WO2013111724A1 - 混練用ロータ、混練機、及び混練用ロータの製造方法 - Google Patents

混練用ロータ、混練機、及び混練用ロータの製造方法 Download PDF

Info

Publication number
WO2013111724A1
WO2013111724A1 PCT/JP2013/051145 JP2013051145W WO2013111724A1 WO 2013111724 A1 WO2013111724 A1 WO 2013111724A1 JP 2013051145 W JP2013051145 W JP 2013051145W WO 2013111724 A1 WO2013111724 A1 WO 2013111724A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
rotor
rotor shaft
filler
manufacturing
Prior art date
Application number
PCT/JP2013/051145
Other languages
English (en)
French (fr)
Inventor
森 龍太郎
田中 一成
高司 森部
Original Assignee
三菱重工マシナリーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マシナリーテクノロジー株式会社 filed Critical 三菱重工マシナリーテクノロジー株式会社
Priority to KR1020167014188A priority Critical patent/KR20160066003A/ko
Priority to KR1020147007681A priority patent/KR101841810B1/ko
Priority to CN201380003244.9A priority patent/CN103842064B/zh
Priority to DE112013000694.4T priority patent/DE112013000694B4/de
Priority to US14/343,634 priority patent/US9586340B2/en
Publication of WO2013111724A1 publication Critical patent/WO2013111724A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles

Definitions

  • the present invention relates to a kneading rotor for kneading rubber materials and the like, a kneading machine, and a method for manufacturing the kneading rotor, and particularly to its cooling structure.
  • a material such as rubber is kneaded by applying a strong shearing force, so that heat is generated with the kneading.
  • a strong shearing force so that heat is generated with the kneading.
  • the temperature of the rubber becomes excessive due to such heat generation, the quality of the rubber is deteriorated, so that a sufficient cooling capacity is required. If the cooling capacity is insufficient, it is necessary to discharge the rubber to the outside during the kneading, cool it, and knead again after the temperature drops, which greatly affects the productivity.
  • Patent Document 1 describes an example of a kneading machine including a so-called one-piece kneading rotor that integrally forms a rotor shaft and blades.
  • the kneading machine of Patent Document 1 houses a kneading rotor having a rotor shaft having a cooling passage and kneading blades in a mixing chamber.
  • the branch pipe is provided so that the cooling pipe and the inner cavity of the wing part (jacket) communicate with the inner pipe accommodated in the cooling passage formed in the rotor shaft.
  • the cooling medium fed to the cooling passage is reliably introduced into the cavity inside the wing to improve the cooling effect of the wing.
  • the rotor shaft and the blade portion are manufactured as separate parts, and a flow path for the cooling medium is formed on the inner surface of the blade portion in contact with the rotor shaft, and then the rotor shaft and the blade portion are coupled by fitting 2
  • a kneading rotor having a piece structure is also generally known. By employing such a kneading rotor, the cooling capacity can be improved. However, in this case, many man-hours related to the fitting process are required. Therefore, the kneading machine including such a kneading rotor is also disadvantageous in terms of cost.
  • An object of the present invention is to provide a kneading rotor, a kneading machine, and a method for manufacturing a kneading rotor that can improve cooling efficiency while suppressing costs.
  • the thermal resistance of the wing part can be reduced compared to a case where the wing part is made of the same material as the wing part, and the rotor shaft inner surface is cooled by forced convection heat transfer using a refrigerant.
  • the cooling effect can be improved.
  • the flow passage cross-sectional area of the refrigerant generated when the refrigerant flows through the concave portion is increased as compared with the case where the hollow body is not installed in the concave portion and the inner surface of the concave portion is cooled by forced convection heat transfer using the refrigerant. It is possible to prevent the heat transfer rate from being lowered due to the decrease in the flow rate due to the.
  • the cooling effect is improved only by installing the filler, and the cost is not significantly increased.
  • the kneader includes the kneading rotor.
  • the kneading rotor in which the filler of the high thermal conductivity member having a higher thermal conductivity than the material forming the rotor shaft is applied in the concave portion of the wing portion of the rotor shaft, thereby reducing the cost.
  • the cooling efficiency can be improved while suppressing the above.
  • a kneading rotor is manufactured using a method in which a filler is cast in a radial inner side of a blade portion of a rotor shaft in a state where the filler is formed in advance. It becomes possible. Therefore, it is not necessary to carry out a complicated manufacturing process, and it is possible to manufacture a kneading rotor with improved cooling efficiency while suppressing costs.
  • the filler can be surely filled into the recess by the dead weight of the filler by pouring the filler into the recess from the outside of the rotor shaft. For this reason, it is not necessary to carry out a complicated manufacturing process, and a kneading rotor capable of improving the cooling efficiency while suppressing the cost can be manufactured.
  • the cooling efficiency can be improved while the cost is reduced by installing the filler in the concave portion of the blade.
  • FIG. 4 is a cross-sectional view of the kneading rotor shown in FIG. 3 taken along the line AA.
  • a kneading machine 10 including kneading rotors 20 and 21 according to the first embodiment of the present invention has a kneading chamber 12 formed inside a casing 11.
  • the kneading machine 10 is a so-called hermetic kneading machine in which a pair of kneading rotors 20 and 21 are arranged in parallel inside the kneading chamber 12.
  • the pair of kneading rotors 20 and 21 are rotated in opposite directions by a drive source such as a motor (not shown), and wing portions 22 and 23 projecting outward are formed on the respective outer surfaces.
  • the wing portions 22 and 23 are formed to be spirally twisted with respect to the axes 24 and 25 of the kneading rotors 20 and 21.
  • the blade portions 22 and 23 are arranged so as to mesh with each other by the rotation of the kneading rotors 20 and 21.
  • a hopper 13 that is in communication with the kneading chamber 12 and into which a kneading material such as a rubber raw material is charged, and a floating weight 14 that press-fits the kneading material charged in the hopper 13 into the kneading chamber 12. And are provided.
  • a drop door 15 for taking out the kneaded material to the outside is attached to the bottom of the kneader 10 so as to be opened and closed.
  • the kneading machine 10 press-fits the kneaded material charged through the hopper 13 into the kneading chamber 12 by the floating weight 14. Next, the kneaded material is kneaded by the meshing action of the kneading rotors 20, 21 rotating in opposite directions and the shearing action generated between the kneading rotors 20, 21 and the inner surface of the kneading chamber 12.
  • the kneading machine 10 takes out the kneaded material from the kneading chamber 12 to the outside by opening a drop door 15 provided at the bottom of the kneading chamber 12, and conveys the material to another process.
  • the kneading rotor 20 includes a tubular rotor shaft 27 having a cavity formed inside, and a spiral wing portion 22 projecting toward the outer surface of the rotor shaft 27.
  • a concave portion 28 formed in a spiral shape along the axis line 24 is formed on the back side of the wing portion 22.
  • the kneading rotor 20 is formed by a so-called metal one-piece structure in which a blade portion 22 having a recess 28 and a rotor shaft 27 are integrally formed by casting or the like.
  • the kneading rotor 20 is provided at one end in the direction of the axis 24, and a closing portion 29 for closing the one end, and an opening provided at the other end in the direction of the axis 24 and communicating with the cavity inside the rotor shaft.
  • the kneaded material is kneaded by the meshing action of the kneading rotor 20 (21) rotating in opposite directions and the shearing action generated between the kneading rotor 20 (21) and the inner surface of the kneading chamber 12.
  • the insertion member 32 is rotating together with the kneading rotor 20, and the cooling medium C introduced from the cooling medium inlet 34 is brought into contact with the inner surface of the pipe housing part 31 from the tip opening 33 to the cooling medium outlet 35. It is in circulation.
  • the cooling medium C comes into contact with the cooling medium contact surface 37 of the filler 36 while being in contact with the inner surface of the pipe housing portion 31 of the kneading rotor 20. In this way, the cooling medium C cools the filler 36 holding the heat propagated from the inner surface of the pipe accommodating portion 31 of the kneading rotor 20 and the concave portion 28 of the blade portion 22 by forced convection heat transfer. Will be done.
  • a rate member filling 36 was installed. Therefore, according to the kneading rotor 20, the thermal resistance of the wing part 22 can be reduced as compared with a state in which the recess 28 is not provided, that is, when the wing part 22 is made of a solid material with the same material as the wing part 22. Can be reduced. Then, the cooling medium contact surface 37 of the filler 36 is cooled by forced convection with the cooling medium C, whereby the cooling effect can be improved.
  • the cooling medium C circulates in the recess 28, the filling body 36 is not installed in the recess 28, and the recess 28 is cooled by forced convection heat transfer by the cooling medium C as a hollow structure. It is possible to prevent a decrease in the flow rate of the cooling medium C that occurs due to an increase in the cross-sectional area. Also in this respect, the cooling effect can be improved.
  • the filling body 36 of a high thermal conductivity member having a higher thermal conductivity than the material forming the rotor shaft 27 is installed in the recess 28 in the blade portion 22 of the rotor shaft 27.
  • the kneading rotor 20 was applied. Therefore, it is possible to improve the cooling efficiency while suppressing the cost.
  • the kneading rotor 50 equipped in the kneading machine 40 according to the second embodiment of the present invention has a plurality of fins 52 that protrude toward the axial center of the rotor 50 on the inner peripheral surface of the filler 51.
