WO2013114524A1 - 分光測定装置及び画像部分抽出装置 - Google Patents

分光測定装置及び画像部分抽出装置 Download PDF

Info

Publication number
WO2013114524A1
WO2013114524A1 PCT/JP2012/051945 JP2012051945W WO2013114524A1 WO 2013114524 A1 WO2013114524 A1 WO 2013114524A1 JP 2012051945 W JP2012051945 W JP 2012051945W WO 2013114524 A1 WO2013114524 A1 WO 2013114524A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
image
dimensionally
measurement
wavelength
Prior art date
Application number
PCT/JP2012/051945
Other languages
English (en)
French (fr)
Inventor
小林 智光
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2012/051945 priority Critical patent/WO2013114524A1/ja
Priority to JP2013556067A priority patent/JP5917572B2/ja
Priority to US14/375,192 priority patent/US20150022810A1/en
Publication of WO2013114524A1 publication Critical patent/WO2013114524A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1204Grating and filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Definitions

  • the present invention relates to a spectroscopic measurement device and an image partial extraction device used for the spectroscopic measurement device.
  • FIG. 3 is a configuration diagram of an optical system in the spectroscopic measurement apparatus described in Patent Document 1.
  • a measurement object 32 is placed on a movable table 31 movable in the X-axis direction, and a one-dimensional measurement on the surface of the measurement object 32 is performed from a rod-shaped light source 33 arranged parallel to the surface of the measurement object 32.
  • the region A (line region extending in the Y-axis direction) is irradiated with light.
  • the light reflected by the surface of the measurement object 32 is condensed by the lens 34 onto the surface of the slit 35 having a shorter slit disposed in parallel with the measurement region A.
  • the light constituting the one-dimensional region image that has passed through the slit 35 is projected onto the grating surface of the concave diffraction grating 36 disposed above, and is wavelength-dispersed in the direction perpendicular to the one-dimensional region image by the concave diffraction grating 36. As a result, a two-dimensional spectral image is formed.
  • the light constituting the two-dimensional spectral image is reflected by the concave reflecting mirror 37 and formed on the measurement surface of the photodetector 38.
  • a large number of minute light receiving elements are two-dimensionally arranged on the measurement surface of the photodetector 38, and in one direction ( ⁇ -axis direction) on the one-dimensional measurement region A in the Y direction of the object 32 to be measured.
  • ⁇ -axis direction In the direction orthogonal to the ⁇ axis ( ⁇ axis direction), spectrum (spectral intensity) information of each minute region in the one-dimensional measurement region A is obtained.
  • the one-dimensional measurement region A Since the spectral intensity distribution of the one-dimensional measurement region A is obtained in this way, the one-dimensional measurement region is repeatedly repeated while sequentially moving the movable unit 31 and the optical unit including the light source 33 and the like sequentially in predetermined steps in the X-axis direction. By obtaining the spectral image, it is possible to obtain the spectral intensity distribution of the two-dimensional region of the object 32 to be measured.
  • the spectroscopic measurement device described in Patent Document 2 there is a device that measures the wavelength distribution of transmitted light or reflected light at a plurality of measurement points by using a high-speed spectroscope prepared for the number of measurement points.
  • the spectroscope here is an optical unit having a function of wavelength-dispersing incident light and a function of detecting each wavelength-dispersed light, and a high-speed spectrometer is wavelength-dispersed. It is a spectroscope that detects light of each wavelength at once by a detector having a line sensor configuration.
  • a moving mechanism for sequentially moving the moving base 31 and the optical unit is necessary. If the distance of this relative movement is long, the size of the moving mechanism increases accordingly, and the spectroscopic measurement apparatus becomes large. Moreover, in addition to the time required for the spectral intensity measurement itself, a time for movement is required, but the time becomes relatively long, and the measurement time is reduced. Furthermore, there are problems such that the reproducibility of measurement depends on the accuracy of alignment, and the movable part in the moving mechanism may be damaged.
  • the spectroscopic measurement apparatus of Patent Document 2 uses different spectroscopes for each measurement point, so that the apparatus becomes expensive and there is a problem that the difference in characteristics of the individual spectroscopes affects the measurement.
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is to be able to measure the spectral intensity distribution in a predetermined region of the object to be measured without providing a moving mechanism, and to be inexpensive and It is an object of the present invention to provide a spectroscopic measurement apparatus that hardly causes variations in measurement performance at each measurement point.
  • the next object is to provide an image extraction device used for the above spectroscopic measurement device.
  • the spectroscopic measurement device which has been made to solve the above problems,
