EP3245010A1 - Procede de formation d'un film compact de particules a la surface d'un liquide porteur - Google Patents

Procede de formation d'un film compact de particules a la surface d'un liquide porteur

Info

Publication number
EP3245010A1
EP3245010A1 EP16700955.4A EP16700955A EP3245010A1 EP 3245010 A1 EP3245010 A1 EP 3245010A1 EP 16700955 A EP16700955 A EP 16700955A EP 3245010 A1 EP3245010 A1 EP 3245010A1
Authority
EP
European Patent Office
Prior art keywords
particles
support
carrier liquid
solvent
trapped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16700955.4A
Other languages
German (de)
English (en)
Inventor
Olivier Dellea
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3245010A1 publication Critical patent/EP3245010A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/204LB techniques

Definitions

  • the invention relates to the field of processes for forming a compact film of particles on the surface of a carrier liquid, the compact film obtained is generally intended to be deposited on a substrate, preferably in scrolling.
  • the invention relates to the formation of a compact film of particles, also called ordered particles film, preferably of the monolayer type and whose particle size may be between a few nanometers and several hundred micrometers.
  • the particles preferably non-spherical in shape, may for example be silica particles, glass fibers, carbon nanotubes, or gallium nitride fibers.
  • non-spherical particles / colloids is a very promising avenue in the design of materials with novel properties.
  • Colloids can be in slender forms such as fibers, threads, tubes or rods, or in more complex forms such as polygons, tetrapods, cubes, prisms, etc.
  • the invention relates to the formation of simple compact films, or to the formation of structured compact films, this structuring aimed at putting the film into shape in order, for example, to integrate other particles, and / or objects. Another possibility is to provide hollow areas of particles, surrounded by the film which remains ordered.
  • a hybrid device associates by definition on the same substrate objects having various functions, for example electronic, optical, electro-optical, piezoelectric, thermoelectric, mechanical, etc.
  • the objects to be integrated into the particle film are for example:
  • active electronic components such as transistors, microprocessors, integrated circuits, etc. ;
  • passive components of the electronics such as resistors, capacitors, diodes, photodiodes, coils, conductive tracks, welding preforms, etc. ;
  • optical components such as lenses, microlenses, diffraction gratings, filters, etc. ;
  • nano or micrometric particles or aggregates active or passive, for example of the oxides, polymers, metals, semiconductors, Janus type (particles having two faces of different types or properties), nanotubes, etc.
  • the invention relates more to the formation of simple compact films rather than to the formation of structured compact films.
  • the invention has applications in many fields such as mechanics, fuel cells, optics, photonics, polymer coating, chips, MEMs, organic and photovoltaic electronics, heat exchangers, heat, sensors such as chemical sensors, tribology, etc.
  • an accumulation and transfer zone fed with particles, which float on a carrier liquid contained in this same zone.
  • the ordered particles in the transfer zone forming a monolayer of particles called thin film, are pushed by the arrival other particles as well as by the circulation of the carrier liquid to an outlet of this zone through which they reach the substrate. They are then deposited on the moving substrate.
  • a capillary bridge usually ensures the connection between the substrate and the carrier liquid contained in the accumulation and transfer zone.
  • the particles are kept ordered thanks in particular to the pressure exerted upstream by the moving particles intended to later reach this transfer zone.
  • the cohesion of the particle scheduling is further ensured by weak forces of capillary or electrostatic type.
  • the compression technique using an inclined ramp is more specifically described in document CA 2 695 449. With this particular technique, it is the kinetic energy associated with the moving particles on the ramp which allows these are automatically arranged on the same ramp, when they impact the front of particles, also located on the inclined ramp. The scheduling is thus established on the ramp, then preserved when the ordered particles enter the transfer zone, thanks to the continuous supply of the particles coming to impact the front.
  • the kinetic energy required for the self-sequencing of the particles is here brought by the inclined ramp carrying the carrier liquid and the particles.
  • the particles are generally suspended in a solvent placed in the dispensing device, which takes for example the shape of a nozzle. This dispensing device is arranged to deliver the particles to the surface of the carrier liquid, at a reservoir zone placed upstream of the inclined ramp and communicating with the inlet thereof.
  • the particles suspended in a solvent can be dispensed directly to the surface of the carrier liquid, using a pipette or a peristaltic pump.
  • the particles dispersed on the surface of the carrier liquid are then ordered using barriers or similar elements to bring them closer to each other, in order to obtain the compact film of particles to be subsequently deposited on the substrate.
  • the particles contained in the dispensing device sediment quickly, it may be difficult or impossible to obtain a uniform and uniform dispensing on the carrier liquid. This sedimentation may even accidentally lead to the obstruction of the end of the dispensing device, such as the disposable tip of a pipette. In addition, particles are likely to be deposited inside the dispensing device, thereby distorting the actual amount of particles introduced to the surface of the carrier liquid.
  • the invention firstly relates to a process for forming a compact film of particles on the surface of a carrier liquid, comprising the following steps:
  • said support comprising at least one solidified part in which the particles are trapped and which is made from at least one cooled liquid, said support being melted in said carrier liquid leading to the release of particles on the surface of this carrier liquid;
  • the invention is thus remarkable in that it breaks drastically with conventional techniques for dispensing particles on the surface of a carrier liquid.
  • the technique specific to the invention has the advantage of not being exposed to the sedimentation risks mentioned above, nor to the risk of obstruction of a dispensing device of the pipette type, which is no longer necessary.
  • the accuracy and repeatability of the operations are advantageously improved, since the amount of particles released during melting of the support is accurate, without risk of losses.
  • the technique proposed by the invention is likely to be applied in a similar manner whatever the shape and size of the particles, and regardless of the nature of the solvent in which the particles are optionally placed at the time of initiation. of the method according to the invention. It is thus compatible with all colloid / particle solutions, even those with non-spherical shapes.
  • the invention greatly improves the reliability of the operation of introducing the particles to the surface of the carrier liquid.
  • the support floats in the carrier liquid. This makes it possible to approach as closely as possible the particles released from the surface of the carrier liquid, on which they must be ordered before being deposited on a substrate. Thanks to the progressive melting / melting of the support, it advantageously creates a progressive exemption of the particles.
  • the solidified support initially has a negative temperature. Due to the temperature gradient and the phase change during melting, the fluid does not remain at rest, in particular because of the descent of the cold fluid. The liquid movements thus promote a surface agitation favorable to the dispersion of the particles.
  • the local lowering of the temperature causes an increase in the surface tension of the carrier liquid located near the ice cube. This phenomenon is profitable because it participates in maintaining the particles on the surface of the carrier liquid, that is to say at the gas / liquid interface.
  • the invention also has at least one of the following optional features, taken alone or in combination.
  • Said particles are preferably of non-spherical shape, and preferably of any of the forms mentioned above. Nevertheless, the invention remains applicable to particles of any shape and type.
  • said particles are of micrometric or nanometric size, preferably having a large dimension of between 1 nm and 500 ⁇ .
  • the particles / colloids used may be of the oxide particle type (SiO 2, ZnO, Al 2 O 3, etc.), polymers (latex, PMMA, polystyrene, etc.) or metal (Au, Cu, alloys). , etc.). It can also be particles composed of several materials: polymer / metal, oxide / metal, oxide / polymer, metal / oxide / polymer, or even particles Janus.
  • the size range of the particles is preferably between 1 nm and 500 ⁇ , it is also possible to use glass fibers or other fibers mentioned above, for example with a diameter of between 0.01 and 10 ⁇ , and lengths ranging from 10 to 4000 ⁇ .
  • Other particles of the silicon type or graphene sheets or hBN sheets are also conceivable, without departing from the scope of the invention.
  • the carrier liquid is deionized water.
  • said solidified part of the support, in which the particles are trapped is made at least from water. More generally, the solidified part is preferably made from a water-based liquid, for example water containing additives. This promotes the flotation of the support, the benefits of which have been mentioned above.
  • said solidified part of the support, in which particles are trapped is also produced from a solvent in which said particles were initially present, in suspension.
  • the step of placing said at least one particle support is preferably carried out so that this support floats on the surface of said carrier liquid.
  • the particles are grouped together at a loaded surface of the support, and the step of placing said at least one support of particles is carried out so that said loaded face of the support is substantially at the level of the surface of the carrier liquid. This further facilitates the dispersion of the particles on the surface of the carrier liquid.
  • the method comprises a preliminary step of manufacturing said at least one support in which said particles are trapped.
  • This manufacture can be implemented according to several techniques.
  • said manufacture of said support in which said particles are trapped comprises the following operations:
  • an operation for extracting all or part of the solvent is carried out.
  • the cooling operation also aims to totally or partially solidify said solvent introduced into the container.
  • said manufacture of said support in which said particles are trapped comprises an operation for forming a block of solidified water.
  • the manufacture then comprises an operation of pouring on the solidified water block, a solvent in which said particles are arranged in suspension. Instead of pouring it, the solvent can be dispensed, sprayed or sprayed.
  • the assembly can then be used as is, or this assembly formed by the solidified water block and the solvent incorporating particles, is cooled so that said solidified part of the support comprises at least a part of said solvent, and preferably all of it.
  • said manufacture of said support in which said particles are trapped then comprises an operation of pouring directly, on the solidified water block, said particles in the form of powder.
  • said manufacture of said support in which said particles are trapped comprises the following operations:
  • the invention also relates to a method of depositing a compact film of particles on a substrate, comprising the implementation of the method of forming a compact film of particles on the surface of a carrier liquid, followed by a step of depositing the compact film of particles on a substrate.
  • said step of depositing the compact film of particles is implemented on a moving substrate, that is to say with the film gradually deposited on a moving substrate.
  • the deposition of all the particles of the film on the substrate can be carried out simultaneously, for example by approaching the substrate of the film, from above or below, in the manner of the Langmuir-Schaefer technique.
  • FIG. 1 shows an installation for implementing the method according to the invention, in longitudinal section
  • Figure 2 shows a schematic top view of the installation shown in Figure 1;
  • FIGS. 2a to 5b show diagrammatically different steps of a method for forming and depositing a compact film of particles according to a preferred embodiment of the invention, implemented using the installation shown on FIGS. the preceding figures;
