EP3038760B1 - Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur - Google Patents

Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur Download PDF

Info

Publication number
EP3038760B1
EP3038760B1 EP14781575.7A EP14781575A EP3038760B1 EP 3038760 B1 EP3038760 B1 EP 3038760B1 EP 14781575 A EP14781575 A EP 14781575A EP 3038760 B1 EP3038760 B1 EP 3038760B1
Authority
EP
European Patent Office
Prior art keywords
particles
carrier fluid
zone
reservoir
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14781575.7A
Other languages
German (de)
English (en)
Other versions
EP3038760A1 (fr
Inventor
Olivier Dellea
Pascal Fugier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3038760A1 publication Critical patent/EP3038760A1/fr
Application granted granted Critical
Publication of EP3038760B1 publication Critical patent/EP3038760B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/008Accessories or implements for use in connection with applying particulate materials to surfaces; not provided elsewhere in B05C19/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/06Storage, supply or control of the application of particulate material; Recovery of excess particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/204LB techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/005Curtain coaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/007Slide-hopper coaters, i.e. apparatus in which the liquid or other fluent material flows freely on an inclined surface before contacting the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface

Definitions

  • the invention relates to the field of installations and processes for forming a compact film of particles on the surface of a carrier liquid, the compact film obtained being generally intended to be deposited on a substrate, preferably in scrolling.
  • the invention relates to the formation of a compact film of particles, also called ordered particles film, preferably of the monolayer type and whose particle size may be between a few nanometers and several hundred micrometers.
  • the particles preferably of spherical shape, may for example be silica particles.
  • the invention relates to the formation of simple compact films, or to the formation of structured compact films, this structuring aimed at putting the film into shape in order, for example, to integrate other particles, and / or objects. Another possibility is to provide hollow areas of particles, surrounded by the film which remains ordered.
  • a hybrid device associates by definition on the same substrate objects having various functions, for example electronic, optical, electro-optical, piezoelectric, thermoelectric, mechanical, etc.
  • the invention has applications in many fields such as fuel cells, optics, photonics, polymer coating, chips, MEMs, organic and photovoltaic electronics, heat exchangers, sensors, tribology, etc.
  • an accumulation and transfer zone fed with particles, which float on a carrier liquid contained in this same zone.
  • the particles ordered in the transfer zone forming a monolayer of particles called thin film, are pushed by the arrival of other particles as well as by the circulation of the carrier liquid, towards an exit of this zone by which they reach the substrate. They are then deposited on the moving substrate.
  • a capillary bridge usually ensures the connection between the substrate and the carrier liquid contained in the accumulation and transfer zone.
  • the particles are kept ordered thanks in particular to the pressure exerted upstream by the moving particles intended to later reach this transfer zone.
  • the cohesion of the particle scheduling is further ensured by weak forces of capillary or electrostatic type.
  • the kinetic energy required for the self-sequencing of the particles is here brought by the inclined ramp carrying the carrier liquid and the particles.
  • the particles are generally in solution in the dispensing device.
  • the latter is arranged to deliver the particles to the surface of the carrier liquid, at a reservoir zone placed upstream of the inclined ramp and communicating with the inlet thereof.
  • the composition of the solution and that of the carrier liquid may be immiscible or very immiscible, and their respective surface tensions may also differ. This is particularly the case when the solution contains one or more solvents of the chloroform or n-butanol type, the respective surface tensions of which are 26.67 and 24.93 mN / m at 25 ° C., and that the carrier liquid is deionized water with a surface tension of the order of 72 mN / m at the same temperature.
  • This phenomenon can be at the origin of a dewetting of the inclined ramp. Indeed, particularly when the injection rate of the solution containing the particles exceeds a certain threshold, dry zones may appear on the inclined ramp, yet supposed to be wetted entirely by the mixture of carrier liquid and the solution. These dry zones, directly caused by the hydrodynamic instabilities observed upstream in the reservoir zone, thus sustainably disturb the laminar flow of the carrier liquid on the inclined ramp. As a result, the organization of the particles in the accumulation and transfer zone can be profoundly altered.
  • the installation further comprises, arranged at a junction between the reservoir zone and the inclined ramp, means for raising the level of carrier liquid by capillary effect.
  • the invention is remarkable in that it provides means for locally raising the level of carrier liquid just before entering the inclined ramp, and this by capillary effect offsetting the weight of the carrier liquid.
  • This technique makes it possible to attenuate the phenomenon of variation of the thickness of the liquid resulting from the interfacial tension gradients between the carrier liquid and the solution comprising the particles.
  • the purpose of the elevation means is to increase the level of the carrier liquid and thus to remove the instabilities from the bottom, and thus change the flow lines of the carrier liquid to promote spreading in the width.
  • the installation according to the invention makes it possible to eliminate / limit the risks of dry zones on the inclined ramp, while operating with high yields.
  • the invention comprises at least one of the following optional features, taken singly or in combination.
  • Said means for raising the level of carrier liquid by capillary action consist of a barrier of studs spaced from each other.
  • elevation means may be supplemented by a second pad of pad offset from the first, in the main direction of flow of the liquid.
  • the elevation means can be positioned by suspension to a room, itself emerging from the stream, via a comb for example. Also, the studs do not necessarily touch the bottom of the reservoir zone.
  • Said pads are implanted with a pitch of about 2 to 4 mm. They are generally conical, pyramidal or tubular. Other forms may nevertheless be envisaged, in particular a cylindrical shape, with the section being square, triangular, polygonal or a variable section on the height of the stud.
  • the pads are made of hydrophobic material, for example silicone.
  • the studs have a ratio between their height and their maximum width of between 1 and 30.
  • the studs have a base width of about 2 mm and a height of between 2 and 3 mm.
  • Said means for raising the level of carrier liquid by capillary effect extend all along the carrier liquid, in a transverse direction of the installation parallel to the surface of the carrier liquid and orthogonal to a main direction of flow of the carrier liquid. from the reservoir zone to the particle accumulation and transfer zone, via the inclined ramp.
  • the installation comprises a substrate for depositing the compact film of particles, said substrate being opposite a particle outlet of said accumulation and transfer zone.
  • the installation is configured to ensure deposition of the compact film of particles on a moving substrate, said substrate being flexible or rigid.
  • the installation further comprises a structure for the deflection of the particles, passing through the surface of the carrier liquid in the reservoir zone, said structure being arranged downstream of said means for dispensing the particles in the direction main flow of the carrier liquid, said structure being configured to promote, in the transverse direction of the installation, a spread of the particles at the outlet of the reservoir zone, said structure for the deflection of particles being permeable to the carrier liquid.
  • This structure also divides, distributes and slows down the progression of Marangoni disturbances.
  • the invention also relates to a method of forming a compact film of particles on the surface of a carrier liquid, using an installation as described above.
  • This method comprises a step of moving the carrier liquid to circulate from the reservoir zone to the particle accumulation and transfer zone, via the inclined ramp, and a step of dispensing the particles in solution at the surface of the moving carrier liquid, in the reservoir zone, said step of setting the carrier liquid in motion being carried out so as to generate, by capillary action at the level of said elevating means, a bead of carrier liquid .
  • the process is carried out for the formation of a compact film of particles having a large dimension of between 1 nm and 500 ⁇ m.
  • the particles / colloids used may be of the oxide particle type (SiO 2, ZnO, Al 2 O 3, etc.), polymers (latex, PMMA, polystyrene, etc.) or metal (Au, Cu, alloys) , etc.).
  • the size range of the particles is preferably between 1 nm and 500 ⁇ m, it is also possible to use glass fibers, for example with a diameter of 10 ⁇ m, and lengths ranging from 10 to 4000 ⁇ m, provided that it is less than the distance separating two studs.
  • Other particles of the silicon type or graphene sheets are also conceivable, without departing from the scope of the invention.
  • the carrier liquid is deionized water, and said particles are in solution in a solvent having a surface tension lower than that of water deionized, said solvent being preferably n-butanol, methanol, chloroform, or a mixture of at least two of them.
  • FIG. 1 With reference first to figures 1 and 2 , there is shown an installation 1 for the formation of a compact film of particles and its transfer on a substrate, preferably in scrolling.
  • the installation 1 comprises means 2 for dispensing the particles 4 in solution.
  • These particles have a size that can be between a few nanometers and several hundred micrometers.
  • the particles preferably of spherical shape, may for example be silica particles.
  • Other particles of interest can be made of metal or metal oxide such as platinum, TiO2, polymer such as polystyrene or PMMA, carbon, etc.
  • the particles are silica spheres with a diameter of between 1 nm and 500 ⁇ m, and even more preferentially of the order of 1 ⁇ m.
  • These particles 4 are stored in solution in the means 2.
  • the proportion of the medium is about 7 g of particles per 200 ml of solution, here of the butanol or chloroform type.
  • the particles 4 have been represented with a diameter greater than their actual diameter.
  • the dispensing means 2 have a controllable injection nozzle of about 500 microns in diameter.
  • the installation also comprises a liquid conveyor 10, receiving a carrier liquid 16 on which the particles 4 are intended to float.
  • the conveyor 10 includes a reservoir zone 11, an inclined ramp 12 for circulating the particles, and a zone 14 for accumulating and transferring the particles.
  • the ramp 12 is located in the extension of the tank 11, that is to say that its inlet is substantially coincident with the outlet of the tank.
  • the accumulation and transfer zone 14 is located in the extension of the inclined ramp, that is to say that its inlet is substantially coincident with the exit of the ramp, on which the particles are intended to circulate. by gravity.
  • the inclined ramp 12 establishes a rupture of level between the reservoir 11 and the accumulation and transfer zone 14. The latter has a substantially horizontal bottom, or a slight inclination so as to promote the emptying of the installation, where appropriate.
  • the upper end of the inclined ramp 12 is provided to receive the particles of the tank 11, previously injected by the dispensing means 2.
  • This ramp is straight, inclined at an angle of between 5 and 60 °, preferably between 10 and 30 °, allowing the particles to be conveyed to the zone 14.
  • the carrier liquid 16 flows on this ramp 12, into the accumulation zone and transfer 14.
  • This liquid 16 is also set in motion by appropriate means , for example a pump 18.