  • An imaging optical system that images light from the object to be measured on a predetermined imaging plane;
  • a plurality of optical waveguides whose input ends are arranged at different positions on the imaging plane and whose output ends are arranged one-dimensionally;
  • a wavelength dispersion element that wavelength-disperses a one-dimensional region image formed by passing through the optical waveguide in a direction perpendicular to the one-dimensional region;
  • a photodetector that detects a two-dimensional spectral image formed by the wavelength dispersive element with a plurality of light receiving elements arranged two-dimensionally; It is characterized by having.
  • one-dimensional is preferably a straight line, but may have some curvature.
  • the input ends of the plurality of optical waveguides may be arranged one-dimensionally or two-dimensionally on the image plane.
  • the position of each input end of the plurality of optical waveguides arranged on the imaging plane corresponds to each measurement point on the object to be measured.
  • Light from each measurement point input from each input end of the optical waveguide is emitted from an output end arranged in a one-dimensional manner.
  • all the light from each measurement point in the one-dimensional area or two-dimensional area of the object to be measured becomes one-dimensionally arranged outgoing light, which is wavelength-dispersed in a direction perpendicular to the outgoing light array by the wavelength dispersion element.
  • a two-dimensional spectroscopic image is formed.
  • the subsequent photodetector has position information obtained by one-dimensionalizing the one-dimensional area or two-dimensional area of the object to be measured in one direction, and is perpendicular to the direction related to the position information.
  • a spectral intensity distribution in a one-dimensional / two-dimensional region of the measured object having spectral information at each measurement point on the measured object in the direction can be obtained by one measurement.
  • the wavelength dispersion element and the photodetector of the spectrometer according to the present invention are not separated for each measurement point, that is, since the spectrometer having a wavelength dispersion element and a photodetector is a single spectrometer, It can be manufactured at low cost, and variation in measurement performance at each measurement point is unlikely to occur.
  • the image partial extraction device for use in the spectroscopic measurement device is as follows.
  • a wavelength dispersion element that wavelength-disperses light constituting a one-dimensional area image in a direction perpendicular to the one-dimensional area, and a two-dimensional spectral image formed by the wavelength dispersion element are two-dimensionally arranged.
  • An imaging optical system that images light from the object to be measured on a predetermined imaging plane;
  • a plurality of optical waveguides whose input ends are arranged at different positions on the imaging plane and whose output ends are arranged one-dimensionally; It is characterized by providing.
  • the spectroscopic measurement device connects a one-dimensional or two-dimensional region on the imaging surface of the object to be measured and a one-dimensional array that is an output end to the wavelength dispersion element by a plurality of optical waveguides. Without moving the relative position between the object to be measured and the detection end, the spectral intensity distribution in the one-dimensional or two-dimensional region of the object to be measured can be acquired by one measurement. For this reason, the measurement time is shortened, measurement with high reproducibility can be performed, and since there is no movable part, it is difficult to break and can be used for a long time. In addition, since the wavelength dispersion element and the photodetector are not separated for each measurement point, the apparatus can be manufactured at low cost, and variations in measurement performance for each measurement point hardly occur.
  • the schematic block diagram of the colorimeter which is one Example of the spectrometer which concerns on this invention.
  • a colorimeter which is an embodiment of the spectroscopic measurement apparatus according to the present invention will be described with reference to FIG.
  • the color meter of FIG. 1 is for inspecting color unevenness and luminance unevenness of an inspection object such as a display.
  • There are two methods for inspecting color unevenness and brightness unevenness namely, a stimulus value direct reading method and a spectral colorimetric method, and the colorimeter of this embodiment uses the spectral colorimetric method.
  • the colorimeter shown in FIG. 1 is roughly divided into four parts: an image extraction system, a spectral detection system, and a control / data processing system.
  • the image extraction system includes an image capturing lens 1, a fiber box 2, a polka dot beam splitter 3, and a finder camera 4.
  • the spectroscopic detection system includes an incident side lens 5, a phase type volume holographic grating (VPHG) 6, an output side lens 7, and a photodetector 8.
  • the control / data processing system includes a signal processing unit 9, a camera controller 10, a personal computer (PC) 11, and a display unit 12.
  • the image capturing lens 1 is used to form a two-dimensional area image of the display D, which is a measurement object, on the input side end face 20 of the fiber box 2. That is, the image capturing lens 1 and the fiber box 2 are arranged so that the image formation surface of the image capturing lens 1 coincides with the input side end surface 20 of the fiber box 2.
