WO2013111874A1 - ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法 - Google Patents

ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法 Download PDF

Info

Publication number
WO2013111874A1
WO2013111874A1 PCT/JP2013/051642 JP2013051642W WO2013111874A1 WO 2013111874 A1 WO2013111874 A1 WO 2013111874A1 JP 2013051642 W JP2013051642 W JP 2013051642W WO 2013111874 A1 WO2013111874 A1 WO 2013111874A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
hole
mold
molding surface
diameter
Prior art date
Application number
PCT/JP2013/051642
Other languages
English (en)
French (fr)
Inventor
義規 井口
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2013555328A priority Critical patent/JP5813140B2/ja
Priority to CN201380006795.0A priority patent/CN104080744B/zh
Publication of WO2013111874A1 publication Critical patent/WO2013111874A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass lump forming apparatus for forming a glass lump having a predetermined weight from molten glass, a method for producing a glass lump using the glass lump forming apparatus, and a glass obtained by the method for producing a glass lump.
  • the present invention relates to a method for reheating and pressing a lump to obtain a glass molded product.
  • a glass lump forming apparatus that forms molten glass flowing down from a molten glass supply unit into a glass lump (preform) for precision press molding while receiving it in a floating state with a glass mold.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-20248
  • Japanese Patent Laid-Open No. 9-52720 Japanese Patent Laid-Open No. 9-52720.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-202408
  • 2 Japanese Patent Laid-Open No. 9-52720
  • a glass molding die used in this type of glass lump molding apparatus includes a concave molding surface having a plurality of pores (through holes) through which gas (air or inert gas) is ejected. The molten glass that flows down from the molten glass supply section to the concave molding surface while jetting gas from each is received and molded while being cooled.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-202408
  • No. 2 Japanese Patent Application Laid-Open No. 9-52720
  • Receive molten glass while spouting.
  • the molten glass is cast so as to slowly flow from the central portion of the concave molding surface and gradually expand (collect) toward the peripheral portion. Therefore, at the moment when the molten glass is cast on the concave molding surface, the molten glass is in a state where the gas ejection is inhibited only from the pores at the central portion of the concave molding surface.
  • the exhaust pressure of the gas ejected from the pores is temporarily lower than the exhaust pressure of the gas ejected from the peripheral pores.
  • the gas to be ejected from the fine pores escapes from the fine pores at the periphery of the concave molding surface, and the flow rate of the gas ejected from the fine pores at the central portion of the concave molding surface temporarily decreases. Therefore, there exists a possibility that molten glass may contact with a glass forming mold temporarily.
  • the flow rate of the gas ejected from the pores at the center of the concave molding surface is not sufficient to float the molten glass, fusion between the molten glass and the glass mold occurs, and the molten glass becomes glass. Since it is rapidly cooled by the mold, there is a problem in that the glass lump after molding is distorted (such as wrinkles on the surface). In addition, the distortion generated at this time may induce breakage of the glass called can cracking.
  • an object of the present invention is to melt glass by stabilizing the flow rate of gas ejected from each pore (through hole) on the concave molding surface. It is providing the glass lump forming apparatus which can be floated stably. Further, by providing a method for producing a glass molded product by reheating and pressing a glass lump obtained by the method for producing a glass lump using this glass lump forming apparatus, and further by the method for producing a glass lump. is there.
  • a glass lump forming apparatus includes a glass forming die having a concave molding surface in which a plurality of through holes are formed, and a gas sent from a predetermined gas supply unit communicates with the plurality of through holes.
  • a glass lump forming apparatus that receives molten glass supplied to a concave forming surface in a state of being ejected from a plurality of through holes through a gas flow path, and forms the glass lump into a predetermined shape.
  • a through-hole is provided with the buffer part which suppresses the fluctuation
  • the fluctuation of the exhaust pressure of the gas generated in each through hole at the moment when the molten glass is cast on the concave molding surface is absorbed by the intermediate hole portion having a volume larger than that of the first hole portion. Therefore, the pressure on the first hole side is not affected. For this reason, even at the moment when the molten glass is cast, the flow rate of the gas ejected from each through hole is kept stable, and the molten glass can be received in a stable floating state. Thereby, generation
  • the through hole includes a first hole portion having an opening having a first diameter on the gas flow path side, a second hole portion having an opening having a second diameter on the concave molding surface side, a first hole portion, and a second hole portion. It can also be set as the structure which has an intermediate
  • the first diameter is D1
  • the second diameter is D2
  • the third diameter is D3, the following conditional expression (1) or (2) is satisfied.
  • D1 D2 ⁇ D3 (2) According to such a configuration, the flow rate of the gas ejected from is further maintained in a stable state, and the molten glass Can be received in a stable levitation state.
  • the glass mold may be configured to include a first mold having a recess molding surface and a second hole, and a second mold having a first hole and an intermediate hole. .
  • the second mold has a thermal expansion coefficient larger than that of the first mold.
  • the first mold is made of stainless steel
  • the second mold is made of stainless steel.
  • the mold is preferably made of brass. According to such a configuration, since the contact surface between the first mold and the second mold is kept highly airtight, leakage of gas from the contact surface is prevented, and stable levitation is achieved. A glass lump can be formed in a state.
  • the first diameter is 0.15 to 0.25 mm
  • the second diameter is 0.15 to 0.90 mm
  • the third diameter is 0.50 to 0.90 mm.
  • the apparatus further includes a mold moving unit that moves the glass mold in the vertical direction.
  • the mold moving unit brings the glass mold close to the outlet of the molten glass, and the molten glass is supplied to the concave molding surface. It is good also as a structure which drops a glass shaping
  • the manufacturing method of the glass lump which concerns on one form of this invention is a method of shape
  • molding apparatus Comprising: The process of supplying molten glass with respect to a recessed part formation surface And a step of forming a glass block having a predetermined shape while receiving the molten glass supplied to the concave molding surface in a floating state by ejecting gas from the plurality of through holes.
  • the molten glass lump may be pressed by a glass mold and an upper mold facing the glass mold. According to this manufacturing method, the glass lump press-molded in a state of being stably floated or floated on the concave molding surface is obtained.
  • a method for producing a glass molded product according to an aspect of the present invention includes a step of introducing a glass lump produced using the above glass lump production method into a predetermined press mold, and a method of introducing the glass lump into the predetermined press mold. And a step of press-molding the glass lump in a softened state and a step of taking out the press-molded glass molded product from the press mold. According to this manufacturing method, since a glass lump without molding defects is used, a highly accurate glass molded product can be manufactured with a high yield.
  • the glass lump forming apparatus since the flow rate of the gas ejected from each through hole of the concave molding surface is stabilized, the molten glass can be floated stably. Moreover, a highly accurate glass molded article can be manufactured using the manufacturing method which can shape
  • the molten glass when forming a glass lump from molten glass, the molten glass may momentarily contact the molding surface, but contact within the range where the molten glass does not cause fusion to the molding surface is also possible. Since it is substantially in a floating state, the meaning of this is also included in the floating state in the following specification.
  • FIG. 1 is a side view showing the configuration of the glass lump forming apparatus 1 according to the first embodiment of the present invention.
  • FIG. 2 is a top view showing the configuration of the glass lump forming apparatus according to the first embodiment of the present invention.
  • the glass lump forming apparatus 1 includes a glass forming die 102, an elevator 103, a molten glass supply unit 104, a turntable 106, a direct drive motor 108, and a heating furnace 110 ( 110a, 110b) and a gas pipe 116.
  • the upper part of the molten glass supply unit 104 communicates with a work tank, a clarification tank, and a glass melting tank not shown. As a result, the molten, clarified and homogenized molten glass G is continuously supplied to the molten glass supply unit 104. From the front end (outflow nozzle 104a) of the molten glass supply unit 104, the molten glass G controlled to a constant temperature flows down. The molten glass G flowing down from the outflow nozzle 104a is received by the glass mold 102 and formed into a glass lump having a predetermined shape (for example, a hazy shape or a flat shape).
  • a predetermined shape for example, a hazy shape or a flat shape
  • a plurality of glass molds 102 are installed on the turntable 106 at equal intervals around the rotation center.
  • the turntable 106 is assumed to be made of, for example, a lightweight and high-strength aluminum alloy.
  • the turntable 106 is intermittently rotated clockwise by a direct drive motor 108. Thereby, each glass forming mold 102 stops at a stop position (cast position) A and a stop position (extraction position) B for a predetermined time.
  • a plurality of gas pipes 116 are installed on the lower surface side of the turntable 106. One end of each gas pipe 116 is connected to the corresponding glass forming mold 102, and the other end is connected to a single gas supply unit (not shown) common to all gas pipes. In FIG. 2, the gas pipe 116 is indicated by an alternate long and short dash line for the sake of clarity.
  • a method for forming a glass lump (preform) for precision press molding using the glass lump forming apparatus 1 will be described.
  • the clarified and homogenized molten glass G is continuously flowed down from the outflow nozzle 104a at a constant speed at the casting position A.
  • the molten glass G that has flowed down is successively received by the glass mold 102 that is sequentially transferred to the casting position A.
  • a gas for example, air or nitrogen supplied from the gas supply unit through the gas pipe 116 is ejected from the glass mold 102. Therefore, the molten glass G is formed into, for example, a predetermined flat glass lump while being received by each glass forming mold 102 in a floating state by the gas jet pressure.
  • the glass block formed in the glass forming mold 102 is not cooled rapidly but is gradually cooled.
  • the glass lump in the glass mold 102 conveyed to the take-out position B is taken out by take-out means (not shown) (for example, a robot arm to which a suction pad is attached).
  • take-out means for example, a robot arm to which a suction pad is attached.
  • the glass mold 102 is adjusted to a temperature suitable for forming a glass lump.
  • the molten glass G is cast, the glass lump is formed, the glass lump is cooled, and the glass lump is taken out in accordance with the rotation of the turntable 106.
  • Each glass mold 102 is returned to the casting process after the glass lump is taken out, and used in a circulating manner.
  • a so-called descending cutting method is used as a method for casting the molten glass G onto the glass mold 102.
  • Each glass mold 102 is mounted so as to be disposed on an elevator 103 that moves each glass mold 102 in the vertical direction.
  • the glass mold 102 is mounted.
  • the molten glass G is cut by moving the glass mold 102 vertically in the vertical direction (that is, the vertical direction in FIG. 1).
  • the elevator 103 raises the glass mold 102 so as to approach the outlet of the outflow nozzle 104a, and causes the molten glass G to flow out.
  • the glass mold 102 is slowly lowered at a predetermined speed so that the tip of the outflow nozzle 104a does not sink into the molten glass G that has been received on the molding surface (a concave molding surface 102e described later).
  • the elevator 103 rapidly lowers the glass mold 102 to cut the molten glass G.
  • the elevator 103 raises the glass forming mold 102 so as to approach the outlet of the outflow nozzle 104a, and the molten glass G flowing out is glass-formed.
  • the glass molding die 102 When the molten glass G received on the molding surface of the mold 102 (a concave molding surface 102e described later) and cast to the glass molding die 102 is adjusted to a predetermined weight, the glass molding die 102 is rapidly lowered to melt glass. Cut G.
  • region which overlaps partially, but about this area
  • the method of cutting the molten glass G can be properly used.