  • Have The plurality of fins 52 are formed integrally with the filler 51.
  • the plurality of fins 52 have a flat plate shape and extend in parallel with each other in the direction of the axis 24. Thereby, it has the function to expand the surface area of the filling body 51. Since the plurality of fins 52 are also provided in the filling body 51, the surface area (heat transfer area) of the filling body 51 in contact with the cooling medium C is increased, and the amount of heat transfer between the filling body 51 and the cooling medium C is increased. As a result, the cooling efficiency by the cooling medium C increases. Examples of the shape of the plurality of fins 52 include flat plate fins and needle fins having an angle with respect to the direction of the axis 24, as well as flat plate fins parallel to the direction of the axis 24 as illustrated.
  • the kneading rotor 50 kneads the kneaded material by a shearing action that occurs between the inner surface of the kneading chamber 12 and rotates, and introduces the cooling medium C from the cooling medium inlet 34 of the insertion member 32.
  • the cooling medium C flows from the tip opening 33 to the cooling medium outlet 35 while being thermally connected to the inner surface of the pipe housing 31.
  • the cooling medium C comes into contact with the plurality of fins 52 of the filling body 51 that is thermally connected to the concave portion 28 of the blade portion 22 while being in contact with the inner surface of the pipe housing portion 31 of the kneading rotor 50.
  • the rubber material generates heat at the blade portion 22 due to shearing, and the heat resistance of heat conduction (depending on the thickness) is high, so when viewed in the longitudinal direction of the shaft, the rotor shaft 27 without the blade portion 22 The part of the wing
  • the cooling medium C is enlarged by the plurality of fins 52 of the filling body 51 that are in thermal contact with the recesses 28 of the blade portion 22, and the amount of heat transfer is increased, resulting in a cooling effect. It becomes possible to increase the amount of cooling.
  • the cooling effect can be improved by the plurality of fins 52 of the filling body 51 that are in thermal contact with the concave portion 28 of the blade portion 22. Therefore, the kneading rotor 50 can be efficiently cooled.
  • the wing portion 22 may be formed so as to protrude from the outer surface of the rotor shaft 27 at a certain interval in the direction of the axis 24 of the rotor shaft 27.
  • the kneading rotor 60 has substantially the same configuration as the kneading rotors 20 and 21 of the first embodiment, and is cast using a mold.
  • 65 is formed in the same shape as the recess 62. Further, the filler needs to have a higher melting point than the material forming the rotor shaft 63, and for example, silicon carbide, beryllium oxide, or the like can be used.
  • the filling body 65 is arranged at a position corresponding to the recess 62 in the mold of the rotor shaft 63 so as to be accommodated in the recess 62 formed on the inner peripheral surface of the blade portion 61.
  • the filling body 65 formed in advance in the first step and disposed in the mold in the second step is cast into the recess 62 in the third step (casting step). That is, the material of the rotor shaft 63 is poured into the mold, and the filler 65 is cast into the recess 62.
  • the kneading rotor 60 is obtained in which the filling member 65 of the high thermal conductivity member having a higher thermal conductivity than the material forming the rotor shaft 63 is installed in the recess 62 of the blade portion 61 of the rotor shaft 63. be able to.
  • a method of casting the filler 65 into the concave portion 62 of the blade portion 61 of the rotor shaft 63 in a state where the filler 65 is formed in advance, that is, using cast-in. Can be manufactured. Therefore, it is not necessary to carry out a complicated manufacturing process, it is possible to use an existing mold, and a kneading rotor can be manufactured while reducing costs.
  • the kneading rotor 70 has substantially the same configuration as the kneading rotors 20 and 21 of the first embodiment.
  • the rotor shaft 73 which is a tubular member, is manufactured by casting or the like.
  • the rotor shaft 73 is provided with a blade portion 71 projecting toward the outer surface of the rotor shaft 73.
  • a recess 72 is formed on the inner surface of the rotor shaft 73 on the back side of the wing portion 71.
  • a filling hole 76 that allows the filling body 75 to be filled by communicating the outside and the concave portion 72 at a position facing the blade portion 71, that is, on the opposite side of the blade shaft 71 in the radial direction of the rotor shaft 73.
  • a filler material having a higher thermal conductivity than the material forming the blade portion 71 and the rotor shaft 73 is poured into the recess 72 from the filling hole 76. Moreover, this filler needs to have a lower melting point than the material forming the rotor shaft 73, and for example, aluminum or the like can be used.
  • one filling hole 76 is disposed above, and after filling material is poured from one filling hole 76 into one recess 72 disposed below, one filling hole 76 is replaced with one plug member 77. By welding, the one filling hole 76 is closed.
  • the other filling hole 76 is placed on the other plug material 77.
  • the other filling hole 76 is closed by welding.
  • the hollow recess 72 is formed in advance at a predetermined position, and the filling hole 76 is formed at a position facing the blade portion 71. Then, the filler 75 is installed in the recess 72 by pouring the filler from the filling hole 76.
  • the filling material is poured into the concave portion 72 by its own weight by pouring the filling material from the filling hole 76 disposed above toward the concave portion 72 below, so that the filling body 75 is filled. Can be installed. For this reason, it is not necessary to carry out a complicated manufacturing process, and it is possible to manufacture the kneading rotor 70 that improves the cooling efficiency while suppressing the cost.
  • the kneading rotor 80 has substantially the same configuration as the kneading rotor 50 of the second embodiment.
  • the rotor shaft 83 which is a tubular member, is manufactured by casting or the like.
  • the rotor shaft 83 is provided with a blade portion 81 that projects toward the outer surface of the rotor shaft 83.
  • a recess 82 is formed on the inner surface of the rotor shaft 83 on the back side of the wing portion 81.
  • a filling hole 85 for filling the filler 84 in a part of the wing portion 81 is formed at the same time, and the cylindrical core 87 is accommodated in the pipe accommodating portion 31.
  • the filling hole 85 communicates from the outside of the wing portion 81 to the inside of the recess 82.
  • a filling material having a higher thermal conductivity than the material forming the blade portion 81 and the rotor shaft 83 is poured into the recess 82 from the filling hole 85.
  • one filling hole 85 is disposed above, and after filling material is poured into one recess 82 disposed above from one filling hole 85, one filling hole 85 is disposed on one plug member 88. By welding, one of the filling holes 85 is closed.
  • the other filling hole 85 is disposed on the upper side, and after the filler is poured into the other concave portion 82 disposed on the upper side from the other filling hole 85, the other filling hole 85 is replaced with the other plug member 88.
  • the other filling hole 85 is closed by welding and the core 87 is removed.
  • the hollow recess 82 is formed in advance at the predetermined position, the filling hole 85 is formed in the wing 81, and the core 87 is accommodated in the pipe accommodating portion 31. Keep it. Then, by filling the filling material from the filling hole 85, the filling body 84 is placed in the recess 82, and then the core 87 is removed. Therefore, according to the third example of the method for manufacturing the rotor for kneading, the filler 84 can be installed by reliably filling the recess 82 with the filler by its own weight. For this reason, it is not necessary to carry out a complicated manufacturing process, and it is possible to manufacture the kneading rotor 80 that improves the cooling efficiency while suppressing the cost.
  • the kneading rotor, kneading machine, and kneading rotor manufacturing method of the present invention are not limited to the above-described embodiments, and appropriate modifications and improvements can be made.
  • the third step is performed in a state where the plurality of fins 52 are formed in the filler 51 in advance.
  • the kneading rotor 50 of the second embodiment is manufactured by the manufacturing method of the second example and the third example, a large amount of filler is filled so as to protrude from the inner surface of the pipe housing portion 31 to the inner peripheral side. . Thereafter, the shape of the protruding material is adjusted by machining or the like to form a plurality of fins 52.
  • the cooling efficiency can be improved while the cost is reduced by installing the filler in the concave portion of the blade portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Accessories For Mixers (AREA)