  • the paper surface of FIG. 1 is parallel to the xy plane, and the direction perpendicular to the paper surface is the z-axis.
  • the input side end face 20 and the output side end face 21 of the fiber box 2 are assumed to be parallel to the yz plane.
  • the fiber box 2 contains 100 optical fibers 22.
  • the input ends 23 (23 1 ,..., 23 100 in FIG. 2A) of these optical fibers 22 are 10 ⁇ 10 on the input side end face 20 of the fiber box 2 as shown in FIG.
  • the two-dimensional area image of the display D input from each of the input ends 23 is spectrally separated and detected by the subsequent spectral detection system.
  • the position of the input end 23 of the optical fiber 22 is set at the measurement point on the display D. Will respond.
  • the input terminal 23 1, ..., P 1 the measurement point on the display D which corresponds to 23 100, ... to as P 100.
  • the arrangement of the input terminals 23 does not have to be regular as shown in FIG. 2 (a).
  • the input terminals 23 are irregularly arranged such that they are densely arranged near the center and sparsely arranged in the peripheral part. May be.
  • the output side end face 21 of the fiber box 2 has 100 output ends 24 (24 1 ,..., 24 100 in FIG. 2B) of the optical fiber 22 as shown in FIG. It is one-dimensionally aligned in the axial direction. That is, the input terminal 23 1 on the input side end surface 20, ..., the two-dimensional area image of the display D which is input from the 23 100 is a one-dimensional reduction in the fiber box 2, the output side end face of the 21 output terminals 24 1 , ..., 24 100, and is emitted as one-dimensional area image arranged in a direction parallel to the z-axis. Therefore, the one-dimensional area image is assumed to have the positional information of the measuring point P 100 from the measurement point P 1 in the z-axis direction.
  • the light passing through the image capturing lens 1 is separated into two directions by the polka dot beam splitter 3 and the other connection different from the fiber box 2 side.
  • a two-dimensional area image of the display D may be captured by the finder camera 4.
  • the incident side lens 5 is for making light (one-dimensional region image) irradiated from each output end 24 of the output side end face 21 of the fiber box 2 enter the VPHG 6 in parallel with the x-axis direction.
  • the parallel light constituting the one-dimensional region image is incident on the VPHG 6 at a predetermined angle.
  • the VPHG 6 used in this embodiment is arranged so that the one-dimensional region image is wavelength-dispersed in a direction (one direction parallel to the xy plane, hereinafter referred to as “ ⁇ -axis direction”) perpendicular to the extending direction (z-axis direction).
  • ⁇ -axis direction one direction parallel to the xy plane
  • z-axis direction extending direction
  • the light constituting the one-dimensional region image incident on the VPHG 6 is wavelength-dispersed while maintaining the position information while passing through the VPHG 6, has the position information in the z-axis direction, and has the spectral information in the ⁇ -axis direction. It is emitted as a two-dimensional spectral image (FIG. 2 (c)).
  • the light constituting the two-dimensional spectral image is imaged on the detection surface of the photodetector 8 by the emission side lens 7 and
  • Control / Data processing system The signal output from each light receiving element of the photodetector 8 is sent to the PC 11 after undergoing predetermined signal processing such as digitization and amplification in the signal processing unit 9.
  • a dedicated control / data processing program is installed in the PC 11, and a two-dimensional spectral intensity distribution is created based on the output from the photodetector 8, and tristimulus values, chromaticity coordinates, Various color index values such as a color difference are calculated based on a calculation method defined in JIS. The result is shown on the screen of the display unit 12.
  • the PC 11 can send a predetermined control signal to the camera controller 10 to cause the finder camera 4 to take a picture through the camera controller 10 and acquire the shot image.
  • the PC 11 displays the positional relationship between the image data of the two-dimensional area image of the display D taken by the finder camera 4 and the input end 23 of the optical fiber 22 on the input side end face 20 stored in advance in the storage unit or the like. 12, the user can confirm the position of the measurement point P on the display D. Further, when the user points to one of the measurement points P with a pointing device or the like, the spectrum at the measurement point can be displayed on the display unit 12.
  • the spectroscopic measurement apparatus can be appropriately changed within the scope of the gist of the present invention.
  • a transmission type diffraction grating is used as the wavelength dispersion element, but a reflection type may be used.
  • the arrangement and number of optical fibers can be changed as needed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明に係る分光測定装置では、ファイバボックス2の出力側端面21が、光ファイバ22の出力端24、…、24100がz軸方向に一次元的に並んだものとなっている。すなわち、光ファイバ22の入力側端面20上の10×10の格子点上に配置された入力端23、…、23100から入力されるディスプレイDの二次元領域像は、ファイバボックス2内で一次元化され、出力側端面21上の出力端24、…、24100からz軸に平行な一次元領域像として出射される。この一次元領域像はz軸方向に測定点Pから測定点P100の位置情報を有するものとなる。

