WO2013115350A1 - クロマトグラフ媒体 - Google Patents

クロマトグラフ媒体 Download PDF

Info

Publication number
WO2013115350A1
WO2013115350A1 PCT/JP2013/052324 JP2013052324W WO2013115350A1 WO 2013115350 A1 WO2013115350 A1 WO 2013115350A1 JP 2013052324 W JP2013052324 W JP 2013052324W WO 2013115350 A1 WO2013115350 A1 WO 2013115350A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
chromatographic medium
separating agent
target substance
permeation
Prior art date
Application number
PCT/JP2013/052324
Other languages
English (en)
French (fr)
Inventor
稔治 蓑田
池田 勇
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US14/375,677 priority Critical patent/US9726650B2/en
Priority to CN201380007653.6A priority patent/CN104081199B/zh
Priority to EP13744353.7A priority patent/EP2811296B1/en
Priority to JP2013556510A priority patent/JP6118271B2/ja
Publication of WO2013115350A1 publication Critical patent/WO2013115350A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • G01N30/93Application of the sorbent layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8877Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/94Development
    • G01N2030/945Application of reagents to undeveloped plate

Definitions

  • the present invention relates to a chromatographic medium having at least two kinds of layers having different optical responsiveness to ultraviolet rays and further having another layer.
  • TLC Thin layer chromatography
  • a separating agent for optical isomers a separating agent containing a polysaccharide derivative such as a phenyl ester of a polysaccharide is known.
  • the detection target component may not be detected by ultraviolet irradiation or color developing treatment of the coloring reagent.
  • a first separating agent layer that has separation ability for a target substance but does not have optical response on the same substrate and a first separation agent layer that does not have separation ability but has optical response.
  • a TLC plate in which two separating agent layers are formed side by side is known (for example, see Patent Document 1).
  • the target substance in the sample is developed from the first separating agent layer to the second separating agent layer, and the spot separated by the first separating agent layer moves to the adjacent second separating agent layer. Therefore, it is detected according to the optical response.
  • the extract component that is easily adsorbed by the first separating agent layer in the sample may not reach the second separating agent layer sufficiently.
  • the positional relationship of the spots in the first separating agent layer may not be accurately maintained up to the second separating agent layer.
  • the TLC plate may not be able to accurately detect the separation state in the first separating agent layer, and at least room for examination is left in this respect.
  • the present invention provides a chromatographic medium capable of performing separation and detection of a target substance with a single kit.
  • the inventors have a separating agent layer for separating a target substance, a filler layer for fixing the target substance before separating the target substance, and a target substance separated by the separating agent layer.
  • a chromatographic medium having a permeation layer for permeation, wherein the filler layer is in contact with the separating agent layer via a plane orthogonal to a development direction of the target substance in the chromatographic medium.
  • the separation agent layer is located upstream of the development direction, and has a separation ability with respect to the target substance and an optical response to ultraviolet rays, and the permeation layer has an optical response different from that of the separation agent layer.
  • the present invention provides the following.
  • the permeating agent layer for separating the target substance, the filler layer for fixing the target substance before separating the target substance, and the target substance separated by the separating agent layer permeate.
  • a chromatographic medium having a permeation layer of The filler layer is in contact with the separating agent layer via a surface orthogonal to the development direction of the target substance in the chromatographic medium, and is located on the upstream side in the development direction,
  • the separating agent layer has separability with respect to the target substance and optical response to ultraviolet rays
  • the permeation layer is a chromatographic medium in which the target substance and the separating agent layer have different optical responsiveness.
  • ⁇ 2> The length of the chromatographic medium in the developing direction is 1/20 to 1/2 of the packing layer from the immersion end where the developing solution for developing the target substance in the chromatographic medium is immersed.
  • ⁇ 3> The chromatographic medium according to ⁇ 1> or ⁇ 2>, wherein the permeation layer is discontinuously stacked in a developing direction of the chromatographic medium.
  • ⁇ 4> The chromatographic medium according to any one of ⁇ 1> to ⁇ 3>, wherein the permeation layer is laminated in a dot shape on the separating agent layer.
  • ⁇ 5> The chromatograph according to ⁇ 4>, wherein the permeation layer laminated in a dot shape has an average diameter of the dots of 0.01 to 5 mm and a pitch between the dots of 0.015 to 5 mm.
  • ⁇ 6> The chromatograph according to any one of ⁇ 1> to ⁇ 3>, wherein the permeation layer is laminated on the separating agent layer as a band-like row intersecting a developing direction of the chromatographic medium.
  • Medium. ⁇ 7> The chromatographic medium according to ⁇ 6>, wherein the band forming the band-like row is selected from a straight line, a wavy line, and a broken line thereof.
  • ⁇ 8> The chromatographic medium according to any one of ⁇ 1> to ⁇ 7>, wherein the permeation layer is thinner than the separating agent layer.
  • the separating agent constituting the separating agent layer is a separating agent for optical isomers.
  • the separating agent for optical isomers is selected from any of an aromatic ester group, an aromatic carbamoyl group, an aromatic ether group, and a carbonyl group, which are substituted with a part or all of the polysaccharide and the hydroxyl group or amino group of the polysaccharide.
  • ⁇ 9> The chromatographic medium according to ⁇ 9>, further comprising a polysaccharide derivative.
  • the permeation layer includes a porous body and a fluorescent indicator or a coloring reagent as constituent materials.
  • the filler layer includes a porous material as a constituent material.
  • the porous body is silica gel or surface-treated silica gel.
  • ⁇ 14> The chromatographic medium according to any one of ⁇ 11> to ⁇ 13>, further comprising a binder as a constituent material.
  • ⁇ 15> The chromatographic medium according to any one of ⁇ 1> to ⁇ 14>, wherein a scale and / or characters are present on the permeation layer.
  • ⁇ 16> The chromatographic medium according to ⁇ 15>, wherein the scale and / or characters have an optical response different from that of the permeation layer.
  • ⁇ 17> The material according to any one of ⁇ 1> to ⁇ 16>, having a base material that faces the separation agent layer or faces the permeation layer and supports the chromatographic medium. Chromatographic medium.
  • ⁇ 18> The chromatographic medium according to any one of ⁇ 1> to ⁇ 17>, wherein the chromatographic medium is plate-shaped, cylindrical, or columnar.
  • ⁇ 19> The chromatographic medium according to any one of ⁇ 1> to ⁇ 16> and a base material for supporting the chromatographic medium, wherein the chromatographic medium is provided in a plurality of regions on the base material.
  • a TLC material comprising the chromatographic medium according to any one of ⁇ 1> to ⁇ 16> and a base material for supporting the chromatographic medium.
  • a permeation layer for allowing the separated target substance to permeate is laminated facing the separation agent layer, and the permeation layer has an optical response different from that of the separation agent layer. Therefore, the target substance that exists in the separating agent layer that cannot be detected by optical response and has the same optical response as the separating agent layer penetrates into the permeation layer. It can be detected by sex.
  • the filler layer is in contact with the separating agent layer through a plane orthogonal to the development direction of the target substance in the chromatographic medium, and is positioned upstream of the development direction. is doing.
  • the target substance when the target substance is fixed on the part including the filler layer and then developed, it is separated from the filler layer due to the difference in holding power of the target substance between the filler layer and the separating agent layer.
  • the target substance is once concentrated at the boundary of the separating agent layer side of the agent layer. After that, separation of the target substance in the separating agent layer occurs, so that the target substance can be reliably detected even when the concentration of the target substance in the solution containing the target substance to be spotted is low. As a result, spots of the target substance are formed. Furthermore, the separation ability of the target substance is improved. Further, since the chromatographic medium of the present invention can separate and detect the target substance with a single kit without using other members, a complicated process is required for the separation and detection of the target substance. do not do.
  • TLC plate prepared in Example 1 (up to 2.0 cm from the dipping end of the developing solution is laminated with a filler layer, and a permeation layer is also laminated on the filler layer) Is a diagram showing spots obtained by developing trans-stilbene oxide (t-SO), Treger base and flavanone using hexane / ethanol (90:10, v / v) as a developing solution (photo) ).
  • t-SO trans-stilbene oxide
  • Treger base Treger base and flavanone using hexane / ethanol (90:10, v / v) as a developing solution (photo)
  • A A diagram (photograph) showing spots obtained by preparing a TLC plate similar to the TLC plate prepared in Example 1 and developing the same target substance as in Example 1 using methanol as a developing solution.
  • Example 2 A photograph obtained by performing the same operation as in Example 2 except that the TLC plate prepared in Comparative Example 2 was used. It is the schematic which shows a plate-shaped aspect among the chromatographic media of this invention. (1) It is a figure which shows the one aspect
  • the chromatographic medium of the present invention it is a diagram showing an example in which a permeation layer is laminated as a strip-like row on a separating agent layer and a filler layer ((1) to (4)).
  • the chromatographic medium of this invention it is a figure which shows an example of the diameter ((phi)) and pitch (Pt) of a dot in case a permeation layer is laminated
  • A As a chromatographic medium of the present invention, it is the schematic diagram showing a cross section of one embodiment of a plate shape.
  • B The schematic diagram showing a cross-section of another plate-like embodiment as the chromatographic medium of the present invention.
  • FIG. 1 is a schematic diagram showing a cross section of yet another embodiment of a plate shape. It is the schematic which shows one aspect
  • the chromatographic medium of the present invention has a separating agent layer, a filler layer for fixing the target substance before separation, and a permeation layer for allowing the target substance separated by the separating agent to permeate.
  • the chromatographic medium as referred to in the present invention is a laminate of the above separating agent layer and a filler layer in contact with the separating agent layer through a plane orthogonal to the development direction of the target substance in the chromatographic medium, A permeation layer is laminated facing the above separating agent layer, and the shape includes plates, columns, and cylinders, which are known as so-called thin layer chromatography (TLC). It is what. On the other hand, a cylindrical shape or a columnar shape is sometimes called a sticky column.
  • the separating agent layer has a separation ability for the target substance and an optical response to ultraviolet rays.
  • the permeation layer is different in optical response to ultraviolet light from the target substance and the separating agent layer.
  • an optical isomer can be exemplified. Having the ability to separate the target substance means having the ability to separate the target substance, and when the target substance is an optical isomer, means having an optical resolution. Moreover, the optical responsiveness with respect to ultraviolet rays as used in the field of this invention means light emission by ultraviolet rays, such as fluorescence, or absorption of ultraviolet rays.
  • the filler layer is in contact with the separating agent layer through a surface orthogonal to the development direction of the target substance, but “perpendicular” as used in the present invention means It does not need to be strictly perpendicular (90 °) to the development direction of the target substance, and may have an inclination or a shape within a range that does not affect the separation of the target substance. Such a range may be, for example, 88 to 92 ° with respect to the development direction of the target substance.
  • the target substance separated by the separating agent layer permeates the permeation layer. Since the optical response of the permeation layer is different from the optical response of the target substance and the separating agent layer, the target substance permeating the permeation layer can be confirmed by irradiation with ultraviolet rays or the like.
  • the separating agent layer and the filler layer in contact with each other through a plane orthogonal to the development direction of the target substance in the chromatographic medium are laminated.
  • the positional relationship is such that the separating agent layer is laminated on the downstream side in the developing direction of the chromatographic medium, and the filler layer is laminated on the upstream side.
  • the area of the filler layer in the chromatographic medium has an area where the target substance can be separated by the separating agent layer and the target substance can be confirmed in the permeation layer, and the target substance is in the area of the filler layer.
  • the size and shape of the region are not particularly limited as long as the region can be fixed.
  • the filler layer is immersed from a dipping end (hereinafter also referred to as a lower edge) where a developing solution for developing the target substance in the chromatographic medium is immersed. It is preferable that it exists in a region up to 1 ⁇ 2 of the length in the developing direction of the chromatographic medium.
  • the filler layer is between 1/40 and 1/2 of the length in the developing direction of the chromatographic medium from the lower edge of the chromatographic medium. More preferably, it exists as a region, particularly preferably a region between 1/20 and 1 / 2.2.
  • the boundary between the separating agent layer and the filler layer is provided on the downstream side in the developing direction with respect to the spotting position of the target substance and the immersion position when immersed in the developing tank.
  • the shape of the filler layer as viewed from the direction in which the target substance is spotted is, when the chromatographic medium is plate-shaped, an aspect in which the shape is a quadrangle including its lower edge. Can be mentioned.
  • the filler when the shape of the plate viewed from the direction of spotting the target substance is a triangle and the shape is such that the vertex side of the triangle is immersed, the filler having an inverted triangle shape including the vertex portion
  • the shape of the layer is also mentioned.
  • the shape of the filler layer may be a substantially circular shape that is large enough to allow spotting of the target substance.
  • the region where the permeation layer is laminated does not have to be the entire region of the separating agent layer as long as it faces at least the separating agent layer.
  • the permeation layer may not be partially laminated in the region of the separating agent layer.
  • the permeation layer may be laminated so as to face not only the separating agent layer but also the filler layer.
  • the ratio of the area of the layer where the permeation layer is laminated to the total area of the separating agent layer is preferably 5 to 90%. From the viewpoint of confirming the separation of various target substances, It is more preferably 10 to 80%, and further preferably 20 to 70%.
  • the permeation layer is laminated using a coating technique, a dipping technique, or a printing technique described later. In this case, it can be obtained by using a method in which only that region is not applied, dipped or printed.
  • the permeation layer may be laminated once on the entire surface of the separating agent layer and then removed from the separating agent layer by an operation such as scraping.
  • the ratio of the area of the permeation layer on the filler layer is not particularly limited, and may be laminated at an arbitrary ratio. .
  • the filler layer and the permeation layer may be made of the same material, and in that case, the filler layer and the permeation layer are composed of two layers for convenience. In fact, it will constitute the same layer.
  • the shape of the chromatographic medium of the present invention is not particularly limited as long as it has the above-described configuration, and may be a plate shape, a cylindrical shape, or a columnar shape.
  • a plate-like material a material to be described later is used as a base material, and a permeation layer, a separating agent layer, a filler layer, and a base material are laminated in this order, and the permeation layer is separated.
  • the first embodiment (see FIG. 6 (a)) laminated only facing the agent layer, and the permeation layer, the separating agent layer and the filler layer, and the base material in this order, as viewed from the direction of ultraviolet irradiation
  • a second embodiment (see FIG.
  • the target substance can be spotted from the direction opposite to the direction of irradiating ultraviolet rays (6 ′ in FIG. 6C). Further, spotting can also be performed from the same direction (6 in FIG. 6C) as the direction in which a part of the substrate is removed and the ultraviolet ray is irradiated.
  • the chromatographic medium of the present invention is a plate-shaped TLC
  • a known substrate in a TLC plate can be used as the base material.
  • examples of such a substrate include a flat plate made of glass, resin, metal, or paper.
  • the shape of a base material is not specifically limited, It is preferable that it is a rectangle normally used by TLC.
  • examples of the cylindrical or columnar chromatographic medium include those exemplified in FIG.
  • the cross-sectional shape in the direction perpendicular to the axis has an ellipse to a circle, but is not limited thereto, and may be a polygon.
  • the separation agent layer, the filler layer, and the permeation layer are formed on the outer peripheral surface of the columnar or cylindrical substrate, and the separation agent layer and the filling are formed on the inner peripheral surface of the cylindrical substrate.
  • the columnar base material for example, a rod having a polygonal shape or a circular shape can be used
  • cylindrical base material for example, a polygonal or circular tube having a cross-sectional shape, a column tube, a column tube, Tubes of the same size can be used.
  • the target substance should be confirmed by using a cylindrical base material that has optical transparency.
  • the light transmissive property refers to the transparency with which the optical characteristics (color development, light emission, light absorption, etc.) of the spot of the target substance can be confirmed.
  • a quartz glass tube or a tube made of a fluororesin such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) can be used.
  • the chromatographic medium which does not have a base material but consists only of a separating agent layer, a filler layer, and a permeation
  • the target substance is laminated on the area where the filler layer is exposed ((a) to (c) in FIG. 7) or on the filler layer.
  • Such a cylindrical or columnar chromatographic medium usually has a length of 1 to 40 cm and a diameter (maximum diameter) of usually 0.1 to 1 cm.
  • the separating agent used for the separating agent layer in the chromatographic medium of the present invention is not particularly limited as long as it has a separating ability for a target substance and an optical response to ultraviolet rays.
  • a particulate separating agent can be used as the separating agent. Examples of such a particulate separating agent include particles composed only of the separating agent, and particles obtained by supporting the separating agent on a particulate carrier.
  • the loading of the separating agent on the carrier includes loading by a chemical bond to the carrier as well as loading by physical adsorption.
  • the separating agent either a low molecular separating agent or a high molecular separating agent having optical response can be used.
  • the low molecular separation agent include a ligand exchange type separation agent, a charge transfer ( ⁇ - ⁇ ) type separation agent, a hydrogen bond type separation agent, an inclusion type separation agent, and an ion bond type separation agent.
  • examples thereof include a separating agent, an intercalating type separating agent, a crown ether or a derivative thereof, and a cyclodextrin or a derivative thereof.
  • the polymer separating agent include polysaccharide derivatives, polyamides, polymethacrylic acid esters, polyacrylamides, proteins, and tartaric acid derivatives.
  • polysaccharide derivative examples include, for example, part or all of hydroxyl groups or amino groups of polysaccharides and polysaccharides used in optical isomer separating agents, such as aromatic ester groups, aromatic carbamoyl groups, aromatic ether groups, and carbonyl groups.
  • polysaccharide derivatives that are replaced by any of them such as phenyl carbamate derivatives of cellulose, phenyl ester derivatives of cellulose, phenyl carbamate derivatives of amylose, and phenyl ester derivatives of amylose.
  • the phenyl group in these derivatives may have one or more substituents selected from the group consisting of hydrocarbons having 1 to 20 carbon atoms and halogens.
  • the carrier is preferably a porous body from the viewpoint of improving the separation performance.