  • FIGS. 1 and 2 there is shown an installation 1 for the formation of a compact film of particles and its transfer onto a substrate, preferably in a scrolling fashion.
  • the particles concerned are intended to be initially placed in suspension in a solvent. These particles have a size that can be between a few nanometers and several hundred micrometers.
  • the particles or colloids are preferably of non-spherical shape. They can be in slender forms such as fibers, threads, tubes or rods, or in more complex forms such as polygons, tetrapods, cubes, prisms, polygons, etc.
  • the particles will be represented in the form of simple tubes, with dimensions greater than the actual dimensions.
  • the materials that can be envisaged for these particles depend on the desired applications. It may for example be silica particles, glass fibers, carbon nanotubes, or gallium nitride fibers.
  • Other particles of interest can be made of metal or metal oxide such as platinum, TiO 2, polymer such as polystyrene or PMMA, carbon, etc., or even particles composed of several materials.
  • the particles are glass fibers with a diameter of about 10 ⁇ , and whose length is of the order of 4 mm. It is noted that the invention is particularly applicable to wire elements whose large dimension is more than ten times greater than the small dimension.
  • the particles are intended to be placed in suspension in a solvent, here of the butanol or chloroform type, the proportion of the medium being about 7 g of particles per 200 ml of solvent.
  • the installation also comprises a liquid conveyor 10, receiving a carrier liquid 16 on which the particles are intended to float.
  • the carrier liquid 16 is preferably deionized water.
  • the conveyor 10 includes a zone 14 for accumulation and transfer of particles, the bottom is substantially horizontal, or slightly inclined so as to promote the emptying of the installation, if necessary.
  • Zone 14 has a particle outlet 26, defined by means of two lateral flanges 28 holding the carrier liquid 16 in zone 14. These flanges 28, opposite and at a distance from one another, extend parallel to a main direction shown schematically by the arrow 30 in Figures 1 and 2. This direction 30 corresponds to that of the moving the compact particle film during its transfer to the substrate, as will be detailed below.
  • the bottom of the downstream portion of the zone 14 has a plate slightly inclined upstream relative to the horizontal direction, for example a value of the order of 5 to 10 °. It is the downstream end of this same plate, also called “blade”, which partly defines the output of the particles 26.
  • the installation 1 is also provided with a substrate conveyor 36, for putting the substrate 38 in motion.
  • This substrate can be rigid or flexible. In the latter case not shown, it can be set in motion on a roller whose axis is parallel to the outlet 26 of the zone 14, near which it is located.
  • the substrate 38 is intended to run very close to the outlet 26, so that the particles reaching this outlet can be easily transferred to this substrate, via a capillary bridge 42, also called meniscus, which the connected to the carrier liquid 16.
  • the capillary bridge 42 is provided between the carrier liquid 16 which is located at the outlet 26, and a portion of the substrate 38 conforming to the guide / driving roll 40.
  • the substrate may be in contact directly with the transfer zone, without departing from the scope of the invention.
  • the capillary bridge mentioned above is then no longer required.
  • the substrate is rigid and the objects to be transferred are also rigid and can not adapt to an angle break during transfer, it may be advantageous to immerse the substrate in the liquid of the accumulation zone and transfer 14, and draw in this configuration. This makes it possible to maximize the angle formed between the horizontal plane of the liquid of the zone 14, and the plane of the substrate.
  • the width of the substrate 38 is slightly greater than the width of the zone 14 and its output 26.
  • the width of the zone 14 also corresponds to the maximum width of the particle film that it is possible to deposit on the substrate 38. This width can be of the order of 25 to 30 cm.
  • the width of the substrate on which the particles must be deposited may however be less than the width of the zone 14, without departing from the scope of the invention.
  • a support 40 of particles is placed in said carrier liquid 16.
  • this support 40 comprises at least one solidified part in which the particles are trapped. 4, this solidified part being made from at least one cooled liquid.
  • the support is, before its introduction into the carrier liquid 16, fully solidified, and comprises a lower portion 42 corresponding to frozen pure water, and an upper portion 44 corresponding to the solidified solvent.
  • the solvent may be in the form of a liquid film resting on frozen pure water. Be that as it may, the particles 4 are trapped at the interface between the two upper 44 and lower 42 parts. The manufacture of the support 40 will be detailed later.
  • the support 40 in its initial state, has for example a cylindrical shape of circular section, about 5 mm thick and about 40 mm in diameter. Higher dimensions can be retained, without departing from the scope of the invention.
  • the particles 4 are grouped together at a loaded surface of the support, corresponding to the upper surface 40 ', which is substantially flat and oriented horizontally.
  • the support 40 floats when it is introduced into the carrier liquid 16. This introduction is carried out so that the loaded face 40 'of the support 40 is substantially at the level of the surface 16 'of the carrier liquid 16, or close thereto. This goal is easily achieved when the solidified solvent thickness 44 is low. Nevertheless, the solvent may not be completely solidified, but for example brought to the viscous state.
  • the support 40 is melted and melts gradually, releasing the particles 4, which can then also be dispersed progressively on the surface of the carrier liquid 16, as shown schematically in FIGS. 3a and 3b. . Due to the temperature gradient and the phase change during the melting of the support 40, the fluid does not remain at rest, in particular because of the descent of the cold fluid. The movements of liquid within the zone 14 thus promote a surface agitation favorable to the dispersion of the particles 4. In addition, the local lowering of the temperature causes an increase in the surface tension of the carrier liquid 16 located near the This phenomenon is profitable because it participates in the maintenance of the particles 4 on the surface 16 'of the carrier liquid 16.
  • the gradient of interfacial tension induces hydrodynamic instabilities which also participate in the local agitation of the two liquids, favoring the dispersion of the particles on the surface 16 'of the carrier liquid.
  • a pump system (not shown) can also regulate the total volume of liquid in the zone 14, taking into account the water supply by the supports 40 introduced into this zone.
  • the desired ordering is such that the compact film obtained has a structure similar to a "hexagonal compact" structure in the case of spheres, in which each particle 4 is surrounded and contacted by six other particles 4 in contact with each other. It is then indifferently spoken of compact film of particles, or film of ordered particles.
  • the film 4 ' is obtained on the surface of the carrier liquid 16 in the zone 14, it can be proceeded with a structuring step of this film, which will not be detailed here, but which is known to the man of the job. It consists for example in the placing of objects on the compact film.
  • the substrate 38 is put in motion, carried out at the same time as the further movement of the barrier 50 downstream, so as to progressively deposit the film 4 'on the same substrate 38, via the bridge capillary 42.
  • This step of depositing the film 4 ' also called the transfer step, has been shown schematically in FIGS. 5a and 5b. Indeed, when the substrate 38 begins to scroll, the film 4 'is deposited there through the outlet 26 and through the capillary bridge 42, in the manner of that described in CA 2 695 449. A solution contact rather than capillary bridge is also possible, without departing from the scope of the invention.
  • thermal annealing subsequent to the transfer.
  • This thermal annealing is for example carried out at 80 ° C, using a low-temperature matt rolling film based on polyester, for example sold under the reference PERFEX-MATT TM, of thickness 125 ⁇ .
  • the advantage of such a film as a substrate is that one of its faces becomes sticky at a temperature of the order of 80 ° C, which facilitates the adhesion of the particles 4 thereon. More precisely, at this temperature, the particles 4 sink into the softened film 38, and thus allow direct contact with the film, which leads to their bonding.
  • the substrate 38 may be of the silicon, glass or piezoelectric film type.
  • the linear velocity of the substrate 38 also called pulling speed, can be of the order of 0.1 cm / min to 100 cm / min.
  • FIG. 6 there is shown a first technique for manufacturing the support 40.
  • a container 60 in which is arranged the solvent 3 incorporating the particles 4 in suspension.
  • a given quantity of pure water is then introduced into the container 60.
  • the solvent 3, butanol is immiscible in water and of a density lower than that of water.
  • the particles 4 migrate to come together in a horizontal plane at the interface between the water 5 above, and the solvent below. Migration can be promoted by agitation in the container.
  • the assembly 60 ' is then directly cooled so as to obtain the support 40 mentioned above.
  • the cooling temperature is then preferably lower than the melting point of the solvent, so that the solidified part of the support integrates both the pure water and the solvent, with the particles trapped at the interface.
  • the assembly 60 is then frozen, so as to obtain the support 40, the solidified portion of pure water incorporates the particles 4.
  • the remaining film 3 'of solvent that remains can be kept in the liquid state at low temperature before the introduction of the support 40 into the carrier liquid, or can also be solidified if the cooling temperature is sufficiently low.
  • an operation is first carried out for forming a block of solidified solid water 70 in a container 60.
  • an operation consisting in pour into the container 60 and the block of water solidified 70, a solvent 3 in which the particles 4 are in suspension. This leads the particles 4 to migrate to the interface between the solvent 3 and the solidified water block 70, to be trapped on the upper surface thereof.
  • the delivery of the particles to the interface can also be obtained by decantation.
  • the excess solvent is here also preferably removed, so that only a very thin layer of solvent remains with the particles arranged at the interface between this layer and the ice. Removal of the solvent may be by pipetting, or by gravity flow.
  • the assembly then forms the support 40 which can then be introduced as is in the carrier liquid.
  • the resulting assembly 60 ' can be cooled below the melting temperature of the solvent 3, so that the whole of the support 40 is solidified before it is introduced into the carrier liquid.
  • the solidified water block 70 after obtaining the solidified water block 70, it can be implemented an operation of pouring directly, on the upper surface of the block 70, the particles 4 in the form of powder. These particles 4, when they come into contact with the upper surface of the block 70, are trapped by the latter.
  • a third manufacturing technique of the support 40 is schematized, which consists first of introducing particles 4 into the bottom of a container 60. Next, water 5 is poured into the container 60 so as to keep the particles 4 in the bottom of the container, and pouring the water with a low flow rate. Finally, the assembly is cooled and solidified in order to obtain the support 40. The solidified part of the latter then consists of a block of water in which the particles 4 are trapped on the lower surface. When this support is introduced into the carrier liquid, it is preferably returned so that the surface charged with particles constitutes the upper support surface 40.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention concerne un procédé amélioré de formation d'un film compact de particules (4) à la surface d'un liquide porteur (16), comprenant les étapes suivantes : - mise en place d'au moins un support (40) de particules dans le liquide porteur (16), le support comprenant au moins une partie solidifiée dans laquelle sont piégées les particules (4) et qui est réalisée à partir d'au moins un liquide refroidi, le support (40) en fusion dans ledit liquide porteur conduisant à la libération des particules (4) à la surface de ce liquide porteur; et - ordonnancement des particules libérées (4) de manière à obtenir le film compact de particules à la surface (16') du liquide porteur (16).

