WO2013114282A2 - Reducción de polisacáridos no almidones y alfa-galactósidos en harina de soya mediante fermentación en estado sólido usando bacterias celulolíticas aisladas de distintos ambientes. - Google Patents

Reducción de polisacáridos no almidones y alfa-galactósidos en harina de soya mediante fermentación en estado sólido usando bacterias celulolíticas aisladas de distintos ambientes. Download PDF

Info

Publication number
WO2013114282A2
WO2013114282A2 PCT/IB2013/050763 IB2013050763W WO2013114282A2 WO 2013114282 A2 WO2013114282 A2 WO 2013114282A2 IB 2013050763 W IB2013050763 W IB 2013050763W WO 2013114282 A2 WO2013114282 A2 WO 2013114282A2
Authority
WO
WIPO (PCT)
Prior art keywords
alpha
fermentation
soybean meal
nrrl
soy flour
Prior art date
Application number
PCT/IB2013/050763
Other languages
English (en)
French (fr)
Other versions
WO2013114282A3 (es
WO2013114282A9 (es
Inventor
Jaime Moisés ROMERO ORMAZÁBAL
Rafael José Daniel OPAZO SALAS
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to US14/376,214 priority Critical patent/US9497980B2/en
Priority to EP13743077.3A priority patent/EP2810563B1/en
Priority to BR112014018803A priority patent/BR112014018803A8/pt
Publication of WO2013114282A2 publication Critical patent/WO2013114282A2/es
Publication of WO2013114282A3 publication Critical patent/WO2013114282A3/es
Publication of WO2013114282A9 publication Critical patent/WO2013114282A9/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/05Mashed or comminuted pulses or legumes; Products made therefrom
    • A23L11/07Soya beans, e.g. oil-extracted soya bean flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/50Fermented pulses or legumes; Fermentation of pulses or legumes based on the addition of microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material
    • A61K2236/19Preparation or pretreatment of starting material involving fermentation using yeast, bacteria or both; enzymatic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Definitions