Description

分光測定装置及び画像部分抽出装置
 本発明は、分光測定装置及び該分光測定装置に用いる画像部分抽出装置に関する。
 被測定物上の二次元領域の分光強度分布を測定するための分光測定装置が従来より提案されている。図3は特許文献1に記載の分光測定装置における光学系の構成図である。
 X軸方向に移動可能な移動台31上に被測定物32が載置され、その被測定物32の面に平行に配設された棒状の光源33から被測定物32面上の一次元測定領域A(Y軸方向に延伸する線領域)に光を照射する。被測定物32の表面で反射された光は、レンズ34により、測定領域Aに並行に配設された、それよりも短いスリットを有するスリット35面に集光される。スリット35を通過した一次元領域像を構成する光は、上方に配置された凹面回折格子36の格子面に投影され、該凹面回折格子36によりその一次元領域像に直交する方向に波長分散されることにより二次元分光像を形成する。この二次元分光像を構成する光は、凹面反射鏡37で反射され、光検出器38の測定面上に結像される。光検出器38の測定面には多数の微小な受光素子が二次元的に配置されており、その一方の方向(α軸方向)には被測定物32のY方向の一次元測定領域A上の位置情報が、またα軸と直交する方向(β軸方向)にはその一次元測定領域A内の各微小領域のスペクトル(分光強度)情報が得られる。
 このようにして一次元測定領域Aの分光強度分布が得られるので、移動台31と光源33等から成る光学ユニットとをX軸方向に所定ステップでもって順次相対移動させながら、繰り返し一次元測定領域の分光像を得ることにより、被測定物32の二次元領域の分光強度分布を得ることができる。
 また、特許文献2に記載の分光測定装置のように、測定点数分用意された高速型分光器によって、複数の測定点における透過光又は反射光の波長分布を測定するものもある。なお、ここで言う分光器とは、入射された光を波長分散する機能と波長分散された各波長の光を検出する機能を備える光学ユニットであり、高速型分光器とは、波長分散された各波長の光をラインセンサ構成の検出器によって一挙に検出する分光器である。
特開平6-34525号公報 特開2010-044001号公報
 特許文献1の分光測定装置では、移動台31と光学ユニットとを順次相対移動させるための移動機構が必要である。この相対移動の距離が長ければ、移動機構のサイズもそれに応じて大きくなり、分光測定装置が大型化してしまう。また、分光強度測定自体に要する時間に加えて、移動のための時間が必要であるが、その時間が相対的に長くなり、測定時間を圧迫する。更に、測定の再現性が位置合わせの精度に依存する、移動機構内の可動部が損傷する可能性がある、等の問題もある。
 また、特許文献2の分光測定装置では、測定点毎に異なる分光器を用いているため、装置が高価になると共に、個々の分光器の特性の違いが測定に影響を与えるという問題がある。
 本発明は上記課題を解決するために成されたものであり、その主な目的は、移動機構を設けることなく被測定物の所定の領域の分光強度分布を測定することができると共に、安価且つ測定点毎の測定性能のばらつきが生じにくい分光測定装置を提供することである。
 また、次の目的は、上記分光測定装置に用いる画像抽出装置を提供することである。
 上記課題を解決するために成された本発明に係る分光測定装置は、
 被測定物からの光を所定の結像面に結像する結像光学系と、
 入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
 前記光導波管を通過することにより形成される一次元領域像を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、
 前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、
 を有することを特徴とする。
 なお、本発明において「一次元」とは直線であることが望ましいが、多少の曲率を有していても良い。
 また、複数の光導波管の入力端は、結像面上に一次元的に配置されていてもよいし、二次元的に配置されていてもよい。