  • the carrier include synthetic polymers such as cross-linked polystyrene, cross-linked acrylic polymer, and epoxy polymer, cellulose and cross-linked cellulose reinforced by cross-linking, cross-linked agarose, cross-linked dextran, and cross-linked mannan cross-linked polysaccharides, and , Alumina, silica gel, mesoporous silica gel, zeolite, diatomaceous earth, fused silica, viscosity mineral, zirconia, metals and other inorganic materials.
  • the particle size of the separating agent can be determined according to the purpose of separation in the chromatographic medium, and is usually preferably 10 ⁇ m or more, more preferably 10 to 100 ⁇ m, and further preferably 20 to 100 ⁇ m. preferable.
  • an average particle size measured by a normal particle size measuring device can be adopted, but it may be a catalog value.
  • a separation agent smaller than 10 ⁇ m can be used.
  • the particle size of the separating agent is preferably 2 to 8 ⁇ m, more preferably 3 to 6 ⁇ m.
  • the separating agent layer is formed by using a known method for producing a TLC plate, for example, a slurry containing the separating agent and a coating solvent by using a spreader. Slurry containing the separating agent and the coating solvent on the substrate as a support, or by spraying the slurry on the surface of a substrate as a support, or as a support It can be formed by dipping in it. At that time, if the obtained chromatographic medium has sufficient strength even without a base material, the chromatographic medium consisting only of the separating agent layer, the filler layer and the permeation layer is excluded except the base material. Also good.
  • the material constituting the permeation layer is formed on the inner surface of a tube such as a column tube by coating or printing, and then a material containing a separating agent or a binder and a filler layer
  • a material containing a separating agent or a binder and a filler layer By forming the separating agent layer and the filler layer by filling the material constituting the layer, the permeation layer is laminated on the separation agent layer, or the permeation layer is formed on both the separation agent layer and the filler layer. Can be obtained, and a chromatographic medium in which a column tube exists on the peripheral wall of the permeation layer can be obtained.
  • the chromatographic medium is cylindrical, for example, a material containing a separating agent or a binder and a material constituting the filler layer are applied to the peripheral surface of a rod-like base material, or a slurry containing a separating agent or a coating solvent is used. It is applied to a rod-shaped substrate, and the material constituting the filler layer is further applied to the region of the substrate where there is no slurry containing a separating agent or a coating solvent to form a separating agent layer and a filler layer.
  • the material constituting the permeation layer is laminated only on the peripheral surface of the separating agent layer or on the peripheral surfaces of the separating agent layer and the filler layer by coating or printing, so that the separating agent layer and the filler are formed on the base material.
  • a cylindrical chromatographic medium in which layers are laminated and a permeation layer is laminated on the separating agent layer or both the separating agent layer and the filler layer can be obtained.
  • a columnar porous body having the separating agent on at least the surface is formed.
  • a porous body is formed by forming a separating agent layer with any one of a columnar porous body made of a separating agent and a columnar porous body made of a carrier and the separating agent supported on the porous body. It can form by laminating
  • a columnar porous body made of a separating agent is prepared by, for example, mixing plastic particles soluble in a solvent in which the separating agent particles are insoluble and a separating agent by using a method described in JP-A-4-93336.
  • the obtained mixture can be molded by heating and pressing, and the soluble plastic can be removed from the resulting molded article by solvent treatment.
  • the columnar porous body by the carrier can be formed by bonding of carrier particles or by making the columnar body porous by the carrier.
  • the porous body by bonding of the carrier particles is made of organic particles such as polymers and polysaccharides. In the case of a compound, it can be formed using the method described above.
  • the porous body obtained by making the columnar body porous with the carrier can be formed by using a method described in, for example, Japanese Patent No. 3297255 and Japanese Patent No. 3317749, so-called sol-gel method.
  • the separation agent is supported on the columnar porous body by the carrier, for example, by physically adsorbing or chemically bonding the separation agent to the carrier, thereby modifying and modifying the surface of the pores of the porous body. It can carry out using the well-known method to do.
  • a method of laminating a layer composed of a filler layer on a cross section intersecting with the developing direction is as follows.
  • a material, for example, a film is wound to form a cylindrical cavity on the extension in the developing direction, a material constituting the filler layer is introduced into the cavity to form the filler layer, and then the substrate is removed.
  • a material for example, a film is wound to form a cylindrical cavity on the extension in the developing direction, a material constituting the filler layer is introduced into the cavity to form the filler layer, and then the substrate is removed.
  • the coating solvent water, an organic solvent, and a mixed solvent thereof can be used.
  • organic solvents such as alcohols, glycol ethers, hydrocarbons, ketones and esters can be used.
  • ⁇ -terpioneel, butyl carbitol acetate, butyl carbitol, toluene, cyclohexane, methol ethyl ketone, and methyl propylene glycol can be mentioned.
  • the coating solvent is a mixed solvent of a water-soluble organic solvent and water, more preferably a mixed solvent of alcohol and water.
  • the alcohol content in the mixed solvent is preferably 0.1 to 50% by mass, more preferably 1 to 45% by mass, and further preferably 2 to 40% by mass.
  • Examples of alcohols that can be used include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol and 3 -Methyl-3-methoxybutanol.
  • the content of the coating solvent in the slurry can be determined from the uniformity of the separating agent layer to be formed, the thickness of the layer, and an economical point of view.
  • the amount is preferably 5,000 parts by mass, more preferably 50 to 1,000 parts by mass, and still more preferably 100 to 300 parts by mass. Within such a range, not only a highly fluid slurry material, but also a highly viscous material with a low content of coating solvent when producing a cylindrical or columnar chromatographic medium, for example. Can be used.
  • the slurry further contains a binder from the viewpoint of improving the strength of the separating agent layer to be formed.
  • a binder a component capable of binding to form a separating agent layer on the surface of the substrate can be used.
  • binders include inorganic binders such as gypsum and colloidal silica, organic fibers such as microfibrillated cellulose, alkali water-soluble copolymers, thickeners such as hydroxyethyl cellulose and carboxymethyl cellulose, polyvinyl alcohol, acrylic
  • An organic binder such as an acid may be used.
  • the binder may be one type or two or more types.
  • the content of the binder in the slurry can be appropriately determined according to the type of the binder from the viewpoint of the strength of the separating agent layer to be formed and the appropriate rising speed of the mobile phase in the separating agent layer.
  • the binder content is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight, and more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the separating agent. More preferably.
  • the content of the binder is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the separating agent, and 0.5 to 10 parts by mass. More preferably, it is 1 to 5 parts by mass.
  • the thickness of the separating agent layer in the chromatographic medium of the present invention is preferably 20 to 5000 ⁇ m, more preferably 50 to 3000 ⁇ m, from the viewpoint of obtaining sufficient separation characteristics.
  • the permeation layer has a smaller thickness than the separation agent layer from the viewpoint of maintaining good separation performance of the target substance.
  • the ratio between the thickness of the separating agent layer and the permeation layer is preferably 0.002 to 0.8 when the separating agent layer is 1, from the viewpoint of maintaining good separation performance of the target substance. 0.005 to 0.5 is more preferable, and 0.006 to 0.4 is particularly preferable.
  • the ratio between the thickness of the separating agent layer and the filler layer in the present invention is such that the relationship between the thickness of the separating agent layer and the thickness of the filler layer is the thickness of the separating layer from the viewpoint of maintaining good separation performance of the target substance.
  • the thickness of the filler layer is preferably the same, or the thickness of the filler layer is preferably smaller than the thickness of the separation layer.
  • the ratio of the thickness of the separating agent layer to the filler layer in the present invention is preferably 1.0 to 0.1, and 0.99 to 0 when the separating agent layer is 1. .2 is more preferable, and 0.95 to 0.5 is particularly preferable.
  • the ratio of the thickness of the separating agent layer and the layer including the filler layer and the permeation layer is as follows. From the viewpoint of maintaining good separation performance of the target substance, when the separating agent layer is 1, it is preferably 1.0 to 0.1, more preferably 0.99 to 0.2, and It is particularly preferably 95 to 0.5.
  • the permeation layer has an optical response different from that of the target substance and the separating agent layer.
  • “different optical responsiveness” means that one optical response and the other optical response due to ultraviolet irradiation or color development treatment of a coloring reagent are different from each other to the extent that they can be optically discriminated by color and brightness.
  • the permeation layer is a layer in which at least a part of the components forming the spot in the separating agent layer permeates.
  • the material constituting the permeation layer should not affect the separation characteristics of the target substance in the separating agent layer on the chromatographic medium, that is, the distribution of the target substance between the mobile phase and the separating agent layer. Is important in order not to broaden the spot of the target substance on the chromatographic medium.
  • the constituent material of the permeation layer is preferably the same as the carrier when the separating agent used in the separating agent layer is supported on the carrier, for example.
  • a material that does not affect the distribution of the target substance between the mobile phase and the separating agent layer can be appropriately selected from the materials described later.
  • the permeation layer is laminated on the separating agent layer or both the separating agent layer and the filler layer, but it is separated that it is discontinuously laminated in the developing direction of the chromatographic medium. This is preferable from the viewpoint of reducing the bypass effect, which is the interaction between the agent layer and the permeation layer, preventing the target substance spot from becoming broad and obtaining good separation (hereinafter also referred to as separation characteristics).
  • separation characteristics which is the interaction between the agent layer and the permeation layer, preventing the target substance spot from becoming broad and obtaining good separation (hereinafter also referred to as separation characteristics).
  • the term “discontinuously laminated” as used in the present invention means that the permeation layer is not continuously laminated along the development direction of the chromatographic medium, and is laminated with a gap. The intervals may or may not be equal.
  • the interval is preferably 0.015 mm or more, more preferably 0.02 mm or more, and more preferably 0.05 mm or more in order to obtain a resolution sufficient to penetrate the target substance and detect it. It is particularly preferred that On the other hand, in order to suppress the interaction with the separating agent layer due to the diffusion of the target substance into the permeation layer and ensure good separation of the target substance, it is preferably 4 mm or less, and more preferably 3 mm or less. It is preferably 2 mm or less.
  • the void volume of the permeation layer (the void volume inside the material (internal void) and the void volume between the materials (external void)) are combined.
  • the ratio of the component) to the total volume of the layer is preferably 0.1 to 0.9, and more preferably 0.2 to 0.8.
  • the permeation layer in the chromatographic medium of the present invention is preferably laminated in a dot shape on the separating agent layer.
  • the dot shape referred to in the present invention is a shape that may be, for example, a circle, a substantially circle, a substantially ellipse, a substantially triangular shape including a curved line in each side, a substantially triangular shape such as a substantially rectangular shape, or the like. It is a pattern formed from a large number of discontinuous points or small areas, and the size or density of each dot is not particularly limited.
  • the shape of the dots preferably has regularity from the viewpoint of uniforming the separation characteristics of the target substance in the chromatographic medium. Furthermore, it is preferable that the arrangement of each dot also has regularity.
  • a circular shape to a substantially circular shape is particularly preferable from the viewpoint of the permeability of the target substance, and the arrangement thereof has regularity as shown in FIGS. 3 and 4 as described above.
  • the average diameter is preferably 0.01 to 5 mm from the viewpoint of the permeability and separation characteristics of the target substance, more preferably 0.01 to 4 mm.
  • the thickness is more preferably 02 to 3 mm, and particularly preferably 0.05 to 1 mm.
  • the average diameter of the maximum diameter is preferably 0.02 to 6 mm for the same reason as in the case of a circle, and preferably 0.05 to 5 mm. More preferably, it is 0.05 to 1.5 mm.
  • the maximum diameter means, for example, in the case of an ellipse, the length of the longest axis, but more generally, it is two parallel planes, and the shape is an arbitrary direction when viewed from the top. It is the maximum value of the distance between two planes when sandwiched between.
  • the interval (pitch) between the dots is the resolution of the target substance that penetrates the permeation layer from the viewpoint of reducing the interaction with the separating agent layer. From the viewpoint, it is preferably 0.01 to 6 mm, more preferably 0.01 to 4 mm, still more preferably 0.02 to 3 mm, and particularly preferably 0.05 to 1.0 mm.
  • the pitch is preferably 0.01 to 6 mm, more preferably 0.02 to 3 mm, still more preferably 0.05 to 1 mm, and 0.06 for the same reason as described above. Particularly preferably, it is ⁇ 1 mm.
  • the dot density is expressed by the number of lines (number of dots per inch), it is preferably 5 to 2000, more preferably 10 to 400, and further preferably 20 to 300.
  • the permeation layer in the chromatographic medium of the present invention is preferably an aspect in which the permeation layer is laminated as a band-like row that intersects the developing direction of the chromatographic medium.
  • the permeation layer is laminated as a band-like row that intersects the developing direction of the chromatographic medium.
  • the shape of the band forming the band-shaped row include a straight line, a wavy line, and a broken line thereof.
  • the width of the band is not particularly limited, but is preferably 0.01 to 15 mm from the viewpoint of maintaining the separation characteristics of the target substance and obtaining sufficient resolution for detection of the target substance. More preferably, it is ⁇ 10 mm.
  • the interval between the bands is not particularly limited, but is preferably an equal interval from the viewpoint of obtaining uniform separation characteristics of the target substance, and the interval is 0.01 to 3 mm.
  • the thickness is preferably 0.02 to 2 mm.
  • a porous material can be used as a material constituting the layer.
  • a porous body preferably has a pore volume measured by a gas adsorption method of 0.1 ml / g or more, preferably 0.2 ml / g or more, from the viewpoint of ensuring sufficient permeability of the target substance. Is more preferable, and 0.3 to 0.9 ml / g is particularly preferable.
  • porous body having the pore volume as described above a commercially available product of silica gel or ceramics, which is a preferable porous body to be described later, that satisfies the above range as a catalog value may be used, or silica may be included. If it is, it may be adjusted by performing treatment with an aqueous hydrogen fluoride solution or an alkaline aqueous solution, and if it is ceramic, it can be adjusted by performing firing conditions at the time of granulation, treatment with an acid solution, and the like.
  • the particle size of the porous body is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more from the viewpoint of preventing aggregation of the slurry containing the porous body.
  • the upper limit of the particle size of the porous body is preferably 100 ⁇ m or less from the viewpoint of, for example, permeability when screen-printing a slurry containing the porous material and the surface finish of the permeation layer, and is 70 ⁇ m or less. More preferably, it is particularly preferably 50 ⁇ m or less.
  • an average particle size measured with a normal particle size measuring apparatus can be adopted, but it may be a catalog value.
  • the porous body used in the present invention is mainly composed of silica gel, mesoporous silica gel, zeolite, cellulose, diatomaceous earth, fused silica, clay mineral, alumina, zirconia and other ceramics such as sepiolite, attapulgite, palygorskite, SiO 2 and MgO.
  • Talc, and various clay minerals such as kaolinite and montmorillonite mainly composed of SiO 2 are crushed, granulated, subjected to acid treatment as necessary, and further fired.
  • Commercially available products can be used for these, and those having the above pore volume and particle size can be used as catalog values.
  • silica gel is preferably used from the viewpoint of affinity with the solvent.
  • silica gel that can be used in the present invention for example, a silica gel surface-treated with a silane coupling agent, for example, a silica gel modified with an octadecylsilyl group or an aminopropylsilyl group can be used.
  • a surface-treated silica gel is preferably used because it tends not to affect the distribution of the target substance between the separating agent layer and the mobile phase.
  • the material constituting the layer may be a fluorescent indicator or a coloring reagent itself described later.
  • a composition obtained by mixing these fluorescent indicators or coloring reagents, a binder and, if necessary, a support such as glass, plastic, metal, and ceramic having a particle size of 0.1 to 100 ⁇ m The permeation layer can also be formed by laminating.
  • the binder content in such a composition is determined depending on the type of binder, from the viewpoint of reducing the strength of the permeation layer to be formed and the bypass effect that is the interaction between the separating agent layer and the permeation layer in the permeation layer. It can be decided appropriately according to the situation.
  • the binder content is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the fluorescent indicator or the coloring reagent. More preferably, it is 1 to 20 parts by mass.
  • the content of the binder is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the fluorescent indicator or coloring reagent, and 0.5 to The amount is more preferably 10 parts by mass, and further preferably 1 to 5 parts by mass.
  • the support is preferably 0.1 to 0.9 parts by weight, preferably 0.2 to 0.8 parts by weight with respect to 100 parts by weight of the fluorescent indicator or the coloring reagent, when it is contained. More preferably, the amount is 0.3 to 0.7 parts by mass.
  • the permeation layer in the chromatographic medium of the present invention can be laminated by various methods.
  • the permeation layer is a plate-like TLC, and when the permeation layer includes a porous material as a constituent material, the separation layer of the TLC plate, or the separation agent layer as well as the filler layer. It can be produced by applying a slurry containing a porous material thereon and drying it. The same method can also be used when the permeation layer is a fluorescent indicator or coloring reagent itself, which will be described later, or a composition containing a binder and, if necessary, a support.
  • the permeation layer when the permeation layer is discontinuously laminated in the development direction of the chromatographic medium, the permeation layer can be laminated using, for example, a printing technique.
  • Examples of the printing technique include screen printing such as silk screen printing and inkjet printing.
  • the screen plate having the shape described in the above-mentioned lamination mode as the shape of the opening (the one having a discontinuous opening in the developing direction of the chromatographic medium, the dot having various shapes, (Which has a band-like row as an opening) can be used.
  • Screen printing such as silk screen printing is preferably used because the permeation layer can be laminated by a relatively inexpensive and simple operation. Further, when laminating the permeation layer only on the separating agent layer, or on the separating agent layer and the filler layer, by using a screen plate having an opening suitable for each, the location and area of the layer to be laminated It is also possible to adjust.
  • a permeation layer can also be laminated
  • the material of the screen plate is not particularly limited as long as a slurry containing a porous material described later can be used as printing ink.
  • An example of such a screen plate is a metal mask.