  • the present invention relates to the food industry, in particular, the animal feed industry and more particularly to the fish food industry, especially salmon. It is also related to solid state fermentation processes using lyric cell bacteria.
  • soy flour a byproduct of soybean oil production
  • soy flour has important advantages due to its low cost ( ⁇ 400 USD / Ton), adequate protein content close to 48% and a balanced amino acid profile (International Monetary Fund)
  • International Monetary Fund International Monetary Fund
  • its inclusion in the diets for salmon does not exceed 25% (fishmeal replacement), because larger proportions of this input produce morphological alterations of the intestine that result in a reduction of fish production parameters / salmonids (growth).
  • ANFs anti-nutritional factors
  • Soy flour ANFs include some carbohydrates, such as alpha-galactosides and non-starchy polysaccharides (NSPs) (Choct, M .; rsjant-Li Y .; McLeish, J .; Peisker, M. 2010, I am Oligosaccharides and Soluble Non -starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398; Francis, G .; Makkar, H .; Becker, K. 2001, Antinutritional factors present in plant- derived altérnate fish feed ingredients and their effects in fish.
  • NSPs non-starchy polysaccharides
  • NSPs This term (NSPs) groups three different types of polysaccharides: cellulose, hemicelluloses and pectins (Huisman, MMH; Schols, HA; Voragen, AGJ 1998, Cell wall polysaccharides from soybean (Glycine max.) Meal. Isolation and characterization.
  • Carbohydrate Polymers 37, 87-95; Karr-Lilienthal, LK; Kadzere, CT; Grieshop, CM; Fahey, GC 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12 ; Knudsen, KEB 1997, Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology, 67, 319-338).
  • NSPs alter the digestion of nutrients because the lack of digestive enzymes and the soluble part of NSPs creates a viscous condition in the small intestine, altering the activity of digestive enzymes.
  • Alpha-galactosides decrease body weight, average daily weight gain and food conversion rate (Choct, M .; rsjant-Li Y .; McLeish, J .; Peisker, M.
  • Biotechnological methods such as fermentation with bacteria, yeasts or fungi in solid state have also been proposed for lignocellulosic biodegradation of agricultural by-products, such as soybean meal (Graminha, EBN; Gongalves, AZL; Pirate, RDPB; Balsalobre, MAA; Da Silva, R.; Gomes, E. 2008, Enzyme production by solid-state fermentation: Application to animal nutrition. Animal Feed Science and Technology, 144, 1-22).
  • the fermentation of soybean meal is a process that allows reducing or degrading different national antinutrition factors, generating an input whose use in animal production (such as salmon, poultry and pigs) could offer important benefits over unfermented soybean meal. This situation would be especially attractive when considering the possibility of degrading thermostable ANFs.
  • different microorganisms and types of fermentations have been proposed for the reduction of anti-nutritional factors. For example, fermentations with Debaryomyces hansenii or Lactobacillus brevis where the degradation of alpha-galactosides (GOSs) has been evaluated (Refstie, S. Sahlstrom; S., Brathen, E .; Baeverfjord, G.; Krogedal, P.
  • Soy bean fermentation for human feeding purposes is an ancient procedure in Asian cultures such as China, Japan, Thailand and India, among others. Fermentation can be carried out directly on ground soybeans or their derivatives such as soybean meal or soy milk and tofu, a rennet of soy milk. Fermentation of soybean curd ⁇ tofu) is produced by a solid state fermentation with some fungal strains such as Actinomuco sp, Mucorwutungkino sp, Mhimelis sp, and Rhizopuz sp. There are commercial strains that correspond to Actinomuco.
  • Rhizopus oligosporus strains are more suitable because they grow better at temperatures of 40 ° C.
  • a fermented soybean is also produced with Aspergillus and Mucor strains or with bacterial strains, known as douchi or touchi.
  • this product is known as natto, there are 3 different products: Otohiki-natto that is made based on an inoculum of Bacillus natto that is a variant of Bacillus subtilis, in these cases, fermentation is carried out at temperatures between 40-45 ° C.
  • yuki-wari which corresponds to a mixture of the previous one with rice, inoculated with koji.
  • Koji means a "mushroom fluff" and generally corresponds to the growth on the grain of Aspergillus oryzae and Aspergillus sojae, in a fermentation for 20 days at 25 ° C to 35 ° C.
  • the third product is known as the hama-natto that corresponds to a mixture of soybeans with rice, wheat and barley inoculated with koji, and then a pressure aging of one year is carried out.
  • miso The fermentation of soybeans in Asia, is known as miso.
  • the process also contains a mixture of soy beans soaked in water and then boiled.
  • This soybean paste is mixed with koji and with other fungal and bacterial strains such as: Zygosaccharomyces rouxii, Torulopsis, Pediococcus, Halophilus and Streptococcus faecalis.
  • This paste is known as green miso and corresponds to anaerobic fermentation at temperatures from 25 ° C to 30 ° C, and going through an aging period that varies from one week in the case of the "white miso" to months or a year.
  • This product is frequently used in soup preparation.
  • Another very important Asian fermented soy product is soy sauce.
  • soy sauce recognized in Japan and two production processes are described that vary in the type of fermentation, one with an aerobic fermentation and another with anaerobic fermentation.
  • the most classic process is aerobic, which starts from soybean meal without oil. This is soaked and dried, cooked at 130 ° C for 45 minutes and mixed with roasted barley flour. This mixture is subsequently inoculated with koji, a brine is added and allowed to ferment for a few days. Subsequently there is an aging in controlled conditions of salt and temperature, the latter being from 35 ° C to 40 ° C for a period of 2 to 4 months.
  • These widely known processes do not relate to either the process or the product of the present invention, which uses a specific combination of four cellulolytic bacteria to carry out a solid-state fermentation of soybean meal to decrease anti-nutritional factors.
  • WO 2009065722 presents a method for fermenting a substrate containing a soy protein.
  • the method comprises the steps of providing a sterile aqueous liquid containing 0.5 to 8% by weight of dissolved soy protein, 0 to 0.2% by weight of milk protein and less than 24% by weight of solids; inoculate the liquid with a culture comprising bacteria from the group of selected lactic or lactic acid bacteria consisting of Lactococcus, Leuconostoc, Mesophatic Lactobacillus (with optimum temperature less than 35 ° C) and combinations thereof; ferment the inoculated liquid by incubating it at 20 ° C to 40 ° C for 0.5 to 11 hours; where during fermentation the following changes in concentrations occur: the concentration of diacetyl increases at least 0.2 ppm and / or the concentration of acetaldehyde increases at least 0.1 ppm; the concentration of at least one C5-C9 n-alkaline decreases at least 30% and / or the concentration of trans
  • WO 2005032568 describes a soy product fermented by lactic acid fermentation that has a strong immunopotentiating effect and a favorable taste, and a process for producing it.
  • the product is made by fermenting soy or a processed soy product through a co-culture of acid lactic acid bacteria with a yeast.
  • the acid lactic bacterium is at least Enterococcus faecalis, optionally combined with another coccus, bacilli or bifidobacteria.
  • the yeast is Saccharomyces cerevisiae and / or Saccharomyces rosei.
  • Fermented soybeans are produced by fermenting soy milk using the microorganisms mentioned, to deliver a fermented liquid product that is then neutralized with a calcium compound and then dried to result in a fermented powder product.
  • the document does not relate to the fermentation of soy flour for the reduction of anti-nutritional factors using lyric cell bacteria.
  • WO 2002085131 presents a method for producing a tasty product from a protein source using a combination of two different strains of bacteria.
  • the protein source may be soy, wheat or rice, but milk or whey is preferable.
  • the first strain is selected from Macrococcus, Micrococcus, Entercoccus, Staphylococcus, Brevibacterium, Anthrobacter and Corynebacterium, preferably Macrococcus caseolyticus.
  • the second strain is selected from Lactococcus, Lactobacillus, Pediococcus or Leuconostoc.
  • the protein source is fermented with the bacteria at a pH above the isoelectric point of the protein, preferably at a pH of 5.5 to 6.5.
  • the document does not relate to the fermentation of soy flour for the reduction of anti-nutritional factors using cellulolytic bacteria.
  • Document CN102210412 describes a food to improve the rate of Tilapia mossambica meat and a method to prepare it.
  • the food mainly contains fermented raps meal and fermented soybean meal and is effectively absorbed during digestion. Both fermented flours are purchased commercially so details of the fermentation process used are not included.
  • the aforementioned document does not disclose a way of carrying out fermentation, since the fermented flours used are commercially acquired.
  • Dongguan Yinhua Biotechnology Co Ltd, Dongguan, China also markets fermented soybean meal.
  • the process he uses to treat soy flour is also not completely clear, but in his patent application CN101161810 he reports that he ferments soybeans and other seeds using yeasts.
  • the use of cellulolytic bacteria for the preparation of this company's products is not mentioned.
  • the process of the invention does not use commercial or industrial enzymes, it uses selected bacteria that contribute their enzymes during growth on soybean meal.
  • a solid fermentation process of soybean meal has been developed with the use of 4 selected native microorganisms (see Figure 1) that reduces the presence of alpha-galactosides by 90% and by about 20% non-starch polysaccharides (NSPs ) which are the largest thermostable ANFs in soybeans. Together the fermentation allows to increase the protein proportion by around 13.5%. This allows to project higher levels of inclusion of fermented soybean meal projecting a reduction in the costs of the formulation of food for aquaculture species. Soy flour reduced in anti-nutritional factors through solid-state fermentation using native cellulolytic bacteria allows for a nutritionally and functionally excellent and inexpensive food.
  • An additional character is that the bacteria added in the bioprocess deliver components that remain in the input and can act as an immunostimulant, giving the developed input a functional character.
  • Figure 1 Panel A presents photographs of the visualization of the selected strains under an electron microscope and panel B presents the cellulolytic activity measured with the Congo red technique in the selected strains, to: CR18 Streptomyces; b: S7 Cohnella; c: T5 Cellulosimicwbium; d: L39 Streptomyces.
  • Figure 2 Strain richness obtained by analyzing the 16-23S rDNA intergenic spacer. The genetic distance presented was calculated using the DICE coefficient using the ITS profiles obtained. The dendograms were developed using GelCompar II software with a tolerance of 2%.
  • C Corn silo.
  • D Termite (Neotermes chilensis).
  • E Decaying leaves.
  • F Bovine rumen content.
  • Figure 3 Comparison between the inoculated group (with selected bacteria) and the non-inoculated group in the content of A: stachyose, B: raffinose, C: non-starchy polysaccharides (NSPs) and D: pro teine.
  • A stachyose
  • B raffinose
  • C non-starchy polysaccharides
  • D pro teine.
  • Figure 4 A: Chromatograms of stachyose and raffinose standards, B: chromatogram of unfermented soybean meal and C: chromatogram of fermented soybean meal. *: stachy; **: raffinose.
  • Figure 5 Bar graph of the comparison in the amount of 19 amino acids (g in 100 g of soybean meal (MS)) between soybean meal and fermented soybean meal.
  • Figure 6 Scanning electron microscopy showing the bacteria selected during fermentation.
  • microorganisms for the solid state fermentation process of soy flour of the present invention are selected based on the approach that in natural environments, the degradation of complex polysaccharides occurs thanks to the concurrence of a mixture of microorganisms.
  • each microorganism is directed towards its enzymatic specialization, seeking to obtain simple sugars for its metabolism.
  • the additional inclusion of a fast-growing strain in soybean NSPs helps to consume the products of enzymatic reactions to prevent possible product inhibitions. This is an important advantage when compared to processes based on a single microorganism.
  • NSPs have a more complex structure than alpha-galactosides, because they are a mixture of polymers: cellulose, hemicellulose and pectins.
  • cellulose is a homogeneous polysaccharide composed of D-glucose subunits linked by beta (l-4) glycosidic bonds, which is degraded by cellulase systems that specifically hydrolyze these bonds (Pérez, J .; Mu ⁇ oz-Dorado, J. ; de la Rubia, T .; Mart ⁇ nez, J. 2002, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5, 53-63). Because cellulose corresponds to 30% w / w of the NSPs in soybean meal (Knudsen, KEB 1997, Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology, 67, 319-338) , this homopolymer was the first target considered to degrade NSPs using a solid state fermentation process.
  • hemicelluloses and pectins are heterogeneous polysaccharides, which require several different hydrolase enzymes for degradation. Therefore, it is considered that endo-1, 4- beta-xylanase, which hydrolyzes the xylose skeleton present in hemicellulose is a complementary activity useful in the degradation of NSPs.
  • endo-1, 4- beta-xylanase which hydrolyzes the xylose skeleton present in hemicellulose is a complementary activity useful in the degradation of NSPs.
  • Alpha-galactosides are oligosaccharides consisting mainly of one or two linked 1,6-alpha galactose units, linked by 1,3-alpha bonds to a sucrose terminal (Karr-Lilienthal, LK; Kadzere, CT; Grieshop, CM ; Fahey, GC 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12).
  • the hydrolysis of the sucrose disaccharide occurs in the digestive tract of animals by the action of the enzyme sucrose. Therefore, the reduction of alpha-galactosides is focused on the hydrolysis of 1,6-alpha-galactose bonds by alpha-galactosidase.
  • a solid state soybean fermentation process was designed where bacteria having cellulase, beta-xylanase and alpha-galactosidase activities are used, in order to degrade sequentially, and in a controlled and controlled manner.
  • rational anti-nutritional factors present in soybean meal that cause disease and decrease of growth in fish.
  • the combination of the enzymatic activities of the selected bacteria, together with a bacterium that has a high growth in NSPs extracted from soybeans, which helps to consume the products of enzymatic reactions to prevent possible product inhibitions, provides a fermentation process in solid state of soybean meal that generates a product with a reduction of about 90% of the presence of alpha-galactosides and a reduction of about 20% of NSPs, since in the first place the simplest sugars are degraded and then the most complex and additionally, due to other enzymatic activities of the selected bacteria, a protein digestion occurs, which generates a varied range of peptides that contain a balanced amino acid profile, suitable for feeding animals, especially fish, particularly salmon .
  • the selected strains were deposited with the United States Agricultural Research Service (ARS), on November 25, 2011, where they received the following access numbers: NRRL B-50604 strain of the genus Cohnella sp, NRRL B-50603 strain of the genus Cellulosimicrobium sp, NRRL B-50602 strains of the genus Streptomyces sp, and NRRL B-50601 strains of the genus Streptomyces sp.
  • ARS United States Agricultural Research Service
