WO2013111345A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2013111345A1
WO2013111345A1 PCT/JP2012/051901 JP2012051901W WO2013111345A1 WO 2013111345 A1 WO2013111345 A1 WO 2013111345A1 JP 2012051901 W JP2012051901 W JP 2012051901W WO 2013111345 A1 WO2013111345 A1 WO 2013111345A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
resin
mass
composition according
Prior art date
Application number
PCT/JP2012/051901
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 鶴井
中村 茂雄
志朗 巽
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to PCT/JP2012/051901 priority Critical patent/WO2013111345A1/en
Priority to KR1020147023391A priority patent/KR101897955B1/en
Priority to CN201280067707.3A priority patent/CN104053721B/en
Priority to JP2012553132A priority patent/JP5413522B1/en
Priority to TW102102469A priority patent/TWI572663B/en
Publication of WO2013111345A1 publication Critical patent/WO2013111345A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a specific resin composition. Furthermore, it is related with the adhesive film, prepreg, multilayer printed wiring board, and semiconductor device containing the said resin composition.
  • Patent Document 1 discloses resin compositions containing organic-inorganic hybrids, and describes that these compositions improve the glass transition point.
  • Patent Documents 2 to 4 general compounding studies are also conducted. However, its performance was not always satisfactory.
  • the plated conductor is not only a low arithmetic mean roughness (Ra value) but also a low root mean square roughness (Rq value) on the insulating layer surface after the wet roughening step. It is to provide a novel resin composition in which the layer exhibits a sufficiently high peel strength.
  • the present inventors can solve the above problems by using a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin. As a result, the present invention has been completed.
  • a resin composition comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin.
  • a resin composition comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin.
  • the above [C] characterized in that the inorganic filler surface-treated with (C) the epoxy resin is surface-treated with 0.05 to 3% by mass of the epoxy resin with respect to 100% by mass of the inorganic filler.
  • the resin composition according to the above. [3] The above [1] or [2], wherein the inorganic filler surface-treated with the epoxy resin (C) has an average temperature of 20 to 100 ° C. during the surface treatment with the epoxy resin. Resin composition.
  • the epoxy resin of the inorganic filler surface-treated with an epoxy resin is a naphthalene type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a glycerol type epoxy resin or a p-aminophenol type epoxy.
  • the group in which the inorganic filler surface-treated with (C) epoxy resin further comprises a silane coupling agent, an alkoxysilane, an alkoxy oligomer, an aluminum coupling agent, a titanium coupling agent, and a zirconium coupling agent.
  • the resin composition is cured to form an insulating layer, the arithmetic average roughness after roughening the surface of the insulating layer is 10 nm to 330 nm, and the root mean square roughness is 10 to 480 nm.
  • the peel strength between the conductor layer and the insulating layer obtained by plating on the surface of the insulating layer after the roughening treatment is 0.4 kgf / cm to 1.0 kgf / cm.
  • An adhesive film in which the resin composition according to any one of [1] to [13] is formed as a resin composition layer on a support.
  • a new resin composition can be provided in which the plated conductor layer exhibits a sufficiently high peel strength even when it has not only a low arithmetic average roughness (Ra value) but also a low root mean square roughness (Rq value). became.
  • the present invention is a resin composition
  • a resin composition comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin.
  • the epoxy resin used in the present invention is not particularly limited, but is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol.
  • Type epoxy resin naphthol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, epoxy having butadiene structure Resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanedimethanol type epoxy resin, trimethylol type epoxy resin, halogenated epoxy Butter, and the like can be mentioned. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy from the viewpoint of improving heat resistance, insulation reliability, and adhesion to metal foil.
  • a resin and an epoxy resin having a butadiene structure are preferred.
  • bisphenol A type epoxy resin (“Epicoat 828EL”, “YL980” manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resin (“jER806H”, “YL983U” manufactured by Mitsubishi Chemical Corporation), Naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS” manufactured by DIC Corporation), naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), naphthol type epoxy resin (“ESN-475V” manufactured by Tohto Kasei Co., Ltd.), epoxy resins having a butadiene structure (“PB-3600”, “Epolide PB” manufactured by Daicel Chemical Industries, Ltd.), epoxy resins having a biphenyl structure (Nippon Kayaku) “NC3000H”, “NC3000L”, “NC3100” "YX4000”, “YX4000H”, “YX4000HK”, “YL6121”) manufactured by Mitsubishi Chemical Corporation, cyclohex
  • Two or more epoxy resins may be used in combination, but it is preferable to contain an epoxy resin having two or more epoxy groups in one molecule.
  • a solid aromatic epoxy resin is used in combination.
  • the aromatic epoxy resin as used in the field of this invention means the epoxy resin which has an aromatic ring structure in the molecule
  • the resin composition When using a liquid epoxy resin and a solid epoxy resin together as an epoxy resin, when using the resin composition in the form of an adhesive film, the resin composition has an appropriate flexibility and the cured product of the resin composition has an appropriate breaking strength. Therefore, the blending ratio (liquid epoxy resin: solid epoxy resin) is preferably in the range of 1: 0.1 to 2, more preferably in the range of 1: 0.3 to 1.8, and 1: A range of 0.6 to 1.5 is more preferable.
  • the content of the epoxy resin is 3 to 3%. It is preferably 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass.
  • the curing agent used in the present invention is not particularly limited, but phenolic curing agent, naphthol curing agent, active ester curing agent, benzoxazine curing agent, cyanate ester curing agent, acid anhydride curing agent, etc. Among them, a phenolic curing agent, a naphthol curing agent, an active ester curing agent or a cyanate ester curing agent is preferable. These may be used alone or in combination of two or more.
  • the phenolic curing agent and the naphtholic curing agent are not particularly limited, and examples thereof include a phenolic curing agent having a novolak structure and a naphtholic curing agent having a novolac structure, such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred.
  • a phenolic curing agent having a novolak structure such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred.
  • ester groups with high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, ester of heterocyclic hydroxy compound, are in 1 molecule.
  • a compound having two or more in the above is preferably used.
