WO2013114524A1 - 分光測定装置及び画像部分抽出装置 - Google Patents
分光測定装置及び画像部分抽出装置 Download PDFInfo
- Publication number
- WO2013114524A1 WO2013114524A1 PCT/JP2012/051945 JP2012051945W WO2013114524A1 WO 2013114524 A1 WO2013114524 A1 WO 2013114524A1 JP 2012051945 W JP2012051945 W JP 2012051945W WO 2013114524 A1 WO2013114524 A1 WO 2013114524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- image
- dimensionally
- measurement
- wavelength
- Prior art date
Links
- 238000000605 extraction Methods 0.000 title claims description 13
- 238000005259 measurement Methods 0.000 claims abstract description 67
- 230000003595 spectral effect Effects 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 abstract description 16
- 239000013307 optical fiber Substances 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0218—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/502—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J2003/1204—Grating and filter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
- G01J2003/2826—Multispectral imaging, e.g. filter imaging
Definitions
- the present invention relates to a spectroscopic measurement device and an image partial extraction device used for the spectroscopic measurement device.
- FIG. 3 is a configuration diagram of an optical system in the spectroscopic measurement apparatus described in Patent Document 1.
- a measurement object 32 is placed on a movable table 31 movable in the X-axis direction, and a one-dimensional measurement on the surface of the measurement object 32 is performed from a rod-shaped light source 33 arranged parallel to the surface of the measurement object 32.
- the region A (line region extending in the Y-axis direction) is irradiated with light.
- the light reflected by the surface of the measurement object 32 is condensed by the lens 34 onto the surface of the slit 35 having a shorter slit disposed in parallel with the measurement region A.
- the light constituting the one-dimensional region image that has passed through the slit 35 is projected onto the grating surface of the concave diffraction grating 36 disposed above, and is wavelength-dispersed in the direction perpendicular to the one-dimensional region image by the concave diffraction grating 36. As a result, a two-dimensional spectral image is formed.
- the light constituting the two-dimensional spectral image is reflected by the concave reflecting mirror 37 and formed on the measurement surface of the photodetector 38.
- a large number of minute light receiving elements are two-dimensionally arranged on the measurement surface of the photodetector 38, and in one direction ( ⁇ -axis direction) on the one-dimensional measurement region A in the Y direction of the object 32 to be measured.
- ⁇ -axis direction In the direction orthogonal to the ⁇ axis ( ⁇ axis direction), spectrum (spectral intensity) information of each minute region in the one-dimensional measurement region A is obtained.
- the one-dimensional measurement region A Since the spectral intensity distribution of the one-dimensional measurement region A is obtained in this way, the one-dimensional measurement region is repeatedly repeated while sequentially moving the movable unit 31 and the optical unit including the light source 33 and the like sequentially in predetermined steps in the X-axis direction. By obtaining the spectral image, it is possible to obtain the spectral intensity distribution of the two-dimensional region of the object 32 to be measured.
- the spectroscopic measurement device described in Patent Document 2 there is a device that measures the wavelength distribution of transmitted light or reflected light at a plurality of measurement points by using a high-speed spectroscope prepared for the number of measurement points.
- the spectroscope here is an optical unit having a function of wavelength-dispersing incident light and a function of detecting each wavelength-dispersed light, and a high-speed spectrometer is wavelength-dispersed. It is a spectroscope that detects light of each wavelength at once by a detector having a line sensor configuration.
- a moving mechanism for sequentially moving the moving base 31 and the optical unit is necessary. If the distance of this relative movement is long, the size of the moving mechanism increases accordingly, and the spectroscopic measurement apparatus becomes large. Moreover, in addition to the time required for the spectral intensity measurement itself, a time for movement is required, but the time becomes relatively long, and the measurement time is reduced. Furthermore, there are problems such that the reproducibility of measurement depends on the accuracy of alignment, and the movable part in the moving mechanism may be damaged.
- the spectroscopic measurement apparatus of Patent Document 2 uses different spectroscopes for each measurement point, so that the apparatus becomes expensive and there is a problem that the difference in characteristics of the individual spectroscopes affects the measurement.
- the present invention has been made to solve the above-mentioned problems, and its main purpose is to be able to measure the spectral intensity distribution in a predetermined region of the object to be measured without providing a moving mechanism, and to be inexpensive and It is an object of the present invention to provide a spectroscopic measurement apparatus that hardly causes variations in measurement performance at each measurement point.
- the next object is to provide an image extraction device used for the above spectroscopic measurement device.
