WO2013111800A1 - Hiv検出用オリゴヌクレオチド、hiv検出キット、及びhiv検出方法 - Google Patents

Hiv検出用オリゴヌクレオチド、hiv検出キット、及びhiv検出方法 Download PDF

Info

Publication number
WO2013111800A1
WO2013111800A1 PCT/JP2013/051389 JP2013051389W WO2013111800A1 WO 2013111800 A1 WO2013111800 A1 WO 2013111800A1 JP 2013051389 W JP2013051389 W JP 2013051389W WO 2013111800 A1 WO2013111800 A1 WO 2013111800A1
Authority
WO
WIPO (PCT)
Prior art keywords
hiv
oligonucleotide
base sequence
hiv detection
detection
Prior art date
Application number
PCT/JP2013/051389
Other languages
English (en)
French (fr)
Inventor
壮利 水谷
彩 石坂
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to EP13740936.3A priority Critical patent/EP2808387B1/en
Priority to CN201380006301.9A priority patent/CN104066842A/zh
Priority to US14/374,116 priority patent/US9617606B2/en
Priority to JP2013532777A priority patent/JP5553323B2/ja
Publication of WO2013111800A1 publication Critical patent/WO2013111800A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/702Specific hybridization probes for retroviruses
    • C12Q1/703Viruses associated with AIDS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to an oligonucleotide for detecting a human immunodeficiency virus (hereinafter referred to as HIV), an HIV detection kit, and an HIV detection method.
  • HIV human immunodeficiency virus
  • This application claims priority based on Japanese Patent Application No. 2012-013087 filed in Japan on January 25, 2012, the contents of which are incorporated herein by reference.
  • HIV infection that is the cause of acquired immunodeficiency syndrome (hereinafter referred to as AIDS)
  • AIDS acquired immunodeficiency syndrome
  • the detection sensitivity of the virus in the diagnostic technique is low, HIV has disappeared from the body even though HIV is latent in the body. There is a risk of being misdiagnosed as a thing, leaving the roots of AIDS recurrence.
  • HAART therapy High Active Anti-Retroviral Therapy: hereinafter referred to as HAART therapy
  • HAART therapy is a method in which a plurality of inhibitors that inhibit reverse transcription of viral RNA, insertion of viral DNA into genomic DNA, and the like in the acute infection period described above are administered.
  • HAART therapy anti-HIV therapy has undergone significant development.
  • some infected cells acquire resistance to the HAART therapy (hereinafter, this infected cell is referred to as a latently infected cell).
  • this infected cell is referred to as a latently infected cell.
  • the viral life cycle observed in the acute infection phase is halted and no viral RNA is produced.
  • HAART therapy inhibits each step of virus growth as described above, it is difficult to remove virus from latently infected cells by HAART therapy.
  • discontinuing HAART therapy restarts the viral life cycle in latently infected cells. Therefore, the inability to remove viruses from latently infected cells has an adverse effect on QOL (Quality of Life) of HIV patients.
  • QOL Quality of Life
  • the latently infected cell contained a short RNA of about 60 bases. It was found out (see Non-Patent Document 1).
  • the HIV RNA quantification method using the real-time PCR method as the principle of amplification and detection of the target nucleic acid is known as one of the rapid diagnosis methods for HIV infection.
  • Examples of the HIV RNA quantification method using the real-time PCR method include the method described in Patent Document 1.
  • the method described in Patent Document 1 is a method for amplifying and quantifying HIV-1 provirus inserted into the genome using degenerate primers designed to recognize various subtypes of HIV-1. . This method is excellent in that it can be applied not only to subtype B, which is the main infection source of Japanese infected persons, but also to various other subtypes.
  • HIV since HIV has a reverse transcriptase with low fidelity (accuracy), it is a virus that is very susceptible to mutation.
  • the sequence of the oligonucleotide recognizing HIV described in Patent Document 1 is derived from the gag gene region encoding the structural protein GAG located about 500 bases downstream from the transcription start point. It is not enough to detect all the viruses with high accuracy.
  • the present invention has been made in view of the above circumstances, and provides an oligonucleotide for HIV detection, an HIV detection kit, and an HIV detection method capable of early detection of HIV with high accuracy and high sensitivity. Let it be an issue.
  • the present invention shows that specific RNA is transcribed in HIV-infected cells during the latent infection period, and that HIV viral RNA is less susceptible to mutation during reverse transcription. And the present invention was completed.
  • the present invention provides an oligonucleotide for HIV detection, an HIV detection kit, and an HIV detection method having the following characteristics.
  • An oligonucleotide for HIV detection characterized by having 80% or more identity with a base sequence consisting of 10 or more consecutive bases in the base sequence represented by SEQ ID NO: 1 or 6.
  • Second for HIV detection according to (1) characterized by having 90% or more identity with a base sequence comprising 10 or more consecutive bases in the base sequence represented by SEQ ID NO: 1 or 6 Oligonucleotide.
  • the HIV detection product according to (1) which has 95% or more identity with a base sequence composed of 10 or more consecutive bases in the base sequence represented by SEQ ID NO: 1 or 6 Oligonucleotide.
  • HIV even if a mutation occurs in HIV in an HIV-infected cell, such a virus can be detected with high accuracy. Moreover, according to the present invention, HIV can be detected early and with high sensitivity even during the latent infection period.
  • FIG. 1 It is a detection result of HIV-1 short-chain RNA using Real Time PCR in Example 1, Example 2, and Comparative Example 1. It is a base sequence analysis result of about 60 bases short chain RNA in Experimental example 2.
  • FIG. It is a result of quantitative PCR in Experimental Example 3. It is a calibration curve in Experimental Example 3. It is explanatory drawing of the detection system of the short chain RNA produced in the HIV infection cell of this invention.
  • the oligonucleotide for HIV detection of the present invention has 80% or more identity with a base sequence composed of 10 or more consecutive bases in the base sequence represented by SEQ ID NO: 1 or 6.
  • a base sequence represented by SEQ ID NO: 1 or 6 In the oligonucleotide for HIV detection of the present invention, one to a plurality of bases may be deleted, inserted or substituted with respect to the base sequence represented by SEQ ID NO: 1 or 6 within the range of identity.
  • the oligonucleotide for HIV detection of the present invention preferably has 90% or more identity with a base sequence consisting of 10 or more consecutive bases in the base sequence represented by SEQ ID NO: 1 or 6.
  • SEQ ID NO: 1 5'-GTCTCTCTGGTTAGACCCAGATCTGAGCTCTGGGAGCTCTCTGGCTAGCTAGGGGAACCCCACTGCTG-3 CTIGC CTIGCT It is a part of a TAR (Trans Activation Response region) sequence that exists in a Long Terminal Repeat (Long Terminal Repeat).
  • HIV-1 There are two types of HIV: HIV-1 and HIV-2.
  • HIV detection oligonucleotide of the present invention can specifically detect only HIV-1 without depending on the subtype.
  • HIV TAR sequences are involved in the transcriptional control of viral genes and are present in the LTRs located at the 5 'and 3' ends of the viral genome.
  • the TAR sequence is highly conserved among HIV-1 subtypes, and the transcriptional activation factor tat (Trans AcTivator) binds to the TAR sequence to promote transcription of the viral gene.
  • the TAR sequence is a site to which a transcriptional activator binds, and from the viewpoint that transcription of a viral gene is strictly controlled through such binding, the present inventor is unlikely to be mutated. I found out that it was a place. Therefore, since the oligonucleotide for HIV detection of the present invention includes a sequence that recognizes the TAR sequence and can also recognize mutated HIV, it can detect HIV with high accuracy.
  • the oligonucleotide for HIV detection of the present invention is preferably DNA, and is not limited to natural and non-natural, as long as it has the same function as DNA.
  • Artificial nucleic acids such as PNA (peptide nucleic acid) and LNA (Locked Nucleic Acid) May be included.
  • the length of the HIV detection oligonucleotide of the present invention is not particularly limited as long as it is a length necessary for functioning as a primer or a probe, but is preferably 10 to 40 bases, more preferably 20 to 30 bases.
  • the present inventors constructed a model cell line and analyzed the phenotype of the latently infected cell using the model cell line.
  • the latently infected cell contained a short RNA of about 60 bases. I found out that it was producing.
  • this short RNA of about 60 bases is a complex of transcripts whose transcription stopped at nucleotide positions 50 to 70 bases from the transcription start point of HIV-1 mRNA. It was also clarified that this short RNA of about 60 bases is a complex of transcription products in which transcription stopped at nucleotide positions 50 to 71 from the transcription start point of HIV-1 mRNA. That is, the short RNA corresponds to the mRNA from nucleotide position 1 (transcription start point) to position 50 to position 70 or position 50 to position 71 of the TAR sequence present at the 5 ′ end of the viral RNA. Was revealed.