  • the active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is more preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.
  • an active ester curing agent an active ester curing agent disclosed in JP-A-2004-277460 may be used, or a commercially available one may be used.
  • Commercially available active ester curing agents include those containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, benzoylated phenol novolacs, etc. Among them, dicyclopentadienyl diphenol structures are preferred. The inclusion is more preferable.
  • HPC-8000-65T (manufactured by DIC Corporation, active group equivalent of about 223) as a dicyclopentadienyl diphenol structure
  • DC808 Mitsubishi Chemical Co., Ltd., active group equivalent of about 149
  • YLH1026 Mitsubishi Chemical Co., Ltd., active group equivalent of about 200
  • YLH1030 Mitsubishi Chemical Co., Ltd., active group equivalent
  • YLH1048 manufactured by Mitsubishi Chemical Co., Ltd., active group equivalent of about 245
  • HPC-8000-65T is preferable from the viewpoint of the storage stability of the varnish and the thermal expansion coefficient of the cured product.
  • examples of the active ester curing agent containing a dicyclopentadienyl diphenol structure include those represented by the following formula (1).
  • R is a phenyl group or a naphthyl group
  • k represents 0 or 1
  • n is 0.05 to 2.5 on an average of repeating units.
  • R is preferably a naphthyl group, while k is preferably 0 and n is preferably 0.25 to 1.5.
  • cyanate ester type hardening curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines.
  • the weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000.
  • cyanate ester curing agent examples include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples thereof include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins
  • cyanate ester resins examples include phenol novolac polyfunctional cyanate ester resins represented by the following formula (2) (Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), and the following formula (3): Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene represented by the following formula (4): a part or all of the bisphenol A dicyanate represented by triazine Structure-containing cyanate ester resin (Lonza Japan Co., Ltd., T-4000, DT-7000), and the like.
  • formula (2) Lionza Japan Co., Ltd., PT30, cyanate equivalent 124
  • Prepolymer part Lona Japan Co., Ltd., BA230, cyanate equivalent 232
  • dicyclopentadiene represented by the following formula (4): a part or all of the bisphenol A dicyanate represented by triazine Structure-containing cyanate ester resin (Lonza Japan Co., Ltd
  • n represents an arbitrary number (preferably 0 to 20) as an average value.
  • n represents a number of 0 to 5 as an average value.
  • the acid anhydride curing agent is not particularly limited, but phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride Hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Acid anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3 ' -4
  • the total number of epoxy groups of the epoxy resin and (B) the total of reactive groups of the curing agent is preferably 1: 0.2 to 2, more preferably 1: 0.3 to 1.5, and still more preferably 1: 0.4 to 1.
  • the total number of epoxy groups of the epoxy resin present in the resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group of the curing agent.
  • the total number of is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all curing agents.
  • the content of the curing agent is 3 to It is preferably 30% by mass, more preferably 5 to 25% by mass, and even more preferably 7 to 20% by mass.
  • the inorganic filler used in the present invention is not particularly limited.
  • examples thereof include boron, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate.
  • silica is preferable.
  • silica such as amorphous silica, pulverized silica, fused silica, crystalline silica, synthetic silica, and hollow silica is preferable, and fused silica is more preferable.
  • the silica is preferably spherical. You may use these 1 type or in combination of 2 or more types. Examples of commercially available spherical fused silica include “SOC2” and “SOC1” manufactured by Admatechs.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, from the viewpoint of forming fine wiring on the insulating layer. 7 ⁇ m or less is even more preferable, 0.5 ⁇ m or less is particularly preferable, 0.4 ⁇ m or less is particularly preferable, and 0.3 ⁇ m or less is particularly preferable.
  • the epoxy resin composition is a resin varnish, it is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, from the viewpoint of preventing the viscosity of the varnish from increasing and handling properties from decreasing.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • a laser diffraction type particle size distribution measuring device LA-500, 750, 950, etc. manufactured by Horiba Ltd. can be used.
  • the liquid epoxy resin preferably has a viscosity at 25 ° C. of 0.01 to 50 Pa ⁇ s, and more preferably 0.05 to 35 Pa ⁇ s. Viscosity was measured using an E-type viscometer (RE-80 manufactured by Toki Sangyo Co., Ltd.), and about 0.2 ml of the liquid epoxy resin was measured using a syringe in an apparatus adjusted to 25 ° C. It can be measured at a rotational speed set to 5 to 20 rpm.
  • E-type viscometer RE-80 manufactured by Toki Sangyo Co., Ltd.
  • a polyfunctional epoxy resin is preferable, and a polyfunctional epoxy resin having an epoxy equivalent of 50 to 300 is more preferable.
  • the “polyfunctional epoxy resin” referred to here is an epoxy resin having two or more epoxy groups in one molecule.
  • the epoxy equivalent (g / eq) is a value obtained by dividing the average molecular weight by the number of epoxy groups per molecule.
  • Specific examples of the epoxy resin include naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycerol type epoxy resin, p-aminophenol type epoxy resin, biphenyl type epoxy resin, glycidyl methacrylate resin, glycidyl.
  • Acrylate resin cyclohexanedimethanol type epoxy resin, biphenyldimethanol type epoxy resin, benzenedimethanol type epoxy resin, propylene glycol type epoxy resin, alicyclic epoxy resin, methacrylate having alicyclic epoxy group, having methyl glycidyl group And methacrylate.
  • at least one selected from the group consisting of naphthalene type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, glycerol type epoxy resins and p-aminophenol type epoxy resins is preferable.
  • Examples of the method for surface-treating the inorganic filler with an epoxy resin include a method in which the inorganic filler is put into a stirrer and the inorganic filler is stirred for 5 to 30 minutes while spraying the epoxy resin. At that time, the viscosity may be adjusted by dissolving in an organic solvent so that the epoxy resin can be easily sprayed.
  • the average temperature during the surface treatment with the epoxy resin is preferably 20 ° C or higher, more preferably 25 ° C or higher, further preferably 30 ° C or higher, and further 35 ° C or higher. More preferred is 40 ° C. or higher, particularly preferred is 45 ° C. or higher.
