WO2013111348A1 - 指向性制御方法及び装置 - Google Patents

指向性制御方法及び装置 Download PDF

Info

Publication number
WO2013111348A1
WO2013111348A1 PCT/JP2012/052442 JP2012052442W WO2013111348A1 WO 2013111348 A1 WO2013111348 A1 WO 2013111348A1 JP 2012052442 W JP2012052442 W JP 2012052442W WO 2013111348 A1 WO2013111348 A1 WO 2013111348A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
signal
constant
exchange
adder
Prior art date
Application number
PCT/JP2012/052442
Other languages
English (en)
French (fr)
Inventor
晃 後藤
好孝 村山
Original Assignee
共栄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共栄エンジニアリング株式会社 filed Critical 共栄エンジニアリング株式会社
Priority to EP12866703.7A priority Critical patent/EP2809086B1/en
Priority to PCT/JP2012/052442 priority patent/WO2013111348A1/ja
Priority to JP2012539119A priority patent/JP5140785B1/ja
Priority to CN201280067985.9A priority patent/CN104067632B/zh
Publication of WO2013111348A1 publication Critical patent/WO2013111348A1/ja
Priority to US14/338,365 priority patent/US9445195B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction

Definitions

  • the present invention relates to a sound collection device that outputs sound with directivity in an arbitrary direction using two microphones arranged close to each other.
  • Patent Document 1 it is determined whether or not the input sound is in the target direction based on the input signals of two microphones arranged close to each other, and the difference in phase difference between the two input signals is corrected. Emphasize the sound that exists in the target direction.
  • two input signals are referred to each other, and the filter is sequentially updated using the obtained signals. If this is applied to signals input from two microphones, in-phase sound can be extracted and emphasized. In other words, it is possible to emphasize the sound from a predetermined direction and add directivity.
  • Patent Document 1 since the invention of Patent Document 1 is based on the premise that a difference in phase difference is taken, it is necessary to arrange microphones with a certain interval. Even if it can be applied to low-frequency wavelengths, a plurality of delay devices and long filter coefficients are required, and the calculation processing becomes complicated.
  • Patent Document 2 can provide sufficient directivity for a stereo sound source.
  • the phase difference between the input sounds is different. Therefore, the sensitivity is not high enough to take the difference.
  • the filter is sequentially updated based on the calculation result, the filter length becomes long and the calculation processing becomes heavy.
  • the present invention has been made in order to solve the above-described problems of the prior art, and its purpose is to use two microphones arranged close to each other and to receive a sound coming from an arbitrary direction.
  • An object of the present invention is to provide a directivity control method and apparatus that can output with emphasis or suppression with a small amount of computation.
  • the directivity control method of the embodiment is a directivity control method for applying a strength according to the phase difference to a pair of input signals input from a pair of microphones, A first step of generating a pair of exchange signals by alternately exchanging the pair of input signals for each sample by an exchange circuit, and multiplying one of the exchange signals by a coefficient m, A second step of generating an error signal; a third step of calculating a recurrence formula of the coefficient m including the error signal to update the coefficient m for each sample; and the sequentially updated coefficient m And a fourth step of multiplying and outputting the input signal.
  • one of the exchange signals is passed through a first integrator set to ⁇ 1 times the past coefficient m calculated one sample before, and the first integrator is After passing through the first adder that adds the pair of exchange signals, passed through the first adder, then passed through the second integrator in which the constant ⁇ was set, and passed through the second integrator.
  • the coefficient m may be updated every sample by passing through a second adder in which m is set.
  • the third step includes a fifth step of multiplying a past coefficient m calculated one sample before by a constant ⁇ , and calculates the recurrence formula referring to the multiplication result in the fifth step.
  • the constant ⁇ is less than 1, and when the input signal below a certain level continues, the output signal after the third step may be gradually attenuated.
  • the third step includes a fifth step of multiplying a past coefficient m calculated one sample before by a constant ⁇ , and calculates the recurrence formula referring to the multiplication result in the fifth step.
  • the constant ⁇ may be less than 1, and the strength may be emphasized more than the phase difference of the input signal through the third step.
  • the input signal may be divided into bands in advance, and the above steps may be performed for each band.
  • the speech signal arriving from the center position of a pair of microphones is accurately emphasized, and the angle from the center position is increased. It is possible to accurately suppress an audio signal that arrives from a direction deviated from.
  • FIG. 1 is a block diagram showing the configuration of the directivity control device.
  • the directivity control device is connected to a pair of microphones L and R having a predetermined separation distance, and as shown in FIG. 1, an input signal InL (k) and an input signal InR (k) are received from the microphones L and R. Entered.
  • the input signal InL (k) and the input signal InR (k) are discrete values sampled by the AD converter. That is, the input signal InL (k) is a digital signal output from the microphone L and sampled k-th.
  • the input signal InR (k) is a digital signal output from the microphone R and sampled k-th.
  • the input signal InL (k) and the input signal InR (k) are input to the exchange circuit 2 via the characteristic correction circuit 1 in the directivity control device.