  • the sequence of an oligonucleotide recognizing HIV was derived from the gag gene region encoding the structural protein GAG located about 500 bases downstream from the transcription start point.
  • Such oligonucleotides cannot detect short RNA produced by latently infected cells. Further, in infected cells, it takes 12 days from the day of infection exposure to 12 days associated with the growth of the virus until it becomes possible to detect the transcriptionally extended viral RNA containing the GAG region.
  • virus life cycle in latently infected cells virus production in serum is below the detection limit, but transcription has not completely stopped and transcription has started, but transcription extension has progressed efficiently. It is not in a state.
  • HIV-1 has a TAR sequence not only at the 5 ′ end of the viral genome but also at the 3 ′ end. Therefore, according to the oligonucleotide for detecting HIV of the present invention, not only short-chain RNA but also full-length HIV-1 RNA can be detected, so that virus can be detected with high sensitivity.
  • the HIV detection method of this embodiment is (A) adding polyA to the 3 ′ end of mRNA in the nucleic acid sample; (B) synthesizing cDNA complementary to the mRNA from the mRNA by reverse transcription using polyT and an oligonucleotide having a base sequence complementary to the adapter sequence on the 5 ′ side of the polyT; (C) amplifying a target base sequence having an HIV cDNA sequence from the cDNA using the HIV detection oligonucleotide of the present invention and an oligonucleotide having a base sequence complementary to the adapter sequence; (D) detecting an amplification product of the target base sequence.
  • each step will be described.
  • nucleic acid sample is not particularly limited as long as it is a nucleic acid-containing sample, such as an infected person with confirmed HIV infection, a suspected infected person with HIV infection, or a patient undergoing anti-HIV treatment, etc. It is preferably obtained by extracting nucleic acid from a sample such as blood, lymph, cerebrospinal fluid, and semen of a subject. Nucleic acid extraction from these samples can be performed by a conventional method such as using trisol, but when the above-described short RNA of about 60 bases is to be detected, low molecular RNA such as microRNA is extracted. Preferably, the method is used.
  • the short-chain RNA produced from the latently infected cells is a transcription that has stopped midway, and therefore does not have a polyA sequence at the 3 ′ end.
  • the short RNA can be made of a predetermined number of bases by adding polyA to the 3 ′ end of the short RNA using polyA polymerase. Thereby, the efficiency of the reverse transcription reaction in the step (b) and the amplification reaction of the target base sequence in the step (c) can be increased.
  • the length of polyA is not particularly limited, but is preferably 10 to 40 bases, more preferably 20 to 30 bases.
  • step (b) by using polyT and an oligonucleotide having a base sequence complementary to the adapter sequence on the 5 ′ side of the polyT (hereinafter also referred to as polyT oligonucleotide), a reverse transcription reaction is performed.
  • cDNA complementary to the mRNA is synthesized from the mRNA.
  • the polyT possessed by the polyT oligonucleotide is annealed to the polyA added to the mRNA in step (a).
  • the polyT oligonucleotide may have a degenerate sequence at the 3 ′ end, and a cDNA complementary to the mRNA is synthesized by a reverse transcription reaction starting from the 3 ′ end.
  • the reverse transcriptase used for reverse transcription conventionally known ones are used, and examples include reverse transcriptase derived from Moloney Murine Leukemia Virus.
  • the base sequence complementary to the adapter sequence possessed by the polyT oligonucleotide is not particularly limited as long as it does not inhibit the reverse transcription reaction, preferably not complementary to a known gene in vivo, and not complementary to an HIV gene. More preferably.
  • the length of the polyT oligonucleotide is preferably 10 to 40 bases, more preferably 20 to 30 bases, as is the case with the lengths of commonly used primers.
  • a process (a) and a process (b) may be performed simultaneously.
  • RNase such as RNase H is used to decompose the mRNA in advance before step (c). It is preferable.
  • the step (c) from the cDNA using the HIV detection oligonucleotide of the present invention and an oligonucleotide having a base sequence complementary to the adapter sequence (hereinafter also referred to as adapter sequence recognition oligonucleotide).
  • the target base sequence specifically means a sequence having a partial base sequence of TAR sequence cDNA.
  • the length of the adapter sequence recognition oligonucleotide is preferably 10 to 40 bases, more preferably 20 to 30 bases, as in the case of ordinary primers.
  • PCR Polymerase Chain Reaction
  • LAMP Long-Mediated Isothermal Amplification
  • NASBA Nucleic Acid Sequence Based Amplification
  • ICAN Isothermal and Chimerical primer-initiated Amplificationof Nucleic acids
  • TRC Transcription Reverse -Transcribation Concerted
  • SDA String Displacement Amplification
  • TMA Transcribion Mediated Amplifying n
  • SMAP SMart Amplification Process
  • RPA Recombines polymerase amplification
  • HDA Helicase-dependent amplification
  • DNA polymerase is a general term for enzymes that synthesize a DNA strand having a base sequence complementary to a template DNA annealed with primers.
  • the DNA polymerase used in the present invention is not particularly limited, but it is preferable to use a thermostable DNA polymerase such as Taq DNA polymerase, Tth DNA polymerase, Vent DNA polymerase, etc., and a hot start function to prevent extension before the start of the test. It is more preferable to use a DNA polymerase having In the step (c), when performing real-time PCR described later, it is particularly preferable to use Taq DNA polymerase having 3 ′ ⁇ 5 ′ exonuclease activity.
  • the oligonucleotide for detecting HIV of the present invention anneals to the 3 ′ end side of the cDNA synthesized in step (b), and an extension reaction is carried out.
  • Complementary strand hereinafter referred to as extension product A
  • extension product B a complementary strand of the extension product A
  • the HIV detection oligonucleotide of the present invention is annealed to the 3 ′ end side of the extension product B, an extension reaction is performed, and a complementary strand of the extension product B (hereinafter referred to as extension product C) is synthesized. Thereafter, the target base sequence is amplified by repeating the step of synthesizing the extension product B and the step of synthesizing the extension product C.
  • amplification programs such as temperature in PCR, it can carry out by a usual method.
  • reaction conditions under which the oligonucleotide for detecting HIV or the adapter sequence recognition oligonucleotide of the present invention anneals to the target base sequence are not particularly limited, and the temperature, pH, etc. are considered in consideration of the Tm value and the like of each oligonucleotide. It can be set under normal conditions such as salt concentration and buffer solution.
  • a primer set comprising the HIV detection oligonucleotide of the present invention and an adapter sequence recognition oligonucleotide is used.
  • the HIV detection oligonucleotide of the present invention recognizes a site that is less susceptible to mutation. Furthermore, since the primer set has only one HIV recognition site, it is not easily affected by viral RNA mutations. Therefore, according to this embodiment, all the mutated viruses can be detected with high accuracy.
  • step (d) an amplification product of the target base sequence is detected.
  • Typical detection methods in step (d) include an end point assay for evaluating whether the target base sequence has been amplified after the reaction and a real time assay for measuring the target base sequence amplification over time (real time). It is done.
  • Examples of the endpoint assay include a method for evaluating amplification of a target base sequence by electrophoresis. This method evaluates whether or not a target base sequence having a predetermined molecular weight has been amplified by performing electrophoresis on the amplification product of a target base sequence and a nucleic acid molecular weight marker and comparing the migration degrees of both. Is the method.
  • the reagent used for detection by electrophoresis is preferably ethidium bromide or cyber green that binds to double-stranded DNA and emits fluorescence.
  • Examples of the real-time assay include an evaluation method using a real-time PCR device.
  • Real-time PCR uses a known amount of serially diluted DNA as a standard, and the amplification of standard DNA and target nucleotide sequence by PCR is measured over time. Within the range of the number of molecules in which amplification of standard DNA occurs exponentially, This is a method for quantifying the number of molecules of a target base sequence present in a nucleic acid sample.