Abstract

 この混練用ロータは、管形状を有するロータ軸(27)と、前記ロータ軸(27)の外周面に設けられる翼部(22)と、前記翼部(22)内部に形成される凹部(28)に設けられ、前記ロータ軸(27)及び前記翼部(22)を形成する材質よりも熱伝導率が高い材質の充填体(36)と、を備える。

Description

混練用ロータ、混練機、及び混練用ロータの製造方法
 本発明は、ゴム材料等を混練する混練用ロータ、混練機、及び混練用ロータの製造方法に関し、特にその冷却構造に係る。本願は、2012年1月25日に、日本に出願された特願2012-013222号に基づき優先権を主張し、その内容をここに援用する。
 従来、いわゆるインターナルミキサー等のゴム製造用の混練機においては、ゴム等の材料に強力なせん断力を与えて混練することから、混練に伴って発熱する。このような発熱によってゴムの温度が過大となると、ゴムの品質劣化が生じるため十分な冷却能力が必要となる。そして冷却能力が不足する場合には、混練の途中でゴムを外部に排出して冷却し、温度が低下した後に再度混練する必要が生じてしまうため、生産性に大きな影響を与えてしまう。
 ここで、ロータ軸と翼部とを一体的に形成する、いわゆる1ピース構造の混練用ロータを備えた混練機の一例が特許文献1に記載されている。
 特許文献1の混練機は、冷却通路を形成したロータ軸と、混練用の翼部とを有する混練用ロータを混合室内に収容している。
 また、この混練機においては、ロータ軸内に形成した冷却通路に収容したインナーパイプに、冷却通路と翼部の内側の空洞部(ジャケット)とが連通するように枝管が設けられており、冷却通路に送給した冷却媒体が、翼部の内側の空洞部に確実に導入されるようにして翼部の冷却効果の向上を図っている。
特公昭52-5395号公報
 しかしながら、特許文献1の混練機における混練用ロータは、冷却通路に送給した冷却媒体が、翼部の内側の空洞部に確実に導入されるようにして翼部の冷却効果の向上を図っているものの、翼部の空洞部においては、冷却媒体の流通路の断面積が大きくなってしまう。このため、流速が遅くなることを避けられず、熱伝達率が低下して十分な冷却効果が得られない可能性があった。
 ここで、ロータ軸と翼部とを別個の部品として製造し、ロータ軸に接する翼部の内面に冷却媒体用の流路を形成した後に、ロータ軸と翼部を嵌合にて結合する2ピース構造の混練用ロータも一般に知られている。このような混練用ロータを採用することで、冷却能力の向上を図ることができる。しかし、この場合、嵌合工程に係る多くの工数が必要となってしまう。従って、このような混練用ロータを備える混練機についても、やはりコスト面で不利となってしまう。
 本発明は、コストを抑制しながら、冷却効率向上を図ることのできる混練用ロータ、混練機及び混練用ロータの製造方法を提供することを目的とする。
 本発明の第一の態様によれば、混練用ロータは、管形状を有するロータ軸と、前記ロータ軸の外周面に設けられる翼部と、前記翼部内部に形成される凹部に設けられ、前記ロータ軸及び前記翼部を形成する材質よりも熱伝導率が高い材質の充填体と、を備える。
 上記構成によれば、翼部内部を翼部と同一の材質で中実構造とした場合に比べて翼部の熱抵抗を低減でき、ロータ軸内面を冷媒による強制対流熱伝達によって冷却する際の冷却効果の向上が可能となる。さらに、凹部内に充填体を設置せず、中空構造として凹部の内面を冷媒による強制対流熱伝達によって冷却する場合と比べると、凹部へ冷媒が流通する際に発生する冷媒の流路断面積増加による流速減少に伴う熱伝達率の低下を防止できる。また、充填体を設置するのみによって、冷却効果の向上を図っており、大幅なコストアップとはならない。
 また、上記混練用ロータは、前記充填体の内周面に形成され、内周側に突出するフィンを備えていてもよい。
 このような翼部の凹部に熱的に接触している充填体のフィンによって、冷媒による強制対流熱伝達によって冷却を行う際には、伝熱面積が拡大し、伝熱量が増大するので、結果的に冷却効果を高めることが可能となる。
 また、充填体にのみフィンを設けていることによって、冷媒を流通させた際の圧力損失を大幅に増大させることもない。
 さらに、本発明の第二の態様によれば、混練機は、上記混練用ロータを備える。
 上記構成によれば、ロータ軸の翼部に有する凹部内に、ロータ軸を形成する材質よりも熱伝導率が高い高熱伝導率部材の充填体を設置した混練用ロータを適用したことで、コストを抑制しながら冷却効率の向上が可能である。
 また、本発明の第三の態様によれば、混練用ロータの製造方法は、管状で、外周面に混練用の翼部が設けられたロータ軸を有する混練用ロータの製造方法であって、前記ロータ軸及び翼部の材質よりも、熱伝導率が高い材質よりなる部材を所定の形状に形成する充填体形成工程と、前記充填体形成工程で形成された充填体を、前記ロータ軸の翼部が設けられる位置で、前記翼部の外周面よりも前記ロータ軸の径方向内側となる位置で、前記ロータ軸の鋳型内部に配置する充填体配置工程と、前記充填体配置工程で前記充填体が配置された状態で、前記鋳型に前記ロータ軸の材料を流し込む鋳包工程と、を備える。
 上記混練用ロータの製造方法によれば、充填体を予め形成した状態で、ロータ軸の翼部の径方向内側に充填体を鋳込む方法、即ち、鋳包みを用いて混練用ロータを製造することが可能となる。従って、複雑な製造工程を実施する必要がなく、コストを抑えながら冷却効率向上を図った混練用ロータを製造が可能である。
 本発明の第四の態様によれば、混練用ロータの製造方法は、管状で、外周面に混練用の翼部が設けられたロータ軸を有する混練用ロータの製造方法であって、前記翼部が設けられた位置で、前記ロータ軸の内側に凹部を形成するようにして前記ロータ軸を製造するロータ軸製造工程と、前記ロータ軸及び前記翼部の材質よりも熱伝導率が高い材質よりなる充填材を、前記ロータ軸の外側から前記凹部に充填して充填体を設置する充填工程とを備える。
 上記混練用ロータの製造方法によれば、凹部にロータ軸の外側から充填材を流し込むことで、充填材の自重により充填材を凹部に確実に充填して充填体を設置可能となる。このため、複雑な製造工程を実施する必要がなく、コストを抑制しながら冷却効率向上を図った混練用ロータを製造できる。
 上記混練用ロータ、混練機及び混練用ロータの製造方法によれば、翼部の凹部に充填体を設置することで、コストを抑制しながら、冷却効率向上を図ることが可能となる。
本発明に係る第1実施形態の混練用ロータを備える混練機の縦断面図である。 本発明に係る第1実施形態の混練用ロータの縦断面図である。 本発明に係る第2実施形態の混練用ロータの要部縦断面図である。 図3に示した混練用ロータのA-A断面図である。 本発明に係る混練用ロータの製造方法の第1例における第1工程の縦断面図である。 図5に示した混練用ロータの製造方法の第1例における第3工程の縦断面図である。 本発明に係る混練用ロータの製造方法の第2例における第1工程の縦断面図である。 図7に示した混練用ロータの製造方法の第2例における第2工程の縦断面図である。 本発明に係る混練用ロータの製造方法の第3例における第1工程の縦断面図である。 図9に示した混練用ロータの製造方法の第3例における第2工程の縦断面図である。
 以下、本発明に係る複数の実施形態の混練用ロータ、混練機及び混練用ロータの製造方法について図面を参照して説明する。
(第1実施形態)
 図1に示すように、本発明に係る第1実施形態の混練用ロータ20,21を備える混練機10は、ケーシング11の内部に混練室12を形成している。
 混練機10は、混練室12の内部に、一対の混練用ロータ20,21が平行に配置された、いわゆる密閉式の混練機である。