  • FIG. 3 is a cross-sectional view of the glass mold 102 showing a state when the molten glass G is cast to the glass mold 102.
  • the glass forming mold 102 of the first embodiment includes a forming mold main body 102 ⁇ / b> A and a flow rate stabilizing plate 102 ⁇ / b> B, and the lower portion of the glass forming mold 102 is fixed to the forming mold attaching portion 105. ing.
  • the mold main body 102A is a mold made of heat-resistant steel (for example, stainless steel) provided with a concave molding surface 102e for receiving the molten glass G cast from the outflow portion of the outflow nozzle 104a and forming a glass lump.
  • the surface of the concave molding surface 102e is mirror-finished so that the cross section has a predetermined spherical or aspherical curved surface in accordance with the surface shape of the glass lump to be molded. It is configured not to be attached.
  • a concave portion 102d is formed at the center of the lower surface of the mold main body portion 102A, and a cylindrical flow rate stabilizing plate 102B is accommodated and fixed in the concave portion 102d.
  • the glass mold 102 is formed with a plurality of through holes 102a so as to penetrate the lower surface of the flow rate stabilizing plate 102B and the concave molding surface 102e of the mold body 102A.
  • the gas supplied via the gas passes through the through hole 102a and is ejected to the concave molding surface 102e.
  • FIG. 4 is a view for explaining the concave molding surface 102e of the glass mold 102 of FIG. 3, and is a top view when the concave molding surface 102e of the molding die main body 102A is viewed from the outflow nozzle 104a side.
  • the recess molding surface 102e of the present embodiment is a molding surface formed by recessing the upper surface (surface on the outflow nozzle 104a side) of the mold main body 102A into a semispherical shape. is there.
  • the concave molding surface 102e is formed with a radius of curvature R1 corresponding to the surface shape of the glass block to be molded, and the radius outside the circle is a radius of curvature more than the radius of curvature R1. Is formed with a small radius of curvature R2. That is, the concave molding surface 102e has two spherical portions having different radii of curvature at the central portion and the peripheral portion, and one molding surface is formed by continuation of these.
  • one through hole 102a of the concave molding surface 102e is on the central axis AX (PCD0) of the concave molding surface 102e, and two are centered on the reference center (central axis AX (FIG. 4)). Eight are arranged at regular intervals on one concentric circle (PCD3 and PCD6).
  • the diameter (opening) of each through hole 102a in the concave molding surface 102e is set to 0.2 to 0.3 mm.
  • the configuration of the concave molding surface 102e is not limited to the above configuration.
  • the curvature radius R1 of the central portion of the concave molding surface 102e may be smaller than the curvature radius R2 of the peripheral portion
  • the concave molding surface 102e may be formed by combining three or more spherical surfaces having different curvature radii.
  • a vent hole 105a for supplying pressurized gas to each of the through holes 102a is formed inside the molding die attaching portion 105 (FIG. 3). Further, the upper end portion of the vent hole 105a is expanded so that pressurized gas can be supplied to all the through holes 102a, and a space portion 105b is formed. Therefore, the gas supplied from the gas supply section through the gas pipe 116 and the vent hole 106a is temporarily accumulated in the space 105b and is ejected from each through hole 102a at a predetermined flow rate (that is, a predetermined pressure).
  • the predetermined flow rate is such a flow rate that the glass lump does not fuse with the concave molding surface 102e and does not hinder the discharge of the molten glass flow from the outflow nozzle 104a.
  • the concave molding surface 102e receives the molten glass G to be cast in a floating state by the gas jet pressure. At this time, the molten glass G slowly flows from the central portion of the concave molding surface 102e and gradually spreads to the peripheral portion (that is, accumulates on the surface of the concave molding surface 102e).
  • the buffer portion (102ab in the case of FIG. 3) is provided, even when the molten glass G instantaneously contacts the mold body portion 102A.
  • the flow rate of the gas ejected from the through-hole 102a in the central portion of the concave molding surface 102e can be secured at a sufficient flow rate to float the molten glass G, and as a result, the molten glass G is instantaneously Since it is separated from the mold body portion 102A, a stable floating state can be obtained by the concave molding surface 102e.
  • the flow rate of the gas ejected from the through hole 102a at the center of the concave molding surface 102e is not sufficient to float the molten glass G, fusion between the molten glass G and the mold main body 102A occurs. Defects occur. Therefore, in the glass lump forming apparatus 1 of the present embodiment, as shown in FIG.
  • each through hole 102a is provided with a buffer function to solve the problem.
  • all of the through holes 102a have a buffer function.
  • all of the through holes 102a need not have a buffer function.
  • the flow rate stabilizing plate 102B (FIG. 3) is a metal (for example, brass) member having a higher thermal expansion coefficient than the mold main body 102A. It is pinched and held in the recess 102d.
  • the flow stabilizing plate 102B includes a plurality of intermediate holes 102ab drilled by a predetermined depth from the upper surface side to the lower surface side of the flow stabilizing plate 102B, and from the lower surface side to the upper surface side of the flow stabilizing plate 102B.
  • a plurality of first holes 102aa are formed by drilling by a predetermined depth, and the intermediate holes 102ab and the first holes 102aa communicate with each other inside the flow rate stabilizing plate 102B.
  • the plurality of second holes 102ac formed as described above are configured to communicate with the intermediate hole 102ab and the first hole 102aa of the flow rate stabilizing plate 102B, respectively.
  • each through-hole 102a is comprised by the 2nd hole 102ac formed in the shaping
  • the diameter of the intermediate hole 102ab is D3
  • the diameter of the second hole 102ac is D2
  • the diameter of the first hole 102aa is D1
  • the following conditional expression (3) is satisfied. ing. D1 ⁇ D2 ⁇ D3 (3)
  • the diameter D3 of the intermediate hole 102ab is 0.5 to 0.9 mm
  • the diameter D2 of the second hole 102ac is 0.2 to 0.00 based on predetermined experimental results.
  • the diameter D1 of the first hole 102aa is set to 0.15 to 0.25 mm.
  • each through hole 102a of the present embodiment is configured by the second hole 102ac, the intermediate hole 102ab, and the first hole 102aa having different diameters, and the first hole 102aa located on the gas supply port side.
  • the diameter D1 is the smallest, and the diameter D3 of the intermediate hole 102ab is the largest. Therefore, the fluctuation of the exhaust pressure of the gas ejected from each through hole 102a, which occurs at the moment when the molten glass G is cast on the concave molding surface 102e, is absorbed by the intermediate hole 102ab having a volume larger than that of the first hole 102aa.
  • the pressure on the first hole 102aa side that is, the space portion 105b) is not affected.
  • the through hole in the central portion of the concave molding surface 102e only temporarily accumulates in the intermediate hole 102ab of the through hole 102a, and does not escape from the other (peripheral) through holes 102a.
  • the intermediate hole 102ab (buffer portion) of the through hole 102a functions as a buffer for temporarily storing gas.
  • the flow rate of the gas ejected from each through hole 102a is kept substantially constant, so that the molten glass G can be received in a stable floating state.
  • the flow stabilizing plate 102B of the present embodiment is made of a metal member having a higher thermal expansion coefficient than the mold main body 102A, the mold main body 102A and the flow stabilizing plate 102B.
  • the air contact surface is kept highly airtight. Therefore, the gas does not leak from the contact surface between the mold main body 102A and the flow rate stabilizing plate 102B, and the flow rate of the gas ejected from each through hole 102a is the first hole having the smallest diameter.
  • the diameter D1 of 102aa is determined by the diameter D1 of 102aa.
  • the diameter D1 of the first hole 102aa and the diameter D2 of the second hole 102ac are as follows.
  • the diameter of the chamfered hole is not included.
  • the diameter D1 of the first hole 102aa is the smallest diameter that can substantially control the gas flow rate.
  • the molten glass G does not come into contact with the recessed portion forming surface 102e, and temporarily, the molten glass G instantaneously contacts the recessed portion forming surface 102e of the glass forming mold 102. Even in the case of contact, the molten glass G is instantaneously separated from the glass mold 102 by the gas ejected from the through hole 102a. Therefore, since the molten glass G is molded in a stable floating state on each concave molding surface 102e, the occurrence of molding defects is suppressed and the yield is improved.
  • the molten glass G instantaneously contacts the glass mold 102
  • the vicinity of the surface of the molten glass G in contact with the concave molding surface 102e of the glass mold 102 is cooled.
  • the surface portion cooled by the internal heat is warmed to lower the viscosity and become a free surface, so that the influence of contact with the concave molding surface 102e of the glass mold 102 is eliminated, and the desired glass lump is formed.
  • the glass block (preform) formed by using the glass block forming apparatus 1 of the first embodiment is introduced into a press mold, heated and softened together with the press mold, and precision press-molded in the softened state.
  • the molding surface of the press mold is transferred, cooled in a state of being pressurized in the press mold, and then taken out from the press mold. Thereby, an aspherical lens to which the surface shape of the molding surface is transferred is obtained.
  • the aspherical lens manufactured in this way is subjected to various grinding and polishing processes such as centering and chamfering, and various coatings such as dyeing, antireflection film, and UV protection, as necessary.
  • a glass optical element is obtained.
  • the present invention is not limited to the above configuration, and various modifications can be made within the scope of the technical idea of the present invention.
  • the descending cutting method is used as the casting method of the molten glass G to the glass mold 102, but the present invention is not limited to this configuration.
  • the molten glass G is discharged from the outflow nozzle 104a. It is also possible to apply a dripping cutting method in which dripping is performed by its own weight.
  • the precision press-molding preform is float formed only by the glass mold 102 as the lower mold.
  • the molten glass G may be press-molded with the upper mold and the glass mold 102 in a state where the molten glass G floats on the concave molding surface 102e of the glass mold 102.
  • An approximate shape preform for precision press molding can be manufactured by cooling after pressing.
  • the upper die provided with a porous body capable of ejecting gas may be pressed by ejecting gas from both the upper die and the lower die, or the upper die without holes may be used from the upper die. May be pressed without jetting gas.
  • FIG. 5 is a cross-sectional view of a glass forming mold 1021 provided in the glass lump forming apparatus 1 of Modification 1 of the first embodiment.
  • the diameter D2 of the second hole 1021ac formed on the mold main body 1021A side is the first hole 102aa formed on the flow stabilizing plate 102B side. It differs from 1st Embodiment by the point comprised so that it may become equal to the diameter D1. That is, in this modification, each hole diameter is set so as to satisfy the following conditional expression (4).
  • D1 D2 ⁇ D3 (4)
  • the diameter D3 of the intermediate hole 102ab is 0.5 to 0.9 mm
  • the diameter D2 of the second hole 1021ac is 0.15 to 0.00 mm
  • the diameter D1 of the first hole 102aa is set to 0.15 to 0.25 mm.
  • each through hole 1021a that penetrates the glass mold 1021 is configured by the second hole 1021ac, the intermediate hole 102ab, and the first hole 102aa, and is on the gas supply port side.
  • the diameter D1 of the first hole 102aa located at the smallest is the smallest, and the diameter D3 of the intermediate hole 102ab is the largest. Therefore, as in the first embodiment described above, the fluctuation of the exhaust pressure of the gas ejected from each through hole 1021a, which occurs at the moment when the molten glass G is cast on the concave molding surface 1021e, is more than that of the first hole 102aa.
  • the intermediate hole 102ab buffer part having a large volume. Accordingly, even when the molten glass G is cast, the flow rate of the gas ejected from each through hole 1021a is kept substantially constant, so that the molten glass G can be received in a stable floating state.
  • the diameter D1 of the first hole 102aa is the smallest, the flow rate of the gas ejected from each through hole 1021a is determined by the diameter D1 of the first hole 102aa.
  • the second hole 1021ac of the present modification is formed thinner than the second hole 102ac of the first embodiment, the gas generated at the moment when the molten glass G is cast on the concave molding surface 1021e.
  • the fluctuation of the exhaust pressure is smaller than that in the first embodiment.