  • the characteristic correction circuit 1 includes a frequency characteristic correction filter and a phase characteristic correction circuit.
  • the frequency characteristic correction filter extracts an audio signal in a desired frequency band.
  • the phase characteristic correction circuit reduces the influence of the acoustic characteristics of the microphones L and R on the input signal InL (k) and the input signal InR (k).
  • the exchange signal InA (k) and the exchange signal InB (k) are input to the coefficient update circuit 3.
  • the coefficient updating circuit 3 calculates an error between the exchange signal InA (k) and the exchange signal InB (k) and determines a coefficient m (k) corresponding to the error.
  • the coefficient update circuit 3 sequentially updates the coefficient m (k) with reference to the past coefficient m (k ⁇ 1).
  • An error signal e (k) between the exchange signal InA (k) and the exchange signal InB (k) is defined as the following equation (1).
  • the coefficient updating circuit 3 calculates the recurrence formula between adjacent binomials of the coefficient m (k) including the error signal e (k) using the error signal e (k) as a function of the coefficient m (k ⁇ 1). Thus, the coefficient m (k) that minimizes the error signal e (k) is searched.
  • the coefficient update circuit 3 updates the coefficient m (k) in such a direction as to decrease the coefficient m (k) as the phase difference between the input signal InL (k) and the input signal InR (k) is generated by this arithmetic processing. If so, the coefficient m (k) is output close to 1.
  • the coefficient m (k) is input to the synthesis circuit 4.
  • the synthesis circuit 4 multiplies the input signal InL (k) and the input signal InR (k) by a coefficient m (k) at an arbitrary ratio and adds them at an arbitrary ratio. As a result, the output signal OutL (k) The signal OutR (k) is output.
  • FIG. 2 is a block diagram showing an example of the coefficient update circuit 3.
  • the coefficient update circuit 3 is composed of a plurality of accumulators and adders, and is a circuit that embodies a recurrence formula between adjacent binomials, and refers to a past coefficient m (k ⁇ 1).
  • the coefficient m (k) is gradually updated. Adaptive filters with long tap numbers are eliminated.
  • an error signal e (k) is generated using the exchange signal InB (k) as a reference signal. That is, the exchange signal InA (k) is input to the integrator 5.
  • the accumulator 5 multiplies the exchange signal InA (k) by ⁇ 1 times the coefficient m (k ⁇ 1) one sample before.
  • An adder 6 is connected to the output side of the integrator 5. The adder 6 receives the signal output from the integrator 5 and the exchange signal InB (k), and adds these signals to obtain an instantaneous error signal e (k).
  • the error signal e (k) resulting from this arithmetic processing is as shown in the following equation (2).
  • the error signal e (k) is input to an integrator 7 that multiplies the input signal.
  • the coefficient ⁇ is a step size parameter of less than 1.
  • An integrator 8 is connected to the output side of the integrator 7.
  • the integrator 8 receives the exchange signal InA (k) and the signal ⁇ e (k) that has passed through the integrator.
  • the accumulator 8 multiplies the exchange signal InA (k) and the signal ⁇ e (k) to obtain a differential signal ⁇ E (m) 2 / ⁇ m of an instantaneous square error expressed by the following equation (3).
  • An adder 9 is connected to the integrator 8.
  • the adder 9 completes the coefficient m (k) by calculating the following formula (4), and generates the output signals OutL (k) and OutInR (k) from the input signals InL (k) and InR (k).
  • the coefficient m (k) is set in the synthesis circuit 4 to be operated. That is, the adder 9 completes the coefficient m (k) by adding the signal ⁇ ⁇ m (k ⁇ 1) to the differential signal ⁇ E (m) 2 / ⁇ m.
  • the signal ⁇ ⁇ m (k ⁇ 1) is connected to the output side of the adder 9 by a delay unit 10 that delays the signal by one sample and an accumulator 11 that accumulates a constant ⁇ .
  • the coefficient m (k ⁇ 1) updated by the process is generated by multiplying the constant 11 by the integrator 11.
  • the coefficient update circuit 3 realizes the calculation process of the following recurrence formula (5), generates the coefficient m (k), and gradually updates it for each sampling.
  • m (k) m (k ⁇ 1) ⁇ ⁇ + ( ⁇ m (k ⁇ 1) ⁇ InA (k) + InB (k)) ⁇ ⁇ ⁇ InA (k) (5)
  • FIG. 3 shows how the coefficient m (k) converges when the horizontal axis represents the number of samplings, the vertical axis represents the coefficient m (k), and the coefficient m (0) is preset to zero.
  • the distance between the microphones L and R is 25 mm.
  • the input signal InL (k) and the input signal InR (k) have a frequency of 1000 Hz and a phase difference of 0 (curve A), and a phase difference of 10.00 ° (curve B). This is a case where the phase difference is 26.47 ° (curve C).
  • the constant ⁇ is 1.000.
  • the coefficient m (k) when the phase difference is 0 converges toward 1.
  • the coefficient m (k) when the phase difference is 10.00 ° converges toward 0.91
  • the coefficient m (k) when the phase difference is 26.47 ° is directed toward 0.66. Have converged.
  • the output signal OutL (k) and the signal OutInR (k) are enhanced or suppressed by the coefficient m (k) corresponding to the phase difference through the directivity control device.
  • the closer the sound source is to the center positions of the microphones L and R the more the input signal InL (k) and the input signal InR (k) are emphasized.
  • the further away the sound source is from the center positions of the microphones L and R the more the input signal InL (k) and the input signal InR (k) are suppressed.
  • the center position is a position existing on a perpendicular line to the line segment passing through the midpoint of the line segment connecting the microphones L and R.
  • FIG. 4 shows how the coefficient m (k) converges when the constant ⁇ is changed.
  • 1.000
  • 0.999