  • This recirculation pump 18 thus ensures a movement of the liquid 16 so as to circulate it from the reservoir 11 to the accumulation and transfer zone 14, via the inclined ramp 12. Nevertheless, alternatively it can be envisaged to circulate a new liquid, via an open circuit.
  • the carrier liquid 16 is preferably deionized water, on which the particles 4 can float. It can also be a combination of several immiscible liquids. As a reminder, solvents of the chloroform or n-butanol type have surface tensions of the order of 26.67 and 24.93 mN / m at 25 ° C, respectively, while the deionized water has a surface tension of the order of 72 mN / m.
  • the interfacial tension gradients resulting from these differences in values induce hydrodynamic instabilities, which result in convection movements also known as Marangoni instabilities. The consequences of these convection movements are attenuated by means of the invention, which will be described below.
  • the lower end of the ramp 12 is connected to an inlet of the particle accumulation and transfer zone 14.
  • This inlet 22 is located at an inflection line 24 materializing the junction between the surface of the carrier liquid present on the inclined plane of the ramp 12, and the surface of the carrier liquid present on the horizontal portion of the zone 14.
  • the particle inlet 22 is spaced apart from a particle outlet 26 by means of two lateral flanges 28 holding the carrier liquid 16 in the zone 14. These flanges 28, opposite and at a distance from one another , extend parallel to a main direction of flow of the carrier liquid and particles in the installation, this direction being shown schematically by the arrow 30 on the figures 1 and 2 .
  • the flanges 28 preferably extend over the entire length of the conveyor 10, from the tank 11 to the zone 14. They are spaced in a transverse direction 31 of the installation, parallel to the surface of the liquid 16 and orthogonal to the main direction flow 30.
  • the three elements 11, 12, 14 of the conveyor 10 therefore each have the shape of a corridor or an open path at its entry and exit, even if other geometries could be adopted, without departing from the scope of the invention. 'invention.
  • the bottom of the downstream portion of the zone 14 has a plate slightly inclined upstream relative to the horizontal direction, for example a value of the order of 5 to 10 °. It is the downstream end of this same plate, also called “blade”, which partly defines the output of the particles 26.
  • the installation 1 is also provided with a substrate conveyor 36, for putting the substrate 38 in motion.
  • This substrate can be rigid or flexible. In the latter case, it can be set in motion on a roll 40 whose axis is parallel to the outlet 26 of the zone 14, near which it is located. Indeed, the substrate 38 is intended to run very close to the outlet 26, so that the particles reaching this outlet can be easily transferred to this substrate, via a capillary bridge 42, also called meniscus, which connects it to the carrier liquid 16.
  • the capillary bridge 42 is provided between the carrier liquid 16 which is located at the outlet 26, and a portion of the substrate 38 conforming to the guide / driving roll 40.
  • the substrate may be in direct contact with the the transfer zone, without departing from the scope of the invention. The capillary bridge mentioned above is then no longer required.
  • the substrate is rigid and the objects to be transferred are also rigid and can not adapt to an angle break during transfer, it may be advantageous to immerse the substrate in the liquid of the accumulation zone and transfer 14, and draw in this configuration. This makes it possible to maximize the angle formed between the horizontal plane of the liquid of the zone 14, and the plane of the substrate.
  • the width of the substrate corresponds to the width of the zone 14 and its outlet 26. It is a width that also corresponds to the maximum width of the particle film that is possible to deposit on the substrate. This width can be of the order of 25 to 30 cm. The width of the substrate on which the particles must be deposited may however be less than the width of the zone 14.
  • the installation 1 also comprises a structure 50 for the deflection of the particles 4, this structure being arranged at the reservoir 11, downstream of the dispensing means 2 in the main direction of flow 30.
  • the deflection structure 50 passes through the surface of the carrier liquid 16. It is configured to favor, in the transverse direction 31, a spreading of the particles 4 at the outlet of the reservoir 11. To do this, the structure 50 extends all along the carrier liquid in the transverse direction 31, between a first and second end opposite in the same direction 31. It has a general shape defining at least a convex portion 50a seen from an outlet of the tank, the dispensing means 2 being arranged just downstream of this convex part. As is best seen on the figure 2 , the structure 50 has a generally parabolic shape, with the convex portion 50a corresponding to its vertex.
  • the parabolic structure 50 extends downstream and towards the rims 28 to the vicinity of the outlet of the reservoir, which makes it possible to spread the particles 4 in direction 31 before these do not reach the inclined ramp 12.
  • the density of the particles 4 would be greater in the center than on the edges of this tank 11.
  • the deflecting structure 50 is permeable to the carrier liquid. This function is provided by alternating between its first and second ends, obstacles 52 and spaces 54 separating these obstacles.
  • the Figures 3 and 4 show an exemplary embodiment in which the obstacles 52 are screw rods screwed onto a support plate 56, resting for example in the bottom of the tank. This plate 56 is thus pierced with holes each receiving a screw 52, these holes being made along a fictitious line of parabolic shape, corresponding to that desired for the structure 50.
  • the obstacles 52 are implanted with a pitch "p" of about 5 mm.
  • the deflecting structure 50 is made so as to have, on the surface of the liquid 16, an aperture rate close to 0.5. This opening ratio corresponds to the ratio between the sum of the lengths "d1" of the spaces 54, and the sum of the lengths "d1" and lengths "d2" of the screw rods 52 corresponding to their diameter, for example of the order 3 mm.
  • the screw rods 52 and the support plate 56 are preferably made of hydrophobic material, for example of polymeric material.
  • the obstacles 52 could be connected to an upper support 56, in the manner of a comb.
  • the support 56 would then no longer be immersed in the carrier liquid traversed by the rods 52, but located above this liquid being for example connected to the edges 28 of the conveyor.
  • the walls 62 which also cross the surface of the liquid 16, further inhibit the propagation of hydrodynamic instabilities.
  • These permeable walls 62 are made in a substantially identical manner or similar to the structure 50, namely by obstacles and spaces allowing the passage of the carrier liquid. Also, all the characteristics described for the structure 50 are applicable to the walls 62 delimiting the compartments 60, whose area on the surface of the liquid 16 may be between 2 and 500 cm 2 .
  • the walls 62 may be made by screw rods traversing the surface of the carrier liquid, and screwed into corresponding holes made through the support plate 56 also carrying the deflecting structure 50.
  • the shape of the compartments 60 may vary. In the example shown, some walls 62 delimiting several compartments have a parabolic shape substantially homothetic with that of the deflecting structure 50.
  • the walls 62 being arranged downstream of the dispensing means 2 of the particles 4, they can therefore be passed through these walls 62 before arriving at the entrance of the ramp 12.
  • instabilities and particles can traverse structure 50 from downstream to upstream. This is a temporary phenomenon since the flow of carrier liquid pushes the assembly towards the inclined plane, downstream.
  • the advantage of such a situation is to take advantage of the upstream structure 50 to further deconflect the instabilities.
  • the profile of the structure 50 for example parabolic, circular, V, sinusoidal, etc., deforms the surface current lines to promote the spreading of the particles and instabilities according to the width 31.
  • Another feature of the invention lies in the provision, arranged at a junction 73 between the reservoir 11 and the inclined ramp 12, means 70 for raising the liquid level 16 by capillary effect. It is noted that this junction 73 between the reservoir 11 and the ramp 12 is located at a point of inflection of the liquid between these two elements of the conveyor 10.
  • These means 70 preferably made by a transverse barrier of pads 72 spaced from each other, for locally raising the level of the carrier liquid 16, just before entering the inclined ramp 12.
  • This barrier is shown in more detail on the Figures 8 and 9 .
  • the pads 72 which constitute it in fact allow the creation of a transverse bead of liquid 74 at the junction between the reservoir 11 and the ramp 12, and this by capillary effect compensating for the weight of this carrier liquid.
  • This technique aimed at creating the bead 74 projecting upwards, further attenuates the phenomenon of variation in the thickness of the liquid resulting from the interfacial tension gradients between this liquid 16 and the solution containing the particles 4 The risks of dewetting of the ramp 12 are thus further reduced by the implementation of this arrangement.
  • the pads 72 are arranged over the entire width of the tank 11, in the direction 31. They are implanted with a pitch "p" of about 2 to 4 mm.
  • the pads are generally conical, with the base downwards, width / diameter "d3" of about 2 mm, and a height “h” of between 2 and 3 mm.
  • These pads are made of hydrophobic material, for example silicone.
  • the injection nozzle 6 is activated to begin the dispensing of the particles 4 into the tank 11. This involves carrying out an initial step of filling the accumulation and transfer zone 14, by the particles 4, with the carrier liquid 16 already at the required level in the zone 14. This step is schematized on the figures 10a and 10b .
  • the dispensed particles 4 are guided by the structure 50 and pass through the compartments when they are provided in the tank 11, before reaching the ramp 12. The particles 4 then enter the zone 14 in which they disperse.
  • the upstream front of these particles tends to shift upstream, in the direction of the inflection line 24.
  • the injection of particles is continued even after this upstream front has passed the line 24, so that it rises on the inclined ramp 12.
  • the distance "d4" can be of the order of 30 mm.
  • the particles 4 are ordered in the zone 14 and on the ramp 12, on which they are automatically ordered without assistance, thanks in particular to their kinetic energy and the capillary forces used at the time of impact on the front 55
  • the scheduling is such that the first compact film obtained has a so-called "compact hexagonal" structure in the case of spheres, in which each particle 4 is surrounded and contacted by six other particles 4 in contact with each other. It is then indifferently spoken of compact film of particles, or film of ordered particles.
  • the ordered particles 4 forming the film cover the entirety of the carrier liquid located in zone 14, it may be proceeded with a structuring step of this film, which will not be detailed here, but which is known to the skilled person. It consists for example in the placing of objects on the compact film.
  • the structuring could be carried out after the deposition of the film on the substrate, without departing from the scope of the invention.
  • thermal annealing subsequent to the transfer.
  • This thermal annealing is for example carried out at 80 ° C, using a low-temperature matt rolling film based on polyester, for example sold under the reference PERFEX-MATTT TM, 125 ⁇ m thick.
  • the substrate 38 may be of the silicon, glass or piezoelectric film type.
  • the particle injection and the rate of travel of the substrate are adjusted so that the particle front remains in a substantially identical position.
  • the particle flow rate can be of the order of 0.1 ml / min to several ml / min, while the linear speed of the substrate 38, also called pulling speed, can be of the order of 0 , 1 cm / min to 100 cm / min.
  • This high pulling speed which can be more than 30% higher than the maximum speeds possible with the prior art installations, is obtained in particular by virtue of the circulation of the carrier liquid through the permeable deflecting structure 50, and thanks to the realization, by capillary effect, of the bead of liquid before its introduction on the inclined ramp 12.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

