WO2013111579A1 - 冷却機用コンプレッサ制御装置 - Google Patents

冷却機用コンプレッサ制御装置 Download PDF

Info

Publication number
WO2013111579A1
WO2013111579A1 PCT/JP2013/000313 JP2013000313W WO2013111579A1 WO 2013111579 A1 WO2013111579 A1 WO 2013111579A1 JP 2013000313 W JP2013000313 W JP 2013000313W WO 2013111579 A1 WO2013111579 A1 WO 2013111579A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature range
rotational speed
cooling
speed
Prior art date
Application number
PCT/JP2013/000313
Other languages
English (en)
French (fr)
Inventor
菅原 晃
Original Assignee
ダイヤモンド電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤモンド電機株式会社 filed Critical ダイヤモンド電機株式会社
Publication of WO2013111579A1 publication Critical patent/WO2013111579A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a compressor control device for a cooler used in a cooler, and particularly relates to the rotation speed control of a control motor provided in the compressor for the cooler.
  • Patent Document 1 An example of such a control method is introduced in Japanese Patent Laid-Open No. 11-281172 (Patent Document 1).
  • the refrigeration apparatus adopting this control method has the smallest refrigeration load (the amount of heat for lowering the temperature of the stored item in the warehouse to the target temperature) in the rapid operation mode.
  • the set rotational speed is set to “high speed state” for the temperature range of the internal temperature ⁇ 25 [° C.], and the set rotational speed is set to “medium” “High speed state” is set, and the set rotation speed is set to “Low speed state” for the temperature range of “Cooling chamber temperature ⁇ 10 [° C.]”.
  • the motor speed of the compressor for the cooler reaches three stages of “high speed, medium speed, low speed” until the outside air temperature (internal temperature) reaches the target temperature (for example, ⁇ 15 [° C.]). Will be controlled.
  • the set speed of a compressor for a chiller is a maximum value of the energy consumption efficiency (COP value) of a freezer or the like in a specific speed range (for example, around 1500 rpm to 2500 rpm for a compressor with a 50 Hz, 4-pole motor).
  • COP value the energy consumption efficiency
  • the compressor for the cooler is not operated at high speed, the cooling rate of the internal temperature decreases, and the time required from the start of operation to the target temperature becomes redundant.
  • the energy consumption efficiency and the cooling rate in the cooling technology are in a trade-off relationship, and it is practically impossible to maximize the merits of both.
  • Patent Document 1 does not mention anything about the setting method of each temperature range for determining the set rotational speed, and cannot find a technical basis for this temperature range.
  • the setting of the temperature range is simply set artificially or even if the temperature range is set by some kind of law, a reliable technical basis has not been introduced. The fact is.
  • the present inventor has introduced a technical basis for each temperature range for determining the set rotational speed, and enables energy consumption efficiency and cooling rate in the cooling technology. It came to investigate the rotation speed control which does not impair as much as possible. And this invention aims at provision of the compressor control apparatus for refrigerators which can make the merit of both the energy consumption efficiency and cooling speed in pull-down cooling coexist.
  • the present invention has the following configuration of a compressor control device for a cooler. That is, in the process of setting each of the set rotational speeds of the compressor for the cooler to a constant rotational speed corresponding to each temperature range allocated until reaching the target temperature, and pulling down to the target temperature, the set rotational speed In the compressor control device for a cooler that gradually reduces the temperature, at least one of the temperature ranges is assigned by a function formed based on a ratio of cooling performance parameters corresponding to each of the set rotational speeds. It will be done.
  • the cooling performance parameter is a parameter indicating a cooling rate when operated at the set rotational speed.
  • the cooling performance parameter corresponding to the first set rotational speed is set to the first cooling speed.
  • the second set rotational speed when the set rotational speed corresponding to the second temperature range adjacent to the target temperature side of the first temperature range as the performance parameter is set as the second set rotational speed
  • the first temperature range is assigned as a range from a constant rotation start temperature switched to the first set rotation speed to a constant rotation switch temperature switched to the second set rotation speed, and the constant rotation switching temperature. Is set based on the ratio of the second cooling performance parameter to the first cooling performance parameter.
  • At least one of the temperature ranges is set to a high-efficiency set rotational speed that sets the highest COP value among the COP values corresponding to the set rotational speed, and the high-efficiency temperature range is It is assumed that the temperature range is assigned to a range wider than any temperature range.
  • the compressor for the cooler is operated at a set rotational speed that maximizes the COP value.
  • the temperature range assigned until the target temperature is reached is specified by a function based on the parameter ratio, and thus the temperature range is set in a state having a technical basis. Will be.
  • the superiority between the cooling performance parameters can be reflected in each temperature range by using the above-described function. For this reason, in the temperature range where the set rotational speed is high, the superiority of the cooling performance is indexed based on the parameter ratio, and the temperature range can be set according to the superiority without excess or deficiency.
  • the compressor control device for a cooler according to the present invention since the temperature range at the time of high rotation control is not excessively set, a decrease in energy consumption efficiency is suppressed, and at the same time, a required time until the target temperature is reached. A decrease in time (that is, an average cooling rate in the entire pull-down cooling process) can also be suppressed.
  • FIG. 1 is a diagram illustrating a functional configuration of a general cooler.
  • FIG. 2 is a diagram (Example 1) illustrating the relationship between the set rotational speed and the cooling rate.
  • FIG. 3 is a diagram (Example 1) showing the relationship between the temperature range and the set rotational speed, and the required time and the set rotational speed.
  • FIG. 4 is a diagram (Example 1) illustrating the relationship between the set rotational speed and the COP value.
  • FIG. 5 is a diagram (Example 1) showing the relationship between the required time and the COP value.
  • FIG. 6 is a diagram (Example 2) illustrating the relationship between the set rotational speed and the cooling rate.
  • FIG. 1 is a diagram illustrating a functional configuration of a general cooler.
  • FIG. 2 is a diagram (Example 1) illustrating the relationship between the set rotational speed and the cooling rate.
  • FIG. 3 is a diagram (Example 1) showing the relationship between the temperature range and the set rotational speed, and the required
  • FIG. 7 is a diagram (Example 2) showing the relationship between the temperature range and the set rotational speed, and the required time and the set rotational speed.
  • FIG. 8 is a diagram (Example 2) illustrating the relationship between the required time and the COP value.
  • FIG. 9 is a diagram illustrating a functional configuration of the cooler (third embodiment).
  • FIG. 10 is a diagram (Example 3) showing the relationship between the temperature range and the set rotational speed, and the required time and the set rotational speed.
  • FIG. 1 shows a catalyst circuit of a general cooling machine.
  • the cooler means a refrigerator / refrigerator equipped with a storage, and may be a configuration of only one of the refrigerator and the refrigerator, or a configuration including both of these devices. There may be. As a matter of convenience, the following description will be given by replacing the refrigerator with a refrigerator.
  • the refrigerant circuit formed in the refrigerator 10 is provided with a compressor 11 for a cooler, a condenser 13, a capillary tube 15, and an evaporator 16, and each is connected in a loop by a refrigerant tube 18. .
  • a refrigerant is sealed in the tube, and this refrigerant circulates in the refrigerant circuit in response to the compressor 11 for the cooler.
  • the refrigerator 10 is appropriately provided with a drive circuit 12 and blower fans 14 and 17. These are electrically connected to the compressor control device 19 for the chiller and controlled by a signal given from the compressor control device 19 for the chiller.
  • the compressor control device 19 for the cooler is simply referred to as a control device 19.
  • the drive circuit 12 is an inverter circuit composed of a plurality of power transistors, and is controlled by a PWM signal.
  • the inverter circuit generates a three-phase alternating current according to the frequency of the PWM signal, and controls the rotation speed of a control motor (not shown) built in the compressor for the cooler.
  • the said control motor drives the impeller of the compressor for coolers, and sends a refrigerant
  • the blower fan 14 reduces the temperature of the refrigerant that has been increased in pressure and temperature by the compressor 11 for the cooler.
  • the blower fan 17 plays a role of promoting heat exchange between the amount of heat in the cabinet and the amount of heat of the refrigerant.
  • These blower fans 14 and 17 incorporate a drive circuit and a fan motor, and the rotational speed of the fan motor is controlled by a command signal from the control device 19.