  • the average temperature during the surface treatment with the epoxy resin is preferably 100 ° C. or less, more preferably 95 ° C. or less, and further preferably 90 ° C. or less.
  • the maximum temperature achieved during the surface treatment is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, and even more preferably 65 ° C. or higher. It is particularly preferable that the temperature is not lower than ° C.
  • the maximum temperature achieved when the surface treatment is performed with the epoxy resin is preferably 150 ° C.
  • the agitator include a rotary mixer, a drum mixer, a rocking mixer, a vibrating fluidized bed, and a powder dryer, and the rotary mixer is preferable in that it can be easily performed.
  • a Henschel-type powder mixer can be used as the rotary mixer.
  • the content of the epoxy resin is preferably 0.05% by mass or more with respect to 100% by mass of the inorganic filler from the viewpoint of improving the dispersibility of the resin varnish and improving the coverage of the inorganic filler.
  • 0.1% by mass or more is more preferable, 0.15% by mass or more is further preferable, 0.2% by mass or more is further more preferable, 0.25% by mass or more is particularly preferable, and 0.3% by mass or more is particularly preferable. preferable.
  • the surface treatment is preferably 3% by mass or less, more preferably 2.8% by mass or less, and further 2.6% by mass or less.
  • 2.4 mass% or less is still more preferable, 2.2 mass% or less is especially preferable, and 2 mass% or less is especially preferable.
  • (C) The content in the case of blending the inorganic filler surface-treated with an epoxy resin, when the nonvolatile content in the resin composition is 100% by mass, from the viewpoint of reducing the thermal expansion coefficient of the cured product, 20 mass% or more is preferable, 30 mass% or more is more preferable, 40 mass% or more is further more preferable, and 50 mass% or more is still more preferable. Moreover, from a viewpoint of the mechanical characteristic improvement of hardened
  • the inorganic filler is preferably an inorganic filler that has been surface-treated with a silazane compound in advance. After surface treatment with a silazane compound, surface treatment with an epoxy resin is advantageous in terms of improving dispersibility and improving affinity with a conductor layer.
  • silazane compound examples include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyldi.
  • Silazane 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1,3- Diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, hexaphenyldisilazane, dimethylaminotrimethyl Silazane, trisilazane, cyclotrisilazane, 1,1,3 5,5 hexamethylcyclotrisilazane, etc.
  • hexamethyldisilazane can be mentioned, particularly preferably hexamethyldisilazane. You may use these 1 type or in combination of 2 or more types.
  • Examples of spherical fused silica surface-treated with hexamethyldisilazane include “SC2050-SQ” manufactured by Admatechs.
  • the amount of the silazane compound is preferably 0.001 to 0.3% by mass with respect to 100% by mass of the inorganic filler, and 0.005 to 0.2% by mass. % Is more preferable, 0.01 to 0.1% by mass is further preferable, and 0.02 to 0.04% by mass is even more preferable.
  • (C) From the viewpoint of improving hydrophobicity and further improving dispersibility by reacting an inorganic filler surface-treated with an epoxy resin with an unreacted silanol group, a silane coupling agent, alkoxysilane, alkoxy oligomer, aluminum
  • the surface treatment is preferably carried out with at least one selected from the group consisting of a system coupling agent, a titanium coupling agent and a zirconium coupling agent. This surface treatment may be performed directly on the inorganic filler surface-treated with the epoxy resin (C) or may be added to the resin varnish.
  • silane coupling agent an epoxy silane coupling agent, an aminosilane coupling agent, a mercaptosilane coupling agent, or the like can be used. You may use these 1 type or in combination of 2 or more types. Specifically, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc.
  • Epoxysilane coupling agents aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, aminosilane coupling agents such as N-2 (aminoethyl) aminopropyltrimethoxysilane, Examples include mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane.
  • alkoxysilane methyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, or the like can be used. You may use these 1 type or in combination of 2 or more types.
  • An alkoxy oligomer refers to a low molecular resin having both an organic group and an alkoxysilyl group, and includes a methyl group-containing alkoxy oligomer, a phenyl group-containing alkoxy oligomer, a methyl / phenyl group-containing alkoxy oligomer, an epoxy group-containing alkoxy oligomer, and a mercapto group-containing alkoxy.
  • alkoxy oligomers examples include oligomers, amino group-containing alkoxy oligomers, acrylic group-containing alkoxy oligomers, methacryl group-containing alkoxy oligomers, ureido group-containing alkoxy oligomers, isocyanate group-containing alkoxy oligomers, vinyl group-containing alkoxy oligomers. You may use these 1 type or in combination of 2 or more types.
  • the alkoxy oligomer can be represented by the structure of the following general formula (5).
  • R 1, R 2 and R 3 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms. More preferably a straight chain or branched chain having 1 to 4 carbon atoms, still more preferably a methyl group, an ethyl group or a propyl group, still more preferably a methyl group or an ethyl group.
  • X includes a lower alkyl group, a glycidoxyalkyl group, an aminoalkyl group, a mercaptoalkyl group, an acryloxyalkyl group, a methacryloxyalkyl group, a ureidoalkyl group, an isocyanate alkyl group, and a vinylalkyl group.
  • Glycidoxypropyl group aminopropyl group, N-2- (aminoethyl) -3-aminopropyl group, N-phenyl-3-aminopropyl group, methacryloxypropyl group, acryloxypropyl group, mercaptopropyl group, A ureidopropyl group and an isocyanatepropyl group are preferable, and a glycidoxypropyl group, an aminopropyl group, an N-2- (aminoethyl) -3-aminopropyl group, an N-phenyl-3-aminopropyl group, and a mercaptopropyl group are more preferable.
  • an aminopropyl group, N-2- (a Aminoethyl) -3-aminopropyl group, N- phenyl-3-aminopropyl group are more preferable.
  • n is an integer of 2 to 10, preferably an integer of 2 to 8, more preferably an integer of 2 to 6, and further preferably an integer of 3 to 5.