Description

PROCEDE DE FORMATION D'UN FILM COMPACT DE PARTICULES
A LA SURFACE D'UN LIQUIDE PORTEUR
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte au domaine des procédés pour la formation d'un film compact de particules à la surface d'un liquide porteur, le film compact obtenu éta nt généralement destiné à être déposé sur un substrat, de préférence en défilement.
Plus précisément, l'invention concerne la formation d'un film compact de particules, également dit film de particules ordonnées, de préférence du type monocouche et dont la taille des particules peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme non-sphérique, peuvent par exemple être des particules de silice, des fibres de verre, des nanotubes de carbone, ou encore des fibres de nitrure de gallium. A cet égard, il est noté que des études récentes ont montré que l'utilisation de particules / colloïdes non-sphériques constituait une voie très prometteuse dans la conception de matériaux aux propriétés nouvelles. Les colloïdes peuvent se présenter sous des formes longilignes comme des fibres, des fils, des tubes ou des bâtonnets, ou encore sous des formes plus complexes comme des polygones, des tétrapodes, des cubes, des prismes, etc.
L'invention se rapporte à la formation de films compacts simples, ou bien à la formation de films compacts structurés, cette structuration visant à mettre le film en forme afin par exemple d'y intégrer d'autres particules, et/ou des objets. Une autre possibilité consiste à prévoir des zones évidées de particules, entourées par le film qui reste ordonné. Dans le cas de l'intégration d'objets dans le film, il s'agit en particulier de fabriquer des dispositifs à caractère hybride, com me par exemple des ca pteurs. A titre indicatif, un dispositif hybride associe par définition sur un même substrat des objets ayant diverses fonctions, par exemple électroniques, optiques, électro-optiques, piézoélectriques, thermoélectriques, mécaniques, etc.
Les objets à intégrer au film de particules sont par exemple :
- des composants électroniques actifs, tels que des transistors, microprocesseurs, circuits intégrés, etc. ;
- des composants passifs de l'électronique, comme des résistances, capacités, diodes, photodiodes, bobines, pistes conductrices, préformes de soudure, etc. ;
- des composants optiques, tels que des lentilles, microlentilles, réseaux de diffraction, filtres, etc. ;
- des piles, micro-piles, micro-batteries, photo-détecteurs, cellules solaires, système RFID, etc. ;
- des particules ou agrégats nano ou micrométriques, actifs ou passifs, par exemple du type oxydes, polymères, métaux, semi-conducteurs, Janus (particules ayant deux faces de natures ou propriétés différentes), nanotubes, etc.
Néanmoins, l'invention se rapporte davantage à la formation de films compacts simples plutôt qu'à à la formation de films compacts structurés.
Plus généralement, l'invention présente des applications dans de nombreux domaines comme la mécanique, les piles à combustible, l'optique, la photonique, le revêtement de polymère, les puces, les MEMs, l'électronique organique et photovoltaïque, les échangeurs de chaleur, les capteurs tels que les capteurs chimiques, la tribologie, etc.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
De nombreuses techniques sont connues pour la formation et le dépôt de films compacts de particules sur un substrat, ce dernier étant ou non en défilement, et de nature souple ou rigide.
De manière générale, il est prévu une zone d'accumulation et de transfert alimentée en particules, qui flottent sur un liquide porteur contenu dans cette même zone. Les particules ordonnées dans la zone de transfert, formant une monocouche de particules dite film de faible épaisseur, sont poussées par l'arrivée d'autres particules ainsi que par la circulation du liquide porteur, vers une sortie de cette zone par laquelle elles atteignent le substrat. Elles se déposent ensuite sur le substrat en défilement. Pour ce faire, un pont capillaire assure habituellement la liaison entre le substrat et le liquide porteur contenu dans la zone d'accumulation et de transfert.
En régime normal de fonctionnement de l'installation, dans la zone d'accumulation et de transfert, les particules sont maintenues ordonnées grâce notamment à la pression exercée en amont par les particules en déplacement destinées à rejoindre ultérieurement cette zone de transfert. La cohésion de l'ordonnancement des particules est en outre assurée par des forces faibles de type capillaire ou électrostatique. Lorsque la zone de transfert de particules est reliée vers l'amont à une rampe inclinée sur laquelle défilent les particules issues d'un dispositif de dispense, ce sont ces mêmes particules présentes sur la rampe inclinée qui exercent une pression sur les particules contenues dans la zone de transfert, et qui permettent donc, en coopération avec les forces capillaires de proximité, de conserver l'ordonnancement des particules dans cette zone, jusqu'au dépôt sur le substrat, par capillarité ou contact direct.
A cet égard, il est noté que la technique d'ordonnancement des particules par compression est notamment connue du document Lucio Isa et al., "Particle Lithography from Colloïdal Self-Assembly at Liquid_Liquid Interfaces", acsnano, VOL. 4 NO. 10 5665-5670 2010, du document Markus Retsch, « Fabrication of Large-Area, Transférable Colloïdal Monolayers Utilizing Self-Assembly at the Air/Water Interface", Macromol. Chem. Phys. 2009, 210, 230-241, ou encore du document Maria Bardosova, « The Langmuir-Blodgett Approach to Making Colloïdal Photonic Crystals from Silica Sphères", Adv. Mater. 2010, 22, 3104-3124. La technique par compression à l'aide d'une rampe inclinée est quant à elle décrite plus précisément dans le document CA 2 695 449. Avec cette technique particulière, c'est l'énergie cinétique associée aux particules en mouvement sur la rampe qui permet à celles-ci de s'ordonner automatiquement sur cette même rampe, lorsqu'elles impactent le front de particules, lui aussi situé sur la rampe inclinée. L'ordonnancement est donc établi sur la rampe, puis conservé lorsque les particules ordonnées pénètrent dans la zone de transfert, grâce à l'alimentation en continu des particules venant impacter le front. L'énergie cinétique nécessaire à l'auto-ordonnancement des particules est ici amenée par la rampe inclinée transportant le liquide porteur et les particules. A cet égard, il est noté que les particules sont généralement en suspension dans un solvant placé dans le dispositif de dispense, qui prend par exemple la forme d'une buse. Ce dispositif de dispense est agencé pour délivrer les particules à la surface du liquide porteur, au niveau d'une zone formant réservoir placée en amont de la rampe inclinée et communiquant avec l'entrée de celle-ci.
Alternativement, les particules en suspension dans un solvant peuvent être dispensées directement à la surface du liquide porteur, à l'aide d'une pipette ou d'une pompe péristaltique. Les particules dispersées à la surface du liquide porteur sont ensuite ordonnées à l'aide de barrières ou d'éléments similaires permettant de les rapprocher les unes des autres, afin d'obtenir le film compact de particules à déposer ultérieurement sur le substrat.
Néanmoins, ces techniques de dispense de particules souffrent de plusieurs inconvénients mentionnés ci-dessous, qui sont d'ailleurs accentués lorsque les particules sont de forme non-sphérique.
Tout d'abord, si les particules contenues dans le dispositif de dispense se sédimentent rapidement, il peut s'avérer difficile, voire impossible d'obtenir une dispense uniforme et homogène sur le liquide porteur. Cette sédimentation peut même conduire accidentellement à l'obstruction de l'extrémité du dispositif de dispense, comme la pointe jetable d'une pipette. En outre, des particules sont susceptibles de se déposer à l'intérieur du dispositif de dispense, faussant ainsi la quantité réelle de particules introduites à la surface du liquide porteur.