 一対の混練用ロータ20,21は、不図示のモータ等の駆動源により互いに逆方向に回転し、それぞれの外表面に、それぞれ外側に向かって張り出した翼部22,23を形成している。
 翼部22,23は、混練用ロータ20,21の軸線24,25に対して螺旋状にねじれて形成されている。これら翼部22,23は、混練用ロータ20,21の回転により互いに噛み合うように配置されている。
 さらに、混練機10の上部には、混練室12に連通してゴム原料などの混練材料が投入されるホッパ13と、このホッパ13に投入された混練材料を混練室12へ圧入するフローティングウェイト14とが設けられている。
 また、混練機10の底部には、混練された材料を外部に取り出すためのドロップドア15が開閉可能に取り付けられている。
 混練機10は、ホッパ13を介して投入された混練材料を、フローティングウェイト14によって混練室12内に圧入する。
 次に、互いに逆方向に回転する混練用ロータ20,21の噛み合い作用および混練用ロータ20,21と混練室12の内表面との間に発生するせん断作用によって混練材料を混練する。
 そして、混練機10は、混練した材料を、混練室12の底部に設けられたドロップドア15を開放することにより混練室12から外部へ取り出して他の工程に搬送する。
 次に、混練用ロータ20,21の詳細構造について説明する。
 なお、一対の混練用ロータ20,21は、いずれも同一構造であるために、ここでは、一方の混練用ロータ20についてのみ説明を行い、他方の混練用ロータ21の説明は省略する。
 図2に示すように、混練用ロータ20は、内側に空洞が形成された管状のロータ軸27と、ロータ軸27の外面に向けて張り出した螺旋状の翼部22とを有する。
 ロータ軸27の内面には、翼部22の裏側に、軸線24に沿って螺旋状に形成される凹部28が形成されている。
 ここで、混練用ロータ20は、鋳造等により、凹部28を有する翼部22とロータ軸27とを一体的に形成した、いわゆる金属製の1ピース構造で形成されている。
 また、混練用ロータ20は、軸線24方向の一端部に設けられ、前記一端部を閉塞する閉塞部29と、軸線24方向の他端部に設けられ、ロータ軸内側の空洞に連通する開口部30を有するパイプ収容部31と、を有する。
 さらに、混練用ロータ20は、パイプ収容部31に挿入部材32を収容している。
 挿入部材32は、閉塞部29から隙間を介して離間した位置に先端開口部33を配置するようにパイプ収容部31内に収容されている。
 このため、挿入部材32の基端部に有する冷却媒体入口34から導入した冷却媒体Cが、先端開口部33から閉塞部29との間に流通し、先端開口部33からパイプ収容部31の内面に接触しながら冷却媒体出口35に流通する。
 混練用ロータ20は、ロータ軸27の翼部22に有する凹部28に充填し、ロータ軸27を形成する材質(例えば、鋳鉄等)よりも熱伝導率が高い材質で形成した充填体36を備える。
 充填体36は、例えば、熱伝導率が50W/m・K程度の炭素鋼、170W/m・Kの炭化ケイ素、272W/m・Kの酸化ベリリウム、237W/m・Kのアルミニウム等の高熱伝導率部材よりなっている。
 なお、充填体36は、これら以外に好ましい材質を適宜適用できることは言うまでもない。
 充填体36は、その内周面に、冷却媒体Cに接する冷却媒体接触面37を有し、その外周面に翼部22の凹部28に接する翼部接触面38を有する。
 次に、混練用ロータ20の作用について説明する。
 互いに逆方向に回転する混練用ロータ20(21)の噛み合い作用および混練用ロータ20(21)と混練室12の内表面との間に発生するせん断作用によって混練材料を混練する。
 このとき、挿入部材32は、混練用ロータ20とともに回転しており、冷却媒体入口34から導入した冷却媒体Cが、先端開口部33からパイプ収容部31の内面に接触しながら冷却媒体出口35に流通している。
 そして、冷却媒体Cは、混練用ロータ20のパイプ収容部31の内面に接触しながら、充填体36の冷却媒体接触面37に接触する。
 このようにして、冷却媒体Cは、混練用ロータ20のパイプ収容部31の内面および翼部22の凹部28から伝播した熱を保持している充填体36に対して、強制対流熱伝達による冷却が行われることになる。
 以上、説明したように、第1実施形態の混練用ロータ20によれば、ロータ軸27の翼部22に有する凹部28内に、ロータ軸27を形成する材質よりも熱伝導率が高い高熱伝導率部材の充填体36を設置した。従って、混練用ロータ20によれば、凹部28を設けない状態、即ち、翼部22を翼部22と同一の材質の部材によって中実構造とした場合に比べて、翼部22の熱抵抗を低減できる。そして、充填体36の冷却媒体接触面37を冷却媒体Cにより強制対流で冷却することによって、冷却効果の向上が可能となる。
 さらに、凹部28内に充填体36を設置せず、中空構造として凹部28を冷却媒体Cによる強制対流熱伝達によって冷却する場合と比べると、凹部28へ冷却媒体Cが流通する際に、流路の断面積が大きくなることによって発生する冷却媒体Cの流速減少を防止できる。この点においても冷却効果の向上が可能となる。
 第1実施形態の混練機10によれば、ロータ軸27の翼部22に有する凹部28内に、ロータ軸27を形成する材質よりも熱伝導率が高い高熱伝導率部材の充填体36を設置した混練用ロータ20を適用した。従って、コストを抑えながら、冷却効率向上が可能となる。
(第2実施形態)
 次に、本発明に係る第2実施形態の混練用ロータ50及び混練機40について説明する。
 なお、以下の各実施形態において、前述した第1実施形態と重複する構成要素や機能的に同様な構成要素については、図中に同一符号あるいは相当符号を付することによって説明を簡略化あるいは省略する。
 図3に示すように、本発明に係る第2実施形態の混練機40に装備する混練用ロータ50は、充填体51の内周面にロータ50の軸中心に向けて突出する複数のフィン52を有する。この複数のフィン52は、充填体51と一体的に形成されている。
 図4に示すように、複数のフィン52は平板状をなし、軸線24方向に互いに平行に並んで延在している。これにより、充填体51の表面積を拡大する機能を有する。
 複数のフィン52も充填体51に設ける事により、冷却媒体Cに接触する充填体51の表面積(伝熱面積)が拡大し、充填体51と冷却媒体Cとの間の伝熱量が増大するので、結果的に冷却媒体Cによる冷却効率が高まる。
 なお、複数のフィン52の形状としては、図示したような軸線24方向に平行な平板フィンの他、軸線24方向に対して角度を持った平板フィンや針状フィン等が挙げられる。
 次に、混練用ロータ50の作用について説明する。
 混練用ロータ50は、回転に伴い、混練室12の内表面との間に発生するせん断作用によって混練材料を混練し、挿入部材32の冷却媒体入口34から冷却媒体Cを導入する。
 冷却媒体Cは、先端開口部33からパイプ収容部31の内面に熱的に接続しながら冷却媒体出口35に流通する。
 そして、冷却媒体Cは、混練用ロータ50のパイプ収容部31の内面に接触しながら、翼部22の凹部28に熱的に接続している充填体51の複数のフィン52に接触する。
 このとき、ゴム材料がせん断により翼部22で発熱すること、および熱伝導の熱抵抗(厚さによる)が高いことにより、軸長手方向で見ると、翼部22がないロータ軸27よりも、翼部22の部分の方が高温となる。
 そこで、冷却媒体Cが、翼部22の凹部28に熱的に接触している充填体51の複数のフィン52によって伝熱面積が拡大し、伝熱量が増大するので、結果的に冷却効果を高めることが可能となり、冷却量を増加できる。

