WO2013111706A1 - 強磁性材スパッタリングターゲット - Google Patents
強磁性材スパッタリングターゲット Download PDFInfo
- Publication number
- WO2013111706A1 WO2013111706A1 PCT/JP2013/051095 JP2013051095W WO2013111706A1 WO 2013111706 A1 WO2013111706 A1 WO 2013111706A1 JP 2013051095 W JP2013051095 W JP 2013051095W WO 2013111706 A1 WO2013111706 A1 WO 2013111706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sputtering target
- powder
- wtppm
- impurities
- less
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/851—Coating a support with a magnetic layer by sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Definitions
- the present invention relates to a magnetic material thin film of a magnetic recording medium, and more particularly to a ferromagnetic material sputtering target for forming a magnetic recording layer of a magnetic recording medium in an HDD (Hard Disk Drive) adopting a perpendicular magnetic recording method.
- HDD Hard Disk Drive
- a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
- the magnetic thin films of these magnetic recording media are often produced by sputtering a ferromagnetic material sputtering target containing the above materials as a component because of high productivity.
- a melting method or a powder metallurgy method can be considered as a method for producing such a ferromagnetic material sputtering target. Which method is used for manufacturing depends on the required characteristics, so it cannot be generally stated. In recent years, the magnetic recording method has changed from the plane direction to the vertical direction, and the sputtering target used for recording layer formation has shifted from a melted product to a sintered product obtained by sintering a mixed powder of metal powder and oxide powder. It was.
- Patent Document 1 CoCr alloy powder, Pt powder, Co powder, SiO 2 powder, and Cr 2 O 3 powder are mixed, and then this powder is put into a mold and sintered, and the obtained sintered body A method of manufacturing a sputtering target by cutting a substrate is disclosed.
- Patent Document 2 Patent Document 3, and the like can be cited.
- Some oxide powders used as raw materials for ferromagnetic sputtering targets contain a relatively large amount of alkali metals or alkaline earth metals as impurities, such as Cr 2 O 3 powder produced by coprecipitation. . Since the Cr 2 O 3 powder used industrially usually contains several hundred wtppm of alkali metal or alkaline earth metal, it may remain in the sputtering target when used as a raw material.
- the sputtering target contains a large amount of impurities such as alkali metals, these impurities are oxidized to form spots during or after sputtering film formation, and information is normally read / written on the information recording surface. There was something I could't do. Further, after sputtering film formation, these impurities may be oxidized and the magnetic material thin film may be peeled off. Due to these reasons, the durability of the magnetic recording layer of the magnetic recording medium may be lowered.
- impurities such as alkali metals
- the present inventors have conducted intensive research. As a result, the magnetic recording layer of the magnetic recording medium is reduced by reducing the impurities of alkali metal and alkaline earth metal in the Cr 2 O 3 powder. It has been found that the durability of can be improved.
- the present invention 1) Sputtering target comprising a metal matrix phase composed of Co and Pt, Co and Cr or Co, Cr and Pt, and an oxide phase containing at least Cr 2 O 3, and containing 1 to 16 mol% of the Cr 2 O 3.
- the present invention also provides: 2) The sputtering target according to 1) above, wherein Na as an impurity is 10 wtppm or less.
- the present invention provides 3) The sputtering target according to 1) or 2) above, wherein K as an impurity is 10 wtppm or less.
- the present invention provides 4) The sputtering target according to any one of 1) to 3) above, wherein the total amount of alkaline earth metals as impurities is 30 wtppm or less.
- the present invention provides 5) The sputtering target according to any one of 1) to 4) above, wherein Ca as an impurity is 10 wtppm or less.
- the present invention provides 6) The oxide phase comprising Cr 2 O 3 and an oxide of one or more elements selected from B, Mg, Al, Si, Ti, Zr, Nb, Ta, Co, and Mn
- the present invention provides 7) The sputtering target according to any one of 1) to 6) above, wherein one or more elements selected from B, Cu, Mo, Ru, Ta, and W are added to the metal matrix phase.