  • Aluminum coupling agents include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum Diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), cyclic aluminum oxide isopropylate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide stearate, cyclic aluminum oxide octylate, cyclic aluminum Examples thereof include oxide stearate. You may use these 1 type or in combination of 2 or more types.
  • Titanium coupling agents include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, bis (dioctyl pyrophosphate) ethylene titanate, Bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (ditri) Decylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite Isopropyl trioctanoyl titanate, isopropyl tric
  • Zirconium-based coupling agents include zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, trisneodecanolate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate).
  • the peel strength between the conductor layer and the insulating layer obtained by curing the resin composition of the present invention to form an insulating layer and plating the surface of the insulating layer after the roughening treatment is described below. It can be grasped by the measurement method described in Measurement of Peel Strength (Peel Strength)>.
  • the peel strength is preferably 0.8 kgf / cm or less, more preferably 0.9 kgf / cm or less, still more preferably 1.0 kgf / cm or less, and even more preferably 1.5 kgf / cm or less.
  • the peel strength is preferably 0.4 kgf / cm or more, and more preferably 0.5 kgf / cm or more.
  • the arithmetic average roughness (Ra value) and the root mean square roughness (Rq value) after curing the resin composition of the present invention to form an insulating layer and roughening the surface of the insulating layer will be described later. It can be grasped by the measuring method described in the section “Measurement of arithmetic average roughness (Ra value) and root mean square roughness (Rq value) after roughening>.
  • the arithmetic average roughness (Ra value) is preferably 330 nm or less, more preferably 300 nm or less, even more preferably 250 nm or less, still more preferably 220 nm or less, and even more preferably 200 nm or less in order to reduce transmission loss of electrical signals. 180 nm or less is particularly preferable.
  • the arithmetic average roughness (Ra value) is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, still more preferably 40 nm or more, and even more preferably 50 nm or more from the viewpoint of improving peel strength. .
  • the Rq value is preferably 480 nm or less, more preferably 460 nm or less, still more preferably 440 nm or less, still more preferably 420 nm or less, even more preferably 400 nm or less, particularly preferably 380 nm or less, in order to obtain a smooth insulating layer surface. 360 nm or less is particularly preferable, and 340 nm or less is even more preferable.
  • the Rq value is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, still more preferably 70 nm or more, and particularly preferably 90 nm or more.
  • the elongation of the cured product of the resin composition of the present invention can be grasped by the measurement method described in ⁇ Measurement of elongation> described later. From the viewpoint that the handleability of the cured product can be improved by improving the elongation and cracks and cracks can be prevented, preferably 2.4% or more, more preferably 2.6% or more. 8% or more is further preferable, and 3.0% or more is even more preferable. On the other hand, from the viewpoint of reducing the coefficient of thermal expansion of the cured product, 5% or less is preferable, and 4% or less is more preferable.
  • the minimum melt viscosity of the resin composition layer of the adhesive film of the present invention can be determined by the measurement method described in ⁇ Measurement of minimum melt viscosity> described later. From the viewpoint of improving the laminating property of the adhesive film, improving the embedding property, and suppressing bleeding, 500 to 14000 poise is preferable, 1000 to 13000 poise is more preferable, 2000 to 12000 poise is further preferable, 3000 to 11000 poise is still more preferable, and 4000 to 10,000 poise is further preferable. Particularly preferred.
  • the resin composition of this invention can harden an epoxy resin and a hardening
  • a hardening accelerator An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.
  • the amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl). Phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU) and the like. You may use these 1 type or in combination of 2 or more types.
  • trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl).
  • Phenol, 1,8-diazabicyclo (5,4,0) -undecene hereinafter abbreviated as DBU
  • guanidine type hardening accelerator Dicyandiamide, 1-methyl guanidine, 1-ethyl guanidine, 1-cyclohexyl guanidine, 1-phenyl guanidine, 1- (o-tolyl) guanidine, dimethyl guanidine , Diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-phenyl Rubiguanido
  • the imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium tri Meritate 1-cyanoethyl-2-phenylimidazolium trimellitate,
  • Triphenylphosphine a phosphonium borate compound
  • tetraphenylphosphonium tetraphenylborate n-butylphosphonium tetraphenylborate
  • tetrabutylphosphonium decanoate 4- Methylphenyl triphenylphosphonium thiocyanate
  • tetraphenylphosphonium thiocyanate butyltriphenylphosphonium thiocyanate, and the like. You may use these 1 type or in combination of 2 or more types.
  • the content of the curing accelerator (excluding the metal curing accelerator) is in the range of 0.005 to 1% by mass when the nonvolatile content in the resin composition is 100% by mass.
  • the range of 0.01 to 0.5% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
  • organometallic complex or organometallic salt of metals such as cobalt, copper, zinc, iron, nickel, manganese, tin
  • organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
  • the addition amount of the metal-based curing accelerator is such that the metal content based on the metal-based curing catalyst is in the range of 25 to 500 ppm when the nonvolatile content in the resin composition is 100% by mass.
  • the range of 40 to 200 ppm is more preferable. If it is less than 25 ppm, it tends to be difficult to form a conductor layer excellent in adhesion to the surface of the insulating layer having a low arithmetic average roughness. If it exceeds 500 ppm, the storage stability and insulation of the resin composition are lowered. Tend to.
  • thermoplastic resin The resin composition of the present invention can further improve the mechanical strength of the cured product by further containing (E) a thermoplastic resin, and further improve the film molding ability when used in the form of an adhesive film. You can also.
  • thermoplastic resins include phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Can do. These thermoplastic resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000 from the viewpoints of improving film molding ability, mechanical strength, and compatibility of the resin varnish.
  • the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.
  • the content of the thermoplastic resin in the resin composition is not particularly limited, but the nonvolatile content in the resin composition is not limited. 0.1 to 10% by mass is preferable with respect to 100% by mass, and 1 to 5% by mass is more preferable. If the content of the thermoplastic resin is too small, the effect of improving the film forming ability and mechanical strength tends to not be exhibited. If the content is too large, the melt viscosity increases and the arithmetic average roughness of the insulating layer surface after the wet roughening process is low. It tends to increase.