    DOMAINE TECHNIQUE
  • L'invention se rapporte au domaine des installations et des procédés pour la formation d'un film compact de particules à la surface d'un liquide porteur, le film compact obtenu étant généralement destiné à être déposé sur un substrat, de préférence en défilement.
  • Plus précisément, l'invention concerne la formation d'un film compact de particules, également dit film de particules ordonnées, de préférence du type monocouche et dont la taille des particules peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme sphérique, peuvent par exemple être des particules de silice.
  • L'invention se rapporte à la formation de films compacts simples, ou bien à la formation de films compacts structurés, cette structuration visant à mettre le film en forme afin par exemple d'y intégrer d'autres particules, et/ou des objets. Une autre possibilité consiste à prévoir des zones évidées de particules, entourées par le film qui reste ordonné. Dans le cas de l'intégration d'objets dans le film, il s'agit en particulier de fabriquer des dispositifs à caractère hybride, comme par exemple des capteurs. A titre indicatif, un dispositif hybride associe par définition sur un même substrat des objets ayant diverses fonctions, par exemple électroniques, optiques, électro-optiques, piézo-électriques, thermoélectriques, mécaniques, etc.
  • Les objets à intégrer au film de particules sont par exemple :
    • des composants électroniques actifs, tels que des transistors, microprocesseurs, circuits intégrés, etc. ;
    • des composants passifs de l'électronique, comme des résistances, capacités, diodes, photodiodes, bobines, pistes conductrices, préformes de soudure, etc. ;
    • des composants optiques, tels que des lentilles, microlentilles, réseaux de diffraction, filtres, etc. ;
    • des piles, micro-piles, micro-batteries, photo-détecteurs, cellules solaires, système RFID, etc. ;
    • des particules ou agrégats nano ou micrométriques, actifs ou passifs, par exemple du type oxydes, polymères, métaux, semi-conducteurs, Janus (particules ayant deux faces de natures ou propriétés différentes), nanotubes, etc.
  • Plus généralement, l'invention présente des applications dans de nombreux domaines comme les piles à combustible, l'optique, la photonique, le revêtement de polymère, les puces, les MEMs, l'électronique organique et photovoltaïque, les échangeurs de chaleur, les capteurs, la tribologie, etc.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • De nombreuses techniques sont connues pour la formation et le dépôt de films compacts de particules sur un substrat, ce dernier étant ou non en défilement, et de nature souple ou rigide.
  • De manière générale, il est prévu une zone d'accumulation et de transfert alimentée en particules, qui flottent sur un liquide porteur contenu dans cette même zone. Les particules ordonnées dans la zone de transfert, formant une monocouche de particules dite film de faible épaisseur, sont poussées par l'arrivée d'autres particules ainsi que par la circulation du liquide porteur, vers une sortie de cette zone par laquelle elles atteignent le substrat. Elles se déposent ensuite sur le substrat en défilement. Pour ce faire, un pont capillaire assure habituellement la liaison entre le substrat et le liquide porteur contenu dans la zone d'accumulation et de transfert.
  • En régime normal de fonctionnement de l'installation, dans la zone d'accumulation et de transfert, les particules sont maintenues ordonnées grâce notamment à la pression exercée en amont par les particules en déplacement destinées à rejoindre ultérieurement cette zone de transfert. La cohésion de l'ordonnancement des particules est en outre assurée par des forces faibles de type capillaire ou électrostatique. Lorsque la zone de transfert de particules est reliée vers l'amont à une rampe inclinée sur laquelle défilent les particules issues d'un dispositif de dispense, ce sont ces mêmes particules présentes sur la rampe inclinée qui exercent une pression sur les particules contenues dans la zone de transfert, et qui permettent donc, en coopération avec les forces capillaires de proximité, de conserver l'ordonnancement des particules dans cette zone, jusqu'au dépôt sur le substrat, par capillarité ou contact direct.
  • A cet égard, il est noté que la technique d'ordonnancement des particules par compression est notamment connue du document Lucio Isa et al., "Particle Lithography from Colloidal Self-Assembly at Liquid_Liquid Interfaces", acsnano, VOL. 4 ▪ No. 10 ▪ 5665-5670 ▪ 2010, du document Markus Retsch, « Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface", Macromol. Chem. Phys. 2009, 210, 230-241, ou encore du document Maria Bardosova, « The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres", Adv. Mater. 2010, 22, 3104-3124. La technique par compression à l'aide d'une rampe inclinée est quant à elle décrite plus précisément dans le document CA 2 695 449 . Avec cette technique particulière, c'est l'énergie cinétique associée aux particules en mouvement sur la rampe qui permet à celles-ci de s'ordonner automatiquement sur cette même rampe, lorsqu'elles impactent le front de particules, lui aussi situé sur la rampe inclinée. L'ordonnancement est donc établi sur la rampe, puis conservé lorsque les particules ordonnées pénètrent dans la zone de transfert, grâce à l'alimentation en continu des particules venant impacter le front.
  • L'énergie cinétique nécessaire à l'auto-ordonnancement des particules est ici amenée par la rampe inclinée transportant le liquide porteur et les particules. A cet égard, il est noté que les particules sont généralement en solution dans le dispositif de dispense. Ce dernier est agencé pour délivrer les particules à la surface du liquide porteur, au niveau d'une zone formant réservoir placée en amont de la rampe inclinée et communiquant avec l'entrée de celle-ci.
  • En fonction de la composition de la solution et de celle du liquide porteur, ceux-ci peuvent être non miscibles ou très peu miscibles, et leurs tensions de surface respectives peuvent également différer. C'est notamment le cas lorsque la solution contient un ou plusieurs solvants du type chloroforme ou n-butanol, dont les tensions de surface respectives sont de 26,67 et 24,93 mN/m à 25°C, et que le liquide porteur est de l'eau déionisée avec une tension de surface de l'ordre de 72 mN/m à la même température.
  • Dans ce cas, lorsque la solution contenant les particules est dispensée à la surface du liquide porteur présent dans la zone formant réservoir, il survient alors des gradients de tension interfaciale induisant des instabilités hydrodynamiques dont les conséquences sont de fortes variations de l'épaisseur du liquide. Les mouvements de convection observés dans ces conditions sont connus sous le nom d'instabilités de Marangoni.
  • Ce phénomène, non linéaire, peut être à l'origine d'un démouillage de la rampe inclinée. En effet, en particulier lorsque le débit d'injection de la solution contenant les particules dépasse un certain seuil, des zones sèches peuvent apparaitre sur la rampe inclinée, pourtant censée être mouillée entièrement par le mélange de liquide porteur et de la solution. Ces zones sèches, directement provoquées par les instabilités hydrodynamiques observées en amont dans la zone formant réservoir, perturbent donc de façon durable l'écoulement laminaire du liquide porteur sur la rampe inclinée. En conséquence, l'organisation des particules dans la zone d'accumulation et de transfert peut être profondément altérée.
  • Ce phénomène est d'autant plus accentué que le débit de particules en solution est élevé. Ce constat est problématique car l'augmentation du débit de particules permet l'accélération de la vitesse de tirage du substrat, et donc une hausse de rendement. Aussi, il existe un besoin d'optimisation des installations et des procédés décrits ci-dessus, en particulier pour le dépôt à vitesses élevées de films compacts sur substrats en défilement.
  • EXPOSÉ DE L'INVENTION
  • L'invention a donc pour but de répondre au moins partiellement au besoin identifié ci-dessus. Pour ce faire, l'invention a tout d'abord pour objet une installation pour la formation d'un film compact de particules à la surface d'un liquide porteur, l'installation comportant :
    • une zone formant réservoir de liquide porteur ;
    • une rampe inclinée située dans le prolongement de la zone formant réservoir et sur laquelle les particules sont destinées à circuler par gravité ;
    • une zone d'accumulation et de transfert de particules située dans le prolongement de la rampe inclinée ;
    • des moyens de mise en mouvement du liquide porteur destinés à le faire circuler de la zone formant réservoir à la zone d'accumulation et de transfert de particules, en passant par la rampe inclinée ; et
    • des moyens de dispense des particules en solution, configurés pour dispenser lesdites particules à la surface du liquide porteur dans la zone formant réservoir.
  • Selon l'invention, l'installation comporte en outre, agencés au niveau d'une jonction entre la zone formant réservoir et la rampe inclinée, des moyens d'élévation du niveau de liquide porteur par effet capillaire.