 本発明に係る分光測定装置では、複数の光導波管の、結像面上に配置された各入力端の位置が、被測定物上の各測定点に対応する。光導波管の各入力端から入力された各測定点からの光は、それら光導波管の一次元的に配列された出力端から出射される。こうして、被測定物の一次元領域又は二次元領域の各測定点からの光は全て一次元的に配列された出射光となり、波長分散素子により出射光の配列に垂直な方向に波長分散されて二次元分光像を形成する。このような構成を用いることにより、後段の光検出器では、一方の方向に被測定物の一次元領域又は二次元領域を一次元化した位置情報を有し、該位置情報に関する方向に垂直な方向に被測定物上の各測定点におけるスペクトル情報を有する被測定物の一次元/二次元領域の分光強度分布を一度の測定で得ることができる。また、本発明に係る分光測定装置の波長分散素子及び光検出器はそれぞれ測定点毎に分かれていない、すなわち、波長分散素子と光検出器を備える分光器としては単一であるため、装置を安価に製造することができると共に、測定点毎の測定性能のばらつきが生じにくい。
 また、上記分光測定装置に用いるための本発明に係る画像部分抽出装置は、
 一次元領域像を構成する光を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、を備える分光測定装置に用いる画像部分抽出装置において、
 被測定物からの光を所定の結像面に結像する結像光学系と、
 入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
 を備えることを特徴とする。
 本発明に係る分光測定装置は、複数の光導波管により被測定物の結像面上の一次元又は二次元領域と波長分散素子への出力端である一次元配列を接続しているため、被測定物と検出端の相対位置を移動させることなく、被測定物の一次元又は二次元領域の分光強度分布を一度の測定で取得することができる。このため、測定時間が短縮化されるとともに、再現性の高い測定を行うことができ、かつ、可動部が存在しないため壊れにくく、長期に亘る使用が可能である。また、波長分散素子及び光検出器がそれぞれ測定点毎に分かれていないため、装置を安価に製造することができると共に、測定点毎の測定性能のばらつきが生じにくい。
本発明に係る分光測定装置の一実施例である色彩計の概略構成図。 本実施例の色彩計で使用するファイバボックスの入射側端面の平面図(a)、出射側端面の平面図(b)、及び波長分散された後の二次元分光像の模式図(c)。 分光測定装置の従来例の概略構成図。
 本発明に係る分光測定装置の一実施例である色彩計を、図1を参照して説明する。図1の色彩計は、ディスプレイ等の被検査物の色ムラや輝度ムラを検査するためのものである。この色ムラや輝度ムラの検査方法には刺激値直読方法と分光測色方法の2種類の方法があるが、本実施例の色彩計は分光測色方法を用いたものである。
 図1の色彩計は大別して、画像抽出系、分光検出系、制御/データ処理系の4つで構成される。画像抽出系は、画像取り込みレンズ1と、ファイバボックス2と、ポルカドットビームスプリッタ3と、ファインダ用カメラ4と、を含む。分光検出系は、入射側レンズ5と、位相型体積ホログラフィックグレーティング(VPHG)6と、出射側レンズ7と、光検出器8と、を含む。制御/データ処理系は、信号処理部9と、カメラコントローラ10と、パーソナルコンピュータ(PC)11と、表示部12と、を含む。
 以下、本実施例の色彩計の特徴的な構成である画像抽出系及び分光検出系について詳しく説明する。
[画像抽出系]
 画像取り込みレンズ1は、被測定物であるディスプレイDの二次元領域像を、ファイバボックス2の入力側端面20に結像するためのものである。すなわち、画像取り込みレンズ1とファイバボックス2は、画像取り込みレンズ1の結像面がファイバボックス2の入力側端面20に一致するように配置されている。
 なお、以下では説明の簡単化のため、図1の紙面がxy平面に平行であるとし、紙面に垂直な方向をz軸とする。また、ファイバボックス2の入力側端面20及び出力側端面21はyz平面に平行であるとする。
 ファイバボックス2は、100本の光ファイバ22を内蔵している。これらの光ファイバ22の入力端23(図2(a)中の23、…、23100)は、図2(a)に示すようにファイバボックス2の入力側端面20上に10×10の格子状に配置されており、入力端23の各々から入力されたディスプレイDの二次元領域像が後段の分光検出系により分光され、検出される。上記のように、ファイバボックス2の入力側端面20はディスプレイDの二次元領域像の結像面に配置されているため、光ファイバ22の入力端23の位置が、ディスプレイD上の測定点に対応することになる。以下、入力端23、…、23100に対応するディスプレイD上の測定点をP、…、P100と記載する。また、これらをまとめて測定点Pと記載する。