  • the coefficient m (k) is given a strength greater than or equal to the phase difference between the input signal InL (k) and the input signal InR (k).
  • the phase difference between the input signal InL (k) and the input signal InR (k) of a sound having a longer wavelength than the proximity distance between the microphones L and R is small.
  • the enhancement or suppression by the coefficient m (k) becomes clear by changing the coefficient ⁇ .
  • the coefficient update circuit alternately calculates the following formula (8).
  • m (k) m (k ⁇ 1) ⁇ ⁇ + ( ⁇ m (k ⁇ 1) ⁇ InL (k) 2 + InL (k) ⁇ InR (k)) ⁇ ⁇
  • m (k) m (k ⁇ 1) ⁇ ⁇ + ( ⁇ m (k ⁇ 1) ⁇ InR (k) 2 + InR (k) ⁇ InL (k)) ⁇ ⁇ ...
  • Equation (8) the square term of the signal acts to reduce the uncorrelated component such as white noise as time passes.
  • the adjacent term is equivalent to the numerator part of the following formula (9) for sequentially calculating the correlation coefficient, and the influence of the correlation component is reflected on the coefficient m.
  • the coefficient update circuit attempts to approximate the input signal InR (k) to the input signal InL (k) to the input signal InL (k)
  • the uncorrelated component of the input signal InL (k) becomes the amplification direction
  • the input signal InR (k) The non-correlated component is in the suppression direction.
  • the uncorrelated component of the input signal InR (k) becomes the amplification direction
  • the uncorrelated component of the input signal InL (k). Is the direction of suppression.
  • the switching circuit 2 when the switching circuit 2 is installed before the coefficient update circuit 3, the function of approximating the input signal InR (k) to the input signal InL (k) to perform synchronous addition, and the input signal InR (k) On the other hand, the function of approximating the input signal InL (k) and attempting to add synchronously is repeated alternately. Therefore, the function of amplifying and suppressing the uncorrelated component cancels out alternately, and the coefficient m (k) reflects the influence of the correlated component deeply.
  • FIG. 5 shows the convergence state of the coefficient m (k) with and without the switching circuit 2.
  • a sound source is placed at the center position and collected by the microphones L and R.
  • the coefficient m (k) converges to 1 about 1000 times when the exchange circuit 2 is present, but when the update circuit 2 is not present as shown by the curve G, Even if the coefficient m (k) was updated 10,000 times, it still did not converge to 1, and the opening was 10 times. That is, when the exchange circuit 2 exists, the directivity control is quickly completed.
  • the directivity control device generates a pair of exchange signals by alternately exchanging a pair of input signals input from the microphones L and R for each sample by the exchange circuit. Then, after multiplying one of the exchange signals by a coefficient m, an error signal of the exchange signal is generated. Further, the recurrence formula of the coefficient m including the error signal is calculated to update the coefficient m for each sample. Finally, the sequentially updated coefficient m is multiplied by a pair of input signals and output.
  • one of the exchange signals is passed through a first integrator set to ⁇ 1 times the past coefficient m calculated one sample before, and after passing through the first integrator, After passing through the first adder for adding the exchange signals of the first, the first adder, the second integrator in which the constant ⁇ is set, and the second integrator, the past coefficient m Is passed through the third accumulator in which one exchange signal before being multiplied is set, and after passing through the third accumulator, the second addition in which the past coefficient m calculated one sample before is set
  • the coefficient m may be updated for each sample by passing the filter.
  • this voice inflection mode can be realized by a single coefficient update circuit that calculates the recurrence formula with an exchange circuit without depending on a filter having a large number of taps. It is possible to keep within tens of microseconds to several milliseconds.
  • a recurrence formula that refers to the multiplication result may be calculated by multiplying the past coefficient m calculated one sample before by a constant ⁇ .
  • the constant ⁇ is less than 1, the output signal gradually attenuates when input signals below a certain level continue.
  • the constant ⁇ By making the constant ⁇ less than one, it acts as a fade-out function in which the coefficient m gradually attenuates.
  • the value of the coefficient m (k) is once updated after being converged to 0, so that appropriate emphasis or suppression is achieved. Is done. Therefore, even if the voice transmission from one sound source is finished and a new voice transmission is made from another sound source, the generation of the coefficient m for the new voice transmission is dragged by the voice transmission from the previous sound source. Can be prevented.
  • the constant ⁇ when the constant ⁇ is less than 1, the strength of the output signal is emphasized more than the phase difference of the input signal.
  • the value of the constant ⁇ can be set for each band by dividing the input signal into bands and performing the above steps for each band. Thereby, not only parallel processing for obtaining the coefficient m (k) for each band is possible, but also the constraint condition caused by the wideband signal is solved, and appropriate emphasis or suppression can be performed according to the band.
  • the coefficient update circuit multiplies one of the exchange signals by a coefficient m, generates an error signal of the exchange signal, and calculates a recurrence formula of the coefficient m including the error signal. If the coefficient m is updated for each sample, the present invention is not limited to the above embodiment and can be realized in other modes.
  • this directivity control device may be realized as software processing of a CPU or DSP, or may be configured by a dedicated digital circuit.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