  • Aussi, l'invention est remarquable en ce qu'elle prévoit des moyens permettant de surélever localement le niveau de liquide porteur juste avant son entrée sur la rampe inclinée, et ce par effet capillaire compensant le poids de ce liquide porteur. Cette technique permet d'atténuer le phénomène de variation de l'épaisseur du liquide, résultant des gradients de tension interfaciale entre le liquide porteur et la solution comportant les particules. En atténuant les conséquences de ces instabilités hydrodynamiques à l'entrée de la rampe inclinée, les risques de démouillage de celle-ci sont largement réduits. En d'autres termes, le but des moyens d'élévation est d'augmenter le niveau du liquide porteur et donc éloigner les instabilités du fond, et modifier ainsi les lignes de flux du liquide porteur afin de favoriser l'étalement dans la largeur.
  • Cela permet avantageusement d'augmenter le débit de particules et d'accélérer la vitesse de tirage du substrat, tout en limitant les risques de défaut d'ordonnancement de particules au sein de la zone d'accumulation et de transfert. En d'autres termes, l'installation selon l'invention permet de supprimer/limiter les risques de zones sèches sur la rampe inclinée, tout en fonctionnant avec des rendements élevés.
  • L'invention comporte au moins l'une des caractéristiques optionnelles suivantes, prises isolément ou en combinaison.
  • Lesdits moyens d'élévation du niveau de liquide porteur par effet capillaire sont constitués d'une barrière de plots espacés les uns des autres.
  • Ces moyens d'élévation peuvent être complétés par une seconde barrière de plot décalée par rapport à la première, selon la direction principale d'écoulement du liquide.
  • Les moyens d'élévation peuvent être positionnés par suspension à une pièce, elle-même émergée du flux, via un peigne par exemple. Aussi, les plots ne touchent pas forcément le fond de la zone formant réservoir.
  • Lesdits plots sont implantés avec un pas d'environ 2 à 4 mm. Ils sont de forme générale conique, pyramidale ou tubulaire. D'autres formes peuvent néanmoins être envisagées, notamment une forme cylindrique, avec la section pouvant être carrée, triangulaire, polygonale ou encore une section variable sur la hauteur du plot.
  • Les plots sont réalisés en matériau hydrophobe, par exemple en silicone.
  • Les plots présentent un rapport entre leur hauteur et leur largeur maximale compris entre 1 et 30.
  • Les plots présentent une base de largeur d'environ 2 mm et une hauteur comprise entre 2 et 3 mm.
  • Lesdits moyens d'élévation du niveau de liquide porteur par effet capillaire s'étendent tout le long du liquide porteur, selon une direction transversale de l'installation parallèle à la surface du liquide porteur et orthogonale à une direction principale d'écoulement du liquide porteur de la zone formant réservoir à la zone d'accumulation et de transfert de particules, en passant par la rampe inclinée.
  • L'installation comporte un substrat pour le dépôt du film compact de particules, ledit substrat étant en regard d'une sortie de particules de ladite zone d'accumulation et de transfert.
  • L'installation est configurée pour assurer un dépôt du film compact de particules sur un substrat en défilement, ledit substrat étant souple ou rigide.
  • Selon un autre aspect de l'invention, l'installation comporte en outre une structure pour la déflection des particules, traversant la surface du liquide porteur dans la zone formant réservoir, ladite structure étant agencée en aval desdits moyens de dispense des particules selon la direction principale d'écoulement du liquide porteur, ladite structure étant configurée pour favoriser, selon la direction transversale de l'installation, un étalement des particules en sortie de la zone formant réservoir, ladite structure pour la déflection des particules étant perméable au liquide porteur. Aussi, cette structure permet de diviser, répartir et ralentir la progression des perturbations de Marangoni.
  • L'invention a également pour objet un procédé de formation d'un film compact de particules à la surface d'un liquide porteur, à l'aide d'une l'installation telle que décrite ci-dessus. Ce procédé comprend une étape de mise en mouvement du liquide porteur de manière à le faire circuler de la zone formant réservoir à la zone d'accumulation et de transfert de particules, en passant par la rampe inclinée, ainsi qu'une étape de dispense des particules en solution à la surface du liquide porteur en mouvement, dans la zone formant réservoir, ladite étape de mise en mouvement du liquide porteur étant réalisée de manière à engendrer, par effet capillaire au niveau desdits moyens d'élévation, un bourrelet de liquide porteur.
  • De préférence, le procédé est mis en oeuvre pour la formation d'un film compact de particules ayant une grande dimension comprise entre 1 nm et 500 µm. à titre d'exemples illustratifs, les particules/colloïdes employées peuvent être du type particules d'oxydes (SiO2, ZnO, Al2O3, etc.), polymères (latex, PMMA, polystyrène, etc.) ou métalliques (Au, Cu, alliages, etc.). Même si la gamme de dimension des particules est préférentiellement comprise entre 1 nm et 500 µm, il est également possible d'utiliser des fibres de verre, par exemple de diamètre de 10 µm, et de longueurs allant de 10 à 4000 µm, pourvu qu'elle soit inférieure à la distance séparant deux plots. D'autres particules du type silicium ou feuillets de graphène sont également envisageables, sans sortir du cadre de l'invention.
  • De préférence, le liquide porteur est de l'eau déionisée, et lesdites particules se trouvent en solution dans un solvant ayant une tension de surface inférieure à celle de l'eau déionisée, ledit solvant étant de préférence du n-butanol, méthanol, chloroforme, ou un mélange d'au moins deux d'entre eux.
  • D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
  • BRÈVE DESCRIPTION DES DESSINS
  • Cette description sera faite au regard des dessins annexés parmi lesquels :
    • la figure 1 montre une installation selon un mode de réalisation préféré de la présente invention, en coupe schématique prise le long de la ligne I-I de la figure 2 ;
    • la figure 2 représente une vue schématique de dessus de l'installation montrée sur la figure 1 ;
    • la figure 3 représente une vue en perspective d'un exemple de réalisation de la structure pour la déflection des particules, équipant l'installation montrée sur les figures précédentes ;
    • la figure 4 montre une vue de face agrandie d'une partie de la structure représentée sur la figure précédente ;
    • la figure 5 montre une vue schématique de face d'un autre exemple de réalisation de la structure pour la déflection des particules, équipant l'installation montrée sur les figures 1 et 2 ;
    • la figure 6 est une vue similaire à celle de la figure 3, avec la zone formant réservoir réalisée de façon multi-compartimentée ;
    • la figure 7 est une vue de dessus de celle montrée sur la figure 6 ;
    • la figure 8 est une vue agrandie de côté montrant la barrière de plots espacés équipant l'installation montrée sur les figures 1 et 2 ;
    • la figure 9 est une vue de face de celle montrée sur la figure 8 ; et
    • les figures 10a à 11b représentent schématiquement différentes étapes d'un procédé de formation et de dépôt d'un film compact de particules selon un mode de réalisation préféré de l'invention, mis en oeuvre à l'aide de l'installation montrée sur les figures précédentes.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
  • En référence tout d'abord aux figures 1 et 2, il est représenté une installation 1 pour la formation d'un film compact de particules et son transfert sur un substrat, de préférence en défilement.
  • L'installation 1 comporte des moyens 2 de dispense des particules 4 en solution. Ces particules ont une taille qui peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme sphérique, peuvent par exemple être des particules de silice. D'autres particules d'intérêt peuvent être faites de métal ou d'oxyde de métal comme le Platine, le TiO2, de polymère comme le polystyrène ou le PMMA, de carbone, etc.
  • Plus précisément, dans le mode de réalisation préféré, les particules sont des sphères de silice de diamètre compris entre 1 nm et 500 µm, et encore plus préférentiellement de l'ordre de 1 µm. Ces particules 4 sont stockées en solution dans les moyens 2. La proportion du milieu est d'environ 7 g de particules pour 200 ml de solution, ici du type butanol ou chloroforme. Naturellement, pour des raisons de clarté, les particules 4 ont été représentées avec un diamètre supérieur à leur diamètre réel.
  • Les moyens de dispense 2 présentent une buse d'injection commandable, d'environ 500 µm de diamètre.