- the spectroscopic measurement device which has been made to solve the above problems,
- An imaging optical system that images light from the object to be measured on a predetermined imaging plane;
- a plurality of optical waveguides whose input ends are arranged at different positions on the imaging plane and whose output ends are arranged one-dimensionally;
- a wavelength dispersion element that wavelength-disperses a one-dimensional region image formed by passing through the optical waveguide in a direction perpendicular to the one-dimensional region;
- a photodetector that detects a two-dimensional spectral image formed by the wavelength dispersive element with a plurality of light receiving elements arranged two-dimensionally; It is characterized by having.
- one-dimensional is preferably a straight line, but may have some curvature.
- the input ends of the plurality of optical waveguides may be arranged one-dimensionally or two-dimensionally on the image plane.
- the position of each input end of the plurality of optical waveguides arranged on the imaging plane corresponds to each measurement point on the object to be measured.
- Light from each measurement point input from each input end of the optical waveguide is emitted from an output end arranged in a one-dimensional manner.
- all the light from each measurement point in the one-dimensional area or two-dimensional area of the object to be measured becomes one-dimensionally arranged outgoing light, which is wavelength-dispersed in a direction perpendicular to the outgoing light array by the wavelength dispersion element.
- a two-dimensional spectroscopic image is formed.
- the subsequent photodetector has position information obtained by one-dimensionalizing the one-dimensional area or two-dimensional area of the object to be measured in one direction, and is perpendicular to the direction related to the position information.
- a spectral intensity distribution in a one-dimensional / two-dimensional region of the measured object having spectral information at each measurement point on the measured object in the direction can be obtained by one measurement.
- the wavelength dispersion element and the photodetector of the spectrometer according to the present invention are not separated for each measurement point, that is, since the spectrometer having a wavelength dispersion element and a photodetector is a single spectrometer, It can be manufactured at low cost, and variation in measurement performance at each measurement point is unlikely to occur.
- the image partial extraction device for use in the spectroscopic measurement device is as follows.
- a wavelength dispersion element that wavelength-disperses light constituting a one-dimensional area image in a direction perpendicular to the one-dimensional area, and a two-dimensional spectral image formed by the wavelength dispersion element are two-dimensionally arranged.
- An imaging optical system that images light from the object to be measured on a predetermined imaging plane;
- a plurality of optical waveguides whose input ends are arranged at different positions on the imaging plane and whose output ends are arranged one-dimensionally; It is characterized by providing.
- the spectroscopic measurement device connects a one-dimensional or two-dimensional region on the imaging surface of the object to be measured and a one-dimensional array that is an output end to the wavelength dispersion element by a plurality of optical waveguides. Without moving the relative position between the object to be measured and the detection end, the spectral intensity distribution in the one-dimensional or two-dimensional region of the object to be measured can be acquired by one measurement. For this reason, the measurement time is shortened, measurement with high reproducibility can be performed, and since there is no movable part, it is difficult to break and can be used for a long time. In addition, since the wavelength dispersion element and the photodetector are not separated for each measurement point, the apparatus can be manufactured at low cost, and variations in measurement performance for each measurement point hardly occur.
- the schematic block diagram of the colorimeter which is one Example of the spectrometer which concerns on this invention.
- a colorimeter which is an embodiment of the spectroscopic measurement apparatus according to the present invention will be described with reference to FIG.
- the color meter of FIG. 1 is for inspecting color unevenness and luminance unevenness of an inspection object such as a display.
- There are two methods for inspecting color unevenness and brightness unevenness namely, a stimulus value direct reading method and a spectral colorimetric method, and the colorimeter of this embodiment uses the spectral colorimetric method.
- the colorimeter shown in FIG. 1 is roughly divided into four parts: an image extraction system, a spectral detection system, and a control / data processing system.
- the image extraction system includes an image capturing lens 1, a fiber box 2, a polka dot beam splitter 3, and a finder camera 4.
- the spectroscopic detection system includes an incident side lens 5, a phase type volume holographic grating (VPHG) 6, an output side lens 7, and a photodetector 8.
- the control / data processing system includes a signal processing unit 9, a camera controller 10, a personal computer (PC) 11, and a display unit 12.
- the image capturing lens 1 is used to form a two-dimensional area image of the display D, which is a measurement object, on the input side end face 20 of the fiber box 2. That is, the image capturing lens 1 and the fiber box 2 are arranged so that the image formation surface of the image capturing lens 1 coincides with the input side end surface 20 of the fiber box 2.