Par ailleurs, dans le cas particulier d'une pipette, de multiples facteurs peuvent influencer la quantité de solvant / particules réellement aspirée et dispensée. Il s'agit par exemple de la température et de la pression de l'air extérieur, de la masse volumique du solvant, de la valeur du volume mort, etc. Tous ces facteurs peuvent avoir une influence sur la quantité aspirée / dispensée, ce qui nuit à la précision et à la répétabilité des opérations. EXPOSÉ DE L'INVENTION
L'invention a donc pour but de répondre au moins partiellement aux inconvénients identifiés ci-dessus. Pour ce faire, l'invention a tout d'abord pour objet un procédé de formation d'un film compact de particules à la surface d'un liquide porteur, comprenant les étapes suivantes :
- mise en place d'au moins un support de particules dans ledit liquide porteur, ledit support comprenant au moins une partie solidifiée dans laquelle sont piégées les particules et qui est réalisée à partir d'au moins un liquide refroidi, ledit support en fusion dans ledit liquide porteur conduisant à la libération des particules à la surface de ce liquide porteur ; et
- ordonnancement des particules libérées de manière à obtenir ledit film compact de particules à la surface du liquide porteur.
L'invention est ainsi remarquable en ce qu'elle rompt drastiquement avec les techniques conventionnelles de dispense des particules à la surface d'un liquide porteur. La technique spécifique à l'invention présente l'avantage de ne pas s'exposer aux risques de sédimentation mentionnés ci-dessus, ni aux risques d'obstruction d'un dispositif de dispense du type pipette, qui n'est plus nécessaire.
La précision et la répétabilité des opérations s'en trouvent avantageusement améliorées, puisque la quantité de particules libérées au cours de la fonte du support est précise, sans risque de pertes. De plus, la technique proposée par l'invention est susceptible de s'appliquer de façon analogue quelles que soient la forme et la taille des particules, et indépendamment de la nature du solvant dans lequel sont éventuellement placées les particules au moment de l'initiation du procédé propre à l'invention. Celle-ci se révèle ainsi compatible avec toutes les solutions de colloïdes / de particules, même celles présentant des formes non-sphériques.
Globalement, l'invention améliore grandement la fiabilité de l'opération d'introduction des particules à la surface du liquide porteur.
En outre, il est préférentiellement fait en sorte que le support flotte dans le liquide porteur. Cela permet d'approcher au plus près les particules libérées de la surface du liquide porteur, sur laquelle elles doivent être ordonnées avant d'être déposées sur un substrat. Grâce à la fonte / fusion progressive du support, il se crée avantageusement une dispense progressive des particules.
Par ailleurs, il est noté que le support solidifié présente initialement une température négative. En raison du gradient de température et du changement de phase durant la fonte, le fluide ne reste pas au repos, en particulier à cause de la descente du fluide froid. Les mouvements de liquide favorisent ainsi une agitation de surface favorable à la dispersion des particules.
Enfin, il est noté que l'abaissement local de la température entraîne une augmentation de la tension de surface du liquide porteur situé à proximité du glaçon. Ce phénomène est profitable car il participe au maintien des particules à la surface du liquide porteur, c'est-à-dire à l'interface gaz/liquide.
L'invention présente par ailleurs au moins l'une des caractéristiques optionnelles suivantes, prises isolément ou en combinaison.
Lesdites particules sont de préférence de forme non-sphérique, et de préférence de l'une quelconque des formes citées précédemment. Néanmoins, l'invention reste applicable à des particules de formes et de natures quelconques.
De préférence, lesdites particules sont de taille micrométrique ou nanométrique, de préférence présentant une grande dimension comprise entre 1 nm et 500 μιη. A titre d'exemples illustratifs, les particules/colloïdes employées peuvent être du type particules d'oxydes (Si02, ZnO, AI203, etc.), polymères (latex, PMMA, polystyrène, etc.) ou métalliques (Au, Cu, alliages, etc.). Il peut encore s'agir de particules composées de plusieurs matériaux : polymère/métal, oxyde/métal, oxyde/polymère, métal/oxyde/polymère, ou encore de particules Janus.
Même si la gamme de dimension des particules est préférentiellement comprise entre 1 nm et 500 μιη, il est également possible d'utiliser des fibres de verre ou autres fibres citées précédemment, par exemple de diamètre compris entre 0,01 et 10 μιη, et de longueurs allant de 10 à 4000 μιη. D'autres particules du type silicium ou feuillets de graphène ou feuillets de hBN sont également envisageables, sans sortir du cadre de l'invention.
De préférence, le liquide porteur est de l'eau déionisée. De préférence, ladite partie solidifiée du support, dans laquelle sont piégées les particules, est réalisée au moins à partir d'eau. Plus généralement, la partie solidifiée est préférentiellement réalisée à partir d'un liquide à base aqueuse, par exemple de l'eau contenant des additifs. Cela favorise la flottaison du support, dont les avantages ont été mentionnés ci-dessus.
De préférence, ladite partie solidifiée du support, dans laquelle sont piégées les particules, est réalisée également à partir d'un solvant dans lequel étaient initialement présentes lesdites particules, en suspension.
La présence du solvant, sous forme solidifiée ou simplement à l'état de film liquide sur la partie solidifiée réalisée à partir d'eau, s'avère avantageuse. En effet, en raison de la différence de tension de surface entre l'eau et le solvant, le gradient de tension interfaciale induit des instabilités hydrodynamiques dont les conséquences sont une agitation locale des deux liquides. Ce phénomène d'agitation, connu sous le nom d'effet Marangoni, favorise la dispersion des particules à la surface du liquide porteur.
Comme évoqué ci-dessus, l'étape de mise en place dudit au moins un support de particules est préférentiellement réalisée de telle sorte que ce support flotte à la surface dudit liquide porteur. Encore plus préférentiellement, les particules sont regroupées au niveau d'une face chargée du support, et l'étape de mise en place dudit au moins un support de particules est réalisée de telle sorte que ladite face chargée du support se trouve sensiblement au niveau de la surface du liquide porteur. Cela facilite encore davantage la dispersion des particules sur la surface du liquide porteur.
De préférence, le procédé comprend une étape préalable de fabrication dudit au moins un support dans lequel sont piégées lesdites particules. Cette fabrication peut être mise en œuvre selon plusieurs techniques.
Selon une première technique de fabrication, ladite fabrication dudit support dans lequel sont piégées lesdites particules comprend les opérations suivantes :
a) introduction d'une quantité d'eau dans un récipient contenant un solvant non miscible dans l'eau et de densité inférieure à celle de l'eau, avec lesdites particules agencées en suspension dans ledit solvant, de manière à ce que les particules migrent à l'interface entre l'eau et le solvant, éventuellement à l'aide d'une agitation ; b) refroidissement de manière à obtenir ledit support comprenant au moins une partie solidifiée dans laquelle sont piégées lesdites particules.
De préférence, il est mis en œuvre, entre les opérations a) et b), une opération d'extraction de tout ou partie du solvant. Alternativement, l'opération de refroidissement vise également à solidifier totalement ou partiellement ledit solvant introduit dans le récipient.
Selon une seconde technique, ladite fabrication dudit support dans lequel sont piégées lesdites particules comprend une opération de formation d'un bloc d'eau solidifié. La fabrication comprend ensuite une opération consistant à verser, sur le bloc d'eau solidifié, un solvant dans lequel lesdites particules sont agencées en suspension. Au lieu de le verser, le solvant peut être dispensé, projeté, ou encore appliqué par spray.