  • L'installation comporte également un convoyeur liquide 10, recevant un liquide porteur 16 sur lequel les particules 4 sont destinées à flotter. Le convoyeur 10 intègre une zone formant réservoir 11, une rampe inclinée 12 de circulation des particules, et une zone 14 d'accumulation et de transfert des particules. La rampe 12 se situe dans le prolongement du réservoir 11, c'est-à-dire que son entrée est sensiblement confondue avec la sortie du réservoir. La zone d'accumulation et de transfert 14 se situe quant à elle dans le prolongement de la rampe inclinée, c'est-à-dire que son entrée est sensiblement confondue avec la sortie de la rampe, sur laquelle les particules sont destinées à circuler par gravité. Aussi, la rampe inclinée 12 établit une rupture de niveau entre le réservoir 11 et la zone d'accumulation et de transfert 14. Cette dernière présente un fond sensiblement horizontal, ou bien une légère inclinaison de façon à favoriser la vidange de l'installation, le cas échéant.
  • L'extrémité haute de la rampe inclinée 12 est prévue pour recevoir les particules du réservoir 11, préalablement injectées par les moyens de dispense 2. Cette rampe est droite, inclinée d'un angle compris entre 5 et 60°, de préférence entre 10 et 30°, permettant aux particules d'être acheminées vers la zone 14. De plus, le liquide porteur 16 circule sur cette rampe 12, jusque dans la zone d'accumulation et de transfert 14. Ce liquide 16 est d'ailleurs mis en mouvement par des moyens appropriés, par exemple une pompe 18. Cette pompe de recirculation 18 assure ainsi une mise en mouvement du liquide 16 de façon à le faire circuler du réservoir 11 à la zone d'accumulation et de transfert 14, en passant par la rampe inclinée 12. Néanmoins, il peut alternativement être envisagé de faire circuler un liquide neuf, via un circuit ouvert.
  • Le liquide porteur 16 est de préférence de l'eau déionisée, sur laquelle les particules 4 peuvent flotter. Il peut aussi s'agir d'une association de plusieurs liquides non-miscibles. Pour rappel, les solvants du type chloroforme ou n-butanol présentent des tensions de surface de l'ordre de 26,67 et 24,93 mN/m à 25°C, respectivement, tandis que l'eau déionisée présente une tension de surface de l'ordre de 72 mN/m. Les gradients de tension interfaciale résultant de ces différences de valeurs induisent des instabilités hydrodynamiques, qui se traduisent par des mouvements de convection également connus sous le nom d'instabilités de Marangoni. Les conséquences de ces mouvements de convection sont atténuées par des moyens propres à l'invention, qui seront décrits ci-après.
  • De retour au convoyeur 10, il est noté que l'extrémité basse de la rampe 12 est raccordée à une entrée de la zone d'accumulation et de transfert de particules 14. Cette entrée 22 se situe au niveau d'une ligne d'inflexion 24 matérialisant la jonction entre la surface du liquide porteur présent sur le plan incliné de la rampe 12, et la surface du liquide porteur présent sur la partie horizontale de la zone 14.
  • L'entrée de particules 22 est espacée d'une sortie de particules 26 à l'aide de deux rebords latéraux 28 retenant le liquide porteur 16 dans la zone 14. Ces rebords 28, en regard et à distance l'un de l'autre, s'étendent parallèlement à une direction principale d'écoulement du liquide porteur et des particules dans l'installation, cette direction étant schématisée par la flèche 30 sur les figures 1 et 2. Les rebords 28 s'étendent de préférence sur toute la longueur du convoyeur 10, du réservoir 11 à la zone 14. Ils sont espacés selon une direction transversale 31 de l'installation, parallèle à la surface du liquide 16 et orthogonale à la direction principale d'écoulement 30.
  • Les trois éléments 11, 12, 14 du convoyeur 10 présentent donc chacun la forme d'un couloir ou d'un chemin ouvert à son entrée et à sa sortie, même si d'autres géométries pourraient être adoptées, sans sortir du cadre de l'invention.
  • Le fond de la partie aval de la zone 14 présente un plateau légèrement incliné vers l'amont par rapport à la direction horizontale, par exemple d'une valeur de l'ordre de 5 à 10°. C'est l'extrémité aval de ce même plateau, également dénommé « blade », qui définit en partie la sortie des particules 26.
  • L'installation 1 est également pourvue d'un convoyeur de substrat 36, destiné à mettre le substrat 38 en défilement. Ce substrat peut être rigide ou souple. Dans ce dernier cas, il peut être mis en mouvement sur un rouleau 40 dont l'axe est parallèle à la sortie 26 de la zone 14, à proximité de laquelle il se situe. En effet, le substrat 38 est destiné à défiler de manière très rapprochée de la sortie 26, afin que les particules atteignant cette sortie puisse être transférées aisément sur ce substrat, via un pont capillaire 42, également dénommé ménisque, qui le relie au liquide porteur 16. Le pont capillaire 42 est assuré entre le liquide porteur 16 qui se situe au niveau de la sortie 26, et une partie du substrat 38 épousant le rouleau de guidage / d'entraînement 40. Alternativement, le substrat peut être au contact directement de la zone de transfert, sans sortir du cadre de l'invention. Le pont capillaire mentionné ci-dessus n'est alors plus requis.
  • A titre informatif, dans le cas où le substrat est rigide et les objets à transférer sont également rigides et ne peuvent s'adapter à une rupture d'angle lors du transfert, il peut être avantageux d'immerger le substrat dans le liquide de la zone d'accumulation et de transfert 14, et d'effectuer le tirage dans cette configuration. Ceci permet de maximiser l'angle formé entre le plan horizontal du liquide de la zone 14, et le plan du substrat.
  • Dans l'exemple montré sur les figures, la largeur du substrat correspond à la largeur de la zone 14 et de sa sortie 26. Il s'agit d'une largeur qui correspond aussi à la largeur maximale du film de particules qu'il est possible de déposer sur le substrat. Cette largeur peut être de l'ordre de 25 à 30 cm. La largeur du substrat sur lequel doivent être déposées les particules peut cependant être inférieure à la largeur de la zone 14.
  • L'installation 1 comporte également une structure 50 pour la déflection des particules 4, cette structure étant agencée au niveau du réservoir 11, en aval des moyens de dispense 2 selon la direction principale d'écoulement 30.
  • La structure de déflection 50 traverse la surface du liquide porteur 16. Elle est configurée pour favoriser, selon la direction transversale 31, un étalement des particules 4 en sortie du réservoir 11. Pour ce faire, la structure 50 s'étend tout le long du liquide porteur selon la direction transversale 31, entre une première et une seconde extrémité opposées selon cette même direction 31. Elle dispose d'une forme générale définissant au moins une partie convexe 50a vue depuis une sortie du réservoir, les moyens de dispense 2 étant agencés juste en aval de cette partie convexe. Comme cela est le mieux visible sur la figure 2, la structure 50 dispose d'une forme générale parabolique, avec la partie convexe 50a correspondant à son sommet. Aussi, depuis ce sommet, la structure parabolique 50 s'étend vers l'aval et vers les rebords 28 jusqu'à proximité de la sortie du réservoir, ce qui permet d'étaler les particules 4 selon la direction 31 avant que celles-ci n'atteignent la rampe inclinée 12. Au niveau de la sortie du réservoir 11 alimentant la rampe 12, sans cette structure 50, la densité des particules 4 serait plus importante au centre que sur les bords de ce réservoir 11.
  • L'une des particularités de l'invention réside dans le fait que la structure déflectrice 50 est perméable au liquide porteur. Cette fonction est assurée par une alternance, entre ses première et seconde extrémités, d'obstacles 52 et d'espaces 54 séparant ces obstacles. Les figures 3 et 4 montrent un exemple de réalisation dans lequel les obstacles 52 sont des tiges de vis vissées sur une plaque de support 56, reposant par exemple dans le fond du réservoir. Cette plaque 56 est ainsi percée de trous recevant chacun une vis 52, ces trous étant pratiqués le long d'une ligne fictive de forme parabolique, correspondant à celle souhaitée pour la structure 50.
  • Les obstacles 52 sont implantés avec un pas « p » d'environ 5 mm. De plus, la structure déflectrice 50 est réalisée de façon à présenter, à la surface du liquide 16, un taux d'ouverture proche de 0,5. Ce taux d'ouverture correspond au rapport entre la somme des longueurs « d1 » des espaces 54, et la somme des longueurs « d1 » et des longueurs « d2 » des tiges de vis 52 correspondant à leur diamètre, par exemple de l'ordre de 3 mm.
  • Les tiges de vis 52 et la plaque de support 56 sont préférentiellement réalisées en matériau hydrophobe, par exemple en matériau polymère.
  • Aussi, lorsque le liquide 16 est mis en mouvement dans le réservoir 11 en direction de la rampe 12, il passe au travers des espaces 54 et bute contre les tiges de vis 52, de sorte à étaler et ralentir les instabilités de Marangoni. Les risques de démouillage de la rampe 12 sont ainsi considérablement réduits, même lorsque les tensions de surface diffèrent largement entre le liquide porteur et la solution intégrant les particules.