  • the NRRL B-50604 strain of the genus Cohnella sp is Gram positive, fusiform and has high total cellulolytic activity and high alpha-galactosidase activity.
  • the NRRL B-50602 strain of the genus Streptomyces sp is Gram positive, has a cocobacillus form and has high total cellulolytic activity and high alpha-galactosidase activity.
  • the NRRL B-50603 strain of the genus Cellulosimicrobium sp is Gram positive, coconut-shaped and has high endo-1, 4- beta-xylanase activity.
  • the NRRL B-50601 strain of the genus Streptomyces sp It is Gram positive, it has a mycelium shape and has a rapid growth on NSPs extracted from soybeans.
  • strains studied and selected are native and their molecular characters make them traceable and distinguishable from other strains of collection, which ensures their novelty, especially in the combined use of the four strains for a process of fermentation of soybean meal for the decrease of anti-nutritional factors
  • the solid state fermentation process of the present invention comprises the steps of: a) preparation of the fermentation substrate; b) substrate inoculation with the selected bacterial strains; and c) incubation. In a particular embodiment the process further comprises the step of d) drying the product.
  • the soy flour required for this process should ideally have a particle size between 200 and 600 ⁇ .
  • the particle size of soybean meal is 400 ⁇ .
  • Stage a) preparation of the fermentation substrate consists of mixing the soy flour with water and then with the fermentation solution.
  • the stage of preparation of the substrate begins with the conditioning of soybean meal in a closed container or chamber, where water and a fermentation solution comprising different minerals and salts that favor the fermentation process are incorporated.
  • the fermentation solution for preparing 10 kilos of soy flour / water contains: 5 g of MgSC, 1.22 g of CaCl, 13.6 g of NH 4 CI, 2,233 g of KC1, 10 mg of FeSC pentahydr bound, 10 mg of MnCl tetrahydrate, 10 mg of ZnSC> 4 pentahydrate, 1.2 ml of H 3 PO 4 and 21.13 g of Na 2 HP0 4 .
  • Water is added in a proportion of water / soy flour between 2: 1 and 3: 1 (v / p).
  • the weight ratio of water to soybean meal is 2.4: 1 (v / p).
  • stage b) inoculation of the substrate with the selected bacterial strains is carried out: NRRL B-50604 strain of the genus Cohnella sp; NRRL B- 50603 strain of the genus Cellulosimicrobium sp; NRRL B-50602 and NRRL B-50601 strains of the genus Streptomyces sp. (see Figure 1).
  • NRRL B-50604 strain of the genus Cohnella sp NRRL B- 50603 strain of the genus Cellulosimicrobium sp
  • In the step of inoculating the substrate with selected bacterial strains they are inoculated between lxl0 7 and lxlO 11 cells per gram of substrate, of each selected strain. In a particular embodiment, 9 x 10 cells per gram of substrate are
  • step c) incubation is performed.
  • the incubation stage is performed at 37 ° C for 6 to 14 days with rotary movements (between 3 and 7 rpm, preferably 5 rpm). In a particular embodiment the incubation is performed for 10 days.
  • it is sought to regulate the pH of the process by adding a buffer in the fermentation solution. This buffer has a pH between 6.5 and 7.5. In a particular embodiment the pH of the buffer is 7.0.
  • fermented soybean meal can be marketed in different levels of humidity, however, for better conservation it may be necessary to reduce the water content by means of an optional drying process.
  • the step of d) drying the product can be carried out by any known technique, for example, spray drying by spray dryer, by sublimation, vacuum oven, or others, or a combination thereof.
  • the above process does not use commercial or industrial enzymes, it only uses the microorganisms that contribute their enzymes during growth on soybean meal. This represents an important advantage in the sense of reducing costs.
  • the process does not affect the amino acid profile of soybean meal (see Figure 5), presenting even after fermentation a balanced profile suitable for the nutrition of animals, especially fish, particularly salmon. Additionally, the process has the comparative advantage that Selected bacteria do not generate toxic compounds such as biogenic amines or toxins, as occurs in processes that use fungi.
  • Another important characteristic of the process is that it is carried out with a very low substrate water weight rate, between 2: 1 and 3: 1 (v / p), which reduces subsequent drying costs.
  • An additional character is that the bacteria added in the fermentation bioprocess deliver components that remain in the input and can act as an immunostimulant, giving the developed input a functional character.
  • the specific area of application of the present invention is the food industry, in particular, the animal feed industry and more particularly in the fish feed industry, especially salmon.
  • Soy flour fermented by the process of the invention can be applied for the improvement of protein inputs of vegetable origin, specifically soybean meal. These inputs are used with restrictions for the formulation of animal diets, especially diets in aquaculture. Its improvement through the process of the invention generates an input enriched in proteins and free of the antinutritional factors associated with oligosaccharides.
  • the projection of the input improved by fermentation can be applied not only to the aquaculture area, it can also be used in the production of pigs and birds, and also in the area of pets.
  • Example 1 Isolation of bacteria.
  • the first stage of this development corresponded to the targeted isolation of bacteria from different environments and their subsequent molecular characterization.
  • the following environments were selected: garden soil, earthworms (Eisenia foetida), corn silo, termites (Neotermes chilensis), decaying leaves and bovine ruminal content.
  • Phylogenetic identification of cellulolytic strains was performed, by amplifying their 16S rDNA sequence. Genomic DNA was isolated from bacterial cultures with the Promega genomic DNA purification kit. The 16s amplified corresponds from position 341 to 907 (numbering of E.coli) and then for a better identification of the selected cellulolytic strains, the 16S rDNA was almost completely amplified, from position 27 to 1492 (numbering of E. coli).
  • the PCR reaction was performed in a 30 ⁇ reaction mixture containing 0.2 mM of each dNTP (Invitrogen), 0.05 UmL “1 of recombinant Taq DNA polymerase (Invitrogen), polymerase reaction buffer, 2 mM MgCi 2 and 0.25 pM mL "1 of each splitter and 1.0 ⁇ of genomic DNA of the strain.
  • the splitters were 341, SEQ ID NO 1: CCT ACG GGA GGC AGC AG and 907, SEQ ID NO 2: CCG TCA ATT CMT TTG AGT TT for short sequence or 27F, SEQ ID NO 3: AGAGGTTTGATCCTGGCTCAG and 1492R, SEQ ID NO 4 : GGTTACCTTGTTACGACTT for long sequence.
  • the thermal cycler program was: initial pre-denaturation, 3 minutes at 95 ° C, then 30 cycles of denaturation for 1 minute at 95 ° C, alignment of splitters for 1 minute at 58 ° C, extension for 1 minute at 72 ° C and final extension cycle for 7 minutes at 72 ° C.
  • the sequencing was previously edited and compared to the Ribosomal Data Project database (http://rdp.cme.msu.edu) to identify the bacterial genus.
  • a PCR amplification of the intergenic spacer (STI) was performed between the 16-13S rDNA genes.
  • the PCR reaction was performed with the same protocol described above, but the starting points were Ll, SEQ ID NO 5: GAA GTC GTA ACA AGG and Gl, SEQ ID NO 6: CAA GGC ATC CAC CGT.
  • PCR conditions were as follows: initial pre-denaturation, 3 minutes at 95 ° C, then 30 cycles of denaturation for 30 minutes at 95 ° C, alignment of splitters for 1 minute at 58 ° C, extension for 1 minute at 72 ° C and final extension cycle for 7 minutes at 72 ° C.
  • PCR products were visualized in silver-stained polyacrylamide electrophoresis gels (González, N.; Romero, J .; Espejo, RT 2003, Comprehensive detection of bacterial populations by PCR amplification of the 16S-23S rRNA spacer region. Journal of Microbiological Methods, 55, 91-97).
  • ITS 16S-23S rDNA profiles (ribosomal integergenic region between 16S and 23S genes, corresponds to an internal transcribed spacer, ITS for its initials in English: internal transcribed spacer) were analyzed with the Gel compare software (Applied Maths) with a tolerance of 2% position. The genetic distance was calculated based on the DICE coefficient using DNA fragments.
  • Total cellulolytic activity and endo-l, 4-beta-xylanase activity were analyzed in an examination assay evaluating bacterial isolates. Subsequently, selected strains were evaluated in a comparative trial making 8 replicates for each strain.
  • Total cellulolytic activity and endo-l, 4-beta-xylanase activity were analyzed with a supernatant from a bacterial culture in a minimal medium with soybean meal extract. This extract is obtained through the NSP extraction process proposed by Englyst et al.
  • the enzyme culture medium contained: Englyst 20 mg soybean meal extract, NH 4 CI 12 mg, Na 2 HPC> 4 1 mg in 2 ml of water. 1 x 10 7 cells of each cellulolytic strain were inoculated in 2 ml of the previous medium and were incubated for 4 days at 25 ° C. Total cellulolytic activity was evaluated by the filter paper method with modifications, with a 24-hour incubation period at 50 ° C (Ghose, T. 1987, Measurement of cellulase activities. Puré & applied Chemistry, 59, 257-268) .
  • the unit of total cellulolytic activity was defined as the amount of ⁇ of glucose released per minute per one ml of bacterial culture supernatant (Nitisinprasert, S .; Temmes, A. 1991, The Characteristics of A New Non-Spore-Forming Cellulolytic Mesophilic Anaerobe Strain Cml26 Isolated from Municipal Sewage-Sludge, Journal of Applied Bacteriology, 71, 154-161).
  • the endo-l, 4-beta-xylanase activity was evaluated by the p-nitrophenyl derivatives method: p-nitrophenyl-beta-D-xylopyranoside.
  • beta-xylanase activity was defined as the amount of ⁇ of p-niotrophenol released per minute by one ml of bacterial culture supernatant at 25 ° C (Tirado, O .; Rosado, W .; Govind, NS 2005, Characterization of bacteria with carbohydrase activities from tropical ecosystems. Journal of the Marine Biological Association of the United Kingdom, 85, 269-275). The key to the selection of the strains was the presence of significant and high enzyme activities.
  • Alpha-D-galactosidase activity was evaluated by the p-nitrophenyl derivative method: p-nitrophenyl-alpha-D-galactopyranoside (Tirado, O .; Rosado, W .; Govind, NS 2005, Characterization of bacteria with carbohydrase activities from tropical ecosystems. Journal of the Marine Biological Association of the United Kingdom, 85, 269-275).
  • a minimum medium was used containing: raffinose pentahydrate (Sigma, St. Louis, MO, USA) 20 g, NH 4 CI 6 g, Na 2 HPC> 4 0.6 g and 2.5 g, Bacto Yeast Extract in 1L of water.
  • the unit of alpha-D-galactosidase activity was defined as the amount of enzyme that released 1 ⁇ of p-nitrophenol per minute per ml of bacterial culture supernatant at 25 ° C (Tirado, O .; Rosado, W .; Govind, NS 2005, Characterization of bacteria with carbohydrase activities from tropical ecosystems. Journal of the Marine Biological Association of the United Kingdom, 85, 269-275).
  • Example 2 Solid state fermentations on a laboratory scale.
  • the conditions of the fermentations were the following: in glass bottles with filtered aeration 30 g of soy flour (with particle size of 400 ⁇ and sterilized by gamma irradiation with 25 kilogray) and fermentation solution were added at a weight rate of water to substrate of 2.4: 1 (v / p) with a relative humidity close to 85%. This was considered the substrate.
  • the culture solution contained: 100 mM phosphate buffer pH 7.0 with MgS0 4 ⁇ 7H 2 0 150 ⁇ g, CaCl 2 36.5 ⁇ g, NELCl 408 ⁇ g, KC1 67 ⁇ g, FeS0 4 ⁇ 7H 2 0 30 ⁇ g, MnCl 2 ⁇ 4H 2 0 30 ⁇ g, and ZnSC ⁇ 7H 2 0 30 ⁇ g for 30 g of substrate.
  • the bottles were incubated with rotary movements (5 rmp) for 10 days at 37 ° C.
  • NSPs were quantified by spectrophotometric measurement (Englyst, HN ;, Quigley, ME; Hudson, GJ 1994, Determination of Dietary Fiber As Nonstarch Polysaccharides with Gas-Liquid-Chromatographic, High-Performance Liquid-Chromatographic Or Spectrophotometric Measurement of Constituent Sugars. Analyst , 119, 1497-1509), raffinose and stachyose were extracted according to the method of Giannoccaro et al.
  • HPLC grade water was used as eluent with a flow rate of 0.2 ml min "1 (LeBlanc, JG; Garro, MS; de Giori, GS 2004; Effect of pH on Lactobacillus fermentum growth, raffinose remo val, alpha- galactosidase activity and fermentation products. Applied Microbiology and Biotechnology, 65, 119-123) and the protein was quantified by the Kjeldahl method method (AOAC, 1990, Official Methods of Analysis of Association of Official Analytical Chemistry 15 th Edition. Arlington VA, Method 960.52).
  • Example 3 Solid state fermentations on a larger scale.
  • the fermentation solution was prepared according to Table 1.
  • Table 1 Fermentation solution for 10 kilos of soy flour / water, with 7 liters of water.
  • Table 2 Proximal chemical analysis of unfermented soybean meal and fermented soybean meal.
  • Table 3 Reduction of anti-nutritional factors in the fermentation of soybean meal compared to unfermented soybean meal.
  • FIG. 4 shows a chromatogram of A: stachynous and raffinose standards, B: unfermented soybean meal and C: fermented soybean meal, obtained from HPLC analysis. The reduction of NSPs was 13.73%.
  • the bacterial strains used for the fermentation of soybean meal of the present invention were evaluated in their stimulation of the innate immune system of fish, using the model axenic zebrafish (germ free). In this model, 3-day postfertilization larvae (dpf) were exposed to bacteria until day 6 dpf, when they were analyzed in their gene expression by quantitative PCR.
  • dpf 3-day postfertilization larvae
  • the strains selected in the process are two of the genus Streptomyces, both induce the expression of the C3 gene, which belongs to the complement system which is one of the important responses of innate immunity in fish. This protein favors the opsonization of the microbes and their subsequent phagocytosis. This indicates that molecules derived from the bacteria included in the process ( Figure 6) and that are incorporated into the final input, exert an immunostimulant effect on fish.
  • the solid state fermentation process with the selected cellulolytic bacteria allows to reduce some of the thermostable ANFs of soy such as alpha-galactosides (stachyose and raffinose) and NSPs. It also increases the protein content by approximately 13.5%, while maintaining the amino acid profile. This increase in protein impacts the diet formulation process. Given that in the fermented soybean meal there is a higher proportion of protein, this input manages to deliver the protein levels considered in a diet using a smaller volume of the input. This brings as a consequence that all the anti-nutritional factors of soybean meal decrease their presence in the final food. This benefit adds to the degradation of the GOSs and NSPs that fermentation produces.
  • the functional character granted by including bacterial molecules in the input ( Figure 6) and demonstrated in zebrafish, allows the input to be projected beyond a simple replacement of soybean meal, because it is also presented as an immunostimulant functional input.
  • Example 6 Properties of soybean meal free of alpha-galactoside oligosaccharides and reduced in non-starch polysaccharides obtained with the method of the invention.
  • Table 4 shows the characteristics of soy flour free of alpha-galactoside oligosaccharides and reduced in non-starch polysaccharides obtained with the method of the invention.
  • Table 4 Physical, chemical properties and content of anti-nutritional factors in soybean meal free of alpha-galactoside oligosaccharides and reduced in non-starch polysaccharides obtained with the method of the invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nutrition Science (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Insects & Arthropods (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Fodder In General (AREA)