- Ferromagnetic material sputtering target with reduced content of alkali metals and alkaline earth metals as impurities suppresses the formation of spots starting from these impurities and the peeling of magnetic thin films during or after sputtering. Therefore, there is an advantage that a magnetic thin film of a magnetic recording medium having excellent durability can be manufactured. Further, there is an advantage that the number of defective magnetic recording films formed by sputtering can be reduced, yield can be improved, and cost can be reduced.
- the ferromagnetic sputtering target of the present invention has a structure in which a metal matrix phase composed of Co—Pt, Co—Cr or Co—Cr—Pt and an oxide phase which is nonmagnetic particles are finely dispersed in the metal matrix phase.
- a metal matrix phase composed of Co—Pt, Co—Cr or Co—Cr—Pt and an oxide phase which is nonmagnetic particles are finely dispersed in the metal matrix phase.
- the metal matrix phase of the ferromagnetic material sputtering target is not particularly limited as long as the characteristics as a magnetic thin film for a magnetic recording medium can be obtained.
- a Co—Pt metal matrix phase in which Pt is 5 mol% or more and 30 mol% or less and the balance is Co Co—Cr in which Cr is 5 mol% or more and 20 mol% or less and the balance is Co
- a metal matrix phase Co—Cr—Pt metal matrix in which Cr is more than 0 mol% and 20 mol% or less, Pt is 5 mol% or more and 30 mol% or less, and the balance is Co.
- the oxide phase that is nonmagnetic particles often contains 1 to 16 mol% of Cr 2 O 3 . Since the industrially used Cr 2 O 3 powder produced by the coprecipitation method contains a relatively large amount of impurities such as alkali metals and alkaline earth metals, the Cr 2 O 3 is appropriately treated. It becomes possible to control the content of impurities of alkali metal or alkaline earth metal in the sputtering target of the present invention.
- the ferromagnetic material sputtering target of the present invention is characterized in that the total amount of alkali metals as impurities is 30 wtppm or less. Since alkali metals are easy to oxidize, if their content exceeds 30 wtppm, spots are often formed on the magnetic thin film on the information recording surface, and information writing / reading may not be performed normally. is there. In addition, alkali metal may oxidize after sputtering film formation, which may cause peeling of the sputtered film.
- the sodium content is 10 wtppm or less, more preferably 1 wtppm or less.
- potassium content shall be 10 wtppm or less, More preferably, it shall be 1 wtppm or less.
- the ferromagnetic material sputtering target of the present invention is characterized in that the total amount of alkaline earth metals as impurities is 30 wtppm or less.
- Alkaline earth metals are also easily oxidized like alkali metals, so if their content exceeds 30 wtppm, spots may be formed on the magnetic thin film on the information recording surface, and information writing / reading is normal. May not be done. Further, the alkaline earth metal may oxidize after the sputter film formation, causing the sputter film to peel off.
- the calcium content is 10 wtppm or less, more preferably 1 wtppm or less.
- the ferromagnetic material sputtering target according to the present invention includes one or more elements selected from B, Mg, Al, Si, Ti, Zr, Nb, Ta, Co, and Mn in addition to Cr 2 O 3 as an oxide phase. Contains oxides.
- the nonmagnetic oxide phase of the ferromagnetic material sputtering target is not particularly limited as long as the characteristics as a magnetic thin film for a magnetic recording medium can be obtained.
- one or more elements selected from B, Cu, Mo, Ru, Ta, and W can be further added to the metal matrix phase.
- the addition amount can be appropriately adjusted so that the characteristics as a magnetic thin film for a magnetic recording medium can be obtained.
- the ferromagnetic sputtering target with reduced alkali metal and alkaline earth metal suppresses the formation of spots starting from these impurities and the peeling of the magnetic material thin film due to oxidation during or after the sputtering film formation. Therefore, there is an advantage that a magnetic thin film of a magnetic recording medium having excellent durability can be manufactured. Further, there is an advantage that the number of defective magnetic recording films formed by sputtering can be reduced, yield can be improved, and cost can be reduced.
- the ferromagnetic material sputtering target of the present invention can be produced by the following method, for example.
- Cr 2 O 3 raw material powder is prepared, and this raw material powder is stirred and washed with pure water.
- the temperature of pure water is set to 40 ° C. or higher. This is because if the temperature is lower than 40 ° C., a sufficient cleaning effect cannot be obtained.