- the paper surface of FIG. 1 is parallel to the xy plane, and the direction perpendicular to the paper surface is the z-axis.
- the input side end face 20 and the output side end face 21 of the fiber box 2 are assumed to be parallel to the yz plane.
- the fiber box 2 contains 100 optical fibers 22.
- the input ends 23 (23 1 ,..., 23 100 in FIG. 2A) of these optical fibers 22 are 10 ⁇ 10 on the input side end face 20 of the fiber box 2 as shown in FIG.
- the two-dimensional area image of the display D input from each of the input ends 23 is spectrally separated and detected by the subsequent spectral detection system.
- the position of the input end 23 of the optical fiber 22 is set at the measurement point on the display D. Will respond.
- the input terminal 23 1, ..., P 1 the measurement point on the display D which corresponds to 23 100, ... to as P 100.
- the arrangement of the input terminals 23 does not have to be regular as shown in FIG. 2 (a).
- the input terminals 23 are irregularly arranged such that they are densely arranged near the center and sparsely arranged in the peripheral part. May be.
- the output side end face 21 of the fiber box 2 has 100 output ends 24 (24 1 ,..., 24 100 in FIG. 2B) of the optical fiber 22 as shown in FIG. It is one-dimensionally aligned in the axial direction. That is, the input terminal 23 1 on the input side end surface 20, ..., the two-dimensional area image of the display D which is input from the 23 100 is a one-dimensional reduction in the fiber box 2, the output side end face of the 21 output terminals 24 1 , ..., 24 100, and is emitted as one-dimensional area image arranged in a direction parallel to the z-axis. Therefore, the one-dimensional area image is assumed to have the positional information of the measuring point P 100 from the measurement point P 1 in the z-axis direction.
- the light passing through the image capturing lens 1 is separated into two directions by the polka dot beam splitter 3 and the other connection different from the fiber box 2 side.
- a two-dimensional area image of the display D may be captured by the finder camera 4.
- the incident side lens 5 is for making light (one-dimensional region image) irradiated from each output end 24 of the output side end face 21 of the fiber box 2 enter the VPHG 6 in parallel with the x-axis direction.
- the parallel light constituting the one-dimensional region image is incident on the VPHG 6 at a predetermined angle.
- the VPHG 6 used in this embodiment is arranged so that the one-dimensional region image is wavelength-dispersed in a direction (one direction parallel to the xy plane, hereinafter referred to as “ ⁇ -axis direction”) perpendicular to the extending direction (z-axis direction).
- ⁇ -axis direction one direction parallel to the xy plane
- z-axis direction extending direction
- the light constituting the one-dimensional region image incident on the VPHG 6 is wavelength-dispersed while maintaining the position information while passing through the VPHG 6, has the position information in the z-axis direction, and has the spectral information in the ⁇ -axis direction. It is emitted as a two-dimensional spectral image (FIG. 2 (c)).
- the light constituting the two-dimensional spectral image is imaged on the detection surface of the photodetector 8 by the emission side lens 7 and
- Control / Data processing system The signal output from each light receiving element of the photodetector 8 is sent to the PC 11 after undergoing predetermined signal processing such as digitization and amplification in the signal processing unit 9.
- a dedicated control / data processing program is installed in the PC 11, and a two-dimensional spectral intensity distribution is created based on the output from the photodetector 8, and tristimulus values, chromaticity coordinates, Various color index values such as a color difference are calculated based on a calculation method defined in JIS. The result is shown on the screen of the display unit 12.
- the PC 11 can send a predetermined control signal to the camera controller 10 to cause the finder camera 4 to take a picture through the camera controller 10 and acquire the shot image.
- the PC 11 displays the positional relationship between the image data of the two-dimensional area image of the display D taken by the finder camera 4 and the input end 23 of the optical fiber 22 on the input side end face 20 stored in advance in the storage unit or the like. 12, the user can confirm the position of the measurement point P on the display D. Further, when the user points to one of the measurement points P with a pointing device or the like, the spectrum at the measurement point can be displayed on the display unit 12.
- the spectroscopic measurement apparatus can be appropriately changed within the scope of the gist of the present invention.
- a transmission type diffraction grating is used as the wavelength dispersion element, but a reflection type may be used.