Abstract

Método de fermentación de harina de soya en estado sólido para reducir polisacáridos no almidones y alfa galactósidos, que comprende las etapas de a) preparación del sustrato de la fermentación; b) inoculación del sustrato con cepas bacterianas celulolíticas seleccionadas; c) incubación; y opcionalmente d) secado del producto, que genera un producto que presenta un aumento de proteína de entre 12 y 15% con respecto a la harina de soya no fermentada, presenta degradación mayor al 90% de los alfa-galactósidos con respecto a la harina de soya no fermentada, presenta reducción de entre 15 y 25% de polisacáridos no almidones (NSPs), presenta un perfil aminoacídico similar al de la harina de soya no fermentada y tiene efectos inmunoestimulantes.

Description

REDUCCIÓN DE POLISACÁRIDOS NO ALMIDONES Y ALFA-GALACTÓSIDOS EN HARINA DE SOYA MEDIANTE FERMENTACIÓN EN ESTADO SÓLIDO USANDO BACTERIAS CELULOLÍTICAS AISLADAS DE DISTINTOS AMBIENTES.
Campo de la invención
La presente invención se relaciona con la industria de alimentos, en particular, la industria de alimentos para animales y más particularmente con la industria de alimentos para peces, especialmente salmones. También se relaciona con procesos de fermentación en estado sólido utilizando bacterias celulo líricas.
Antecedentes de la invención
El estancamiento en las extracciones de recursos marinos silvestres ha puesto cota a la disponibilidad mundial de la harina de pescado y ha aumentado los precios (>1400 USD/ton) (International Monetary Fund). Como consecuencia, las dietas utilizadas en la producción de especies acuícolas como los salmones, han debido sustituir parcialmente este importante insumo por otros ingredientes proteicos, entre los que destacan los insumos proteicos de origen vegetal. Dentro de estos insumos la harina de soya, subproducto de la producción de aceite de soya, presenta importantes ventajas debido a su bajo costo (<400 USD/Ton), adecuado contenido proteico cercano al 48% y un perfil de aminoácidos balanceado (International Monetary Fund). Sin embargo, su inclusión dentro de las dietas para salmones no supera un 25% (reemplazo de harina de pescado), debido a que proporciones mayores de este insumo producen alteraciones morfológicas del intestino que se traducen en una reducción de los parámetros productivos de los peces/salmónidos (crecimiento). Estos efectos adversos se han atribuido a la presencia de diferentes factores antinutricionales (ANFs), donde se destacan los ANFs termoestables.
Los ANFs de la harina de soya incluyen algunos carbohidratos, como alfa-galactósidos y polisacáridos no almidones (NSPs) (Choct, M.; rsjant-Li Y.; McLeish, J.; Peisker, M. 2010, Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestión, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398; Francis, G.; Makkar, H.; Becker, K. 2001, Antinutritional factors present in plant- derived altérnate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-227; Karr- Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C. 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12). Los principales alfa-galactósidos que contiene la harina de soya son la estaquiosa y la rafinosa, y su concentración oscila entre 2 y 5 % p/p, y 0,5 y 2% p/p de materia seca respectivamente (Choct, M.; rsjant-Li Y.; McLeish, J.; Peisker, M. 2010, Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestión, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398; Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C. 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12). La concentración total de NSPs en la harina de soya es alrededor de 15 - 20% del peso seco. Este término (NSPs) agrupa a tres tipos diferentes de polisacáridos: celulosa, hemicelulosas y pectinas (Huisman, M.M.H. ; Schols, H.A. ; Voragen, A.G.J. 1998, Cell wall polysaccharides from soybean (Glycine max.) meal. Isolation and characterisation. Carbohydrate Polymers, 37, 87-95; Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C. 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12; Knudsen, K.E.B. 1997, Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology, 67, 319-338).
Se ha documentado el efecto deletéreo de los ANFs, tanto para los alfa-galactósidos, como los NSPs en diferentes especies animales. En cerdos, el suplemento de NSPs y alfa-galactósidos ha mostrado un efecto adverso en el crecimiento (Choct, M.; rsjant-Li Y.; McLeish, J.; Peisker, M. 2010, Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestión, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398; Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M. ; Fahey, G.C. 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12). En aves de corral, los NSPs alteran la digestión de los nutrientes porque la falta de enzimas digestivas y la parte soluble de los NSPs crea una condición viscosa en el intestino delgado, alterando la actividad de las enzimas digestivas. Los alfa-galactósidos disminuyen el peso corporal, la ganancia de peso promedio diario y la tasa de conversión alimentaria (Choct, M.; rsjant-Li Y.; McLeish, J.; Peisker, M. 2010, Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestión, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398; Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M. ; Fahey, G.C. 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12). En especies acuícolas, los NSPs y alfa- galactósidos también son considerados factores antinutricionales (Francis, G.; Makkar, H.; Becker, K. 2001, Antinutritional factors present in plant-derived altérnate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-227). La presencia de ellos en la dieta de salmones aumenta el contenido de agua y minerales en las heces y obstruye la acción de las enzimas digestivas (Francis, G.; Makkar, H. ; Becker, K. 2001, Antinutritional factors present in plant-derived altérnate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-227). En la acuicultura la situación es crítica, porque las especies acuícolas, como el salmón, tienen requerimientos proteicos mayores que las aves de corral o los cerdos (Wilson, R.; John, H.; Hardy, R. 2002, Amino Acid and Proteins. in: H. John, R. Hardy (Eds.), Fish Nutrition. Academic Press, 3 rd Edition, pp. 143-179) y actualmente, es un desafío de esta industria el reemplazo de la harina de pescado usando otros ingredientes proteicos ( Gatlin, D.; Barro ws, F.; Brown, P.; Dabrowski, K.; Gaylord, T.; Hardy, R.; Hermán, E.; Hu, G.; Krogdahl, A.; Nelson, R. ; Overturf, K.; Rust, M.; Sealey, W.; Skonberg, D.; Souza, J.; Stone, D.; Wilson, R. ; Wurtele, E. 2007, Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38, 551-579; Tacón, A.G.J.; Metían, M. 2008, Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285, 146-158).
Existen alternativas de reducción por extracción acuosa o alcohólica de los ANFs, lo que genera un producto conocido como concentrado proteico de soya, que aumenta su contenido proteico en aproximadamente 65% con respecto a la harina de soya. Al ser incluido este producto en las dietas de peces presenta mejores niveles productivos, ya que aumenta la digestión de nitrógeno o aminoácidos, aumenta la tasa de crecimiento y la tasa de conversión alimenticia (Choct, M.; rsjant-Li, Y.; McLeish, J.; Peisker, M. 2010. Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestión, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398; Olli, J.J., Krogdahl, A.; vandenlngh, T.S.G.A.; Brattas, L.E. 1994, Nutritive- Valué of 4 Soybean Products in Diets for Atlantic Salmón (Salmo-Salar, L). Acta Agriculturae Scandinavica Section A-Animal Science, 44, 50-60). Sin embargo, el costo de estos insumos está cercano al de la harina de pescado restringiendo su utilización por la industria salmonicultora (Gatlin, D. ; Barro ws, F.; Brown, P.; Dabrowski, K. ; Gaylord, T.; Hardy, R. ; Hermán, E.; Hu, G.; Krogdahl, A.; Nelson, R.; Overturf, K.; Rust, M.; Sealey, W.; Skonberg, D.; Souza, J.; Stone, D.; Wilson, R. ; Wurtele, E. 2007, Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38, 551-579). Otra tecnología es la incorporación de glucohidrolasas en el alimento animal, sin embargo, los efectos de esta alternativa en ensayos productivos no ha entregado resultados concluyentes en aves de corral, cerdos ni salmones (Bhat, M.K. 2000, Cellulases and related enzymes in biotechnology. Biotechnol.Adv., 18, 355-383; Caeter, C.G.; Houlihan, D.F.; Buchanan, B.; Michell, A.I. 1994, Growth and feed utilization efficiencies of seawater Atlantic salmón, Salmo salar L., fed a diet containing supplementary enzymes. Aquaculture Research, 25, 37-46; Choct, M.; rsjant-Li, Y.; McLeish, J.; Peisker, M. 2010. Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestión, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386-1398). La incorporación de celulasas, hemicelulasas y pectinasas en alimento para salmones presenta una importante restricción con respecto a la temperatura. Esto porque la temperatura corporal del salmón corresponde a la del ambiente acuático en que se encuentre, en Chile es de 10-12°C. En contraste, la temperatura óptima de actividad de estas enzimas es de 50°C ( Bhat, M.K. 2000, Cellulases and related enzymes in biotechnology. Biotechnol.Adv., 18, 355-383; Caeter, C.G.; Houlihan, D.F.; Buchanan, B.; Michell, A.I. 1994, Growth and feed utilization efficiencies of seawater Atlantic salmón, Salmo salar L., fed a diet containing supplementary enzymes. Aquaculture Research, 25, 37-46).
También se han propuestos métodos biotecnológicos como fermentación con bacterias, levaduras u hongos en estado sólido para la biodegradación lignocelulósica de subproductos agrícolas, como la harina de soya (Graminha, E.B.N.; Gongalves, A.Z.L.; Pirata, R.D.P.B.; Balsalobre, M.A.A.; Da Silva, R. ; Gomes, E. 2008, Enzyme production by solid-state fermentation: Application to animal nutrition. Animal Feed Science and Technology, 144, 1-22).
La fermentación de la harina de soya es un proceso que permite disminuir o degradar diferentes factores antinutricio nales, generando un insumo cuya utilización en producción animal (como salmones, aves y cerdos) podría ofrecer importantes beneficios sobre la harina de soya sin fermentar. Esta situación sería especialmente atractiva al considerar la posibilidad de degradar los ANFs termoestables. En este sentido se han propuesto diferentes microorganismos y tipos de fermentaciones para la reducción de factores antinutricionales. Por ejemplo fermentaciones con Debaryomyces hansenii o Lactobacillus brevis donde se ha evaluado la degradación de alfa- galactósidos (GOSs) ( Refstie, S. Sahlstrom; S., Brathen, E.; Baeverfjord, G. ; Krogedal, P. 2005, Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmón (Salmo salar). Aquaculture, 246, 331-345; Rodrigues Brasil, A; Tabarez de Rezende, S.; do Carmo Gouveia, M.; Guimaraes, V. 2010, Removal of oligosaccharides in soybean flour and nutritional effects in rats. Food Chemistry, 118, 251- 255). Por otro lado se han desarrollado fermentaciones con el hongo Aspergillus oryzae o con Bacillus subtilis para la reducción de lectinas o inhibidor de tripsina ( Hong, K.-J.; Lee, C.-H.; Kim, S.W. 2004, Aspergillus oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meáis. Journal of Medicinal Food, 7(4), 430-435; Kim, S.W.; van Heugten, E.; Ji, F.; Lee, C.H.; Mateo, R.D. 2010, Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs. Journal of Animal Science, 88, 214-224; Wang, J.P. ; Liu, N.; Song, M.Y.; Qin, C.L.; Ma, C.S. 2011, Effect of enzymolytic soybean meal on growth performance, nutrient digestibility and immune function of growing broilers. Animal Feed Science and Technology, 169(3-4), 224-229).
Existe la necesidad de desarrollar un proceso que permita la obtención de un producto apto para la alimentación, en particular de animales, más particularmente de peces, especialmente de salmones, que contenga un alto contenido proteico superior al 50%, un perfil aminoacídico balanceado y bajo contenido de ANFs.
Estado del arte
La fermentación del poroto de soya para fines de alimentación humana es un procedimiento milenario en las culturas asiáticas como China, Japón, Tailandia e India, entre otras. La fermentación puede ser realizada directamente sobre la soya molida o a sus derivados como la harina de soya o la leche de soya y el tofu, un cuajo de la leche de soya. La fermentación del cuajo de soya {tofu) es producida por una fermentación en estado sólido con algunas cepas de hongos como Actinomuco sp, Mucorwutungkino sp, Mhimelis sp, y Rhizopuz sp. Existen cepas comerciales que corresponden a Actinomuco. El proceso se desarrolla a una temperatura entre 25°C a 30°C, sin embargo, en veranos calurosos las cepas de Rhizopus oligosporus son más adecuadas debido a que crecen mejor a temperaturas de 40°C. En China también se produce un fermentado de soya con cepas de Aspergillus y Mucor o con cepas bacterianas, conocido como douchi o touchi. En Japón este producto es conocido como natto, existiendo 3 productos diferentes: Otohiki-natto que se hace en base a un inoculo de Bacillus natto que es una variante de Bacillus subtilis, en estos casos, la fermentación es realizada a temperaturas entre 40-45 °C. Por otro lado está el yuki-wari, que corresponde a una mezcla del anterior con arroz, inoculados con koji. Koji significa una "pelusa de hongos" y generalmente corresponde al crecimiento sobre el grano de Aspergillus oryzae y Aspergillus sojae, en una fermentación por 20 días a 25°C a 35°C. Finalmente el tercer producto se conoce como el hama-natto que corresponde a una mezcla de la soya con arroz, trigo y cebada inoculados con koji, posteriormente se procede a un envejecimiento en presión de un año.
La fermentación de pastas de soya en Asia, es conocida con el nombre de miso. El proceso también contiene una mezcla de poroto de soya remojado en agua y posteriormente hervido. Esta pasta de soya se mezcla con koji y con otras cepas de hongos y bacterias como: Zygosaccharomyces rouxii, Torulopsis, Pediococcus, Halophilus y Streptococcus faecalis. Esta pasta se conoce como miso verde y corresponde a una fermentación anaeróbica a temperaturas de 25°C a 30°C, y que pasa por un período de envejecimiento que varía desde una semana en el caso del "miso blanco" hasta meses o un año. Este producto se utiliza frecuentemente en preparación de sopas. Otro producto asiático fermentado de la soya muy importante es la salsa de soya. Existen a lo menos 5 tipos de salsa de soya reconocidos en Japón y se describen dos procesos de producción que varían en el tipo de fermentación, uno con una fermentación aeróbica y otro con fermentación anaeróbica. El proceso más clásico es el aeróbico, el cual comienza desde la harina de soya sin aceite. Ésta es remojada y secada, cocinada a 130°C por 45 minutos y mezclada con harina de cebada tostada. Esta mezcla posteriormente se inocula con koji, se agrega una salmuera y se deja fermentar por algunos días. Posteriormente existe un envejecimiento en condiciones controladas de sal y temperatura, siendo esta última de 35°C a 40 °C por un período de 2 a 4 meses. Estos procesos ampliamente conocidos, no se relacionan ni con el proceso, ni con el producto de la presente invención, que utiliza una combinación específica de cuatro bacterias celulolíticas para realizar una fermentación en estado sólido de harina de soya para disminuir los factores antinutricionales.
El documento WO 2009065722 presenta un método para fermentar un sustrato que contiene una proteína de soya. El método comprende las etapas de proveer un líquido acuoso estéril que contiene 0,5 a 8% en peso de proteína de soya disuelta, 0 a 0,2 % en peso de proteína láctea y menos de 24% en peso de sólidos; inocular el líquido con un cultivo que comprende bacterias del grupo de las bacterias lácticas o acido lácticas seleccionadas que consiste de Lactococcus, Leuconostoc, Lactobacillus mesofñicos (con temperatura óptima menor a 35°C) y combinaciones de ellas; fermentar el líquido inoculado incubándolo a 20°C a 40°C durante 0,5 a 11 horas; donde durante la fermentación ocurren los siguientes cambios en concentraciones: la concentración de diacetil aumenta al menos 0,2 ppm y/o la concentración de acetaldehído aumenta al menos 0,1 ppm; la concentración de al menos un n-alcanal C5-C9 disminuye al menos 30% y/o la concentración de trans-2-hexenal disminuye al menos 30%. El documento no se relaciona con la fermentación de harina de soya para la disminución de factores antinutricionales utilizando bacterias celulolíticas.
El documento WO 2005032568 describe un producto de soya fermentado por fermentación ácido láctica que tiene un fuerte efecto inmunopotenciador y un sabor favorable, y un proceso para producirlo. El producto se elabora fermentando soya o un producto procesado de soya a través de un cocultivo de bacteria láctica ácida con una levadura. La bacteria láctica ácida es al menos Enterococcus faecalis, opcionalmente combinada con otro coccus, bacilos o bifidobacterias. La levadura es Saccharomyces cerevisiae y/o Saccharomyces rosei. La soya fermentada es producida fermentando leche de soya usando los microorganismos mencionados, para entregar un producto líquido fermentado que luego es neutralizado con un compuesto de calcio y luego es secado para resultar en un producto fermentado en polvo. El documento no se relaciona con la fermentación de harina de soya para la disminución de factores antinutricionales utilizando bacterias celulo líricas.
El documento WO 2002085131 presenta un método para producir un producto sabroso a partir de una fuente de proteína usando una combinación de dos cepas distintas de bacteria. La fuente de proteína puede ser soya, trigo o arroz, pero es preferible leche o suero. La primera cepa es seleccionada entre Macrococcus, Micrococcus, Entercoccus, Staphylococcus, Brevibacterium, Anthrobacter y Corynebacterium, preferentemente Macrococcus caseolyticus. La segunda cepa es seleccionada entre Lactococcus, Lactobacillus, Pediococcus o Leuconostoc. La fuente de proteína es fermentada con la bacteria a un pH sobre el punto isoeléctrico de la proteína, preferentemente a un pH de 5,5 a 6,5. El documento no se relaciona con la fermentación de harina de soya para la disminución de factores antinutricionales utilizando bacterias celulolíticas.