  • ink jet printing a commonly used ink jet printing technique can be used except that a slurry containing a porous material described later is used as the ink used for printing.
  • a cylindrical or columnar chromatographic medium when producing a cylindrical or columnar chromatographic medium, it can be produced by applying a slurry containing a porous material on the separating agent layer or the separating agent layer and the filler layer and drying it. it can.
  • the same method can also be used when the permeation layer is a fluorescent indicator or a coloring reagent itself, or a composition containing these, a binder, and, if necessary, a support.
  • the permeation layer when the permeation layer is discontinuously laminated in the development direction of the chromatographic medium, the permeation layer can be laminated using, for example, a printing technique. .
  • a printing technique the above-described screen printing can be used, and as the screen plate, one having the above-described opening and flexibility and capable of being wound around the peripheral surface of the separating agent layer is used. preferable.
  • the permeation layer is not laminated on the permeation layer by providing desired openings such as letters and scales on the screen plate, and the separating agent layer By exposing and exposing to an optical response different from that of the permeation layer, such letters and scales can be confirmed when irradiated with ultraviolet rays. Thereby, the convenience of a chromatographic medium can be improved.
  • the thickness (average thickness) of the permeation layer laminated by the application of the slurry or the printing technique described above is the viewpoint of ensuring sufficient permeability, or when the porous body is, for example, transparent or translucent In order not to be affected by the optical response of the separating agent layer at the time of spot detection of the target substance, it is preferably 0.005 mm or more, and more preferably 0.01 mm or more. On the other hand, the thickness (average thickness) of the permeation layer is preferably 0.2 mm or less, and more preferably 0.15 mm or less from the viewpoint of preventing the diffusion of the target substance spot.
  • the coating and printing techniques described above can be used.
  • a slurry containing a porous material, a fluorescent indicator, or a coloring reagent is contained.
  • a fluorescent indicator or a coloring reagent, a binder and, if necessary, a composition containing a support can be prepared and used as a coating liquid or printing ink.
  • the material used when preparing the slurry containing the porous body include a solvent and a binder as necessary. Such solvents and binders can be the same as those that can be used when forming the separating agent layer.
  • Examples of the fluorescent indicator include magnesium tungstate and manganese-containing zinc silicate.
  • Examples of the solvent used in preparing a solution or slurry containing the same include alcohol used as an ink solvent for screen printing.
  • Organic solvents such as solvents, glycol ethers, hydrocarbons, ketones and esters can be used.
  • ⁇ -terpioneel, butyl carbitol acetate, butyl carbitol, toluene, cyclohexane, methol ethyl ketone, and methyl propylene glycol can be mentioned.
  • An appropriate solvent is selected in consideration of physical properties such as fluidity, boiling point, and evaporation rate so as not to deteriorate the fluidity of the slurry during printing or cause clogging of the screen.
  • examples of the coloring reagent include anisaldehyde solution, phosphomolybdic acid solution, iodine solution, ninhydrin solution, chameleon solution, DNPH solution, manganese chloride solution, and bromocresol green solution.
  • the composition containing the binder is dissolved or suspended in a solution of the fluorescent indicator or the coloring reagent. Liquid or printing ink can be used.
  • an organic solvent such as an alcohol, glycol ether, hydrocarbon, ketone, or ester may be used alone as a solvent used in a slurry containing the porous material.
  • it can.
  • alcohol it is preferably a mixed solvent of a water-soluble organic solvent and water, more preferably a mixed solvent of alcohol and water.
  • the alcohol content in the mixed solvent is preferably 0.1 to 50% by mass, more preferably 1 to 45% by mass, and further preferably 2 to 40% by mass.
  • alcohols examples include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol and 3 -Methyl-3-methoxybutanol.
  • the content of the solvent in the slurry can be determined from the uniformity of the permeation layer to be formed, the thickness of the layer, and an economic point of view. It is preferably 000 parts by mass, more preferably 50 to 1,000 parts by mass, and even more preferably 100 to 300 parts by mass.
  • the slurry preferably further contains a binder from the viewpoint of improving the strength of the permeation layer to be formed.
  • a binder a component capable of binding to form a porous layer on the separating agent layer can be used.
  • binders include inorganic binders such as gypsum and colloidal silica, organic fibers such as microfibrillated cellulose, alkali water-soluble copolymers, thickeners such as hydroxyethyl cellulose and carboxymethyl cellulose, polyvinyl alcohol, acrylic
  • An organic binder such as an acid may be used.
  • the binder may be one type or two or more types.
  • the content of the binder in the slurry is appropriately determined according to the type of the binder from the viewpoint of the strength of the permeation layer to be formed and the appropriate rising speed of the mobile phase from the separating agent layer with respect to the permeation layer.
  • the content of the binder is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the porous body. More preferably, it is 20 parts by mass.
  • the binder content is preferably 0.1 to 50 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the porous body. More preferred is 1 to 5 parts by mass.
  • the permeation layer includes a porous material as a constituent material
  • a fluorescent indicator when a spot is detected by optical responsiveness due to ultraviolet irradiation, the permeation layer is contained by adding a fluorescent indicator to the slurry containing the porous material.
  • Optical response can be provided.
  • a fluorescent indicator a known fluorescent indicator can be used, and examples thereof include the magnesium tungstate and the manganese-containing zinc silicate.
  • the content of the fluorescent indicator can be determined within a range in which the target substance can be separated, and is generally preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the porous body. It is particularly preferable from the viewpoint of optimizing the contrast between the target substance and the permeation layer.
  • the permeation layer when the permeation layer contains a porous material as a constituent material and spots are detected by a color development reaction, the permeation layer is made optically responsive by adding a coloring reagent to the slurry containing the porous material.
  • a coloring reagent include known phosphomolybdic acid and ninhydrin.
  • the content of the coloring reagent can be determined within a range in which the target substance can be separated, and is generally preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the porous body. It is particularly preferable from the viewpoint of optimizing the contrast between the target substance and the permeation layer.
  • the chromatographic medium of the present invention has a filler layer for fixing the target substance before separating the target substance.
  • “fixing” means that the target substance that has been spotted before separation is sufficiently retained in the spotted region in order to perform subsequent development with a developing solution.
  • the target substance stays in a region including the permeation layer and the filler layer under the permeation layer. Is exposed, the target substance spotted on the filler layer remains in the area of the spotted filler layer.
  • the material used for constituting the filler layer in the chromatographic medium of the present invention can be the same as that which can be used in the permeation layer described above, and silica gel, mesoporous silica gel, zeolite, cellulose, diatomaceous earth.
  • Examples thereof include porous bodies such as fused silica, clay minerals, alumina, zirconia and other ceramics.
  • the silica gel those subjected to the surface treatment described above can also be preferably used.
  • the thing of the range described about what can be used for a to-be-permeable layer can also be illustrated about the range of the particle size of the porous body which can be used.
  • the porous body used in the permeation layer and the porous body used in the filler layer may be the same or different.
  • the solvent may be used to constitute the permeation layer. Solvents that can be used can also be used. Further, the content of the solvent in the slurry can also be determined from the uniformity of the formed filler layer, the thickness of the layer, and an economic viewpoint, and with respect to 100 parts by mass of the porous body. The amount is preferably 10 to 5,000 parts by mass, more preferably 50 to 1,000 parts by mass, and still more preferably 100 to 300 parts by mass.
  • the slurry preferably further contains a binder from the viewpoint of improving the strength of the permeation layer to be formed.
  • a binder a component capable of binding to form a porous layer in the filler layer can be used.
  • a binder the same thing as what can be used in order to comprise a to-be-permeated layer can be used,
  • Such a binder may be 1 type, or 2 or more types.
  • the content of the binder in the slurry can be appropriately determined according to the type of the binder from the viewpoint of the strength of the filler layer to be formed and the appropriate development speed of the mobile phase in the filler layer.
  • the content of the binder is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the porous body. More preferably, it is 20 parts by mass.
  • the binder content is preferably 0.1 to 50 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the porous body. More preferred is 1 to 5 parts by mass.
  • the filler layer may contain a fluorescent indicator and a coloring reagent as in the case of the permeation layer, or may be a layer made of only these.
  • the same conditions as those exemplified for the permeation layer can also be used for the fluorescent indicator and the coloring reagent that can be used and the usage mode thereof.
  • the chromatographic medium of the present invention as for the method of laminating the filler layer, when the chromatographic medium of the present invention is in a plate shape, for example, a separating agent layer is previously laminated on a part of the substrate. Later, the slurry containing the material constituting the filler layer can be formed by applying or spraying the slurry on the surface of the substrate on which the separating agent layer is not laminated, using a spreader. Alternatively, in the case where the materials constituting the permeation layer and the separating agent layer are the same, the separating agent is formed by the same method as the method of laminating the permeating layer described above after the separating agent layer is previously laminated on a part of the base material.
  • a layer laminated on the separating agent layer by laminating a slurry containing the material constituting the permeation layer and the filler layer on the surface of the base material on which the layer is laminated by using a coating, spraying or printing technique. Is formed as a permeation layer, and a layer laminated on the substrate is formed as a filler layer. Thereby, the permeation layer and the filler layer can be formed simultaneously.
  • the filler layer has a single layer structure, and only one process for obtaining the permeation layer and the filler layer is required.
  • the chromatographic medium of the present invention is columnar, as described above, for example, after the permeation layer is formed along the inner wall surface of the column tube, before the separation agent layer is formed.
  • the material which comprises a filler layer later can be filled and formed in a pipe
  • it can be formed by applying the material constituting the filler layer to the peripheral surface of the substrate as described above.
  • the circumferential surface of the separating agent layer has a development direction.
  • a base material having a length longer than that of the separating agent layer, such as a film, is wound to form a cylindrical cavity on the extension of the separating agent layer in the developing direction, and a material constituting the filler layer is introduced into the cavity.
  • the method of forming a filler layer is mentioned.
  • the thickness of the filler layer in the chromatographic medium of the present invention is the sum of the thicknesses of the permeation layers when the permeation layers are laminated from the viewpoint of sufficiently fixing the target substance.
  • the thickness is preferably 2 to 5000 ⁇ m, and more preferably 5 to 3000 ⁇ m.
  • the present invention also provides a TLC plate in which the above chromatographic medium is laminated on a plurality of regions of a single substrate (see FIG. 8).
  • a TLC plate in which the above chromatographic medium is laminated on a plurality of regions of a single substrate (see FIG. 8).
  • a combination of various separating agent layers and permeation layers can be laminated on the same substrate, and the separation characteristics of the target substance by the same developing solution can be observed.
  • the above-described methods are the same except that they do not come into contact with each other and the layers do not overlap. The method can be used.
  • a separating agent layer, a filler layer, and a permeation layer are laminated on a single base material, and the permeation layer is formed on the end side of the base material.
  • a TLC material having a non-laminated region see FIG. 9.
  • a groove is provided at a position indicated by a broken line in FIG. 9, and the TLC material is cut along the groove by an appropriate method, for example, by hand or cut with a plate cutter.
  • the TLC plate illustrated in FIG. 3A having the base material, the separating agent layer, the filler layer, and the permeation layer and having the filler layer exposed can be obtained. What was mentioned above can be used about the base material which can be used here, a separating agent layer, a permeation layer, and those lamination
  • the location for providing the groove is not particularly limited.
  • the shape of the chromatographic medium of the present invention varies depending on the mode, the target substance in the sample can be separated and detected basically by using the same usage method as that of a normal TLC plate. .
  • the mobile phase is used in the development direction of the chromatographic medium (in the case where the chromatographic medium is a TLC plate and the shape is rectangular, the longitudinal direction is preferred).
  • a step of developing the sample, a step of drying the mobile phase on the chromatographic medium, and a step of detecting the spot of each component of the moved target substance by irradiating with ultraviolet rays or coloring treatment of a coloring reagent. can be done by.
  • the target substance in the sample is separated, and at the same time, the target substance penetrates into the permeation layer on the separating agent layer.
  • the target substance in the present invention has an optical response different from that of the permeation layer and the same optical response as that of the separating agent layer.
  • the extraction component and the raffinate component of the target substance in the sample can be separated and optically detected on a single chromatography.
  • the conventional plate has a problem that the target substance becomes broad due to the difference in the moving speed of each component of the target substance in the sample in each separating agent layer. In the present invention, such a problem does not occur, and both the raffinate component and the extract component can be reliably detected.
  • the chromatographic medium is in a plate shape, it is possible to reliably detect the separation state of each sample when a plurality of samples are arranged and spotted and simultaneously developed. Further, by collecting a portion containing a specific spot that has penetrated into the permeation layer (including a separating agent layer) and performing an extraction operation, it can also be used for fractionation of each component of the target substance.
  • Example 1 First, 3.00 g of CHIRALPAK IA (registered trademark) manufactured by Daicel Corporation (also referred to as “IA filler”), 0.45 g of gypsum, and 11% 2% CMC (carboxymethylcellulose) 1110 (manufactured by Daicel Corporation) ) Add 3.00 g of aqueous solution and 0.45 g of 20% Snowtex C (Nissan Chemical Industry Co., Ltd.) aqueous solution to a mixed solution of 0.30 g of water and 1.20 g of ethanol. To prepare a first slurry.
  • CHIRALPAK IA registered trademark
  • CMC carboxymethylcellulose
  • silica gel for liquid chromatography manufactured by Daiso Corporation, IR-60-5 / 20-U
  • 0.10 g of gypsum 0.10 g of gypsum
  • 2% CMC (carboxymethylcellulose) 1110 manufactured by Daicel Corporation
  • aqueous solution 3 0.000 g
  • manganese-containing zinc silicate 0.02 g 0.02 g
  • 20% Snowtex C Snowtex C (Nissan Chemical Industry Co., Ltd.) aqueous solution 0.30 g were added to a mixed solution of water 1.01 g and ethanol 1.40 g.
  • the second slurry was prepared by sufficiently stirring while irradiating with ultrasonic waves.
  • silica gel for liquid chromatography manufactured by Daiso Corporation, IR-60-5 / 20-U
  • 0.05 g of gypsum 2% CMC (carboxymethylcellulose) 1110 (manufactured by Daicel Corporation)
  • aqueous solution 1 .50 g, manganese-containing zinc silicate 0.04 g, and 20% Snowtex C (Nissan Chemical Industry Co., Ltd.) aqueous solution 0.15 g were added to a mixed solution of water 0.06 g and ethanol 0.55 g,
  • the third slurry was prepared by sufficiently stirring while irradiating with ultrasonic waves.
  • the first slurry layer and the second slurry layer are air-dried and vacuum-dried at 60 ° C. for 3 hours while being pulled with a vacuum pump, thereby laminating a separating agent layer by the first slurry, and by the second slurry.
  • the filler layer was laminated so as to be in contact with the separating agent layer through a surface orthogonal to the development direction of the TLC plate. And the 3rd slurry was apply
  • a screen plate having a regular opening having a circular shape with a pitch of 0.6 mm and a hole diameter of 0.4 mm was used (see FIG. 7).
  • the third slurry layer as the permeation layer is air-dried and vacuum-dried at 60 ° C. for 3 hours while being drawn with a vacuum pump, so that the permeation layer is laminated in a dot shape on the separating agent layer and the filler layer.
  • a TLC plate 1 was prepared.
  • the width of the TLC plate 1 was 5 cm and the length was 10 cm. As a result, the filler layer was present in the region from the lower edge of the TLC plate to 1/5 of the length in the developing direction of the TLC plate (between the lower edge and 2.0 cm).
  • the thickness of the separating agent layer in the TLC plate 1 was 150 ⁇ m
  • the thickness of the filler layer was 150 ⁇ m
  • the thickness of the permeation layer was 20 ⁇ m.
  • the separating agent layer by the first slurry is a layer by IA filler
  • the filler layer by the second slurry and the permeation layer by the third slurry are the silica gel layers.
  • the average particle diameter of the IA filler is 20 ⁇ m
  • the average particle diameter of the silica gel is 14.4 ⁇ m.
  • TLC plate 1 About 3 ⁇ L of an ethyl acetate solution containing 1% of a racemate of trans-stilbene oxide (t-SO), 1% of a racemate of Tregar base (TB) and 1% of a racemate of flavanone (FLV) was added to a TLC plate 1 It was spotted at a position (filler layer region) about 1 cm from the bottom when the development direction of was vertical.
  • the TLC plate 1 is accommodated with the sample spot facing down in a developing tank containing a mixed solvent containing n-hexane and ethanol at a volume ratio of 9: 1 as a developing solution.
  • the optical isomers of trans-stilbene oxide, Treger base and flavanone were developed.
  • the TLC plate 1 was dried with cold air, and the TLC plate 1 was irradiated with ultraviolet rays.
  • the spot of the trans-stilbene oxide raffinate component Rt-SO and the extract component Et-SO and the raffinate component of the Treger base RTB and extract component ETB spots, flavanone raffinate component RFLV and extract component EFLV were confirmed as dark green to black spots on the permeation layer, respectively (FIG. 1).
  • Table 1 The results for each optical isomer are shown in Table 1.
  • Example 2 The development direction of the TLC plate 2 in the same manner as in Example 1 except that the TLC plate 2 produced using the same raw materials and procedure as those in the TLC plate 1 produced in Example 1 was used and methanol was used as the developing solution.
  • the optical isomers of trans-stilbene oxide, Tregar base and flavanone in the sample were developed. Thereafter, in the same manner as in Example 1, the Rf value, k ′ value, and ⁇ value of each spot were obtained from the spotting position of the sample in the permeation layer, the arrival position of the developing liquid, and the center position of the spot.
  • the results for each optical isomer are shown in Table 2.
  • a filler layer is provided in a specific range of the length in the development direction from the lower edge of the TLC plate, and the target substance is spotted on the filler layer for development. In this case, good separation characteristics of the target substance can be obtained.
  • TLC has been conventionally used as a main means for studying separation conditions by column chromatography and also for fractionation of target substances.
  • the separation state of the target substance by the separation agent which has been difficult to detect the separation state due to the optical response, can be reliably and easily detected as compared with the prior art. It is expected to contribute to further development of separation and purification technology using such a separation agent.
  • t-SO trans-stilbene oxide TB: Tregar base FLV: flavanone 1: permeation layer 2: separating agent layer 3: filler layer 4: base material 5: ultraviolet irradiation direction 6, 6 ′: spotting direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