  • FIG. 6 is a cross-sectional view of a glass forming mold 1022 provided in the glass lump forming apparatus 1 of Modification 2 of the first embodiment.
  • the diameter D2 of the second hole 1022ac formed on the mold main body 1022A side is equal to that of the intermediate hole 102ab formed on the flow stabilizing plate 102B side. It is different from the first embodiment in that it is configured to be equal to the diameter D3. That is, in this modification, each hole diameter is set so as to satisfy the following conditional expression (5).
  • D1 ⁇ D2 D3 (5)
  • the diameter D3 of the intermediate hole 102ab is 0.5 to 0.9 mm
  • the diameter D2 of the second hole 1022ac is 0.5 to 0.00
  • the diameter D1 of the first hole 102aa is set to 0.15 to 0.25 mm.
  • each through hole 1022a that penetrates the glass mold 1022 is configured by the second hole 1022ac, the intermediate hole 102ab, and the first hole 102aa, and is on the gas supply port side.
  • the diameter D1 of the first hole 102aa located at the smallest is the smallest, and the diameter D3 of the intermediate hole 102ab is the largest. Therefore, as in the first embodiment described above, the fluctuation of the exhaust pressure of the gas ejected from each through hole 1022a, which occurs at the moment when the molten glass G is cast on the concave molding surface 1022e, is more than that of the first hole 102aa.
  • the buffer portions are 102ab and 1022ac. Accordingly, even at the moment when the molten glass G is cast, the flow rate of the gas ejected from each through hole 1022a is kept substantially constant, so that the molten glass G can be received in a stable floating state.
  • the diameter D1 of the first hole 102aa is the smallest, the flow rate of the gas ejected from each through hole 1022a is determined by the diameter D1 of the first hole 102aa.
  • the second hole 1022ac of the present modification is formed thicker than the second hole 102ac of the first embodiment. Therefore, since the pressure of the gas ejected to the glass lump becomes weak, the unevenness formed by the gas pressure is less likely to occur.
  • the diameter D3 of the intermediate hole 102ab, the diameter D2 of the second hole 102ac, and the diameter D1 of the first hole 102aa satisfy the conditional expression (3).
  • the present invention is not limited to this conditional expression.
  • FIG. 7 is a cross-sectional view of a glass forming mold 1023 provided in the glass lump forming apparatus of Modification 3 of the first embodiment.
  • the glass mold 1023 of the present modified example is such that the length of the first hole 1023aa and the intermediate hole 1023ab of each through hole 1023a penetrating the glass mold 1023 is the center of the concave molding surface 1023e. This is different from the first embodiment in that the through hole 1023a and the peripheral through hole 1023a are configured differently.
  • the length of the first hole 1023aa of each through hole 1023a becomes longer as it goes around the recess molding surface 1023e, and the length of the intermediate hole 1023ab goes around the recess molding surface 1023e. Is configured to be shorter. Also in this modification, since the diameter D1 of the first hole 1023aa is the smallest, the flow rate of the gas ejected from each through hole 1023a is determined by the diameter D1 of the first hole 102aa, but the length of the first hole 1023aa is If they are different, there will be a difference in resistance in the pipe (that is, ease of gas flow).
  • the fluctuation range of the gas flow rate becomes the largest (that is, the shock absorbing capacity is the largest) at the center portion of the concave molding surface 1023e having the longest intermediate hole 1023ab (buffer portion), and the length of the intermediate hole 1023ab is the largest.
  • the fluctuation range of the gas flow rate is the smallest at the periphery of the shortest concave forming surface 1023e (that is, the shock absorbing capacity is the smallest).
  • the gas flow rate is increased and the buffer capacity is increased toward the center of the concave molding surface 1023e.
  • the central portion of the concave molding surface 1023e is ejected more gas than the peripheral portion, but depending on the flow of the molten glass G
  • the gas flow rate is properly adjusted (buffer action) and the molten glass G is supplied to the concave molding surface 1023e, the gas flow rate is constant (that is, the weight of the molten glass G is balanced with the gas flow rate).
  • the molten glass G is levitated and supported.
  • the peripheral portion of the concave molding surface 1023e floats and supports the molten glass G with a smaller gas flow rate fluctuation range than the central portion and with a smaller gas flow rate.
  • the flow rate of the gas ejected from each through-hole 1023a and the buffer capacity differ from the first embodiment and the modification in that they differ depending on the position of the through-hole 1023a.
  • the impact when the molten glass G is cast on the concave molding surface 1023e is the same as in the first embodiment and the modification.
  • the gas flow rate required for each through hole 1023a is stabilized while the molten glass G is absorbed, and the molten glass G is levitated and supported in a stable state.
  • Table 1 shows Examples (Examples 1 to 9) and Comparative Example 1. Specifically, Table 1 shows through holes 102a (second holes 102ac (1021ac, 1022ac) of the glass molds 102 (1021, 1022)) set for each of the examples (Examples 1 to 9) and Comparative Example 1. The diameter of the intermediate hole 102ab and the first hole 102aa) is shown. In the following examples (Examples 1 to 9) and Comparative Example 1, a glass mold having the size of each through hole 102a formed as shown in Table 1 was prepared, and gas was ejected to form a glass lump.
  • each through-hole 102a (1021a, 1022a) is connected to one through-hole 102a (PCD0) formed on the central axis AX of the concave molding surface 102e, a concentric circle having a diameter of 3 mm with the central axis AX as the center ( The eight through-holes 102a formed on the PCD 3) and the eight through-holes 102a formed on the concentric circle (PCD 6) having a diameter of 6 mm with the central axis AX as the center are arranged.
  • the mold temperature was constant, and a certain amount of gas was ejected from each through hole.
  • the arrangement of the through holes is the same as that in the embodiment.
  • whether or not the flow rate of the gas ejected from each through-hole while the molten glass is cast is appropriate is based on the surface state of the obtained glass lump. I guessed.
  • Example 1 In Examples 1 to 9 shown in Table 1, as a result of observing the surface state of the obtained glass lump, there was no fusion mark caused by contact with the glass mold 102 (1021, 1022). A desired aspherical lens could be obtained by subjecting such a glass lump to precision press molding. As a result, in Examples 1 to 9, for example, the gas is uniformly ejected from the 17 through holes 102a formed in the glass mold 102 (1021, 1022), and even while the molten glass is cast. It was speculated that there was no change in the flow rate.
  • Example 10 the molten glass was press-molded with a glass mold 102 (lower mold) and an upper mold (without gas ejection holes) having a convex molding surface facing the glass mold 102. .
  • the glass mold 102 includes the through hole 102 in which the diameter of the first hole 102aa is 0.2 mm, the diameter of the intermediate hole 102ab is 0.5 mm, and the diameter of the second hole 102ac is 0.25 mm.
  • (Lower mold) was used. Then, 1000 mg of molten glass is separated from the molten glass flow flowing out from the platinum pipe, the molten glass is received in a state where gas is blown out by the glass mold 102 (lower mold), and the molten glass is pressed by the upper mold. By cooling, a glass lump (preform approximated to the lens shape to be obtained) was obtained.
  • Each through hole 102a is one on the central axis AX, four on a concentric circle (PCD3) having a radius of 3 mm centered on the central axis AX, and on a concentric circle (PCD5) having a diameter of 5 mm centered on the central axis AX. And 12 on a concentric circle (PCD7) having a diameter of 7 mm centered on the central axis AX.
  • PCD3 concentric circle
  • PCD5 concentric circle
  • PCD7 concentric circle having a diameter of 7 mm centered on the central axis AX.
  • Example 10 As a result of observing the surface state of the obtained glass lump, there was no fusion mark caused by contact with the glass mold 102 as in Examples 1 to 9. From this result, in Example 10 as well, it could be inferred that gas was evenly ejected from the 29 through holes 102 a formed in the glass mold 102. In Example 10 as well, a desired aspherical lens could be obtained by performing precision press molding using the obtained glass lump.
  • a glass lump forming apparatus (1) includes, as shown in FIGS. 1 to 7, a glass forming having a recess forming surface (102e) in which a plurality of through holes (102a) are formed.
  • a gas supplied from a predetermined gas supply unit is provided to the concave molding surface (102e) in a state where the gas discharged from the predetermined gas supply unit is ejected from the plurality of through holes through gas flow paths communicating with the plurality of through holes (102a).
  • a glass lump molding apparatus (1) that receives molten glass and forms it into a glass lump of a predetermined shape, and the through-hole (102a) is provided when the molten glass is supplied to the recessed molding surface (102e).
  • a buffer unit (102ab) that suppresses fluctuations in the flow rate of the gas ejected from the through hole (102a) is provided.
  • the through-hole (102ab) has a first hole having a first diameter opening on the gas flow path side and a second diameter opening on the concave molding surface side.
  • An intermediate hole having a third diameter that communicates the first hole and the second hole, the first diameter being D1, and the second diameter being D2.
  • the glass mold (102) includes a first member (102A) having a concave molding surface (102e) and a second hole (102ac). ) And a second member (102B) having a first hole (102aa) and an intermediate hole (102ab).
  • the thermal expansion coefficient of the second member 102B) is larger than the thermal expansion coefficient of the first member (102A).
  • the first member (102A) is made of stainless steel
  • the second member (102B) is made of brass.
  • the plurality of through holes (102a) are arranged at equal intervals on a concentric circle centered on the axis of the concave molding surface (102e).
  • the length of the intermediate hole (1023ab) of the through hole (1023a) arranged at the center of the concave molding surface (1023e) is the concave molding surface (1023e). It is formed longer than the length of the intermediate hole (1023ab) of the through hole (1023a) disposed in the peripheral part of the.
  • the first diameter is 0.15 to 0.25 mm
  • the second diameter is 0.15 to 0.90 mm
  • the third diameter is 0.50 to 0.90 mm.
  • the glass lump forming apparatus (1) further includes a forming die for moving the glass forming die (102) in the vertical direction.
  • the moving part (103) includes a moving part (103), and the forming part moving part (103) brings the glass forming die (102) close to the outlet (104a) of the molten glass and supplies the molten glass to the concave forming surface (102e). Is adjusted to a predetermined weight, the glass mold (102) is rapidly lowered to cut the molten glass.
  • molding apparatus (1) concerning embodiment of this invention, as FIG. 3 shows, the recessed part shaping
  • the molten glass supplied to the concave molding surface (102e) is received in a state in which molten glass is supplied to the substrate and gas is ejected from the plurality of through holes (102a), and is formed into a glass lump of a predetermined shape. Process.
  • the molten glass is pressed by the glass mold (102) and the upper mold (102A) facing the glass mold (102).
  • the glass lump production method preferably includes a step of introducing the produced glass lump into a predetermined press mold, and a step of press-molding the glass lump introduced into the predetermined press mold in a softened state, And a step of taking out the press-molded glass molded product from the press mold.
  • the glass lump may be a gob.
  • the gob When the glass lump is a gob, the gob may be supplied into a mold, and the supplied gob may be heated and softened and then press-molded (reheat press).
  • reheat press press-molded
  • a spherical lens can be obtained by subjecting a glass molded body obtained by reheat pressing to grinding and polishing.
  • the above-mentioned embodiment demonstrated the example which provided the buffer part (102ab) in all the some through-holes (102a) provided in the glass shaping
  • the buffer part (102ab) is provided only in the central part of the concave molding surface (102e) and the through hole 102a in the vicinity of the central part, and the buffer part (102ab) is not provided in the other through holes (102a). You can also
  • the length of the intermediate hole (1023ab) of the through hole (1023a) disposed at the center of the concave molding surface (1023e) is the concave molding surface.
  • the embodiment in which the length is longer than the length of the intermediate hole portion (1023ab) of the through hole (1023a) disposed in the peripheral portion of (1023e) has been described as an example, it is not limited thereto.
  • the length of the intermediate hole portion (1023ab) of the through hole (1023a) disposed at the center portion of the concave molding surface (1023e) is equal to the through hole (1023a) disposed at the peripheral portion of the concave molding surface (1023e). It can also be formed shorter than the length of the intermediate hole (1023ab).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