  • Real-time PCR is excellent not only in the presence or absence of HIV infection but also in that the degree of disease state and the course of healing can be grasped by quantifying the amount of virus in the blood of an HIV-infected person or HIV patient.
  • a method using a fluorescent dye can be mentioned. Specifically, a method using a dye such as cyber green that specifically intercalates with double-stranded DNA and emits fluorescence, and amplification And a method using a probe in which a fluorescent dye is bound to an oligonucleotide specific for the DNA to be used. From the viewpoint of more specifically detecting the amplification of the target base sequence, the latter method is preferred.
  • the probe used in the latter method is obtained by modifying both ends of an oligonucleotide that can hybridize to a part of the target base sequence with a fluorescent substance and a quenching substance, respectively.
  • the probe hybridizes to the target base sequence under conditions where the HIV detection oligonucleotide of the present invention anneals to the target base sequence. Subsequently, in the course of the extension reaction, the probe is degraded by the 5 ′ ⁇ 3 ′ exonuclease activity of Taq DNA polymerase. As a result, the fluorescent substance and the quenching substance modified in the probe are spatially separated from each other, and the fluorescent substance can emit a fluorescent signal. Such a fluorescent signal is proportional to the number of molecules of the amplified target base sequence.
  • Fluorescent substances include FAM (carboxyfluorescein), JOE (6-carboxy-4 ′, 5′-dichloro2 ′, 7′-dimethoxyfluorescein), FITC (fluorescein isothiocyanate), TET (tetrachlorofluorescein), HEX ( 5'-hexachloro-fluorescein-CE phosphoramidite), Cy3, Cy5, Alexa568 and the like.
  • the quencher include TAMRA (tetramethyl-rhodamine), 4- (4-dimethylaminophenylazo) benzoic acid (DABCYL), BHQ, and the like.
  • the nucleotide sequence of the oligonucleotide used as a probe is not particularly limited as long as it can recognize a TAR sequence or can hybridize to a sequence complementary to the TAR sequence.
  • SEQ ID NO: 2 (5 '-CTAGCTAGCCAGAGAGCTCCCAGG-3': 24mer). By using such a probe, amplification of the target base sequence can be detected more specifically.
  • step (d) Other detection methods in step (d) are not particularly limited, and examples include oligonucleotide labeling with fluorescent dyes, high performance liquid chromatography, mass spectrum, melting curve analysis, growth curve analysis, and the like.
  • Examples of labeling oligonucleotides with fluorescent dyes include a method of labeling an HIV detection oligonucleotide or an adapter sequence recognition oligonucleotide with a labeling substance. By such a method, amplification of the target base sequence can be detected using the labeling substance as an index.
  • Examples of such a labeling substance include fluorescent dyes, energy absorbing substances, radioisotopes, chemiluminescent substances, enzymes, antibodies and the like.
  • the position for labeling the oligonucleotide using such a labeling substance is not particularly limited, but a position that does not inhibit the extension reaction is preferable.
  • the HIV detection method of the present embodiment has the step (a) of adding polyA to the 3 ′ end of HIV-derived mRNA in a nucleic acid sample. Since polyA is added to the 3 ′ end, step (a) may not be included.
  • step (c) instead of the adapter sequence recognition oligonucleotide, an oligonucleotide having a base sequence complementary to the base sequence derived from HIV, or an HIV-derived base sequence Oligonucleotides that can hybridize to the base sequence may be used.
  • the HIV detection oligonucleotide of the present invention preferably recognizes a TAR sequence located at the 3 ′ end of the viral genome.
  • the HIV detection kit of the present invention includes the above-described oligonucleotide for detecting HIV of the present invention. Furthermore, the HIV detection kit of the present invention may contain a cell disruption reagent for nucleic acid sample pretreatment and the reagent described in each step of the above-described HIV detection method of the present invention. Thus, HIV can be detected more easily and in a short time by making a kit necessary for the HIV detection method of the present invention.
  • HIV viral RNA contains a sequence that is not susceptible to mutation during reverse transcription.
  • HIV can be detected with high accuracy even if a mutation occurs in HIV in HIV-infected cells.
  • specific RNA was transcribed in HIV-infected cells during the latent infection period, and a method for detecting an initial transcript expressed by HIV was established. This shortens the HIV detection date, enables highly sensitive detection, and contributes to early diagnosis of HIV infection. Furthermore, the early diagnosis can delay the onset of disease and the start of treatment for AIDS.
  • the present invention it becomes possible to determine early on the reactivation of the virus from within the patient during the treatment of AIDS under the administration of the antiviral agent.
  • the principle of the HIV detection method of the present invention can be applied to detection of other viruses that are known to be latently infected.
  • an oligonucleotide represented by SEQ ID NO: 2 (5′-CTAGCTAGCCAGAGAGCTCCCAGG-3 ′: 24mer) having FAM at the 5 ′ end and TAMRA at the 3 ′ end was used.
  • the synthesis of these oligonucleotides was commissioned to Oligo House. 10 ⁇ l of a mixed solution of the quantitative PCR reagent, the oligonucleotide, and 75 ng of cDNA per well was dispensed into each well of a 96 plate.
  • ABI 7300 (Life Technology) was used as a quantitative PCR apparatus, and after a reaction at 95 ° C. for 30 seconds, a 2-step reaction at 95 ° C. for 5 seconds and 60 ° C. for 34 seconds was performed for 40 cycles.
  • GAPDH quantitative PCR was performed to prepare a standard curve.
  • Example 1 J Virol. 83, pp. 11569-11580, 2009.
  • Total RNA was extracted from this cell using mirVana microRNA isolation kit (Ambion), and cDNA was synthesized from short-chain RNA in Total RNA using miScript Primer Assay Kit (Qiagen). Using this cDNA, quantitative PCR was performed to quantify the copy number of the target nucleotide sequence in the stable strain U1-mU6-TAR.
  • Example 2 J Virol. 72, pp. 1666 to 1670, as a model cell of latently infected cells published in 1998, cDNA was obtained from a U1 cell line having wild-type HIV-1 in the same manner as in Example 1. The number of copies of the target nucleotide sequence in the U1 cell line was quantified.
  • the measurement results using the quantitative PCR apparatus in Examples 1 and 2 and Comparative Example 1 are shown in FIG. As shown in FIG. 1, in the reactions in Examples 1 and 2, it was confirmed that the signal was enhanced with an increase in the number of cycles. On the other hand, in Comparative Example 1 having no cDNA in the reaction system, signal enhancement was not confirmed even when the number of cycles was increased. From the calculation results using the standard curve, the stable strain U1-mU6-TAR used in Example 1 has a short transcript of about 8 times the copy number compared to the latently infected cell line U1 used in Example 2. Was confirmed. As described above, from the results of Examples 1 and 2, it was confirmed that the short RNA produced in the infected cells can be quantified according to the present invention. From this, it was found that HIV in the early stage of infection can be detected early.
  • Example 2 (Identification of short RNA) Using the PCR product of Example 2, Deep Sequence analysis by Illumina GAIIx (manufactured by Illumina) was performed, and the base sequence of a short-chain RNA of about 60 bases was analyzed. The results are shown in FIG. As shown in FIG. 2, the short RNA of about 60 bases was clarified to be a transcription product whose transcription stopped at positions 50 to 70 bases from the transcription start point of HIV-1 RNA. It was also revealed that the short RNA of about 60 bases was a transcription product in which transcription was stopped at bases 50 to 71 from the transcription start point of HIV-1 RNA.
  • the oligonucleotide shown by SEQ ID NO: 5 was used as the forward primer, and the adapter sequence recognition oligonucleotide attached to the miScript Primer Assay Kit was used as the reverse primer.
  • an oligonucleotide represented by SEQ ID NO: 2 (5′-CTAGCTAGCCAGAGAGCTCCCAGG-3 ′: 24mer) having FAM at the 5 ′ end and BHQ-1 at the 3 ′ end was used. The synthesis of these oligonucleotides was commissioned to Oligo House.
  • the present invention even if a mutation occurs in HIV in an HIV-infected cell, such a virus can be detected with high accuracy, and HIV can be detected early and with high sensitivity even during the latent infection period. This is industrially useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • AIDS & HIV (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、80%以上の同一性を有することを特徴とするHIV検出用オリゴヌクレオチド、並びにそれを用いたHIV検出キット及びHIV検出方法を提供する。