他の部材を用いることなく目的物質の分離と検出を行うことができるクロマトグラフ媒体を提供する。目的物質を分離するための分離剤層と、前記目的物質を分離する前に前記目的物質を定着するための充填剤層と、前記分離剤層で分離された目的物質が浸透するための被浸透層と、を有するクロマトグラフ媒体であって、前記充填剤層は、前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接すると共に、前記展開方向の上流側に位置し、前記分離剤層は、前記目的物質に対する分離性と紫外線に対する光学応答性とを有し、前記被浸透層は、前記目的物質と前記分離剤層とは異なる光学応答性を有する、クロマトグラフ媒体。

Description

クロマトグラフ媒体
 本発明は、紫外線に対する光学応答性が異なる二種の層を少なくとも有し、さらに別の層を有するクロマトグラフ媒体に関する。
 混合物中から特定の成分を分離、検出する方法としては、薄層クロマトグラフィー(以下、「TLC」とも言う)が知られている。TLCによる成分の分離は、例えば、分離剤層と検出対象成分との光学的な応答性の相違に基づいて、試料の展開によるスポットへの紫外線の照射や発色試薬の発色処理によって検出される。
 一方で、光学異性体用分離剤には、多糖のフェニルエステル等の多糖誘導体を含有する分離剤が知られている。このような芳香族環を含む分離剤は、TLCプレートの分離剤層に用いた場合、紫外線の照射や発色試薬の発色処理では検出対象成分を検出することができないことがある。
 このような問題点に対して、同一基板上に、目的物質に対する分離能を有するが光学応答性を有さない第一の分離剤層と、分離能は有さないが光学応答性を有する第二の分離剤層とが並んで形成されているTLCプレートが知られている(例えば、特許文献1参照。)。このTLCプレートでは、第一の分離剤層から第二の分離剤層まで試料中の目的物質を展開させ、第一の分離剤層で分離したスポットが隣接する第二の分離剤層まで移動し、そこで光学応答性に応じて検出される。
 このTLCプレートでは、試料中の、第一の分離剤層により吸着されやすいエクストラクト成分は、第二の分離剤層まで十分に到達しない場合がある。また、一般に各分離剤層におけるスポットの移動速度が異なることから、第一の分離剤層におけるスポットの位置関係は第二の分離剤層まで正確に維持されないことがある。このように前記のTLCプレートは、第一の分離剤層での分離状態が正確に検出することができないことがあり、少なくともこの点について検討の余地が残されている。
特許第3140138号公報
 本発明は、目的物質の分離と検出を単一のキットで行うことができるクロマトグラフ媒体を提供する。
 本発明者らは、目的物質を分離するための分離剤層と、前記目的物質を分離する前に前記目的物質を定着するための充填剤層と、前記分離剤層で分離された目的物質が浸透するための被浸透層とを有するクロマトグラフ媒体であって、前記充填剤層は、前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接すると共に、前記展開方向の上流側に位置し、前記分離剤層として、目的物質に対する分離能と紫外線に対する光学応答性とを有するものを用い、前記被浸透層として、分離剤層とは異なる光学応答性を有するものを用いることで、前述の問題点を解決できることを見出し、本発明を完成させた。
 すなわち本発明は、下記のものを提供する。
<1> 目的物質を分離するための分離剤層と、前記目的物質を分離する前に前記目的物質を定着するための充填剤層と、前記分離剤層で分離された目的物質が浸透するための被浸透層と、を有するクロマトグラフ媒体であって、
 前記充填剤層は、前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接すると共に、前記展開方向の上流側に位置し、
 前記分離剤層は、前記目的物質に対する分離性と紫外線に対する光学応答性とを有し、
 前記被浸透層は、前記目的物質と前記分離剤層とは異なる光学応答性を有する、クロマトグラフ媒体。
<2> 前記充填剤層が、前記クロマトグラフ媒体における前記目的物質を展開させるための展開液が浸漬する浸漬端部から、該クロマトグラフ媒体の展開方向の長さの1/20~1/2までの間の領域に積層されている、<1>に記載のクロマトグラフ媒体。
<3> 前記被浸透層は、クロマトグラフ媒体の展開方向に不連続に積層されている、<1>または<2>に記載のクロマトグラフ媒体。
<4> 前記被浸透層は、前記分離剤層の上にドット状に積層されている、<1>~<3>のいずれかに記載のクロマトグラフ媒体。
<5> 前記ドット状に積層されている被浸透層は、該ドットの平均径が0.01~5mmであり、ドット間のピッチが0.015~5mmである、<4>に記載のクロマトグラフ媒体。
<6> 前記被浸透層は、前記分離剤層の上に、クロマトグラフ媒体の展開方向と交差する帯状の列として積層されている、<1>~<3>のいずれかに記載のクロマトグラフ媒体。
<7> 前記帯状の列を形成する帯は、直線、波線及びそれらの破線から選ばれる<6>に記載のクロマトグラフ媒体。
<8> 前記被浸透層の厚みが、前記分離剤層よりも薄い、<1>~<7>のいずれかに記載のクロマトグラフ媒体。
<9> 前記分離剤層を構成する分離剤が、光学異性体用分離剤である、<1>~<8>のいずれかに記載のクロマトグラフ媒体。
<10> 前記光学異性体用分離剤が、多糖と多糖の水酸基或いはアミノ基の一部又は全部と置き換わった芳香族エステル基、芳香族カルバモイル基、芳香族エーテル基、及びカルボニル基のいずれかとからなる多糖誘導体を含むことを特徴とする<9>に記載のクロマトグラフ媒体。
<11> 前記被浸透層は、多孔質体及び蛍光指示薬もしくは発色試薬を構成材料として含む、<1>~<10>のいずれかに記載のクロマトグラフ媒体。
<12> 前記充填剤層は、多孔質体を構成材料として含む、<1>~<12>のいずれかに記載のクロマトグラフ媒体。
<13> 前記多孔質体が、シリカゲルまたは表面処理されたシリカゲルである、<11>または<12>に記載のクロマトグラフ媒体。
<14> さらにバインダを構成材料として含む、<11>~<13>のいずれかに記載のクロマトグラフ媒体。
<15> 前記被浸透層上に目盛及び/または文字が存在する、<1>~<14>のいずれかに記載のクロマトグラフ媒体。
<16> 前記目盛及び/または文字が、前記被浸透層とは異なる光学応答性を有する、<15>に記載のクロマトグラフ媒体。
<17> 前記分離剤層に面して、または、前記被浸透層に面して、前記クロマトグラフ媒体を支持するための基材を有する、<1>~<16>のいずれかに記載のクロマトグラフ媒体。
<18> 前記クロマトグラフ媒体がプレート状、筒状または柱状である、<1>~<17>のいずれかに記載のクロマトグラフ媒体。
<19> <1>~<16>のいずれかに記載のクロマトグラフ媒体と、該クロマトグラフ媒体を支持するための基材とを有し、前記基材上の複数領域に前記クロマトグラフ媒体が積層されてなる、TLCプレート。
<20> <1>~<16>のいずれかに記載のクロマトグラフ媒体と該クロマトグラフ媒体を支持するための基材とからなる、TLC材料。
 本発明のクロマトグラフ媒体では、分離剤層に面して、分離された目的物質が浸透するための被浸透層が積層され、かつ、この被浸透層は分離剤層とは異なる光学応答性を有することから、光学応答性では検出できない分離剤層に存在し、分離剤層と同じ光学応答性を有する目的物質が被浸透層に浸透することにより、被浸透層に浸透した目的物質を光学応答性により検出することができる。
 また、本発明のクロマトグラフ媒体では、充填剤層が前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接すると共に、前記展開方向の上流側に位置している。このことにより、この充填剤層を含む部分に前記目的物質を定着してから展開を行った場合には、充填剤層と分離剤層の目的物質の保持力の違いにより、充填剤層と分離剤層の分離剤層側の境界に目的物質が一旦濃縮される。そしてその後に分離剤層における目的物質の分離が起こることにより、点着させる目的物質を含む溶液中の目的物質の濃度が低い場合であっても、目的物質の検出が確実に行うことができる程度に目的物質のスポットが形成されるようになる。さらに、目的物質の分離能力が向上する。
 また、本発明のクロマトグラフ媒体は、他の部材を用いることなく単一のキットで目的物質の分離と検出を行うことができることから、目的物質の分離と検出のために複雑な工程を必要としない。
(a)実施例1で作製したTLCプレート(展開液の浸漬端部から、2.0cmまでが、充填剤層で積層されるとともに、充填剤層の上にも被浸透層が積層されている)を用い、トランス-スチルベンオキサイド(t-SO)、トレガー塩基及びフラバノンを、展開液としてヘキサン/エタノール(90:10, v/v)を用いて展開させて得られたスポットを示す図(写真)である。(b)比較例1で作製したTLCプレートを用いたこと以外は実施例1と同様の操作を行って得た写真である。 (a)実施例1で作製したTLCプレートと同様のTLCプレートを作製し、実施例1と同様の目的物質を、展開液としてメタノールを用いて展開させて得られたスポットを示す図(写真)である(実施例2)。(b)比較例2で作製したTLCプレートを用いたこと以外は実施例2と同様の操作を行って得た写真である。 本発明のクロマトグラフ媒体のうち、プレート状の態様を示す概略図である。(1)分離剤層上のみに被浸透層が積層されており、充填剤層が露出している一態様を示す図である。被浸透層は分離剤層上にドット状に積層されている。(2)被浸透層が分離剤層に加え、充填剤層にも積層されている一態様を示す図である。被浸透層はドット状に積層されている。 本発明のクロマトグラフ媒体において、被浸透層が分離剤層及び充填剤層上に帯状の列として積層された例を示す図である((1)~(4))。 本発明のクロマトグラフ媒体において、被浸透層がドット状に積層される場合のドットの直径(φ)とピッチ(Pt)の一例を示す図である。 (a)本発明のクロマトグラフ媒体として、プレート状の一態様の断面を示す該略図である。(b)本発明のクロマトグラフ媒体として、プレート状の別の一態様の断面を示す該略図である。(c)本発明のクロマトグラフ媒体として、プレート状のさらに別の一態様の断面を示す該略図である。 本発明のクロマトグラフ媒体として、柱状(a)、(b)、(a’)及び筒状(c)、(c’)の一態様を示す概略図である。 本発明のクロマトグラフ媒体が一枚の基材上の複数領域に積層されているTLCプレートを示す概略図である。 本発明のクロマトグラフ媒体と基材とを構成要素として含むTLC材料を示す概略図である。
 本発明のクロマトグラフ媒体は、分離剤層と、分離前の目的物質を定着するための充填剤層と、分離剤で分離された目的物質が浸透するための被浸透層とを有する。
 本発明でいうクロマトグラフ媒体は、上記の分離剤層と、前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接する充填剤層が積層され、さらに上記分離剤層に面して被浸透層が積層されており、その形状がプレート状、柱状及び筒状のものを含み、プレート状のものは、いわゆる薄層クロマトグラフィー(TLC)として知られているものである。一方、筒状や柱状のものは、ステッィク状カラムと呼ばれることもある。
 また、前記分離剤層は、目的物質に対する分離能を有するとともに、紫外線に対する光学応答性を有する。一方、前記被浸透層は、紫外線に対する光学応答性が、目的物質及び分離剤層とは異なる。
 本発明でいう目的物質として、光学異性体を例示することができる。目的物質に対する分離能を有するとは、目的物質を分離する能力を有することをいい、目的物質が光学異性体である場合には、光学分割能を有することをいう。また、本発明でいう紫外線に対する光学応答性とは、蛍光等の紫外線による発光、又は紫外線の吸収をいう。
 なお、本発明のクロマトグラフ媒体において、充填剤層は前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接しているが、本発明でいう「直交する」とは、前記目的物質の展開方向に対して厳密に直角(90°)である必要はなく、目的物質の分離に影響を与えない範囲での傾斜や形状を有していてもよい。
 そのような範囲としては、例えば、前記目的物質の展開方向に対して88~92°であってもよい。
 本発明のクロマトグラフ媒体は、上記のように分離剤層と、被浸透層を有することにより、分離剤層で分離された目的物質が、被浸透層に浸透する。そして、被浸透層の光学応答性と目的物質と分離剤層の光学応答性が異なることから、被浸透層に浸透した目的物質を紫外線等の照射により確認することができる。
 また、本発明のクロマトグラフ媒体では、分離剤層と、前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して接する充填剤層が積層されている。そしてその位置関係は、クロマトグラフ媒体の展開方向の下流側に分離剤層が積層され、上流側に充填剤層が積層されている。
 そのような位置関係を有することで、充填剤層において定着された目的物質を展開させたときに、目的物質が分離剤層と充填剤層の境界の分離剤層側に一旦濃縮される。その後、分離剤層との相互作用により目的物質が分離される。これにより、展開させる目的物質の濃度が低い場合であっても、前記境界付近での濃縮を経ることにより、その後の視認による確認が可能な程度のスポットが形成されるようになる。
 また、分離剤層の境界付近に目的物質が一旦濃縮することにより、目的物質の分離の際にスポットがブロードになることを極力防ぐことができる。
 なお、前記クロマトグラフ媒体における充填剤層の領域は、分離剤層による目的物質の分離と、被浸透層における目的物質の確認ができるだけの領域があり、かつ、その充填剤層の領域に目的物質を定着することが可能である領域であれば、その大きさ及び形状は特に制限されない。
 目的物質の十分な分離を確保する観点からは、前記充填剤層が、前記クロマトグラフ媒体における前記目的物質を展開させるための展開液が浸漬する浸漬端部(以下、下側縁ともいう)から、該クロマトグラフ媒体の展開方向の長さの1/2までの間の領域に存在することが好ましい。
 目的物質の良好な分離を確保する観点から、前記充填剤層は、前記クロマトグラフ媒体の下側縁から、該クロマトグラフ媒体の展開方向の長さの1/40~1/2までの間の領域、特に好ましくは1/20~1/2.2までの間の領域として存在することがより好ましい。前記分離剤層と充填剤層の境界は、目的物質のスポッティング位置及び展開槽に浸漬した際の液浸の位置よりも展開方向の下流側に設けるようにする。
 また、目的物質を点着する方向から見た前記充填剤層の形状は、生産性の観点から、クロマトグラフ媒体がプレート状のものである場合、その下側縁を含めた四角形である態様が挙げられる。また、例えば目的物質を点着する方向から見たプレートの形状が三角形であって、三角形の頂点側を液浸するような形状である場合、その頂点部分を含む逆三角形の形状を有する充填剤層の形状も挙げられる。
 あるいは、前記充填剤層の形状は、目的物質のスポッティングが行える程度の大きさの略円形状の形状であってもよい。
 また、前記被浸透層が積層されている領域は、少なくとも前記分離剤層に面していれば、上記の分離剤層の領域の全てである必要はなく、目的物質を確認することができれば上記の分離剤層の領域の中で部分的に被浸透層が積層されていなくてもよい。
 また、被浸透層は、分離剤層だけでなく、充填剤層にも面して積層されていてもよい。
 分離剤層の全面積に対する、被浸透層が積層されている領域の面積の割合は、5~90%であることが好ましく、多様な目的物質の分離の確認が行えるようにする観点からは、10~80%であることがより好ましく、20~70%であることがさらに好ましい。
 このような、被浸透層が積層されておらず分離剤層が露出している領域は、分離剤層を積層した後、後述する塗布技術、浸漬技術あるいは印刷技術を用いて被浸透層を積層する際に、その領域だけ塗布、浸漬あるいは印刷しない方法を用いて得ることができる。
 あるいは、被浸透層の積層を分離剤層の全面に一旦行った後、掻き採り等の操作で分離剤層から除去することによっても得ることができる。
 一方で、被浸透層を充填剤層にも面して積層させる場合には、充填剤層上における被浸透層の面積の割合は特に制限されるものではなく、任意の割合で積層させてよい。
 なお、後述するように、充填剤層と被浸透層は同じ材料で構成されていてもよく、その場合には、充填剤層と被浸透層は便宜的には二層からなることになるが、実際には同じ一層を構成することになる。