  • Selon une alternative de réalisation montrée sur la figure 5, les obstacles 52 pourraient être reliés à un support supérieur 56, à la manière d'un peigne. Le support 56 ne serait alors plus plongé dans le liquide porteur traversé par les tiges 52, mais situé au-dessus de ce liquide en étant par exemple raccordé aux rebords 28 du convoyeur.
  • Quelle que soit la solution retenue, celle-ci peut être complétée par la réalisation, dans le réservoir 11 en aval de la structure déflectrice 50, d'au moins un compartiment 60 délimité par une paroi 62 perméable au liquide porteur 16. Un tel arrangement est représenté sur les figures 6 et 7, sur lesquelles le réservoir 11 est multi-compartimenté en aval de la structure déflectrice 50.
  • Les parois 62, qui traversent également la surface du liquide 16, permettent de freiner encore davantage la propagation des instabilités hydrodynamiques. Ces parois perméables 62 sont réalisées d'une manière sensiblement identique ou similaire à la structure 50, à savoir par des obstacles et des espaces permettant le passage du liquide porteur. Aussi, toutes les caractéristiques décrites pour la structure 50 sont applicables aux parois 62 délimitant les compartiments 60, dont la superficie à la surface du liquide 16 peut être comprise entre 2 et 500 cm2. En particulier, les parois 62 peuvent être réalisées par des tiges de vis traversant la surface du liquide porteur, et vissées dans des trous correspondants pratiqués à travers la plaque de support 56 portant également la structure déflectrice 50.
  • La forme des compartiments 60 peut varier. Dans l'exemple représenté, certaines parois 62, délimitant plusieurs compartiments, présentent une forme parabolique sensiblement homothétique de celle de la structure déflectrice 50.
  • Les parois 62 étant agencées en aval des moyens de dispense 2 des particules 4, celles-ci peuvent par conséquent être amenées à traverser ces parois 62 avant d'arriver à l'entrée de la rampe 12.
  • Il est noté que les instabilités et les particules peuvent traverser la structure 50 de l'aval vers l'amont. Ceci est un phénomène provisoire puisque le flux de liquide porteur repousse l'ensemble vers le plan incliné, vers l'aval. L'avantage d'une telle situation est de profiter également de la structure 50 amont pour déconfiner davantage les instabilités. De plus, le profil de la structure 50, par exemple parabolique, circulaire, en V, sinusoïdal, etc., déforme les lignes de courant en surface pour favoriser l'étalement des particules et instabilités selon la largeur 31.
  • Une autre particularité de l'invention réside dans le fait de prévoir, agencés au niveau d'une jonction 73 entre le réservoir 11 et la rampe inclinée 12, des moyens 70 d'élévation du niveau de liquide 16 par effet capillaire. Il est noté que cette jonction 73 entre le réservoir 11 et la rampe 12 se situe au niveau d'un point d'inflexion du liquide entre ces deux éléments du convoyeur 10.
  • Ces moyens 70, de préférence réalisés par une barrière transversale de plots 72 espacés les uns des autres, permettant de surélever localement le niveau de liquide porteur 16, juste avant son entrée sur la rampe inclinée 12. Cette barrière est représentée plus en détail sur les figures 8 et 9. Les plots 72 qui la constituent permettent en effet la création d'un bourrelet transversal de liquide 74 à la jonction entre le réservoir 11 et la rampe 12, et ce par effet capillaire compensant le poids de ce liquide porteur. Cette technique, visant à la création du bourrelet 74 en saillie vers le haut, permet d'atténuer encore davantage le phénomène de variation de l'épaisseur du liquide, résultant des gradients de tension interfaciale entre ce liquide 16 et la solution comportant les particules 4. Les risques de démouillage de la rampe 12 sont donc encore réduits par la mise en oeuvre de cet agencement.
  • Les plots 72 sont agencés sur toute la largeur du réservoir 11, selon la direction 31. Ils sont implantés avec un pas « p' » d'environ 2 à 4 mm. Les plots sont de forme générale conique, avec la base située vers le bas, de largeur / diamètre « d3 » d'environ 2 mm, et une hauteur « h » comprise entre 2 et 3 mm. Ces plots sont réalisés en matériau hydrophobe, par exemple en silicone.
  • Un procédé de formation et de dépôt d'un film compact de particules selon un mode de réalisation préféré de l'invention va maintenant être décrit en référence aux figures 10a à 11b.
  • Tout d'abord, la buse d'injection 6 est activée pour débuter la dispense des particules 4 dans le réservoir 11. Il s'agit de mettre en oeuvre une étape initiale de remplissage de la zone d'accumulation et de transfert 14, par les particules 4, avec le liquide porteur 16 déjà au niveau requis dans la zone 14. Cette étape est schématisée sur les figures 10a et 10b.
  • Durant cette phase d'amorçage, les particules dispensées 4 sont guidées par la structure 50 et traversent les compartiments lorsque ceux-ci sont prévus dans le réservoir 11, avant d'atteindre la rampe 12. Les particules 4 pénètrent ensuite dans la zone 14 dans laquelle elles se dispersent.
  • Au fur et à mesure que les particules 4 sont injectées et pénètrent dans la zone d'accumulation et de transfert 14, elles viennent en butée contre le substrat 38, puis le front amont de ces particules a tendance à se décaler vers l'amont, en direction de la ligne d'inflexion 24. L'injection de particules est poursuivie même après que ce front amont ait dépassé la ligne 24, afin qu'il remonte sur la rampe inclinée 12.
  • Effectivement, il est fait en sorte que le front amont de particules 55 remonte sur la rampe 12 de manière à ce qu'il se situe à une distance horizontale « d4 » donnée de la ligne d'inflexion 24, comme montré sur la figure 11a. La distance « d4 » peut être de l'ordre de 30 mm.
  • A cet instant représenté sur les figures 11a et 11b, les particules 4 sont ordonnées dans la zone 14 et sur la rampe 12, sur laquelle elles s'ordonnent automatiquement, sans assistance, grâce notamment à leur énergie cinétique et aux forces capillaires mises à profit au moment de l'impact sur le front 55. L'ordonnancement est tel que le premier film compact obtenu présente une structure dite « hexagonale compacte » dans le cas de sphères, dans laquelle chaque particule 4 est entourée et contactée par six autres particules 4 en contact entre elles. Il est alors indifféremment parlé de film compact de particules, ou de film de particules ordonnées.
  • Une fois que les particules ordonnancées 4 formant le film recouvrent l'intégralité du liquide porteur situé dans la zone 14, il peut être procédé à une étape de structuration de ce film, qui ne sera pas détaillée ici, mais qui est connue de l'homme du métier. Elle consiste par exemple en la mise en place d'objets sur le film compact.
  • Ensuite, il est procédé à la mise en mouvement du substrat 38, initié dès que le front 55 a atteint le niveau requis représenté sur la figure 11a, et après l'éventuel processus de structuration évoqué ci-dessus. Alternativement, la structuration pourrait s'effectuer après le dépôt du film sur le substrat, sans sortir du cadre de l'invention.
  • Lorsque le substrat 38 commence à défiler, le film de particules 4 s'y dépose en passant à travers la sortie 26 et en empruntant le pont capillaire 42, à la manière de celle décrite dans le document CA 2 695 449 . Une solution par contact plutôt que par pont capillaire est également envisageable, sans sortir du cadre de l'invention.
  • Pour faciliter le dépôt et l'adhérence des particules 4 sur le substrat 38, de préférence réalisé en polymère, il est prévu un recuit thermique postérieurement au transfert. Ce recuit thermique est par exemple réalisé à 80°C, en utilisant un film mat de laminage basse température à base de polyester, par exemple commercialisé sous la référence PERFEX-MATTT™, d'épaisseur 125µm.
  • L'avantage d'un tel film en tant que substrat est que l'une de ses faces devient collante à la température de l'ordre de 80°C, ce qui permet de faciliter l'adhérence des particules 4 sur celle-ci. Plus précisément, à cette température, les particules 4 s'enfoncent dans le film ramolli 38, et permettent ainsi un contact direct avec le film, qui conduit à leur collage.
  • Alternativement, le substrat 38 peut être du type silicium, verre, ou encore film piézoélectrique.
  • Au cours de la formation du film et du transfert, l'injection de particules et la vitesse de défilement du substrat sont réglées de sorte que le front de particules reste dans une position sensiblement identique. Pour ce faire, le débit de particules peut être de l'ordre de 0,1 ml/min à plusieurs ml/min, tandis que la vitesse linéaire du substrat 38, également dénommée vitesse de tirage, peut être de l'ordre de 0,1 cm/min à 100 cm/min. Cette vitesse de tirage élevée, qui peut être supérieure de plus de 30% par rapport aux vitesses maximales possibles avec les installations de l'art antérieur, est obtenue en particulier grâce à la circulation du liquide porteur à travers la structure déflectrice perméable 50, et grâce à la réalisation, par effet capillaire, du bourrelet de liquide avant son introduction sur la rampe inclinée 12.
  • Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims (13)