- the arrangement and number of optical fibers can be changed as needed.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
被測定物からの光を所定の結像面に結像する結像光学系と、
入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
前記光導波管を通過することにより形成される一次元領域像を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、
前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、
を有することを特徴とする。
一次元領域像を構成する光を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、を備える分光測定装置に用いる画像部分抽出装置において、
被測定物からの光を所定の結像面に結像する結像光学系と、
入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
を備えることを特徴とする。
画像取り込みレンズ1は、被測定物であるディスプレイDの二次元領域像を、ファイバボックス2の入力側端面20に結像するためのものである。すなわち、画像取り込みレンズ1とファイバボックス2は、画像取り込みレンズ1の結像面がファイバボックス2の入力側端面20に一致するように配置されている。
なお、以下では説明の簡単化のため、図1の紙面がxy平面に平行であるとし、紙面に垂直な方向をz軸とする。また、ファイバボックス2の入力側端面20及び出力側端面21はyz平面に平行であるとする。
なお、入力端23の配置は、図2(a)のように規則的である必要はなく、例えば中央付近で密に配置され、周辺部分で疎に配置されるような不規則な配置であっても良い。
入射側レンズ5は、ファイバボックス2の出力側端面21の各出力端24から照射される光(一次元領域像)をx軸方向に平行にしてVPHG6に入射するためのものである。
光検出器8の各受光素子から出力された信号は、信号処理部9においてデジタル化や増幅等の所定の信号処理を経た後、PC11に送られる。PC11には専用の制御/データ処理プログラムがインストールされており、光検出器8からの出力に基づいて二次元分光強度分布を作成し、この二次元分光強度分布から三刺激値、色度座標、色差等の各種色彩指標値を、JISに規定された算出方法に基づいて算出する。また、その結果を表示部12の画面上に示す。
2…ファイバボックス
3…ポルカドットビームスプリッタ
4…ファインダ用カメラ
5…入射側レンズ
6…VPHG
7…出射側レンズ
8…光検出器
9…信号処理部
10…カメラコントローラ
11…PC
12…表示部
20…入力側端面
21…出力側端面
22…光ファイバ
23、231、23100…入力端
24、241、24100…出力端
31…移動台
32…被測定物
33…光源
34…レンズ
35…スリット
36…凹面回折格子
37…凹面反射鏡
38…光検出器
Claims (4)
- 被測定物からの光を所定の結像面に結像する結像光学系と、
入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
前記光導波管を通過することにより形成される一次元領域像を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、
前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、
を有することを特徴とする分光測定装置。 - 前記入力端が、前記結像面上に二次元的に配置されていることを特徴とする請求項1に記載の分光測定装置。
- 一次元領域像を構成する光を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、を備える分光測定装置に用いる画像部分抽出装置において、
被測定物からの光を所定の結像面に結像する結像光学系と、
入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
を備えることを特徴とする画像部分抽出装置。 - 前記入力端が、前記結像面上に二次元的に配置されていることを特徴とする請求項3に記載の画像部分抽出装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013556067A JP5917572B2 (ja) | 2012-01-30 | 2012-01-30 | 分光測定装置及び画像部分抽出装置 |
PCT/JP2012/051945 WO2013114524A1 (ja) | 2012-01-30 | 2012-01-30 | 分光測定装置及び画像部分抽出装置 |
US14/375,192 US20150022810A1 (en) | 2012-01-30 | 2012-01-30 | Spectrophotometer and image partial extraction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/051945 WO2013114524A1 (ja) | 2012-01-30 | 2012-01-30 | 分光測定装置及び画像部分抽出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013114524A1 true WO2013114524A1 (ja) | 2013-08-08 |
Family
ID=48904610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051945 WO2013114524A1 (ja) | 2012-01-30 | 2012-01-30 | 分光測定装置及び画像部分抽出装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150022810A1 (ja) |
JP (1) | JP5917572B2 (ja) |
WO (1) | WO2013114524A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055480A (ja) * | 2013-09-10 | 2015-03-23 | 株式会社島津製作所 | 分光測定装置 |
WO2024079819A1 (ja) * | 2022-10-12 | 2024-04-18 | 日本電信電話株式会社 | 光モニタデバイス及び光強度測定方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9777234B1 (en) * | 2013-06-27 | 2017-10-03 | The United States Of America As Represented By The Secretary Of The Navy | High density turbine and diesel fuels from tricyclic sesquiterpenes |
JP6285597B1 (ja) * | 2017-06-05 | 2018-02-28 | 大塚電子株式会社 | 光学測定装置および光学測定方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431720A (ja) * | 1990-05-28 | 1992-02-03 | Res Dev Corp Of Japan | 2次元物体の分光装置 |
JPH09105673A (ja) * | 1995-10-11 | 1997-04-22 | Yokogawa Electric Corp | 分光装置 |