 本発明のクロマトグラフ媒体は、上述のような構成を有していれば、その形状は特に限定されるものではなく、プレート状、筒状または柱状のものであってもよい。
 プレート状のものとしては、基材として後述するものを用いて、紫外線を照射する方向から見て、被浸透層、分離剤層及び充填剤層、基材の順に積層し、被浸透層が分離剤層のみに面して積層されている第一の態様(図6(a)参照)や、紫外線を照射する方向から見て、被浸透層、分離剤層及び充填剤層、基材の順に積層し、被浸透層が分離剤層及び充填剤層の両方に面して積層されている第二の態様(図6(b)参照)や、紫外線を照射する方向から見て、基材、被浸透層、分離剤層及び充填剤層の順で積層する第三の態様(図6(c)参照)が挙げられる。
 前記第一の態様では、目的物質のスポッティングは紫外線を照射する面のうち、充填剤層が露出している領域に行う。
 前記第二の態様では、目的物質のスポッティングは、充填剤層の上に積層されている被浸透層の領域に行う。
 前記第三の態様で用いる基材として、図6(c)で示すような柔軟性を有する素材を用い、図6(c)に示すよう充填剤層及び被浸透層に接して形成することが、充填剤層及び被浸透層の崩壊を防止する観点から好ましい。
 また、前記第三の態様では、図6(c)に示すように紫外線を照射する方向とは逆の方向(図6(c)中の6’)から目的物質のスポッティングを行うことができるが、基材の一部を除去して紫外線を照射する方向と同じ方向(図6(c)中の6)からスポッティングを行うこともできる。
 本発明のクロマトグラフ媒体がプレート状のTLCである場合、前記基材には、TLCプレートにおける公知の基板を用いることができる。このような基材としては、例えば、ガラス製、樹脂製、金属製、又は紙製の平板が挙げられる。基材の形状は、特に限定されないが、TLCで通常使用される長方形であることが好ましい。
 一方、筒状または柱状のクロマトグラフ媒体については、図7に例示されるものが挙げられる。これらの例では軸と垂直方向の断面形状が楕円~円形を有しているが、これらに限られず、多角形であってもよい。これらの形態では、柱状又は筒状の基材の外周面に分離剤層並びに充填剤層及び被浸透層が形成されてなる形態と、筒状の基材の内周面に分離剤層並びに充填剤層及び被浸透層が形成されてなる形態とを含む。
 柱状の基材には、例えば断面形状が多角形や円形の棒を用いることができ、筒状の基材には、例えば断面形状が多角形や円形の管や、カラム管や、カラム管と同じ寸法の管を用いることができる。
 筒状の基材の内周面に分離剤層並びに充填剤層と被浸透層を積層させる場合、筒状の基材として光透過性を有するものを用いることにより、目的物質の確認を行うことができる。ここで光透過性とは、目的物質のスポットの光学的特徴(発色、発光、及び吸光等)を確認可能な透明性を言う。そのような光透過性を有するカラム管等の管には、例えば石英ガラスの管や、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等のフッ素樹脂製の管を用いることができる。
 また、基材を有さず、分離剤層並びに充填剤層及び被浸透層のみからなり、通液性を有するクロマトグラフ媒体とすることもできる。
 図7に示される筒状または柱状のクロマトグラフ媒体においても、目的物質は充填剤層が露出している領域(図7中、(a)~(c))または充填剤層上に積層されている被浸透層の領域(図7中、(a’)(c’))にスポッティングする。
 このような筒状や柱状のクロマトグラフ媒体においては、通常1~40cmの長さを有し、径(最大径)は、通常0.1~1cmである。
 本発明のクロマトグラフ媒体における分離剤層に用いる分離剤は、目的物質に対する分離能と紫外線に対する光学応答性とを有するものであれば特に限定されない。
 上記分離剤には、粒子状の分離剤を用いることができる。このような粒子状の分離剤としては、分離剤のみからなる粒子、粒子状の担体に分離剤が担持されてなる粒子、が挙げられる。担体への分離剤の担持には、物理的な吸着による担持の他、担体への化学結合による分離剤の担持も含まれる。
 分離剤としては、光学応答性を有する低分子系の分離剤や高分子系の分離剤のいずれも用いることができる。低分子系の分離剤としては、例えば、配位子交換型の分離剤、電化移動(π-π)型の分離剤、水素結合型の分離剤、包接型の分離剤、イオン結合型の分離剤、インターカレート型の分離剤、クラウンエーテル又はその誘導体、及び、シクロデキストリン又はその誘導体、が挙げられる。高分子系の分離剤としては、例えば多糖誘導体、ポリアミド、ポリメタクリル酸エステル、ポリアクリルアミド、タンパク質、及び酒石酸誘導体が挙げられる。
 前記多糖誘導体としては、例えば光学異性体用分離剤に用いられる、多糖と多糖の水酸基或いはアミノ基の一部又は全部が芳香族エステル基、芳香族カルバモイル基、芳香族エーテル基、及びカルボニル基のいずれかで置き換えられた多糖誘導体が挙げられ、例えばセルロースのフェニルカルバメート誘導体、セルロースのフェニルエステル誘導体、アミロースのフェニルカルバメート誘導体、及びアミロースのフェニルエステル誘導体が挙げられる。これらの誘導体におけるフェニル基は炭素数1~20の炭化水素、及びハロゲンからなる群から選ばれる一以上の置換基を有していてもよい。
 前記担体は、多孔質体であることが、分離性能を高める観点から好ましい。前記担体としては、例えば架橋ポリスチレン、架橋アクリル系ポリマー、エポキシ重合物等の合成高分子、セルロースやそれを架橋によって強化した架橋セルロース、架橋アガロース、架橋デキストラン、及び架橋マンナン架橋体等の多糖、及び、アルミナ、シリカゲル、メソポーラスシリカゲル、ゼオライト、珪藻土、溶融シリカ、粘度鉱物、ジルコニア、金属等の無機物、が挙げられる。
 分離剤の粒径は、クロマトグラフ媒体における分離の目的に応じて決めることができ、通常、10μm以上であることが好ましく、10~100μmであることがより好ましく、20~100μmであることがさらに好ましい。各分離剤の粒径は、通常の粒径測定装置で測定される平均粒径を採用することができるが、カタログ値であってもよい。一方、例えば合成反応のモニター用途で使用する場合などで、より分離スポットの分離度を要求する場合には、10μmよりも小さな分離剤を使用することもできる。そのような用途で用いる場合の分離剤の粒径としては、2~8μmのものが好ましく、3~6μmのものがより好ましく用いられる。
 クロマトグラフ媒体がプレート状のTLCである場合、分離剤層はTLCプレートを作製する公知の方法を用いて、例えば、前記分離剤と塗布用溶剤とを含有するスラリーを、スプレッダを用いて支持体としての基材の表面に塗布することによって、又は前記スラリーを支持体としての基材の表面に噴霧することによって、又は支持体としての基材を前記分離剤と塗布用溶剤とを含有するスラリー中に浸す(ディッピングする)ことによって形成することができる。
 その際、得られるクロマトグラフ媒体において基材がなくても十分な強度が確保されている場合には、基材を除き、分離剤層と充填剤層と被浸透層のみからなるクロマトグラフ媒体としてもよい。
 クロマトグラフ媒体が柱状の場合には、例えば、カラム管等の管の内面に、被浸透層を構成する材料を塗布や印刷により形成させた後に、分離剤やバインダ等を含む材料と充填剤層を構成する材料を充填することによって分離剤層と充填剤層を形成させることで、分離剤層上に被浸透層が積層され、あるいは分離剤層と充填剤層の両層上に被浸透層が積層され、被浸透層の周壁にカラム管が存在するクロマトグラフ媒体を得ることができる。
 一方、クロマトグラフ媒体が筒状の場合、例えば分離剤やバインダを含む材料と充填剤層を構成する材料を棒状の基材の周面に塗布したり、分離剤や塗布用溶剤を含むスラリーを棒状の基材に塗布し、さらに充填剤層を構成する材料を分離剤や塗布用溶剤を含むスラリーが存在しない基材の領域に塗布したりして分離剤層と充填剤層とを形成させた後、被浸透層を構成する材料を、塗布や印刷により分離剤層の周面のみ、または分離剤層と充填剤層の周面に積層させることで、基材に分離剤層と充填剤層とが積層され、該分離剤層上または分離剤層と充填剤層の両層上に被浸透層が積層された筒状のクロマトグラフ媒体を得ることができる。
 また、クロマトグラフ媒体が、予め成形された基材を用いずに柱状に形成される場合には、以下のような態様が挙げられる。
 まず、少なくとも表面に前記分離剤を有する柱状の多孔質体を形成する。このような多孔質体は、分離剤による柱状の多孔質体、及び、担体による柱状の多孔質体とこれに担持される前記分離剤、のいずれかによって分離剤層を形成した後、その展開方向と交差する断面に充填剤層からなる層を積層することにより、形成することができる。
 分離剤による柱状の多孔質体は、例えば特開平4-93336号公報に記載されている方法を利用して、分離剤の粒子が不溶な溶剤に可溶なプラスチック粒子と分離剤とを混合し、得られた混合物を加熱加圧処理して成型し、得られた成形体から可溶性のプラスチックを溶剤処理によって除去することによって形成することができる。
 前記担体による柱状の多孔質体は、担体粒子の接合や担体による柱状体の多孔質化によって形成することができる、担体粒子の接合による多孔質体は、担体粒子が高分子や多糖等の有機化合物である場合には、前記の方法を利用して形成することができる。前記担体による柱状体の多孔質化による多孔質体は、例えば特許第3397255号公報や特許第3317749号公報に記載されている方法、いわゆるゾル-ゲル法を利用して形成することができる。
 前記担体による柱状の多孔質体への分離剤の担持は、例えば、担体に分離剤を物理的に吸着させる、又は化学的に結合させて、多孔質体の細孔の表面を修飾、改質する公知の方法を利用して行うことができる。
 分離剤層を形成した後、その展開方向と交差する断面に充填剤層からなる層を積層する方法については、分離剤層の周面に、展開方向の長さが分離剤層よりも長い基材、例えばフィルムを巻き付けて展開方向の延長上に円柱状の空洞を形成し、その空洞に充填剤層を構成する材料を導入して充填剤層を形成させた後、基材を除く方法が挙げられる。
 上記の操作により作製された、少なくとも表面に前記分離剤を有する柱状の多孔質体、またはその多孔質体と充填剤層の周面に被浸透層を構成する材料を、塗布や印刷することで積層させることにより、被浸透層を形成させることで、通液性を有する柱状のクロマトグラフ媒体を得ることもできる。
 前記塗布用溶剤には、水、有機溶媒、及びこれらの混合溶媒を用いることができる。有機溶媒としては、アルコール系、グリコールエーテル系、炭化水素系、ケトン、エステルといった有機溶剤を用いることができる。例えば、α-テルピオネール、ブチルカルピトールアセテート、ブチルカルビトール、トルエン、シクロヘキサン、メトルエチルケトン、メチルプロピレングリコールが挙げられる。
 前記塗布用溶剤として好ましく用いられるのは、水溶性の有機溶剤と水との混合溶剤であり、より好ましくはアルコールと水の混合溶剤である。前記混合溶剤におけるアルコールの含有量は、0.1~50質量%であることが好ましく、1~45質量%であることがより好ましく、2~40質量%であることがさらに好ましい。
 用いることのできるアルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール及び3-メチル-3-メトキシブタノールが挙げられる。
 前記スラリーにおける塗布用溶剤の含有量は、形成される分離剤層の均一性、層の厚さ、及び、経済的な観点、から決定することができ、分離剤100質量部に対して10~5,000質量部であることが好ましく、50~1,000質量部であることがより好ましく、100~300質量部であることがさらに好ましい。
 このような範囲内であれば、流動性の高いスラリー状の材料だけでなく、例えば筒状や柱状のクロマトグラフ媒体を作製する際には、塗布用溶剤の含有量が少ない粘度の高い材料も使用することができる。
 前記スラリーは、形成される分離剤層の強度を向上させる観点から、バインダをさらに含有することが好ましい。前記バインダには、基板の表面において分離剤の層を形成する結着性をもたらす成分を用いることができる。このようなバインダとしては、石膏やコロイダルシリカ等の無機系バインダ、ミクロフィブリル化セルロース等の有機繊維、及び、アルカリ水溶性共重合体、ヒドロキシエチルセルロースやカルボキシメチルセルロース等の増粘剤、ポリビニルアルコール、アクリル酸等の有機系バインダが挙げられる。バインダは一種でも二種以上でもよい。
 前記スラリーにおけるバインダの含有量は、形成される分離剤層の強度と、分離剤層における移動相の適正な上昇速度との観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、分離剤100質量部に対して0.1~50質量部であることが好ましく、1~30質量部であることがより好ましく、1~20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、分離剤100質量部に対して0.1~50質量部であることが好ましく、0.5~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。
 本発明のクロマトグラフ媒体における分離剤層の厚さは、十分な分離特性を得る観点から、20~5000μmであることが好ましく、50~3000μmであることがより好ましい。
 また、本発明のクロマトグラフ媒体では、目的物質の分離性能を良好に保つ観点から、分離剤層の厚さよりも被浸透層の厚さが小さい方が好ましい。
 本発明における分離剤層と被浸透層の厚さの比は、目的物質の分離性能を良好に保つ観点から、分離剤層を1としたとき、0.002~0.8であることが好ましく、0.005~0.5であることがより好ましく、0.006~0.4であることが特に好ましい。
 一方、本発明における分離剤層と充填剤層の厚さの比は、目的物質の分離性能を良好に保つ観点から、分離剤層の厚さと充填剤層の厚さの関係が分離層の厚さと充填剤層の厚さが同程度か、分離層の厚さよりも充填剤層の厚さが小さい方が好ましい。このような観点から、本発明における分離剤層と充填剤層の厚さの比は、分離剤層を1としたとき、1.0~0.1であることが好ましく、0.99~0.2であることがより好ましく、0.95~0.5であることが特に好ましい。
 また、後述するように、充填剤層にも面して被浸透層が積層されている場合、分離剤層と、充填剤層と被浸透層を合わせた層との厚さの比についても、目的物質の分離性能を良好に保つ観点から、分離剤層を1としたとき、1.0~0.1であることが好ましく、0.99~0.2であることがより好ましく、0.95~0.5であることが特に好ましい。
 前記被浸透層は、目的物質及び分離剤層とは異なる光学応答性を有する。ここで「異なる光学応答性」とは、紫外線の照射又は発色試薬の発色処理による一方の光学的応答と他方の光学的応答とが、色や明るさによって光学的に識別できる程度に異なることを言う。
 また被浸透層は、分離剤層においてスポットを形成している成分の少なくとも一部が浸透する層である。
 また、被浸透層を構成する材料は、クロマトグラフ媒体上における分離剤層における目的物質の分離特性、即ち、移動相と分離剤層の間の目的物質の分配に影響を与えないものであることが、クロマトグラフ媒体上における目的物質のスポットをブロードにしないために重要である。
 このことから、被浸透層の構成材料は、例えば分離剤層で用いられる分離剤が担体に担持されたものである場合、その担体と同じものであることが好ましい。また、被浸透層の構成材料は、後述する材料の中から、移動相と分離剤層の間の目的物質の分配に影響を与えないものを適宜選んで使用することができる。
 前記被浸透層は、前記分離剤層の上、あるいは分離剤層と充填剤層の両層上に積層されているが、クロマトグラフ媒体の展開方向において不連続に積層されていることが、分離剤層と被浸透層との相互作用であるバイパス作用を減少させ、目的物質のスポットがブロードになることを防ぎ、良好な分離を得る(以下、分離特性とも言う)観点から好ましい。本発明でいう不連続に積層されているとは、クロマトグラフ媒体の展開方向に沿って、前記被浸透層が連続して積層されておらず、間隔を有して積層されていることを意味し、その間隔は等間隔であってもそうでなくてもよい。
 その間隔としては、目的物質が浸透し、これを検出するのに十分な解像度を得るために、0.015mm以上であることが好ましく、0.02mm以上であることがより好ましく、0.05mm以上であることが特に好ましい。一方、目的物質の被浸透層への拡散による分離剤層との相互作用を抑え、目的物質の良好な分離を確保するためには、4mm以下であることが好ましく、3mm以下であることがより好ましく、2mm以下であることが特に好ましい。