- the washed solution is filtered and dried to obtain a Cr 2 O 3 powder with significantly reduced alkali metal and alkaline earth metal impurities.
- Co raw material powder, Cr raw material powder, and Pt raw material powder are prepared as metal powder, and TiO 2 raw material powder, SiO 2 raw material powder, and Cr 2 O 3 powder produced by the above method are used as oxide powder. Weigh so that a predetermined target composition is obtained. At this time, it is preferable to adjust the average particle diameter of various raw material powders.
- a ball mill pot together with zirconia balls as a grinding medium, and pulverized and mixed.
- a ball mill As a mixing device, a ball mill, a mixer, a mortar, or the like can be used. However, it is desirable to use a powerful mixing method such as a ball mill in order to efficiently achieve uniform fineness. In view of the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
- the mixed powder thus obtained can be filled into a carbon mold and a sintered body can be obtained using a vacuum hot press apparatus.
- Molding / sintering is not limited to hot pressing, and plasma discharge sintering and hot isostatic pressing can also be used.
- the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 800-1200 ° C. This is because crystal growth of the sintered body can be suppressed by keeping the sintering temperature low.
- the pressure during sintering is preferably 20 to 40 MPa.
- the ferromagnetic material sputtering target of the present invention can be manufactured by cutting the sintered body thus obtained into a desired shape.
- Example 1 1 kg of 99.9% pure Cr 2 O 3 raw material powder was prepared, and this was stirred and washed with 50 L of pure water at a temperature of 50 ° C. for 1 hour, and then filtered and dried.
- Table 1 shows analysis values of impurities before and after the pure water cleaning treatment. When the impurity amount of the raw material powder after pure water washing was shown, it was Na: 15wtppm, K: ⁇ 1wtppm, Ca: 1wtppm.
- Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, SiO 2 powder having an average particle diameter of 1 ⁇ m, and the method of Table 1 Cr 2 O 3 powder having an average particle diameter of 3 ⁇ m from which impurities such as sodium were removed was prepared.
- These powders were coated with Co powder: 41.22 wt%, Cr powder: 9.41 wt%, so that the target composition was 58 Co-15Cr-15Pt-4TiO 2 -4SiO 2 -4Cr 2 O 3 (mol%).
- Pt powder 35.29 wt%, TiO 2 powder: 3.85 wt%, SiO 2 powder: 2.90 wt%, Cr 2 O 3 powder: 7.33 wt% were weighed, respectively.
- Co powder, Cr powder, Pt powder, TiO 2 powder, SiO 2 powder, and Cr 2 O 3 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. . Thereafter, this mixed powder and a carbon mold were filled and hot-pressed in a vacuum atmosphere at a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body.
- Comparative Example 1 The same 99.9% purity Cr 2 O 3 raw powder as in Example 1 was prepared. Table 1 shows analytical values of the impurities. When the main impurity amount of this raw material powder was shown, they were Na: 300wtppm, K: 110wtppm, Ca: 150wtppm.
- Comparative Example 1 a sputtering target was manufactured using the Cr 2 O 3 raw material powder as it was without performing a pure water cleaning treatment. A sputtering target having the same composition as in Example 1 was produced using the same method as in Example 1 except for the Cr 2 O 3 powder.
- the main impurities of the sputtering target were Na: 22 wtppm, K: 15 wtppm, and Ca: 17 wtppm.
- the amount of impurities in the target using Cr 2 O 3 powder that was not subjected to pure water cleaning treatment as the raw material powder was outside the scope of the present invention.
- Comparative Example 2 A Cr 2 O 3 raw material powder having the same purity of 99.9% as in Example 1 was prepared. In Comparative Example 2, this was stirred and washed with 50 L of pure water at a temperature of 20 ° C. for 1 hour, then filtered and dried. It was. Table 1 shows analytical values of impurities before and after the pure water cleaning treatment. When the impurity amount of the raw material powder after pure water washing was shown, they were Na: 180 wtppm, K: 80 wtppm, and Ca: 120 wtppm. A sputtering target was manufactured using the Cr 2 O 3 powder after the pure water cleaning treatment.