  • the resin composition of the present invention can further improve plating peel strength by containing (F) rubber particles, and can also improve drill workability, decrease dielectric loss tangent, and obtain stress relaxation effects.
  • the rubber particles that can be used in the present invention are, for example, those that do not dissolve in the organic solvent used when preparing the varnish of the resin composition, and are incompatible with the essential components such as cyanate ester resin and epoxy resin. is there. Accordingly, the rubber particles exist in a dispersed state in the varnish of the resin composition of the present invention.
  • Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.
  • Preferable examples of rubber particles that can be used in the present invention include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate
  • the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • Two or more rubber particles may be used in combination.
  • Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, IM-401 modified 1, IM-401 modified 7-17 (trade name, manufactured by Ganz Kasei Co., Ltd.), Metabrene KW-4426 (trade name, Mitsubishi) Rayon Co., Ltd.).
  • Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size: 0.5 ⁇ m, manufactured by JSR Corporation).
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include Methbrene W300A (average particle size 0.1 ⁇ m) and W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the average particle size of the rubber particles is preferably in the range of 0.005 to 1 ⁇ m, more preferably in the range of 0.2 to 0.6 ⁇ m.
  • the average particle diameter of the rubber particles used in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of rubber particles is created on a mass basis using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). And it can measure by making the median diameter into an average particle diameter.
  • FPAR-1000 concentrated particle size analyzer
  • the content of the rubber particles is preferably 1 to 10% by mass, more preferably 2 to 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
  • the resin composition of the present invention can impart flame retardancy by further containing (G) a flame retardant.
  • the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • organophosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Nikko Corporation, and phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd. Leophos 30, 50, 65, 90, 110 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • organic nitrogen-containing phosphorus compounds include phosphoric ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Pharmaceutical Co., Ltd.
  • Phosphazene compounds such as As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308 manufactured by Sakai Kogyo Co., Ltd. Examples thereof include aluminum hydroxide such as B-303 and UFH-20.
  • the content of the flame retardant is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 8% by mass, where the nonvolatile content in the resin composition is 100% by mass. A range of mass% is more preferred.
  • thermosetting resins such as vinyl benzyl compounds, acrylic compounds, maleimide compounds, and blocked isocyanate compounds
  • organic fillers such as silicon powder, nylon powder, and fluorine powder
  • thickeners such as Orben and Benton
  • adhesion-imparting agents such as imidazole compounds, thiazole compounds, triazole compounds, silane coupling agents, alkoxy oligomers
  • phthalocyanine blue, phthalocyanine green, and iodin -Colorants such as green, disazo yellow, and carbon black can be listed.
  • the method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which the components are mixed using a rotary mixer or the like, if necessary, by adding a solvent or the like.
  • the use of the resin composition of the present invention is not particularly limited, but sheet-like laminated materials such as adhesive films and prepregs, circuit boards (laminates, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials
  • a resin composition is required, such as a semiconductor sealing material, hole-filling resin, and component-filling resin.
  • a resin composition for multilayer printed wiring boards it can be suitably used as a resin composition for forming an insulating layer, and more preferably as a resin composition for forming a conductor layer by plating. Can be used.
  • the resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but in general, it is preferably used in the form of a sheet-like laminated material such as an adhesive film or a prepreg. .
  • the softening point of the resin composition is preferably 40 to 150 ° C. from the viewpoint of the laminating property of the sheet-like laminated material.
  • the adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, and applying the resin varnish to a support using a die coater or the like. Alternatively, the resin composition layer is formed by drying the organic solvent by blowing hot air or the like. Thereby, the adhesive film by which the resin composition was formed as a resin composition layer on a support body can be manufactured.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Two or more organic solvents may be used in combination.
  • the drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less.
  • the amount of the organic solvent in the varnish and the boiling point of the organic solvent for example, by drying a varnish containing 30 to 60% by mass of the organic solvent at 50 to 150 ° C. for about 3 to 10 minutes, the resin composition is supported on the support.
  • An adhesive film having a layer formed thereon can be formed.
  • the thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the resin composition layer preferably has a thickness of 10 to 100 ⁇ m, more preferably 20 to 80 ⁇ m.
  • the support examples include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films.
  • PET polyethylene terephthalate
  • polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films.
  • release foil metal foil, such as copper foil and aluminum foil.
  • the support and a protective film described later may be subjected to surface treatment such as mud treatment or corona treatment.
  • the release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, more preferably 25 to 50 ⁇ m.
  • a protective film according to the support can be further laminated on the surface of the resin composition layer on which the support is not in close contact.
  • the thickness of the protective film is not particularly limited, but is, for example, 1 to 40 ⁇ m. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the adhesive film can also be stored in a roll.
  • an adhesive film is laminated on one side or both sides of a circuit board using a vacuum laminator.
  • the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like.
  • a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards.
  • one of the outermost layers of the multilayer printed wiring board is a conductor layer (circuit) in which one or both sides are patterned. It is included in the circuit board.
  • the surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
  • the adhesive film when the adhesive film has a protective film, after removing the protective film, the adhesive film and the circuit board are preheated as necessary, and the adhesive film is pressed and heated to the circuit board. Crimp.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used.
  • the laminating conditions are not particularly limited.
  • the pressure bonding temperature laminating temperature is preferably 70 to 140 ° C.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the vacuum lamination can be performed using a commercially available vacuum laminator.
  • Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.
  • the lamination process which heats and pressurizes under reduced pressure can also be performed using a general vacuum hot press machine.
  • a general vacuum hot press machine For example, it can be performed by pressing a metal plate such as a heated SUS plate from the support layer side.
  • the pressing condition is that the degree of vacuum is usually 1 ⁇ 10 ⁇ 2 MPa or less, preferably 1 ⁇ 10 ⁇ 3 MPa or less.