El documento CN102210412 describe un alimento para mejorar la tasa de carne de Tilapia mossambica y un método para prepararlo. El alimento contiene principalmente harina de raps fermentada y harina de soya fermentada y es absorbido efectivamente durante la digestión. Ambas harinas fermentadas son adquiridas comercialmente por lo que no se incluyen detalles del proceso de fermentación utilizado. El documento menciona que el proceso de fermentación elimina inhibidores de tripsina, taninos y otros factores antinutricionales. El documento mencionado no divulga una forma de realizar la fermentación, ya que las harinas fermentadas utilizadas son adquiridas comercialmente.
Los documentos mencionados son los documentos más cercanos a la presente invención, sin embargo, el estado del arte previo no considera como problema a solucionar, favorecer el valor nutritivo de harina de soya, mediante la disminución de agentes antinutricionales, como polisacáridos no almidón y alfa-galactósidos. Por la misma razón, el estado del arte no considera que para obtener esa mejora, se pueda emplear una combinación de los tres géneros de bacterias que propone esta invención y para ser empleada en un procedimiento de fermentación en estado sólido de la harina de soya.
Adicionalmente a los documentos de patente mencionados, en el estado del arte se conocen algunos procesos industriales de fermentación de harina de soya. La compañía Hamlet Protein AS, Horsens, Dinamarca comercializa harina de soya fermentada, mediante un proceso biotecno lógico, donde resulta un producto que presenta reducción del contenido de oligosacáridos, aumento de la concentración de proteínas y eliminación de factores antinutricionales. El proceso que utiliza esta compañía no está totalmente claro, sin embargo, en sus solicitudes de patente US20060233913, WO2011147923, y US20110034394A1 se describen procesos de fermentación de soya, otras semillas y proteínas de levadura, por medio de levaduras o enzimas específicas. No se menciona el uso de bacterias celulolíticas para la preparación de los productos de esta compañía.
La compañía Dongguan Yinhua Biotechnology Co Ltd, Dongguan, China, también comercializa harina de soya fermentada. El proceso que utiliza para tratar la harina de soya tampoco está completamente claro, pero en su solicitud de patente CN101161810 divulga que realiza una fermentación de soya y otras semillas utilizando levaduras. No se menciona el uso de bacterias celulolíticas para la preparación de los productos de esta compañía.
A diferencia de lo divulgado en el estado de la técnica, el proceso de la invención no utiliza enzimas comerciales ni industriales, usa bacterias escogidas que aportan sus enzimas durante el crecimiento sobre la harina de soya.
Breve descripción de la invención
Se ha desarrollado un proceso de fermentación sólida de harina de soya con la utilización de 4 microorganismos nativos (ver Figura 1) seleccionados que reduce sobre un 90% la presencia de alfa-galactósidos y en alrededor de un 20% los polisacáridos no almidón (NSPs) que son los ANFs termoestables de mayor volumen en la soya. En forma conjunta la fermentación permite incrementar la proporción proteica en alrededor de un 13,5%. Esto permite proyectar mayores niveles de inclusión de harina de soya fermentada proyectando una reducción en los costos de la formulación de alimentos para especies acuícolas. La harina de soya reducida en factores antinutricionales mediante la fermentación en estado sólido utilizando bacterias celulolíticas nativas permite disponer de un alimento nutricional y funcionalmente excelente y de bajo costo. Un carácter adicional es que las bacterias agregadas en el bioproceso entregan componentes que permanecen en el insumo y pueden actuar como inmunoestimulante, otorgando un carácter funcional al insumo desarrollado.
Breve descripción de las figuras
Figura 1 : El panel A presenta fotografías de la visualización de las cepas seleccionadas en microscopio electrónico y el panel B presenta la actividad celulolítica medida con la técnica de rojo Congo en las cepas seleccionadas, a: CR18 Streptomyces; b: S7 Cohnella; c: T5 Cellulosimicwbium; d: L39 Streptomyces. Figura 2: Riqueza de cepas obtenida mediante el análisis del espaciador intergénico 16-23S rDNA. La distancia genética presentada se calculó mediante el coeficiente DICE utilizando los perfiles ITS obtenidos. Los dendogramas se desarrollaron utilizando el software GelCompar II con una tolerancia de un 2%. A: Tierra de jardín. B: Lombriz (Eisenia foetida). C: Silo de maíz. D: Termita (Neotermes chilensis). E: Hojas en descomposición. F: Contenido ruminal bovino.
Figura 3 : Comparación entre el grupo inoculado (con bacterias seleccionadas) y el grupo no inoculado en el contenido de A: estaquiosa, B: rafinosa, C: polisacáridos no almidón (NSPs) y D: pro teína.
Figura 4: A: Cromatogramas de los estándares de estaquiosa y rafinosa, B: cromatograma de la harina de soya sin fermentar y C: cromatograma de la harina de soya fermentada. *: estaquiosa; **: rafinosa.
Figura 5: Gráfico de barras de la comparación en la cantidad de 19 aminoácidos (g en 100 g de harina de soya (MS)) entre la harina de soya y la harina de soya fermentada.
Figura 6: Microscopía electrónica de barrido que muestra las bacterias seleccionadas durante la fermentación.
Descripción detallada de la invención
Con el objetivo de disminuir los factores antinutricionales en la harina de soya, especialmente NSPs y alfa-galactó sidos, de modo de aumentar su incorporación como insumo en la dieta de animales, en particular peces, especialmente salmones, se ha desarrollado un proceso de fermentación sólida de harina de soya con la utilización de 4 microorganismos nativos seleccionados que reduce sobre un 90% la presencia de alfa-galactósidos y en alrededor de un 20% los polisacáridos no almidón (NSPs) que son los ANFs termoestables de mayor volumen en la soya. En forma conjunta la fermentación permite incrementar la proporción proteica en alrededor de un 13,5%.
Los microorganismos para el proceso de fermentación en estado sólido de harina de soya de la presente invención, están seleccionados en base al planteamiento de que en los ambientes naturales, la degradación de polisacáridos complejos ocurre gracias a la concurrencia de una mezcla de microorganismos. En la mezcla, cada microorganismo está dirigido hacia su especialización enzimática, buscando obtener azúcares simples para su metabolismo. La inclusión adicional de una cepa de rápido crecimiento en NSPs de soya, ayuda a consumir los productos de las reacciones enzimáticas para prevenir de posibles inhibiciones por producto. Esto es una ventaja importante cuando se compara con procesos basados en un solo microorganismo .
Para la selección de las bacterias que participan en el proceso de fermentación en estado sólido de la harina de soya se consideraron tres actividades enzimáticas clave, basadas en las estructuras de los enlaces glicosídicos de los NSPs y alfa-galactósidos: celulasa, beta-xilanasa y alfa- galactosidasa. Los NSPs presentan una estructura más compleja que los alfa-galactósidos, porque son una mezcla de polímeros: celulosa, hemicelulosa y pectinas. Además, la celulosa es un polisacárido homogéneo compuesto de subunidades de D-glucosa unidas por enlaces beta(l-4) glicosídicos, que es degradado por sistemas de celulasas que hidrolizan específicamente estos enlaces (Pérez, J.; Muñoz- Dorado, J.; de la Rubia, T.; Martínez, J. 2002, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5, 53-63). Debido a que la celulosa corresponde al 30% p/p de los NSPs en la harina de soya (Knudsen, K.E.B. 1997, Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology, 67, 319-338), este homopolímero fue el primer blanco considerado para degradar NSPs usando un proceso de fermentación en estado sólido.
En contraste, las hemicelulosas y pectinas son polisacáridos heterogéneos, que requieren diversas enzimas hidrolasas diferentes para su degradación. Por lo tanto, se considera que la endo-1 ,4- beta-xilanasa, que hidroliza el esqueleto de xilosa presente en la hemicelulosa es una actividad complementaria útil en la degradación de NSPs. (Pérez, J. ; Muñoz-Dorado, J. ; de la Rubia, T.; Martínez, J. 2002, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology , 5, 53-63).
Los alfa-galactósidos son oligosacáridos que consisten principalmente de una o dos unidades de galactosa 1,6-alfa enlazadas, unidas por enlaces 1 ,3-alfa a un terminal de sacarosa (Karr- Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C. 2005, Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science, 97, 1-12). La hidrólisis del disacárido sacarosa ocurre en el tracto digestivo de animales por acción de la enzima sacarasa. Por lo tanto, la reducción de los alfa-galactósidos está enfocada en la hidrólisis de enlaces 1,6-alfa- galactosa mediante alfa-galactosidasa.
Por lo tanto, en la presente invención se diseñó un proceso de fermentación de harina de soya en estado sólido donde se utilizan bacterias que tienen actividades celulasa, beta-xilanasa y alfa- galactosidasa, con el fin de degradar secuencialmente, y en forma controlada y racional los factores antinutricionales presentes en la harina de soya que causan enfermedades y disminución de crecimiento en los peces. La combinación de las actividades enzimáticas de las bacterias seleccionadas, junto a una bacteria que presenta un alto crecimiento en NSPs extraídos de soya, que ayuda a consumir los productos de las reacciones enzimáticas para prevenir de posibles inhibiciones por producto, proporciona un proceso de fermentación en estado sólido de harina de soya que genera un producto con una reducción de sobre 90% de la presencia de alfa- galactósidos y una reducción de alrededor de 20% de NSPs, ya que en primer lugar se degradan los azúcares más simples y luego los más complejos y adicionalmente, por otras actividades enzimáticas de las bacterias seleccionadas, ocurre una predigestión de proteínas, lo que genera una gama variada de péptidos que contiene un perfil balanceado de aminoácidos, apto para la alimentación de animales, especialmente de peces, en particular de salmones.
Para la selección racional de las bacterias del proceso se realizó un barrido en muestras de ambientes donde se encuentran naturalmente bacterias con las actividades requeridas. Se tomaron muestras de tierra de jardín, lombrices (Eisenia foetida), silo de maíz, termitas (Neotermes chilensis), hojas en descomposición y contenido ruminal bovino. Las muestras fueron tratadas y cultivadas con el fin de aislar las diferentes cepas presentes en esos ambientes. Se realizó la identificación filogenética de las cepas amplificando el gen para el RNA ribosomal 16S rDNA, secuenciándola y comparándola con las secuencias presentes en la base de datos Ribosomal Data Project II (http://rdp.cme.msu.edu) para identificar el género bacteriano.
Posteriormente las cepas fueron analizadas para las tres actividades mencionadas y se eligieron las cepas con mejores actividades.
En el análisis para la actividad celulasa, se seleccionaron dos cepas con alta actividad, pertenecientes a los géneros Cohnella sp y Streptomyces sp. En el análisis de la actividad beta- xilanasa, una cepa del género Cellulosimicrobium sp fue seleccionada por su alta actividad. Se comprobó que las cepas previamente seleccionadas por su actividad celulasa, también presentan actividad alga-galactosidasa. Adicionalmente se seleccionó una cepa del género Streptomyces sp, que presentó un rápido crecimiento sobre NSPs de soya, que ayuda a consumir los productos de las reacciones enzimáticas para prevenir de posibles inhibiciones por producto.
En consecuencia, para el proceso de la presente invención se seleccionaron cuatro cepas bacterianas de los géneros Streptomyces sp, Cohnella sp y Cellulosimicrobium sp. (Figura 1).
Las cepas seleccionadas fueron depositadas ante el servicio de investigación de agricultura de Estados Unidos (The Agricultural Research Service (ARS)), el 25 de noviembre de 2011, donde recibieron los siguientes números de acceso: NRRL B-50604 cepa del género Cohnella sp, NRRL B-50603 cepa del género Cellulosimicrobium sp, NRRL B-50602 cepas del género Streptomyces sp, y NRRL B-50601 cepas del género Streptomyces sp.
La cepa NRRL B-50604 del género Cohnella sp es Gram positiva, fusiforme y tiene alta actividad celulolítica total y alta actividad alfa-galactosidasa. La cepa NRRL B-50602 del género Streptomyces sp es Gram positiva, tiene forma de cocobacilos y tiene alta actividad celulolítica total y alta actividad alfa-galactosidasa. La cepa NRRL B-50603 del género Cellulosimicrobium sp es Gram positiva, tiene forma de cocos y tiene alta actividad endo-1 ,4- beta-xilanasa. La cepa NRRL B-50601 del género Streptomyces sp. es Gram positiva, tiene forma de micelios y presenta un rápido crecimiento sobre NSPs extraídos de soya.
Las cepas estudiadas y seleccionadas son autóctonas y sus caracteres moleculares las hacen trazables y distinguibles de otras cepas de colección, lo que asegura su novedad, especialmente en la utilización combinada de las cuatro cepas para un proceso de fermentación de harina de soya para la disminución de factores antinutricionales.
Proceso de Fermentación en estado sólido desarrollado:
El proceso de fermentación en estado sólido de la presente invención comprende las etapas de: a) preparación del sustrato de la fermentación; b) inoculación del sustrato con las cepas bacterianas seleccionadas; y c) incubación. En una realización particular el proceso comprende adicionalmente la etapa de d) secado del producto.
La harina de soya requerida para este proceso debe tener idealmente un tamaño de partícula entre 200 y 600 μιη. En una realización particular el tamaño de partícula de la harina de soya es de 400 μιη.
La etapa a) preparación del sustrato de la fermentación, consiste en mezclar la harina de soya con agua y luego con la solución de fermentación.
La etapa de preparación del sustrato comienza con el acondicionamiento de la harina de soya en un contenedor o cámara cerrada, donde se incorpora agua y una solución de fermentación que comprende diferentes minerales y sales que favorecen el proceso de fermentación. En una realización particular la solución de fermentación para preparar 10 kilos de harina de soya/agua, con 7 litros de agua, contiene: 5 g de MgSC , 1 ,22 g de CaCl, 13,6 g de NH4CI, 2,233 g de KC1, 10 mg de FeSC pentahidr atado, 10 mg de MnCl tetrahidratado, 10 mg de ZnSC>4 pentahidratado, 1,2 mi de H3PO4 y 21,13 g de Na2HP04. El agua se adiciona en una proporción de agua/harina de soya entre 2:1 y 3:1 (v/p). En una realización particular la tasa de peso de agua a harina de soya es 2,4:1 (v/p).
Una vez humedecida la harina de soya se procede a la etapa de b) inoculación del sustrato con las cepas bacterianas seleccionadas: NRRL B-50604 cepa del género Cohnella sp; NRRL B- 50603 cepa del género Cellulosimicrobium sp; NRRL B-50602 y NRRL B-50601 cepas del género Streptomyces sp. (ver Figura 1). En la etapa de inoculación del sustrato con las cepas bacterianas seleccionadas se inoculan entre lxl07 y lxlO11 células por gramo de sustrato, de cada cepa seleccionada. En una realización particular se inoculan lxlO9 células por gramo de sustrato, de cada cepa seleccionada.
A continuación se realiza la etapa c) incubación. En esta etapa la mezcla de harina de soya, agua, solución de fermentación y bacterias se incuba por un período de tiempo y a una temperatura establecida. La etapa de incubación se realiza a 37°C durante 6 a 14 días con movimientos rotatorios (entre 3 y 7 rpm, preferentemente 5 rpm). En una realización particular la incubación se realiza durante 10 días. En la incubación se busca regular el pH del proceso mediante la adición de un tampón en la solución de fermentación. Este tampón tiene un pH entre 6,5 y 7,5. En una realización particular el pH del tampón es 7,0.
Una vez finalizada la incubación, la harina de soya fermentada puede ser comercializada en diferentes niveles de humedad, sin embargo, para su mejor conservación podría ser necesario disminuir el contenido de agua mediante un proceso de secado opcional al proceso. La etapa de d) secado del producto puede realizarse por cualquier técnica conocida, a modo de ejemplo, secado por atomización mediante spray dryer, mediante sublimación, estufa de vacío, u otros, o una combinación de ellos.
Ventajas del proceso y del producto generado
El proceso anterior no utiliza enzimas comerciales ni industriales, solo usa los microorganismos que aportan sus enzimas durante el crecimiento sobre la harina de soya. Esto representa una importante ventaja en el sentido de reducir costos.
Con el proceso anterior se obtiene un producto con un aumento de proteína de alrededor de 13,5% (entre 12 y 15%), degradación de casi la totalidad de los alfa-galactósidos (mayor a 90%) y alrededor de 20% de reducción de NSPs (entre 15 y 25%). Además, el proceso no afecta el perfil de aminoácidos de la harina de soya (ver Figura 5), presentando aún después de la fermentación un perfil balanceado y adecuado para la nutrición de animales, especialmente peces, en particular de salmones. Adicionalmente, el proceso tiene la ventaja comparativa de que las bacterias seleccionadas no generan compuestos tóxicos como aminas biógenas o toxinas, como ocurre en procesos que utilizan hongos.
Otra característica importante del proceso es que se realiza con una tasa de peso de agua a sustrato muy baja, entre 2:1 y 3 :1 (v/p), lo que disminuye los costos de secado posteriores.
Las características del nuevo producto, harina de soya fermentada con factores antinutricio nales disminuidos, permite considerar mayores niveles de inclusión de harina de soya fermentada proyectando una reducción en los costos de la formulación de alimentos para especies acuícolas. Un carácter adicional es que las bacterias agregadas en el bioproceso de fermentación entregan componentes que permanecen en el insumo y pueden actuar como inmunoestimulante, otorgando un carácter funcional al insumo desarrollado.