 また、目的物質が浸透し、検出するのに十分な面積を確保する観点から、被浸透層の空隙容積(材料内部の空隙容積(内部空隙)と材料間の空隙容積(外部空隙)を合わせたもの)の層全体の体積に占める割合が、0.1~0.9であることが好ましく、0.2~0.8であることがより好ましい。
 また、本発明のクロマトグラフ媒体における被浸透層は、前記分離剤層の上にドット状に積層されていることが好ましい。本発明でいうドット状とは、例えば円形、略円形、略楕円形、各辺が直線だけでなく曲線であるものを含む略三角形、略四角形等の略多角形等であってもよい形状の不連続な多数の点又は小区域から形成される模様であり、各ドットの大きさ、或いは密度などは特に限定されるものではない。ドットの形状は、クロマトグラフ媒体における目的物質の分離特性を均一にする観点から、規則性を有することが好ましい。更に、各ドットの配列も規則性を有することが好ましい。
 ドットの形状としては、円形~略円形であることが、目的物質の浸透性の観点から特に好ましく、またその配列としては、図3や4に示されるように、規則性を有することが上述のようにクロマトグラフ媒体における目的物質の分離特性を均一にする観点から好ましい。
 ドットの形状が円形である場合、その平均径は0.01~5mmであることが、目的物質の浸透性及び分離特性の観点から好ましく、0.01~4mmであることがより好ましく、0.02~3mmであることがさらに好ましく、0.05~1mmであることが特に好ましい。
 一方、ドットの形状が円形以外のものである場合、その最大径の平均径が0.02~6mmであることが、円形の場合と同様の理由で好ましく、0.05~5mmであることがより好ましく、0.05~1.5mmであることがさらに好ましい。
 本発明でいう最大径とは、例えば楕円形の場合、その最も長い軸の長さを意味するが、より一般的には、平行な2つの平面で、その形状を上面から見て任意の方向に挟んだときの2つの平面間の距離の最大値である。
 また被浸透層がドット状に積層されている場合、その各ドット間の間隔(ピッチ)は、分離剤層との相互作用を減らす観点及び浸透層に浸透する目的物質の検出の際の解像度の観点から、好ましくは0.01~6mm、より好ましくは0.01~4mm、さらに好ましくは0.02~3mmであり、0.05~1.0mmであることが特に好ましい。
 ドットが円型である場合、ピッチは上記と同様の理由で、好ましくは0.01~6mm、より好ましくは0.02~3mmであり、さらに好ましくは0.05~1mmであり、0.06~1mmであることが特に好ましい。
 また、ドットの密度を線数(1インチ当たりのドット個数)で表すと、好ましくは5~2000、より好ましくは10~400であり、さらに好ましくは20~300である。
 本発明のクロマトグラフ媒体における被浸透層は、上記のドット状以外にも、クロマトグラフ媒体の展開方向と交差する帯状の列として積層されている態様も好ましい。このように積層されていることで、目的物質の分離特性を十分に保った上で、目的物質の被浸透層への十分な浸透を得ることができる。
 前記帯状の列を形成する帯の形状としては、例えば直線、波線及びこれらの破線を挙げることができる。この帯の幅は特に制限されるものではないが、目的物質の分離特性を保ち、かつ、目的物質の検出に十分な解像度を得る観点から、0.01~15mmであること好ましく、0.02~10mmであることがより好ましい。
 また、帯と帯の間隔については、特に制限されるものではないが、目的物質の均一な分離特性を得る観点から、等間隔であることが好ましく、その間隔としては0.01~3mmであること好ましく、0.02~2mmであることがより好ましい。
 本発明のクロマトグラフ媒体における被浸透層は、その層を構成する材料として多孔質体を用いることができる。
 そのような多孔質体は、目的物質の十分な浸透性を確保する観点から、ガス吸着法により測定される細孔容積が0.1ml/g以上であることが好ましく、0.2ml/g以上であることがより好ましく、0.3~0.9ml/gであることが特に好ましい。
 上記のような細孔容積を有する多孔質体としては、後述する好ましい多孔質体であるシリカゲルやセラミックスの市販品でカタログ値として上記範囲を満たすものを用いてもよいし、シリカを含むものであればフッ化水素水溶液やアルカリ水溶液による処理を行って調整してもよいし、セラミックスであればその造粒時の焼成条件、酸溶液での処理などを行って調整することもできる。
 また、多孔質体の粒径としては、これを含むスラリーの凝集を防ぐ観点から、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。一方、多孔質体の粒径の上限値としては、これを含むスラリーを例えばスクリーン印刷する際の透過性や、被浸透層の表面の仕上がりの観点から100μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることが特に好ましい。
 多孔質体の粒径は、通常の粒径測定装置で測定される平均粒径を採用することができるが、カタログ値であってもよい。
 本発明で用いられる多孔質体は、シリカゲル、メソポーラスシリカゲル、ゼオライト、セルロース、珪藻土、溶融シリカ、粘土鉱物、アルミナ、ジルコニアやその他のセラミックス、例えばセピオライト、アタパルジャイト、パリゴルスカイト、SiO2、MgOを主成分とするタルク、SiO2を主成分とするカオリナイト、モンモリロナイト等の各種粘土鉱物を、破砕した後、造粒し、必要に応じて酸処理を施してさらに焼成して得られるものなどが挙げられる。これらはいずれも市販品を用いることができ、カタログ値として上記の細孔容積や粒径を有するものを用いることができる。
 これらのうち、上記細孔容積や粒径を有するものが好ましく用いられ、溶剤との親和性の観点から、シリカゲルを用いることが好ましい。
 本発明で用いることのできるシリカゲルは、例えば、シランカップリング剤で表面処理されたシリカゲル、例えばオクタデシルシリル基、アミノプロピルシリル基で修飾したシリカゲルも使用することができる。このような表面処理されたシリカゲルは、分離剤層と移動相の間での目的物質の分配に影響を与えない傾向があることから好ましく用いられる。
 また、上記の多孔質体は、分離剤層と移動相の間での目的物質の分配に影響を与えないものを選択することが、クロマトグラフ媒体上における目的物質のスポットをブロードにしない観点から好ましい。
 また、本発明のクロマトグラフ媒体における被浸透層は、その層を構成する材料が、後述する蛍光指示薬あるいは発色試薬そのものであってもよい。また、これらの蛍光指示薬あるいは発色試薬と、バインダ及び必要に応じて、例えば粒径0.1~100μmのガラス、プラスチック、金属、およびセラミックのような支持体を混合して得られる組成物を、積層することによっても被浸透層とすることができる。
 このような組成物におけるバインダの含有量は、形成される被浸透層の強度と、被浸透層における分離剤層と被浸透層との相互作用であるバイパス作用を減少させる観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、蛍光指示薬あるいは発色試薬の100質量部に対して0.1~50質量部であることが好ましく、0.5~30質量部であることがより好ましく、1~20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、蛍光指示薬あるいは発色試薬の100質量部に対して0.1~50質量部であることが好ましく、0.5~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。
 また、前記支持体については、これを含有させる場合、蛍光指示薬あるいは発色試薬の100質量部に対して0.1~0.9質量部であることが好ましく、0.2~0.8質量部であることがより好ましく、0.3~0.7質量部であることが特に好ましい。
 本発明のクロマトグラフ媒体における被浸透層は、種々の方法によって積層することができる。例えば被浸透層は、クロマトグラフ媒体がプレート状のTLCであり、被浸透層が多孔質体を構成材料として含む場合には、TLCプレートの分離剤層上、または分離剤層上並びに充填剤層上に多孔質体を含むスラリーを塗布し、乾燥させることによって作製することができる。また、後述する蛍光指示薬あるいは発色試薬そのものや、これらとバインダ、および必要に応じて支持体を含有する組成物を被浸透層とする場合も、同じ方法を用いることができる。
 また、本発明のクロマトグラフ媒体において、被浸透層がクロマトグラフ媒体の展開方向に不連続に積層されている場合には、例えば印刷技術を用いて、被浸透層を積層することができる。
 印刷技術としては、シルクスクリーン印刷のようなスクリーン印刷やインクジェット印刷を挙げることができる。
 スクリーン印刷では、スクリーン版として、開口部の形状として上記の積層の態様で説明したものを有するもの(クロマトグラフ媒体の展開方向に不連続に開口しているものや、種々の形状を有するドットや帯状の列を開口部として有しているもの)を用いることができる。シルクスクリーン印刷のようなスクリーン印刷では、被浸透層を比較的安価で簡単な操作で積層させることができることから、好ましく用いられる。
 また、被浸透層を分離剤層上のみ、または分離剤層上並びに充填剤層上に積層させる場合において、それぞれに適した開口部を有するスクリーン版を用いることで、積層させる領域の場所や面積を調整することも可能である。これにより、充填剤層上の全面に被浸透層がドット状に積層することもできる。
 スクリーン版は、後述する多孔質体を含むスラリーを印刷インキとして用い得るものであれば、特にその材料が限定されるものではない。そのようなスクリーン版として、例えばメタルマスクが挙げられる。
 一方、インクジェット印刷を用いる場合も、印刷に用いるインクとして、後述する多孔質体を含むスラリーを用いること以外は、通常用いられているインクジェット印刷の技術を用いることができる。
 一方、筒状や柱状のクロマトグラフ媒体を作製する場合には、分離剤層上または分離剤層上並びに充填剤層上に多孔質体を含むスラリーを塗布し、乾燥させることによって作製することができる。また、蛍光指示薬あるいは発色試薬そのものや、これらとバインダ、および必要に応じて支持体を含有する組成物を被浸透層とする場合も、同じ方法を用いることができる。
 また、筒状や柱状のクロマトグラフ媒体において、被浸透層がクロマトグラフ媒体の展開方向に不連続に積層されている場合には、例えば印刷技術を用いて、被浸透層を積層することができる。そのような印刷技術としては、上述したスクリーン印刷を用いることができ、スクリーン版としては、上述した開口部及び柔軟性を有し、分離剤層の周面に巻き付けることができるものを用いることが好ましい。
 上記のようなスクリーン印刷技術を用いた場合には、スクリーン版に文字や目盛などの所望の開口部を設けることで、被浸透層上の該当部分に被浸透層が積層されず、分離剤層が露出して被浸透層とは異なる光学応答性を有することで、紫外線を照射した際にそのような文字や目盛を確認することができる。これにより、クロマトグラフ媒体の利便性を高めることができる。
 スラリーの塗布や上記印刷技術で積層された被浸透層の厚さ(平均厚さ)は、十分な浸透性を確保する観点や、多孔質体が例えば透明や半透明のものを用いる場合には、目的物質のスポット検出の際に分離剤層の光学応答性の影響を受けないようにするために、0.005mm以上であることが好ましく、0.01mm以上であることがさらに好ましい。
 一方、被浸透層の厚さ(平均厚さ)は、目的物質のスポットの拡散の防止の観点から0.2mm以下であることが好ましく、0.15mm以下であることがさらに好ましい。
 分離剤層上に被浸透層を積層するために、上記で説明した塗布や印刷の技術を用いることができるが、これらの技術においては、多孔質体を含むスラリー、蛍光指示薬あるいは発色試薬を含有する溶液、または蛍光指示薬あるいは発色試薬とバインダ及び必要に応じて支持体を含有する組成物を調製し、これを塗布液、印刷インキとして用いることができる。
 多孔質体を含むスラリーを調製する際に用いる材料としては、溶剤と必要に応じてバインダが挙げられる。そのような溶剤やバインダは、分離剤層を形成する際に用いることができるものと、同じものを用いることができる。
 上記蛍光指示薬としては、例えば、タングステン酸マグネシウムやマンガン含有ケイ酸亜鉛等が挙げられ、これを含有する溶液ないしスラリーを調製する際の溶剤としては、例えば、スクリーン印刷のインク溶剤として使用されるアルコール系、グリコールエーテル系、炭化水素系、ケトン、エステルといった有機溶媒を使用することができる。例えば、α-テルピオネール、ブチルカルピトールアセテート、ブチルカルビトール、トルエン、シクロヘキサン、メトルエチルケトン、メチルプロピレングリコールが挙げられる。印刷途中でスラリーの流動性を悪化させたり、スクリーンの目詰まりを引き起こしたりしないように、流動性、沸点、蒸発速度といった物性を考慮して適当な溶剤を選定する。
 一方、発色試薬としては、アニスアルデヒド溶液、リンモリブデン酸溶液、ヨウ素溶液、ニンヒドリン溶液、カメレオン溶液、DNPH溶液、塩化マンガン溶液、及びブロモクレゾールグリーン溶液が挙げられる。
 蛍光指示薬あるいは発色試薬とバインダ及び必要に応じて支持体を含有する組成物を用いる場合には、上記の蛍光指示薬あるいは発色試薬の溶液に上記バインダを含有する組成物を溶解乃至懸濁させて塗布液、印刷インキとすることができる。
 被浸透層を形成する構成材料として、多孔質体を含む場合、それを含むスラリーで用いる溶剤としては、アルコール系、グリコールエーテル系、炭化水素系、ケトン、エステルといった有機溶剤を単独で用いることができる。例えば、アルコールを用いる場合には好ましくは水溶性の有機溶剤と水との混合溶剤であり、より好ましくはアルコールと水の混合溶剤である。前記混合溶剤におけるアルコールの含有量は、0.1~50質量%であることが好ましく、1~45質量%であることがより好ましく、2~40質量%であることがさらに好ましい。
 用いることのできるアルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール及び3-メチル-3-メトキシブタノールが挙げられる。
 前記スラリーにおける溶剤の含有量は、形成される被浸透層の均一性、層の厚さ、及び、経済的な観点から決定することができ、多孔質体100質量部に対して10~5,000質量部であることが好ましく、50~1,000質量部であることがより好ましく、100~300質量部であることがさらに好ましい。
 前記スラリーは、形成される被浸透層の強度の向上の観点から、バインダをさらに含有することが好ましい。前記バインダには、分離剤層上において多孔質体の層を形成する結着性をもたらす成分を用いることができる。このようなバインダとしては、石膏やコロイダルシリカ等の無機系バインダ、ミクロフィブリル化セルロース等の有機繊維、及び、アルカリ水溶性共重合体、ヒドロキシエチルセルロースやカルボキシメチルセルロース等の増粘剤、ポリビニルアルコール、アクリル酸等の有機系バインダが挙げられる。バインダは一種でも二種以上でもよい。
 前記スラリーにおけるバインダの含有量は、形成される被浸透層の強度と、被浸透層に対する分離剤層からの移動相の適正な上昇速度との観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、多孔質体100質量部に対して0.1~50質量部であることが好ましく、0.5~30質量部であることがより好ましく、1~20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、多孔質体100質量部に対して0.1~50質量部であることが好ましく、0.5~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。
 被浸透層が、多孔質体を構成材料として含む場合、紫外線の照射による光学応答性によってスポットを検出する場合には、蛍光指示薬を、多孔質体を含むスラリーに含有させることで被浸透層に光学応答性を持たせることができる。このような蛍光指示薬としては、公知の蛍光指示薬を用いることができ、例えば、前記タングステン酸マグネシウムや、マンガン含有ケイ酸亜鉛等が挙げられる。蛍光指示薬の含有量は、目的物質の分離が可能な範囲で決めることができ、一般には前記多孔質体100質量部に対して0.1~10質量部であることが好ましく、1~8質量部であることが目的物質と被浸透層のコントラストを最適なものにする観点から特に好ましい。