  • thermometer 20 is provided in the storage of the refrigerator 10.
  • the in-compartment thermometer 20 measures the temperature in the storage, converts the measurement result into an electrical signal, and outputs it.
  • the control device 19 is connected to the internal thermometer 20 through a signal line, and the measurement result of the internal temperature is input as an electrical signal.
  • the control device 19 generates a PWM signal and outputs it to the drive circuit 12. Moreover, the control apparatus 19 which concerns on this Embodiment produces
  • the control device 19 includes a hardware resource such as a CPU, a memory circuit, an AD conversion circuit, and a clock circuit, and a software resource such as a control program and map information stored in the memory circuit. The control device 19 cooperates with these hardware resources and software resources to construct a functional device by information processing that is performed.
  • control device 19 stores the correspondence map information between each temperature range up to the target temperature and the set rotational speed in the memory circuit, and sets the rotational speed of the control motor (hereinafter, set rotational speed) according to the temperature range. Functions to be determined are appropriately constructed. The functions constructed by the control device 19 will be described in detail later.
  • the refrigerant circulating through the refrigerant circuit is charged into the compressor 11 for the cooler in a gas phase state, is heated to high pressure and high temperature when passing through the compressor 11 for cooler, and passes through the condenser 13. This is cooled to a liquid phase state. Thereafter, the refrigerant in the liquid phase is decompressed by the capillary tube 15, and the evaporator 16 absorbs (cools) the internal temperature by vaporizing the refrigerant. Such refrigerant is re-introduced into the compressor 11 for the cooler in a gas phase state, and the cooling cycle is repeated.
  • the cooling rate in the warehouse is adjusted according to the refrigerant circulation amount [qmr]. That is, the cooling rate in the cabinet is controlled by the rotation speed of the control motor for the compressor, in other words, it is controlled by the PWM signal generated by the control device 19.
  • FIG. 2 (a) shows the relationship between the rotation speed of the compressor control motor and the cooling rate.
  • the characteristic indicating the cooling rate varies depending on the volume and shape of the storage, and is also affected by the performance of the cooling system.
  • the cooling characteristics shown in the figure are sampled for a certain refrigerator, and are experimental results when the outside temperature is 32 [° C.].
  • the cooling characteristic has a substantially linear relationship, and at specific observation points A to D, the cooling rate is specified corresponding to each set rotational speed.
  • the cooling rate in a present Example says the reduction
  • Such a cooling rate is a form of cooling performance parameter in the claims.
  • the cooling rate may be referred to as a cooling rate parameter.
  • each parameter ratio is calculated from adjacent cooling rate parameters (see FIG. 2A).
  • FIG. 3 shows the relationship between the temperature [deg] during pull-down cooling and the set rotational speed.
  • the outside temperature is 32 [° C.]
  • the target temperature is “ ⁇ 15 [° C.]”
  • the pull-down start temperature is 32 [° C.]. Therefore, under this condition, pull-down cooling is performed according to the cooling characteristics of FIG.
  • the temperature [deg] actually indicates a temperature difference from the temperature measurement point to the target temperature. That is, when expressed as 47 [deg], it indicates the internal temperature 32 [° C.], and when expressed as zero [deg], the internal temperature is the target temperature “ ⁇ 15 [° C.]. ”Is reached.
  • DEG1 to DEG3 [deg] for switching the set rotational speed until the target temperature DEG0 is reached from the pull-down cooling start temperature DEGx are set.
  • These DEG1 to DEG3 [deg] are called constant rotation switching temperatures (or constant rotation start temperatures) in the claims.
  • DEG1 to DEG3 [deg] The constant rotation switching temperatures DEG1 to DEG3 [deg] are calculated as follows.
  • the constant rotation switching temperature DEG1 is calculated and set by multiplying the pull-down cooling start temperature DEGx by the parameter ratio Rab.
  • the parameter ratio R is an index indicating the superiority of the cooling rate parameter Va with respect to the cooling rate parameter Vb.
  • the constant rotation switching temperature DEG2 is calculated and set by multiplying the constant rotation switching temperature DEG1 by the parameter ratio Rbc.
  • the constant rotation switching temperature DEG3 is calculated and set by multiplying the constant rotation switching temperature DEG2 by the parameter ratio Rcd.
  • the parameter ratio is always set to 1 or less. For this reason, since the constant rotation switching temperature DEG1 is set based on the parameter ratio, it is set to a value lower than the temperature DEGx. If the temperature cited in the calculation formula for the constant rotation switching temperature is the reference temperature, the constant rotation switching temperatures DEG2 and DEG3 are also multiplied by the parameter ratio with respect to the reference temperatures DEG1 and DEG2. The switching temperatures DEG2 and DEG3 are each lower than the reference temperature. The parameter ratio of the constant rotation switching temperature is changed by changing the set rotation speed, and the position of the constant rotation switching temperature is adjusted by the parameter ratio.
  • [Delta] D1 to [Delta] D4 defined by the constant rotation switching temperatures DEG1 to DEG3 are called temperature ranges in the claims. As shown in the drawing, the temperature ranges ⁇ D1 to ⁇ D4 are appropriately assigned until the target temperature is reached from the pull-down cooling start temperature DEGx by setting the constant rotation switching temperatures DEG1 to DEG3. .
  • each of the temperature ranges ⁇ D1 to ⁇ D3 is set by the following calculation formula.
  • DEG1 7 [deg]
  • ⁇ DEG2 8 [deg]
  • the temperature range ⁇ D4 is set as a range from the constant rotation switching temperature DEG3 to the target temperature DEG0.
  • the temperature ranges ⁇ D1 to ⁇ D3 are assigned by the function (1-Rpq) ⁇ DEGN formed based on the parameter ratio (Rpq is a generalized parameter ratio, and DEGn is a generalized constant rotation) Switching temperature). For this reason, each of the temperature ranges ⁇ D1 to ⁇ D3 is set in a state having a technical basis of superiority indicated by the parameter ratio.
  • (1-Rpq) ⁇ DEGN formed based on the parameter ratio (1-Rpq) is referred to as a coefficient.
  • DEGn in the function is a constant rotation switching temperature.
  • the above-described function indicates that if each adjacent set rotational speed is determined, the cooling performance corresponding to this is determined, the coefficient (1-Rpq) is determined, and the temperature range is automatically determined accordingly. I mean. Further, if the occupation ratio of the temperature range with respect to the constant rotation switching temperature DEGn can be specified to some extent, it is possible to determine each adjacent set rotational speed in a reverse calculation.
  • a set rotational speed ⁇ 1 (4500 rpm) is set corresponding to the temperature range ⁇ D1, and set corresponding to the temperature range ⁇ D2.
  • the rotational speed ⁇ 2 (3500 rpm) is set, and the set rotational speed ⁇ 3 (2500 rpm) is set in the temperature range ⁇ D3.
  • a set rotational speed ⁇ 4 (1500 rpm) is set, and this rotational speed ⁇ 4 is set to the widest temperature range because the energy consumption efficiency is most preferable among the set rotational speeds. ing.
  • map information expressing the relationship between the temperature range and the set rotational speed is stored in the memory circuit. And the control apparatus 19 specifies the temperature range to which the detected temperature [deg] belongs by detecting internal temperature and referring map information. Thereafter, the control device 19 sets the set rotational speed corresponding to this temperature range, and drives the compressor for the cooler at a constant rotational speed for the temperature range. Then, when the cooling of the internal atmosphere proceeds and the internal temperature reaches another temperature range, the control device 19 sets a lower set rotational speed and controls the compressor for the cooler. Thus, the control device 19 gradually decreases the set rotational speed based on the temperature range set as described above.
  • the cooling rate parameter Va corresponding to the set rotational speed ⁇ 1 is referred to as a first cooling rate parameter.
  • the temperature range ⁇ D2 is a second temperature range adjacent to the target temperature side of the temperature range ⁇ D1 (first temperature range).
  • the set rotational speed ⁇ 2 corresponding to this temperature range ⁇ D2 (second temperature range) is called the second set rotational speed.
  • the cooling speed parameter Vb corresponding to the set rotational speed ⁇ 2 (second set rotational speed) is referred to as a second cooling speed parameter.
  • the temperature range ⁇ D1 starts from the pull-down cooling start temperature DEGx set to the set rotational speed ⁇ 1 (first set rotational speed), and the set rotational speed ⁇ 2 (second setting).
  • the constant rotation switching temperature DEG1 which is set to be switched to (the number of rotations) is set as the end point, and this section is assigned as the temperature range.
  • the pull-down cooling start temperature DEGx is a concept that belongs to the constant rotation start temperature in the claims, when the set rotation speed is controlled to 4500 rpm from this temperature.