 なお、入力端23の配置は、図2(a)のように規則的である必要はなく、例えば中央付近で密に配置され、周辺部分で疎に配置されるような不規則な配置であっても良い。
 一方、ファイバボックス2の出力側端面21は、図2(b)に示すように、光ファイバ22の100個の出力端24(図2(b)中の24、…、24100)がz軸方向に一次元的に並んだものとなっている。すなわち、入力側端面20上の入力端23、…、23100から入力されたディスプレイDの二次元領域像は、ファイバボックス2内で一次元化され、出力側端面21上の出力端24、…、24100から、z軸に平行な方向に配列された一次元領域像として出射される。従って、この一次元領域像はz軸方向に測定点Pから測定点P100の位置情報を有するものとなる。
 なお、本発明に必須の構成ではないが、図1に示すように、画像取り込みレンズ1を通過する光をポルカドットビームスプリッタ3によって二方向に分離し、ファイバボックス2側と異なるもう一方の結像面にファインダ用カメラ4の撮影面を設けることにより、ディスプレイDの二次元領域像をファインダ用カメラ4で撮影するようにしても良い。これにより、後述する制御/データ処理系において、ディスプレイDの二次元領域像に対する入力端23の位置(すなわちディスプレイD上の測定点Pの位置)を確認することができる。
[分光検出系]
 入射側レンズ5は、ファイバボックス2の出力側端面21の各出力端24から照射される光(一次元領域像)をx軸方向に平行にしてVPHG6に入射するためのものである。
 一次元領域像を構成する平行光は、VPHG6に所定の角度で以て入射される。本実施例で用いるVPHG6は一次元領域像をその延伸方向(z軸方向)と直交する方向(xy平面に平行な一方向。以下「λ軸方向」とする)に波長分散するように配設されている。すなわちVPHG6に入射された一次元領域像を構成する光は、VPHG6を透過する途中で位置情報を保ったまま波長分散され、z軸方向に位置情報を有し、λ軸方向にスペクトル情報を有する二次元分光像として出射される(図2(c))。この二次元分光像を構成する光は出射側レンズ7によって光検出器8の検出面上で結像し、検出面上に二次元的に配置された複数の受光素子によって検出される。
 以上、本実施例の色彩計の特徴的な構成である画像抽出系及び分光検出系について説明したが、制御/データ処理系についても以下で簡単に説明する。
[制御/データ処理系]
 光検出器8の各受光素子から出力された信号は、信号処理部9においてデジタル化や増幅等の所定の信号処理を経た後、PC11に送られる。PC11には専用の制御/データ処理プログラムがインストールされており、光検出器8からの出力に基づいて二次元分光強度分布を作成し、この二次元分光強度分布から三刺激値、色度座標、色差等の各種色彩指標値を、JISに規定された算出方法に基づいて算出する。また、その結果を表示部12の画面上に示す。
 また、PC11は、カメラコントローラ10に所定の制御信号を送ることにより、カメラコントローラ10を介してファインダ用カメラ4に撮影を行わせ、その撮影画像を取得することができる。PC11は、ファインダ用カメラ4により撮影されたディスプレイDの二次元領域像の画像データと、記憶部等に予め記憶している入力側端面20における光ファイバ22の入力端23の位置関係を表示部12に示し、ユーザがディスプレイD上の測定点Pの位置を確認できるようにすることができる。また、ユーザが測定点Pの一つをポインティングデバイス等により指し示すと、その測定点におけるスペクトルを表示部12に表示するようにすることもできる。
 以上、本発明に係る分光測定装置の一実施例を示したが、本発明の趣旨の範囲内において適宜変更可能であることは明白である。例えば、上記実施例では波長分散素子として透過型の回折格子を用いたが、反射型のものを用いても良い。また、光ファイバの配置や本数も必要に応じて適宜変更することができる。
1…画像取り込みレンズ
2…ファイバボックス
3…ポルカドットビームスプリッタ
4…ファインダ用カメラ
5…入射側レンズ
6…VPHG
7…出射側レンズ
8…光検出器
9…信号処理部
10…カメラコントローラ
11…PC
12…表示部
20…入力側端面
21…出力側端面
22…光ファイバ
23、23、23100…入力端
24、24、24100…出力端
31…移動台
32…被測定物
33…光源
34…レンズ
35…スリット
36…凹面回折格子
37…凹面反射鏡
38…光検出器