 近接配置された2個のマイクロフォンを用いて、任意の方向から到来する音を、少ない演算量で強調又は抑圧して出力することができる指向性制御方法及び装置を提供する。交換回路2によって一対の入力信号InL及びInRを1サンプル毎に交互に入れ替えることで、一対の交換信号InA及びInBを生成しておき、係数更新回路3によって、交換信号の片方InBに係数mを乗じた上で、交換信号InAとInBの誤差信号を生成し、誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する。そして、逐次更新された係数mを一対の入力信号InL及びInRに乗じて出力する。

Description

指向性制御方法及び装置
 本発明は、近接配置された2個のマイクロフォンを用いて、任意の方向に指向性をつけて音を出力する収音装置に関する。
 音声録音においては、目的の音を有効的に収音するために、雑音等のその周囲の音の入力を抑える必要がある。任意の方向の音を収音するには、指向性マイクを用いることで目的の音を鮮明に収音することが可能となる。また、間隔を広くとったステレオ録音等で、臨場感を出すこともできる。ICレコーダーにおいては、2個のマイクロフォンの入力信号を処理し、任意の方向の音を強調、又はそれ以外の方向の音を抑圧して収音する方法が多数提案されている。
 例えば、特許文献1の発明では、近接配置された2個のマイクロフォンの入力信号に基づいて入力された音声が目的方向にあるかを判断し、2個の入力信号の位相差の差分を補正し、目的方向に存在する音を強調している。また、特許文献2の発明では、2つの入力信号同士を互いに参照させ、得られた信号を利用して逐次フィルタを更新する。これを2個のマイクロフォンから入力される信号に適用すれば、同相の音を抽出し強調することができる。すなわち、所定の方向からの音声を強調し、指向性をつけることが可能である。
特表2009−135593号公報 特開2009−027388号公報
 ところで、状況に応じて気軽に録音を行いたいという要望に応えるために、ICレコーダーにおいても小型化が進んでいる。携帯可能なまでにICレコーダーが小型化された場合、ステレオ録音用に備えられた2個マイクロフォンが近接配置されることとなる。すると、この2個のマイクロフォンの距離が短いことから収音時の位相差が非常に小さくなり、指向性方向と音源との位置関係に応じた強調と抑圧も、左右に分離感のある収音も行うことが困難となってきた。この傾向は、2個のマイクロフォンの間隔に対して何十倍以上の長い波長をもつ低周波の波長において著しいものであった。
 また、特許文献1の発明は、位相差の差分をとることが前提となるため、一定以上の間隔を設けてマイクロフォンを配置する必要がある。たとえ低周波の波長に適用できたとしても、複数の遅延器や長いフィルタ係数が必要となり、演算処理も煩雑になる。
 特許文献2の発明は、ステレオ音源であれば十分に指向性を付けることが可能であるが、ICレコーダーのように2個のマイクロフォンが近接配置されている場合には、各入力音声の位相差が少なくなるため、その差分をとるほどの感度を有していない。また、演算結果に基づいて逐次フィルタを更新するため、フィルタ長が長くなり、また演算処理が重くなる。
 本願発明は、上記のような従来技術の問題点を解決するために成されたものであり、その目的は、近接配置された2個のマイクロフォンを用いて、任意の方向から到来する音を、少ない演算量で強調又は抑圧して出力することができる指向性制御方法及び装置を提供することにある。
 上記の目的を達成するために、実施形態の指向性制御方法は、一対のマイクロフォンから入力された一対の入力信号に対して、その位相差に応じた強弱をつける指向性制御方法であって、交換回路によって前記一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する第1のステップと、前記交換信号の片方に係数mを乗じた上で、前記交換信号の誤差信号を生成する第2のステップと、前記誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する第3のステップと、逐次更新された係数mを前記一対の入力信号に乗じて出力する第4のステップと、を備えること、を特徴とする。
 前記第2及び第3のステップでは、1サンプル前に算出された過去の係数mの−1倍がセットされた第1の積算器に前記交換信号の片方を通し、前記第1の積算器を経た後に、前記一対の交換信号を加算する第1の加算器を通し、第1の加算器を経た後に、定数μがセットされた第2の積算器を通し、前記第2の積算器を経た後に、前記過去の係数mが乗算される前の前記片方の交換信号がセットされた第3の積算器を通し、前記第3の積算器を経た後に、1サンプル前に算出された過去の係数mがセットされた第2の加算器を通すことで、前記係数mを1サンプル毎に更新するようにしてもよい。
 前記第3のステップは、1サンプル前に算出された過去の係数mに対して定数βを乗算する第5のステップを含み、第5のステップによる乗算結果を参照する前記漸化式を演算し、前記定数βは1未満であり、一定レベル未満の前記入力信号が連続すると、第3のステップを経た出力信号が漸次減衰するようにしてもよい。
 前記第3のステップは、1サンプル前に算出された過去の係数mに対して定数βを乗算する第5のステップを含み、第5のステップによる乗算結果を参照する前記漸化式を演算し、前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の位相差以上に強弱を強調するようにしてもよい。
 入力信号を予め帯域分割しておき、帯域別に前記各ステップを行うようにしてもよい。
 本発明によれば、交換回路と漸化式を演算する一つの回路によって演算数を大幅に削減しながらも、一対のマイクロフォンのセンター位置から到来する音声信号を精度よく強調し、センター位置から角度がずれた方向から到来する音声信号を精度よく抑圧できる。
指向性制御装置の構成を示すブロック図である。 係数更新回路の一例を示すブロック図である。 係数m(k)の収束例を示すグラフである。 定数βを変更した場合の係数m(k)の収束態様を示すグラフである。 交換回路の有無に応じた係数m(k)の収束速度を示すグラフである。 その他の実施形態に係る指向性制御装置の構成を示すブロック図である。
 以下、本発明に係る指向性制御方法及び装置の実施形態について図面を参照しつつ詳細に説明する。
 (構成)
 図1は、指向性制御装置の構成を示すブロック図である。指向性制御装置は、所定の離間距離を有する一対のマイクロフォンL、Rに接続されており、図1に示すように、マイクロフォンL、Rから入力信号InL(k)と入力信号InR(k)が入力される。