Description

HIV検出用オリゴヌクレオチド、HIV検出キット、及びHIV検出方法
 本発明は、ヒト免疫不全ウイルス(human immunodeficiency virus;以下、HIVという。)検出用オリゴヌクレオチド、HIV検出キット、及びHIV検出方法に関する。
本願は、2012年1月25日に、日本に出願された特願2012-013087号に基づき優先権を主張し、その内容をここに援用する。
 後天性免疫不全症候群(Acquired Immune Deficiency Syndrome;以下、エイズという。)の原因であるHIV感染に対しては、HIV感染の根本的な予防をすることと共に、万一感染した疑いが生じた場合に、感染の有無を早期に診断できる技術を確立することが重要である。
 また、治療により体内からHIVが消失したようにみえても、診断技術におけるウイルスの検出感度が低い場合には、体内でHIVが潜伏しているにもかかわらず、体内からHIVが「消失」したものと誤診されるおそれがあり、エイズ再発の禍根を残すことになる。
 HIV感染後の急性感染期において、HIVは宿主細胞内に侵入し、自己のウイルスRNAを逆転写して、DNAを合成し、該DNAを宿主細胞のDNAに挿入し、プロウイルス化する。宿主細胞内で、該プロウイルスがウイルス遺伝子を発現し、自己のウイルスタンパク質がウイルスRNAをパッケージングすることによりウイルス粒子が形成され、該ウイルス粒子は宿主細胞外へ出ていく。
 現在、臨床における抗HIV治療方法としては、多剤併用療法(Highly Active Anti-Retroviral Therapy:以下、HAART療法という。)が一般的である。HAART療法は、上述した急性感染期におけるウイルスRNAの逆転写やウイルスDNAのゲノムDNAへの挿入等を阻害する複数種の阻害剤を投与する方法である。HAART療法により、抗HIV治療は著しい発展を遂げてきている。
 一方、HAART療法による治療過程で、一部の感染細胞は、HAART療法に対する耐性を獲得する(以下、この感染細胞を潜伏感染細胞という。)。潜伏感染細胞においては、プロウイルスを有しているにもかかわらず、急性感染期で観察されたウイルスの生活環が休止し、ウイルスRNAが産生されない。HAART療法は、上述したようにウイルス増殖の各ステップを阻害するものであるため、HAART療法により潜伏感染細胞からウイルスを除くことは困難である。しかし、HAART療法を中断すると、潜伏感染細胞におけるウイルスの生活環が再始動する。
 従って、潜伏感染細胞からウイルスを除去できないことが、HIV患者のQOL(Quality of Life)に悪影響を与えている。
 これに対して、本発明者らは、モデル細胞株を構築し、該モデル細胞株を用いて、潜伏感染細胞の表現型を解析したところ、潜伏感染細胞は、約60塩基の短鎖RNAを産出していることを見出した(非特許文献1参照。)。
 HIV感染の診断方法において、感染者の血液中のウイルス量を定量することは、病態の程度や治癒経過を把握する指標として重要である。
 現在、リアルタイムPCR法を標的核酸の増幅・検出の原理とするHIVのRNA定量法は、HIV感染の迅速な診断方法の一つとして知られている。
 リアルタイムPCR法を用いたHIVのRNA定量法としては、例えば特許文献1に記載された方法が挙げられる。特許文献1に記載された方法は、HIV-1の各種サブタイプを認識できるように設計された縮重プライマーを用いて、ゲノムに挿入されたHIV-1プロウイルスを増幅・定量する方法である。かかる方法は、日本人感染者の主な感染源であるサブタイプBのみならず、それ以外の各種サブタイプにも対応できる点で優れている。
特開2007-295896号公報
水谷ら、J Virol.、第83巻、第11569~11580頁、2009年
 しかしながら、HIVは、フィデリティ(正確性)の低い逆転写酵素を有しているため、非常に変異しやすいウイルスである。特許文献1に記載のHIVを認識するオリゴヌクレオチドの配列は、転写開始点から約500塩基下流に位置する構造タンパク質GAGをコードするgag遺伝子領域に由来するものであり、当該配列を用いて、変異したすべてのウイルスを高精度に検出するには不十分である。
 また、感染細胞では感染暴露日から定量的にGAG領域を含む転写伸張されたウイルスRNAを検出可能にするまでにはウイルスの増殖に伴った12日間という日数を必要とする。そのため、より早期に高感度でウイルス検出をすることができる技術が望まれている。
 更に、特許文献1に記載のオリゴヌクレオチドを用いても、上述した潜伏感染細胞が産出する短鎖RNAを検出することができず、未だ改善の余地がある。
 本発明は、上記事情に鑑みてなされたものであって、高精度かつ高感度に、HIVを早期検出することができるHIV検出用オリゴヌクレオチド、HIV検出キット、及びHIV検出方法を提供することを課題とする。
 本発明は、上記課題を解決すべく鋭意研究した結果、潜伏感染期間のHIV感染細胞において特定のRNAが転写されていること、及び、HIVのウイルスRNAにおいて逆転写の際に変異を受けにくい配列が存在することを見出し、本発明を完成させた。
 本発明は、下記の特徴を有するHIV検出用オリゴヌクレオチド、HIV検出キット、及びHIV検出方法を提供するものである。
(1)配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、80%以上の同一性を有することを特徴とするHIV検出用オリゴヌクレオチド。
(2)配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、90%以上の同一性を有することを特徴とする(1)に記載のHIV検出用オリゴヌクレオチド。
(3)配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、95%以上の同一性を有することを特徴とする(1)に記載のHIV検出用オリゴヌクレオチド。
(4)配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、98%以上の同一性を有することを特徴とする(1)に記載のHIV検出用オリゴヌクレオチド。
(5)配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列を有する(1)に記載のHIV検出用オリゴヌクレオチド。
(6)(1)~(5)のいずれかに記載のHIV検出用オリゴヌクレオチドを含むことを特徴とするHIV検出キット。
(7)(1)~(6)のいずれかに記載のHIV検出用オリゴヌクレオチドまたはHIV検出キットを用いることを特徴とするHIV検出方法。
(8)(a)核酸試料中のmRNAの3’末端にpolyAを付加する工程と、(b)polyTと、該polyTの5’側にアダプター配列に相補的な塩基配列を有するオリゴヌクレオチドを用いて、逆転写反応により、前記mRNAから該mRNAに相補するcDNAを合成する工程と、(c)(1)~(5)のいずれかに記載のHIV検出用オリゴヌクレオチドと、前記アダプター配列に相補的な塩基配列を有するオリゴヌクレオチドを用いて、前記cDNAから、HIVのcDNAの配列を有する標的塩基配列を増幅する工程と、(d)前記標的塩基配列の増幅産物を検出する工程と、を有することを特徴とするHIV検出方法。
 本発明によれば、HIV感染細胞において、HIVに変異が生じたとしても、かかるウイルスを高精度に検出することができる。
 また、本発明によれば、潜伏感染期間であっても、HIVを早期かつ高感度に検出することができる。
実施例1、実施例2、及び比較例1における、Real Time PCRを用いたHIV-1短鎖RNAの検出結果である。 実験例2における、約60塩基の短鎖RNAの塩基配列解析結果である。 実験例3における、定量PCRの結果である。 実験例3における、検量線である。 本発明の、HIV感染細胞において産生される短鎖RNAの検出系の説明図である。
[HIV検出用オリゴヌクレオチド]
 本発明のHIV検出用オリゴヌクレオチドは、配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、80%以上の同一性を有する。本発明のHIV検出用オリゴヌクレオチドは、当該同一性の範囲内において、配列番号1又は6で表される塩基配列に対して、1乃至複数の塩基が欠失、挿入、又は置換されていてもよい。
 更に、本発明のHIV検出用オリゴヌクレオチドは、配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、90%以上の同一性を有することが好ましく、95%以上の同一性を有することがより好ましく、98%以上の同一性を有することが特に好ましい。また、配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列を有することがより好ましい。
 配列番号1(5’-GGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAGCTAGGGAACCCACTGCTT-3’:65mer)で表される塩基配列及び配列番号6(5’-GGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAGCTAGGGAACCCACTGCTTAAGCCT-3’:71mer)で表される塩基配列は、ウイルスゲノム中のHIV LTR(Long Terminal Repeat)内に存在するTAR(Trans Activation Responsive region)配列の一部である。
 HIVとしては、HIV-1及びHIV-2の2種類が挙げられる。本発明のHIV検出用オリゴヌクレオチドは、サブタイプに依存せずにHIV-1のみを特異的に検出することができる。
 HIVのTAR配列は、ウイルス遺伝子の転写制御に関与し、ウイルスゲノムの5’末端及び3’末端に位置するLTR内に存在する。TAR配列は、HIV-1のサブタイプ間で高く保存されており、転写活性因子tat(Trans AcTivator)が該TAR配列に結合することにより、ウイルス遺伝子の転写が促進される。
 このように、TAR配列は、転写活性因子が結合する部位であり、ウイルス遺伝子の転写はかかる結合を介して厳密に制御されているという観点から、本発明者は、TAR配列が変異を受けにくい箇所であることを見出した。
 従って、本発明のHIV検出用オリゴヌクレオチドは、TAR配列を認識する配列を含むことにより、変異したHIVをも認識することができるため、HIVを高精度に検出することができる。
 本発明のHIV検出用オリゴヌクレオチドは、DNAが好ましく、DNAと同様の機能を有するものであれば、天然、非天然に限られず、PNA(ペプチド核酸)やLNA(Locked Nucleic Acid)等の人工核酸を含むものであってもよい。
 本発明のHIV検出用オリゴヌクレオチドの長さは、プライマー又はプローブとして機能するために必要な長さであれば特に限定されないが、10~40塩基が好ましく、20~30塩基がより好ましい。
