成用の原版とこの原版を用いた単粒子膜の形成方法およびこの単粒子膜の形成方法を用いた電気泳動表示装置の製造方法
FR2911721B1 (fr) 2007-01-19 2009-05-01 St Microelectronics Crolles 2 Dispositif a mosfet sur soi
JP5213686B2 (ja) * 2008-12-19 2013-06-19 キヤノン株式会社 膜の製造方法および多孔性膜の製造方法
FR2959564B1 (fr) 2010-04-28 2012-06-08 Commissariat Energie Atomique Dispositif formant manometre destine a la mesure de pression de fluide diphasique, procede de realisation et reseau fluidique associes
FR2971956B1 (fr) 2011-02-24 2013-03-29 Commissariat Energie Atomique Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement
FR2977121B1 (fr) 2011-06-22 2014-04-25 Commissariat Energie Atomique Systeme de gestion thermique a materiau a volume variable
FR2977810A1 (fr) 2011-07-13 2013-01-18 Commissariat Energie Atomique Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
FR2985249B1 (fr) * 2012-01-02 2014-03-07 Commissariat Energie Atomique Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038623A1 (fr) * 1998-01-30 1999-08-05 Loctite Corporation Procede de formation d'un revetement sur une monocouche de particules et produits ainsi obtenus
WO2001089716A2 (fr) * 2000-05-24 2001-11-29 Nano World Projects Corporation Procede de preparation de monocouches de particules ou de molecules
WO2003095108A1 (fr) * 2002-05-10 2003-11-20 Nanometrix Inc. Procede et appareil d'assemblage bidimensionnel de particules
CN1544308A (zh) * 2003-11-24 2004-11-10 吉林大学 揭起软刻技术进行胶体晶体图案化微加工的方法
US20050281944A1 (en) * 2004-06-17 2005-12-22 Jang Bor Z Fluid-assisted self-assembly of meso-scale particles
CA2695449A1 (fr) 2006-08-02 2008-02-07 Nanometrix Inc. Appareil de transfert modulaire et procede

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LUCIO ISA ET AL.: "Particle Lithography from Colloidal Self-Assembly at Liquid Liquid Interfaces", ACSNANO, vol. 4, no. 10, 2010, pages 5665 - 5670, XP055042090, DOI: doi:10.1021/nn101260f
MARIA BARDOSOVA: "The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres", ADV. MATER, vol. 22, 2010, pages 3104 - 3124, XP055042092, DOI: doi:10.1002/adma.200903708
MARKUS RETSCH: "Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface", MACROMOL. CHEM. PHYS., vol. 210, 2009, pages 230 - 241, XP055042091, DOI: doi:10.1002/macp.200800484
SACHIN KINGE ET AL: "Self-Assembling Nanoparticles at Surfaces and Interfaces", CHEMPHYSCHEM, vol. 9, no. 1, 11 January 2008 (2008-01-11), pages 20 - 42, XP055042089, ISSN: 1439-4235, DOI: 10.1002/cphc.200700475 *
SACHIN KINGE: "Self-Assembling Nanoparticles at Surfaces and Interfaces", CHEMPHYSCHEM, vol. 9, 2008, pages 20 - 42, XP055042089, DOI: doi:10.1002/cphc.200700475

Also Published As

Publication number Publication date
EP2812125B1 (fr) 2016-11-16
JP2015512769A (ja) 2015-04-30
EP2812125A1 (fr) 2014-12-17
US20150010693A1 (en) 2015-01-08
FR2986721B1 (fr) 2014-06-27
KR20140135733A (ko) 2014-11-26
US9636704B2 (en) 2017-05-02
FR2986721A1 (fr) 2013-08-16
JP6101711B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
EP2801108B1 (fr) Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules
EP2812126B1 (fr) Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
EP2812125B1 (fr) Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat
EP2812127B1 (fr) Procédé de transfert d'objets sur un substrat à l'aide d'un film compact de particules, avec une étape de réalisation de connecteurs sur les objets
EP2996816B1 (fr) Procede de realisation d'un substrat par projection de particules sur un film compact de particules solides flottant sur un liquide porteur
EP2678120B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement
FR2939241A1 (fr) Procede de fabrication d'un substrat nanostructure pour oled et procede de fabrication d'une oled
EP2892658B1 (fr) Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
EP3038761B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
EP3038760B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
EP3245010A1 (fr) Procede de formation d'un film compact de particules a la surface d'un liquide porteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375532

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014556068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013703079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013703079

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147025273

Country of ref document: KR

Kind code of ref document: A