 入力信号InL(k)と入力信号InR(k)は、AD変換器によりサンプリングされた離散値である。すなわち、入力信号InL(k)は、マイクロフォンLから出力され、k番目にサンプリングされたデジタル信号である。入力信号InR(k)は、マイクロフォンRから出力され、k番目にサンプリングされたデジタル信号である。
 入力信号InL(k)と入力信号InR(k)は、指向性制御装置において、特性補正回路1を経て交換回路2に入力される。特性補正回路1は、周波数特性補正フィルタと位相特性補正回路とを有する。周波数特性補正フィルタは、所望周波数帯の音声信号を抽出する。位相特性補正回路は、入力信号InL(k)と入力信号InR(k)に対するマイクロフォンL、Rの音響特性が与える影響を減少させる。
 交換回路2は、入力信号InL(k)と入力信号InR(k)を1サンプルおきに交互に入れ替えて出力する。すなわち、交換信号InA(k)及び交換信号InB(k)のデータ列は、k=1、2、3、4・・・において、以下のようになる。
InA(k)={InL(1) InR(2) InL(3) InR(4)・・・}
InB(k)={InR(1) InL(2) InR(3) InL(4)・・・}
 交換信号InA(k)及び交換信号InB(k)は、係数更新回路3に入力される。この係数更新回路3は、交換信号InA(k)と交換信号InB(k)との誤差を計算し、誤差に応じた係数m(k)を決定する。また、係数更新回路3は、過去の係数m(k−1)を参照して逐次的に係数m(k)を更新する。
 同着の交換信号InA(k)と交換信号InB(k)の誤差信号e(k)を以下式(1)のように定義する。
Figure JPOXMLDOC01-appb-I000001
 この係数更新回路3は、誤差信号e(k)を係数m(k−1)の関数とし、誤差信号e(k)を含む係数m(k)の隣接二項間漸化式を演算することで、誤差信号e(k)が最小となる係数m(k)を探索する。係数更新回路3は、この演算処理により、入力信号InL(k)と入力信号InR(k)とに位相差が生じていればいるほど、係数m(k)を減少させる方向で更新し、同相であれば係数m(k)を1に近づけて出力する。
 係数m(k)は、合成回路4に入力される。合成回路4は、入力信号InL(k)と入力信号InR(k)とに任意の比率で係数m(k)を乗じ、任意の比率で足し合わせて、その結果として出力信号OutL(k)と信号OutR(k)を出力する。
 図2は、係数更新回路3の一例を示すブロック図である。図2に示すように、係数更新回路3は、複数の積算器と加算器から構成され、隣接二項間漸化式を体現した回路であり、過去の係数m(k−1)を参照して係数m(k)を漸次更新するものである。長いタップ数を有する適応フィルタは排除されている。
 この係数更新回路3において、交換信号InB(k)を参照信号として用いて誤差信号e(k)を生成する。すなわち、交換信号InA(k)は、積算器5に入力される。積算器5は、交換信号InA(k)に対して1サンプル前の係数m(k−1)の−1倍を掛け合わせる。積算器5の出力側には、加算器6が接続されている。この加算器6には、積算器5から出力された信号と交換信号InB(k)とが入力され、これら信号を加算することで、瞬時誤差信号e(k)を得る。この演算処理による誤差信号e(k)は以下式(2)の通りである。
Figure JPOXMLDOC01-appb-I000002
 誤差信号e(k)は、入力信号をμ倍する積算器7に入力される。係数μは、1未満のステップサイズパラメータである。積算器7の出力側には、積算器8が接続される。積算器8には、交換信号InA(k)と積算器を経た信号μe(k)とが入力される。この積算器8は、交換信号InA(k)と信号μe(k)とを乗じ、以下式(3)で表される瞬時二乗誤差の微分信号∂E(m)/∂mを得る。
Figure JPOXMLDOC01-appb-I000003
 積算器8には加算器9が接続されている。加算器9は、以下の数式(4)を演算することで係数m(k)を完成させ、入力信号InL(k)とInR(k)から出力信号OutL(k)とOutInR(k)を生成する合成回路4に係数m(k)をセットする。
Figure JPOXMLDOC01-appb-I000004
 すなわち、加算器9は微分信号∂E(m)/∂mに対して信号β・m(k−1)を加算することで係数m(k)を完成させる。
 信号β・m(k−1)は、加算器9の出力側に1サンプル分だけ信号を遅延させる遅延器10と定数βを積算する積算器11とが接続されており、1サンプル前の信号処理により更新された係数m(k−1)に対して積算器11で定数βを乗じることにより生成される。
 これにより、係数更新回路3では、以下の漸化式(5)の演算処理が実現し、係数m(k)を生成され、サンプリング毎に漸次更新していく。
m(k)=m(k−1)×β+(−m(k−1)×InA(k)+InB(k))×μ×InA(k)  ・・・(5)
 (作用)
 このように、指向性制御装置では、入力信号InL(k)と入力信号InR(k)が入力されると、以下の式(6)及び(7)で表される出力信号OutL(k)及び出力信号OutInR(k)を生成して出力している。
Figure JPOXMLDOC01-appb-I000005
 ここで、係数m(k)の収束例を図3に示す。図3は、横軸をサンプリング数、縦軸を係数m(k)とし、係数m(0)を零に予め設定した場合の係数m(k)の収束態様を示している。マイクロフォンL、Rの間隔は25mmとする。入力信号InL(k)と入力信号InR(k)は、周波数が1000Hzであり、位相差が0である場合(曲線A)と、位相差が10.00°である場合(曲線B)と、位相差が26.47°である場合である(曲線C)。尚、定数βは1.000である。
 図3に示すように、位相差が0の場合の係数m(k)は、1に向けて収束する。一方、位相差が10.00°である場合の係数m(k)は0.91に向けて収束し、位相差が26.47°である場合の係数m(k)は0.66に向けて収束している。
 このように、出力信号OutL(k)と信号OutInR(k)は、指向性制御装置を経ることにより、位相差に応じた係数m(k)で強調又は抑圧されることがわかる。換言すると、音源がマイクロフォンL、Rのセンター位置に近ければ近いほど、入力信号InL(k)と入力信号InR(k)は強調される。一方、音源がマイクロフォンL、Rのセンター位置から離れれば離れるほど、入力信号InL(k)と入力信号InR(k)は抑圧される。センター位置とは、マイクロフォンL、Rを結んだ線分の中点を通る当該線分に対する垂線上に存在する位置である。
 また、定数βを変更した場合の係数m(k)の収束態様を図4に示す。図4では、β=1.000として係数m(k)を求めた場合(曲線D)と、β=0.999として係数m(k)を求めた場合(曲線E)を示した。図4に示すように、位相差が26.47°の信号について、β=1.000の場合、係数m(k)は0.96に収束するが、β=0.999の場合、係数m(k)は0.8に収束する。