  1. Installation (1) pour la formation d'un film compact de particules (4) à la surface d'un liquide porteur (16), l'installation comportant :
    - une zone (11) formant réservoir de liquide porteur ;
    - une rampe inclinée (12) située dans le prolongement de la zone formant réservoir et sur laquelle les particules sont destinées à circuler par gravité ;
    - une zone d'accumulation et de transfert de particules (14) située dans le prolongement de la rampe inclinée ;
    - des moyens (18) de mise en mouvement du liquide porteur destinés à le faire circuler de la zone formant réservoir à la zone d'accumulation et de transfert de particules, en passant par la rampe inclinée ; et
    - des moyens de dispense (2) des particules en solution, configurés pour dispenser lesdites particules (4) à la surface du liquide porteur dans la zone formant réservoir (11),
    caractérisée en ce qu'elle comporte en outre, agencés au niveau d'une jonction (73) entre la zone formant réservoir (11) et la rampe inclinée (12), des moyens (70) d'élévation du niveau de liquide porteur par effet capillaire.
  2. Installation selon la revendication 1, caractérisée en ce que lesdits moyens (70) d'élévation du niveau de liquide porteur par effet capillaire sont constitués d'une barrière de plots (72) espacés les uns des autres.
  3. Installation selon la revendication 2, caractérisée en ce que lesdits plots (72) sont implantés avec un pas d'environ 2 à 4 mm.
  4. Installation selon la revendication 2 ou la revendication 3, caractérisée en ce que les plots (72) sont de forme générale conique, pyramidale ou tubulaire.
  5. Installation selon l'une quelconque des revendications 2 à 4, caractérisée en ce que les plots (72) sont réalisés en matériau hydrophobe, par exemple en silicone.
  6. Installation selon l'une quelconque des revendications 2 à 5, caractérisée en ce que les plots (72) présentent un rapport entre leur hauteur et leur largeur maximale compris entre 1 et 30.
  7. Installation selon l'une quelconque des revendications 2 à 6, caractérisée en ce que les plots (72) présentent une base de largeur d'environ 2 mm et une hauteur comprise entre 2 et 3 mm.
  8. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que lesdits moyens (70) d'élévation du niveau de liquide porteur par effet capillaire s'étendent tout le long du liquide porteur (16), selon une direction transversale (31) de l'installation parallèle à la surface du liquide porteur et orthogonale à une direction principale (30) d'écoulement du liquide porteur de la zone formant réservoir (11) à la zone d'accumulation et de transfert de particules (14), en passant par la rampe inclinée (12).
  9. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un substrat (38) pour le dépôt du film compact de particules, ledit substrat étant en regard d'une sortie de particules (26) de ladite zone d'accumulation et de transfert (14).
  10. Installation selon la revendication 9, caractérisée en ce qu'elle est configurée pour assurer un dépôt du film compact de particules (4) sur un substrat en défilement, ledit substrat étant souple ou rigide.
  11. Procédé de formation d'un film compact de particules (4) à la surface d'un liquide porteur (16), à l'aide d'une l'installation (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une étape de mise en mouvement du liquide porteur (16) de manière à le faire circuler de la zone formant réservoir (11) à la zone d'accumulation et de transfert de particules (14), en passant par la rampe inclinée (12), ainsi qu'une étape de dispense des particules (4) en solution à la surface du liquide porteur en mouvement, dans la zone formant réservoir, ladite étape de mise en mouvement du liquide porteur étant réalisée de manière à engendrer, par effet capillaire au niveau desdits moyens d'élévation (70), un bourrelet de liquide porteur (74).
  12. Procédé selon la revendication 12, caractérisé en ce qu'il est mis en oeuvre pour la formation d'un film compact de particules ayant une grande dimension comprise entre 1 nm et 500 µm.
  13. Procédé selon la revendication 12 ou la revendication 13, caractérisé en ce que le liquide porteur (16) est de l'eau déionisée, et en ce que lesdites particules (4) se trouvent en solution dans un solvant ayant une tension de surface inférieure à celle de l'eau déionisée, ledit solvant étant de préférence du n-butanol, méthanol, chloroforme, ou un mélange d'au moins deux d'entre eux.
EP14781575.7A 2013-10-11 2014-10-09 Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur Not-in-force EP3038760B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359921A FR3011751B1 (fr) 2013-10-11 2013-10-11 Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
PCT/EP2014/071619 WO2015052272A1 (fr) 2013-10-11 2014-10-09 Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur

Publications (2)

Publication Number Publication Date
EP3038760A1 EP3038760A1 (fr) 2016-07-06
EP3038760B1 true EP3038760B1 (fr) 2017-09-20

Family

ID=50023716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14781575.7A Not-in-force EP3038760B1 (fr) 2013-10-11 2014-10-09 Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur

Country Status (4)

Country Link
US (1) US9802217B2 (fr)
EP (1) EP3038760B1 (fr)
FR (1) FR3011751B1 (fr)
WO (1) WO2015052272A1 (fr)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339780A1 (de) * 1983-11-03 1985-05-15 Sandy Hill Corp., Hudson Falls, N.Y. Vorrichtung fuer das aufbringen einer steuerbaren schicht eines saettigungs- oder beschichtungsmittels mittels eines freifallenden vorhangs und verfahren hierfuer
DE59302244D1 (de) * 1992-08-19 1996-05-23 Hoechst Ag Verfahren und Vorrichtung zur Herstellung von ultradünnen Schichten und von Schichtelementen
US6013535A (en) * 1997-08-05 2000-01-11 Micron Technology, Inc. Method for applying adhesives to a lead frame
US5885660A (en) * 1998-01-22 1999-03-23 Eastman Kodak Company Coating surfaces with a free falling coating composition, using a basin with a wall dividing the basin into two channels
US7241341B2 (en) * 2002-05-10 2007-07-10 Nanometrix Inc. Method and apparatus for two dimensional assembly of particles
US7540709B1 (en) 2005-10-20 2009-06-02 Florida Turbine Technologies, Inc. Box rim cavity for a gas turbine engine
WO2008014604A1 (fr) * 2006-08-02 2008-02-07 Nanometrix Inc. Appareil de transfert modulaire et procédé
GB0722511D0 (en) 2007-11-19 2007-12-27 Rolls Royce Plc Turbine arrangement
DE102008011746A1 (de) 2008-02-28 2009-09-03 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zur Umleitung eines Leckagestroms
GB201013003D0 (en) 2010-08-03 2010-09-15 Rolls Royce Plc A seal assembly
FR2971956B1 (fr) * 2011-02-24 2013-03-29 Commissariat Energie Atomique Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement
FR2977810A1 (fr) 2011-07-13 2013-01-18 Commissariat Energie Atomique Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
FR2985249B1 (fr) 2012-01-02 2014-03-07 Commissariat Energie Atomique Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules
FR2986722B1 (fr) 2012-02-10 2014-03-28 Commissariat Energie Atomique Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules, avec une etape de realisation de connecteurs sur les objets
FR2986720B1 (fr) 2012-02-10 2014-03-28 Commissariat Energie Atomique Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
FR2986721B1 (fr) 2012-02-10 2014-06-27 Commissariat Energie Atomique Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat
FR2995228B1 (fr) 2012-09-10 2014-09-05 Commissariat Energie Atomique Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
FR3022985B1 (fr) 2014-06-25 2019-06-21 Safran Aircraft Engines Systeme d'injection pour chambre de combustion de turbomachine configure pour une injection directe de deux nappes de carburant coaxiales

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160243585A1 (en) 2016-08-25
FR3011751A1 (fr) 2015-04-17
EP3038760A1 (fr) 2016-07-06
WO2015052272A1 (fr) 2015-04-16
US9802217B2 (en) 2017-10-31
FR3011751B1 (fr) 2015-12-25

Similar Documents

Publication Publication Date Title
EP2678120B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement
EP2801108B1 (fr) Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules
EP2731731B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
EP2812126B1 (fr) Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
EP2812125B1 (fr) Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat
EP2812127B1 (fr) Procédé de transfert d'objets sur un substrat à l'aide d'un film compact de particules, avec une étape de réalisation de connecteurs sur les objets
EP2892658B1 (fr) Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
EP2996816B1 (fr) Procede de realisation d'un substrat par projection de particules sur un film compact de particules solides flottant sur un liquide porteur
EP3038761B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
EP3038760B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
WO2016113324A1 (fr) Procede de formation d'un film compact de particules a la surface d'un liquide porteur
WO2014184138A1 (fr) Procede de depot d'un film compact de particules sur la surface interieure d'une piece presentant un creux delimite par cette surface interieure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014014879

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05C0009020000

Ipc: B05D0001200000

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 1/20 20060101AFI20170323BHEP

Ipc: B05D 5/08 20060101ALN20170323BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20170428

INTG Intention to grant announced

Effective date: 20170428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 929734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014014879

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 929734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014014879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

26N No opposition filed

Effective date: 20180621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191009

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191031

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191018

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014014879

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201009