  • the pull-down cooling start temperature DEG1 (starting point) is an exogenous temperature that cannot be specifically set because it is determined by the ambient temperature at the time when the refrigerator 10 is powered on.
  • the constant rotation switching temperature DEG1 (end point) is set to a ratio of Rab with respect to the pull-down cooling start temperature DEG1.
  • the temperature range ⁇ D2 (first temperature range) starts from the constant rotation start temperature DEG1 that is switched to the set rotational speed ⁇ 2 (first set rotational speed).
  • the constant rotation switching temperature DEG2 that is switched to the set rotation speed ⁇ 3 (second set rotation speed) is set as the end point, and this section is assigned as the temperature range.
  • the temperature range ⁇ D2 (first temperature range) has a start point as the constant rotation start temperature DEG2 and an end point as the constant rotation switching temperature DEG3. Also for these temperature ranges, the superiority of adjacent parameters is reflected, and the width of the temperature range is determined.
  • DEG1 to DEG3 can be either the start point or the end point of the temperature range depending on the temperature range of interest.
  • the temperature DEGn corresponding thereto is set as the constant rotation start temperature
  • the temperature DEGn corresponding thereto is set as the constant rotation switching temperature.
  • the constant rotation switching temperature corresponds to the constant rotation start temperature for the temperature range adjacent to the target temperature side.
  • the required time T [min] corresponding to each set rotational speed is calculated as follows (see FIG. 5).
  • the initial pull-down time Tipd (x) from the pull-down cooling start time to the time when the target temperature is reached is 139.6 [min].
  • the initial pull-down time Tipd (y) in this case is about 165 [min]. Therefore, in this embodiment, the initial pull-down time Tipd (x) is successfully reduced by about 25.5 [min] (15% reduction).
  • the temperature range of the high set speed is not set for a long time. That is, according to the present embodiment, the above-described method for determining the temperature range has the effect of shortening the set time of the high set speed, and the high set speed is set for an unreasonably long time. Absent. As described above, in this embodiment, the set time for the high speed rotation is set without excess or deficiency.
  • FIG. 4 shows the relationship between the set rotational speed and the energy consumption efficiency.
  • Energy consumption efficiency refers to the ratio of the amount of heat that decreases in the internal temperature to the input power, and is called the COP value.
  • the COP value until the target temperature DEG0 is reached is obtained by the weighted average of COP1 to COP4 (average value weighted by the time component), and the COP value (COPx) is 1.74. is there.
  • the COP value (COPy) is 1.76. Therefore, according to this embodiment, it can be seen that the COP value is reduced by only about 0.8% as compared with the case of the rotation speed (1500 rpm) having a high COP value.
  • the total COP value (COPx) has a small loss S, and its value (COPx ) Is effectively suppressed.
  • the compressor for the cooler is operated at the set rotation speed with a high COP value for the remaining time until the target temperature is reached. .
  • the operation time at the set rotation speed corresponding to the high-efficiency temperature range ⁇ D4 having the highest COP value is secured for a sufficiently long time because the set time for high rotation is suppressed. This time distribution is the reason why the total COP value of the pull-down cooling is not deteriorated.
  • the high-efficiency temperature range ⁇ D4 is assigned to a wider range than any of the other temperature ranges ⁇ D1 to ⁇ D3, so that the operation time of the high COP value is sufficiently secured. You can also.
  • the control device 19 since the temperature range at the time of high rotation control is not excessively set, the decrease in energy consumption efficiency (COP value) is suppressed, and at the same time, the time required to reach the target temperature ( That is, a decrease in the average cooling rate in the entire pull-down cooling process can also be suppressed. Therefore, in this embodiment, both the energy consumption efficiency and the cooling performance are symbiotic.
  • the set rotation speed in pull-down cooling is selected from 4500 rpm, 3000 rpm, 1600 rpm, and 1200 rpm.
  • the constant rotation switching temperature is set as a predetermined function when the rotation speed is switched from 4500 rpm to 3000 rpm and when the rotation speed is switched from 3000 rpm to 1600 rpm.
  • DEG1 to DEG3 [deg] are set until the target temperature DEG0 is reached from the pull-down cooling start temperature DEGx.
  • DEG1 and DEG2 [deg] are calculated as follows.
  • the set rotational speed (1200 rpm) is provided to prevent overshoot in the vicinity of the target temperature DEG0 (adjusted rotational speed).
  • DEG2 5 [deg] is set in order to set the rotation speed range. Therefore, in this embodiment, the temperature range of the rotation speed (1600 rpm) is narrowed according to the temperature range of the adjustment rotation speed.
  • ⁇ DEG1 10 [deg]
  • the temperature range ⁇ D4 is set as 5 [deg] from the viewpoint of converging the internal temperature to the target temperature. Accordingly, the high-efficiency temperature range ⁇ D3 is the remaining 21 [deg].
  • the initial pull-down time Tipd (x) in this embodiment is 136.6 [min].
  • the time was successfully reduced by 17% compared to the initial pull-down time Tipd (y) at constant rotation (1500 rpm). That is, the total time for pull-down cooling can be shortened more effectively.
  • the COP value until reaching the target temperature DEG0 is obtained by the weighted average of COP1 to COP4 (average value weighted by the time component), and the COP value (COPx) is 1.73. Yes (see FIG. 8). That is, in this embodiment, it can be seen that the energy consumption efficiency is better than the constant control at a low rotational speed such as 1200 rpm. When the pull-down cooling is performed at a constant rotation speed of 1500 rpm, the COP value (COPy) is 1.76. Therefore, according to the present embodiment, it can be seen that the COP value is reduced only by about 1.7% as compared with the case of the rotation speed (1500 rpm) having a high COP value.
  • the COP value (COPx) in this case is somewhat inferior to the COP value (COPx) in the first embodiment, but this is because the adjustment rotation speed (1200 rpm) is additionally set. However, it can be said that the COP value (COPx) according to the present embodiment is not inferior by 2% to the COP value (COPy) at 1500 rpm, and the value is sufficiently maintained.
  • the set rotational speed (1600 rpm) corresponds to the high-efficiency temperature range ⁇ D3.
  • This set rotational speed (1600 rpm) has a higher COP value than the other set rotational speeds (see FIG. 4), and the set time is longer, which contributes to avoiding a decrease in the total COP value.
  • the maximum value of the COP value from the efficiency characteristics shown in FIG. 4 and setting the rotation speed corresponding to this to the high efficiency temperature range, it is possible to effectively suppress a decrease in the total COP value in pull-down cooling. .
  • the adjustment temperature range ⁇ D4 is provided, and the total COP value is lowered.
  • unnecessary operation of the compressor for the cooler accompanying overshoot is suppressed, and as a result, the value is improved.
  • the refrigerator 10 is additionally configured with an outside thermometer 21.
  • the outside thermometer 21 is a device that measures the outside air temperature outside the warehouse.
  • the outside thermometer 21 converts the measurement result into an electrical signal and transmits it to the control device 19.
  • the performance characteristics indicating the cooling performance are greatly affected by the outside temperature when the amount of heat leak cannot be ignored. For this reason, if the outside temperature fluctuates, the parameter ratio also changes accordingly, and the above-described constant rotation start temperature, constant rotation switching temperature, each temperature range, and the like must be revised.
  • the present embodiment has been studied to improve such a problem. As shown in FIG. 10, the map information created for each outside temperature is used to set a more appropriate temperature range. It is.
  • control device 19 selects map information to be used based on the outside temperature (see FIG. 10), and sets the temperature range and the like based on the selected map information.
  • map information to be used based on the outside temperature (see FIG. 10)
  • sets the temperature range and the like based on the selected map information.
  • the cooling performance parameter is not limited to the parameter indicating the cooling rate, and may be a parameter indicating the amount of electric power input to the cooling system of the refrigerator, the refrigerant circulation amount, or the like.
  • the “function formed based on the parameter ratio” is not limited to the formula shown in the above-described embodiment.
  • the present invention is useful for a compressor control device for a cooler used in a cooler, and is particularly useful for controlling the rotational speed of a control motor provided in the compressor for the cooler.
  • cooler 10 cooler, 11 cooler compressor, 19 cooler compressor control device, rpm set speed, ⁇ D1- ⁇ D4 temperature range, Va-Vd cooling performance parameter, Ra-Rd cooling performance parameter ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 目標温度(DEG0)へ到達するまでに割当てられた各温度範囲(ΔD1、ΔD2、ΔD3、ΔD4)に対応して冷却機用コンプレッサ(10)の設定回転数(rpm)の各々を一定回転数に設定し、目標温度へプルダウン冷却させる過程で設定回転数(rpm)を段階的に低下させる冷却機用コンプレッサ制御装置(19)において、各温度範囲(ΔD1、ΔD2、ΔD3、ΔD4)のうち少なくとも一つの温度範囲(ΔD1、ΔD2、ΔD3、ΔD4)は、設定回転数(rpm)の各々に対応する冷却性能パラメータ(Va、Vb、Vc、Vd)同士の比(Rab、Rbc、Rcd)に基づき形成される関数によって割当てられる。