L'ensemble peut alors être utilisé en l'état, ou bien cet ensemble formé par le bloc d'eau solidifié et le solvant intégrant particules, est refroidi de manière à ce que ladite partie solidifiée du support comprenne au moins une partie dudit solvant, et de préférence l'intégralité de celui-ci.
Selon encore une autre alternative pour cette seconde technique, ladite fabrication dudit support dans lequel sont piégées lesdites particules comprend ensuite une opération consistant à verser directement, sur le bloc d'eau solidifié, lesdites particules à l'état de poudre.
Selon une troisième technique de fabrication, ladite fabrication dudit support dans lequel sont piégées lesdites particules comprend les opérations suivantes :
a) introduction des particules dans le fond d'un récipient ;
b) introduction d'eau dans le récipient de manière à conserver les particules dans le fond du récipient ;
c) refroidissement de manière à obtenir ledit support comprenant au moins une partie solidifiée dans laquelle sont piégées lesdites particules.
L'invention a également pour objet un procédé de dépôt d'un film compact de particules sur un substrat, comprenant la mise en œuvre du procédé de formation d'un film compact de particules à la surface d'un liquide porteur, suivie d'une étape de dépôt du film compact de particules sur un substrat.
De préférence, ladite étape de dépôt du film compact de particules est mise en œuvre sur un substrat en défilement, c'est-à-dire avec le film se déposant progressivement sur un substrat en mouvement. Alternativement, le dépôt de toutes les particules du film sur le substrat peut être effectué simultanément, par exemple en approchant le substrat du film, par le dessus ou le dessous, à la manière de la technique Langmuir-Schaefer.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
BRÈVE DESCRIPTION DES DESSINS
Cette description sera faite au regard des dessins annexés parmi lesquels :
- la figure 1 montre une installation pour la mise en œuvre du procédé selon l'invention, en coupe longitudinale ;
- la figure 2 représente une vue schématique de dessus de l'installation montrée sur la figure 1 ;
- les figures 2a à 5b représentent schématiquement différentes étapes d'un procédé de formation et de dépôt d'un film compact de particules selon un mode de réalisation préféré de l'invention, mis en œuvre à l'aide de l'installation montrée sur les figures précédentes ; et
- les figures 6 à 8 montrent différentes possibilités de fabrication du support de particules mis en œuvre dans le procédé schématisé sur les figures 2a à 5b.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS En référence tout d'abord aux figures 1 et 2, il est représenté une installation 1 pour la formation d'un film compact de particules et son transfert sur un substrat, de préférence en défilement. Les particules concernées, non représentées sur les figures 1 et 2, sont prévues pour être initialement placées en suspension dans un solvant. Ces particules ont une taille qui peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules ou colloïdes sont de préférence de forme non-sphérique. Elles peuvent se présenter sous des formes longilignes comme des fibres, des fils, des tubes ou des bâtonnets, ou encore sous des formes plus complexes comme des polygones, des tétrapodes, des cubes, des prismes, des polygones, etc. Pour des raisons de simplification des figures suivantes, les particules y seront représentées sous forme de simples tubes, avec des dimensions supérieures aux dimensions réelles.
Les matériaux envisageables pour ces particules sont fonction des applications désirées. Il peut par exemple s'agir de particules de silice, de fibres de verre, de nanotubes de carbone, ou encore des fibres de nitrure de gallium. D'autres particules d'intérêt peuvent être faites de métal ou d'oxyde de métal comme le Platine, le Ti02, de polymère comme le polystyrène ou le PMMA, de carbone, etc., ou encore des particules composées de plusieurs matériaux.
Plus précisément, dans le mode de réalisation préféré, les particules sont des fibres de verre de diamètre de l'ordre de 10 μιη, et dont la longueur est de l'ordre de 4 mm. Il est noté que l'invention s'applique tout particulièrement aux éléments filaires dont la grande dimension est plus de dix fois supérieure à la petite dimension. Comme cela sera détaillé ci-après, les particules sont destinées à être placées en suspension dans un solvant, ici du type butanol ou chloroforme, la proportion du milieu étant d'environ 7 g de particules pour 200 ml de solvant.
L'installation comporte également un convoyeur liquide 10, recevant un liquide porteur 16 sur lequel les particules sont destinées à flotter. Le liquide porteur 16 est de préférence de l'eau déionisée. Le convoyeur 10 intègre une zone 14 d'accumulation et de transfert des particules, dont le fond est sensiblement horizontal, ou bien légèrement incliné de façon à favoriser la vidange de l'installation, le cas échéant.
La zone 14 présente une sortie de particules 26, définie à l'aide de deux rebords latéraux 28 retenant le liquide porteur 16 dans la zone 14. Ces rebords 28, en regard et à distance l'un de l'autre, s'étendent parallèlement à une direction principale schématisée par la flèche 30 sur les figures 1 et 2. Cette direction 30 correspond à celle du déplacement du film compact de particules lors de son transfert sur le substrat, comme cela sera détaillé ci-après.
Le fond de la partie aval de la zone 14 présente un plateau légèrement incliné vers l'amont par rapport à la direction horizontale, par exemple d'une valeur de l'ordre de 5 à 10°. C'est l'extrémité aval de ce même plateau, également dénommé « blade », qui définit en partie la sortie des particules 26.
L'installation 1 est également pourvue d'un convoyeur de substrat 36, destiné à mettre le substrat 38 en défilement. Ce substrat peut être rigide ou souple. Dans ce dernier cas non représenté, il peut être mis en mouvement sur un rouleau dont l'axe est parallèle à la sortie 26 de la zone 14, à proximité de laquelle il se situe.
Quelle que soit la configuration envisagée, le substrat 38 est destiné à défiler de manière très rapprochée de la sortie 26, afin que les particules atteignant cette sortie puisse être transférées aisément sur ce substrat, via un pont capillaire 42, également dénommé ménisque, qui le relie au liquide porteur 16. Le pont capillaire 42 est assuré entre le liquide porteur 16 qui se situe au niveau de la sortie 26, et une partie du substrat 38 épousant le rouleau de guidage / d'entraînement 40. Alternativement, le substrat peut être au contact directement de la zone de transfert, sans sortir du cadre de l'invention. Le pont capillaire mentionné ci-dessus n'est alors plus requis.
A titre informatif, dans le cas où le substrat est rigide et les objets à transférer sont également rigides et ne peuvent s'adapter à une rupture d'angle lors du transfert, il peut être avantageux d'immerger le substrat dans le liquide de la zone d'accumulation et de transfert 14, et d'effectuer le tirage dans cette configuration. Ceci permet de maximiser l'angle formé entre le plan horizontal du liquide de la zone 14, et le plan du substrat.
Dans l'exemple montré sur les figures, la largeur du substrat 38 est légèrement supérieure à la largeur de la zone 14 et de sa sortie 26. La largeur de la zone 14 correspond aussi à la largeur maximale du film de particules qu'il est possible de déposer sur le substrat 38. Cette largeur peut être de l'ordre de 25 à 30 cm. La largeur du substrat sur lequel doivent être déposées les particules peut cependant être inférieure à la largeur de la zone 14, sans sortir du cadre de l'invention. Un procédé de formation et de dépôt d'un film compact de particules selon un mode de réalisation préféré de l'invention va maintenant être décrit en référence aux figures 2a à 5b.
Tout d'abord en référence aux figures 2a et 2b, il est procédé à la mise en place d'un support 40 de particules dans ledit liquide porteur 16. Initialement, ce support 40 comprenant au moins une partie solidifiée dans laquelle sont piégées les particules 4, cette partie solidifiée étant réalisée à partir d'au moins un liquide refroidi. Préférentiellement, le support est, avant son introduction dans le liquide porteur 16, entièrement solidifié, et comporte une partie basse 42 correspondant à de l'eau pure congelée, ainsi qu'une partie haute 44 correspondant au solvant solidifié. Alternativement, le solvant peut se présenter sous la forme d'un film liquide reposant sur l'eau pure congelée. Quoi qu'il en soit, les particules 4 sont piégées à l'interface entre les deux parties haute 44 et basse 42. La fabrication du support 40 sera détaillée ultérieurement.