 このように、係数βを1未満に変更することで、係数m(k)に対して、入力信号InL(k)と入力信号InR(k)の位相差以上の強弱がつけられることがわかる。例えば、マイクロフォンL、Rの近接距離と比較して長い波長を有する音の入力信号InL(k)と入力信号InR(k)は、その位相差が小さい。しかしながら、このような音であっても、係数βを変更することで、係数m(k)による強調又は抑圧が明瞭になる。
 次に、交換回路の意義について説明する。交換回路を経ることによって、係数更新回路は、以下の数式(8)を交互に演算する。
kが奇数のとき
m(k)=m(k−1)×β+(−m(k−1)×InL(k)+InL(k)×InR(k))×μ
kが偶数のとき
m(k)=m(k−1)×β+(−m(k−1)×InR(k)+InR(k)×InL(k))×μ
                                  ・・・(8)
 数式(8)において、信号の二乗の項は、ホワイトノイズ等の無相関成分を時間の経過とともに小さくなるように作用する。一方、その隣接項は、相関係数を逐次的に算出する以下の数式(9)の分子部分と同等であり、相関成分の影響を係数mに反映させていくこととなる。
Figure JPOXMLDOC01-appb-I000006
 つまり、係数更新回路が入力信号InL(k)に対して入力信号InR(k)を近似させようとしたときには、入力信号InL(k)の無相関成分は増幅方向となり、入力信号InR(k)の無相関成分は抑制方向となる。また、入力信号InR(k)に対して入力信号InL(k)を近似させようとしたときには、入力信号InR(k)の無相関成分は増幅方向となり、入力信号InL(k)の無相関成分は抑制方向となる。
 そこで、係数更新回路3の前に交換回路2を設置すると、入力信号InL(k)に対して入力信号InR(k)を近似させて同期加算しようとする働きと、入力信号InR(k)に対して入力信号InL(k)を近似させて同期加算しようとする働きとを交互に繰り返すこととなる。そのため、無相関成分を増幅及び抑制しようとする働きは、交互に打ち消し合うことになり、係数m(k)には相関成分の影響を濃く反映させていくことになる。
 尚、図5は、交換回路2がある場合とない場合での係数m(k)の収束状態を示している。両収束状態は、共にセンター位置に音源を置き、マイクロフォンL、Rで集音したものである。図5の曲線Fが示すように、交換回路2がある場合には約1000回目に係数m(k)が1に収束したが、曲線Gが示すように、更新回路2がない場合には、係数m(k)を10000回更新しても未だ1に収束することはなく、その開きは10倍であった。すなわち、交換回路2が存在する場合には、指向性制御が速やかに完了することを示している。
 (効果)
 以上のように、本実施形態に係る指向性制御装置では、交換回路によってマイクロフォンL、Rから入力される一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する。そして、交換信号の片方に係数mを乗じた上で、交換信号の誤差信号を生成する。更に、誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する。最後に、逐次更新された係数mを一対の入力信号に乗じて出力するようにした。
 この制御方法は、例えば、1サンプル前に算出された過去の係数mの−1倍がセットされた第1の積算器に前記交換信号の片方を通し、第1の積算器を経た後に、一対の交換信号を加算する第1の加算器を通し、第1の加算器を経た後に、定数μがセットされた第2の積算器を通し、第2の積算器を経た後に、過去の係数mが乗算される前の片方の交換信号がセットされた第3の積算器を通し、第3の積算器を経た後に、1サンプル前に算出された過去の係数mがセットされた第2の加算器を通すことで、係数mを1サンプル毎に更新すればよい。
 これにより、マイクロフォンL、Rのセンター位置から到来する音声信号は強調され、センター位置から角度がずれた方向から到来する音声信号は抑圧されることとなり、センター位置に指向性の中心を有し、マイクロフォンL、Rの指向範囲を網羅するような仮想の第3のマイクロフォンが出現する。更に、この音声に抑揚をつける態様は、タップ数の多いフィルタ等に依らず、交換回路と漸化式を演算する一つの係数更新回路によって実現でき、演算数が大幅に削減できるとともに、遅延は数十マイクロ秒~数ミリ秒以内におさめることが可能である。
 また、1サンプル前に算出された過去の係数mに対して定数βを乗算し、乗算結果を参照する漸化式を演算するようにしてもよい。ここで、定数βを1未満とすると、一定レベル未満の入力信号が連続した場合に、出力信号が漸次減衰する。
 すなわち、定数βを一未満とすることで係数mが漸次減衰するフェードアウト機能として作用する。これにより、無音の状態を経て再度任意の方向から到来する音声を収音する際に、係数m(k)の値は一旦0に収束してから更新が行われるために、適正な強調あるいは抑圧が行われる。そのため、一の音源からの音声発信が終了し、他の音源から新たな音声発信がされたとしても、その新たな音声発信に対する係数mの生成において、前の音源からの音声発信に引きずられてしまうことを防止できる。
 更に、定数βを1未満とすると、入力信号の位相差以上に出力信号の強弱が強調される。定数βの値は、入力信号を予め帯域分割しておき、帯域別に前記各ステップを行うようにすることで、帯域別に設定することができる。これにより、帯域別に係数m(k)を求める並列処理が可能となるばかりでなく、広帯域の信号に起因する拘束条件が解かれ、帯域に応じて適正な強調或いは抑圧が可能となる。
 (その他の実施形態)
 以上のように、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、そのほかの様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、図6に示すように、係数更新回路は、交換信号の片方に係数mを乗じた上で、交換信号の誤差信号を生成し、この誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新するようにすれば、上記実施形態に限定することなく、その他の態様で実現可能である。
 また、この指向性制御装置は、CPUやDSPのソフトウェア処理として実現してもよいし、専用のデジタル回路で構成するようにしてもよい。
 1 特性補正回路
 2 交換回路
 3 係数更新回路
 4 合成回路
 5 積算器
 6 加算器
 7 積算器
 8 積算器
 9 加算器
 10 遅延器
 11 積算器