Description

冷却機用コンプレッサ制御装置
 本発明は、冷却機に用いられる冷却機用コンプレッサ制御装置に関し、特に、冷却機用コンプレッサへ配備される制御モータの回転数制御に関するものである。
 冷却機(冷凍庫又は冷蔵庫)へ電源を投入し庫外温度に近い庫内雰囲気をプルダウン冷却させる際、庫内温度が目標温度へ制御される過程で、冷却機用コンプレッサ(コンプレッサ用モータ)の設定回転数を段階的に低下させる制御方式が知られている。
 特開平11-281172号公報(特許文献1)では、かかる制御方式の一例が紹介されている。同文献の図4を参照すると、この制御方式が採用された冷凍装置は、急速運転モード時について冷凍負荷(庫内貯蔵物の温度を目標温度へ低下させる為の熱量)が最も小さい場合、「庫内温度≧25〔℃〕」の温度範囲について設定回転数を「高速状態」に設定させ、「25〔℃〕>庫内温度≧10〔℃〕」の温度範囲について設定回転数を「中速状態」に設定させ、「庫内温度<10〔℃〕」の温度範囲について設定回転数を「低速状態」に設定させている。このように、外気温度(庫内温度)が目標温度(例えば、-15〔℃〕)へ到達するまでに、冷却機用コンプレッサのモータ回転数が「高速,中速,低速」の3段階に制御されることとなる。
特開平11-281172号公報
 一般に、冷却機用コンプレッサの設定回転数は、特定の回転数域(例えば、50Hz,4極モータのコンプレッサの場合、1500rpm~2500rpmのあたり)で冷凍庫等のエネルギー消費効率(COP値)が極大値を迎える。このため、庫外温度に近い状態からプルダウン冷却させる場面では、例えば4500rpmのような高速回転が一時的に設定されると、その設定時間に応じて、エネルギー消費効率(COP値)が低下してしまう。一方、冷却機用コンプレッサを高速運転させなければ、庫内温度の冷却速度が低下し、運転開始時から目標温度に到達するまでの所要時間が冗長となる。このように、冷却技術におけるエネルギー消費効率と冷却速度とは、トレードオフの関係にあり、双方のメリットを同時的かつ最大限に発揮させることが事実上不可能である。
 ところで、特許文献1では、設定回転数を決定する各温度範囲の設定手法について何ら言及されておらず、この温度範囲に技術的根拠を見出すことができない。このように、従来の技術にあっては、この温度範囲の設定を単に人為的に設定していたか、又は、何らかの法則で温度範囲を設定していたとしても確たる技術的根拠が導入されていなかったのが実情である。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、設定回転数を決定する為の各温度範囲に技術的根拠を導入させ、冷却技術におけるエネルギー消費効率と冷却速度とを可能な限り損なわせない回転数制御を究明するに至った。そして、本発明は、プルダウン冷却におけるエネルギー消費効率と冷却速度との双方のメリットを共生させ得る冷却機用コンプレッサ制御装置の提供を目的とするものである。
 上記課題を解決するため、本発明では次のような冷却機用コンプレッサ制御装置の構成とする。即ち、目標温度へ到達するまでに割当てられた各温度範囲に対応して冷却機用コンプレッサの設定回転数の各々を一定回転数に設定し、前記目標温度へプルダウン冷却させる過程で前記設定回転数を段階的に低下させる冷却機用コンプレッサ制御装置において、前記各温度範囲のうち少なくとも一つの温度範囲は、前記設定回転数の各々に対応する冷却性能パラメータ同士の比に基づき形成される関数によって割当てられることとする。
 好ましくは、前記冷却性能パラメータは、前記設定回転数で運転された場合の冷却速度を示すパラメータであることとする。
 より好ましくは、前記各温度範囲のうち第1の温度範囲に対応する設定回転数を第1の設定回転数とした場合、前記第1の設定回転数に対応する冷却性能パラメータを第1の冷却性能パラメータとし、且つ、前記第1の温度範囲の目標温度側へ隣接する第2の温度範囲に対応する設定回転数を第2の設定回転数とした場合、前記第2の設定回転数に対応する冷却性能パラメータを第2の冷却性能パラメータとすると、
 前記第1の温度範囲は、前記第1の設定回転数へ切換えられる定回転開始温度から、前記第2の設定回転数へ切換えられる定回転切換温度までの範囲として割当てられ、前記定回転切換温度は、前記第1の冷却性能パラメータに対する前記第2の冷却性能パラメータの比に基づき設定されることとする。
 更に好ましくは、前記各温度範囲のうち少なくとも一つは、前記設定回転数に対応するCOP値のうち最も高いCOP値とさせる高効率設定回転数が設定され、前記高効率温度範囲は、前記第1の温度範囲とされる何れの温度範囲よりも広い範囲に割当てられることとする。ここで、前記高効率温度範囲では、COP値を極大とさせる設定回転数によって冷却機用コンプレッサが運転されると更に好ましい。
 本発明に係る冷却機用コンプレッサ制御装置によると、目標温度へ到達するまでに割当てられた温度範囲がパラメータ比に基づく関数によって特定されるため、当該温度範囲が技術的根拠を具備した状態で設定されることとなる。
 また、本発明では、上述した関数を用いることで、冷却性能パラメータ同士の優越度を各温度範囲へ反映させることが可能となる。このため、設定回転数が高回転の温度範囲にあっては、パラメータ比に基づいて冷却性能の優越度が指標化され、其の優越度に応じて温度範囲が過不足なく設定できる。このように、本発明に係る冷却機用コンプレッサ制御装置によると、高回転制御時の温度範囲が過剰設定されない為、エネルギー消費効率の低下が抑制され、併せて、目標温度へ到達するまでの所要時間(即ち、プルダウン冷却工程全体での平均冷却速度)の低下も抑制できる。
図1は、一般的な冷却機の機能構成を示す図である。 図2は、設定回転数と冷却速度との関係を示す図(実施例1)である。 図3は、温度範囲と設定回転数,所要時間と設定回転数の関係を示す図(実施例1)である。 図4は、設定回転数とCOP値との関係を示す図(実施例1)である。 図5は、所要時間とCOP値との関係を示す図(実施例1)である。 図6は、設定回転数と冷却速度との関係を示す図(実施例2)である。 図7は、温度範囲と設定回転数,所要時間と設定回転数の関係を示す図(実施例2)である。 図8は、所要時間とCOP値との関係を示す図(実施例2)である。 図9は、冷却機の機能構成を示す図(実施例3)である。 図10は、温度範囲と設定回転数,所要時間と設定回転数の関係を示す図(実施例3)である。
 以下、本発明に係る実施例1乃至実施例3について、図面を適宜参照しつつ具体的に説明することとする。
 図1は、一般的な冷却機の触媒回路が示されている。ここで冷却機とは、貯蔵庫を具備する冷凍機・冷蔵機を意味するものであり、冷凍機及び冷蔵機のうち何れか一方のみの構成であっても良く、これら双方の機器を含む構成であっても良い。便宜として、冷却機を冷凍機と呼び換えて以下説明を行う。
 図示の如く、冷凍機10に形成される冷媒回路には、冷却機用コンプレッサ11,凝縮器13,キャピラリーチューブ15,蒸発器16が設けられ、各々が冷媒チューブ18によってループ状に接続されている。チューブ内には冷媒が封入されており、この冷媒は、冷却機用コンプレッサ11に応動して冷媒回路を循環する。
 更に、冷凍機10には、ドライブ回路12と送風ファン14及び17が適宜に配備されている。これらは、冷却機用コンプレッサ制御装置19へ電気的に接続され、冷却機用コンプレッサ制御装置19から与えられた信号によって制御される。以下、冷却機用コンプレッサ制御装置19を、単に制御装置19と呼ぶこととする。
 ドライブ回路12は、複数のパワートランジスタから成るインバータ回路であって、PWM信号によって制御される。当該インバータ回路は、PWM信号の周波数に応じて三相交流電流を生成し、冷却機用コンプレッサへ内蔵される制御モータ(図示なし)の回転数を制御する。当該制御モータは、冷却機用コンプレッサの羽根車を駆動させ、冷媒を入力側(低圧)から出力側(高圧)へと送り込む。即ち、この羽根車は、制御モータの回転数に応じて冷媒循環量〔qmr〕を増減させることとなる。