 上述したように、本発明者らは、モデル細胞株を構築し、該モデル細胞株を用いて、潜伏感染細胞の表現型を解析したところ、潜伏感染細胞は、約60塩基の短鎖RNAを産出していることを見出した。
 更に、この約60塩基の短鎖RNAが、HIV-1mRNAの転写開始点から、ヌクレオチド位置50から70塩基で転写が止まった転写産物の複合体であることを明らかにした。また、この約60塩基の短鎖RNAは、HIV-1mRNAの転写開始点から、ヌクレオチド位置50~71塩基で転写が止まった転写産物の複合体であることも明らかにした。即ち、短鎖RNAがウイルスRNAの5’末端に存在するTAR配列のヌクレオチド位置1(転写開始点)から、位置50から位置70、又は位置50から位置71までのmRNAに相当するものであることを明らかにした。
 従来、HIVを認識するオリゴヌクレオチドの配列は、転写開始点から約500塩基下流に位置する構造タンパク質GAGをコードするgag遺伝子領域に由来するものであった。かかるオリゴヌクレオチドは、潜伏感染細胞が産出する短鎖RNAを検出することができない。また、感染細胞では感染暴露日から定量的にGAG領域を含む転写伸張されたウイルスRNAを検出可能にするまでにはウイルスの増殖に伴った12日間という日数を必要とする。
 一方、潜伏感染細胞におけるウイルスの生活環は、血清中でのウイルス産生が検出限界以下であるが、転写は完全に停止しておらず、転写は開始しているが、転写伸張が効率よく進んでいない状態にある。この状況は、ウイルス感染初期と似ており、ウイルス感染初期においても短鎖RNAが産出されているものと考えられる。従って、本発明のHIV検出用オリゴヌクレオチドによれば、感染暴露から12日経過を待たずとも、早期にウイルス検出をすることができる。
 また、HIV-1は、ウイルスゲノムの5’末端にだけでなく、3’末端にもTAR配列を有している。従って、本発明のHIV検出用オリゴヌクレオチドによれば、短鎖RNAの検出だけでなく、HIV-1RNA全長の検出も可能であるため、ウイルスを高感度に検出することができる。
[HIV検出方法]
≪第1実施形態≫
 本実施形態のHIV検出方法は、
(a)核酸試料中のmRNAの3’末端にpolyAを付加する工程と、
(b)polyTと、該polyTの5’側にアダプター配列に相補的な塩基配列を有するオリゴヌクレオチドを用いて、逆転写反応により、前記mRNAから該mRNAに相補するcDNAを合成する工程と、
(c)本発明のHIV検出用オリゴヌクレオチドと、前記アダプター配列に相補的な塩基配列を有するオリゴヌクレオチドを用いて、前記cDNAから、HIVのcDNAの配列を有する標的塩基配列を増幅する工程と、
(d)前記標的塩基配列の増幅産物を検出する工程と、を有する。
 以下、各工程について説明する。
 まず、工程(a)において、核酸試料中のmRNAの3’末端にpolyAを付加する。
 核酸試料は、核酸を含有する試料であれば、特に限定されないが、HIV感染が確認されている感染者若しくはHIV感染が疑われている感染被疑者、又は抗HIV治療を受けている患者等の被験者の血液、リンパ液、髄液、精液等のサンプルから核酸を抽出することにより得られるものであることが好ましい。これらのサンプルからの核酸抽出は、トリゾルを用いる等、定法により行うことができるが、上述した約60塩基の短鎖RNAを検出対象とする場合には、マイクロRNA等の低分子RNAを抽出する方法を利用することが好ましい。
 上述したように、潜伏感染細胞から産出される短鎖RNAは、転写が途中で止まったものであるため、3’末端にpolyA配列を有しない。本実施形態においては、polyAポリメラーゼを用いて短鎖RNAの3’末端にpolyAを付加することにより、短鎖RNAを所定の塩基数からなるものにすることができる。これにより、工程(b)における逆転写反応、及び工程(c)における標的塩基配列の増幅反応の効率を上げることができる。
 polyAの長さとしては、特に限定されないが、10~40塩基が好ましく、20~30塩基がより好ましい。
 次いで、工程(b)において、polyTと、該polyTの5’側にアダプター配列に相補的な塩基配列を有するオリゴヌクレオチド(以下、polyTオリゴヌクレオチドともいう。)を用いて、逆転写反応により、前記mRNAから該mRNAに相補するcDNAを合成する。
 polyTオリゴヌクレオチドが有するpolyTは、工程(a)においてmRNAに付加されたpolyAにアニールする。polyTオリゴヌクレオチドは、3’末端に縮重配列を有していてもよく、かかる3’末端を合成起点とした逆転写反応により、前記mRNAに相補的なcDNAが合成される。逆転写に用いられる逆転写酵素としては、従来公知のものが用いられ、例えば、Moloney Murine Leukemia Virus由来の逆転写酵素等が挙げられる。
 polyTオリゴヌクレオチドが有するアダプター配列に相補的な塩基配列は、逆転写反応を阻害しないものであれば特に限定されず、生体内の既知の遺伝子に相補しないものが好ましく、HIV遺伝子に相補しないものであることがより好ましい。
 polyTオリゴヌクレオチドの長さは、通常用いられるプライマーの長さと同様、10~40塩基が好ましく、20~30塩基がより好ましい。
 尚、工程(a)と工程(b)は同時に行われてもよい。
 また、逆転写反応により合成されたcDNAは、鋳型となったmRNAとのハイブリッドを形成しているため、RNaseH等のRNaseを用いて、工程(c)の前に、予めmRNAを分解しておくことが好ましい。 
 次いで、工程(c)において、本発明のHIV検出用オリゴヌクレオチドと、前記アダプター配列に相補的な塩基配列を有するオリゴヌクレオチド(以下、アダプター配列認識オリゴヌクレオチドともいう。)を用いて、前記cDNAから、HIVのcDNAの配列を有する標的塩基配列を増幅する。
 本発明において、前記標的塩基配列とは、詳細には、TAR配列のcDNAの一部の塩基配列を有するものをいう。
 アダプター配列認識オリゴヌクレオチドの長さは、通常のプライマーと同様、10~40塩基が好ましく、20~30塩基がより好ましい。
 標的配列の増幅方法としては、PCR(Polymerase Chain Reaction)、LAMP(Loop-Mediated Isothermal Amplification)、NASBA(Nucleic Acid Sequence Based Amplification)、ICAN(Isothermal and Chimerical primer-initiated Amplificationof Nucleic acids)、TRC(Transcription Reverse-Transcription Concerted)、SDA(Strand Displacement Amplification)、TMA(Transcription Mediated Amplification)、SMAP(SMart Amplification Process)、RPA(Recombines polymerase amplification)、HDA(Helicase-dependent amplification)等、従来公知の方法が挙げられる。
 DNAポリメラーゼとはプライマーがアニールした鋳型DNAと相補的な塩基配列を持つDNA鎖を合成する酵素の総称である。
 本発明に用いられるDNAポリメラーゼとしては、特に限定されないが、Taq DNAポリメラーゼ、Tth DNAポリメラーゼ、Vent DNAポリメラーゼ等の熱安定性DNAポリメラーゼを用いることが好ましく、試験開始前の伸長を防ぐためにホットスタート機能を持つDNAポリメラーゼを使用することがより好ましい。工程(c)において、後述するリアルタイムPCRを行う場合には、3’→5’エキソヌクレアーゼ活性を有するTaq DNAポリメラーゼを使用することが特に好ましい。
 標的塩基配列の増幅方法としてPCRを例に挙げると、工程(b)において合成されたcDNAの3’末端側に、本発明のHIV検出用オリゴヌクレオチドがアニールし、伸長反応が行われ、前記cDNAの相補鎖(以下、伸長産物Aという。)が合成される。
 次いで、伸長産物Aの3’末端側に、アダプター配列認識オリゴヌクレオチドがアニールし、伸長反応が行われ、伸長産物Aの相補鎖(以下、伸長産物Bという。)が合成される。
 次いで、伸長産物Bの3’末端側に、本発明のHIV検出用オリゴヌクレオチドがアニールし、伸長反応が行われ、伸長産物Bの相補鎖(以下、伸長産物Cという。)が合成される。
 以後、伸長産物Bが合成される工程と、伸長産物Cが合成される工程と、を繰り返すことにより、標的塩基配列が増幅される。
 尚、PCRにおける温度等の増幅プログラムの設定については定法により行うことができる。
 本発明のHIV検出用オリゴヌクレオチド又はアダプター配列認識オリゴヌクレオチドが、標的塩基配列にアニールする反応条件は、特に限定されるものではなく、各オリゴヌクレオチドのTm値等を考慮した上で、温度、pH、塩濃度、緩衝液等の通常の条件下で設定することができる。
 本実施形態においては、本発明のHIV検出用オリゴヌクレオチドと、アダプター配列認識オリゴヌクレオチドとからなるプライマーセットが用いられる。上述したように、本発明のHIV検出用オリゴヌクレオチドは、変異を受けにくい箇所を認識するものである。更に、前記プライマーセットは、HIVの認識サイトを1箇所のみ有するため、ウイルスRNAの変異による影響を受けにくい。
 従って、本実施形態によれば、変異したすべてのウイルスを高精度に検出することができる。
 次いで、工程(d)において、前記標的塩基配列の増幅産物を検出する。
 工程(d)における代表的な検出方法としては、反応後に標的塩基配列が増幅したか否かを評価するエンドポイントアッセイと、標的塩基配列の増幅を経時的(リアルタイム)に測定するリアルタイムアッセイが挙げられる。
 エンドポイントアッセイとしては、標的塩基配列の増幅を電気泳動により評価する方法が挙げられる。この方法は、標的塩基配列の増幅産物及び核酸分子量マーカーに対して、電気泳動を行い、両者の泳動度を対比することにより、所定の分子量を有する標的塩基配列が増幅された否かを評価する方法である。
 電気泳動による検出に用いる試薬としては、二本鎖DNAに結合して蛍光を発する臭化エチジウムやサイバーグリーンが好ましい。
 リアルタイムアッセイとしては、リアルタイムPCR装置を用いた評価方法が挙げられる。リアルタイムPCRは、段階希釈した既知量のDNAをスタンダードとして用い、PCRによるスタンダードDNA及び標的塩基配列の増幅を経時的に測定し、スタンダードDNAの増幅が指数関数的に起きる分子数の範囲内で、核酸試料中に存在する標的塩基配列の分子数を定量する方法である。
 リアルタイムPCRは、HIV感染の有無だけではなく、HIV感染者又はHIV患者の血液中のウイルス量を定量することにより、病態の程度や治癒経過を把握することができる点で優れている。
 リアルタイムPCRにおける定量方法としては、蛍光色素を用いた方法が挙げられ、具体的には、二本鎖DNAに特異的にインターカレートして蛍光を発するサイバーグリーン等の色素を用いる方法と、増幅するDNAに特異的なオリゴヌクレオチドに蛍光色素を結合させたプローブを用いる方法が挙げられる。標的塩基配列の増幅をより特異的に検出する観点から、後者の方法が好ましく挙げられる。