- a sputtering target having the same composition as in Example 1 was produced using the same method as in Example 1 except for the Cr 2 O 3 powder.
- the main impurities of the sputtering target were Na: 13 wtppm, K: 11 wtppm, and Ca: 12 wtppm.
- the amount of impurities in the target using Cr 2 O 3 powder subjected to pure water cleaning at a low temperature as a raw material powder was outside the scope of the present invention.
- Example 2 1 kg of 99.9% pure Cr 2 O 3 raw material powder was prepared, and this was stirred and washed with 50 L of pure water at a temperature of 60 ° C. for 1 hour, and then filtered and dried.
- Table 1 shows analytical values of impurities before and after the pure water cleaning treatment.
- the amount of impurities in the raw material powder after washing with pure water was Na: 12 wtppm, K: ⁇ 1 wtppm, and Ca: 1 wtppm.
- each composition is 59Co-15Cr-15Pt-1Ta 5 O 2 -6SiO 2 -1Cr 2 O 3 -3CoO (mol%).
- the powder was weighed and a sputtering target was manufactured using the same method as in Example 1.
- typical impurities of the sputtering target were Na: ⁇ 1 wtppm, K: ⁇ 1 wtppm, and Ca: ⁇ 1 wtppm.
- the target impurities using the Cr 2 O 3 powder after the pure water cleaning treatment as a raw material powder are within the scope of the present invention, that is, Na: 10 wtppm or less, K: 10 wtppm or less, Ca: 10 wtppm or less. It was included in the range.
- other alkali metals and alkaline earth metals were difficult to analyze and were in small amounts to some extent.
- Comparative Example 3 The same 99.9% purity Cr 2 O 3 powder as in Example 2 was prepared. Table 1 shows analytical values of the impurities. When the main impurity amount of this raw material powder was shown, they were Na: 700wtppm, K: 60wtppm, Ca: 30wtppm.
- Comparative Example 3 a sputtering target was manufactured using the Cr 2 O 3 raw material powder as it was without performing a pure water cleaning treatment. A sputtering target having the same composition as in Example 2 was produced using the same method as in Example 2 except for the Cr 2 O 3 powder.
- the main impurities of the sputtering target were Na: 11 wtppm, K: 10 wtppm, and Ca: 12 wtppm.
- the amount of impurities in the target using Cr 2 O 3 powder that was not subjected to pure water cleaning treatment as the raw material powder was outside the scope of the present invention.
- Example 3 Using the same pure Cr 2 O 3 powder after washing with pure water as in Example 1, each powder was weighed so that the composition was 49Co-15Cr-15Pt-5Ru-16Cr 2 O 3 (mol%).
- a sputtering target was manufactured using the same method as in Example 1. As shown in Table 2, typical impurities of the sputtering target were Na: 4 wtppm, K: 2 wtppm, and Ca: 3 wtppm.
- the target impurities using the Cr 2 O 3 powder after the pure water cleaning treatment as a raw material powder are within the scope of the present invention, that is, Na: 10 wtppm or less, K: 10 wtppm or less, Ca: 10 wtppm or less. It was included in the range. In addition, other alkali metals and alkaline earth metals were difficult to analyze and were in small amounts to some extent.
- the present invention can reduce alkali metals and alkaline earth metals contained as impurities in a ferromagnetic material sputtering target. Therefore, if the target of the present invention is used, it is possible to suppress the formation of spots and the peeling of the magnetic material thin film due to oxidation of these impurities during or after sputtering. The quality can be remarkably improved, and a magnetic thin film can be produced at low cost.