 送風ファン14は、冷却機用コンプレッサ11によって高圧高温化された冷媒温度を低下させる。また、送風ファン17は、庫内の熱量と冷媒の熱量との熱交換を促す役割を担う。これらの送風ファン14,17は、ドライブ回路及びファンモータが内蔵されており、制御装置19からの指令信号によってファンモータの回転数が各々制御される。
 更に、冷凍機10の貯蔵庫内には、庫内温度計20が設けられている。庫内温度計20は、貯蔵庫内の温度を計測し、計測結果を電気信号に変換し出力する。制御装置19は、信号ラインを介して庫内温度計20に接続されており、庫内温度の計測結果が電気信号として入力される。
 制御装置19は、PWM信号を生成し、これをドライブ回路12へ出力する。また、本実施の形態に係る制御装置19は、送風ファン用の指令信号を生成出力し、送風ファン14,17を各々制御する。かかる制御装置19は、CPU,メモリ回路,AD変換回路,クロック回路等のハードウェア資源と、メモリ回路等に格納された制御プログラム及びマップ情報といったソフトウェア資源とから成る装置である。そして、制御装置19は、これらハードウェア資源とソフトウェア資源とが協働し、実施される情報処理によって機能的装置を構築させる。
 これにより、制御装置19では、目標温度までの各温度範囲と設定回転数との対応マップ情報をメモリ回路へ記憶させる処理、温度範囲に応じて制御モータの回転数(以下、設定回転数)を決定する処理、等を適宜に機能構築させることとなる。尚、制御装置19で構築される機能については、追って詳述することとする。
 上述の如く、冷媒回路において、これを循環する冷媒は、気相状態で冷却機用コンプレッサ11へ投入され、冷却機用コンプレッサ11を通過する際に高圧高温化され、凝縮器13を通過する際にこれが冷却され液相状態となる。その後、液相状態の冷媒は、キャピラリーチューブ15で減圧され、蒸発器16では、其の冷媒が気化されることで、庫内温度を吸収(冷却)する。かかる冷媒は、気相の状態で冷却機用コンプレッサ11へ再投入され、冷却サイクルが繰り返されることとなる。ヒートポンプ式の冷却サイクルでは、冷媒循環量〔qmr〕に応じて庫内の冷却速度が調整される。即ち、庫内の冷却速度は、コンプレッサ用の制御モータの回転数によって制御されることとなり、言換えると、制御装置19の生成するPWM信号によって制御されることを意味する。
 図2の(a)は、コンプレッサ用制御モータの回転数と冷却速度との関係が示されている。冷却速度を示す特性は、貯蔵庫の容積及び形状等により変化するものであり、冷却システムの性能にも影響される。同図に示される冷却特性は、或る冷凍機についてサンプルされたものであり、庫外温度が32〔℃〕における実験結果である。
 図2の(a)に示す如く、冷却特性は、略線形の関係が認められ、具体的な観測点A~Dでは、それぞれの設定回転数に対応して冷却速度が特定される。
 《回転数:4500rpm》
  冷却速度Va=0.53〔deg/min〕
 《回転数:3500rpm》
  冷却速度Vb=0.45〔deg/min〕
 《回転数:2500rpm》
  冷却速度Vc=0.37〔deg/min〕
 《回転数:1500rpm》
  冷却速度Vd=0.28〔deg/min〕
 尚、本実施例における冷却速度は、単位時間〔min〕当たりにおける庫内温度の減少量〔deg〕を言う。かかる冷却速度は、特許請求の範囲における冷却性能パラメータの一形態である。以下、冷却速度を、冷却速度パラメータと呼ぶことがある。
 次に、「冷却速度パラメータ同士の比」について説明する。パラメータ比Rabは、冷却速度パラメータVaに対する冷却速度パラメータVbの比であり、Rab=Vb/Vaによって表される。パラメータ比Rbcは、冷却速度パラメータVbに対する冷却速度パラメータVcの比であり、Rbc=Vc/Vbによって表される。同様にして、パラメータ比Rcdは、Rcd=Rd/Rcによって表される。これらパラメータ比は、各々が「冷却速度パラメータ同士の比」に相当する。このように、本実施例では、各パラメータ比が隣接する冷却速度パラメータ同士によって算出されることとなる(図2の(a)参照)。
 以下、図2の冷却特性に基づいて算出されたパラメータ比を各々記す。
 ・Rab=Vb/Va=0.85
 ・Rbc=Vc/Vb=0.82
 ・Rcd=Vd/Vc=0.76
 これらのパラメータ比は、プルダウン冷却時の様子を表している場合、低回転のパラメータが高回転のパラメータで除算されることになる。このため、パラメータ比は、必ず1未満の値をとる。このパラメータ比は、分子側の冷却性能に対する分母側の冷却性能の優越度を示す指標となる。
 図3の(a)は、プルダウン冷却させる際の温度〔deg〕と、設定回転数との関係が示されている。同図で示される関係は、庫外温度が32〔℃〕,目標温度が「-15〔℃〕」,プルダウン開始温度が32〔℃〕とされる。従って、この条件にあっては、図2の(a)の冷却特性に応じてプルダウン冷却されることとなる。また、温度〔deg〕とは、実際には、温度計測点から目標温度までの温度差を示すものである。即ち、47〔deg〕と表現する場合には、庫内温度32〔℃〕を示すものであり、零〔deg〕と表現される場合には、庫内温度が目標温度「-15〔℃〕」に到達したことを示す。
 図3の(a)に示す如く、プルダウン冷却開始温度DEGxから目標温度DEG0へ到達するまでに、設定回転数を切換える為のDEG1~DEG3〔deg〕が設定されている。これらDEG1~DEG3〔deg〕は、特許請求の範囲における定回転切換温度(又は、定回転開始温度)と呼ばれるものである。
 定回転切換温度DEG1~DEG3〔deg〕は、以下の如く算出される。
 ・DEG1〔deg〕=Rab×DEGx=0.85×47=40〔deg〕
 ・DEG2〔deg〕=Rbc×DEG1=0.82×41=34〔deg〕
 ・DEG3〔deg〕=Rcd×DEG2=0.76×34=26〔deg〕
 定回転切換温度DEG1は、プルダウン冷却開始温度DEGxにパラメータ比Rabを乗じて算出設定される。パラメータ比Rは、冷却速度パラメータVbに対する冷却速度パラメータVaの優越度を示す指標である。
 定回転切換温度DEG2は、定回転切換温度DEG1にパラメータ比Rbcを乗じて算出設定される。また、定回転切換温度DEG3は、定回転切換温度DEG2にパラメータ比Rcdを乗じて算出設定される。これらの定回転切換温度DEG2及びDEG3についても、パラメータ比に基づいて設定されることとなる。
 プルダウン冷却時にあっては設定回転数が段階的に低下していくので、パラメータ比は、必ず1以下の値とされる。このため、定回転切換温度DEG1は、パラメータ比に基づいて設定される為、温度DEGxより低い値に設定されることとなる。定回転切換温度の算出式で引用される温度を引用温度とすれば、定回転切換温度DEG2及びDEG3についても、引用温度DEG1及びDEG2に対してパラメータ比が乗算されるので、算出結果の定回転切換温度DEG2及びDEG3は、各々、引用温度よりも低い値となる。そして、これら定回転切換温度は、設定回転数の変更によってパラメータ比が変更されることとなり、このパラメータ比によって当該定回転切換温度の位置が調整されることとなる。
 定回転切換温度DEG1~DEG3によって規定されるΔD1~ΔD4は、特許請求の範囲における温度範囲と呼ばれるものである。図示の如く、温度範囲ΔD1~ΔD4は、定回転切換温度DEG1~DEG3が設定されることで、プルダウン冷却開始温度DEGxから目標温度へ到達するまでに、其の範囲が適宜に割当てられることとなる。
 同図の場合、温度範囲ΔD1~ΔD3の各々は、以下の算出式によって設定される。
 ・ΔD1=DEGx-DEG1=(1-Rab)×DEGx=7〔deg〕
 ・ΔD2=DEG1-DEG2=(1-Rbc)×DEG1=7〔deg〕
 ・ΔD3=DEG2-DEG3=(1-Rcd)×DEG2=8〔deg〕
 また、温度範囲ΔD4は、定回転切換温度DEG3から目標温度DEG0までの範囲として設定される。
 ・ΔD4=DEG3-DEG0=DEG3=25〔deg〕