 後者の方法に用いられるプローブは、標的塩基配列の一部にハイブリダイズし得るオリゴヌクレオチドの両端を、それぞれ蛍光物質及び消光物質で修飾したものである。かかるプローブにおいては、蛍光物質と消光物質は近接しているため、蛍光物質の有する蛍光シグナルを発する機能が、消光物質によって妨げられている。
 前記工程(c)において、本発明のHIV検出用オリゴヌクレオチドが標的塩基配列にアニールする条件下で、プローブは標的塩基配列にハイブリダイズする。続いて、伸長反応の過程で、Taq DNAポリメラーゼの有する5’→3’エキソヌクレアーゼ活性によってプローブは分解される。その結果、プローブに修飾されていた蛍光物質及び消光物質は、相互に空間的に分離され、蛍光物質は蛍光シグナルを発することができる。かかる蛍光シグナルは、増幅された標的塩基配列の分子数に比例する。
 蛍光物質としては、FAM(カルボキシフルオレセイン)、JOE(6-カルボキシ-4’,5’-ジクロロ2’ ,7’-ジメトキシフルオレセイン)、FITC(フルオレセインイソチオシアネート)、TET(テトラクロロフルオレセイン)、HEX(5'-ヘキサクロロ-フルオレセイン-CEホスホロアミダイト)、Cy3、Cy5、Alexa568等が挙げられる。
 また、消光物質としては、TAMRA(テトラメチル-ローダミン)、4-(4-ジメチルアミノフェニルアゾ)安息香酸(DABCYL)、BHQ等が挙げられる。
 プローブとして用いられるオリゴヌクレオチドの塩基配列としては、TAR配列を認識し得るもの、又はTAR配列に相補する配列にハイブリダイズし得るものであれば特に限定されないが、好ましい塩基配列として配列番号2(5’-CTAGCTAGCCAGAGAGCTCCCAGG-3’:24mer)で表される塩基配列が挙げられる。
 かかるプローブを用いることにより、標的塩基配列の増幅をより特異的に検出することができる。
 工程(d)におけるその他の検出方法としては、特に限定されるものではなく、蛍光色素等によるオリゴヌクレオチドの標識、高速液体クロマトグラフィー、マススペクトル、融解曲線分析、増殖曲線分析等が挙げられる。
 蛍光色素等によるオリゴヌクレオチドの標識としては、例えば、HIV検出用オリゴヌクレオチド、又はアダプター配列認識オリゴヌクレオチドを、標識物質により標識しておく方法が挙げられる。かかる方法により、標識物質を指標として標的塩基配列の増幅を検出することができる。このような標識物質としては、例えば、蛍光色素、エネルギー吸収性物質、ラジオアイソトープ、化学発光体、酵素、抗体等が挙げられる。かかる標識物質を用いて、オリゴヌクレオチドを標識する位置については、特に限定するものではないが、伸長反応を阻害しないような位置が好ましい。
 本実施形態のHIV検出方法は、核酸試料中のHIV由来mRNAの3’末端にpolyAを付加する工程(a)を有しているが、HIVのRNA全長を検出対象とする場合には、既にその3’末端にpolyAが付加されているため、工程(a)を有しなくともよい。
 また、HIVのRNA全長を検出対象とする場合には、工程(c)において、アダプター配列認識オリゴヌクレオチドに代えて、HIV由来の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド、またはHIV由来の塩基配列にハイブリダイズし得るオリゴヌクレオチドを用いてもよい。
 かかる場合、増幅効率の観点から、本発明のHIV検出用オリゴヌクレオチドはウイルスゲノムの3’末端に位置するTAR配列を認識することが好ましい。
[HIV検出キット]
 本発明のHIV検出キットは、上述した本発明のHIV検出用オリゴヌクレオチドを含む。更に、本発明のHIV検出キットは、核酸試料前処理用の細胞破壊試薬や、上述した本発明のHIV検出方法の各工程において説明された試薬を含んでいてもよい。
 このように、本発明のHIV検出方法に必要な試薬等をキット化することにより、より簡便にかつ短時間でHIVの検出をすることができる。
 以上、本発明において、HIVのウイルスRNA中に、逆転写の際に変異を受けにくい配列が存在することが見出された。かかる配列をHIV診断に用いることにより、HIV感染細胞において、HIVに変異が生じたとしても、HIVを高精度に検出することができる。
 また、本発明において、潜伏感染期間のHIV感染細胞において特定のRNAが転写されていることが見出され、HIVが発現する初期転写産物の検出方法が確立された。これにより、HIV検出期日を短縮し、高感度の検出を可能なものとし、HIV感染の早期診断に貢献することができる。更に、早期診断により、エイズ発症に対する病態発症時期及び治療開始時期を遅らせることができる。
 本発明において抗ウイルス薬投与下のエイズ治療中の患者体内からのウイルスの再活性化を早期に判断することが可能となる。
 また、本発明のHIV検出方法の原理を、他の潜伏感染することが知られているウイルス等の検出に応用することが可能である。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実験例1]
(短鎖RNAの検出)
 HIV感染細胞において産生される短鎖RNAの検出系を、定量PCRを用いて構築した(図5)。定量PCR試薬として、premix Extaq kit(Takara社製)を用いた。
 Forward Primerとして配列番号3(5’-GGGTCTCTCTGGTTAGACCAG-3’ :21mer)で示されるオリゴヌクレオチドを用い、Reverse PrimerとしてmiScript Primer Assay Kitに添付のアダプター配列認識オリゴヌクレオチドを用いた。Taqman Probeとして配列番号2(5’-CTAGCTAGCCAGAGAGCTCCCAGG-3’:24mer)で示されるオリゴヌクレオチドの5’末端にFAMを、3’末端にTAMRAを修飾したものを用いた。これらのオリゴヌクレオチドの合成をオリゴハウス社に受託した。
 上記定量PCR試薬と、上記オリゴヌクレオチドと、1ウェル当たり75ngのcDNAと、の混合溶液10μlを、96プレートの各ウェルに分注した。
 定量PCR装置として、ABI7300(Life Technology社製)を使用し、95℃30秒の反応後、95℃5秒、60℃34秒の2ステップ反応を40サイクル行った。
 スタンダードDNAとして、GAPDHを用い、定量PCRを行い、標準曲線を作製した。
〈実施例1〉
 J Virol.、第83巻、第11569~11580頁、2009年に記載された方法に従って、HIV-1のRNAの転写開始点から、位置61のウラシルで転写が止まった転写産物を発現するベクターをJ Virol.、第72巻、第1666~1670頁、1998年に公表されている、HIV-1の潜伏感染細胞のモデル細胞、U1細胞株に導入し、安定株U1-mU6-TARを作製した。mirVana microRNA isolation kit(Ambion社製)を用いて、この細胞からTotal RNAを抽出し、miScript Primer Assay Kit(Qiagen社製)を用いて、Total RNA中の短鎖RNAから、cDNAを合成した。
 このcDNAを用いて、定量PCRを行い、安定株U1-mU6-TAR中の標的塩基配列のコピー数を定量した。
〈実施例2〉
J Virol.、第72巻、第1666~1670頁、1998年に公表されている潜伏感染細胞のモデル細胞として、野生型のHIV-1を有するU1細胞株から、実施例1と同様の方法にてcDNAを合成し、U1細胞株中の標的塩基配列のコピー数を定量した。
〈比較例1〉
 cDNAの溶解液に代えて、滅菌水を用いた以外は、実施例1と同様の方法で定量PCRを行った。
 実施例1~2、及び比較例1における、定量PCR装置を用いた測定結果を図1に示す。図1に示されるように、実施例1~2における反応は、サイクル数の増加とともにシグナルが増強していることが確認された。一方、反応系中にcDNAを有しない比較例1においては、サイクル数を増加してもシグナルの増強が確認されなかった。
 標準曲線を用いた算出結果から、実施例1で用いられた安定株U1-mU6-TARでは、実施例2で用いられた潜伏感染細胞株U1と比較し、およそ8倍のコピー数のshort transcriptが確認された。
 以上、実施例1及び2の結果から、本発明によれば、感染細胞中に産生される短鎖RNAを定量できることが確認された。このことから、感染初期のHIVを早期に発見できることが分かった。
[実験例2]
(短鎖RNAの同定)
 実施例2のPCR産物を用いてIllumina GAIIx(Illumina社製)によるDeep Sequence解析を行い、約60塩基の短鎖RNAの塩基配列を解析した。結果を図2に示す。
 図2に示されるように、この約60塩基の短鎖RNAは、HIV-1のRNAの転写開始点から、位置50から70塩基で転写が止まった転写産物であることが明らかになった。また、この約60塩基の短鎖RNAは、HIV-1のRNAの転写開始点から、位置50から71塩基で転写が止まった転写産物であることも明らかになった。
[実験例3]
(短鎖RNAのコピー数の定量)
スタンダードRNAとして、in vitro合成した配列番号4(5’-GGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAGCTAGGGAACCC-3’:58mer)を用い、実施例1と同様の方法にてcDNAを10コピー~10コピーまで10倍希釈の希釈系列を作製し、以下の通りに定量PCRを行い、検量線を作製した。
Forward Primerとして配列番号5(5’-CTGGTTAGACCAGATCTGAGCC-3’:22mer)で示されるオリゴヌクレオチドを用い、Reverse PrimerとしてmiScript Primer Assay Kitに添付のアダプター配列認識オリゴヌクレオチドを用いた。Taqman Probeとして配列番号2(5’-CTAGCTAGCCAGAGAGCTCCCAGG-3’:24mer)で示されるオリゴヌクレオチドの5’末端にFAMを、3’末端にBHQ-1を修飾したものを用いた。これらのオリゴヌクレオチドの合成をオリゴハウス社に受託した。
上記定量PCR試薬と、上記オリゴヌクレオチドと、1ウェル当り75ngのcDNAと、の混合溶液20μlを、96プレートの各ウェルに分注した。
定量PCR装置として、CFX-96(BIO RAD社製)を使用し、95℃30秒の反応後、95℃5秒、60℃10秒の2ステップ反応を50サイクル行った。
定量PCRの結果を図3、検量線を図4に示す。10コピー~100コピーのRNAから定量性をもってシグナルを検出することができる。
以上の結果から、本発明によれば、高精度かつ高感度に、HIVを早期検出することができることが明らかである。
本発明によれば、HIV感染細胞において、HIVに変異が生じたとしても、かかるウイルスを高精度に検出することができ、また、潜伏感染期間であっても、HIVを早期かつ高感度に検出することができるので、産業上有用である。