JP2006162509A (ja) * | 2004-12-09 | 2006-06-22 | National Institutes Of Natural Sciences | 分光器 |
JP2010151801A (ja) * | 2008-11-18 | 2010-07-08 | St Japan Inc | ラマンイメージング装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0253004A (ja) * | 1988-08-18 | 1990-02-22 | Toshiba Corp | 撮像表示装置 |
US6717668B2 (en) * | 2000-03-07 | 2004-04-06 | Chemimage Corporation | Simultaneous imaging and spectroscopy apparatus |
US7315371B2 (en) * | 2004-01-23 | 2008-01-01 | P&P Optica Inc. | Multi-channel spectrum analyzer |
WO2006058187A2 (en) * | 2004-11-23 | 2006-06-01 | Robert Eric Betzig | Optical lattice microscopy |
US8154732B2 (en) * | 2007-04-27 | 2012-04-10 | Bodkin Design And Engineering, Llc | Multiband spatial heterodyne spectrometer and associated methods |
US7595873B1 (en) * | 2008-02-11 | 2009-09-29 | Thermo Electron Scientific Instruments Llc | Rapid spatial averaging over an extended sample in a Raman spectrometer |
-
2012
- 2012-01-30 WO PCT/JP2012/051945 patent/WO2013114524A1/ja active Application Filing
- 2012-01-30 US US14/375,192 patent/US20150022810A1/en not_active Abandoned
- 2012-01-30 JP JP2013556067A patent/JP5917572B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431720A (ja) * | 1990-05-28 | 1992-02-03 | Res Dev Corp Of Japan | 2次元物体の分光装置 |
JPH09105673A (ja) * | 1995-10-11 | 1997-04-22 | Yokogawa Electric Corp | 分光装置 |
JP2006162509A (ja) * | 2004-12-09 | 2006-06-22 | National Institutes Of Natural Sciences | 分光器 |
JP2010151801A (ja) * | 2008-11-18 | 2010-07-08 | St Japan Inc | ラマンイメージング装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055480A (ja) * | 2013-09-10 | 2015-03-23 | 株式会社島津製作所 | 分光測定装置 |
WO2024079819A1 (ja) * | 2022-10-12 | 2024-04-18 | 日本電信電話株式会社 | 光モニタデバイス及び光強度測定方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013114524A1 (ja) | 2015-05-11 |
JP5917572B2 (ja) | 2016-05-18 |
US20150022810A1 (en) | 2015-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6676398B2 (ja) | ディスプレイ検査のための測色システム | |
JP6371774B2 (ja) | 携帯型分光器 | |
US9076363B2 (en) | Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution | |
US20050274913A1 (en) | Object data input apparatus and object reconstruction apparatus | |
TWI245114B (en) | Apparatus for measuring imaging spectrograph | |
CA2973120A1 (en) | Integrated fourier transform optical spectrometer | |
KR101078135B1 (ko) | 광원 스펙트럼 분석용 분광기의 전 영역 교정 장치 및 그 장치에서 정보 획득 방법 | |
US6208413B1 (en) | Hadamard spectrometer | |
JP5917572B2 (ja) | 分光測定装置及び画像部分抽出装置 | |
KR102229048B1 (ko) | 두께 측정 장치 및 두께 측정 방법 | |
US9194798B2 (en) | Imaging based refractometer for hyperspectral refractive index detection | |
JP2010151801A (ja) | ラマンイメージング装置 | |
JP2012104586A (ja) | 半導体計測装置 | |
US20100014076A1 (en) | Spectrometric apparatus for measuring shifted spectral distributions | |
JP2004502160A (ja) | 放出物を実質的に同時に測定するための装置及び方法 | |
CN217236980U (zh) | 一种基于光纤式的多光谱系统结构 | |
JP6260157B2 (ja) | 分光測定装置 | |
JP2013050462A (ja) | 顕微鏡用分光分析装置及び顕微鏡用分光分析装置の分光分析方法 | |
WO2022111592A1 (zh) | 色度仪 | |
JP2010078418A (ja) | 分光測定装置、校正装置、分光測定方法、および校正方法 | |
JP2015055480A5 (ja) | ||
JPH11101692A (ja) | 分光測色装置 | |
JP2005504314A (ja) | 測定装置および測定方法 | |
JPS6291833A (ja) | 光源の2次元配光分布測定装置 | |
JP7276475B2 (ja) | スペクトル測定装置、およびスペクトル測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867294 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013556067 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14375192 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867294 Country of ref document: EP Kind code of ref document: A1 |