 本実施例によると、温度範囲ΔD1~ΔD3については、パラメータ比に基づき形成される関数(1-Rpq)・DEGnによって割当てられる(Rpqは一般化表現したパラメータ比,DEGnは一般化表現した定回転切換温度)。このため、温度範囲ΔD1~ΔD3の各々は、パラメータ比が示す優越度という技術的根拠を具備した状態で、其の温度範囲が設定されることとなる。以下、パラメータ比に基づき形成される関数(1-Rpq)・DEGnのうち、(1-Rpq)を係数と呼ぶ。尚、同関数におけるDEGnは定回転切換温度である。
 上述した関数は、隣接する設定回転数の各々が定まれば、これに対応する冷却性能が定まり、係数(1-Rpq)が決定され、温度範囲もこれに応じて自動的に確定することを意味している。また、定回転切換温度DEGnに対する温度範囲の占有割合をある程度特定できるのであれば、隣接する各々の設定回転数を逆算的に定めることも可能である。
 図3の(a)に示す如く、上記関数によって決定される各温度範囲ΔD1~ΔD3は、温度範囲ΔD1に対応して設定回転数ω1(4500rpm)が設定され、温度範囲ΔD2に対応して設定回転数ω2(3500rpm)が設定され、温度範囲ΔD3に設定回転数ω3(2500rpm)が設定される。また、温度範囲ΔD4については、設定回転数ω4(1500rpm)が設定され、この回転数ω4は、設定される回転数の中で最もエネルギー消費効率が好ましいため、温度範囲が最も広い範囲に設定されている。
 冷凍機10に搭載された制御装置19では、上述した温度範囲と設定回転数との関係を表現したマップ情報がメモリ回路へ格納されている。そして、制御装置19は、庫内温度を検出し、マップ情報を参照することで、検出された温度〔deg〕の属する温度範囲を特定する。その後、制御装置19は、この温度範囲に対応して設定回転数を設定させ、当該温度範囲について一定回転数で冷却機用コンプレッサを駆動させる。そして、庫内雰囲気の冷却が進み、庫内温度が他の温度範囲へ達すると、制御装置19は、更に低い設定回転数を設定させ、冷却機用コンプレッサを制御させる。このように、制御装置19は、上述の如く設定された温度範囲に基づいて、設定回転数を段階的に低下させてゆく。
 温度範囲ΔD1に着目した場合、これが第1の温度範囲とされ、これに対応する設定回転数ω1が第1の設定回転数とされる。また、この設定回転数ω1に対応する冷却速度パラメータVaが、第1の冷却速度パラメータと呼ばれるものである。そして、この場合における温度範囲ΔD2は、温度範囲ΔD1(第1の温度範囲)の目標温度側へ隣接する第2の温度範囲とされる。また、この温度範囲ΔD2(第2の温度範囲)に対応する設定回転数ω2が第2の設定回転数と呼ばれるものである。また、設定回転数ω2(第2の設定回転数)に対応する冷却速度パラメータVbが、第2の冷却速度パラメータと呼ばれるものである。
 上述の如く、温度範囲ΔD1(第1の温度範囲)は、設定回転数ω1(第1の設定回転数)へ設定されるプルダウン冷却開始温度DEGxを起点とし、設定回転数ω2(第2の設定回転数)へ切換設定される定回転切換温度DEG1を終点とし、この区間が温度範囲として割当てられる。ここで、プルダウン冷却開始温度DEGxは、この温度から設定回転数が4500rpmに一定制御されるところ、特許請求の範囲における定回転開始温度に属する概念である。
 この場面によれば、プルダウン冷却開始温度DEG1(起点)は、冷凍機10に電源投入した時点の周辺温度によって定まる為、特段設定させることはできない外因的な温度である。一方、定回転切換温度DEG1(終点)は、プルダウン冷却開始温度DEG1に対してRabの割合に設定される。
 以下同様に、温度範囲ΔD2に着目した場合、温度範囲ΔD2(第1の温度範囲)は、設定回転数ω2(第1の設定回転数)へ切換設定される定回転開始温度DEG1を起点として、設定回転数ω3(第2の設定回転数)へ切換設定される定回転切換温度DEG2を終点とし、この区間が温度範囲として割当てられる。また、温度範囲ΔD3に着目した場合、温度範囲ΔD2(第1の温度範囲)は、起点が定回転開始温度DEG2とされ、終点が定回転切換温度DEG3とされる。これらの温度範囲についても、隣接するパラメータの優越度が反映され、其の温度範囲の幅が決定される。
 以上のように、DEG1~DEG3は、着目される温度範囲に応じて、当該温度範囲の起点又は終点の何れにもなり得る。そして、当該温度範囲において起点とされる場合は、これに相当する温度DEGnが定回転開始温度とされ、終点とされる場合は、これに相当する温度DEGnが定回転切換温度とされる。そして、其の定回転切換温度は、目標温度側に隣接する温度範囲にとって、定回転開始温度に相当することとなる。
 冷却速度は、単位時間〔min〕当たりの温度低下量〔deg〕とされる。従って、所定回転数での冷却速度をV〔deg/min〕,温度低下量をΔD〔deg〕,この温度低下量に費やす所要時間をT〔min〕とすると、
 T〔min〕=ΔD〔deg〕/V〔deg/min〕
によって算出される。
 従って、各設定回転数に対応する所要時間T〔min〕は、以下のように各々算出される(図5参照)。
 《回転数:4500rpm》
  所要時間T1=7/0.53=13.2〔min〕
 《回転数:3500rpm》
  所要時間T2=7/0.45=15.5〔min〕
 《回転数:2500rpm》
  所要時間T3=8/0.37=21.6〔min〕
 《回転数:1500rpm》
  所要時間T4=25/0.28=89.3〔min〕
 これによると、プルダウン冷却開始時刻から目標温度へ到達する時刻までのイニシャルプルダウン時間Tipd(x)は、139.6〔min〕となることが判る。一方、常に一定(1500rpm)の設定回転数で冷却機用コンプレッサを駆動させた場合、この場合のイニシャルプルダウン時間Tipd(y)は、約165〔min〕である。従って、本実施例にあっては、イニシャルプルダウン時間Tipd(x)を約25.5〔min〕の短縮(15%の短縮)に成功させている。
 一方、高い設定回転数の温度範囲が長時間設定されていない点にも注目すべきである。即ち、本実施例によれば、上述した温度範囲の決定方法によって、高い設定回転数の設定時間を短縮させる効果を具備させつつ、其の高い設定回転数が不当に長い時間設定されることはない。このように、本実施例では、高速回転の設定時間が過不足なく設定されることとなる。
 次に、エネルギー消費効率について説明する。図4は、設定回転数とエネルギー消費効率との関係が示されている。エネルギー消費効率とは、入力電力に対する庫内温度の低下熱量の比率を指し、COP値と呼ばれるものである。
 図4の効率特性を参照すると、設定回転数とCOP値との対応関係は、以下のものとなる。尚、効率特性とは、同図に示される実測データに基づいて推定・特定され得る数値的関係を言う。
 《回転数:4500rpm》
  COP1=1.63
 《回転数:3500rpm》
  COP2=1.73
 《回転数:2500rpm》
  COP3=1.76
 《回転数:1500rpm》
  COP4=1.76
 これによると、目標温度DEG0に到達するまでのCOP値は、上記COP1~COP4の加重平均(時間成分によって重みづけされた平均値)によって求められ、其のCOP値(COPx)は1.74である。これに対し、1500rpmの一定回転数でプルダウン冷却させた場合、COP値(COPy)は1.76である。従って、本実施例によると、COP値の高い回転数(1500rpm)の場合と比較して、COP値は0.8%程度しか低下していないことが判る。
 図5に示す如く、本実施例によれば、高回転(4500rpm,3500rpm等)の設定時間が冗長設定されない為、トータルのCOP値(COPx)は、損失分Sが小さく、其の値(COPx)の低下が効果的に抑えられる。
 また、高回転(4500rpm,3500rpm等)の設定時間が冗長化されない為、目標温度に到達するまでの残りの時間は、COP値の高い設定回転数によって冷却機用コンプレッサが運転されることとなる。即ち、COP値の最も高い高効率温度範囲ΔD4に対応する設定回転数で運転される時間は、高回転の設定時間が抑えられる為、十分に長い時間確保されることとなる。そして、この時間配分が、プルダウン冷却のトータルのCOP値を悪化させない理由となる。