- the present invention is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a hard disk drive recording layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
1)Co及びPt、Co及びCr又はCo、Cr及びPtからなる金属マトリックス相と、少なくともCr2O3を含む酸化物相とからなり、前記Cr2O3を1~16mol%含有するスパッタリングターゲットであって、不純物であるアルカリ金属の総量が30wtppm以下であることを特徴とするスパッタリングターゲット。
2)不純物であるNaが10wtppm以下であることを特徴とする上記1)記載のスパッタリングターゲット。
3)不純物であるKが10wtppm以下であることを特徴とする上記1)又は2)記載のスパッタリングターゲット。
4)不純物であるアルカリ土類金属の総量が30wtppm以下であることを特徴とする上記1)~3)のいずれか一に記載のスパッタリングターゲット。
5)不純物であるCaが10wtppm以下であることを特徴とする上記1)~4)のいずれか一項に記載のスパッタリングターゲット。
6)酸化物相がCr2O3とB、Mg、Al、Si、Ti、Zr、Nb、Ta、Co、Mnから選択した1種以上の元素の酸化物とからなることを特徴とする上記1)~5)のいずれか一に記載のスパッタリングターゲット。
7)金属マトリック相にB、Cu、Mo、Ru、Ta、Wから選択した1種以上の元素を添加することを特徴とする上記1)~6)のいずれか一に記載のスパッタリングターゲット。
例えば、Ptが5mol%以上30mol%以下、残部CoであるCo-Pt金属マトリックス相、Crが5mol%以上20mol%以下、残余がCoであるCo-Cr
金属マトリックス相、Crが0mol%超20mol%以下、Ptが5mol%以上30mol%以下、残余がCoであるCo-Cr-Pt金属マトリックスが挙げられる。
またこのとき、純水の量は、Cr2O3原料粉末中のアルカリ金属、およびアルカリ土類金属不純物の総量が1000wtppm程度の場合は、Cr2O3原料粉末を1kgに対して、50L以上とする。50L未満であると、十分な洗浄効果を得られないためである。
その後、洗浄した溶液をろ過、乾燥させることにより、アルカリ金属、アルカリ土類金属不純物を著しく低減したCr2O3粉末を得ることができる。
純度99.9%のCr2O3原料粉末を1kg準備し、これを温度50℃にした純水50Lで1時間攪拌洗浄し、その後、濾過し、乾燥させた。純水洗浄処理する前と後での不純物の分析値を表1に示す。純水洗浄した後の原料粉末の不純物量を示すと、Na:15wtppm、K:<1wtppm、Ca:1wtppmであった。
次に、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末、平均粒径1μmのTiO2粉末、平均粒径1μmのSiO2粉末、表1の方法で得られたナトリウム等の不純物を除去した平均粒径3μmのCr2O3粉末を用意した。
そして、これらの粉末をターゲット組成が58Co-15Cr-15Pt-4TiO2-4SiO2-4Cr2O3(mol%)となるように、Co粉末:41.22wt%、Cr粉末:9.41wt%、Pt粉末:35.29wt%、TiO2粉末:3.85wt%、SiO2粉末:2.90wt%、Cr2O3粉末:7.33wt%の重量比率でそれぞれ秤量した。
次に、Co粉末とCr粉末とPt粉末とTiO2粉末とSiO2粉末とCr2O3粉末とを粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。その後、この混合粉とカーボン製の型に充填し、真空雰囲気中、温度1050℃、保持時間2時間、加圧力30MPaの条件で、ホットプレスして焼結体を得た。これをさらに旋盤加工で直径が180mm、厚さ5mmの円盤状ターゲットに加工した。
表2に示す通り、スパッタリングターゲットの代表的な不純物は、Na:1wtppm、K:<1wtppm、Ca:1wtppmであった。このように純水洗浄処理した後のCr2O3粉末を原料粉末として使用したターゲットの不純物量はいずれも、本発明の範囲、すなわち、Na:10wtppm以下、K:10wtppm以下、Ca:10wtppm以下の範囲に含まれるものであった。なお、他のアルカリ金属、アルカリ土類金属は、分析が困難である程度に少量であった。
実施例1と同じ純度99.9%のCr2O3原料粉末を準備した。その不純物の分析値を表1に示す。この原料粉末の主な不純物量を示すと、Na:300wtppm、K:110wtppm、Ca:150wtppmであった。
比較例1では、純水洗浄処理せずに、Cr2O3原料粉末をそのまま使用してスパッタリングターゲットを製造した。Cr2O3粉末以外は、実施例1と同様の方法を用いて、実施例1と同組成のスパッタリングターゲットを製造した。
表2に示す通り、スパッタリングターゲットの主な不純物は、Na:22wtppm、K:15wtppm、Ca:17wtppmであった。以上に示す通り、純水洗浄処理をしなかったCr2O3粉末を原料粉末として使用したターゲットの不純物量はいずれも、本発明の範囲外であった。
実施例1と同じ純度99.9%のCr2O3原料粉末を準備し、比較例2では、これを温度20℃にした純水50Lで1時間攪拌洗浄し、その後、濾過し、乾燥させた。純水洗浄処理する前と後での不純物の分析値を表1に示す。純水洗浄した後の原料粉末の不純物量を示すと、Na:180wtppm、K:80wtppm、Ca:120wtppmであった。