Aplicación industrial
El área específica de aplicación de la presente invención es la industria de alimentos, en particular, la industria de alimentos para animales y más particularmente en la industria de alimentos para peces, especialmente salmones. La harina de soya fermentada por el proceso de la invención se puede aplicar para el mejoramiento de insumos proteicos de origen vegetal, específicamente de harina de soya. Estos insumos son utilizados con restricciones para la formulación de dietas de animales, en especial dietas en la acuicultura. Su mejoramiento a través del proceso de la invención, genera un insumo enriquecido en proteínas y libre de los factores antinutricionales asociados a oligosacáridos.
La proyección del insumo mejorado por la fermentación puede aplicarse no solo al área acuícola, también puede emplearse en la producción de cerdos y aves, y también en el área de las mascotas.
Cualquier experto en el área puede apreciar que se pueden realizar numerosas variaciones y/o modificaciones a la invención como ha sido descrita, sin alejarse del ámbito de protección. Las realizaciones descritas, así como los ejemplos a continuación, son ilustrativos y en ningún caso limitan la invención.
Ejemplos de aplicación
Ejemplo 1 : Aislamiento de bacterias.
La primera etapa de este desarrollo correspondió al aislamiento dirigido de las bacterias de diferentes ambientes y su posterior caracterización molecular. Se seleccionaron los siguientes ambientes: tierra de jardín, lombrices (Eisenia foetida), silo de maíz, termitas (Neotermes chilensis), hojas en descomposición y contenido ruminal bovino.
Las muestras tomadas de los ambientes anteriores fueron inmediatamente procesadas después de su recolección. Las muestras fueron trituradas, pesadas y homogenizadas en tampón PBS estéril. Luego fueron sembradas en medio sólido mínimo de carboximetil celulosa que contenía: carboximetilcelulosa 5 g (Merck), NH4CI 6 g , Na2HP04 0,6 g, BactoAgar 15 g, Amfotericina B 10 mg y trazas de elementos esenciales de Hendriks (Hendricks, C.W.; Doyle, J.D.; Hugley, B. 1995, A New Solid Médium for Enumerating Cellulose-Utilizing Bacteria in Soil. Applied and Environmental Microbiology, 61 , 2016-2019) y 1L de agua. La incubación se realizó por 5 días a 25°C. Fueron seleccionadas un total de 240 colonias bacterianas que crecieron en el medio seleccionado a distintas diluciones. De estas 240 colonias, 113 cepas bacterianas presentaron actividad celulolítica medida por rojo congo (Ruijssenaars, H.J.; Hartmans, S. 2001, Píate screening methods for the detection of polysaccharase-producing microorganisms. Applied Microbiology and Biotechnology, 55, 143-149). La Figura 1 presenta el análisis para las cepas seleccionadas.
Se realizó la identificación filogenética de las cepas celulolíticas, mediante la amplificación de su secuencia 16S rDNA. El DNA genómico fue aislado de los cultivos bacterianos con el kit de purificación de DNA genómico de Promega. El amplificado 16s corresponde desde la posición 341 a la 907 (numeración de E.coli) y luego para una mejor identificación de las cepas celulolíticas seleccionadas, el 16S rDNA fue amplificado casi completamente, desde la posición 27 a la 1492 (numeración de E.coli). La reacción de PCR fue realizada en una mezcla de reacción de 30 μΐ que contenía 0,2 mM de cada dNTP (Invitrogen), 0,05 UmL"1 de Taq DNA polimerasa recombinante (Invitrogen), tampón de reacción de polimerasa, 2 mM MgCi2 y 0,25 pM mL"1 de cada partidor y 1 ,0 μΐ de DNA genómico de la cepa. Los partidores fueron 341 , SEQ ID NO 1 : CCT ACG GGA GGC AGC AG y 907, SEQ ID NO 2: CCG TCA ATT CMT TTG AGT TT para secuencia corta o 27F, SEQ ID NO 3: AGAGGTTTGATCCTGGCTCAG y 1492R, SEQ ID NO 4: GGTTACCTTGTTACGACTT para secuencia larga. El programa del termociclador fue: pre-denaturación inicial, 3 minutos a 95°C, luego 30 ciclos de denaturación durante 1 minuto a 95°C, alineamiento de partidores durante 1 minuto a 58°C, extensión durante 1 minuto a 72°C y ciclo final de extensión durante 7 minutos a 72°C. La secuenciación fue editada previamente y fue comparada con la base de datos Ribosomal Data Project (http://rdp.cme.msu.edu) para identificar el género bacteriano. Para distinguir el nivel de la cepa en el género identificado se realizó una amplificación por PCR del espaciador intergénico (ITS) entre los genes 16-13S rDNA. La reacción de PCR fue realizada con el mismo protocolo antes expuesto, pero los partidores fueron Ll , SEQ ID NO 5: GAA GTC GTA ACA AGG y Gl, SEQ ID NO 6: CAA GGC ATC CAC CGT. Las condiciones del PCR fueron las siguientes: pre-denaturación inicial, 3 minutos a 95°C, luego 30 ciclos de denaturacion durante 30 minutos a 95°C, alineamiento de partidores durante 1 minuto a 58°C, extensión durante 1 minuto a 72°C y ciclo final de extensión durante 7 minutos a 72°C. Los productos de PCR fueron visualizados en geles de electroforesis de poliacrilamida teñidos con plata (González, N. ; Romero, J.; Espejo, R.T. 2003, Comprehensive detection of bacterial populations by PCR amplification of the 16S-23S rRNA spacer región. Journal of Microbiological Methods, 55, 91-97). Los perfiles ITS 16S-23S rDNA (región intérgenica ribosomal entre genes 16S y 23S, corresponde a un espaciador interno transcrito, ITS por sus iniciales en inglés: internal transcribed spacer) fueron analizados con el software Gel compare (Applied Maths) con una tolerancia de posición de 2%. La distancia genética fue calculada basada en el coeficiente DICE usando fragmentos de DNA.
Con estos análisis se estableció la identificación de las cepas aisladas y su diferenciación a nivel de cepa, ver Figura 2.
Posteriormente fueron seleccionados representantes de cada uno de los clúster de los ITS obtenidos para realizar una selección con 3 actividades enzimáticas: actividad celulolítica total (EC 3.2.1.4; EC 3.2.1.9 1 ; 3.2.1.21), actividad endo-l,4-beta-xilanasa (EC 3.2.1.8) y actividad 1 ,6-alfa-galactosidasa (EC 3.2.1.22). Esta última solo fue evaluada en un grupo de cepas pre- seleccionadas con las actividades enzimáticas anteriores.
La actividad celulolítica total y la actividad endo-l,4-beta-xilanasa fueron analizadas en un ensayo de exploración evaluando los aislados bacterianos. Subsecuentemente, cepas seleccionadas fueron evaluadas en un ensayo comparativo realizando 8 réplicas por cada cepa. La actividad celulolítica total y la actividad endo-l,4-beta-xilanasa fueron analizadas con un sobrenadante de un cultivo bacteriano en un medio mínimo con extracto de harina de soya. Este extracto se obtiene mediante el proceso de extracción de NSPs propuesto por Englyst et al. (Englyst, H.N.; Quigley, M.E.; Hudson, G.J. 1994, Determination of Dietary Fiber As Nonstarch Polysaccharides with Gas-Liquid-Chromatographic, High-Performance Liquid-Chromatographic Or Spectrophotometric Measurement of Constituent Sugars. Analyst, 119, 1497-1509). Dentro del método se obtiene específicamente este extracto después del lavado con acetona. Este extracto de harina de soya está libre de monosacáridos, oligosacáridos y almidón (Englyst, H.N.; Quigley, M.E.; Hudson, GJ. 1994, Determination of Dietary Fiber As Nonstarch Polysaccharides with Gas-Liquid-Chromatographic, High-Performance Liquid-Chromatographic Or Spectrophotometric Measurement of Constituent Sugars. Analyst, 119, 1497-1509) y el contenido de NSPs es 30 mg en 100 mg de extracto.
El medio de cultivo enzimático contenía: extracto de harina de soya Englyst 20 mg, NH4CI 12 mg, Na2HPC>4 1 mg en 2 mi de agua. 1 x 107 células de cada cepa celulolítica fueron inoculadas en 2 mi del medio anterior y fueron incubadas durante 4 días a 25°C. La actividad celulolítica total fue evaluada por el método del papel filtro con modificaciones, con un periodo de incubación de 24 horas a 50°C (Ghose, T. 1987, Measurement of cellulase activities. Puré & applied Chemistry, 59, 257-268). La unidad de actividad celulolítica total fue definida como la cantidad de μιηοΐεβ de glucosa liberados por minuto por un mi de sobrenadante de cultivo bacteriano (Nitisinprasert, S.; Temmes, A. 1991, The Characteristics of A New Non-Spore- Forming Cellulolytic Mesophilic Anaerobe Strain Cml26 Isolated from Municipal Sewage- Sludge. Journal of Applied Bacteriology, 71 , 154-161). La actividad endo-l,4-beta-xilanasa fue evaluada por el método de derivados de p-nitrofenil: p-nitrofenil-beta-D-xilopiranosido. Una unidad de actividad beta-xilanasa fue definida como la cantidad de μιηοΐεβ de p-niotrofenol liberados por minuto por un mi de sobrenadante de cultivo bacteriano a 25°C (Tirado, O.; Rosado, W.; Govind, N.S. 2005, Characterization of bacteria with carbohydrase activities from tropical ecosystems. Journal of the Marine Biological Association of the United Kingdom, 85, 269-275). La clave para la selección de las cepas fue la presencia de actividades enzimáticas significantes y altas.
La actividad alfa-D-galactosidasa fue evaluada por el método de derivados de p-nitrofenil: p- nitrofenil-alfa-D-galactopiranosido (Tirado, O.; Rosado, W.; Govind, N.S. 2005, Characterization of bacteria with carbohydrase activities from tropical ecosystems. Journal of the Marine Biological Association of the United Kingdom, 85, 269-275). En el ensayo se usó un medio mínimo que contenía: rafinosa pentahidrato (Sigma, St. Louis, MO, USA) 20 g, NH4CI 6 g, Na2HPC>4 0,6 g y 2,5 g, Bacto Yeast Extract en 1L de agua. La unidad de actividad alfa-D- galactosidasa fue definida como la cantidad de enzima que liberó 1 μιηοΐ de p-nitrofenol por minuto por mi de sobrenadante de cultivo bacteriano a 25°C (Tirado, O.; Rosado, W.; Govind, N.S. 2005, Characterization of bacteria with carbohydrase activities from tropical ecosystems. Journal o f the Marine Biological Association ofthe United Kingdom, 85, 269-275). Se seleccionaron 4 cepas bacterianas en base a sus actividades enzimáticas destacadas, correspondiendo a las cepas: Streptomyces sp (NRRL B-50602 y NRRL B-50601), Cohnella sp (NRRL B-50604) y Cellulosimicrobium sp (NRRL B-50603).
Ejemplo 2: Fermentaciones en estado sólido a escala de laboratorio.
Con las bacterias seleccionadas fueron desarrollados experimentos de fermentación en estado sólido a escala de laboratorio para evaluar la degradación de los ANFs propuestos, además de algunos diseños factoriales para optimizar inicialmente el proceso. Las condiciones encontradas se validaron en un experimento a escala de laboratorio con 5 réplicas donde se comparó el contenido de alfa-galactósidos y NSPs en dos grupos: un grupo con inoculo de bacterias seleccionadas (lxlO9 células por gramo de sustrato, para cada cepa seleccionada) y otro grupo sin inoculo, en condiciones y parámetros similares.
Las condiciones de las fermentaciones fueron las siguientes: en botellas de vidrio con aireación filtrada se agregaron 30 g de harina de soya (con tamaño de partícula de 400 μιη y esterilizada por irradiación gamma con 25 kilogray) y solución de fermentación en una tasa de peso de agua a sustrato de 2,4:1 (v/p) con una humedad relativa cercana al 85%. Esto fue considerado el sustrato. La solución de cultivo contenía: tampón fosfato 100 mM pH 7,0 con MgS04 · 7H20 150 μg, CaCl2 36,5 μg, NELCl 408 μg, KC1 67 μg, FeS04 · 7H20 30 μg, MnCl2 · 4H20 30 μg, y ZnSC · 7H20 30 μg para 30 g de sustrato. Las botellas fueron incubadas con movimientos rotatorios (5 rmp) durante 10 días a 37°C.
Los NSPs fueron cuantificados por medición espectrofotométrica (Englyst, H.N;, Quigley, M.E.; Hudson, G.J. 1994, Determination of Dietary Fiber As Nonstarch Polysaccharides with Gas- Liquid-Chromatographic, High-Performance Liquid-Chromatographic Or Spectrophotometric Measurement of Constituent Sugars. Analyst, 119, 1497-1509), la rafinosa y la estaquiosa fueron extraídas según el método de Giannoccaro et al. (Giannoccaro, E.; Wang, Y.J.; Chen, P.Y. 2006; Effects of solvent, temperature, time, solvent-to-sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean. Journal of Food Science, 71, C59-C64) y cuantificadas por HPLC acoplado a un detector de índice refractivo Erma ERC-7510, usando una columna de oligosacáridos REZEX RSO (200 mm · 10 mm; Phenomenex, Torrance, CA, USA), mantenida a 60°C. Se usó agua de grado HPLC como eluente con una tasa de flujo de 0,2 mi min"1 (LeBlanc, J.G.; Garro, M.S.; de Giori, G.S. 2004; Effect of pH on Lactobacillus fermentum growth, raffinose remo val, alpha-galactosidase activity and fermentation products. Applied Microbiology and Biotechnology, 65, 119-123) y la proteína fue cuantificada por el método de Kjeldahl method (AOAC, 1990, Official Methods of Analysis of Association of Official Analytical Chemistry 15 th Edition. Arlington VA, Method 960.52).
Los resultados de los análisis de los ANFs se presentan en la Figura 3 (A, B, C y D). El proceso de fermentación en estado sólido con las bacterias seleccionadas mostró que se produce una reducción de un 87,5% para la estaquiosa y 69% para la rafinosa. Estos azúcares son los principales alfa-galactósidos de la harina de soya. Los NSPs fueron reducidos en un 24%. El proceso aportó además un aumento de 11 ,76% del contenido total de proteína en la harina de soya con inoculo (Figura 3 D).
Ejemplo 3 : Fermentaciones en estado sólido a mayor escala.
Una vez obtenido el objetivo a nivel de escala de laboratorio, se desarrolló una cámara de fermentación a mayor escala usando los parámetros establecidos anteriormente.
La solución de fermentación se preparó de acuerdo a la Tabla 1.
Tabla 1 : Solución de fermentación para 10 kilos de harina de soya/agua, con 7 litros de agua.
Figure imgf000021_0001
Los resultados de reducción de factores nutricionales de esta fermentación se presentan en la Tabla 2 y Tabla 3. Tabla 2: Análisis químico proximal de la harina de soya sin fermentar y de la harina de soya fermentada.
Figure imgf000022_0001
Tabla 3: Reducción de factores antinutricionales en la fermentación de harina de soya comparada con la harina de soya sin fermentar.
Figure imgf000022_0002
Los resultados del proceso de escalamiento muestran que existe un aumento en el contenido de proteína de aproximadamente un 15,8%. Además se observó una reducción de los alfa- galactósidos a niveles no detectables para la técnica de HPLC sugiriendo una reducción de sobre el 90% de ellos. En la Figura 4 se presenta un cromatograma de A: los estándares de estaquiosa y rafinosa, B: harina de soya sin fermentar y C: harina de soya fermentada, obtenidos del análisis de HPLC. La reducción de NSPs fue de un 13.73%.
Además se realizó un análisis del perfil de aminoácidos entre la harina de soya fermentada y la no fermentada. Los resultados se presentan en la Figura 5. En general el perfil de aminoácidos no presenta importantes variaciones manteniendo el normal balance de amino ácidos de la soya incluyendo sus limitaciones en metionina y lisina.
Ejemplo 4: Pruebas funcionales
Las cepas bacterianas utilizadas para la fermentación de harina de soya de la presente invención, fueron evaluadas en su estimulación del sistema inmune innato de peces, utilizando el modelo pez cebra axénico (libre de gérmenes). En este modelo, larvas de 3 días postfertilización (dpf), fueron expuestas a las bacterias hasta el día 6 dpf, cuando fueron analizadas en su expresión génica mediante PCR cuantitativo. Entre las cepas seleccionadas en el proceso se encuentran dos del género Streptomyces, ambas inducen la expresión del gen C3, el cual pertenece al sistema del complemento que es una de las respuestas importantes de la inmunidad innata en peces. Esta proteína favorece la opsonización de los microbios y su posterior fagocitosis. Esto indica que moléculas derivadas de las bacterias incluidas en el proceso (Figura 6) y que se incorporan al insumo final, ejercen un efecto inmunoestimulante en peces.
Ejemplo 5: Conclusiones y proyecciones
El proceso de fermentación en estado sólido con las bacterias celulolíticas seleccionadas permite reducir algunos de los ANFs termoestables de la soya como los alfa-galactósidos (estaquiosa y rafinosa) y NSPs. Además aumenta el contenido de pro teína en un 13,5% aproximadamente, manteniendo el perfil de aminoácidos. Este aumento en la proteína impacta el proceso de formulación de dietas. Dado que en la harina de soya fermentada existe mayor proporción de proteína, este insumo logra entregar los niveles de proteína considerados en una dieta usando un menor volumen del insumo. Esto trae como consecuencia que todos los factores antinutricionales de la harina de soya disminuyen su presencia en el alimento final. Este beneficio se suma a la degradación de los GOSs y NSPs que la fermentación produce. El carácter funcional otorgado al incluir las moléculas bacterianas en el insumo (Figura 6) y demostrado en pez cebra, permite proyectar el insumo más allá de un simple reemplazo de la harina de soya, porque además se presenta como un insumo funcional inmunoestimulante.
Ejemplo 6: Propiedades de harina de soya libre de oligosacáridos alfa-galactósidos y reducida en polisacáridos no almidón obtenida con el método de la invención.
La Tabla 4 presenta las características de la harina de soya libre de oligosacáridos alfa- galactósidos y reducida en polisacáridos no almidón obtenida con el método de la invención. Tabla 4: Propiedades físicas, químicas y contenido de factores antinutricionales en harina de soya libre de oligosacáridos alfa-galactósidos y reducida en polisacáridos no almidón obtenida con el método de la invención.
Harina de soya sin Harina de soya
Unidad
fermentar Fermentada
Propiedac es físicas
Humedad % 8,4 ± 0,08 8,04 + 0,06
Propiedades químicas
Proteína total % 46,83 + 0,13 54, 23 + 0,14
Extracto etéreo % 7,77 ± 0,06 7,29 + 0,06
Extracto no
% 26,56 ± 0,04 18,68 + 0,26 nitrogenado
Energía kcal/100 g 363,67 ± 0,58 357,00 +0,00
Factores antinutricionales propuestos
Estaquiosa % 4,23 ± 0,93 < 0,15
Rafinosa % 1,38 + 0,15 < 0,15
NSPs % 16,10 + 0,17 13,89 + 0,73