 また、温度範囲に着目するならば、高効率温度範囲ΔD4が他の何れの温度範囲ΔD1~ΔD3よりも広い範囲に割当てられる為、高COP値の運転時間が十分に確保されていると言うこともできる。
 本実施例に係る制御装置19によると、高回転制御時の温度範囲が過剰設定されない為、エネルギー消費効率(COP値)の低下が抑制され、併せて、目標温度へ到達するまでの所要時間(即ち、プルダウン冷却工程全体での平均冷却速度)の低下も抑制できる。従って、本実施例では、エネルギー消費効率及び冷却性能の双方の共生が図られることとなる。
 本実施例2は、実施例1に係る制御装置について様々な改変例が加えられている。以下、実施例1で説明した同一構成又は同一機能部については同じ符号を付し、其の説明を省略することとする。
 図6に示す如く、本実施例では、プルダウン冷却における設定回転数が、4500rpm,3000rpm,1600rpm,1200rpm,の中から選択されることとなる。
 設定される回転数と冷却速度との対応関係を以下に記す。
 《回転数:4500rpm》
  冷却速度Va=0.53〔deg/min〕
 《回転数:3000rpm》
  冷却速度Vb=0.41〔deg/min〕
 《回転数:1600rpm》
  冷却速度Vc=0.29〔deg/min〕
 《回転数:1200rpm》
  冷却速度Vd=0.26〔deg/min〕
 本実施例では、回転数が4500rpmから3000rpmに切換る際と、3000rpmから1600rpmへ切換る際について、定回転切換温度が所定の関数で設定される。以下、この定回転数切換温度を算出する際に必要となるパラメータ比を記す。
 ・Rab=Vb/Va=0.77
 ・Rbc=Vc/Vb=0.71
 図7の(a)に示す如く、プルダウン冷却開始温度DEGxから目標温度DEG0へ到達するまでに、DEG1~DEG3〔deg〕が設定される。このうち、DEG1及びDEG2〔deg〕は、以下の如く算出される。
 ・DEG1〔deg〕=Rab×DEGx=0.77×47=36〔deg〕
 ・DEG2〔deg〕=Rbc×DEG1=0.71×41=26〔deg〕
 尚、設定回転数(1200rpm)は、目標温度DEG0近傍でのオーバーシュートを防ぐために設けられるものである(調整回転数)。本実施例では、この回転数の範囲を設定するため、DEG2=5〔deg〕としている。従って、本実施例では、調整回転数の温度範囲に応じて、回転数(1600rpm)の温度範囲が狭められる。
 以下、定回転温度範囲によって割当てられる各温度範囲を記す。
 ・ΔD1=DEGx-DEG1=(1-Rab)×DEGx=11〔deg〕
 ・ΔD2=DEG1-DEG2=(1-Rbc)×DEG1=10〔deg〕
 一方、温度範囲ΔD4は、庫内温度を目標温度へ収束させる観点から、5〔deg〕として設定する。従って、高効率温度範囲ΔD3は、残りの21〔deg〕とされる。
 これらの温度範囲の各所要時間T〔min〕を算出すると、以下の通りである。
 《回転数:4500rpm》
  所要時間T1=11/0.53=20.6〔min〕
 《回転数:3000rpm》
  所要時間T2=10/0.41=24.4〔min〕
 《回転数:1600rpm》
  所要時間T3=21/0.29=72.4〔min〕
 《回転数:1200rpm》
  所要時間T4=5/0.26=19.2〔min〕
 これによると、本実施例でのイニシャルプルダウン時間Tipd(x)は、136.6〔min〕となることが判る。即ち、本実施例では、定回転(1500rpm)でのイニシャルプルダウン時間Tipd(y)と比較して17%の時間短縮に成功させている。即ち、更に効果的に、プルダウン冷却のトータルの時間短縮が行われる。
 次に、エネルギー消費効率の検証に入る。図4の効率特性を参照すると、本実施例で採用される設定回転数とCOP値との対応関係は、以下のものとなる。
 《回転数:4500rpm》
  COP1=1.63
 《回転数:3000rpm》
  COP2=1.76
 《回転数:1600rpm》
  COP3=1.78
 《回転数:1200rpm》
  COP4=1.71
 これによると、目標温度DEG0に到達するまでのCOP値は、上記COP1~COP4の加重平均(時間成分によって重みづけされた平均値)によって求められ、其のCOP値(COPx)は1.73である(図8参照)。即ち、本実施例では、1200rpmのような低回転数で一定制御させるよりも、エネルギー消費効率が良いということが判る。また、1500rpmの一定回転数でプルダウン冷却させた場合、COP値(COPy)は1.76である。従って、本実施例によると、COP値の高い回転数(1500rpm)の場合と比較して、COP値は1.7%程度しか低下していないことが判る。この場合のCOP値(COPx)は、実施例1におけるCOP値(COPx)と比較して幾分劣るが、これは、調整回転数(1200rpm)が追加的に設定された為である。しかし、本実施例によるCOP値(COPx)は、1500rpmでのCOP値(COPy)に対して、僅か2%も劣るものでなく、其の値が十分に維持されているものと言えよう。
 更に、本実施例によると、設定回転数(1600rpm)が高効率温度範囲ΔD3に対応している。この設定回転数(1600rpm)は、他の設定回転数よりもCOP値が高く(図4参照)、其の設定時間が長い為、トータルのCOP値の低下回避に寄与している。特に、図4で示される効率特性からCOP値の極大値を割出し、これに対応する回転数を高効率温度範囲とすることで、プルダウン冷却におけるトータルのCOP値の低下を効果的に抑制できる。
 ところで、本実施例では、調整温度範囲ΔD4を設けて、トータルのCOP値を低下させてしまっている。しかし、目標温度に到達した後をも含めたCOP値にあっては、オーバーシュートに伴う冷却機用コンプレッサの不要な動作が抑制されるので、結果として其の値が改善されることとなる。
 本実施例は、上述した実施例に対する更なる改善例である。図9に示す如く、本実施例に係る冷凍機10には、庫外温度計21が追加構成されている。庫外温度計21は、庫外の外気温度を測定する装置である。当該庫外温度計21は、計測結果を電気信号に変換し、これを制御装置19へ送信する。
 冷却性能を示す性能特性は、ヒートリーク量を無視できない場合、庫外温度の影響が大きくなる。このため、庫外温度が変動すれば、パラメータ比もこれに応じて変わり、上述した定回転開始温度,定回転切換温度,各温度範囲等を改めなければならない。本実施例は、かかる問題を改善すべく検討されたものであり、図10に示す如く、庫外温度毎に作成されたマップ情報を用いて、より適正な温度範囲を設定させようとするものである。
 従って、本実施例に係る制御装置19では、庫外温度に基づいて用いるべきマップ情報を選定し(図10参照)、選択されたマップ情報に基づいて温度範囲等を設定させる。このように複数のマップ情報を準備しておくことで、庫外温度の変動に対応した温度範囲の設定が可能となり、これにより、冷却速度とエネルギー消費効率との双方の共生点をより詳細に特定させることが可能となる。
 尚、本発明は、上述した実施例によって限定されるものではなく、特許請求の範囲に記載される技術的思想に基づいて種々の変更が可能である。例えば、冷却性能パラメータは、冷却速度を示すパラメータに限らず、冷凍機の冷却システムに投入される電力量,又は,冷媒循環量等を示すパラメータであっても良い。また、「パラメータ比に基づき形成される関数」とは、上述した実施例で示される算式に限らないことは言うまでもない。
 本発明は、冷却機に用いられる冷却機用コンプレッサ制御装置にとって有用であり、特に、冷却機用コンプレッサへ配備される制御モータの回転数制御に有用である。
10 冷却機, 11 冷却機用コンプレッサ, 19 冷却機用コンプレッサ制御装置, rpm 設定回転数, ΔD1~ΔD4 温度範囲, Va~Vd 冷却性能パラメータ, Ra~Rd 冷却性能パラメータ同士の比。