ガラス塊成形装置(1)は、複数の貫通孔(102a)が形成された凹部成形面(102e)を有するガラス成形型(102)を備え、所定のガス供給部から送出されるガスが複数の貫通孔(102a)と連通するガス流路を介して複数の貫通孔から噴出した状態で、凹部成形面(102e)に供給される熔融ガラスを受け、所定の形状のガラス塊に成形する。貫通孔(102a)は、熔融ガラスが、凹部成形面(102e)に供給されたときに、各貫通孔(102a)から噴出するガスの流量の変動を抑制するバッファ部(102ab)を備えている。このガラス塊成形装置(1)により、熔融ガラスを安定して浮上させることが可能となる。

Description

ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法
 本発明は、熔融ガラスより所定重量を有するガラス塊を成形するためのガラス塊成形装置、及びガラス塊成形装置を用いたガラス塊の製造方法、更には、ガラス塊の製造方法によって得られたガラス塊を再加熱しプレスしてガラス成形品を得るための方法に関する。
 熔融ガラス供給部より流下する熔融ガラスを、ガラス成形型にて浮上状態で受けながら精密プレス成形用のガラス塊(プリフォーム)に成形するガラス塊成形装置が知られている。この種の成形装置の具体的構成は、例えば特許文献1(特開2003-20248号公報)、2(特開平9-52720号公報)に記載されている。
 特許文献1(特開2003-20248号公報)、2(特開平9-52720号公報)に記載のガラス塊成形装置は、複数のガラス成形型がターンテーブル上に円周方向に等間隔に配置されており、ターンテーブルを回転させることにより、各ガラス成形型を所定の停留位置に順次移送する。これにより、各ガラス成形型への熔融ガラスの供給(キャスト)、ガラス成形型内で成形されたガラス塊の取出(テイクアウト)が順次行われる。この種のガラス塊成形装置に用いられるガラス成形型は、ガス(空気や不活性ガス)を噴出する複数の細孔(貫通孔)を有した凹部成形面を備え、細孔(貫通孔)のそれぞれからガスを噴出させながら熔融ガラス供給部から凹部成形面に流下する熔融ガラスを受け、冷却しながら成形している。
特開2003-20248号公報 特開平9-52720号公報
 特許文献1(特開2003-20248号公報)、2(特開平9-52720号公報)に記載のガラス成形型は、凹部成形面に配置された複数の細孔のそれぞれから一定量のガスを噴出させながら熔融ガラスを受け取る。このとき、熔融ガラスは凹部成形面の中心部からゆっくり流れ込み、周辺部に向かって徐々に拡がる(溜まる)ようにキャストされる。従って、熔融ガラスが凹部成形面にキャストされた瞬間においては、熔融ガラスによって凹部成形面の中心部の細孔のみからのガスの噴出が阻害される状態となるため、凹部成形面の中心部の細孔から噴出されるガスの排圧が、周辺部の細孔から噴出されるガスの排圧よりも一時的に低くなる。換言すると、熔融ガラスが凹部成形面にキャストされた瞬間においては、熔融ガラスの先端部が近接する凹部成形面の中心部の細孔からはガスが出にくくなるため、本来凹部成形面の中心部の細孔から噴出されるべきガスが凹部成形面の周辺部の細孔から抜けてしまい、凹部成形面の中心部の細孔から噴出されるガスの流量が一時的に減少する。そのため、熔融ガラスが一時的にガラス成形型と瞬間的に接触してしまう虞がある。凹部成形面の中心部の細孔からより噴出されるガスの流量が熔融ガラスを浮上させるのに十分でなくなってしまった場合、熔融ガラスとガラス成形型との融着が生じ、熔融ガラスがガラス成形型によって急冷されるため、成形後のガラス塊に歪み(表面のシワなど)が生じたりする不具合が生じる。また、このときに生じた歪みがカン割れと呼ばれるガラスの破損を誘引する虞もある。
 このように、凹部成形面の各細孔から噴出するガスの流量が大きく変動すると、熔融ガラスの浮上が不安定になる問題が指摘される。本発明はこのような事情に鑑みてなされたものであり、この発明(実施例)の目的は、凹部成形面の各細孔(貫通孔)から噴出するガスの流量を安定させることにより熔融ガラスを安定して浮上させることが可能なガラス塊成形装置を提供することである。また、このガラス塊成形装置を用いたガラス塊の製造方法、更には、ガラス塊の製造方法によって得られたガラス塊を再加熱しプレスしてガラス成形品を得るための方法を提供することである。
 本発明の一形態に係るガラス塊成形装置は、複数の貫通孔が形成された凹部成形面を有するガラス成形型を備え、所定のガス供給部から送出されるガスが複数の貫通孔と連通するガス流路を介して複数の貫通孔から噴出した状態で、凹部成形面に供給される熔融ガラスを受け、所定の形状のガラス塊に成形するガラス塊成形装置である。貫通孔は、熔融ガラスが、凹部成形面に供給されたときに、各貫通孔から噴出するガスの流量の変動を抑制するバッファ部を備える。
 このような構成によれば、熔融ガラスが凹部成形面にキャストされた瞬間に各貫通孔において発生するガスの排圧の変動は、第1孔部よりも大きな体積を有する中間孔部で吸収されるため、第1孔部側の圧力には影響を与えない。このため、熔融ガラスがキャストされる瞬間であっても各貫通孔から噴出されるガスの流量は安定した状態に保たれ、熔融ガラスを安定した浮上状態で受け取ることが可能となる。これにより、ガラス塊の成形不良の発生が抑えられ、歩留まりが向上する。
 また、貫通孔は、ガス流路側に第1の直径の開口を有する第1孔部と、凹部成形面側に第2の直径の開口を有する第2孔部と、第1孔部と第2孔部とを連通する、第3の直径を有する中間孔部とを有する構成とすることもできる。そして、第1の直径をD1、第2の直径をD2、第3の直径をD3としたときに、次の条件式(1)又は(2)を満足することにより、少なくとも中間孔部がバッファ部となる。D1<D2≦D3・・・(1)D1=D2<D3・・・(2)このような構成によれば、から噴出されるガスの流量は、更に、安定した状態に保たれ、熔融ガラスを安定した浮上状態で受け取ることが可能となる。
 また、ガラス成形型は、凹部成形面と第2孔部とを備える第1の成形型と、第1孔部と中間孔部とを備える第2の成形型とを備える構成とすることもできる。この場合、第2の成形型の熱膨張係数が、第1の成形型の熱膨張係数よりも大きくなるように構成することが好ましく、例えば、第1の成形型はステンレスで形成され、第2の成形型は真鍮で形成されるのが好ましい。このような構成によれば、第1の成形型と第2の成形型との当接面は高い気密性が保たれるため、当接面からのガスの漏出が防止され、さらに安定した浮上状態でガラス塊を成形することが可能となる。
 また、第1の直径は0.15~0.25mmであり、第2の直径は0.15~0.90mmであり、第3の直径は0.50~0.90mmであることが好ましい。
 また、ガラス成形型を垂直方向に移動させる成形型移動部をさらに備え、成形型移動部は、ガラス成形型を熔融ガラスの流出口に近づけ、凹部成形面に熔融ガラスが供給され、熔融ガラスが所定の重量に調整された時点でガラス成形型を急速に降下させて熔融ガラスを切断する構成としてもよい。
 また、本発明の一形態に係るガラス塊の製造方法は、上記ガラス塊成形装置を用いて所定の形状のガラス塊を成形する方法であって、凹部成形面に対して熔融ガラスを供給する工程と、複数の貫通孔からガスを噴出させることにより、凹部成形面に供給される熔融ガラスを浮上状態で受けながら所定の形状のガラス塊に成形する工程とを含む。また、この場合、ガラス成形型とガラス成形型に相対する上型とにより、熔融ガラス塊をプレスする工程としてもよい。本製造方法によれば、凹部成形面上で安定して浮上成形又は浮上した状態でプレス成形されたガラス塊が得られる。
 また、本発明の一形態に係るガラス成形品の製造方法は、上記ガラス塊製造方法を用いて製造されたガラス塊を所定のプレス成形型に導入する工程と、所定のプレス成形型に導入されたガラス塊を軟化した状態でプレス成形する工程と、プレス成形されたガラス成形品をプレス成形型より取出す工程とを含む。本製造方法によれば、成形不良のないガラス塊が用いられるため、精度の高いガラス成形品を高い歩留まりで製造することができる。
 本発明に係るガラス塊成形装置によれば、凹部成形面の各貫通孔から噴出するガスの流量が安定するため、熔融ガラスを安定して浮上させることが可能となる。また、安定した浮上状態でガラス塊を成形することができる製造方法、及び方法によって製造されたガラス塊を用いて精度の高いガラス成形品を製造することができる。
本発明の実施形態(第1実施形態)に係るガラス塊成形装置の構成を示す側面図である。 本発明の第1実施形態に係るガラス塊成形装置の構成を示す上面図である。 本発明の第1実施形態に係るガラス塊成形装置に備えられるガラス成形型の断面図である。 図3のガラス成形型の凹部成形面を説明する図である。 本発明の第1実施形態の変形例1に係るガラス塊成形装置に備えられるガラス成形型の断面図である。 本発明の第1実施形態の変形例2に係るガラス塊成形装置に備えられるガラス成形型の断面図である。 本発明の第1実施形態の変形例3に係るガラス塊成形装置に備えられるガラス成形型の断面図である。
 以下の説明において、熔融ガラスからガラス塊を成形するにあたり、熔融ガラスが成形面と瞬間的に接触することがあるが、熔融ガラスが成形面に対して融着が生じない範囲内での接触も実質的に浮上状態であるため、下記明細書では浮上状態にこれの意味も含まれている。
<ガラス塊成形装置及びガラス塊の製造>
 以下、図面を参照して、本発明の実施形態(第1実施形態)に係るガラス塊成形装置について説明する。
 図1は、本発明の第1実施形態のガラス塊成形装置1の構成を示す側面図である。図2は、本発明の第1実施形態に係るガラス塊成形装置の構成を示す上面図である。図1、図2に示されるように、ガラス塊成形装置1は、ガラス成形型102と、昇降機103と、熔融ガラス供給部104と、ターンテーブル106と、ダイレクトドライブモータ108と、加熱炉110(110a、110b)と、ガス配管116とを備えている。
 熔融ガラス供給部104の上部は、図示省略された作業槽、清澄槽、ガラス溶解槽へ連通している。これにより、溶解、清澄、均質化された熔融ガラスGが連続して熔融ガラス供給部104に供給される。熔融ガラス供給部104の先端(流出ノズル104a)からは、一定温度に制御された熔融ガラスGが流下する。流出ノズル104aより流下した熔融ガラスGは、ガラス成形型102によって受け取られて、所定の形状(例えば、おはじき状や扁平形状)のガラス塊に成形される。
 図2に示されるように、ガラス成形型102は、ターンテーブル106上に回転中心周りに等間隔で複数個設置されている。ターンテーブル106には、例えば軽量かつ高強度のアルミニウム合金製が想定される。ターンテーブル106は、ダイレクトドライブモータ108によって時計方向に間欠回転駆動される。これにより、各ガラス成形型102は、停留位置(キャスト位置)Aや停留位置(取出位置)Bで所定時間停留する。
 ターンテーブル106の下面側には、複数本のガス配管116が設置されている。各ガス配管116は、一端が、対応するガラス成形型102に接続されており、他端が、全ガス配管共通の単一のガス供給部(不図示)に接続されている。なお、図2においては、図面を明瞭にするため、ガス配管116を一点鎖線で示している。