Claims

Reivindicaciones
1. Método de fermentación de harina de soya en estado sólido para reducir polisacáridos no almidones y alfa galactósidos, CARACTERIZADO porque comprende las etapas de a) preparación del sustrato de la fermentación; b) inoculación del sustrato con cepas bacterianas seleccionadas; y e) incubación.
2. Método de acuerdo a la reivindicación 1 , CARACTERIZADO porque la harina de soya que forma parte del sustrato tiene un tamaño de partícula de entre 200 y 600 μιη.
3. Método de acuerdo a la reivindicación 2, CARACTERIZADO porque la harina de soya que forma parte del sustrato tiene un tamaño de partícula de 400 μιη.
4. Método de acuerdo a la reivindicación 3, CARACTERIZADO porque en la etapa a) de preparación del sustrato de la fermentación se mezcla la harina de soya con agua y luego con una solución de fermentación.
5. Método de acuerdo a la reivindicación 4, CARACTERIZADO porque la proporción de agua/harina de soya es entre 2:1 y 3:1 (v/p).
6. Método de acuerdo a la reivindicación 5, CARACTERIZADO porque la proporción de agua/harina de soya es 2,4:1 (v/p).
7. Método de acuerdo a la reivindicación 4, CARACTERIZADO porque la solución de fermentación comprende sulfates y/o cloruros de magnesio, calcio, nitrato, potasio, hierro, manganeso y zinc, y compuestos amortiguadores de pH.
8. Método de acuerdo a la reivindicación 1 , CARACTERIZADO porque en la etapa b) de inoculación del sustrato con cepas bacterianas seleccionadas, la mezcla de agua, harina de soya y solución de fermentación de la etapa a) se inocula con las cepas con número de acceso NRRL B-50604 del género Cohnella sp, NRRL B-50603 del género Cellulosimicrobium sp, y NRRL B-50602 y NRRL B-50601 del género Streptomyces sp.
9. Método de acuerdo a la reivindicación 8, CARACTERIZADO porque se inoculan entre 107 y 1011 células de cada cepa seleccionada por gramo de sustrato.
10. Método de acuerdo a la reivindicación 9, CARACTERIZADO porque se inoculan 109 células de cada cepa seleccionada por gramo de sustrato.
11. Método de acuerdo a la reivindicación 1 , CARACTERIZADO porque en la etapa c) de incubación, la mezcla de agua, harina de soya, solución de fermentación y bacterias se incuba a 37°C durante 6 a 14 días con movimientos rotatorios y el pH se mantiene entre 6,5 y 7,5.
12. Método de acuerdo a la reivindicación 11, CARACTERIZADO porque la mezcla se incuba durante 10 días.
13. Método de acuerdo a la reivindicación 1 , CARACTERIZADO porque adicionalmente comprende una etapa d) de secado del producto.
14. Harina de soya fermentada con contenido reducido de polisacáridos no almidones y alfa- galactósidos, preparada con el método de la reivindicación 1 a 13, CARACTERIZADA porque presenta un aumento de proteína de entre 12 y 15% con respecto a la harina de soya no fermentada, presenta degradación mayor al 90% de los alfa-galactósidos con respecto a la harina de soya no fermentada, presenta reducción de entre 15 y 25% de polisacáridos no almidones (NSPs), y presenta un perfil aminoacídico similar al de la harina de soya no fermentada.
15. Harina de soya fermentada de acuerdo a la reivindicación 14, CARACTERIZADA porque las bacterias agregadas en el bioproceso entregan componentes que permanecen en la harina de soya y tienen efectos inmunoestimulantes al ser consumidos.
16. Una cepa bacteriana aislada perteneciente al género Cohnella sp, depositada el 25 de Noviembre de 2011 en la Colección de Cultivos de Investigación Agrícola (NRRL) del Departamento de Agricultura de Estados Unidos con el número de acceso NRRL B- 50604, CARACTERIZADA porque dicha cepa es Gram positiva, fusiforme y tiene alta actividad celulolítica total y alta actividad alfa-galactosidasa.
17. Una cepa bacteriana aislada perteneciente al género Streptomyces sp, depositada el 25 de Noviembre de 2011 en la Colección de Cultivos de Investigación Agrícola (NRRL) del Departamento de Agricultura de Estados Unidos con el número de acceso NRRL B- 50602, CARACTERIZADA porque dicha cepa es Gram positiva, tiene forma de cocobacilos y tiene alta actividad celulolítica total y alta actividad alfa-galactosidasa.
18. Una cepa bacteriana aislada perteneciente al género Cellulosimicrobium sp, depositada el 25 de Noviembre de 2011 en la Colección de Cultivos de Investigación Agrícola (NRRL) del Departamento de Agricultura de Estados Unidos con el número de acceso NRRL B-50603, CARACTERIZADA porque dicha cepa es Gram positiva, tiene forma de cocos y tiene alta actividad endo-l ,4-beta-xilanasa.
19. Una cepa bacteriana aislada perteneciente al género Streptomyces sp, depositada el 25 de Noviembre de 2011 en la Colección de Cultivos de Investigación Agrícola (NRRL) del Departamento de Agricultura de Estados Unidos con el número de acceso NRRL B- 50601 CARACTERIZADA porque dicha cepa es Gram positiva, tiene forma de micelios y presenta un rápido crecimiento sobre NSPs extraídos de soya.
PCT/IB2013/050763 2012-02-03 2013-01-29 Reducción de polisacáridos no almidones y alfa-galactósidos en harina de soya mediante fermentación en estado sólido usando bacterias celulolíticas aisladas de distintos ambientes. WO2013114282A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/376,214 US9497980B2 (en) 2012-02-03 2013-01-29 Reduction of non-starch polysaccharides and alpha-galactosides in soy flour by means of solid-state fermentation using cellulolytic bacteria isolated from different environments
EP13743077.3A EP2810563B1 (en) 2012-02-03 2013-01-29 Reduction of non-starch polysaccharides and alpha-galactosides in soy flour by means of solid-state fermentation using cellulolytic bacteria isolated from different environments
BR112014018803A BR112014018803A8 (pt) 2012-02-03 2013-01-29 Redução de polissacarídeos que não de amido e alfa-galactosídeos na farinha de soja pela fermentação em estado sólido ao usar bactérias celulolíticas isoladas de diferentes ambientes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2012000296A CL2012000296A1 (es) 2012-02-03 2012-02-03 Metodo de fermentacion de harina de soya en estado solido para reducir polisacaridos no almidones y alfa galactosidos, el cual utiliza cepas bacterianas cohnella sp., cellulosimicrobium sp. y streptomyces sp.; harina de soya fermentada; y dichas cepas aisladas.
CL2012-00296 2012-02-03

Publications (3)

Publication Number Publication Date
WO2013114282A2 true WO2013114282A2 (es) 2013-08-08
WO2013114282A3 WO2013114282A3 (es) 2013-10-31
WO2013114282A9 WO2013114282A9 (es) 2014-01-09

Family

ID=52390697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/050763 WO2013114282A2 (es) 2012-02-03 2013-01-29 Reducción de polisacáridos no almidones y alfa-galactósidos en harina de soya mediante fermentación en estado sólido usando bacterias celulolíticas aisladas de distintos ambientes.

Country Status (5)

Country Link
US (1) US9497980B2 (es)
EP (1) EP2810563B1 (es)
BR (1) BR112014018803A8 (es)
CL (1) CL2012000296A1 (es)
WO (1) WO2013114282A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150342221A1 (en) * 2014-05-29 2015-12-03 Ohio Soybean Council Mitigation of anti-nutritional substances in plant meal
WO2016097638A1 (fr) 2014-12-18 2016-06-23 Veolia Proprete Biostimulation in-situ de l'hydrolyse de la matière organique pour optimiser sa valorisation énergétique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231565A1 (en) * 2017-06-15 2018-12-20 Dupont Nutrition Biosciences Aps Green biomass modification
CN109007306A (zh) * 2018-08-06 2018-12-18 博益德(北京)生物科技有限公司 一种发酵大豆饲料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085131A1 (en) 2001-04-19 2002-10-31 New Zealand Dairy Board Method of preparing savoury-flavoured products by fermentation of proteins
WO2005032568A1 (ja) 2003-10-03 2005-04-14 Nihon Baio Kabushiki Kaisha 大豆発酵物よりなる免疫増強剤、抗潰瘍剤、加工食品および大豆発酵物の製造方法
US20060233913A1 (en) 2005-04-01 2006-10-19 Hansen Ole K Fermented protein product
CN101161810A (zh) 2006-12-01 2008-04-16 东莞市银华生物科技有限公司 一种农副产品开放式曲种固体发酵方法
WO2009065722A1 (en) 2007-11-23 2009-05-28 Unilever Nv Fermented soy-based beverage
US20110034394A1 (en) 2008-01-22 2011-02-10 Ole Hansen Kaae Composition comprising protein and disperse fat
CN102210412A (zh) 2011-06-08 2011-10-12 广东恒兴饲料实业股份有限公司 一种能够提高罗非鱼出肉率的配合饲料及其制备方法
WO2011147923A1 (en) 2010-05-27 2011-12-01 Hamlet Protein A/S Fermented product comprising phytochemicals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD278058A1 (de) * 1988-12-19 1990-04-25 Adw Ddr Verfahren zur behandlung von oel- und leguminosensamen
US6159715A (en) * 1998-05-14 2000-12-12 Cargill, Inc. Method for processing oilseed material
KR101403489B1 (ko) * 2009-03-27 2014-06-11 한국생명공학연구원 신규한 셀룰로시마이크로비움 펀케이 hy―13 균주 및 이로부터 생산되는 자일라나제
WO2011031020A2 (en) * 2009-09-09 2011-03-17 Cj Cheiljedang Corporation Method for preparing a fermented soybean meal using bacillus strains

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085131A1 (en) 2001-04-19 2002-10-31 New Zealand Dairy Board Method of preparing savoury-flavoured products by fermentation of proteins
WO2005032568A1 (ja) 2003-10-03 2005-04-14 Nihon Baio Kabushiki Kaisha 大豆発酵物よりなる免疫増強剤、抗潰瘍剤、加工食品および大豆発酵物の製造方法
US20060233913A1 (en) 2005-04-01 2006-10-19 Hansen Ole K Fermented protein product
CN101161810A (zh) 2006-12-01 2008-04-16 东莞市银华生物科技有限公司 一种农副产品开放式曲种固体发酵方法
WO2009065722A1 (en) 2007-11-23 2009-05-28 Unilever Nv Fermented soy-based beverage
US20110034394A1 (en) 2008-01-22 2011-02-10 Ole Hansen Kaae Composition comprising protein and disperse fat
WO2011147923A1 (en) 2010-05-27 2011-12-01 Hamlet Protein A/S Fermented product comprising phytochemicals
CN102210412A (zh) 2011-06-08 2011-10-12 广东恒兴饲料实业股份有限公司 一种能够提高罗非鱼出肉率的配合饲料及其制备方法