Claims (14)

  1.  一対のマイクロフォンから入力された一対の入力信号に対して、その位相差に応じた強弱をつける指向性制御方法であって、
     交換回路によって前記一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する第1のステップと、
     前記交換信号の片方に係数mを乗じた上で、前記交換信号の誤差信号を生成する第2のステップと、
     前記誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する第3のステップと、
     逐次更新された係数mを前記一対の入力信号に乗じて出力する第4のステップと、
     を備えること、
     を特徴とする指向性制御方法。
  2.  前記第3のステップは、
     1サンプル前に算出された過去の係数mに対して定数βを乗算する第5のステップを含み、第5のステップによる乗算結果を参照する前記漸化式を演算し、
     前記定数βは1未満であり、一定レベル未満の前記入力信号が連続すると、第3のステップを経た出力信号が漸次減衰すること、
     を特徴とする請求項1記載の指向性制御方法。
  3.  前記第3のステップは、
     1サンプル前に算出された過去の係数mに対して定数βを乗算する第5のステップを含み、第5のステップによる乗算結果を参照する前記漸化式を演算し、
     前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の位相差以上に強弱を強調すること、
     を特徴とする請求項1記載の指向性制御方法。
  4.  前記第2及び第3のステップでは、
     1サンプル前に算出された過去の係数mの−1倍がセットされた第1の積算器に前記交換信号の片方を通し、
     前記第1の積算器を経た後に、前記一対の交換信号を加算する第1の加算器を通し、
     第1の加算器を経た後に、定数μがセットされた第2の積算器を通し、
     前記第2の積算器を経た後に、前記過去の係数mが乗算される前の前記片方の交換信号がセットされた第3の積算器を通し、
     前記第3の積算器を経た後に、1サンプル前に算出された過去の係数mがセットされた第2の加算器を通すことで、
     前記係数mを1サンプル毎に更新すること、
     を特徴とする請求項1記載の指向性制御方法。
  5.  前記第3のステップでは、
     1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を設けておき、前記第2の加算器には、第4の加算器を経た過去の係数mがセットしておき、
     前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の瞬時値の比以上に前記強弱を強調すること、
     を特徴とする請求項4記載の指向性制御方法。
  6.  前記第3のステップでは、
     1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を設けておき、前記第2の加算器には、第4の加算器を経た過去の係数mをセットしておき、
     前記定数βは1未満であり、第3のステップを経ることで、前記入力信号の位相差以上に強弱を強調すること、
     を特徴とする請求項4記載の指向性制御方法。
  7.  入力信号を予め帯域分割しておき、帯域別に前記各ステップを行うこと、
    を特徴とする請求項1乃至6の何れかに記載の指向性制御方法。
  8.  一対のマイクロフォンから入力された一対の入力信号に対して、その位相差に応じた強弱をつける指向性制御装置であって、
     前記一対の入力信号を1サンプル毎に交互に入れ替えることで、一対の交換信号を生成する交換部と、
     前記交換信号の片方に係数mを乗じた上で、前記交換信号の誤差信号を生成する誤差信号生成部と、
     前記誤差信号を含む係数mの漸化式を演算して係数mを1サンプル毎に更新する漸化式演算部と、
     逐次更新された係数mを前記一対の入力信号に乗じて出力する積算部と、
     を備えること、
     を特徴とする指向性制御装置。
  9.  前記漸化式演算回路は、
     1サンプル前に算出された過去の係数mに対して定数βを乗算するミュート部を含み、
     前記ミュート部の乗算結果を参照して前記漸化式を演算し、
     前記定数βは1未満であり、一定レベル未満の前記入力信号が連続すると、漸化式演算部を経た出力信号が漸次減衰すること、
     を特徴とする請求項8記載の指向性制御装置。
  10.  前記漸化式演算回路は、
     1サンプル前に算出された過去の係数mに対して定数βを乗算する強調処理部を含み、
     前記強調処理部の乗算結果を参照して前記漸化式を演算し、
     前記定数βは1未満であり、漸化式演算部を経た出力信号には、前記入力信号の位相差以上の強弱がつけられること、
     を特徴とする請求項8記載の指向性制御装置。
  11.  前記誤差信号生成部は、
     1サンプル前に算出された過去の係数mの−1倍がセットされ、前記交換信号の片方が通過する第1の積算器と、
     前記第1の積算器を経た後に、前記一対の交換信号を加算する第1の加算器と、
     を備え、
     前記漸化式演算回路は、
     定数μがセットされ、第1の加算器を経た信号が通過する第2の積算器と、
     前記過去の係数mが乗算される前の前記片方の交換信号がセットされ、前記第2の積算器を経た信号が通過する第3の積算器と、
     1サンプル前に算出された過去の係数mがセットされ、前記第3の積算器を経た信号が通過する第2の加算器と、
     を備え、
     前記係数mが1サンプル毎に更新されること、
     を特徴とする請求項8記載の指向性制御装置。
  12.  前記漸化式演算回路は、
     1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を更に備え、
     前記第2の加算器には、第4の加算器を経た過去の係数mがセットされ、
     前記定数βは1未満であり、前記漸化式演算回路を経ることで、前記入力信号の位相差以上に強弱を強調すること、
     を特徴とする請求項11記載の指向性制御装置。
  13.  前記漸化式演算回路は、
     1サンプル前に算出された過去の係数mに対して定数βを乗じる第4の積算器を更に備え、
     前記第2の加算器には、第4の加算器を経た過去の係数mがセットされ、
     前記定数βは1未満であり、前記漸化式演算回路を経ることで、前記入力信号の位相差以上に強弱を強調すること、
     を特徴とする請求項11記載の指向性制御装置。
  14.  入力信号を予め帯域分割する分割部を更に備え、
     帯域別に前記交換信号の生成、前記誤差信号の生成、前記係数mの更新、及び前記係数mを前記一対の入力信号に乗じた出力を行うこと、
     を特徴とする請求項8乃至13の何れかに記載の指向性制御方法。
PCT/JP2012/052442 2012-01-27 2012-01-27 指向性制御方法及び装置 WO2013111348A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12866703.7A EP2809086B1 (en) 2012-01-27 2012-01-27 Method and device for controlling directionality
PCT/JP2012/052442 WO2013111348A1 (ja) 2012-01-27 2012-01-27 指向性制御方法及び装置
JP2012539119A JP5140785B1 (ja) 2012-01-27 2012-01-27 指向性制御方法及び装置
CN201280067985.9A CN104067632B (zh) 2012-01-27 2012-01-27 指向性控制方法及装置
US14/338,365 US9445195B2 (en) 2012-01-27 2014-07-23 Directivity control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052442 WO2013111348A1 (ja) 2012-01-27 2012-01-27 指向性制御方法及び装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/338,365 Continuation US9445195B2 (en) 2012-01-27 2014-07-23 Directivity control method and device

Publications (1)

Publication Number Publication Date
WO2013111348A1 true WO2013111348A1 (ja) 2013-08-01

Family

ID=47789855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052442 WO2013111348A1 (ja) 2012-01-27 2012-01-27 指向性制御方法及び装置

Country Status (5)

Country Link
US (1) US9445195B2 (ja)
EP (1) EP2809086B1 (ja)
JP (1) JP5140785B1 (ja)
CN (1) CN104067632B (ja)
WO (1) WO2013111348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041272A1 (en) * 2013-08-30 2016-07-06 Kyoei Engineering Co., Ltd. Sound processing apparatus, sound processing method, and sound processing program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021966A (ja) * 2017-07-11 2019-02-07 オリンパス株式会社 収音装置および収音方法
US11276388B2 (en) * 2020-03-31 2022-03-15 Nuvoton Technology Corporation Beamforming system based on delay distribution model using high frequency phase difference

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305594A (ja) * 1999-04-16 2000-11-02 Alpine Electronics Inc マイクロホンシステム
JP2001177900A (ja) * 1999-12-17 2001-06-29 Sony Corp 音声信号記録装置
JP2009027388A (ja) 2007-07-18 2009-02-05 Dimagic:Kk 同相成分抽出方法及び装置
JP2009135593A (ja) 2007-11-28 2009-06-18 Panasonic Electric Works Co Ltd 音響入力装置
JP2009218663A (ja) * 2008-03-07 2009-09-24 Sanyo Electric Co Ltd 音響信号処理装置
JP2010263280A (ja) * 2009-04-30 2010-11-18 Panasonic Corp 音声信号処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247037B2 (ja) * 2003-01-29 2009-04-02 株式会社東芝 音声信号処理方法と装置及びプログラム
WO2009025090A1 (ja) * 2007-08-22 2009-02-26 Panasonic Corporation 指向性マイクロホン装置
WO2009100021A2 (en) * 2008-02-01 2009-08-13 Lehigh University Bilinear algorithms and vlsi implementations of forward and inverse mdct with applications to mp3 audio
JP5197458B2 (ja) * 2009-03-25 2013-05-15 株式会社東芝 受音信号処理装置、方法およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305594A (ja) * 1999-04-16 2000-11-02 Alpine Electronics Inc マイクロホンシステム
JP2001177900A (ja) * 1999-12-17 2001-06-29 Sony Corp 音声信号記録装置
JP2009027388A (ja) 2007-07-18 2009-02-05 Dimagic:Kk 同相成分抽出方法及び装置
JP2009135593A (ja) 2007-11-28 2009-06-18 Panasonic Electric Works Co Ltd 音響入力装置
JP2009218663A (ja) * 2008-03-07 2009-09-24 Sanyo Electric Co Ltd 音響信号処理装置
JP2010263280A (ja) * 2009-04-30 2010-11-18 Panasonic Corp 音声信号処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2809086A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041272A1 (en) * 2013-08-30 2016-07-06 Kyoei Engineering Co., Ltd. Sound processing apparatus, sound processing method, and sound processing program
EP3041272A4 (en) * 2013-08-30 2017-04-05 Kyoei Engineering Co., Ltd. Sound processing apparatus, sound processing method, and sound processing program
US10524081B2 (en) 2013-08-30 2019-12-31 Cear, Inc. Sound processing device, sound processing method, and sound processing program

Also Published As

Publication number Publication date
CN104067632B (zh) 2018-04-06
JPWO2013111348A1 (ja) 2015-05-11
EP2809086A4 (en) 2015-09-23
EP2809086B1 (en) 2017-06-14
EP2809086A1 (en) 2014-12-03
US9445195B2 (en) 2016-09-13
CN104067632A (zh) 2014-09-24
JP5140785B1 (ja) 2013-02-13
US20140334639A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
EP2695394B1 (en) Integrated psychoacoustic bass enhancement (pbe) for improved audio
JP4418774B2 (ja) オーディオ装置およびサラウンド音生成方法
JP2004187283A (ja) マイクロホン装置および再生装置
US8031883B2 (en) Crosstalk cancellation system with sound quality preservation and parameter determining method thereof
JP6371167B2 (ja) 残響抑制装置
JP6226885B2 (ja) 音源分離方法、装置、及びプログラム
JP4901542B2 (ja) 音声信号生成装置及び方法
JP5140785B1 (ja) 指向性制御方法及び装置
JP4368917B2 (ja) 音響再生装置
JP3322479B2 (ja) オーディオ装置
JP4963356B2 (ja) フィルタの設計方法
JP3579508B2 (ja) オーディオ装置
JP6124143B2 (ja) サラウンド成分生成装置
JP5157572B2 (ja) 音処理装置およびプログラム
US20240203391A1 (en) Tools and methods for designing filters for use in active noise cancelling systems
JP3879559B2 (ja) ステレオマイクロホン装置
JP2010028181A (ja) 集音ヘッドホン
JP6128547B2 (ja) 音源分離方法、装置及びプログラム
TWI760676B (zh) 具有抗噪機制的音訊播放裝置及方法
TWI634549B (zh) 音訊強化裝置及方法
JP2013141118A (ja) ハウリングキャンセラ
JP2010010758A (ja) 係数測定装置および収音装置
JP2002247684A (ja) ステレオ音場合成演算方法及び装置
JP2011176566A (ja) 残響付加装置、プログラム、及び残響付加方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012539119

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012866703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012866703

Country of ref document: EP