 ガラス塊成形装置1による精密プレス成形用のガラス塊(プリフォーム)の成形方法について説明する。まず、熔融ガラスGから所定重量のガラス塊を成形するため、キャスト位置Aにおいて、清澄、均質化された熔融ガラスGが連続して一定速度で流出ノズル104aより流下される。流下された熔融ガラスGは、キャスト位置Aに順次移送されるガラス成形型102によって次々と受け取られる。詳細は後述するが、ガラス成形型102からは、ガス供給部からガス配管116を介して供給されたガス(例えば空気や窒素)が噴出している。そのため、熔融ガラスGは、ガスの噴出圧によって各ガラス成形型102に浮上状態で受けられながら、例えば所定の扁平状のガラス塊に成形される。
 加熱炉110aが設けられている区間では、ガラス成形型102内で成形されているガラス塊は、急激に冷却されず、徐々に冷却される。次いで、取出位置Bに搬送されたガラス成形型102内のガラス塊は、図示省略の取出手段(例えば、吸着パットが取付けられているロボットアーム)により、採り出される。加熱炉110bでは、ガラス成形型102がガラス塊の成形に適した温度になるように調節される。このように、各ガラス成形型102では、ターンテーブル106の回転に応じて、熔融ガラスGのキャスト、ガラス塊の成形、ガラス塊の冷却、ガラス塊の取出が順次行われる。各ガラス成形型102は、ガラス塊の取出後、再びキャスト工程へと戻されて、循環して使用される。
 なお、本実施形態においては、ガラス成形型102への熔融ガラスGのキャスト方法として、いわゆる降下切断法を用いている。各ガラス成形型102は、各ガラス成形型102を垂直方向に移動させる昇降機103上に配置されるように取付けられており、昇降機103は、ガラス成形型102がキャスト位置Aに移送されたときにガラス成形型102を垂直方向(すなわち、図1の上下方向)に上下動させることにより熔融ガラスGを切断する。例えば、体積の大きい1g~20gのガラス塊を製造する場合、昇降機103は、ガラス成形型102を流出ノズル104aの流出口に接近するように上昇させて、流出する熔融ガラスGをガラス成形型102の成形面(後述する凹部成形面102e)上に受け、流出された熔融ガラスGの中に流出ノズル104aの先端が沈み込まないようにガラス成形型102を所定の速度でゆっくりと降下させる。そして、ガラス成形型102にキャストされた熔融ガラスGが所定の重量に調整された時点で、昇降機103はガラス成形型102を急速に降下させて熔融ガラスGを切断する。また、体積の小さい100mg~2000mgのガラス塊を製造する場合には、昇降機103は、ガラス成形型102を流出ノズル104aの流出口に接近するように上昇させて、流出する熔融ガラスGをガラス成形型102の成形面(後述する凹部成形面102e)で受け、ガラス成形型102にキャストされた熔融ガラスGが所定の重量に調整された時点で、ガラス成形型102を急速に降下させて熔融ガラスGを切断する。なお、上述の熔融ガラスGの体積の定義について、一部重複する領域があるが、この領域については、熔融ガラスGの比重に起因する容積、熔融ガラスGの濡れ上がり、また使用するガラス成形型102の凹部成形面の曲率半径の大きさ等により適宜熔融ガラスGの切断方法を使い分けることができる。
 図3は、熔融ガラスGがガラス成形型102にキャストされるときの様子を示すガラス成形型102の断面図である。図3に示されるように、第1実施形態のガラス成形型102は、成形型本体部102Aと、流量安定板102Bとを備え、ガラス成形型102の下部は、成形型取付部105に固定されている。
 成形型本体部102Aは、流出ノズル104aの流出部からキャストされる熔融ガラスGを受け取り、ガラス塊を成形する凹部成形面102eを備えた耐熱鋼(例えば、ステンレス鋼)製の成形型である。凹部成形面102eの表面は、成形するガラス塊の表面形状に応じて、断面が所定の球面や非球面形状の曲面となるように鏡面加工されており、成形するガラス塊の表面に傷や汚れが付かないように構成されている。また、成形型本体部102Aの下面中央部には、凹部102dが形成されており、円柱状の流量安定板102Bが凹部102d内に収容されて固定されている。また、ガラス成形型102には、流量安定板102Bの下面と成形型本体部102Aの凹部成形面102eとを貫通するように複数の貫通孔102aが形成されており、ガス供給部からガス配管116を介して供給されたガスが貫通孔102aを通って凹部成形面102eに噴出する。
 図4は、図3のガラス成形型102の凹部成形面102eを説明する図であり、成形型本体部102Aの凹部成形面102eを流出ノズル104a側から見たときの上面図である。図3及び図4に示されるように、本実施形態の凹部成形面102eは、成形型本体部102Aの上面(流出ノズル104a側の面)を半円球面状に窪ませて形成した成形面である。凹部成形面102eの中心軸AX(図4)を基準中心とする所定半径の円内は成形するガラス塊の表面形状に応じた曲率半径R1で形成され、円外は曲率半径R1よりも曲率半径の小さい曲率半径R2で形成されている。すなわち、凹部成形面102eは、中心部と周辺部とで曲率半径の異なる2つの球面部を有しており、これらが連続することによって1つの成形面が形成されている。また、本実施形態においては、凹部成形面102eの貫通孔102aは、凹部成形面102eの中心軸AX(PCD0)上に1つと、基準中心(中心軸AX(図4))を中心とする2つの同心円(PCD3及びPCD6)上に8つずつ一定間隔ごとに配置されている。なお、詳細は後述するが、凹部成形面102eにおける各貫通孔102aの直径(開口)は、0.2~0.3mmに設定されている。なお、凹部成形面102eの構成は、上記の構成に限定されるものではなく、例えば、凹部成形面102eの中心部の曲率半径R1を周辺部の曲率半径R2よりも小さくしてもよく、また、凹部成形面102eは曲率半径の異なる3つ以上の球面を組み合わせて形成してもよい。
 成形型取付部105の内部には、貫通孔102aのそれぞれに加圧ガスを供給するための通気孔105aが形成されている(図3)。また、通気孔105aの上端部は、全ての貫通孔102aに加圧ガスを供給できるように拡径されており、空間部105bが形成されている。従って、ガス供給部からガス配管116、通気孔106aを介して供給されたガスは、空間部105bに一旦溜まり、各貫通孔102aから所定の流量(すなわち、所定の圧力)で噴出される。なお、所定の流量とは、ガラス塊が凹部成形面102eと融着せず、かつ流出ノズル104aからの熔融ガラス流の排出を妨げない程度の流量である。
 図3に示すように、キャスト位置Aでは、凹部成形面102eは、キャストされる熔融ガラスGをガスの噴出圧によって浮上状態で受け取る。このとき、熔融ガラスGは、凹部成形面102eの中心部からゆっくりと流れ込み、徐々に周辺部に拡がっていく(すなわち、凹部成形面102eの表面に溜まっていく)こととなる。ここで、本発明の第1実施形態においては、バッファ部(図3の場合は、102ab)を設けているため、熔融ガラスGが成形型本体部102Aと瞬間的に接触した場合であっても、凹部成形面102eの中心部の貫通孔102aから噴出されるガスの流量が変動することなく熔融ガラスGを浮上させるのに十分な流量を確保することができ、結果、熔融ガラスGは瞬時に成形型本体部102Aから離間するため、凹部成形面102eで安定した浮上状態を得ることができる。しかし、凹部成形面102eの中心部の貫通孔102aから噴出されるガスの流量が熔融ガラスGを浮上させるのに十分でない場合、熔融ガラスGと成形型本体部102Aとの融着が生じ、成形不良が発生する。そこで、本実施形態のガラス塊成形装置1においては、図3に示すように、成形型本体部102Aの下側に、流量安定板102Bを入れ、各貫通孔102aの内径を部分的に変えることで各貫通孔102aにバッファ機能を持たせ、係る問題を解決している。なお、図3に示す例は、貫通孔102aの全てにバッファ機能を持たせているが、貫通孔102aの全てにバッファ機能を持たせなくてもよい。
 流量安定板102B(図3)は、成形型本体部102Aよりも熱膨張係数の高い金属製(例えば、真鍮製)の部材であり、成形型本体部102Aと成形型取付部105によって上下方向から狭持され、凹部102d内に保持される。流量安定板102Bには、流量安定板102Bの上面側から下面側に向かって所定の深さだけドリル加工によって空けられた複数の中間孔102abと、流量安定板102Bの下面側から上面側に向かって所定の深さだけドリル加工によって空けられた複数の第1孔102aaとが形成されており、各中間孔102abと第1孔102aaとは、流量安定板102Bの内部で連通する、いわゆる段付き孔であり、貫通孔102aの一部を形成している。そして、流量安定板102Bが成形型本体部102Aの凹部102d内に保持されたとき、成形型本体部102Aの下面(流量安定板102Bの上面と対向する面)と凹部成形面102eとを貫通するように形成された複数の第2孔102acと、流量安定板102Bの中間孔102ab及び第1孔102aaとがそれぞれ連通するように構成されている。すなわち、各貫通孔102aは、成形型本体部102A側に形成された第2孔102acと、流量安定板102B側に形成された中間孔102ab及び第1孔102aaとで構成される。なお、本実施形態においては、中間孔102abの直径をD3、第2孔102acの直径をD2、第1孔102aaの直径をD1とした場合、以下の条件式(3)を満たすように構成されている。
    D1<D2<D3・・・(3)
 また詳細は後述するが、本実施形態においては、所定の実験結果に基づいて、中間孔102abの直径D3は0.5~0.9mm、第2孔102acの直径D2は0.2~0.3mm、第1孔102aaの直径D1は、0.15~0.25mmに設定されている。
 このように、本実施形態の各貫通孔102aは、それぞれ直径の異なる第2孔102ac、中間孔102ab及び第1孔102aaで構成されており、ガスの供給口側に位置する第1孔102aaの直径D1が最も小さく、中間孔102abの直径D3が最も大きくなるように構成されている。そのため、熔融ガラスGが凹部成形面102eにキャストされた瞬間に発生する、各貫通孔102aから噴出されるガスの排圧の変動は、第1孔102aaよりも大きな体積を有する中間孔102abで吸収され、第1孔102aa側(すなわち、空間部105b)の圧力には影響を与えない。すなわち、熔融ガラスGが凹部成形面102eにキャストされ、熔融ガラスGの先端部が凹部成形面102eの中心部の貫通孔102aのみに近接したとしても、本来凹部成形面102eの中心部の貫通孔102aから噴出されるべきガスは、貫通孔102aの中間孔102abに一時的に溜まるだけで、他の(周辺部の)貫通孔102aから抜けてしまうことはない。換言すると、貫通孔102aの中間孔102ab(バッファ部)は、ガスを一時的に溜めるバッファとして機能する。従って、熔融ガラスGがキャストされる瞬間であっても各貫通孔102aから噴出されるガスの流量は略一定に保たれるため、熔融ガラスGを安定した浮上状態で受け取ることが可能となる。なお、上述したように、本実施形態の流量安定板102Bは、成形型本体部102Aよりも熱膨張係数の高い金属製の部材で構成されているため、成形型本体部102Aと流量安定板102Bとの当接面は高い気密性が保たれている。従って、ガスが成形型本体部102Aと流量安定板102Bとの当接面から漏れ出すことはなく、各貫通孔102aから噴出されるガスの流量は、実質的に最も小さい直径を有する第1孔102aaの直径D1によって定まる。なお、貫通孔102aにおけるガスの供給口側の開口部及び凹部成形面102e側の開口部に面取り加工等を施した場合には、第1孔102aaの直径D1及び第2孔102acの直径D2は、面取り加工を施した孔部の直径を含まないものとする。この場合、第1孔102aaの直径D1は、ガスの流量を実質的に制御することのできる最も小さい直径とする。