  • heating and pressurization can be carried out in one stage, it is preferable to carry out the conditions separately in two or more stages from the viewpoint of controlling the oozing of the resin.
  • the first stage press has a temperature of 70 to 150 ° C. and the pressure is in a range of 1 to 15 kgf / cm 2
  • the second stage press has a temperature of 150 to 200 ° C.
  • a pressure in a range of 1 to 40 kgf / cm 2 Preferably it is done.
  • the time for each stage is preferably 30 to 120 minutes.
  • Examples of commercially available vacuum hot press machines include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.
  • thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. to 210 ° C. It is selected in the range of 30 to 120 minutes at ° C.
  • the support is not peeled off after the insulating layer is formed, it is peeled off here.
  • holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
  • a conductor layer is formed on the insulating layer by dry plating or wet plating.
  • dry plating a known method such as vapor deposition, sputtering, or ion plating can be used.
  • wet plating the surface of the insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor.
  • the swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes, preferably at 55 to 65 ° C. for 5 to 10 minutes.
  • Examples of the swelling liquid include an alkaline solution and a surfactant solution, and an alkaline solution is preferable.
  • Examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Swelling Dip Securigans P (Swelling Dip Securiganth P), Swelling Dip Securigans SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to.
  • the roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes, preferably at 70 to 80 ° C. for 10 to 20 minutes.
  • the oxidizing agent examples include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5 to 10% by weight.
  • Examples of commercially available oxidizing agents include alkaline permanganic acid solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan.
  • the neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes, preferably at 35 to 45 ° C. for 3 to 8 minutes.
  • As the neutralizing solution an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
  • a conductor layer is formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
  • the prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing base material by a hot melt method or a solvent method, and heating and semi-curing it. That is, it can be set as the prepreg which the resin composition of this invention impregnated the sheet-like reinforcement base material.
  • a sheet-like reinforcement base material what consists of a fiber currently used as prepreg fibers, such as glass cloth and an aramid fiber, can be used, for example.
  • the resin is once coated on a coated paper having good releasability from the resin without dissolving it in an organic solvent, and then laminated on a sheet-like reinforcing substrate, or the resin is used in an organic solvent.
  • This is a method for producing a prepreg by directly coating a sheet-like reinforcing substrate with a die coater without dissolving it.
  • a resin varnish is prepared by dissolving a resin in an organic solvent in the same manner as the adhesive film, and a sheet-like reinforcing base material is immersed in the varnish, and then the resin-like varnish is impregnated into the sheet-like reinforcing base material. It is a method of drying.
  • ⁇ Multilayer printed wiring board using prepreg> an example of a method for producing a multilayer printed wiring board using the prepreg produced as described above will be described.
  • One or several prepregs of the present invention are stacked on a circuit board, sandwiched between metal plates through a release film, and vacuum press laminated under pressure and heating conditions.
  • the pressurizing and heating conditions are preferably a pressure of 5 to 40 kgf / cm 2 (49 ⁇ 10 4 to 392 ⁇ 10 4 N / m 2 ) and a temperature of 120 to 200 ° C. for 20 to 100 minutes.
  • the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. Thereafter, in the same manner as described above, the surface of the cured prepreg is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.
  • a semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention.
  • a semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention.
  • the “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps.
  • Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • “Mounting method by buildup layer without bump (BBUL)” means “a mounting method in which a semiconductor chip is directly embedded in a recess of a multilayer printed wiring board and the semiconductor chip and wiring on the printed wiring board are connected”. Furthermore, the method is roughly divided into the following BBUL method 1) and BBUL method 2). BBUL method 1) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using underfill agent BBUL method 2) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using adhesive film or prepreg
  • the BBUL method 1) specifically includes the following steps.
  • Step 1) A multi-layer printed wiring board with a conductor layer removed from both sides is provided, and a through hole is formed by a laser or a mechanical drill.
  • Step 2) Adhesive tape is attached to one side of the multilayer printed wiring board, and the bottom surface of the semiconductor chip is disposed in the through hole so as to be fixed on the adhesive tape.
  • the semiconductor chip at this time is preferably lower than the height of the through hole.
  • Step 3) The semiconductor chip is fixed to the through hole by injecting and filling an underfill agent into the gap between the through hole and the semiconductor chip.
  • Step 4) The adhesive tape is then peeled off to expose the bottom surface of the semiconductor chip.
  • Step 5) The adhesive film or prepreg of the present invention is laminated on the bottom surface side of the semiconductor chip to cover the semiconductor chip.
  • Step 6) After curing the adhesive film or prepreg, drill with a laser to expose the bonding pad on the bottom surface of the semiconductor chip, and connect with wiring by performing the roughening treatment, electroless plating, and electrolytic plating described above To do. You may laminate
  • the BBUL method 2) specifically includes the following steps.
  • Step 1) A photoresist film is formed on the conductor layers on both sides of the multilayer printed wiring board, and an opening is formed only on one side of the photoresist film by a photolithography method.
  • Step 2) The conductor layer exposed in the opening is removed with an etching solution to expose the insulating layer, and then the resist films on both sides are removed.
  • Step 3) Using a laser or a drill, all of the exposed insulating layer is removed and drilled to form a recess.
  • the laser energy is preferably a laser whose energy can be adjusted so as to lower the laser absorption rate of copper and increase the laser absorption rate of the insulating layer, and more preferably a carbon dioxide laser.
  • Step 4) The bottom surface of the semiconductor chip is placed in the recess with the opening side facing, the adhesive film or prepreg of the present invention is laminated from the opening side, the semiconductor chip is covered, and the gap between the semiconductor chip and the recess is formed. Embed.
  • the semiconductor chip at this time is preferably lower than the height of the recess.
  • Step 5) After the adhesive film or prepreg is cured, holes are formed with a laser to expose the bonding pad on the bottom surface of the semiconductor chip.
  • Step 6) By performing the roughening treatment, electroless plating, and electrolytic plating described above, the wiring is connected, and if necessary, an adhesive film or a prepreg is further laminated.