 また、被浸透層が、多孔質体を構成材料として含み、発色反応によってスポットを検出する場合には、発色試薬を、多孔質体を含むスラリーに含有させることで被浸透層に光学応答性を持たせることができる。このような発色試薬としては、公知のリンモリブデン酸、ニンヒドリン等が挙げられる。発色試薬の含有量は、目的物質の分離が可能な範囲で決めることができ、一般には前記多孔質体100質量部に対して0.1~10質量部であることが好ましく、1~8質量部であることが目的物質と被浸透層のコントラストを最適なものにする観点から特に好ましい。
 本発明のクロマトグラフ媒体は、上記のように、前記目的物質を分離する前に前記目的物質を定着するための充填剤層を有する。
 本発明でいう「定着する」とは、分離前に点着された目的物質が、展開液によるその後の展開を行うために、点着された領域に目的物質が十分に留まることをいう。クロマトグラフ媒体において、充填剤層上に被浸透層が積層されている場合には、目的物質が被浸透層及びその被浸透層下の充填剤層を含む領域に留まることをいい、充填剤層が露出している場合には、充填剤層上に点着された目的物質が、その点着された充填剤層の領域に留まることをいう。
 本発明のクロマトグラフ媒体における充填剤層を構成するために用いられる材料は、上記で説明した被浸透層で用いることができるものを同じく用いることができ、シリカゲル、メソポーラスシリカゲル、ゼオライト、セルロース、珪藻土、溶融シリカ、粘土鉱物、アルミナ、ジルコニアやその他のセラミックスのような多孔質体が例示できる。そして、充填剤層を構成する材料として、目的物質を分離する能力がないものを用いることが、本発明の効果を良好に得る観点から好ましい。
 上記シリカゲルとしては、上記で説明した表面処理がなされているものも好ましく用いることができる。
 また、用いることができる多孔質体の粒径の範囲についても、被浸透層で用いることができるものについて記載した範囲のものが例示できる。
 また、被浸透層で用いる多孔質体と、充填剤層で用いる多孔質体は同じものであってもよく、異なるものであってもよい。充填剤層で用いる材料と、被浸透層で用いる材料の組み合わせとして、充填剤層上にも被浸透層が積層されている場合には、充填剤層上に定着された目的物質の展開を妨げるような相互作用を生じないような組み合わせが好ましい。
 本発明のクロマトグラフ媒体における充填剤層を構成する材料として多孔質体を用い、これを積層させるためのスラリーを調整する場合には、その溶剤として、被浸透層を構成するために用いることのできる溶剤を同じく用いることができる。
 また、前記スラリーにおける溶剤の含有量にもついても、形成される充填剤層の均一性、層の厚さ、及び、経済的な観点から決定することができ、多孔質体100質量部に対して10~5,000質量部であることが好ましく、50~1,000質量部であることがより好ましく、100~300質量部であることがさらに好ましい。
 前記スラリーは、形成される被浸透層の強度の向上の観点から、バインダをさらに含有することが好ましい。
 前記バインダには、充填剤層において多孔質体の層を形成する結着性をもたらす成分を用いることができる。そのようなバインダとしては、被浸透層を構成するために用いることのできるものと同じものを用いることができ、そのようなバインダは一種でも二種以上でもよい。
 前記スラリーにおけるバインダの含有量は、形成される充填剤層の強度と、充填剤層における移動相の適正な展開速度との観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、多孔質体100質量部に対して0.1~50質量部であることが好ましく、0.5~30質量部であることがより好ましく、1~20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、多孔質体100質量部に対して0.1~50質量部であることが好ましく、0.5~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。
 また、上記充填剤層には、被浸透層と同様に蛍光指示薬や発色試薬が含まれていてもよく、これらのみからなる層であってもよい。用いることができる蛍光指示薬や発色試薬及びそれらの使用態様も被浸透層で例示したものと同じ条件を用いることができる。
 本発明のクロマトグラフ媒体において、充填剤層を積層させる方法については、本発明のクロマトグラフ媒体がプレート状のものである場合には、例えば、予め基材の一部に分離剤層を積層した後に、充填剤層を構成する材料を含むスラリーをスプレッダを用い、分離剤層が積層されていない基材の表面上に塗布あるいは噴霧することによって形成できる。あるいは、被浸透層と分離剤層を構成する材料が同じ場合には、予め基材の一部に分離剤層を積層した後に、前述した被浸透層を積層する方法と同じ方法で、分離剤層が積層された基材の表面上に被浸透層及び充填剤層を構成する材料を含むスラリーを、塗布、噴霧あるいは印刷技術を用いて積層させることで、分離剤層上に積層された層が被浸透層として形成され、基材上に積層された層が充填剤層として形成される。これにより、同時に被浸透層と充填剤層を形成することができる。この場合、充填剤層は一層構造であり、被浸透層と充填剤層を得る工程が一つで済むことになる。
 一方で、本発明のクロマトグラフ媒体が、柱状のものである場合には、上述したように、例えばカラム管の内壁面に沿って被浸透層を形成させた後、分離剤層の形成の前あるいは後に充填剤層を構成する材料を管内に充填して形成することができる。また、筒状の場合にも、上述したように基材の周面に充填剤層を構成する材料を塗布することで形成できる。また、基材が存在しない柱状のものである場合にも、上述したように、少なくとも表面に前記分離剤を有する柱状の多孔質体を形成した後、分離剤層の周面に、展開方向の長さが分離剤層よりも長い基材、例えばフィルムを巻き付けて、分離剤層の展開方向の延長上に円柱状の空洞を形成し、その空洞に充填剤層を構成する材料を導入して充填剤層を形成する方法が挙げられる。
 なお、本発明のクロマトグラフ媒体における充填剤層の厚さは、目的物質を十分に定着する観点から、被浸透層が積層されている場合には、その被浸透層の厚さを合計した厚さで2~5000μmであることが好ましく、5~3000μmであることがより好ましい。
 また、本発明では、上記のクロマトグラフ媒体が一枚の基材の複数領域上に積層されたTLCプレートも提供する(図8参照)。このようなTLCプレートによれば、様々な分離剤層や被浸透層の組み合わせを同一基材上に積層することができ、同一の展開液による目的物質の分離特性を観察することができる。分離剤層、充填剤層及び被浸透層の積層方法については、目的とするクロマトグラフ媒体が複数種類ある場合には、これが互いに接触して層が重なったりしないようにすること以外は、上述した方法を用いることができる。
 また、本発明では、図9に概略が示されているように、一枚の基材上に分離剤層、充填剤層及び被浸透層が積層され、基材の端部側に被浸透層が積層されていない領域を有するTLC材料も提供する(図9参照)。このようなTLC材料によれば、例えば、図9で破線で示されている箇所に溝を設け、この溝に沿って当該TLC材料を適当な方法、例えば手によって割ったり、プレートカッターで切断することで、基材、分離剤層、充填剤層及び被浸透層を有し、充填剤層が露出している、図3(1)で例示されるTLCプレートを得ることができる。
 ここで用いることができる基材、分離剤層、被浸透層やそれらの積層方法については、上述したものを用いることができる。また、TLC材料において、溝を設ける場所についても特に限定されるものではない。
 本発明のクロマトグラフ媒体は、その態様により形状が異なるが、基本的には通常のTLCプレートの使用方法と同じ使用方法を用いることにより、試料中の目的物質の分離及び検出を行うことができる。
 試料中の目的物質の分離及び検出は、クロマトグラフ媒体の展開方向(クロマトグラフ媒体がTLCプレートの場合で、その形状として長方形のものを用いる場合には、長手方向が好ましい)へ移動相を用いて試料を展開させる工程と、該クロマトグラフ媒体上の移動相を乾燥させる工程と、移動した目的物質の各成分のスポットを紫外線の照射又は発色試薬の発色処理によって検出する工程と、を含む方法によって行うことができる。
 本発明のクロマトグラフ媒体を用いて試料を移動相を用いて展開させると、試料中の目的物質の分離が行われると同時に、分離剤層上の被浸透層に目的物質が浸透する。
 なお、本発明における目的物質は、被浸透層とは異なる光学応答性を有し、分離剤層と同じ光学応答性を有する。
 本発明のクロマトグラフ媒体では、試料中の目的物質のエクストラクト成分とラフィネート成分の分離と光学的な検出を、単一のクロマトグラフィー上で行うことができる。従来の2つの分離剤層を有するTLCプレートと比較すると、従来のプレートでは、各分離剤層における試料中の目的物質の各成分の移動速度の相違によって目的物質がブロードになる問題があったが、本発明では、そのような問題が生じず、ラフィネート成分及びエクストラクト成分の両成分を、確実に検出することができる。また本発明では、クロマトグラフ媒体がプレート状のものであれば、複数の試料を並べて点着し、同時に展開させたときの各試料における分離状態をそれぞれ確実に検出することができる。また被浸透層に浸透した特定のスポットを含む部分(分離剤層も含む)を採取し、抽出操作を行うことによって、目的物質の各成分の分取に用いることもできる。
<実施例1>
 まず、株式会社ダイセル製CHIRALPAK IA(同社の登録商標)の充填剤(「IA充填剤」とも言う)3.00gと、石膏0.45gと、2%CMC(カルボキシメチルセルロース)1110(株式会社ダイセル製)水溶液3.00gと、20%スノーテックスC(日産化学工業株式会社製)水溶液0.45gとを、水0.30g、エタノール1.20gの混合溶液に添加し、超音波を照射しながら十分に攪拌して第一のスラリーを調製した。
 また、シリカゲル2.00g(ダイソー株式会社製液体クロマトグラフィー用、IR-60-5/20-U)と、石膏0.10gと、2%CMC(カルボキシメチルセルロース)1110(株式会社ダイセル製)水溶液3.00gと、マンガン含有ケイ酸亜鉛0.02gと、20%スノーテックスC(日産化学工業株式会社製)水溶液0.30gとを、水1.01g、エタノール1.40gの混合溶液に添加し、超音波を照射しながら十分に攪拌して第二のスラリーを調製した。
 さらに、シリカゲル1.00g(ダイソー株式会社製液体クロマトグラフィー用、IR-60-5/20-U)と、石膏0.05gと、2%CMC(カルボキシメチルセルロース)1110(株式会社ダイセル製)水溶液1.50gと、マンガン含有ケイ酸亜鉛0.04gと、20%スノーテックスC(日産化学工業株式会社製)水溶液0.15gとを、水0.06g、エタノール0.55gの混合溶液に添加し、超音波を照射しながら十分に攪拌して第三のスラリーを調製した。
 これらのスラリーのうち、第一のスラリーと第二のスラリーを、TLCプレート作製用スプレッダを用いて6枚直列に並べたガラス板において、第一のスラリーを展開液を浸漬させる浸漬端部から20mmまでの領域以外の表面に均一に塗布し、第二のスラリーを展開液を浸漬させる浸漬端部から20mmまでの領域の表面に塗布した。その後、第一のスラリー層と第二のスラリー層を風乾し、真空ポンプで引きながら60℃で3時間真空乾燥することによって、第一のスラリーによる分離剤層を積層し、第二のスラリーによる充填剤層を、前記TLCプレートの展開方向に対して直交する面を介して前記分離剤層と接するように積層した。
 そして、分離剤層及び充填剤層の上に第三のスラリーをメタルマスク(東京プロセスサービス)用いて塗布した。スクリーン版として、ピッチが0.6mmで、孔径0.4mmの円形状の開口部を規則的に有するもの(図7参照)を使用した。その後、被浸透層としての第三のスラリー層を風乾し、真空ポンプで引きながら60℃で3時間真空乾燥することによって、分離剤層及び充填剤層の上に被浸透層がドット状に積層されたTLCプレート1を作製した。
 TLCプレート1の幅は5cm、長さは10cmとした。これにより、TLCプレートの下側縁から、該TLCプレートの展開方向の長さの1/5までの領域(下側縁から2.0cmまでの間)に、充填剤層が存在していた。TLCプレート1における分離剤層の厚さは150μm、充填剤層の厚さも150μm、被浸透層の厚さは20μmであった。
 第一のスラリーによる分離剤層がIA充填剤による層であり、第二のスラリーによる充填剤層及び第三のスラリーによる被浸透層が前記シリカゲルの層である。また、IA充填剤の平均粒径は20μmであり、シリカゲルの平均粒径は14.4μmである。
 トランス-スチルベンオキサイド(t-SO)のラセミ体が1%、トレガー塩基(TB)のラセミ体が1%、フラバノン(FLV)のラセミ体が1%の酢酸エチル溶液の約3μLを、TLCプレート1の展開方向を縦とした時の下から約1cmの位置(充填剤層の領域)に点着した。n-ヘキサンとエタノールを体積比で9:1で含有する混合溶剤を展開液として収容した展開槽内に、試料のスポットを下にしてTLCプレート1を収容し、TLCプレート1の展開方向に試料中のトランス-スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。
 この展開の後、TLCプレート1を冷風で乾燥し、TLCプレート1に紫外線を照射したところ、トランス-スチルベンオキサイドのラフィネート成分Rt-SO及びエクストラクト成分Et-SOのスポットと、トレガー塩基のラフィネート成分RTB及びエクストラクト成分ETBのスポットと、フラバノンのラフィネート成分RFLV及びエクストラクト成分EFLVが、被浸透層上にそれぞれ濃緑色~黒色のスポットとして確認された(図1)。
 被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1-Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表1に示す。
<比較例1>
 実施例1のTLCプレートにおいて、充填剤層を設けず、分離剤層上の全面に被浸透層を設けたこと以外は実施例1と同様の原料、手順によりTLCプレート3を作製した。そして、目的物質のスポッティングを被浸透層上に行ったこと以外は実施例1と同様の操作、展開液を用いて、トランス-スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1-Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 実施例1で作製したTLCプレート1と同様の原料、手順を用いて作製したTLCプレート2を用い、展開液としてメタノールを用いた以外は実施例1と同様の手順により、TLCプレート2の展開方向に試料中のトランス-スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値、k’値、α値を求めた。それぞれの光学異性体についての結果を表2に示す。
<比較例2>
 実施例1のTLCプレートにおいて、充填剤層を設けず、分離剤層上の全面に被浸透層を設けたこと以外は実施例1と同様の原料、手順によりTLCプレート4を作製した。そして、目的物質のスポッティングを被浸透層上に行い、展開液としてメタノールを用いた以外は実施例1と同様の手順により、トランス-スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1-Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1、2及び比較例1、2の結果から、TLCプレートの下側縁から展開方向の長さの特定範囲に充填剤層を設け、その充填剤層に目的物質を点着して展開させた場合には、目的物質の良好な分離特性が得られる。
 TLCは、カラムクロマトグラフィーによる分離条件の主な検討手段として従来より用いられており、また目的物質の分取にも用いられている。本発明は、光学的な応答によって分離状態の検出が困難であった分離剤による目的物質の分離状態を従来に比べて確実かつ簡便に検出できることから、このような分離剤の用途のさらなる拡大やこのような分離剤を用いる分離精製技術のさらなる発展に貢献することが期待される。
 t-SO:トランス-スチルベンオキサイド
 TB:トレガー塩基
 FLV:フラバノン
 1:被浸透層
 2:分離剤層
 3:充填剤層
 4:基材
 5:紫外線照射方向
 6、6’:スポッティング方向