 このように、第1実施形態のガラス塊成形装置1では、熔融ガラスGが凹部成形面102eと接触することなく、また、仮に熔融ガラスGがガラス成形型102の凹部成形面102eと瞬間的に接触した場合であっても、貫通孔102aより噴出されるガスにより熔融ガラスGは瞬時にガラス成形型102から離間する。従って、熔融ガラスGは各凹部成形面102eで安定した浮上状態で成形されるため、成形不良の発生が抑えられ歩留まりが向上する。なお、熔融ガラスGがガラス成形型102と瞬間的に接触した場合においては、熔融ガラスGのガラス成形型102の凹部成形面102eと接触した表面近傍が冷却されることになるが、熔融ガラスG内部の熱により冷却された表面部が温められ粘度が低下し、自由表面となることによりガラス成形型102の凹部成形面102eと接触した影響が解消され所望のガラス塊に成形される。
<ガラス成形品の製造>
 第1実施形態のガラス塊成形装置1を用いて成形されたガラス塊(プリフォーム)は、プレス成形型内に導入されてプレス成形型と共に加熱・軟化され、軟化した状態で精密プレス成形されてプレス成形型の成形面が転写され、プレス成形型内で加圧された状態で冷却された後、プレス成形型より取出される。これにより、成形面の面形状が転写された非球面レンズが得られる。このようにして製造された非球面レンズには、必要に応じて、芯取り加工や面取り加工等の各種研削・研磨加工や、染色加工、反射防止膜、紫外線カット等の各種コーティングが施されて、ガラス光学素子が得られる。
 以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えば、本実施形態においては、ガラス成形型102への熔融ガラスGのキャスト方法として、降下切断法を用いたが、この構成に限定されるものではなく、例えば、流出ノズル104aより熔融ガラスGを自重で滴下させる滴下切断法を適用することも可能である。
 また、本実施形態においては、下型であるガラス成形型102のみによって精密プレス成形用のプリフォームを浮上成形する構成としたが、この構成に限定されるものではなく、例えば、ガラス成形型102に相対する上型を用い、ガラス成形型102の凹部成形面102eで熔融ガラスGが浮上した状態で、上型とガラス成形型102とで熔融ガラスGをプレス成形してもよい。プレス後、冷却することにより精密プレス成形用の近似形状プリフォームを製造することができる。なお、ガスを噴出可能な多孔質体を備えた上型を用い、上型及び下型の両方からガスを噴出させてプレスしてもよく、また、孔無しの上型を用い、上型からはガスを噴出させないでプレスしてもよい。
<第1実施形態の変形例1>
 図5は、第1実施形態の変形例1のガラス塊成形装置1に備えられるガラス成形型1021の断面図である。図5に示されるように、本変形例のガラス成形型1021は、成形型本体部1021A側に形成された第2孔1021acの直径D2が、流量安定板102B側に形成された第1孔102aaの直径D1と等しくなるように構成されている点で、第1実施形態と異なる。すなわち、本変形例においては、以下の条件式(4)を満たすように各孔径が設定されている。
    D1=D2<D3・・・(4)
 また詳細は後述するが、本実施形態においては、所定の実験結果に基づいて、中間孔102abの直径D3は0.5~0.9mm、第2孔1021acの直径D2は0.15~0.25mm、第1孔102aaの直径D1は、0.15~0.25mmに設定されている。
 本変形例においても、第1実施形態と同様、ガラス成形型1021を貫通する各貫通孔1021aは、第2孔1021ac、中間孔102ab及び第1孔102aaで構成されており、ガスの供給口側に位置する第1孔102aaの直径D1が最も小さく、中間孔102abの直径D3が最も大きくなるように構成されている。そのため、上述した第1実施形態と同様、熔融ガラスGが凹部成形面1021eにキャストされた瞬間に発生する、各貫通孔1021aから噴出されるガスの排圧の変動は、第1孔102aaよりも大きな体積を有する中間孔102ab(バッファ部)で吸収される。従って、熔融ガラスGがキャストされる瞬間であっても各貫通孔1021aから噴出されるガスの流量は略一定に保たれるため、熔融ガラスGを安定した浮上状態で受け取ることが可能となる。なお、本変形例においても、第1孔102aaの直径D1が最も小さいため、各貫通孔1021aから噴出されるガスの流量は、第1孔102aaの直径D1によって定まる。
 また、本変形例の第2孔1021acは、第1実施形態の第2孔102acと比較して細く形成されているため、熔融ガラスGが凹部成形面1021eにキャストされた瞬間に発生するガスの排圧の変動が、第1実施形態と比較してさらに小さなものとなる。
<第1実施形態の変形例2>
 図6は、第1実施形態の変形例2のガラス塊成形装置1に備えられるガラス成形型1022の断面図である。図6に示されるように、本変形例のガラス成形型1022は、成形型本体部1022A側に形成された第2孔1022acの直径D2が、流量安定板102B側に形成された中間孔102abの直径D3と等しくなるように構成されている点で、第1実施形態と異なる。すなわち、本変形例においては、以下の条件式(5)を満たすように各孔径が設定されている。
    D1<D2=D3・・・(5)
 また詳細は後述するが、本実施形態においては、所定の実験結果に基づいて、中間孔102abの直径D3は0.5~0.9mm、第2孔1022acの直径D2は0.5~0.9mm、第1孔102aaの直径D1は、0.15~0.25mmに設定されている。
 本変形例においても、第1実施形態と同様、ガラス成形型1022を貫通する各貫通孔1022aは、第2孔1022ac、中間孔102ab及び第1孔102aaで構成されており、ガスの供給口側に位置する第1孔102aaの直径D1が最も小さく、中間孔102abの直径D3が最も大きくなるように構成されている。そのため、上述した第1実施形態と同様、熔融ガラスGが凹部成形面1022eにキャストされた瞬間に発生する、各貫通孔1022aから噴出されるガスの排圧の変動は、第1孔102aaよりも大きな体積を有する中間孔102abと第2孔1022acとで吸収される(この場合におけるバッファ部は、102ab、及び1022acである)。従って、熔融ガラスGがキャストされる瞬間であっても各貫通孔1022aから噴出されるガスの流量は略一定に保たれるため、熔融ガラスGを安定した浮上状態で受け取ることが可能となる。なお、本変形例においても、第1孔102aaの直径D1が最も小さいため、各貫通孔1022aから噴出されるガスの流量は、第1孔102aaの直径D1によって定まる。
 また、本変形例の第2孔1022acは、第1実施形態の第2孔102acと比較して太く形成されている。従って、ガラス塊に噴出されるガスの圧力が弱くなるため、ガスの圧力によって形成される凹凸は生じ難くなる。
 第1実施形態においては、中間孔102abの直径D3、第2孔102acの直径D2、第1孔102aaの直径D1が条件式(3)を満たすように構成したが、変形例1及び2の説明から明らかなように、本発明はこの条件式に限定されるものではない。すなわち、各貫通孔102a(1021a、1022a)から噴出されるガスの流量が第1孔102aaの直径D1によって規制されるように、第1孔102aaの直径D1を最も小さくなるように構成し、かつ、第1孔102aaの上側(すなわち、ガスの下流側)に第1孔102aaの直径D1をよりも大きな内径を有する中間孔102ab(バッファ部)を備えるように構成すれば、同様の効果が得られる。従って、中間孔102abの直径D3、第2孔102acの直径D2、第1孔102aaの直径D1は、以下の条件式(6)又は(7)を満足すればよいこととなる。
    D1<D2≦D3・・・(6)
    D1=D2<D3・・・(7)
<第1実施形態の変形例3>
 図7は、第1実施形態の変形例3のガラス塊成形装置に備えられるガラス成形型1023の断面図である。図7に示されるように、本変形例のガラス成形型1023は、ガラス成形型1023を貫通する各貫通孔1023aの第1孔1023aa及び中間孔1023abの長さが、凹部成形面1023eの中心部の貫通孔1023aと周辺部の貫通孔1023aとで異なるように構成されている点で、第1実施形態と異なる。すなわち、本変形例においては、各貫通孔1023aの第1孔1023aaの長さが、凹部成形面1023eの周辺にいくに従って長くなり、中間孔1023abの長さが、凹部成形面1023eの周辺にいくに従って短くなるように構成されている。本変形例においても、第1孔1023aaの直径D1が最も小さいため、各貫通孔1023aから噴出されるガスの流量は、第1孔102aaの直径D1によって定まるが、第1孔1023aaの長さが異なると、管内抵抗(すなわち、ガスの流れ易さ)に差が生じることとなる。すなわち、本変形例においては、第1孔1023aaの長さが短い凹部成形面1023eの中心部ほどガスが流れ易く(抵抗が小さく)、周辺部ほどガスが流れ難く(抵抗が大きく)なる。従って、本変形例においては、凹部成形面1023eの中心部の貫通孔1023aと周辺部の貫通孔1023aとでガスの流入量に差が生じ、中心部の貫通孔1023aほどガスの流量が多くなる。また、本変形例では、凹部成形面1023eの周辺にいくに従って中間孔1023abの長さが短くなるように構成されているため、凹部成形面1023eの中心部ほどバッファの容量が大きくなる。つまり、中間孔1023ab(バッファ部)の長さが最も長い凹部成形面1023eの中央部において最もガス流量の変動幅が大きく(すなわち、衝撃吸収能力が最も大きく)なり、中間孔1023abの長さが最も短い凹部成形面1023eの周辺部において最もガス流量の変動幅が小さく(すなわち、衝撃吸収能力が最も小さく)なる。このように、本変形例では、凹部成形面1023eの中心部ほどガスの流量を増やし、またバッファの容量も大きくなるように構成している。このため、熔融ガラスGが凹部成形面1023eにキャストされるとき、凹部成形面1023eの中心部は周辺部に比較してガスが多く噴出されることになるが、熔融ガラスGの流下に応じてガス流量が適正に調整(バッファ作用)され、熔融ガラスGが凹部成形面1023eに供給されたときには、ガス流量が一定となった状態(すなわち、熔融ガラスGの重さとガス流量がバランスした状態)で熔融ガラスGを浮上支持する。一方、凹部成形面1023eの周辺部は、中心部よりも小さなガス流量の変動幅で、かつ、少ないガス流量で熔融ガラスGを浮上支持する。
 このように、本変形例においては、各貫通孔1023aから噴出されるガスの流量及びバッファ能力が貫通孔1023aの位置によって異なる点で上記第1実施形態及び変形例と異なるが、凹部成形面1023eの中心部ほどガスの流量を増やし、またバッファの容量も大きくなるように構成することで、上記第1実施形態及び変形例と同様、熔融ガラスGが凹部成形面1023eにキャストされるときの衝撃を吸収しつつ、各貫通孔1023aに求められるガスの流量を安定させ、熔融ガラスGを安定した状態で浮上支持している。
<実施例>
 次に、上述した本発明の第1実施形態及びその比較例に係るガラス成形型について、以下に幾つかの実施例及び比較例を示し、ガス流量との関係を実験結果に基づいて説明する。
 表1は、実施例(実施例1~9)及び比較例1を示したものである。具体的に表1は、実施例(実施例1~9)及び比較例1ごとに設定された、貫通孔102a(ガラス成形型102(1021、1022)の第2孔102ac(1021ac、1022ac)、中間孔102ab、及び第1孔102aa)の直径が示されている。以下の実施例(実施例1~9)及び比較例1では、各貫通孔102aの大きさを表1に記載のように形成されたガラス成形型を用意し、ガスを噴出してガラス塊を成形し、成形したガラス塊の表面状態をマイクロスコープを用いて観察し、観察の結果、ガラス塊の表面状態が良好(融着痕がない)であれば、貫通孔102a(1021a、1022a)から噴出されるガスの流量が適切であると判断した。
Figure JPOXMLDOC01-appb-T000001
 <実験方法1>
 実施例(実施例1~9)のガラス成形型102(1021、1022)及び比較例1のガラス成形型を用いて、熔融ガラスから750mgのガラス塊を成形した。型温度は一定とし、各貫通孔102a(1021a、1022a)から一定量のガスを噴出させた。また、各貫通孔102a(1021a、1022a)は、図4に示す配置とした。具体的には、各貫通孔102a(1021a、1022a)を、凹部成形面102eの中心軸AX上に形成された1つの貫通孔102a(PCD0)、中心軸AXを中心とする直径3mmの同心円(PCD3)上に形成された8つの貫通孔102a、及び中心軸AXを中心とする直径6mmの同心円(PCD6)上に形成された8つの貫通孔102aのように配置した。また、比較例1においても実施例と同様に、型温度は一定とし、各貫通孔から一定量のガスを噴出させた。各貫通孔の配置は、実施例と同様の配置にしている。そして、実施例1~9及び比較例1について、熔融ガラスがキャストされる間の各貫通孔から噴出するガスの流量が適切であるか否かを、得られたガラス塊の表面状態に基づいて推測した。
 <実験結果1>
 表1に示される実施例1~9においては、得られたガラス塊の表面状態を観察した結果、ガラス成形型102(1021、1022)との接触により生じる融着痕はなかった。このようなガラス塊を精密プレス成形に供することにより、所望の非球面レンズを得ることができた。この結果、実施例1~9では、例えば、ガラス成形型102(1021、1022)に形成された17個の貫通孔102aから均等にガスが噴出されており、熔融ガラスがキャストされる間においてもその流量の変化がないと推測できた。
 一方、一様な直径の貫通孔を備えた比較例においては、得られたガラス塊の表面状態を観察した結果、ガラス塊の中心部には融着痕が発生していることが確認された。このようなガラス塊は、精密プレス成形に供することはできない。この結果から比較例1においては、熔融ガラスがキャストされる間にPCD0及びPCD3(すなわち、凹部成形面の中心部)の9つの貫通孔から噴出されるガスの流量が著しく低下し、PCD6(すなわち、凹部成形面の周辺部)の8つの貫通孔から噴出されるガスの流量が著しく増加したと推測できた。
 また、実施例10として、ガラス成形型102(下型)と、ガラス成形型102に相対し、成形面が凸状に形成された上型(ガス噴出孔無し)とにより熔融ガラスをプレス成形した。
<実験方法2>
 実施例10は、第1孔102aaの直径が0.2mm、中間孔102abの直径が0.5mm、第2孔102acの直径が0.25mmに形成された貫通孔102を備えたガラス成形型102(下型)を用いた。そして、白金パイプから流出する熔融ガラス流から、1000mgの熔融ガラスを分離し、その熔融ガラスをガラス成形型102(下型)でガスを噴出させた状態で受け、上型により熔融ガラスをプレスし、冷却することによりガラス塊(得ようとするレンズ形状に近似形状化されたプリフォーム)を得た。なお、各貫通孔102aは、中心軸AX上に1個、中心軸AXを中心とする半径3mmの同心円(PCD3)上に4個、中心軸AXを中心とする直径5mmの同心円(PCD5)上に12個、及び中心軸AXを中心とする直径7mmの同心円(PCD7)上に12個設けた。そして、上記実施例1~9及び比較例1と同様、熔融ガラスがキャストされる間の各貫通孔102aから噴出するガスの流量を、得られたガラス塊の表面状態に基づいて推測した。
<実験結果2>
 実施例10においても、得られたガラス塊の表面状態を観察した結果、上記実施例1~9と同様に、ガラス成形型102との接触により生じる融着痕はなかった。この結果から実施例10においても、ガラス成形型102に形成された29個の貫通孔102aから均等にガスが噴出されていることが推測できた。また、実施例10においても、得られたガラス塊を用いて精密プレス成形を行い、所望の非球面レンズを得ることができた。
 最後に、本発明の実施形態を、図等を用いて総括する。
 本発明の実施形態にかかるガラス塊成形装置(1)は、図1~図7に示されているように、複数の貫通孔(102a)が形成された凹部成形面(102e)を有するガラス成形型を備え、所定のガス供給部から送出されるガスが複数の貫通孔(102a)と連通するガス流路を介して複数の貫通孔から噴出した状態で、凹部成形面(102e)に供給される熔融ガラスを受け、所定の形状のガラス塊に成形するガラス塊成形装置(1)であり、貫通孔(102a)は、熔融ガラスが、凹部成形面(102e)に供給されたときに、各貫通孔(102a)から噴出するガスの流量の変動を抑制するバッファ部(102ab)を備えている。
 好ましくは、図3に示されている様に、貫通孔(102ab)は、ガス流路側に第1の直径の開口を有する第1孔部と、凹部成形面側に第2の直径の開口を有する第2孔部と、第1孔部と前記第2孔部とを連通する、第3の直径を有する中間孔部と、を有し、第1の直径をD1、第2の直径をD2、第3の直径をD3としたときに、次の条件式(1)又は(2)を満足する。
    D1<D2≦D3・・・(1)
    D1=D2<D3・・・(2)
 また、更に好ましくは、図1~図3に示されているように、ガラス成形型(102)は、凹部成形面(102e)と第2孔部(102ac)とを備える第1の部材(102A)と、第1孔部(102aa)と中間孔部(102ab)とを備える第2の部材(102B)と、を有する。
 また、更に好ましくは、第2の部材102B)の熱膨張係数が、第1の部材(102A)の熱膨張係数よりも大きい。
 また、更に好ましくは、第1の部材(102A)はステンレスで形成され、第2の部材(102B)は真鍮で形成される。
 また、更に好ましくは、図4に示されるように、複数の貫通孔(102a)は、凹部成形面(102e)の軸線を中心とする同心円上に等間隔に配置される。
 また、更に好ましくは、図7に示されるように、凹部成形面(1023e)の中心部に配置された貫通孔(1023a)の中間孔部(1023ab)の長さが、凹部成形面(1023e)の周辺部に配置された貫通孔(1023a)の中間孔部(1023ab)の長さよりも長く形成されている。
 また、更に好ましくは、第1の直径は0.15~0.25mmであり、第2の直径は0.15~0.90mmであり、第3の直径は0.50~0.90mmである。
 また、更に好ましくは、図1及び図3に示されているように、本発明の実施形態にかかるガラス塊成形装置(1)は、さらにガラス成形型(102)を垂直方向に移動させる成形型移動部(103)を備え、成形型移動部(103)は、ガラス成形型(102)を熔融ガラスの流出口(104a)に近づけ、凹部成形面(102e)に熔融ガラスを供給し、熔融ガラスが所定の重量に調整された時点で前記ガラス成形型(102)を急速に降下させて熔融ガラスを切断する。
 また、本発明の実施形態にかかるガラス塊成形装置(1)用いて所定の形状のガラス塊を成形するガラス塊の製造方法は、図3に示されているように、凹部成形面(102e)に対して熔融ガラスを供給する工程と、複数の貫通孔(102a)からガスを噴出した状態で、凹部成形面(102e)に供給される熔融ガラスを受け、所定の形状のガラス塊に成形する工程とを含む。
 好ましくは、ガラス塊の製造方法は、ガラス成形型(102)とガラス成形型(102)に相対する上型(102A)とにより、熔融ガラスをプレスする。
 更に、好ましくは、ガラス塊製造方法は、製造されたガラス塊を所定のプレス成形型に導入する工程と、所定のプレス成形型に導入されたガラス塊を軟化した状態でプレス成形する工程と、プレス成形されたガラス成形品を前記プレス成形型より取出す工程と、を含む。
 また、ガラス塊から精密プレス成形を行い、非球面レンズを得る態様について説明したが、ガラス塊は、ゴブであってもよい。ガラス塊がゴブである場合には、成形型内にゴブを供給し、供給されたゴブを加熱及び軟化させた後に、プレス成形してもよい(リヒートプレス)。リヒートプレスにより得られたガラス成形体に、研削及び研磨加工を施すことにより球面レンズを得ることができる。
 また、上述の実施形態ではガラス成形型(102)に設けられた複数の貫通孔(102a)の全てにバッファ部(102ab)を設ける態様を例に説明したが、例えば、熔融ガラスがキャストされる凹部成形面(102e)の中心部、及び中心部の近傍部分の貫通孔102aのみに、バッファ部(102ab)を設け、その他の貫通孔(102a)にはバッファ部(102ab)を設けないようにすることもできる。
 また、上述の実施形態では、例えば図7に示されるように、凹部成形面(1023e)の中心部に配置された貫通孔(1023a)の中間孔部(1023ab)の長さが、凹部成形面(1023e)の周辺部に配置された貫通孔(1023a)の中間孔部(1023ab)の長さよりも長く形成される態様を例に説明したが、これに限られるものではない。例えば、凹部成形面(1023e)の中心部に配置された貫通孔(1023a)の中間孔部(1023ab)の長さが、凹部成形面(1023e)の周辺部に配置された貫通孔(1023a)の中間孔部(1023ab)の長さよりも短く形成することもできる。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内の全ての変更が含まれることが意図される。
1 ガラス塊成形装置
102、1021、1022、1023、202 ガラス成形型
102A、1021A、1022A、1023A 成形型本体部
102B、1023B 流量安定板
102a、1021a、1022a、1023a、202a 貫通孔
102aa、1023aa、202aa 第1孔
102ab、1023ab、202ab 中間孔
102ac、1021ac、1022ac、1023ac、202ac 第2孔
102e、1021e、1022e、1023e、202e 凹部成形面
103 昇降機
104 熔融ガラス供給部
104a 流出ノズル
105 成形型取付部
105a 通気孔
105b 空間部
106 ターンテーブル
108 ダイレクトドライブモータ
110、110a、110b 加熱炉
116 ガス配管
202A 第1プレート
202B 第2プレート
202C 第3プレート。