この純水洗浄処理後のCr2O3粉末を使用してスパッタリングターゲットを製造した。Cr2O3粉末以外は、実施例1と同様の方法を用いて、実施例1と同組成のスパッタリングターゲットを製造した。
表2に示す通り、スパッタリングターゲットの主な不純物は、Na:13wtppm、K:11wtppm、Ca:12wtppmであった。以上に示す通り、純水洗浄を低温で実施したCr2O3粉末を原料粉末として使用したターゲットの不純物量はいずれも、本発明の範囲外であった。
純度99.9%のCr2O3原料粉末を1kg準備し、これを温度60℃にした純水50Lで1時間攪拌洗浄し、その後、濾過し、乾燥させた。純水洗浄処理する前と後での不純物の分析値を表1に示す。純水洗浄した後の原料粉末の不純物量を示すと、Na:12wtppm、K:<1wtppm、Ca:1wtppmであった。
この純水洗浄処理後のCr2O3原料粉末を用いて、組成が59Co-15Cr-15Pt-1Ta5O2-6SiO2-1Cr2O3-3CoO(mol%)となるように、それぞれの粉末を秤量し、実施例1と同様の方法を用いて、スパッタリングターゲットを製造した。
表2に示す通り、スパッタリングターゲットの代表的な不純物は、Na:<1wtppm、K:<1wtppm、Ca:<1wtppmであった。このように純水洗浄処理した後のCr2O3粉末を原料粉末として使用したターゲットの不純物量はいずれも、本発明の範囲、すなわち、Na:10wtppm以下、K:10wtppm以下、Ca:10wtppm以下の範囲に含まれるものであった。なお、他のアルカリ金属、アルカリ土類金属は、分析が困難である程度に少量であった。
実施例2と同じ純度99.9%のCr2O3原料粉末を準備した。その不純物の分析値を表1に示す。この原料粉末の主な不純物量を示すと、Na:700wtppm、K:60wtppm、Ca:30wtppmであった。
比較例3では、純水洗浄処理せずに、Cr2O3原料粉末をそのまま使用してスパッタリングターゲットを製造した。Cr2O3粉末以外は、実施例2と同様の方法を用いて、実施例2と同組成のスパッタリングターゲットを製造した。
表2に示す通り、スパッタリングターゲットの主な不純物は、Na:11wtppm、K:10wtppm、Ca:12wtppmであった。以上に示す通り、純水洗浄処理をしなかったCr2O3粉末を原料粉末として使用したターゲットの不純物量はいずれも、本発明の範囲外であった。
実施例1と同じ純水洗浄処理後のCr2O3原料粉末を用いて、組成が49Co-15Cr-15Pt-5Ru-16Cr2O3(mol%)となるように、それぞれの粉末を秤量し、実施例1と同様の方法を用いて、スパッタリングターゲットを製造した。
表2に示す通り、スパッタリングターゲットの代表的な不純物は、Na:4wtppm、K:2wtppm、Ca:3wtppmであった。このように純水洗浄処理した後のCr2O3粉末を原料粉末として使用したターゲットの不純物量はいずれも、本発明の範囲、すなわち、Na:10wtppm以下、K:10wtppm以下、Ca:10wtppm以下の範囲に含まれるものであった。なお、他のアルカリ金属、アルカリ土類金属は、分析が困難である程度に少量であった。
実施例1と同じ純度99.9%のCr2O3原料粉末を準備し、純水洗浄処理せずに、Cr2O3原料粉末をそのまま使用した。
参考例4では、組成が58Co-15Cr-15Pt-4TiO2-4SiO2-0.5Cr2O3(mol%)となるように、それぞれの粉末を秤量し、実施例1と同様の方法を用いて、スパッタリングターゲットを製造した。
表2に示す通り、スパッタリングターゲットの主な不純物は、Na:4wtppm、K:<1wtppm、Ca:<1wtppmであった。以上に示す通り、Cr2O3含有量が少ない場合には、純水処理洗浄をしなくても、アルカリ金属やアルカリ土類金属の含有量が少ないターゲットが得られることが分かった。
したがって、本発明のターゲットを使用すれば、スパッタリングの際またはスパッタリング後に、これらの不純物の酸化を起因とするスポットの形成や磁性材薄膜の剥離を抑制することができるため、スパッタリングにより形成した膜の品質を著しく向上でき、低コストで磁性体薄膜を製造することが可能になる。本発明は、磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。
Claims (7)
- Co及びPt、Co及びCr又はCo、Cr及びPtからなる金属マトリックス相と少なくともCr2O3を含む酸化物相とからなり、前記Cr2O3を1~16mol%含有するスパッタリングターゲットであって、不純物であるアルカリ金属の総量が30wtppm以下であることを特徴とするスパッタリングターゲット。
- 不純物であるNaが10wtppm以下であることを特徴とする請求項1記載のスパッタリングターゲット。
- 不純物であるKが10wtppm以下であることを特徴とする請求項1又は2記載のスパッタリングターゲット。
- 不純物であるアルカリ土類金属の総量が30wtppm以下であることを特徴とする請求項1~3のいずれか一項に記載のスパッタリングターゲット。
- 不純物であるCaが10wtppm以下であることを特徴とする請求項1~4のいずれか一項に記載のスパッタリングターゲット。