Claims (20)

  1.  目的物質を分離するための分離剤層と、前記目的物質を分離する前に前記目的物質を定着するための充填剤層と、前記分離剤層で分離された目的物質が浸透するための被浸透層と、を有するクロマトグラフ媒体であって、
     前記充填剤層は、前記クロマトグラフ媒体における前記目的物質の展開方向に対して直交する面を介して前記分離剤層と接すると共に、前記展開方向の上流側に位置し、
     前記分離剤層は、前記目的物質に対する分離性と紫外線に対する光学応答性とを有し、
     前記被浸透層は、前記目的物質と前記分離剤層とは異なる光学応答性を有する、クロマトグラフ媒体。
  2.  前記充填剤層が、前記クロマトグラフ媒体における前記目的物質を展開させるための展開液が浸漬する浸漬端部から、該クロマトグラフ媒体の展開方向の長さの1/20~1/2までの間の領域に積層されている、請求項1に記載のクロマトグラフ媒体。
  3.  前記被浸透層は、クロマトグラフ媒体の展開方向に不連続に積層されている、請求項1または2に記載のクロマトグラフ媒体。
  4.  前記被浸透層は、前記分離剤層の上にドット状に積層されている、請求項1~3のいずれか一項に記載のクロマトグラフ媒体。
  5.  前記ドット状に積層されている被浸透層は、該ドットの平均径が0.01~5mmであり、ドット間のピッチが0.015~5mmである、請求項4に記載のクロマトグラフ媒体。
  6.  前記被浸透層は、前記分離剤層の上に、クロマトグラフ媒体の展開方向と交差する帯状の列として積層されている、請求項1~3のいずれか一項に記載のクロマトグラフ媒体。
  7.  前記帯状の列を形成する帯は、直線、波線及びそれらの破線から選ばれる請求項6に記載のクロマトグラフ媒体。
  8.  前記被浸透層の厚みが、前記分離剤層よりも薄い、請求項1~7のいずれか一項に記載のクロマトグラフ媒体。
  9.  前記分離剤層を構成する分離剤が、光学異性体用分離剤である、請求項1~8のいずれか一項に記載のクロマトグラフ媒体。
  10.  前記光学異性体用分離剤が、多糖と多糖の水酸基或いはアミノ基の一部又は全部と置き換わった芳香族エステル基、芳香族カルバモイル基、芳香族エーテル基、及びカルボニル基のいずれかとからなる多糖誘導体を含むことを特徴とする請求項9に記載のクロマトグラフ媒体。
  11.  前記被浸透層は、多孔質体及び蛍光指示薬もしくは発色試薬を構成材料として含む、請求項1~10のいずれか一項に記載のクロマトグラフ媒体。
  12.  前記充填剤層は、多孔質体を構成材料として含む、請求項1~12のいずれか一項に記載のクロマトグラフ媒体。
  13.  前記多孔質体が、シリカゲルまたは表面処理されたシリカゲルである、請求項11または12に記載のクロマトグラフ媒体。
  14.  さらにバインダを構成材料として含む、請求項11~13のいずれか一項に記載のクロマトグラフ媒体。
  15.  前記被浸透層上に目盛及び/または文字が存在する、請求項1~14のいずれか一項に記載のクロマトグラフ媒体。
  16.  前記目盛及び/または文字が、前記被浸透層とは異なる光学応答性を有する、請求項15に記載のクロマトグラフ媒体。
  17.  前記分離剤層に面して、または、前記被浸透層に面して、前記クロマトグラフ媒体を支持するための基材を有する、請求項1~16のいずれか一項に記載のクロマトグラフ媒体。
  18.  前記クロマトグラフ媒体がプレート状、筒状または柱状である、請求項1~17のいずれか一項に記載のクロマトグラフ媒体。
  19.  請求項1~16のいずれか一項に記載のクロマトグラフ媒体と、該クロマトグラフ媒体を支持するための基材とを有し、前記基材上の複数領域に前記クロマトグラフ媒体が積層されてなる、TLCプレート。
  20.  請求項1~16のいずれか一項に記載のクロマトグラフ媒体と該クロマトグラフ媒体を支持するための基材とからなる、TLC材料。
PCT/JP2013/052324 2012-02-03 2013-02-01 クロマトグラフ媒体 WO2013115350A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/375,677 US9726650B2 (en) 2012-02-03 2013-02-01 Chromatographic medium
CN201380007653.6A CN104081199B (zh) 2012-02-03 2013-02-01 色谱介质
EP13744353.7A EP2811296B1 (en) 2012-02-03 2013-02-01 Chromatography medium
JP2013556510A JP6118271B2 (ja) 2012-02-03 2013-02-01 クロマトグラフ媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012022004 2012-02-03
JP2012-022004 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115350A1 true WO2013115350A1 (ja) 2013-08-08

Family

ID=48905378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052324 WO2013115350A1 (ja) 2012-02-03 2013-02-01 クロマトグラフ媒体

Country Status (5)

Country Link
US (1) US9726650B2 (ja)
EP (1) EP2811296B1 (ja)
JP (1) JP6118271B2 (ja)
CN (1) CN104081199B (ja)
WO (1) WO2013115350A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569246B1 (ko) * 2013-02-19 2015-11-13 주식회사 엘지화학 발포성 폴리스티렌의 제조 장치 및 방법
CN109564203A (zh) * 2016-12-26 2019-04-02 松下知识产权经营株式会社 薄层色谱板和使用其的试样分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149393A (en) * 1977-05-31 1978-12-26 Merck Patent Gmbh Coated support material for thin layer chromatography with concentration zone
JPH0363567A (ja) * 1989-07-31 1991-03-19 Shimadzu Corp クロマトグラフの転写方法
JPH0493336A (ja) 1990-08-09 1992-03-26 Hitachi Chem Co Ltd 多孔質体の製造方法
JP3140138B2 (ja) 1992-02-25 2001-03-05 ダイセル化学工業株式会社 薄層クロマトグラム
JP3317749B2 (ja) 1993-01-18 2002-08-26 直弘 曽我 無機系多孔質カラム
JP3397255B2 (ja) 1993-07-30 2003-04-14 直弘 曽我 無機系多孔質体の製造方法
WO2011149041A1 (ja) * 2010-05-27 2011-12-01 ダイセル化学工業株式会社 薄層クロマトグラフィーによる試料の検出方法、薄層クロマトグラフィープレート、及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1909058C3 (de) 1968-03-04 1978-11-23 Schoeffel Instruments Corp., Westwood, N.J. (V.St.A.) Chromatographieplatte für die Dünnschichtchromatographie
DE1792083A1 (de) * 1968-07-19 1971-04-29 Merck Anlagen Gmbh Zweischichtenplatte und ihre Verwendung zur duennschichtchromatographischen Auftrennung von Aminosaeuren
US3591805A (en) * 1969-02-20 1971-07-06 Schoeffel Instrument Corp Thin layer chromatographic plate having preadjusted spectral transmissivity and emissivity and preadjusted opaque and nonopaque intervals
ATE1515T1 (de) * 1979-02-20 1982-09-15 Hoechst Aktiengesellschaft Mikrochromatographisches system fuer urinproben zur kontrolle der arzneimitteleinnahme.
US4313906A (en) * 1979-08-17 1982-02-02 Whatman, Inc. Two dimensional two phase thin layer chromatography plate and method
JPS60226832A (ja) * 1984-04-02 1985-11-12 Daicel Chem Ind Ltd 多糖の脂肪族エステルを含む分離剤
JP2833096B2 (ja) 1990-01-31 1998-12-09 株式会社島津製作所 Lc/ir測定方法
DE4330564B4 (de) * 1993-09-09 2005-03-17 Merck Patent Gmbh Codierter Träger für die Dünnschichtchromatographie
US20010051350A1 (en) * 1995-05-02 2001-12-13 Albert Nazareth Diagnostic detection device and method
US6194221B1 (en) * 1996-11-19 2001-02-27 Wyntek Diagnostics, Inc. Hybrid one-step immunochromatographic device and method of use
US6787366B1 (en) * 1996-12-11 2004-09-07 The United States Of America As Represented By The Secretary Of The Army Microspot test kit and method for chemical testing
TW200639190A (en) * 2005-02-04 2006-11-16 Showa Denko Kk Packing material for ion chromatography
EP2352028A4 (en) * 2008-11-28 2012-05-02 Konica Minolta Med & Graphic IMMUNOCHROMATOGRAPHY MEDIUM AND IMMUNOCHROMATOGRAPHY PROCEDURE
CA2789256A1 (en) * 2010-02-26 2011-09-01 Matthew R. Linford Method for manufacturing thin layer chromatography plates
US9057700B2 (en) * 2010-07-08 2015-06-16 Daicel Corporation Separation/detection column and kit thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149393A (en) * 1977-05-31 1978-12-26 Merck Patent Gmbh Coated support material for thin layer chromatography with concentration zone
JPH0363567A (ja) * 1989-07-31 1991-03-19 Shimadzu Corp クロマトグラフの転写方法
JPH0493336A (ja) 1990-08-09 1992-03-26 Hitachi Chem Co Ltd 多孔質体の製造方法
JP3140138B2 (ja) 1992-02-25 2001-03-05 ダイセル化学工業株式会社 薄層クロマトグラム
JP3317749B2 (ja) 1993-01-18 2002-08-26 直弘 曽我 無機系多孔質カラム
JP3397255B2 (ja) 1993-07-30 2003-04-14 直弘 曽我 無機系多孔質体の製造方法
WO2011149041A1 (ja) * 2010-05-27 2011-12-01 ダイセル化学工業株式会社 薄層クロマトグラフィーによる試料の検出方法、薄層クロマトグラフィープレート、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811296A4

Also Published As

Publication number Publication date
US9726650B2 (en) 2017-08-08
JPWO2013115350A1 (ja) 2015-05-11
US20140374333A1 (en) 2014-12-25
EP2811296A1 (en) 2014-12-10
EP2811296B1 (en) 2022-03-30
EP2811296A4 (en) 2015-10-14
CN104081199B (zh) 2016-05-11
JP6118271B2 (ja) 2017-04-19
CN104081199A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5941405B2 (ja) 薄層クロマトグラフィーによる試料の検出方法、薄層クロマトグラフィープレート、及びその製造方法
Namera et al. Monolith as a new sample preparation material: recent devices and applications
JP2011510280A5 (ja)
JP6118271B2 (ja) クロマトグラフ媒体
EP2592414B1 (en) Separation/detection column and kit thereof
JP6118269B2 (ja) クロマトグラフ媒体
JP6025734B2 (ja) 薄層クロマトグラフィープレート
JP6043718B2 (ja) スポット検出用セット、スポット検出方法、及び被転写シート
Gibson et al. Reversed phase capillary HPLC using polymer‐entrapped C18 particles
JP2012008061A (ja) 液体クロマトグラフ用分離カラム、及び液体クロマトグラフ
Chirica Novel monolithic columns for microscale liquid chromatography and capillary electrochromatography

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380007653.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375677

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013556510

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013744353

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE