WO2013111348A1 - 指向性制御方法及び装置 - Google Patents
指向性制御方法及び装置 Download PDFInfo
- Publication number
- WO2013111348A1 WO2013111348A1 PCT/JP2012/052442 JP2012052442W WO2013111348A1 WO 2013111348 A1 WO2013111348 A1 WO 2013111348A1 JP 2012052442 W JP2012052442 W JP 2012052442W WO 2013111348 A1 WO2013111348 A1 WO 2013111348A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coefficient
- signal
- constant
- exchange
- adder
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000002238 attenuated effect Effects 0.000 claims description 2
- 230000001629 suppression Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/005—Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L2021/02161—Number of inputs available containing the signal or the noise to be suppressed
- G10L2021/02166—Microphone arrays; Beamforming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/40—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
- H04R1/406—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/40—Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2430/00—Signal processing covered by H04R, not provided for in its groups
- H04R2430/20—Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/11—Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R5/00—Stereophonic arrangements
- H04R5/027—Spatial or constructional arrangements of microphones, e.g. in dummy heads
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R5/00—Stereophonic arrangements
- H04R5/04—Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/15—Aspects of sound capture and related signal processing for recording or reproduction
Definitions
- the present invention relates to a sound collection device that outputs sound with directivity in an arbitrary direction using two microphones arranged close to each other.
- Patent Document 1 it is determined whether or not the input sound is in the target direction based on the input signals of two microphones arranged close to each other, and the difference in phase difference between the two input signals is corrected. Emphasize the sound that exists in the target direction.
- two input signals are referred to each other, and the filter is sequentially updated using the obtained signals. If this is applied to signals input from two microphones, in-phase sound can be extracted and emphasized. In other words, it is possible to emphasize the sound from a predetermined direction and add directivity.
- Patent Document 1 since the invention of Patent Document 1 is based on the premise that a difference in phase difference is taken, it is necessary to arrange microphones with a certain interval. Even if it can be applied to low-frequency wavelengths, a plurality of delay devices and long filter coefficients are required, and the calculation processing becomes complicated.
- Patent Document 2 can provide sufficient directivity for a stereo sound source.
- the phase difference between the input sounds is different. Therefore, the sensitivity is not high enough to take the difference.
- the filter is sequentially updated based on the calculation result, the filter length becomes long and the calculation processing becomes heavy.
- the present invention has been made in order to solve the above-described problems of the prior art, and its purpose is to use two microphones arranged close to each other and to receive a sound coming from an arbitrary direction.
- An object of the present invention is to provide a directivity control method and apparatus that can output with emphasis or suppression with a small amount of computation.
- the directivity control method of the embodiment is a directivity control method for applying a strength according to the phase difference to a pair of input signals input from a pair of microphones, A first step of generating a pair of exchange signals by alternately exchanging the pair of input signals for each sample by an exchange circuit, and multiplying one of the exchange signals by a coefficient m, A second step of generating an error signal; a third step of calculating a recurrence formula of the coefficient m including the error signal to update the coefficient m for each sample; and the sequentially updated coefficient m And a fourth step of multiplying and outputting the input signal.
- one of the exchange signals is passed through a first integrator set to ⁇ 1 times the past coefficient m calculated one sample before, and the first integrator is After passing through the first adder that adds the pair of exchange signals, passed through the first adder, then passed through the second integrator in which the constant ⁇ was set, and passed through the second integrator.
- the coefficient m may be updated every sample by passing through a second adder in which m is set.
- the third step includes a fifth step of multiplying a past coefficient m calculated one sample before by a constant ⁇ , and calculates the recurrence formula referring to the multiplication result in the fifth step.
- the constant ⁇ is less than 1, and when the input signal below a certain level continues, the output signal after the third step may be gradually attenuated.
- the third step includes a fifth step of multiplying a past coefficient m calculated one sample before by a constant ⁇ , and calculates the recurrence formula referring to the multiplication result in the fifth step.
- the constant ⁇ may be less than 1, and the strength may be emphasized more than the phase difference of the input signal through the third step.
- the input signal may be divided into bands in advance, and the above steps may be performed for each band.
- the speech signal arriving from the center position of a pair of microphones is accurately emphasized, and the angle from the center position is increased. It is possible to accurately suppress an audio signal that arrives from a direction deviated from.
- FIG. 1 is a block diagram showing the configuration of the directivity control device.
- the directivity control device is connected to a pair of microphones L and R having a predetermined separation distance, and as shown in FIG. 1, an input signal InL (k) and an input signal InR (k) are received from the microphones L and R. Entered.
- the input signal InL (k) and the input signal InR (k) are discrete values sampled by the AD converter. That is, the input signal InL (k) is a digital signal output from the microphone L and sampled k-th.
- the input signal InR (k) is a digital signal output from the microphone R and sampled k-th.
- the input signal InL (k) and the input signal InR (k) are input to the exchange circuit 2 via the characteristic correction circuit 1 in the directivity control device.
- the characteristic correction circuit 1 includes a frequency characteristic correction filter and a phase characteristic correction circuit.
- the frequency characteristic correction filter extracts an audio signal in a desired frequency band.
- the phase characteristic correction circuit reduces the influence of the acoustic characteristics of the microphones L and R on the input signal InL (k) and the input signal InR (k).
- the exchange signal InA (k) and the exchange signal InB (k) are input to the coefficient update circuit 3.
- the coefficient updating circuit 3 calculates an error between the exchange signal InA (k) and the exchange signal InB (k) and determines a coefficient m (k) corresponding to the error.
- the coefficient update circuit 3 sequentially updates the coefficient m (k) with reference to the past coefficient m (k ⁇ 1).
- An error signal e (k) between the exchange signal InA (k) and the exchange signal InB (k) is defined as the following equation (1).
- the coefficient updating circuit 3 calculates the recurrence formula between adjacent binomials of the coefficient m (k) including the error signal e (k) using the error signal e (k) as a function of the coefficient m (k ⁇ 1). Thus, the coefficient m (k) that minimizes the error signal e (k) is searched.
- the coefficient update circuit 3 updates the coefficient m (k) in such a direction as to decrease the coefficient m (k) as the phase difference between the input signal InL (k) and the input signal InR (k) is generated by this arithmetic processing. If so, the coefficient m (k) is output close to 1.
- the coefficient m (k) is input to the synthesis circuit 4.
- the synthesis circuit 4 multiplies the input signal InL (k) and the input signal InR (k) by a coefficient m (k) at an arbitrary ratio and adds them at an arbitrary ratio. As a result, the output signal OutL (k) The signal OutR (k) is output.
- FIG. 2 is a block diagram showing an example of the coefficient update circuit 3.
- the coefficient update circuit 3 is composed of a plurality of accumulators and adders, and is a circuit that embodies a recurrence formula between adjacent binomials, and refers to a past coefficient m (k ⁇ 1).
- the coefficient m (k) is gradually updated. Adaptive filters with long tap numbers are eliminated.
- an error signal e (k) is generated using the exchange signal InB (k) as a reference signal. That is, the exchange signal InA (k) is input to the integrator 5.
- the accumulator 5 multiplies the exchange signal InA (k) by ⁇ 1 times the coefficient m (k ⁇ 1) one sample before.
- An adder 6 is connected to the output side of the integrator 5. The adder 6 receives the signal output from the integrator 5 and the exchange signal InB (k), and adds these signals to obtain an instantaneous error signal e (k).
- the error signal e (k) resulting from this arithmetic processing is as shown in the following equation (2).
- the error signal e (k) is input to an integrator 7 that multiplies the input signal.
- the coefficient ⁇ is a step size parameter of less than 1.
- An integrator 8 is connected to the output side of the integrator 7.
- the integrator 8 receives the exchange signal InA (k) and the signal ⁇ e (k) that has passed through the integrator.
- the accumulator 8 multiplies the exchange signal InA (k) and the signal ⁇ e (k) to obtain a differential signal ⁇ E (m) 2 / ⁇ m of an instantaneous square error expressed by the following equation (3).
- An adder 9 is connected to the integrator 8.
- the adder 9 completes the coefficient m (k) by calculating the following formula (4), and generates the output signals OutL (k) and OutInR (k) from the input signals InL (k) and InR (k).
- the coefficient m (k) is set in the synthesis circuit 4 to be operated. That is, the adder 9 completes the coefficient m (k) by adding the signal ⁇ ⁇ m (k ⁇ 1) to the differential signal ⁇ E (m) 2 / ⁇ m.
- the signal ⁇ ⁇ m (k ⁇ 1) is connected to the output side of the adder 9 by a delay unit 10 that delays the signal by one sample and an accumulator 11 that accumulates a constant ⁇ .
- the coefficient m (k ⁇ 1) updated by the process is generated by multiplying the constant 11 by the integrator 11.
- the coefficient update circuit 3 realizes the calculation process of the following recurrence formula (5), generates the coefficient m (k), and gradually updates it for each sampling.
- m (k) m (k ⁇ 1) ⁇ ⁇ + ( ⁇ m (k ⁇ 1) ⁇ InA (k) + InB (k)) ⁇ ⁇ ⁇ InA (k) (5)
- FIG. 3 shows how the coefficient m (k) converges when the horizontal axis represents the number of samplings, the vertical axis represents the coefficient m (k), and the coefficient m (0) is preset to zero.
- the distance between the microphones L and R is 25 mm.
- the input signal InL (k) and the input signal InR (k) have a frequency of 1000 Hz and a phase difference of 0 (curve A), and a phase difference of 10.00 ° (curve B). This is a case where the phase difference is 26.47 ° (curve C).
- the constant ⁇ is 1.000.
- the coefficient m (k) when the phase difference is 0 converges toward 1.
- the coefficient m (k) when the phase difference is 10.00 ° converges toward 0.91
- the coefficient m (k) when the phase difference is 26.47 ° is directed toward 0.66. Have converged.
- the output signal OutL (k) and the signal OutInR (k) are enhanced or suppressed by the coefficient m (k) corresponding to the phase difference through the directivity control device.
- the closer the sound source is to the center positions of the microphones L and R the more the input signal InL (k) and the input signal InR (k) are emphasized.
- the further away the sound source is from the center positions of the microphones L and R the more the input signal InL (k) and the input signal InR (k) are suppressed.
- the center position is a position existing on a perpendicular line to the line segment passing through the midpoint of the line segment connecting the microphones L and R.
- FIG. 4 shows how the coefficient m (k) converges when the constant ⁇ is changed.
- ⁇ 1.000
- ⁇ 0.999
- the coefficient m (k) is given a strength greater than or equal to the phase difference between the input signal InL (k) and the input signal InR (k).
- the phase difference between the input signal InL (k) and the input signal InR (k) of a sound having a longer wavelength than the proximity distance between the microphones L and R is small.
- the enhancement or suppression by the coefficient m (k) becomes clear by changing the coefficient ⁇ .
- the coefficient update circuit alternately calculates the following formula (8).
- m (k) m (k ⁇ 1) ⁇ ⁇ + ( ⁇ m (k ⁇ 1) ⁇ InL (k) 2 + InL (k) ⁇ InR (k)) ⁇ ⁇
- m (k) m (k ⁇ 1) ⁇ ⁇ + ( ⁇ m (k ⁇ 1) ⁇ InR (k) 2 + InR (k) ⁇ InL (k)) ⁇ ⁇ ...
- Equation (8) the square term of the signal acts to reduce the uncorrelated component such as white noise as time passes.
- the adjacent term is equivalent to the numerator part of the following formula (9) for sequentially calculating the correlation coefficient, and the influence of the correlation component is reflected on the coefficient m.
- the coefficient update circuit attempts to approximate the input signal InR (k) to the input signal InL (k) to the input signal InL (k)
- the uncorrelated component of the input signal InL (k) becomes the amplification direction
- the input signal InR (k) The non-correlated component is in the suppression direction.
- the uncorrelated component of the input signal InR (k) becomes the amplification direction
- the uncorrelated component of the input signal InL (k). Is the direction of suppression.
- the switching circuit 2 when the switching circuit 2 is installed before the coefficient update circuit 3, the function of approximating the input signal InR (k) to the input signal InL (k) to perform synchronous addition, and the input signal InR (k) On the other hand, the function of approximating the input signal InL (k) and attempting to add synchronously is repeated alternately. Therefore, the function of amplifying and suppressing the uncorrelated component cancels out alternately, and the coefficient m (k) reflects the influence of the correlated component deeply.
- FIG. 5 shows the convergence state of the coefficient m (k) with and without the switching circuit 2.
- a sound source is placed at the center position and collected by the microphones L and R.
- the coefficient m (k) converges to 1 about 1000 times when the exchange circuit 2 is present, but when the update circuit 2 is not present as shown by the curve G, Even if the coefficient m (k) was updated 10,000 times, it still did not converge to 1, and the opening was 10 times. That is, when the exchange circuit 2 exists, the directivity control is quickly completed.
- the directivity control device generates a pair of exchange signals by alternately exchanging a pair of input signals input from the microphones L and R for each sample by the exchange circuit. Then, after multiplying one of the exchange signals by a coefficient m, an error signal of the exchange signal is generated. Further, the recurrence formula of the coefficient m including the error signal is calculated to update the coefficient m for each sample. Finally, the sequentially updated coefficient m is multiplied by a pair of input signals and output.
- one of the exchange signals is passed through a first integrator set to ⁇ 1 times the past coefficient m calculated one sample before, and after passing through the first integrator, After passing through the first adder for adding the exchange signals of the first, the first adder, the second integrator in which the constant ⁇ is set, and the second integrator, the past coefficient m Is passed through the third accumulator in which one exchange signal before being multiplied is set, and after passing through the third accumulator, the second addition in which the past coefficient m calculated one sample before is set
- the coefficient m may be updated for each sample by passing the filter.
- this voice inflection mode can be realized by a single coefficient update circuit that calculates the recurrence formula with an exchange circuit without depending on a filter having a large number of taps. It is possible to keep within tens of microseconds to several milliseconds.
- a recurrence formula that refers to the multiplication result may be calculated by multiplying the past coefficient m calculated one sample before by a constant ⁇ .
- the constant ⁇ is less than 1, the output signal gradually attenuates when input signals below a certain level continue.
- the constant ⁇ By making the constant ⁇ less than one, it acts as a fade-out function in which the coefficient m gradually attenuates.
- the value of the coefficient m (k) is once updated after being converged to 0, so that appropriate emphasis or suppression is achieved. Is done. Therefore, even if the voice transmission from one sound source is finished and a new voice transmission is made from another sound source, the generation of the coefficient m for the new voice transmission is dragged by the voice transmission from the previous sound source. Can be prevented.
- the constant ⁇ when the constant ⁇ is less than 1, the strength of the output signal is emphasized more than the phase difference of the input signal.
- the value of the constant ⁇ can be set for each band by dividing the input signal into bands and performing the above steps for each band. Thereby, not only parallel processing for obtaining the coefficient m (k) for each band is possible, but also the constraint condition caused by the wideband signal is solved, and appropriate emphasis or suppression can be performed according to the band.
- the coefficient update circuit multiplies one of the exchange signals by a coefficient m, generates an error signal of the exchange signal, and calculates a recurrence formula of the coefficient m including the error signal. If the coefficient m is updated for each sample, the present invention is not limited to the above embodiment and can be realized in other modes.
- this directivity control device may be realized as software processing of a CPU or DSP, or may be configured by a dedicated digital circuit.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Abstract
Description
図1は、指向性制御装置の構成を示すブロック図である。指向性制御装置は、所定の離間距離を有する一対のマイクロフォンL、Rに接続されており、図1に示すように、マイクロフォンL、Rから入力信号InL(k)と入力信号InR(k)が入力される。
InA(k)={InL(1) InR(2) InL(3) InR(4)・・・}
InB(k)={InR(1) InL(2) InR(3) InL(4)・・・}
すなわち、加算器9は微分信号∂E(m)2/∂mに対して信号β・m(k−1)を加算することで係数m(k)を完成させる。
m(k)=m(k−1)×β+(−m(k−1)×InA(k)+InB(k))×μ×InA(k) ・・・(5)
このように、指向性制御装置では、入力信号InL(k)と入力信号InR(k)が入力されると、以下の式(6)及び(7)で表される出力信号OutL(k)及び出力信号OutInR(k)を生成して出力している。
kが奇数のとき
m(k)=m(k−1)×β+(−m(k−1)×InL(k)2+InL(k)×InR(k))×μ
kが偶数のとき
m(k)=m(k−1)×β+(−m(k−1)×InR(k)2+InR(k)×InL(k))×μ
・・・(8)
以上のように、本実施形態に係る指向性制御装置では、交換回路によってマイクロフォンL、Rから入力される一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する。そして、交換信号の片方に係数mを乗じた上で、交換信号の誤差信号を生成する。更に、誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する。最後に、逐次更新された係数mを一対の入力信号に乗じて出力するようにした。
以上のように、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、そのほかの様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
2 交換回路
3 係数更新回路
4 合成回路
5 積算器
6 加算器
7 積算器
8 積算器
9 加算器
10 遅延器
11 積算器
Claims (14)
- 一対のマイクロフォンから入力された一対の入力信号に対して、その位相差に応じた強弱をつける指向性制御方法であって、
交換回路によって前記一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する第1のステップと、
前記交換信号の片方に係数mを乗じた上で、前記交換信号の誤差信号を生成する第2のステップと、
前記誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する第3のステップと、
逐次更新された係数mを前記一対の入力信号に乗じて出力する第4のステップと、
を備えること、
を特徴とする指向性制御方法。 - 前記第3のステップは、
1サンプル前に算出された過去の係数mに対して定数βを乗算する第5のステップを含み、第5のステップによる乗算結果を参照する前記漸化式を演算し、
前記定数βは1未満であり、一定レベル未満の前記入力信号が連続すると、第3のステップを経た出力信号が漸次減衰すること、
を特徴とする請求項1記載の指向性制御方法。 - 前記第3のステップは、
1サンプル前に算出された過去の係数mに対して定数βを乗算する第5のステップを含み、第5のステップによる乗算結果を参照する前記漸化式を演算し、
前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の位相差以上に強弱を強調すること、
を特徴とする請求項1記載の指向性制御方法。 - 前記第2及び第3のステップでは、
1サンプル前に算出された過去の係数mの−1倍がセットされた第1の積算器に前記交換信号の片方を通し、
前記第1の積算器を経た後に、前記一対の交換信号を加算する第1の加算器を通し、
第1の加算器を経た後に、定数μがセットされた第2の積算器を通し、
前記第2の積算器を経た後に、前記過去の係数mが乗算される前の前記片方の交換信号がセットされた第3の積算器を通し、
前記第3の積算器を経た後に、1サンプル前に算出された過去の係数mがセットされた第2の加算器を通すことで、
前記係数mを1サンプル毎に更新すること、
を特徴とする請求項1記載の指向性制御方法。 - 前記第3のステップでは、
1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を設けておき、前記第2の加算器には、第4の加算器を経た過去の係数mがセットしておき、
前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の瞬時値の比以上に前記強弱を強調すること、
を特徴とする請求項4記載の指向性制御方法。 - 前記第3のステップでは、
1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を設けておき、前記第2の加算器には、第4の加算器を経た過去の係数mをセットしておき、
前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の位相差以上に強弱を強調すること、
を特徴とする請求項4記載の指向性制御方法。 - 入力信号を予め帯域分割しておき、帯域別に前記各ステップを行うこと、
を特徴とする請求項1乃至6の何れかに記載の指向性制御方法。 - 一対のマイクロフォンから入力された一対の入力信号に対して、その位相差に応じた強弱をつける指向性制御装置であって、
前記一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する交換部と、
前記交換信号の片方に係数mを乗じた上で、前記交換信号の誤差信号を生成する誤差信号生成部と、
前記誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する漸化式演算部と、
逐次更新された係数mを前記一対の入力信号に乗じて出力する積算部と、
を備えること、
を特徴とする指向性制御装置。 - 前記漸化式演算回路は、
1サンプル前に算出された過去の係数mに対して定数βを乗算するミュート部を含み、
前記ミュート部の乗算結果を参照して前記漸化式を演算し、
前記定数βは1未満であり、一定レベル未満の前記入力信号が連続すると、漸化式演算部を経た出力信号が漸次減衰すること、
を特徴とする請求項8記載の指向性制御装置。 - 前記漸化式演算回路は、
1サンプル前に算出された過去の係数mに対して定数βを乗算する強調処理部を含み、
前記強調処理部の乗算結果を参照して前記漸化式を演算し、
前記定数βは1未満であり、漸化式演算部を経た出力信号には、前記入力信号の位相差以上の強弱がつけられること、
を特徴とする請求項8記載の指向性制御装置。 - 前記誤差信号生成部は、
1サンプル前に算出された過去の係数mの−1倍がセットされ、前記交換信号の片方が通過する第1の積算器と、
前記第1の積算器を経た後に、前記一対の交換信号を加算する第1の加算器と、
を備え、
前記漸化式演算回路は、
定数μがセットされ、第1の加算器を経た信号が通過する第2の積算器と、
前記過去の係数mが乗算される前の前記片方の交換信号がセットされ、前記第2の積算器を経た信号が通過する第3の積算器と、
1サンプル前に算出された過去の係数mがセットされ、前記第3の積算器を経た信号が通過する第2の加算器と、
を備え、
前記係数mが1サンプル毎に更新されること、
を特徴とする請求項8記載の指向性制御装置。 - 前記漸化式演算回路は、
1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を更に備え、
前記第2の加算器には、第4の加算器を経た過去の係数mがセットされ、
前記定数βは1未満であり、前記漸化式演算回路を経ることで、前記入力信号の位相差以上に強弱を強調すること、
を特徴とする請求項11記載の指向性制御装置。 - 前記漸化式演算回路は、
1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を更に備え、
前記第2の加算器には、第4の加算器を経た過去の係数mがセットされ、
前記定数βは1未満であり、前記漸化式演算回路を経ることで、前記入力信号の位相差以上に強弱を強調すること、
を特徴とする請求項11記載の指向性制御装置。 - 入力信号を予め帯域分割する分割部を更に備え、
帯域別に前記交換信号の生成、前記誤差信号の生成、前記係数mの更新、及び前記係数mを前記一対の入力信号に乗じた出力を行うこと、
を特徴とする請求項8乃至13の何れかに記載の指向性制御方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12866703.7A EP2809086B1 (en) | 2012-01-27 | 2012-01-27 | Method and device for controlling directionality |
PCT/JP2012/052442 WO2013111348A1 (ja) | 2012-01-27 | 2012-01-27 | 指向性制御方法及び装置 |
JP2012539119A JP5140785B1 (ja) | 2012-01-27 | 2012-01-27 | 指向性制御方法及び装置 |
CN201280067985.9A CN104067632B (zh) | 2012-01-27 | 2012-01-27 | 指向性控制方法及装置 |
US14/338,365 US9445195B2 (en) | 2012-01-27 | 2014-07-23 | Directivity control method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/052442 WO2013111348A1 (ja) | 2012-01-27 | 2012-01-27 | 指向性制御方法及び装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/338,365 Continuation US9445195B2 (en) | 2012-01-27 | 2014-07-23 | Directivity control method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111348A1 true WO2013111348A1 (ja) | 2013-08-01 |
Family
ID=47789855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052442 WO2013111348A1 (ja) | 2012-01-27 | 2012-01-27 | 指向性制御方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9445195B2 (ja) |
EP (1) | EP2809086B1 (ja) |
JP (1) | JP5140785B1 (ja) |
CN (1) | CN104067632B (ja) |
WO (1) | WO2013111348A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3041272A1 (en) * | 2013-08-30 | 2016-07-06 | Kyoei Engineering Co., Ltd. | Sound processing apparatus, sound processing method, and sound processing program |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019021966A (ja) * | 2017-07-11 | 2019-02-07 | オリンパス株式会社 | 収音装置および収音方法 |
US11276388B2 (en) * | 2020-03-31 | 2022-03-15 | Nuvoton Technology Corporation | Beamforming system based on delay distribution model using high frequency phase difference |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000305594A (ja) * | 1999-04-16 | 2000-11-02 | Alpine Electronics Inc | マイクロホンシステム |
JP2001177900A (ja) * | 1999-12-17 | 2001-06-29 | Sony Corp | 音声信号記録装置 |
JP2009027388A (ja) | 2007-07-18 | 2009-02-05 | Dimagic:Kk | 同相成分抽出方法及び装置 |
JP2009135593A (ja) | 2007-11-28 | 2009-06-18 | Panasonic Electric Works Co Ltd | 音響入力装置 |
JP2009218663A (ja) * | 2008-03-07 | 2009-09-24 | Sanyo Electric Co Ltd | 音響信号処理装置 |
JP2010263280A (ja) * | 2009-04-30 | 2010-11-18 | Panasonic Corp | 音声信号処理装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4247037B2 (ja) * | 2003-01-29 | 2009-04-02 | 株式会社東芝 | 音声信号処理方法と装置及びプログラム |
WO2009025090A1 (ja) * | 2007-08-22 | 2009-02-26 | Panasonic Corporation | 指向性マイクロホン装置 |
WO2009100021A2 (en) * | 2008-02-01 | 2009-08-13 | Lehigh University | Bilinear algorithms and vlsi implementations of forward and inverse mdct with applications to mp3 audio |
JP5197458B2 (ja) * | 2009-03-25 | 2013-05-15 | 株式会社東芝 | 受音信号処理装置、方法およびプログラム |
-
2012
- 2012-01-27 EP EP12866703.7A patent/EP2809086B1/en active Active
- 2012-01-27 WO PCT/JP2012/052442 patent/WO2013111348A1/ja active Application Filing
- 2012-01-27 CN CN201280067985.9A patent/CN104067632B/zh active Active
- 2012-01-27 JP JP2012539119A patent/JP5140785B1/ja active Active
-
2014
- 2014-07-23 US US14/338,365 patent/US9445195B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000305594A (ja) * | 1999-04-16 | 2000-11-02 | Alpine Electronics Inc | マイクロホンシステム |
JP2001177900A (ja) * | 1999-12-17 | 2001-06-29 | Sony Corp | 音声信号記録装置 |
JP2009027388A (ja) | 2007-07-18 | 2009-02-05 | Dimagic:Kk | 同相成分抽出方法及び装置 |
JP2009135593A (ja) | 2007-11-28 | 2009-06-18 | Panasonic Electric Works Co Ltd | 音響入力装置 |
JP2009218663A (ja) * | 2008-03-07 | 2009-09-24 | Sanyo Electric Co Ltd | 音響信号処理装置 |
JP2010263280A (ja) * | 2009-04-30 | 2010-11-18 | Panasonic Corp | 音声信号処理装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2809086A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3041272A1 (en) * | 2013-08-30 | 2016-07-06 | Kyoei Engineering Co., Ltd. | Sound processing apparatus, sound processing method, and sound processing program |
EP3041272A4 (en) * | 2013-08-30 | 2017-04-05 | Kyoei Engineering Co., Ltd. | Sound processing apparatus, sound processing method, and sound processing program |
US10524081B2 (en) | 2013-08-30 | 2019-12-31 | Cear, Inc. | Sound processing device, sound processing method, and sound processing program |
Also Published As
Publication number | Publication date |
---|---|
CN104067632B (zh) | 2018-04-06 |
JPWO2013111348A1 (ja) | 2015-05-11 |
EP2809086A4 (en) | 2015-09-23 |
EP2809086B1 (en) | 2017-06-14 |
EP2809086A1 (en) | 2014-12-03 |
US9445195B2 (en) | 2016-09-13 |
CN104067632A (zh) | 2014-09-24 |
JP5140785B1 (ja) | 2013-02-13 |
US20140334639A1 (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2695394B1 (en) | Integrated psychoacoustic bass enhancement (pbe) for improved audio | |
JP4418774B2 (ja) | オーディオ装置およびサラウンド音生成方法 | |
JP2004187283A (ja) | マイクロホン装置および再生装置 | |
US8031883B2 (en) | Crosstalk cancellation system with sound quality preservation and parameter determining method thereof | |
JP6371167B2 (ja) | 残響抑制装置 | |
JP6226885B2 (ja) | 音源分離方法、装置、及びプログラム | |
JP4901542B2 (ja) | 音声信号生成装置及び方法 | |
JP5140785B1 (ja) | 指向性制御方法及び装置 | |
JP4368917B2 (ja) | 音響再生装置 | |
JP3322479B2 (ja) | オーディオ装置 | |
JP4963356B2 (ja) | フィルタの設計方法 | |
JP3579508B2 (ja) | オーディオ装置 | |
JP6124143B2 (ja) | サラウンド成分生成装置 | |
JP5157572B2 (ja) | 音処理装置およびプログラム | |
US20240203391A1 (en) | Tools and methods for designing filters for use in active noise cancelling systems | |
JP3879559B2 (ja) | ステレオマイクロホン装置 | |
JP2010028181A (ja) | 集音ヘッドホン | |
JP6128547B2 (ja) | 音源分離方法、装置及びプログラム | |
TWI760676B (zh) | 具有抗噪機制的音訊播放裝置及方法 | |
TWI634549B (zh) | 音訊強化裝置及方法 | |
JP2013141118A (ja) | ハウリングキャンセラ | |
JP2010010758A (ja) | 係数測定装置および収音装置 | |
JP2002247684A (ja) | ステレオ音場合成演算方法及び装置 | |
JP2011176566A (ja) | 残響付加装置、プログラム、及び残響付加方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012539119 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866703 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012866703 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012866703 Country of ref document: EP |