Claims (12)

  1.  複数の貫通孔が形成された凹部成形面を有するガラス成形型を備え、所定のガス供給部から送出されるガスが前記複数の貫通孔と連通するガス流路を介して前記複数の貫通孔から噴出した状態で、前記凹部成形面に供給される熔融ガラスを受け、所定の形状のガラス塊に成形するガラス塊成形装置において、
     前記貫通孔は、
     前記熔融ガラスが、前記凹部成形面に供給されたときに、前記各貫通孔から噴出する前記ガスの流量の変動を抑制するバッファ部を備えるガラス塊成形装置。
  2.  前記貫通孔は、
      前記ガス流路側に第1の直径の開口を有する第1孔部と、
      前記凹部成形面側に第2の直径の開口を有する第2孔部と、
      前記第1孔部と前記第2孔部とを連通する、第3の直径を有する中間孔部と、
    を有し、
     前記第1の直径をD1、前記第2の直径をD2、前記第3の直径をD3としたときに、次の条件式(1)又は(2)を満足することにより、少なくとも前記中間孔部が前記バッファ部となる請求の範囲第1項に記載のガラス塊成形装置。
        D1<D2≦D3・・・(1)
        D1=D2<D3・・・(2)
  3.  前記ガラス成形型は、
      前記凹部成形面と前記第2孔部とを備える第1の部材と、
      前記第1孔部と前記中間孔部とを備える第2の部材と、
    を有する請求の範囲第1項又は請求の範囲第2項に記載のガラス塊成形装置。
  4.  前記第2の部材の熱膨張係数が、前記第1の部材の熱膨張係数よりも大きい請求の範囲第3項に記載のガラス塊成形装置。
  5.  前記第1の部材はステンレスで形成され、前記第2の部材は真鍮で形成されている請求の範囲第3項又は請求の範囲第4項に記載のガラス塊成形装置。
  6.  前記複数の貫通孔は、前記凹部成形面の軸線を中心とする同心円上に等間隔に配置される請求の範囲第1項から請求の範囲第5項の何れか一項に記載のガラス塊成形装置。
  7.  前記凹部成形面の中心部に配置された貫通孔の前記中間孔部の長さが、前記凹部成形面の周辺部に配置された貫通孔の前記中間孔部の長さよりも長く形成されている請求項6に記載のガラス塊成形装置。
  8.  前記第1の直径は0.15~0.25mmであり、前記第2の直径は0.15~0.90mmであり、前記第3の直径は0.50~0.90mmである請求の範囲第1項から請求の範囲第7項の何れか一項に記載のガラス塊成形装置。
  9.  前記ガラス塊成形装置は、さらに前記ガラス成形型を垂直方向に移動させる成形型移動部を備え、
     前記成形型移動部は、前記ガラス成形型を前記熔融ガラスの流出口に近づけ、前記凹部成形面に前記熔融ガラスを供給し、前記熔融ガラスが所定の重量に調整された時点で前記ガラス成形型を急速に降下させて前記熔融ガラスを切断する請求の範囲第1項から請求の範囲第8項の何れか一項に記載のガラス塊成形装置。
  10.  請求の範囲第1項から請求の範囲第9項の何れか一項に記載のガラス塊成形装置を用いて所定の形状のガラス塊を成形するガラス塊の製造方法であって、
     前記凹部成形面に対して前記熔融ガラスを供給する工程と、
     前記複数の貫通孔からガスを噴出した状態で、前記凹部成形面に供給される熔融ガラスを受け、所定の形状のガラス塊に成形する工程と、
    を含むガラス塊の製造方法。
  11.  前記所定形状のガラス塊に成形する工程は、前記ガラス成形型と前記ガラス成形型に相対する上型とにより、前記熔融ガラスをプレスする工程である請求の範囲第10項に記載のガラス塊の製造方法。
  12.  請求の範囲第10項又は請求の範囲第11項に記載のガラス塊製造方法を用いて製造されたガラス塊を所定のプレス成形型に導入する工程と、
     前記所定のプレス成形型に導入されたガラス塊を軟化した状態でプレス成形する工程と、
     前記プレス成形されたガラス成形品を前記プレス成形型より取出す工程と、
    を含むガラス成形品の製造方法。
PCT/JP2013/051642 2012-01-25 2013-01-25 ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法 WO2013111874A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013555328A JP5813140B2 (ja) 2012-01-25 2013-01-25 ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法
CN201380006795.0A CN104080744B (zh) 2012-01-25 2013-01-25 玻璃块成型装置、玻璃块的制造方法以及玻璃块成型品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012013588 2012-01-25
JP2012-013588 2012-01-25

Publications (1)

Publication Number Publication Date
WO2013111874A1 true WO2013111874A1 (ja) 2013-08-01

Family

ID=48873585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051642 WO2013111874A1 (ja) 2012-01-25 2013-01-25 ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法

Country Status (3)

Country Link
JP (1) JP5813140B2 (ja)
CN (1) CN104080744B (ja)
WO (1) WO2013111874A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761481A (zh) * 2017-11-09 2019-05-17 Agc株式会社 成形模、成形装置、成形体的制造方法及成形体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952720A (ja) * 1995-08-11 1997-02-25 Hoya Corp ガラス光学素子成形用予備成形体の製造方法及びその装置
JP2000095531A (ja) * 1998-09-22 2000-04-04 Canon Inc 光学素子成形用素材の製造方法
JP2002201030A (ja) * 2000-11-02 2002-07-16 Hoya Corp ガラス塊の製造方法及び製造装置、ガラス成形品の製造方法、並びに光学素子の製造方法
JP2007246307A (ja) * 2006-03-14 2007-09-27 Hoya Corp ガラス塊成形装置、ガラス塊の製造方法ならびに光学素子の製造方法
JP2007302526A (ja) * 2006-05-12 2007-11-22 Ohara Inc ガラス成形装置、ガラス成形方法、及びガラス成形品製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830363B2 (ja) * 2001-07-03 2006-10-04 Hoya株式会社 ガラス成形品の製造方法及びガラスプレス成形品の製造方法
JP2005306735A (ja) * 2005-07-20 2005-11-04 Hoya Corp ガラスゴブの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952720A (ja) * 1995-08-11 1997-02-25 Hoya Corp ガラス光学素子成形用予備成形体の製造方法及びその装置
JP2000095531A (ja) * 1998-09-22 2000-04-04 Canon Inc 光学素子成形用素材の製造方法
JP2002201030A (ja) * 2000-11-02 2002-07-16 Hoya Corp ガラス塊の製造方法及び製造装置、ガラス成形品の製造方法、並びに光学素子の製造方法
JP2007246307A (ja) * 2006-03-14 2007-09-27 Hoya Corp ガラス塊成形装置、ガラス塊の製造方法ならびに光学素子の製造方法
JP2007302526A (ja) * 2006-05-12 2007-11-22 Ohara Inc ガラス成形装置、ガラス成形方法、及びガラス成形品製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761481A (zh) * 2017-11-09 2019-05-17 Agc株式会社 成形模、成形装置、成形体的制造方法及成形体

Also Published As

Publication number Publication date
CN104080744B (zh) 2016-06-22
CN104080744A (zh) 2014-10-01
JP5813140B2 (ja) 2015-11-17
JPWO2013111874A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP2006240890A (ja) プレス成形用プリフォームの製造方法および光学素子の製造方法
JPH08259242A (ja) ガラス素材の浮上軟化方法、光学素子の製造方法、および光学素子
JP5813140B2 (ja) ガラス塊成形装置、ガラス塊の製造方法、及びガラス成形品の製造方法
JP2002154834A (ja) ガラス微小滴の製造方法およびガラス微小光学素子の製造方法およびそれらの製造装置
JP5830547B2 (ja) ガラス塊の成形装置、ガラス塊の製造方法、ガラス成形品の製造方法、及び光学素子の製造方法
JP4368368B2 (ja) ガラス塊の製造方法、その製造装置および光学素子の製造方法
JP3974376B2 (ja) ガラス塊の製造方法、ガラス成形品の製造方法、及び光学素子の製造方法
JP5828915B2 (ja) モールドプレス成形用ガラスプリフォームの製造方法、及び、光学素子の製造方法
JP5932846B2 (ja) ガラス塊の製造方法、及びガラス塊の成形装置、並びにプレス成形用素材、ガラス成形品、球プリフォーム、及び光学素子の製造方法
JPH0912317A (ja) ガラス光学素子の製造方法
JP4450801B2 (ja) ガラス塊成形装置、ガラス塊の製造方法ならびに光学素子の製造方法
JP3630829B2 (ja) 光学素子成形用素材の製造方法
JP5081717B2 (ja) 成形型、精密プレス成形用プリフォームの製造方法、光学素子の製造方法
JP4026868B2 (ja) 光学素子の製造方法
JP3634898B2 (ja) ガラス光学素子成形用予備成形体の製造方法及びその装置
JP2012176862A (ja) 精密プレス成形用ガラスプリフォームの製造方法および光学素子の製造方法
JP5345228B2 (ja) 精密プレス成形用ガラスプリフォームの製造方法および光学素子の製造方法
JPH08133758A (ja) ガラス光学素子の製造方法
JP2003040632A (ja) 球状ガラスの製造方法、プレス成形用プリフォームの製造方法及びプレス成形品の製造方法
JP2008297159A (ja) 溶融ガラス滴下ノズル、ガラス成形体の製造方法及びガラス成形体の製造装置
JP3243219B2 (ja) ガラス光学素子の製造方法
JPH08133756A (ja) ガラス光学素子の製造方法
JP5018503B2 (ja) 溶融ガラス滴の微小化部材、ガラスゴブの製造方法、及び、ガラス成形体の製造方法
JP2013227211A (ja) ガラス成形型及びガラス塊の製造方法
JP5200809B2 (ja) 溶融ガラス滴の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740792

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013555328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740792

Country of ref document: EP

Kind code of ref document: A1