Le support 40, dans son état initial, présente par exemple une forme cylindrique de section circulaire, d'environ 5 mm d'épaisseur et d'environ 40 mm de diamètre. Des dimensions supérieures peuvent être retenues, sans sortir du cadre de l'invention. Les particules 4 sont regroupées au niveau d'une face chargée du support, correspondant à la surface supérieure 40', sensiblement plane et orientée horizontalement.
De par sa composition essentiellement à base d'eau congelée, le support 40 flotte lorsqu'il est introduit dans le liquide porteur 16. Cette introduction est réalisée de telle sorte que la face chargée 40' du support 40 se trouve sensiblement au niveau de la surface 16' du liquide porteur 16, ou proche de celle-ci. Ce but est facilement atteint lorsque l'épaisseur de solvant solidifié 44 est faible. Néanmoins, le solvant peut ne pas être entièrement solidifé, mais par exemple porté à l'état visqueux.
Une fois introduit dans le liquide porteur 16, le support 40 est en fusion et fond progressivement, en libérant les particules 4 qui peuvent alors se disperser également progressivement à la surface du liquide porteur 16, comme cela a été schématisé sur les figures 3a et 3b. Grâce au gradient de température et au changement de phase durant la fonte du support 40, le fluide ne reste pas au repos, en particulier à cause de la descente du fluide froid. Les mouvements de liquide au sein de la zone 14 favorisent ainsi une agitation de surface favorable à la dispersion des particules 4. De plus, l'abaissement local de la température entraîne une augmentation de la tension de surface du liquide porteur 16 situé à proximité du glaçon 40. Ce phénomène est profitable car il participe au maintien des particules 4 à la surface 16' du liquide porteur 16. En outre, en raison de la différence de tension de surface entre l'eau et le solvant en fusion, le gradient de tension interfaciale induit des instabilités hydrodynamiques qui participent aussi à l'agitation locale des deux liquides, favorisant la dispersion des particules à la surface 16' du liquide porteur.
Il est noté que plusieurs supports 40 peuvent introduits successivement ou simultanément dans le liquide porteur, afin de bénéficier de la quantité de particules désirées. Un système de pompe (non représentée) peut par ailleurs réguler le volume total de liquide dans la zone 14, en tenant compte de l'apport d'eau par les supports 40 introduits dans cette zone.
Lorsque la totalité des particules 4 sont présentes sur la surface 16' dans la zone d'accumulation et de transfert 14, elles sont poussées en direction de la sortie 26 par une barrière 50 ou un élément similaire. Cette barrière 50 est en effet déplacée selon la direction 30 de façon à ce que les particules 4 s'ordonnent en étant retenue vers l'aval par le substrat 38 formant butée.
Cet ordonnancement via la barrière 50 et le substrat 38 génère un film compact 4' de particules 4, comme cela a été schématisé sur les figures 4a et 4b.
Alternativement, il est possible de mettre en œuvre un convoyeur à rampe tel que décrit précédemment, avec lequel les particules s'ordonnent automatiquement, sans assistance, grâce notamment à leur énergie cinétique et aux forces capillaires mises à profit au moment de l'impact sur le front de particules présent sur la rampe. Dans ce cas de figure, les supports 40 sont alors préférentiellement placés dans le réservoir du convoyeur, en amont de la rampe. D'autres moyens d'ordonnancement connus de l'homme du métier sont également envisageables, sans sortir du cadre de l'invention.
L'ordonnancement souhaité est tel que le film compact obtenu présente une structure semblable à une structure « hexagonale compacte » dans le cas de sphères, dans laquelle chaque particule 4 est entourée et contactée par six autres particules 4 en contact entre elles. Il est alors indifféremment parlé de film compact de particules, ou de film de particules ordonnées.
Une fois que le film 4' est obtenu à la surface du liquide porteur 16 dans la zone 14, il peut être procédé à une étape de structuration de ce film, qui ne sera pas détaillée ici, mais qui est connue de l'homme du métier. Elle consiste par exemple en la mise en place d'objets sur le film compact.
Ensuite, il est procédé à la mise en mouvement du substrat 38, effectuée en même temps que la poursuite du déplacement de la barrière 50 vers l'aval, de manière à déposer progressivement le film 4' sur ce même substrat 38, via le pont capillaire 42. Cette étape de dépôt du film 4', également dénommée étape de transfert, a été schématisée sur les figures 5a et 5b. En effet, lorsque le substrat 38 commence à défiler, le film 4' s'y dépose en passant à travers la sortie 26 et en empruntant le pont capillaire 42, à la manière de celle décrite dans le document CA 2 695 449. Une solution par contact plutôt que par pont capillaire est également envisageable, sans sortir du cadre de l'invention.
Pour faciliter le dépôt et l'adhérence des particules 4 sur le substrat 38, par exemple réalisé en polymère, il peut être prévu un recuit thermique postérieurement au transfert. Ce recuit thermique est par exemple réalisé à 80°C, en utilisant un film mat de laminage basse température à base de polyester, par exemple commercialisé sous la référence PERFEX-MATT™, d'épaisseur 125μιη. L'avantage d'un tel film en tant que substrat est que l'une de ses faces devient collante à la température de l'ordre de 80°C, ce qui permet de faciliter l'adhérence des particules 4 sur celle-ci. Plus précisément, à cette température, les particules 4 s'enfoncent dans le film ramolli 38, et permettent ainsi un contact direct avec le film, qui conduit à leur collage. Alternativement, le substrat 38 peut être du type silicium, verre, ou encore film piézoélectrique.
Au cours du transfert, la vitesse linéaire du substrat 38, également dénommée vitesse de tirage, peut être de l'ordre de 0,1 cm/min à 100 cm/min.
En référence à présent à la figure 6, il est représenté une première technique de fabrication du support 40.
Tout d'abord, il est prévu dans un récipient 60 dans lequel est agencé le solvant 3 intégrant les particules 4 en suspension. Il est ensuite introduit une quantité donnée d'eau pure dans le récipient 60. Le solvant 3, du butanol, est non miscible dans l'eau et de densité inférieure à celle de l'eau. Aussi, après introduction de l'eau pure, les particules 4 migrent pour venir s'agencer dans un plan horizontal à l'interface entre l'eau 5 située au-dessus, et le solvant situé en dessous. La migration peut être favorisée par une agitation dans le récipient.
Selon une première possibilité, l'ensemble 60' est ensuite directement refroidi de manière à obtenir le support 40 précité. La température de refroidissement est alors de préférence inférieure au point de fusion du solvant, de sorte que la partie solidifiée du support intègre à la fois l'eau pure et le solvant, avec les particules piégées à l'interface.
Selon une autre possibilité, il est procédé à une opération d'extraction du solvant, de manière à ne conserver qu'une couche très mince au-dessus de l'eau, voire de retirer l'intégralité de ce solvant. L'ensemble 60" est ensuite congelé, de manière à obtenir le support 40 dont la partie solidifiée en eau pure intègre les particules 4. L'éventuel film 3' de solvant qui subsiste peut être conservé à l'état liquide à faible température avant l'introduction du support 40 dans le liquide porteur, ou bien peut également être solidifié si la température de refroidissement est suffisamment basse.