 第2実施形態の混練用ロータ50によれば、翼部22の凹部28に熱的に接触している充填体51の複数のフィン52によって冷却効果を向上できる。従って、混練用ロータ50によれば、効率的に冷却できる。
 以上、本発明の第1実施形態及び第2実施形態について図面を参照して説明したが、具体的な構成はこの実施形態に限られるものではない。例えば、翼部22は、ロータ軸27の軸線24方向に一定の間隔をあけ、ロータ軸27の外面に張り出すように形成されてもよい。
 次に、本発明に係る混練用ロータの製造方法の第1例について説明する。
 なお、混練用ロータ60は、第1実施形態の混練用ロータ20、21と略同一の構成となっており、鋳型を用いて鋳造される。
 図5に示すように、混練用ロータ60の製造方法の第1例における第1工程(充填体形成工程)では、ロータ軸63を形成する材質よりも熱伝導率が高い材質で形成した充填体65を凹部62と同一形状に形成する。また、この充填材は、ロータ軸63を形成する材質よりも高融点である必要があり、例えば、炭化ケイ素や酸化ベリリウム等を用いることができる。
 次に、第2工程(充填体配置工程)では、ロータ軸63の外周面で翼部61が設けられる位置で、前記翼部61の外周面よりも、ロータ軸63の径方向内側となる位置、即ち、翼部61の内周面に形成される凹部62に収容されるように、ロータ軸63の上記鋳型における凹部62に対応する位置へ充填体65を配置する。
 そして、図6に示すように、第1工程であらかじめ形成し、第2工程において上記鋳型に配置した充填体65を、第3工程(鋳包工程)で凹部62に鋳込む。即ち、上記鋳型にロータ軸63の材料を流し込み、充填体65を凹部62に鋳包む。
 このようにして、ロータ軸63の翼部61に有する凹部62内に、ロータ軸63を形成する材質よりも熱伝導率が高い高熱伝導率部材の充填体65を設置した混練用ロータ60を得ることができる。
 混練用ロータ60の製造方法の第1例によれば、充填体65をあらかじめ形成した状態で、ロータ軸63の翼部61の凹部62に充填体65を鋳込む方法、即ち、鋳包みを用いて製造することが可能となる。従って、複雑な製造工程を実施する必要がなく、既存の鋳型を用いることも可能となり、コストを抑えながら混練用ロータを製造できる。
 次に、本発明に係る混練用ロータの製造方法の第2例について説明する。
 なお、混練用ロータ70は、第1実施形態の混練用ロータ20、21と略同一の構成となっている。
 図7に示すように、混練用ロータ70の製造方法の第2例における第1工程(ロータ軸製造工程)では、管状の部材であるロータ軸73を鋳造等によって製造する。ロータ軸73には、ロータ軸73の外面に向けて張り出した翼部71が設けられる。ロータ軸73の内面には、翼部71の裏側に、凹部72が形成されている。
 このとき、翼部71に対向する位置、即ち、翼部71とはロータ軸73の径方向の反対側に、外部と凹部72とを連通し、充填体75を充填可能とする充填孔76を同時に形成する。
 次に、図8に示すように、第2工程(充填工程)では、翼部71及びロータ軸73を形成する材質よりも熱伝導率が高い材質の充填材を充填孔76から凹部72に流し込む。また、この充填材は、ロータ軸73を形成する材質よりも低融点である必要があり、例えば、アルミニウム等を用いることができる。
 このとき、一方の充填孔76を上方に配置しておいて、一方の充填孔76から下方に配置する一方の凹部72に充填材を流し込んだ後に、一方の充填孔76を一方の栓材77により溶接して一方の充填孔76を閉塞する。
 次に、他方の充填孔76を上方に配置しておいて、他方の充填孔76から下方に配置する他方の凹部72に充填材を流し込んだ後に、他方の充填孔76を他方の栓材77により溶接して他方の充填孔76を閉塞する。
 この第2工程により、翼部71の凹部72内に、翼部71及びロータ軸73を形成する材質よりも熱伝導率が高い高熱伝導率部材の充填体75を設置した混練用ロータ70を得ることができる。
 混練用ロータ70の製造方法の第2例によれば、所定位置に空洞状の凹部72をあらかじめ形成し、翼部71に対向する位置に充填孔76を形成しておく。そして、充填孔76から充填材を流し込むことにより、充填体75を凹部72に設置する。
 充填材を流し込む際には、上方に配置した充填孔76から下方の凹部72に向けて充填材を流し入れることで、充填材の自重により充填材を凹部72に確実に充填して充填体75を設置できる。このため、複雑な製造工程を実施する必要がなく、コストを抑制しながら冷却効率向上を図った混練用ロータ70を製造できる。
 次に、本発明に係る混練用ロータの製造方法の第3例について説明する。
 なお、混練用ロータ80は、第2実施形態の混練用ロータ50と略同一の構成となっている。
 図9に示すように、混練用ロータ80の製造方法の第3例における第1工程(ロータ軸製造工程)では、管状の部材であるロータ軸83を鋳造等によって製造する。ロータ軸83には、ロータ軸83の外面に向けて張り出した翼部81が設けられる。ロータ軸83の内面には、翼部81の裏側に、凹部82が形成されている。
 このとき、翼部81の一部に充填体84を充填するための充填孔85を同時に形成し、パイプ収容部31内に円柱形状の中子87を収容しておく。充填孔85は、翼部81の外部から凹部82の内部に連通する。
 次に、図10に示すように、第2工程(充填工程)では、翼部81及びロータ軸83を形成する材質よりも熱伝導率が高い材質の充填材を充填孔85から凹部82に流し込む。
 このとき、一方の充填孔85を上方に配置しておいて、一方の充填孔85から上方に配置する一方の凹部82に充填材を流し入れた後に、一方の充填孔85を一方の栓材88により溶接して一方の充填孔85を閉塞する。
 次に、他方の充填孔85を上方に配置しておいて、他方の充填孔85から上方に配置する他方の凹部82に充填材を流し入れた後に、他方の充填孔85を他方の栓材88により溶接して他方の充填孔85を閉塞し、中子87を除去する。
 この第2工程により、ロータ軸83の翼部81に有する凹部82内に、翼部81及びロータ軸83を形成する材質よりも熱伝導率が高い高熱伝導率部材の充填体84を設置した混練用ロータ80を得ることができる。
 混練用ロータ80の製造方法の第3例によれば、所定位置に空洞状の凹部82をあらかじめ形成し、翼部81に充填孔85を形成し、パイプ収容部31内に中子87を収容しておく。そして、充填孔85から充填材を流し込むことにより、充填体84を凹部82に設置し、その後、中子87を除去する。
 従って、混練用ロータの製造方法の第3例によれば、充填材の自重により充填材を凹部82に確実に充填して充填体84を設置できる。このため、複雑な製造工程を実施する必要がなく、コストを抑制しながら冷却効率向上を図った混練用ロータ80を製造できる。
 なお、本発明の混練用ロータ、混練機及び混練用ロータの製造方法は、前述した各実施形態に限定するものでなく、適宜な変形や改良等が可能である。
 例えば、第2実施形態の混練用ロータ50を第1例の製造方法で製造する際には、充填体51にあらかじめ複数のフィン52を形成した状態で、第3工程を実行することとなる。
 また、第2実施形態の混練用ロータ50を第2例及び第3例の製造方法で製造する際には、パイプ収容部31の内面から内周側にはみ出すように充填材を多めに充填する。その後、機械加工等によってこのはみ出した分の充填材の形状を整えて複数のフィン52を形成する。
 この混練用ロータ、混練機及び混練用ロータの製造方法によれば、翼部の凹部に充填体を設置することで、コストを抑制しながら、冷却効率向上を図ることが可能となる。
 10,40…混練機
 20,21,50,60,70,80…混練用ロータ
 22,23,61,71,81…翼部
 27,63,73,83…ロータ軸
 28,62,72,82…凹部
 36,51,65,75,84…充填体
 52…フィン