  • the semiconductor device is miniaturized and transmission loss is reduced, and since no solder is used, the semiconductor chip does not have its thermal history, and solder and resin distortion may occur in the future.
  • a mounting method using a bumpless build-up layer (BBUL) is preferable, the BBUL method 1) and the BBUL method 2) are more preferable, and the BBUL method 2) is more preferable.
  • the inner layer circuit board was applied to an electroless copper plating solution containing PdCl 2 at 40 ° C. It was immersed for 5 minutes and then immersed in an electroless copper plating solution at 25 ° C. for 20 minutes. After annealing for 30 minutes at 150 ° C., an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 35 ⁇ 5 ⁇ m. Next, annealing was performed at 200 ° C. for 60 minutes. The circuit board was measured for peel strength (peel strength) of the plated conductor layer.
  • peel strength peel strength of plated conductor layer
  • a gripping tool TSE Co., Ltd., Autocom type testing machine AC-50C-SL
  • the load kgf / cm when peeling 35 mm in the vertical direction at a speed of 50 mm / min at room temperature was measured.
  • Ra value and Rq value were obtained from numerical values obtained with a measurement range of 121 ⁇ m ⁇ 92 ⁇ m by a VSI contact mode and a 50 ⁇ lens. And it measured by calculating
  • melt viscosities of the resin composition layers in the adhesive films prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were measured. Using a model Rheosol-G3000 manufactured by UBM Co., Ltd., using a parallel plate having a resin amount of 1 g and a diameter of 18 mm, a starting temperature of 60 ° C. to 200 ° C., a heating rate of 5 ° C./min, The melt viscosity was measured under measurement conditions of a measurement temperature interval of 2.5 ° C. and vibration of 1 Hz / deg.
  • the product 1 was produced by stirring.
  • the maximum temperature reached during the surface treatment was about 80 ° C., and the average temperature was about 70 ° C.
  • the maximum temperature reached during the surface treatment was about 80 ° C., and the average temperature was about 65 ° C.
  • SC2050-SQ manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • Methyltrimethoxysilane (“MTMS-A” manufactured by Tama Chemical Co., Ltd.) (0.3 parts by mass) was stirred for 5 minutes while sprayed to produce Product 4.
  • the maximum temperature reached during the surface treatment was about 90 ° C., and the average temperature was about 75 ° C.
  • ⁇ Production Example 5 100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) was charged into a Henschel-type powder mixer, and a liquid polyfunctional epoxy resin (“HP4032SS” manufactured by DIC Corporation), Naphthalene type epoxy resin, MEK solution having a viscosity at 25 ° C. of 32 Pa ⁇ s, an epoxy equivalent of 144 and a non-volatile content of 80% by mass) was stirred for 10 minutes while spraying 2 parts by mass of N-phenyl-3-amino.
  • SC2050-SQ spherical silica manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • HP4032SS liquid polyfunctional epoxy resin
  • MEK solution having a viscosity at 25 ° C. of 32 Pa ⁇ s, an epoxy equivalent of 144 and a non-volatile content of 80% by mass
  • the product 5 was produced by stirring for 5 minutes while spraying 0.6 parts by mass of a propyl group-containing alkoxy oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C. of 1000 mm 2 / s).
  • the maximum temperature reached during the surface treatment was about 95 ° C., and the average temperature was about 85 ° C.
  • Example 1 5 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “HP4700” manufactured by DIC Corporation), 14 parts by mass of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation), biphenyl type epoxy 14 parts by mass of resin (epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) was dissolved in 30 parts by mass of solvent naphtha with stirring, and then cooled to room temperature.
  • a naphthalene type epoxy resin epoxy equivalent 144, “HP4700” manufactured by DIC Corporation
  • liquid bisphenol A type epoxy resin epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation
  • biphenyl type epoxy 14 parts by mass of resin epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.
  • a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, methyl ethyl ketone (hereinafter abbreviated as “MEK”) solution having a non-volatile content of 60% by mass of phenolic hydroxyl group equivalent 124), naphthalene-based Phenol resin (phenolic hydroxyl group equivalent 215, “SN485” manufactured by Nippon Steel Chemical Co., Ltd., MEK solution having a nonvolatile content of 60% by mass), 10 parts by mass, phenoxy resin (weight average molecular weight 35000, manufactured by Mitsubishi Chemical Co., Ltd.
  • LA-7054 methyl ethyl ketone
  • the resin varnish was prepared by uniformly dispersing with a rotary mixer. Next, the resin varnish is uniformly applied by a die coater on the release surface of a polyethylene terephthalate film with a alkyd release treatment (thickness 38 ⁇ m) so that the thickness of the resin composition layer after drying is 40 ⁇ m. And dried at 80 to 110 ° C.
  • Example 2 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 2. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 3 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 3. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 4 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 4. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 5 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 5. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 6 Except that 0.6 parts by mass of N-phenyl-3-aminopropyl group-containing alkoxy oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C. of 1000 mm 2 / s) was further added to the resin varnish of Example 1. A resin varnish was prepared in exactly the same manner. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • naphthalene type epoxy resin (epoxy equivalent 144, “HP4032SS” manufactured by DIC Corporation), 2 parts by mass of bixylenol type epoxy resin (epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation), modified naphthalene type 18 parts by mass of an epoxy resin (epoxy equivalent: about 330, “ESN475V” manufactured by Nippon Steel Chemical Co., Ltd.) was heated and dissolved in 25 parts by mass of solvent naphtha, and then cooled to room temperature.