Selon une seconde technique de fabrication du support 40 schématisée sur la figure 7, il est d'abord réalisé une opération de formation d'un bloc d'eau pure solidifié 70 dans un récipient 60. Ensuite, il est procédé à une opération consistant à verser, dans le récipient 60 et sur le bloc d'eau solidifié 70, un solvant 3 dans lequel les particules 4 sont en suspension. Cela conduit les particules 4 à migrer à l'interface entre le solvant 3 et le bloc d'eau solidifié 70, pour être piégées à la surface supérieure de ce dernier. L'amenée des particules à l'interface peut également être obtenue par décantation. Ensuite, le surplus de solvant est ici aussi préférentiellement retiré, de manière à ce que seule subsiste une couche très mince de solvant, avec les particules agencées à l'interface entre cette couche et la glace. Le retrait du solvant peut être effectué par pipetage, ou par écoulement par gravité.
L'ensemble forme alors le support 40 qui peut ensuite être introduit en l'état dans le liquide porteur.
Selon une autre possibilité, l'ensemble obtenu 60' peut être refroidi en dessous de la température de fusion du solvant 3, de sorte que la totalité du support 40 soit solidifié avant son introduction dans le liquide porteur.
Selon encore une autre possibilité, après l'obtention du bloc d'eau solidifié 70, il peut être mis en œuvre une opération consistant à verser directement, sur la surface supérieure du bloc 70, les particules 4 à l'état de poudre. Ces particules 4, lorsqu'elles arrivent au contact de la surface supérieure du bloc 70, sont piégées par ce dernier.
Enfin en référence à la figure 8, il est schématisé une troisième technique de fabrication du support 40, qui consiste tout d'abord à introduire des particules 4 dans le fond d'un récipient 60. Ensuite, de l'eau 5 est versée dans le récipient 60 de manière à conserver les particules 4 dans le fond du récipient, et ce versant l'eau avec un débit faible. Pour terminer, l'ensemble est refroidi et solidifié afin d'obtenir le support 40. La partie solidifiée de ce dernier est alors constituée d'un bloc d'eau dans lequel sont piégées les particules 4, sur la surface inférieure. Lorsque ce support est introduit dans le liquide porteur, il est préférentiellement retourné afin que la surface chargée de particules constitue la surface supérieure de support 40.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Procédé de formation d'un film compact de particules (4) à la surface d'un liquide porteur (16), caractérisé en ce qu'il comprend les étapes suivantes :
- mise en place d'au moins un support (40) de particules dans ledit liquide porteur (16), ledit support comprenant au moins une partie solidifiée dans laquelle sont piégées les particules (4) et qui est réalisée à partir d'au moins un liquide refroidi, ledit support (40) en fusion dans ledit liquide porteur conduisant à la libération des particules (4) à la surface de ce liquide porteur ; et
- ordonnancement des particules libérées (4) de manière à obtenir ledit film compact de particules à la surface (16') du liquide porteur (16).
2. Procédé selon la revendication 1, caractérisé en ce que lesdites particules (4) sont de forme non-sphérique.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que lesdites particules (4) sont de taille micrométrique ou nanométrique, de préférence présentant une grande dimension comprise entre 1 nm et 500 μιη.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide porteur (16) est de l'eau déionisée.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite partie solidifiée du support (40), dans laquelle sont piégées les particules (4), est réalisée au moins à partir d'eau (5).
6. Procédé selon la revendication 5, caractérisé en ce que ladite partie solidifiée du support (40), dans laquelle sont piégées les particules (4), est réalisée également à partir d'un solvant (3) dans lequel étaient initialement présentes lesdites particules (4), en suspension.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de mise en place dudit au moins un support de particules (40) est réalisée de telle sorte que ce support flotte à la surface (16') dudit liquide porteur (16).
8. Procédé selon la revendication 7, caractérisé en ce que les particules (4) sont regroupées au niveau d'une face chargée (40') du support (40), et en ce que l'étape de mise en place dudit au moins un support de particules (40) est réalisée de telle sorte que ladite face chargée (40') du support se trouve sensiblement au niveau de la surface (16') du liquide porteur.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une étape préalable de fabrication dudit au moins un support (40) dans lequel sont piégées lesdites particules (4).
10. Procédé selon la revendication 9, caractérisé en ce que ladite fabrication dudit support (40) dans lequel sont piégées lesdites particules (4) comprend les opérations suivantes :
a) introduction d'une quantité d'eau (5) dans un récipient (60) contenant un solvant (3) non miscible dans l'eau et de densité inférieure à celle de l'eau, avec lesdites particules (4) agencées en suspension dans ledit solvant (3), de manière à ce que les particules (4) migrent à l'interface entre l'eau et le solvant ;
b) refroidissement de manière à obtenir ledit support (40) comprenant au moins une partie solidifiée dans laquelle sont piégées lesdites particules (4).
11. Procédé selon la revendication 10, caractérisé en ce qu'il est mis en œuvre, entre les opérations a) et b), une opération d'extraction de tout ou partie du solvant (3).
12. Procédé selon la revendication 10, caractérisé en ce que l'opération de refroidissement vise également à solidifier totalement ou partiellement ledit solvant (3) introduit dans le récipient (60).
13. Procédé selon la revendication 9, caractérisé en ce que ladite fabrication dudit support (40) dans lequel sont piégées lesdites particules (4) comprend une opération de formation d'un bloc d'eau solidifié (70).
14. Procédé selon la revendication 13, caractérisé en ce que ladite fabrication dudit support dans lequel sont piégées lesdites particules comprend ensuite une opération consistant à verser, sur le bloc d'eau solidifié (70), un solvant (3) dans lequel lesdites particules (4) sont agencées en suspension.
15. Procédé selon la revendication 14, caractérisé en ce que l'ensemble (60') formé par le bloc d'eau solidifié (70) et le solvant (3) intégrant particules (4), est refroidi de manière à ce que ladite partie solidifiée du support comprenne au moins une partie dudit solvant (3).
16. Procédé selon la revendication 13, caractérisé en ce que ladite fabrication dudit support dans lequel sont piégées lesdites particules comprend ensuite une opération consistant à verser directement, sur le bloc d'eau solidifié (70), lesdites particules (4) à l'état de poudre.
17. Procédé selon la revendication 9, caractérisé en ce que ladite fabrication dudit support (40) dans lequel sont piégées lesdites particules (4) comprend les opérations suivantes :
a) introduction des particules (4) dans le fond d'un récipient (60) ;
b) introduction d'eau (5) dans le récipient (60) de manière à conserver les particules (4) dans le fond du récipient ; c) refroidissement de manière à obtenir ledit support (40) comprenant au moins une partie solidifiée dans laquelle sont piégées lesdites particules (4).
18. Procédé de dépôt d'un film compact (4') de particules (4) sur un substrat, comprenant la mise en œuvre du procédé de formation d'un film compact de particules (4) à la surface d'un liquide porteur (16) selon l'une quelconque des revendications précédentes, suivie d'une étape de dépôt du film compact (4') de particules (4) sur un substrat (38).
19. Procédé de dépôt selon la revendication 18, caractérisé en ce que ladite étape de dépôt du film compact (4') de particules est mise en œuvre sur un substrat (38) en défilement.
EP16700955.4A 2015-01-16 2016-01-14 Procede de formation d'un film compact de particules a la surface d'un liquide porteur Withdrawn EP3245010A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550337A FR3031683B1 (fr) 2015-01-16 2015-01-16 Procede de formation d'un film compact de particules a la surface d'un liquide porteur
PCT/EP2016/050602 WO2016113324A1 (fr) 2015-01-16 2016-01-14 Procede de formation d'un film compact de particules a la surface d'un liquide porteur