Claims (5)

  1.  管形状を有するロータ軸と、
     前記ロータ軸の外周面に設けられる翼部と、
     前記翼部内部に形成される凹部に設けられ、前記ロータ軸及び前記翼部を形成する材質よりも熱伝導率が高い材質の充填体と、を備える混練用ロータ。
  2.  前記充填体の内周面に形成され、内周側に突出するフィンを備える請求項1に記載の混練用ロータ。
  3.  請求項1または請求項2に記載の混練用ロータを備える混練機。
  4.  管状で、外周面に混練用の翼部が設けられたロータ軸を有する混練用ロータの製造方法であって、
     前記ロータ軸及び前記翼部の材質よりも、熱伝導率が高い材質よりなる部材を所定の形状に形成する充填体形成工程と、
     前記充填体形成工程で形成された充填体を、前記ロータ軸の翼部が設けられる位置で、前記翼部の外周面よりも前記ロータ軸の径方向内側となる位置で、前記ロータ軸の鋳型内部に配置する充填体配置工程と、
     前記充填体配置工程で前記充填体が配置された状態で、前記鋳型に前記ロータ軸の材料を流し込む鋳包工程と、を備える混練用ロータの製造方法。
  5.  管状で、外周面に混練用の翼部が設けられたロータ軸を有する混練用ロータの製造方法であって、
     前記翼部が設けられた位置で、前記ロータ軸の内周面に凹部を形成するようにして前記ロータ軸を製造するロータ軸製造工程と、
     前記ロータ軸及び前記翼部の材質よりも熱伝導率が高い材質よりなる充填材を、前記ロータ軸の外周側から前記凹部に充填して充填体を設置する充填工程と、を備える混練用ロータの製造方法。
PCT/JP2013/051145 2012-01-25 2013-01-22 混練用ロータ、混練機、及び混練用ロータの製造方法 WO2013111724A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167014188A KR20160066003A (ko) 2012-01-25 2013-01-22 혼련용 로터, 혼련기 및 혼련용 로터의 제조 방법
KR1020147007681A KR101841810B1 (ko) 2012-01-25 2013-01-22 혼련용 로터, 혼련기 및 혼련용 로터의 제조 방법
CN201380003244.9A CN103842064B (zh) 2012-01-25 2013-01-22 混炼用转子、混炼机以及混炼用转子的制造方法
DE112013000694.4T DE112013000694B4 (de) 2012-01-25 2013-01-22 Rotor zum Kneten, Knetmaschine und Verfahren zum Herstellen eines Rotors zum Kneten
US14/343,634 US9586340B2 (en) 2012-01-25 2013-01-22 Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012013222A JP5797121B2 (ja) 2012-01-25 2012-01-25 混練用ロータ、混練機、及び混練用ロータの製造方法
JP2012-013222 2012-01-25

Publications (1)

Publication Number Publication Date
WO2013111724A1 true WO2013111724A1 (ja) 2013-08-01

Family

ID=48873444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051145 WO2013111724A1 (ja) 2012-01-25 2013-01-22 混練用ロータ、混練機、及び混練用ロータの製造方法

Country Status (7)