Claims (4)

  1.  被測定物からの光を所定の結像面に結像する結像光学系と、
     入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
     前記光導波管を通過することにより形成される一次元領域像を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、
     前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、
     を有することを特徴とする分光測定装置。
  2.  前記入力端が、前記結像面上に二次元的に配置されていることを特徴とする請求項1に記載の分光測定装置。
  3.  一次元領域像を構成する光を、その一次元領域に垂直な方向に波長分散させる波長分散素子と、前記波長分散素子により形成される二次元分光像を、二次元的に配置された複数の受光素子によって検出する光検出器と、を備える分光測定装置に用いる画像部分抽出装置において、
     被測定物からの光を所定の結像面に結像する結像光学系と、
     入力端が前記結像面上の相異なる位置に配置され、出力端が一次元的に配列された複数の光導波管と、
     を備えることを特徴とする画像部分抽出装置。
  4.  前記入力端が、前記結像面上に二次元的に配置されていることを特徴とする請求項3に記載の画像部分抽出装置。
PCT/JP2012/051945 2012-01-30 2012-01-30 分光測定装置及び画像部分抽出装置 WO2013114524A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/051945 WO2013114524A1 (ja) 2012-01-30 2012-01-30 分光測定装置及び画像部分抽出装置
JP2013556067A JP5917572B2 (ja) 2012-01-30 2012-01-30 分光測定装置及び画像部分抽出装置
US14/375,192 US20150022810A1 (en) 2012-01-30 2012-01-30 Spectrophotometer and image partial extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051945 WO2013114524A1 (ja) 2012-01-30 2012-01-30 分光測定装置及び画像部分抽出装置

Publications (1)

Publication Number Publication Date
WO2013114524A1 true WO2013114524A1 (ja) 2013-08-08

Family

ID=48904610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051945 WO2013114524A1 (ja) 2012-01-30 2012-01-30 分光測定装置及び画像部分抽出装置

Country Status (3)