Publications (1)

Publication Number Publication Date
EP3245010A1 true EP3245010A1 (fr) 2017-11-22

Family

ID=52779879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16700955.4A Withdrawn EP3245010A1 (fr) 2015-01-16 2016-01-14 Procede de formation d'un film compact de particules a la surface d'un liquide porteur

Country Status (6)

Country Link
US (1) US20180001340A1 (fr)
EP (1) EP3245010A1 (fr)
KR (1) KR20170105070A (fr)
CN (1) CN107107098A (fr)
FR (1) FR3031683B1 (fr)
WO (1) WO2016113324A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066705B1 (fr) 2017-05-29 2022-12-02 Commissariat Energie Atomique Particule pour la realisation de pieces metalliques par impression 3d et procede de realisation de pieces metalliques

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280804B2 (ja) * 1994-08-15 2002-05-13 触媒化成工業株式会社 基材上への粒子層の形成方法、基材凹凸面の平坦化方法および粒子層付基材
CN1195836C (zh) * 1996-09-18 2005-04-06 普罗格特-甘布尔公司 具有多层表面涂层的洗衣添加剂颗粒
ES2268746T3 (es) * 1998-10-13 2007-03-16 Bush Industries, Inc. Procedimiento para transferir una decoracion en color sobre un objeto.
US20020064809A1 (en) * 2000-11-29 2002-05-30 Mutz Mitchell W. Focused acoustic ejection cell sorting system and method
KR100869203B1 (ko) * 2001-04-18 2008-11-18 아사히 카세이 쿠라레 메디칼 가부시키가이샤 비대칭 다공질막 및 그의 제조 방법
US20070126137A1 (en) * 2005-12-05 2007-06-07 Aruna Zhamu Method of manufacturing integrated bipolar plate/diffuser components for proton exchange membrane fuel cells
US7388046B2 (en) * 2006-04-19 2008-06-17 Baker Hughes Incorporated Self-dispersing waxes as polymer suspension aids
WO2008157410A1 (fr) * 2007-06-14 2008-12-24 Massachusetts Institute Of Technology Procédé et appareil pour réguler un dépôt de film

Also Published As

Publication number Publication date
FR3031683B1 (fr) 2017-02-17
CN107107098A (zh) 2017-08-29
US20180001340A1 (en) 2018-01-04
WO2016113324A1 (fr) 2016-07-21
FR3031683A1 (fr) 2016-07-22
KR20170105070A (ko) 2017-09-18

Similar Documents

Publication Publication Date Title
EP2812126B1 (fr) Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
EP2892658B1 (fr) Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
EP2812125B1 (fr) Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat
EP2678120B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement
EP2801108B1 (fr) Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules
EP2812127B1 (fr) Procédé de transfert d'objets sur un substrat à l'aide d'un film compact de particules, avec une étape de réalisation de connecteurs sur les objets
EP2731731B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
EP2996816A1 (fr) Procede de realisation d'un substrat par projection de particules sur un film compact de particules solides flottant sur un liquide porteur
EP3245010A1 (fr) Procede de formation d'un film compact de particules a la surface d'un liquide porteur
EP3038761B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
EP3038760B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
EP2996820B1 (fr) Procede de depot d'un film compact de particules sur la surface interieure d'une piece presentant un creux delimite par cette surface interieure
Zeng et al. Launching a Drop via Interplay of Buoyancy and Stick‐Jump Dissolution

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180724

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181204