Country Link
US (1) US9586340B2 (ja)
JP (1) JP5797121B2 (ja)
KR (2) KR20160066003A (ja)
CN (1) CN103842064B (ja)
DE (1) DE112013000694B4 (ja)
TW (1) TWI503166B (ja)
WO (1) WO2013111724A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513886A (zh) * 2018-12-14 2019-03-26 珠海市润星泰电器有限公司 一种半固态浆料的制浆装置
TWI696491B (zh) * 2019-09-04 2020-06-21 禾昌噴焊有限公司 混煉用轉子
CN115042337B (zh) * 2022-07-15 2023-05-09 长兴鼎鑫橡塑科技有限公司 一种橡塑生产用密炼系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269011A (ja) * 1989-04-11 1990-11-02 Masao Moriyama 混練機
JP2003117376A (ja) * 2001-10-12 2003-04-22 Mitsubishi Heavy Ind Ltd メカニカルアロイング装置およびアルミニウム複合粉末の製造方法
JP2005059528A (ja) * 2003-08-20 2005-03-10 Mitsubishi Heavy Ind Ltd 混練用ロータ
JP2008062532A (ja) * 2006-09-08 2008-03-21 Moriyama:Kk 密閉式混練機及びその冷却方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314650A (en) * 1965-07-20 1967-04-18 Gen Motors Corp Cooled blade
US3806276A (en) 1972-08-30 1974-04-23 Gen Motors Corp Cooled turbine blade
JPS525395B2 (ja) * 1973-04-06 1977-02-12
DE2527962A1 (de) 1975-06-24 1977-01-13 Bayer Ag Verfahren zur behandlung von cellulose-fasern
JP3868757B2 (ja) * 2001-04-25 2007-01-17 株式会社神戸製鋼所 ゴム系組成物の混練装置および混練方法
DE60204101T2 (de) * 2001-11-15 2006-05-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Knetvorrichtung und Verfahren zum Kneten von Kautschuk oder Kautschukzusammensetzungen
KR20030073903A (ko) 2002-03-13 2003-09-19 (주)테놉스 휜과 보조방열판의 인서트 주조를 이용한 방열판 제조방법
ATE490021T1 (de) * 2003-02-27 2010-12-15 M & F Technology Co Ltd Misch- und pulverisiervorrichtung sowie verfahren für mit einem bindemittel beschichteten cellulosematerial
JP2006026991A (ja) * 2004-07-14 2006-02-02 Mitsubishi Heavy Ind Ltd 混練用ロータ
US7677789B2 (en) * 2006-06-16 2010-03-16 Bridgestone Americas Tire Operations, Llc Mixer rotor with spiral core ribs
CN201079735Y (zh) * 2007-07-27 2008-07-02 重庆大学 差速双螺杆捏合机
JP5005506B2 (ja) * 2007-11-02 2012-08-22 株式会社神戸製鋼所 混練度調整方法
JP4917558B2 (ja) * 2008-02-12 2012-04-18 日本曹達株式会社 小型反応器用撹拌装置
JP4568785B2 (ja) * 2009-01-19 2010-10-27 株式会社神戸製鋼所 混練ロータ
JP5264635B2 (ja) * 2009-07-09 2013-08-14 株式会社神鋼環境ソリューション 撹拌槽、及びそれを備える撹拌装置
JP5598757B2 (ja) * 2010-01-26 2014-10-01 株式会社安川電機 冷媒冷却リニアモータ
JP2013154598A (ja) 2012-01-31 2013-08-15 Mitsubishi Heavy Industries Machinery Technology Corp 混練用ロータ及び混練機
JP2013159012A (ja) 2012-02-03 2013-08-19 Mitsubishi Heavy Industries Machinery Technology Corp 混練用ロータ及び混練機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269011A (ja) * 1989-04-11 1990-11-02 Masao Moriyama 混練機
JP2003117376A (ja) * 2001-10-12 2003-04-22 Mitsubishi Heavy Ind Ltd メカニカルアロイング装置およびアルミニウム複合粉末の製造方法
JP2005059528A (ja) * 2003-08-20 2005-03-10 Mitsubishi Heavy Ind Ltd 混練用ロータ
JP2008062532A (ja) * 2006-09-08 2008-03-21 Moriyama:Kk 密閉式混練機及びその冷却方法

Also Published As

Publication number Publication date
CN103842064A (zh) 2014-06-04
KR20160066003A (ko) 2016-06-09
DE112013000694B4 (de) 2018-01-18
TWI503166B (zh) 2015-10-11
KR101841810B1 (ko) 2018-03-26
DE112013000694T5 (de) 2014-11-20
TW201402201A (zh) 2014-01-16
JP5797121B2 (ja) 2015-10-21
KR20140053366A (ko) 2014-05-07
JP2013150955A (ja) 2013-08-08
CN103842064B (zh) 2016-02-10
US9586340B2 (en) 2017-03-07
US20140233342A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
US9252642B2 (en) Electrical machine
WO2013111724A1 (ja) 混練用ロータ、混練機、及び混練用ロータの製造方法
JP6258949B2 (ja) 温度制御サーモキネティックミキサ
KR20170023479A (ko) 용탕 교반기
CN112655140A (zh) 其中嵌入有无泄漏流体通道的马达壳体
JP4256330B2 (ja) 密閉式混練機およびそれに用いられている混練ロータ
JP6164179B2 (ja) 電動モータの冷却構造およびその製造方法
JP3574618B2 (ja) 密閉式混練機
KR100604280B1 (ko) 밀폐식 혼련기
KR101558720B1 (ko) 혼련용 로터 및 혼련기
WO2013115371A1 (ja) 混練用ロータ及び混練機
JP2017135844A (ja) モータ用ハウジング及びその製造方法及び中子部材
JP2021100369A (ja) 電気機械用のステータハウジング、電気機械、及び車両
CN107147249A (zh) 一种电机壳体的冷却结构
JP4807664B2 (ja) 混練機
JP2015116581A (ja) 螺旋羽根を有するスクリューシャフトの製造方法及びそれを備えた熱交換装置
JP6205378B2 (ja) 螺旋羽根を有するスクリューシャフトの製造方法及びそれを備えた熱交換装置
US20220123615A1 (en) Rotary electric machine with improved stator cooling
WO2013115058A1 (ja) 混練用ロータ及び混練機
JP2005059528A (ja) 混練用ロータ
US10486225B2 (en) Method and apparatus for particle injection moulding
JP2006305971A (ja) 混練装置
JP2010094819A (ja) 成形装置
JP2001170470A (ja) 密閉式混練機
JP2015197076A (ja) 圧縮機の摺動部品およびこれを備えたスクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14343634

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147007681

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013000694

Country of ref document: DE

Ref document number: 1120130006944

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741579

Country of ref document: EP

Kind code of ref document: A1