Country Link
US (1) US20150022810A1 (ja)
JP (1) JP5917572B2 (ja)
WO (1) WO2013114524A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055480A (ja) * 2013-09-10 2015-03-23 株式会社島津製作所 分光測定装置
WO2024079819A1 (ja) * 2022-10-12 2024-04-18 日本電信電話株式会社 光モニタデバイス及び光強度測定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777234B1 (en) * 2013-06-27 2017-10-03 The United States Of America As Represented By The Secretary Of The Navy High density turbine and diesel fuels from tricyclic sesquiterpenes
JP6285597B1 (ja) * 2017-06-05 2018-02-28 大塚電子株式会社 光学測定装置および光学測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431720A (ja) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan 2次元物体の分光装置
JPH09105673A (ja) * 1995-10-11 1997-04-22 Yokogawa Electric Corp 分光装置
JP2006162509A (ja) * 2004-12-09 2006-06-22 National Institutes Of Natural Sciences 分光器
JP2010151801A (ja) * 2008-11-18 2010-07-08 St Japan Inc ラマンイメージング装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253004A (ja) * 1988-08-18 1990-02-22 Toshiba Corp 撮像表示装置
US6717668B2 (en) * 2000-03-07 2004-04-06 Chemimage Corporation Simultaneous imaging and spectroscopy apparatus
US7315371B2 (en) * 2004-01-23 2008-01-01 P&P Optica Inc. Multi-channel spectrum analyzer
WO2006058187A2 (en) * 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
US8154732B2 (en) * 2007-04-27 2012-04-10 Bodkin Design And Engineering, Llc Multiband spatial heterodyne spectrometer and associated methods
US7595873B1 (en) * 2008-02-11 2009-09-29 Thermo Electron Scientific Instruments Llc Rapid spatial averaging over an extended sample in a Raman spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431720A (ja) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan 2次元物体の分光装置
JPH09105673A (ja) * 1995-10-11 1997-04-22 Yokogawa Electric Corp 分光装置
JP2006162509A (ja) * 2004-12-09 2006-06-22 National Institutes Of Natural Sciences 分光器
JP2010151801A (ja) * 2008-11-18 2010-07-08 St Japan Inc ラマンイメージング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055480A (ja) * 2013-09-10 2015-03-23 株式会社島津製作所 分光測定装置
WO2024079819A1 (ja) * 2022-10-12 2024-04-18 日本電信電話株式会社 光モニタデバイス及び光強度測定方法

Also Published As

Publication number Publication date
JPWO2013114524A1 (ja) 2015-05-11
US20150022810A1 (en) 2015-01-22
JP5917572B2 (ja) 2016-05-18

Similar Documents

Publication Publication Date Title
JP6676398B2 (ja) ディスプレイ検査のための測色システム
JP6371774B2 (ja) 携帯型分光器
US7189984B2 (en) Object data input apparatus and object reconstruction apparatus
US9076363B2 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
TWI245114B (en) Apparatus for measuring imaging spectrograph
CA2973120A1 (en) Integrated fourier transform optical spectrometer
KR101078135B1 (ko) 광원 스펙트럼 분석용 분광기의 전 영역 교정 장치 및 그 장치에서 정보 획득 방법
US6208413B1 (en) Hadamard spectrometer
JP5917572B2 (ja) 分光測定装置及び画像部分抽出装置
JP2010151801A (ja) ラマンイメージング装置
JP2012104586A (ja) 半導体計測装置
KR102229048B1 (ko) 두께 측정 장치 및 두께 측정 방법
US9194798B2 (en) Imaging based refractometer for hyperspectral refractive index detection
US20100014076A1 (en) Spectrometric apparatus for measuring shifted spectral distributions
JP2004502160A (ja) 放出物を実質的に同時に測定するための装置及び方法
CN217236980U (zh) 一种基于光纤式的多光谱系统结构
JP6260157B2 (ja) 分光測定装置
JP2013050462A (ja) 顕微鏡用分光分析装置及び顕微鏡用分光分析装置の分光分析方法
WO2022111592A1 (zh) 色度仪
JP2010078418A (ja) 分光測定装置、校正装置、分光測定方法、および校正方法
JP2015055480A5 (ja)
JPH11101692A (ja) 分光測色装置
JP2005504314A (ja) 測定装置および測定方法
KR102022836B1 (ko) 광 측정 장치, 시스템 및 방법
JPS6291833A (ja) 光源の2次元配光分布測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14375192

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12867294

Country of ref document: EP

Kind code of ref document: A1