Claims (5)

  1.  目標温度へ到達するまでに割当てられた各温度範囲に対応して冷却機用コンプレッサの設定回転数の各々を一定回転数に設定し、前記目標温度へプルダウン冷却させる過程で前記設定回転数を段階的に低下させる冷却機用コンプレッサ制御装置において、
     前記各温度範囲のうち少なくとも一つの温度範囲は、前記設定回転数の各々に対応する冷却性能パラメータ同士の比に基づき形成される関数によって割当てられる、ことを特徴とする冷却機用コンプレッサ制御装置。
  2.  前記冷却性能パラメータは、前記設定回転数で運転された場合の冷却速度を示すパラメータである、ことを特徴とする請求項1に記載の冷却機用コンプレッサ制御装置。
  3.  前記各温度範囲のうち第1の温度範囲に対応する設定回転数を第1の設定回転数とした場合、前記第1の設定回転数に対応する冷却性能パラメータを第1の冷却性能パラメータとし、且つ、前記第1の温度範囲の目標温度側へ隣接する第2の温度範囲に対応する設定回転数を第2の設定回転数とした場合、前記第2の設定回転数に対応する冷却性能パラメータを第2の冷却性能パラメータとすると、
     前記第1の温度範囲は、前記第1の設定回転数へ切換えられる定回転開始温度から、前記第2の設定回転数へ切換えられる定回転切換温度までの範囲として割当てられ、
     前記定回転切換温度は、前記第1の冷却性能パラメータに対する前記第2の冷却性能パラメータの比に基づき設定される、ことを特徴とする請求項1又は請求項2に記載の冷却機用コンプレッサ制御装置。
  4.  前記各温度範囲のうち少なくとも一つは、前記設定回転数に対応するCOP値のうち最も高いCOP値とさせる高効率設定回転数が設定され、
     前記高効率温度範囲は、前記第1の温度範囲とされる何れの温度範囲よりも広い範囲に割当てられる、ことを特徴とする請求項3に記載の冷却機用コンプレッサ制御装置。
  5.  前記高効率温度範囲では、COP値を極大とさせる設定回転数によって冷却機用コンプレッサが運転される、ことを特徴とする請求項4に記載の冷却機用コンプレッサ制御装置。
PCT/JP2013/000313 2012-01-25 2013-01-23 冷却機用コンプレッサ制御装置 WO2013111579A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012012660A JP2013152040A (ja) 2012-01-25 2012-01-25 冷却コンプレッサ制御装置
JP2012-012660 2012-01-25

Publications (1)

Publication Number Publication Date
WO2013111579A1 true WO2013111579A1 (ja) 2013-08-01

Family

ID=48873309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000313 WO2013111579A1 (ja) 2012-01-25 2013-01-23 冷却機用コンプレッサ制御装置

Country Status (2)

Country Link
JP (1) JP2013152040A (ja)
WO (1) WO2013111579A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503842A (zh) * 2020-04-29 2020-08-07 四川虹美智能科技有限公司 多联机空调的控制方法、控制装置、控制系统和可读介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4314677A1 (en) * 2021-03-26 2024-02-07 Electrolux Appliances Aktiebolag Refrigerator with a variable speed compressor and a method for controlling the compressor speed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197123A (ja) * 1997-01-10 1998-07-31 Mitsubishi Heavy Ind Ltd 輸送用冷凍装置
JPH11281172A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 冷凍装置
JP2002286303A (ja) * 2001-03-23 2002-10-03 Lg Electronics Inc インバータエアコンディショナの節電運転方法
JP2003139419A (ja) * 2001-11-05 2003-05-14 Denso Corp 給湯装置
JP2004232994A (ja) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd 冷却装置
JP2005140411A (ja) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd 冷凍冷蔵ユニットおよび冷蔵庫
JP2006207893A (ja) * 2005-01-26 2006-08-10 Hoshizaki Electric Co Ltd 冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197123A (ja) * 1997-01-10 1998-07-31 Mitsubishi Heavy Ind Ltd 輸送用冷凍装置
JPH11281172A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 冷凍装置
JP2002286303A (ja) * 2001-03-23 2002-10-03 Lg Electronics Inc インバータエアコンディショナの節電運転方法
JP2003139419A (ja) * 2001-11-05 2003-05-14 Denso Corp 給湯装置
JP2004232994A (ja) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd 冷却装置
JP2005140411A (ja) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd 冷凍冷蔵ユニットおよび冷蔵庫
JP2006207893A (ja) * 2005-01-26 2006-08-10 Hoshizaki Electric Co Ltd 冷却装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503842A (zh) * 2020-04-29 2020-08-07 四川虹美智能科技有限公司 多联机空调的控制方法、控制装置、控制系统和可读介质

Also Published As

Publication number Publication date
JP2013152040A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
JP4028502B2 (ja) 冷凍機の冷却水制御方法
JP3948919B2 (ja) 可変速駆動装置を備えた冷却システムの少なくとも1つの圧縮機を制御する方法および装置
US11092151B2 (en) System and method for controlling a system that includes fixed speed and variable speed compressors
JP5405009B2 (ja) 冷却貯蔵庫の庫内温度制御装置
KR100738755B1 (ko) 모터 제어 장치, 압축기, 공기 조화기, 및 냉장고
US20060130504A1 (en) Method and apparatus for control of a variable speed compressor
JP5805317B2 (ja) ヒートポンプ装置、空気調和機および冷凍機
US20130145781A1 (en) Multi-Compressor Refrigeration System and Method for Operating It
CN103326664B (zh) 电动机控制装置及利用其的电动机驱动装置、压缩机、冷冻装置、空气调节器、以及电动机控制方法
JP2011530968A (ja) ユニットの容量制御のための個別の周波数を用いた動作
JP2014089024A5 (ja)
JP2014089024A (ja) 冷凍装置
WO2013111579A1 (ja) 冷却機用コンプレッサ制御装置
JP6275015B2 (ja) 鉄道車両用空調装置
JP5985212B2 (ja) 冷却コンプレッサ制御装置
JP5956781B2 (ja) 冷却コンプレッサ制御装置
JP2016048145A (ja) 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
JP6586182B2 (ja) 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
JP2006250449A (ja) 空気調和機
JP2015021659A (ja) 冷凍装置
JP2015169400A (ja) 冷却機用コンプレッサモータ制御システム
US9695820B2 (en) Compressor and control method thereof
JP6093606B2 (ja) モータ駆動装置
JP5914899B1 (ja) 簡易インバータ制御型冷蔵庫及び冷蔵庫用インバータ制御ユニットとそれを用いたインバータ圧縮機
JP2014001875A (ja) 冷却コンプレッサ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740811

Country of ref document: EP

Kind code of ref document: A1