- 酸化物相がCr2O3とB、Mg、Al、Si、Ti、Zr、Nb、Ta、Co、Mnから選択した1種以上の元素の酸化物とからなることを特徴とする請求項1~5のいずれか一項に記載のスパッタリングターゲット。
- 金属マトリック相にB、Cu、Mo、Ru、Ta、Wから選択した1種以上の元素を添加することを特徴とする請求項1~6のいずれか一項に記載のスパッタリングターゲット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/354,953 US20140311899A1 (en) | 2012-01-25 | 2013-01-21 | Ferromagnetic Material Sputtering Target |
JP2013526216A JP5646757B2 (ja) | 2012-01-25 | 2013-01-21 | 強磁性材スパッタリングターゲット |
CN201380003863.8A CN103946415B (zh) | 2012-01-25 | 2013-01-21 | 强磁性材料溅射靶 |
SG11201401081UA SG11201401081UA (en) | 2012-01-25 | 2013-01-21 | Ferromagnetic material sputtering target |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012012546 | 2012-01-25 | ||
JP2012-012546 | 2012-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111706A1 true WO2013111706A1 (ja) | 2013-08-01 |
Family
ID=48873426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051095 WO2013111706A1 (ja) | 2012-01-25 | 2013-01-21 | 強磁性材スパッタリングターゲット |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140311899A1 (ja) |
JP (1) | JP5646757B2 (ja) |
CN (1) | CN103946415B (ja) |
MY (1) | MY168036A (ja) |
SG (1) | SG11201401081UA (ja) |
TW (1) | TWI616545B (ja) |
WO (1) | WO2013111706A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143080A (ja) * | 2020-03-10 | 2021-09-24 | 東ソー株式会社 | Cr−Si系焼結体 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY189794A (en) | 2016-03-31 | 2022-03-08 | Jx Nippon Mining & Metals Corp | Ferromagnetic material sputtering target |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114537A (ja) * | 1989-06-13 | 1991-05-15 | E I Du Pont De Nemours & Co | 改善されたCr2O3触媒組成物 |
WO2006134694A1 (ja) * | 2005-06-15 | 2006-12-21 | Nippon Mining & Metals Co., Ltd. | スパッタリングターゲット用酸化クロム粉末及びスパッタリングターゲット |
JP2009215617A (ja) * | 2008-03-11 | 2009-09-24 | Mitsui Mining & Smelting Co Ltd | コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63130769A (ja) * | 1986-11-20 | 1988-06-02 | Mitsui Eng & Shipbuild Co Ltd | ターゲット材 |
US20050277002A1 (en) * | 2004-06-15 | 2005-12-15 | Heraeus, Inc. | Enhanced sputter target alloy compositions |
WO2007080781A1 (ja) * | 2006-01-13 | 2007-07-19 | Nippon Mining & Metals Co., Ltd. | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
JP5530270B2 (ja) * | 2010-06-29 | 2014-06-25 | Jx日鉱日石金属株式会社 | コバルト粉末及びその製造方法 |
SG11201407011UA (en) * | 2012-09-18 | 2014-11-27 | Jx Nippon Mining & Metals Corp | Sputtering target |
-
2013
- 2013-01-21 SG SG11201401081UA patent/SG11201401081UA/en unknown