Claims (8)

  1.  配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、80%以上の同一性を有することを特徴とするHIV検出用オリゴヌクレオチド。
  2.  配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、90%以上の同一性を有することを特徴とする請求項1に記載のHIV検出用オリゴヌクレオチド。
  3.  配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、95%以上の同一性を有することを特徴とする請求項1に記載のHIV検出用オリゴヌクレオチド。
  4.  配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列と、98%以上の同一性を有することを特徴とする請求項1に記載のHIV検出用オリゴヌクレオチド。
  5. 配列番号1又は6で表される塩基配列中の10以上の連続した塩基からなる塩基配列を有する請求項1に記載のHIV検出用オリゴヌクレオチド。
  6.  請求項1~5のいずれか一項に記載のHIV検出用オリゴヌクレオチドを含むことを特徴とするHIV検出キット。
  7. 請求項1~6のいずれか一項に記載のHIV検出用オリゴヌクレオチドまたはHIV検出キットを用いることを特徴とするHIV検出方法。
  8.  (a)核酸試料中のmRNAの3’末端にpolyAを付加する工程と、
     (b)polyTと、該polyTの5’側にアダプター配列に相補的な塩基配列を有するオリゴヌクレオチドを用いて、逆転写反応により、前記mRNAから該mRNAに相補するcDNAを合成する工程と、
     (c)請求項1~5のいずれか一項に記載のHIV検出用オリゴヌクレオチドと、前記アダプター配列に相補的な塩基配列を有するオリゴヌクレオチドを用いて、前記cDNAから、HIVのcDNAの配列を有する標的塩基配列を増幅する工程と、
     (d)前記標的塩基配列の増幅産物を検出する工程と、
     を有することを特徴とするHIV検出方法。
PCT/JP2013/051389 2012-01-25 2013-01-24 Hiv検出用オリゴヌクレオチド、hiv検出キット、及びhiv検出方法 WO2013111800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13740936.3A EP2808387B1 (en) 2012-01-25 2013-01-24 Oligonucleotide for hiv detection, hiv detection kit, and hiv detection method
CN201380006301.9A CN104066842A (zh) 2012-01-25 2013-01-24 Hiv检测用寡核苷酸、hiv检测试剂盒及hiv检测方法
US14/374,116 US9617606B2 (en) 2012-01-25 2013-01-24 Oligonucleotide for HIV detection, HIV detection kit, and HIV detection method
JP2013532777A JP5553323B2 (ja) 2012-01-25 2013-01-24 Hiv検出キット、及びhiv検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-013087 2012-01-25
JP2012013087 2012-01-25

Publications (1)

Publication Number Publication Date
WO2013111800A1 true WO2013111800A1 (ja) 2013-08-01

Family

ID=48873513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051389 WO2013111800A1 (ja) 2012-01-25 2013-01-24 Hiv検出用オリゴヌクレオチド、hiv検出キット、及びhiv検出方法

Country Status (5)