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
AOAC: "Official Methods of Analysis of Association of Official Analytical Chemistry", 1990
BHAT, M.K.: "Cellulases and related enzymes in biotechnology", BIOTECHNOL.ADV., vol. 18, 2000, pages 355 - 383, XP004211815, DOI: doi:10.1016/S0734-9750(00)00041-0
BHAT, M.K: "Cellulases and related enzymes in biotechnology", BIOTECHNOL.ADV., vol. 18, 2000, pages 355 - 383, XP004211815, DOI: doi:10.1016/S0734-9750(00)00041-0
CAETER, C.G.; HOULIHAN, D.F.; BUCHANAN, B.; MICHELL, A.I.: "Growth and feed utilization efficiencies of seawater Atlantic salmon, Salmo salar L., fed a diet containing supplementary enzymes", AQUACULTURE RESEARCH, vol. 25, 1994, pages 37 - 46
CHOCT, M.; RSJANT-LI Y.; MCLEISH, J.; PEISKER, M.: "Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry", ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, vol. 23, 2010, pages 1386 - 1398, XP055160445, DOI: doi:10.5713/ajas.2010.90222
CHOCT, M.; RSJANT-LI, Y.; MCLEISH, J.; PEISKER, M.: "Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry", ASIAN -AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, vol. 23, 2010, pages 1386 - 1398, XP055160445, DOI: doi:10.5713/ajas.2010.90222
CHOCT, M.; RSJANT-LI, Y.; MCLEISH, J.; PEISKER, M.: "Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry", ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, vol. 23, 2010, pages 1386 - 1398, XP055160445, DOI: doi:10.5713/ajas.2010.90222
ENGLYST, H.N.; QUIGLEY, M.E.; HUDSON, G.J.: "Determination of Dietary Fiber As Non starch Polysaccharides with Gas-Liquid-Chromatographic, High-Performance Liquid-Chromatographic or Spectrophotometric Measurement of Constituent Sugars", ANALYST, vol. 119, 1994, pages 1497 - 1509
FRANCIS, G.; MAKKAR, H.; BECKER, K.: "Anti nutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish", AQUACULTURE, vol. 199, 2001, pages 197 - 227
GATLIN, D.; BARROWS, E; BROWN, P.; DABROWSKI, K.; GAYLORD, T.; HARDY, R; HERMAN, E.; HU, G.; KROGDAHL, A.; NELSON, R.: "Expanding the utilization of sustainable plant products in aqua feeds: a review", AQUACULTURE RESEARCH, vol. 38, 2007, pages 551 - 579
GATLIN, D.; BARROWS, F.; BROWN, P.; DABROWSKI, K.; GAYLORD, T.; HARDY, R; HERMAN, E.; HU, G.; KROGDAHL., A.; NELSON, R: "Expanding the utilization of sustainable plant.products in aqua feeds: a review", AQUACULTURE RESEARCH, vol. 38, 2007, pages 551 - 579
GHOSE, T.: "Measurement of cellulase activities", PURE & APPLIED CHEMISTRY, vol. 59, 1987, pages 257 - 268, XP000652082
GIANNOCCARO, E.; WANG, Y.J.; CHEN, P.Y.: "Effects of solvent, temperature, time, solvent-to-sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean", JOURNAL OF FOOD SCIENCE, vol. 71, 2006, pages C59 - C64
GONZALEZ, N.; ROMERO, J.; ESPEJO, R.T.: "Comprehensive detection of bacterial populations by PCR amplification of the 16S 23S rRNA spacer region", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 55, 2003, pages 91 - 97
GRAMINHA, E.B.N.; GONGALVES, A.Z.L.; PIROTA, R.D.P.B.; BALSALOBRE, M.A.A.; DA SILVA, R.; GOMES, E.: "Enzyme production by solid-state fermentation: Application to animal nutrition", ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 144, 2008, pages 1 - 22, XP022710177, DOI: doi:10.1016/j.anifeedsci.2007.09.029
HENDRICKS, C.W.; DOYLE, J.D.; HUGLEY, B.: "A New Solid Medium for Enumerating Cellulose-Utilizing Bacteria in Soil", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 61, 1995, pages 2016 - 2019
HONG, K.-J.; LEE, C.-H.; KIM, S.W.: "Aspergillus oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meals", JOUMAL OF MEDICINAL FOOD, vol. 7, no. 4, 2004, pages 430 - 435
HUISMAN, M.M.H.; SCHOLS, H.A.; VORAGEN, A.G.J.: "Cell wall polysaccharides from soybean (Glycine max.) meal. Isolation and characterization", CARBOHYDRATE POLYMERS, vol. 37, 1998, pages 87 - 95, XP004141137, DOI: doi:10.1016/S0144-8617(97)00111-2
KARR-LILIENLHAL, L.K.; KADZERE, C.T.; GRIESHOP, C.M.; FAHEY, G.C.: "Chemical and nutritional properties of soybean carbohydrates as related to no ruminants: A review", LIVESTOCK PRODUCTION SCIENCE, vol. 97, 2005, pages 1 - 12
KARR-LILIENTHAL, L.K.; KADZERE, C.T.; GRIESHOP, C.M.; FAHEY, G.C.: "Chemical and nutritional properties of soybean carbohydrates as related to no ruminants: A review", LIVESTOCK PRODUCTION SCIENCE, vol. 97, 2005, pages 1 - 12, XP027605750
KARR-LILIENTHAL, L.K.; KADZERE, C.T.; GRIESHOP, C.M.; FAHEY, G.C.: "Chemical and nutritional properties of soybean carbohydrates as related to non ruminants: A review", LIVESTOCK PRODUCTION SCIENCE, vol. 97, 2005, pages 1 - 12
KARR-LILIENTHAL, L.K.; KADZERE, C.T.; GRIESHOP, C.M.; FAHEY, G.C.; 2005: "Chemical and nutritional properties of soybean carbohydrates as related to no ruminants: A review", LIVESTOCK PRODUCTION SCIENCE, vol. 97, pages 1 - 12, XP027605750
KIM, S.W.; VAN HEUGTEN, E.; JI, F.; LEE, C.H.; MATEO, R.D: "Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs", JOURNAL OF ANIMAL SCIENCE, vol. 88, 2010, pages 214 - 224, XP055232206, DOI: doi:10.2527/jas.2009-1993
KNUDSEN, K.E.B.: "Carbohydrate and lignin contents of plant materials used in animal feeding", ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 67, 1997, pages 319 - 338, XP055190836, DOI: doi:10.1016/S0377-8401(97)00009-6
KNUDSEN, K.E.B: "Carbohydrate and lignin contents of plant materials used in animal feeding", ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 67, 1997, pages 319 - 338, XP055190836, DOI: doi:10.1016/S0377-8401(97)00009-6
LEBLANC, J.G.; GARRO, M.S.; DE GIORI, G.S.: "Effect of pH on Lactobacillus fermentum growth, raffinose removal, alpha-galactosidase activity and fermentation products", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 65, 2004, pages 119 - 123
NITISINPRASERT, S.; TEMMES, A.: "The Characteristics of A New Non-Spore-Forming Cellulolytic Mesophilic Anaerobe Strain Cm126 Isolated from Municipal Sewage-Sludge", JOURNAL OF APPLIED BACTERIOLOGY, vol. 71, 1991, pages 154 - 161
OLLI, J.J.; KROGDAHL, A.; VANDENINGH, T.S.G.A.; BRATTAS, L.E.: "Nutritive-Value of 4 Soybean Products in Diets for Atlantic Salmon (Salmo-Salar, L", ACTA AGRICULTURAE SCANDINAVICA SECTION A-ANIMAL SCIENCE, vol. 44, 1994, pages 50 - 60
PEREZ, J.; MUNOZ-DORADO, J.; DE LA RUBIA, T.; MARTINEZ, J.: "Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview", INTERNATIONAL MICROBIOLOGY, vol. 5, 2002, pages 53 - 63
REFSTIE, S.; SAHLSTROM; S.; BRATHEN, E.; BAEVERFJORD, G.; KROGEDAL, P.: "Lactic acid fermentation eliminates indigestible carbohydrates and anti nutritional factors in soybean meal for Atlantic salmon (Salmo salar", AQUACULTURE, vol. 246, 2005, pages 331 - 345
RODRIGUES BRASIL, A; TABAREZ DE REZENDE, S.; DO CARMO GOUVEIA, M.; GUIMARAES, V.: "Removal of oligosaccharides in soybean flour and nutritional effects in rats", FOOD CHEMISTRY, vol. 118, 2010, pages 251 - 255, XP026497664, DOI: doi:10.1016/j.foodchem.2009.04.124
RUIJSSENAARS, H.J.; HARTMANS, S.: "Plate screening methods for the detection of polysaccharase-producing microorganisms", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 55, 2001, pages 143 - 149
See also references of EP2810563A4
TACON, A.G.J.; METIAN, M.: "Global overview on the use of fish meal and fish oil in industrially compounded aqua feeds: Trends and future prospects", AQUACULTURE, vol. 285, 2008, pages 146 - 158
TIRADO, 0.; ROSADO, W.; GOVIND, N.S.: "Characterization of bacteria with carbohydrase activities from tropical ecosystems", JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 85, 2005, pages 269 - 275
U.S. AGRICULTURAL RESEARCH SERVICE (ARS, 25 November 2011 (2011-11-25)
WANG, J.P.; LIU, N.; SONG, M.Y.; QIN, C.L.; MA, C.S.: "Effect of enzymolytic soybean meal on growlh performance, nutrient digestibility and immune function of growing broilers", ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 169, no. 3-4, 2011, pages 224 - 229, XP028297174, DOI: doi:10.1016/j.anifeedsci.2011.06.012
WILSON, R.; JOHN, H.; HARDY, R: "Fish Nutrition", 2002, ACADEMIC PRESS, article "Amino Acid and Proteins", pages: 143 - 179

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150342221A1 (en) * 2014-05-29 2015-12-03 Ohio Soybean Council Mitigation of anti-nutritional substances in plant meal
US10945452B2 (en) * 2014-05-29 2021-03-16 Ohio Soybean Council Mitigation of anti-nutritional substances in plant meal
WO2016097638A1 (fr) 2014-12-18 2016-06-23 Veolia Proprete Biostimulation in-situ de l'hydrolyse de la matière organique pour optimiser sa valorisation énergétique

Also Published As

Publication number Publication date
EP2810563A4 (en) 2016-01-06
EP2810563A2 (en) 2014-12-10
BR112014018803A2 (es) 2017-06-20
BR112014018803A8 (pt) 2017-07-11
WO2013114282A3 (es) 2013-10-31
WO2013114282A9 (es) 2014-01-09
CL2012000296A1 (es) 2014-09-26
US20150030637A1 (en) 2015-01-29
EP2810563B1 (en) 2019-07-03
US9497980B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
Adeyemo et al. Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals
CN103609852B (zh) 茶饲料及制备方法
JP5728185B2 (ja) 枯草菌を用いた発酵大豆粕の製造方法
Konkol et al. Biotransformation of rapeseed meal leading to production of polymers, biosurfactants, and fodder
CN103734688A (zh) 一种食用菌风味酱及其制作方法
CN107198052A (zh) 一种孔雀中药饲料及其制备方法
Yang et al. Enhancement of nutritional and antioxidant properties of peanut meal by bio-modification with Bacillus licheniformis
CN106974063A (zh) 一种以饲用酶协同凝结芽孢杆菌生产高效蛋白饲料的方法
CN105795125A (zh) 一种固态酸化和酵解饲料的制备方法
Lai et al. Effects of co-fermented Pleurotus eryngii stalk residues and soybean hulls by Aureobasidium pullulans on performance and intestinal morphology in broiler chickens
Ghosh et al. Aquafeed formulation using plant feedstuffs: Prospective application of fish-gut microorganisms and microbial biotechnology
CN105104878B (zh) 一种预防和清除蟹膏和蟹黄化学和重金属污染物多功能微生态河蟹营养饲料
WO2013114282A2 (es) Reducción de polisacáridos no almidones y alfa-galactósidos en harina de soya mediante fermentación en estado sólido usando bacterias celulolíticas aisladas de distintos ambientes.
Ilias et al. Potentiality of selected seaweed for the production of nutritious fish feed using solid state fermentation
CN103583462A (zh) 樱桃谷肉食鸭的饲养方法
Sarasvati et al. Effects of fermentation on nutritional quality of Prosopis juliflora pods as alternative fish feed
CN104738311B (zh) 一种鱼浆发酵豆粕及其生产方法和应用
KR101922053B1 (ko) 멸치 어분을 이용한 양어사료 제조공법 및 이를 통해 제조된 양어사료
CN114831211A (zh) 用于豆粕饲料的发酵剂
CN107494443A (zh) 无公害鹅的养殖方法
Nwinyi et al. Review on probiotics potentials, nutritional composition of Bambara nut (Vigna Subterranea (L.)-an underutilized legume
KR20170072563A (ko) L 카르니틴 함유 발효 산물을 이용한 l 카르니틴 함유 버섯의 재배 방법 및 이에 의하여 재배된 l 카르니틴 함유 기능성 버섯
Das et al. Evaluation of phytase production by Candida tropicalis isolated from fish gut and subsequent bio-processing of groundnut oil cake under solid state fermentation
N Amer et al. Evaluation of Ulva lactuca fermentation and exogenous multi-enzymes supplementation in combination with L-carnitine and probiotic on optimizing plant-based diets utilization for the Nile tilapia (Oreochromis niloticus).
TWI830742B (zh) 使用酵母以製備具有經改良之氣味的發酵組成物的方法、所使用之酵母、及包含其的組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14376214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014018803

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2013743077

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743077

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112014018803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140730