- 2013-01-21 JP JP2013526216A patent/JP5646757B2/ja active Active
- 2013-01-21 MY MYPI2014701134A patent/MY168036A/en unknown
- 2013-01-21 WO PCT/JP2013/051095 patent/WO2013111706A1/ja active Application Filing
- 2013-01-21 US US14/354,953 patent/US20140311899A1/en not_active Abandoned
- 2013-01-21 CN CN201380003863.8A patent/CN103946415B/zh active Active
- 2013-01-24 TW TW102102609A patent/TWI616545B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114537A (ja) * | 1989-06-13 | 1991-05-15 | E I Du Pont De Nemours & Co | 改善されたCr2O3触媒組成物 |
WO2006134694A1 (ja) * | 2005-06-15 | 2006-12-21 | Nippon Mining & Metals Co., Ltd. | スパッタリングターゲット用酸化クロム粉末及びスパッタリングターゲット |
JP2009215617A (ja) * | 2008-03-11 | 2009-09-24 | Mitsui Mining & Smelting Co Ltd | コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143080A (ja) * | 2020-03-10 | 2021-09-24 | 東ソー株式会社 | Cr−Si系焼結体 |
JP7480533B2 (ja) | 2020-03-10 | 2024-05-10 | 東ソー株式会社 | Cr-Si系焼結体 |
Also Published As
Publication number | Publication date |
---|---|
MY168036A (en) | 2018-10-11 |
JPWO2013111706A1 (ja) | 2015-05-11 |
TW201350597A (zh) | 2013-12-16 |
TWI616545B (zh) | 2018-03-01 |
US20140311899A1 (en) | 2014-10-23 |
JP5646757B2 (ja) | 2014-12-24 |
SG11201401081UA (en) | 2014-08-28 |
CN103946415B (zh) | 2016-02-10 |
CN103946415A (zh) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012029498A1 (ja) | Fe-Pt系強磁性材スパッタリングターゲット | |
JP5847203B2 (ja) | Co−Cr−Pt系スパッタリングターゲット及びその製造方法 | |
CN103168328A (zh) | 磁记录膜用溅射靶及其制造方法 | |
JP5960251B2 (ja) | スパッタリングターゲット | |
JP6881643B2 (ja) | 磁気記録媒体用スパッタリングターゲット及び磁性薄膜 | |
CN109844167B (zh) | 磁性材料溅射靶及其制造方法 | |
JP5801496B2 (ja) | スパッタリングターゲット | |
JP6005767B2 (ja) | 磁性記録媒体用スパッタリングターゲット | |
JP5946974B1 (ja) | スパッタリングターゲット | |
JP6305881B2 (ja) | 磁気記録媒体用スパッタリングターゲット | |
CN108026631B (zh) | 磁性体薄膜形成用溅射靶 | |
JP5646757B2 (ja) | 強磁性材スパッタリングターゲット | |
JP5654121B2 (ja) | クロム酸化物を含有する強磁性材スパッタリングターゲット | |
JP5851582B2 (ja) | クロム酸化物を含有する強磁性材スパッタリングターゲット | |
WO2017141558A1 (ja) | 磁気記録媒体用スパッタリングターゲット及び磁性薄膜 | |
CN111886359A (zh) | 溅射靶 | |
WO2016013334A1 (ja) | 磁性体薄膜形成用スパッタリングターゲット | |
JP2007291522A (ja) | マンガン合金スパッタリングターゲット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013526216 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13740781 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14354953 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13740781 Country of ref document: EP Kind code of ref document: A1 |