Country Link
US (1) US9617606B2 (ja)
EP (1) EP2808387B1 (ja)
JP (1) JP5553323B2 (ja)
CN (1) CN104066842A (ja)
WO (1) WO2013111800A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014037712A3 (en) * 2012-09-04 2014-05-01 Genome Research Limited Hiv-1 detection
JP2016007145A (ja) * 2014-06-23 2016-01-18 公益財団法人微生物化学研究会 免疫状態の判定方法、cd4+t細胞数の増加予測方法、及びcd4+t細胞数の減少予測方法、並びにそれらのためのキット
WO2017060988A1 (ja) * 2015-10-07 2017-04-13 公益財団法人微生物化学研究会 免疫状態の判定方法、cd4+t細胞数の増加予測方法、及びcd4+t細胞数の減少予測方法、並びにそれらのためのキット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2731637T3 (es) * 2015-03-02 2019-11-18 Axolabs Gmbh Detección simultánea de oligonucleótidos, un kit y un uso relacionado con el mismo
US11384375B2 (en) * 2015-04-30 2022-07-12 Curevac Ag Immobilized poly(n)polymerase
JP7203017B2 (ja) * 2016-09-07 2023-01-12 セイント ヴィンセンツ ホスピタル シドニー リミテッド レンチウイルスを検出する方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025124A (en) * 1994-03-03 2000-02-15 The Regents Of The University Of California Marker, method and an assay for detection and monitoring of latency and activation of human immunodeficiency virus
JP2007295896A (ja) 2006-05-02 2007-11-15 Keio Gijuku Hiv−1プロウイルス定量法
JP2010535525A (ja) * 2007-08-13 2010-11-25 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 酵素反応においてサンプル中でcDNAを合成するための方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030714A (en) * 1986-06-23 1991-07-09 Institut Pasteur Variant of LAV viruses
US5874564A (en) * 1990-03-21 1999-02-23 Isis Pharmaceuticals, Inc. Reagents and methods for modulating gene expression through RNA mimicry
CA2082044C (en) 1990-05-04 1999-08-24 David J. Ecker Modulation of gene expression through interference with rna secondary structure
US5837464A (en) * 1996-01-29 1998-11-17 Virologic, Inc. Compositions and methods for determining anti-viral drug susceptibility and resistance and anti-viral drug screening
US6303293B1 (en) 1999-02-02 2001-10-16 Ortho-Clinical Diagnostics, Inc. Oligonucleotide reverse transcription primers for efficient detection of HIV-1 and HIV-2 and methods of use thereof
AU2003287388A1 (en) * 2002-11-01 2004-06-07 University Of Medicine And Dentistry Of New Jersey Inhibition of hiv-1 replication
US7217807B2 (en) 2002-11-26 2007-05-15 Rosetta Genomics Ltd Bioinformatically detectable group of novel HIV regulatory genes and uses thereof
US20060172325A1 (en) * 2004-12-09 2006-08-03 The Government Of The U.S.A. As Represented By The Secretary Of The Dept. Of Health & Human Services Detection of nucleic acids
DE102006038113A1 (de) 2006-08-14 2008-02-21 Qiagen Gmbh Verfahren zur Synthese einer cDNA in einer Probe in einer enzymatischen Reaktion und gleichzeitigen Bereitstellung eines ersten Enzyms mit Polyadenylierungsaktivität und eines zweiten Enzyms mit reverser Transkriptaseaktivität
US8314220B2 (en) * 2007-01-26 2012-11-20 Agilent Technologies, Inc. Methods compositions, and kits for detection of microRNA
CN101978072A (zh) 2008-01-14 2011-02-16 超快纳米诊断公司 含有遗传序列探针的快速检测
JP4772816B2 (ja) 2008-03-21 2011-09-14 株式会社東芝 マイクロアレイおよびネガティブコントロールプローブの設計方法
WO2010099169A2 (en) * 2009-02-24 2010-09-02 Johns Hopkins University A novel in vitro hiv-1 latency model for screening reactivation agents of hiv-1
US9072761B2 (en) * 2009-08-14 2015-07-07 Clemson University Research Foundation (Curf) Methods and compositions related to viral inhibition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025124A (en) * 1994-03-03 2000-02-15 The Regents Of The University Of California Marker, method and an assay for detection and monitoring of latency and activation of human immunodeficiency virus
JP2007295896A (ja) 2006-05-02 2007-11-15 Keio Gijuku Hiv−1プロウイルス定量法
JP2010535525A (ja) * 2007-08-13 2010-11-25 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 酵素反応においてサンプル中でcDNAを合成するための方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADAMS M. ET AL.: "Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts.", PROC. NATL. ACAD. SCI. USA, vol. 91, no. 9, 1994, pages 3862 - 3866, XP002941197 *
J VIROL., vol. 72, 1998, pages 1666 - 1670
J VIROL., vol. 83, 2009, pages 11569 - 11580
MIZUTANI ET AL., J VIROL., vol. 83, 2009, pages 11569 - 11580
MIZUTANI T. ET AL.: "Loss of the Brm-type SWI/ SNF chromatin remodeling complex is a strong barrier to the Tat-independent transcriptional elongation of human immunodeficiency virus type 1 transcripts.", J. VIROL., vol. 83, no. 22, 2009, pages 11569 - 11580, XP055138626 *
See also references of EP2808387A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014037712A3 (en) * 2012-09-04 2014-05-01 Genome Research Limited Hiv-1 detection
JP2016007145A (ja) * 2014-06-23 2016-01-18 公益財団法人微生物化学研究会 免疫状態の判定方法、cd4+t細胞数の増加予測方法、及びcd4+t細胞数の減少予測方法、並びにそれらのためのキット
WO2017060988A1 (ja) * 2015-10-07 2017-04-13 公益財団法人微生物化学研究会 免疫状態の判定方法、cd4+t細胞数の増加予測方法、及びcd4+t細胞数の減少予測方法、並びにそれらのためのキット

Also Published As

Publication number Publication date
EP2808387A4 (en) 2014-12-31
CN104066842A (zh) 2014-09-24
US9617606B2 (en) 2017-04-11
EP2808387B1 (en) 2017-06-21
JPWO2013111800A1 (ja) 2015-05-11
EP2808387A1 (en) 2014-12-03
JP5553323B2 (ja) 2014-07-16
US20140370496A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5851496B2 (ja) 修飾ステムループオリゴヌクレオチドが仲介する逆転写および塩基間隔が制限された定量的pcr
JP5749656B2 (ja) 低分子rna種の定量化のための方法
JP5553323B2 (ja) Hiv検出キット、及びhiv検出方法
US20210332448A1 (en) Compositions and methods for quantifying integration of recombinant vector nucleic acid
JP6636247B2 (ja) WT1mRNAの発現量定量方法
WO2023025259A1 (zh) 检测微小rna的方法和试剂盒
Lan et al. Linear-hairpin variable primer RT-qPCR for MicroRNA
AU2016265839A1 (en) Methods of discriminating between HIV-1 and lentiviral vectors
WO2018016885A1 (ko) 알앤에이 검출용 키트 및 방법
JP2022082574A (ja) Rnaおよびdnaからの核酸ライブラリーの作製
EP3214181B1 (en) Oligonucleotides, set of oligonucleotides, htlv-i/htlv-ii infection diagnostic and discrimination kit, polynucleotide suitable as reference target for designing primers and probes for the detection and differentiation of htlv-i and htlv-ii, amplicon and method for detecting at least one htlv target
JP2021509814A5 (ja)
JP7419552B2 (ja) Sars-cov-2診断用組成物、キット及びこれを用いたsars-cov-2の診断方法
WO2013179672A1 (ja) 子宮内膜症の判定方法
JPWO2019152747A5 (ja)
US11976338B2 (en) Method of manufacturing coronavirus diagnostic kit, virus diagnostic kit manufactured thereby and method of diagnosing coronavirus using the same
CN104395468A (zh) 检测hla-a*24:02的方法及检测试剂盒
JP5544173B2 (ja) siRNA検出方法
JP2007135469A (ja) 核酸増幅方法
US20110269137A1 (en) Rapid and efficient assay to assess the sequence and size of 3' ends of polynucleotides
Sharma et al. Covid-19 detection using qRT-PCR-A review
KR101755037B1 (ko) 핵산 염색제를 이용한 실시간 중합효소 연쇄반응을 통한 hcv 검출방법
EP4219737A1 (en) Combination, method and kit for detecting nucleic acid
RU2631824C1 (ru) Способ выявления генных мутаций BRAF в опухолях человека
EP3052643A1 (en) Quantification of rna

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013532777

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374116

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013740936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013740936

Country of ref document: EP