  • naphthalene type epoxy resin epoxy equivalent 144, “HP4032SS” manufactured by DIC Corporation
  • bixylenol type epoxy resin epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation
  • modified naphthalene type 18 parts by mass of an epoxy resin (epoxy equivalent: about 330, “ESN475V” manufactured by Nippon Steel Chemical Co., Ltd.) was heated and dissolved in 25 parts
  • an active ester curing agent (“PCC-8000-65T” manufactured by DIC Corporation, a toluene solution having a nonvolatile content of 65% by mass with an active group equivalent of about 223), a prepolymer of bisphenol A dicyanate (Lonza Japan ( "BA230S75” manufactured by Co., Ltd., 30 parts by mass of a MEK solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass, a phenoxy resin (weight average molecular weight 35000, MEK having a non-volatile content of 30% by mass, Mitsubishi Chemical Corporation "YL7553” (1: 1 solution of cyclohexanone) 10 parts by weight, 1 part by weight of 4% by weight MEK solution of 4-dimethylaminopyridine as a curing accelerator, 1% by weight of cobalt (III) acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 parts
  • Example 1 A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m). Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • SC2050-SQ spherical silica
  • Example 2 The product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m), and an epoxy resin (epoxy equivalent 144, manufactured by DIC Corporation) HP4032SS ”) A resin varnish was prepared in the same manner except that 2 parts by mass were added. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • SC2050-SQ spherical silica manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • an epoxy resin epoxy equivalent 144, manufactured by DIC Corporation
  • the resin compositions of Examples 1 to 7 have sufficient values of peel strength with low arithmetic average roughness and low root mean square roughness. Moreover, it turns out that elongation improves and the handleability is improving. Furthermore, it turns out that melt viscosity falls and the handleability of an adhesive film is improving. Note that the Rq value reflects a local state on the surface of the insulating layer, and thus it can be seen that the Rq value is reduced to a dense rough surface. On the other hand, in Comparative Examples 1 to 3, the arithmetic average roughness and the root mean square roughness were large, the plating was swollen, and the peel strength was extremely small.
  • the plated conductor layer exhibits sufficiently high peel strength.
  • a new resin composition can be provided.
  • an adhesive film, a prepreg, a multilayer printed wiring board, and a semiconductor device using the same can be provided.
  • electric products such as computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with these can be provided.

Abstract

[Problem] To provide a novel resin composition whereby a plating conductor layer exhibits adequately high peel strength despite the surface of an insulation layer having not only a low arithmetic mean roughness (Ra value) but also a low root-mean-square roughness (Rq value) after a wet roughening process. [Solution] The purpose of the present invention is achieved by a resin composition containing an epoxy resin (A), a curing agent (B), and an inorganic filler (C) which is surface-treated with an epoxy resin.

Description

樹脂組成物Resin composition
 本発明は、特定の樹脂組成物に関する。さらに当該樹脂組成物を含有する、接着フィルム、プリプレグ、多層プリント配線板、半導体装置に関する。 The present invention relates to a specific resin composition. Furthermore, it is related with the adhesive film, prepreg, multilayer printed wiring board, and semiconductor device containing the said resin composition.
 近年、電子機器の小型化、高性能化が進み、多層プリント配線板においては、ビルドアップ層が複層化され、配線の微細化及び高密度化が求められていた。 In recent years, electronic devices have become smaller and higher in performance, and in multilayer printed wiring boards, build-up layers have been multilayered, and miniaturization and higher density of wiring have been demanded.
 これに対して様々な取組みがなされていた。例えば、特許文献1には、有機−無機ハイブリッド化物を含む樹脂組成物が開示されており、これらの組成物によりガラス転移点が向上することが記載されている。また、特許文献2~4では一般的な配合検討もされている。しかし、その性能は必ずしも満足いくものではなかった。 ¡Various efforts have been made for this. For example, Patent Document 1 discloses resin compositions containing organic-inorganic hybrids, and describes that these compositions improve the glass transition point. In Patent Documents 2 to 4, general compounding studies are also conducted. However, its performance was not always satisfactory.
特開平10−95901号公報JP-A-10-95901 特許第4674730号Japanese Patent No. 46747730 特許第4686750号Japanese Patent No. 4686750 特許第4782870号Japanese Patent No. 4782870
 本発明が解決しようとする課題は、湿式粗化工程後の絶縁層表面が低い算術平均粗さ(Ra値)のみならず、低い二乗平均平方根粗さ(Rq値)であっても、メッキ導体層が十分に高いピール強度を呈する、新規樹脂組成物を提供することである。 The problem to be solved by the present invention is that the plated conductor is not only a low arithmetic mean roughness (Ra value) but also a low root mean square roughness (Rq value) on the insulating layer surface after the wet roughening step. It is to provide a novel resin composition in which the layer exhibits a sufficiently high peel strength.
本発明者らは、鋭意検討した結果、(A)エポキシ樹脂、(B)硬化剤及び(C)エポキシ樹脂で表面処理された無機充填材を含有する樹脂組成物によって、上記課題を解決しうることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors can solve the above problems by using a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin. As a result, the present invention has been completed.
すなわち、本発明は以下の内容を含むものである。
[1](A)エポキシ樹脂、(B)硬化剤及び(C)エポキシ樹脂で表面処理された無機充填材を含有することを特徴とする樹脂組成物。
[2](C)エポキシ樹脂で表面処理された無機充填材が、無機充填材100質量%に対して該エポキシ樹脂0.05~3質量%により表面処理されていることを特徴とする上記[1]記載の樹脂組成物。
[3](C)エポキシ樹脂で表面処理された無機充填材は、該エポキシ樹脂で表面処理する際の平均温度が20~100℃であることを特徴とする上記[1]又は[2]記載の樹脂組成物。
[4](C)エポキシ樹脂で表面処理された無機充填材は、該エポキシ樹脂で表面処理する際の最高到達温度が50~150℃であることを特徴とする上記[1]又は[2]記載の樹脂組成物。
[5](C)エポキシ樹脂で表面処理された無機充填材の該エポキシ樹脂が液状エポキシ樹脂であることを特徴とする上記[1]~[4]のいずれか記載の樹脂組成物。
[6]該液状エポキシ樹脂の25℃での粘度が0.01~50Pa・sであることを特徴とする上記[5]記載の樹脂組成物。
[7](C)エポキシ樹脂で表面処理された無機充填材の該エポキシ樹脂が、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリセロール型エポキシ樹脂及びp−アミノフェノール型エポキシ樹脂からなる群より選択される1種以上であることを特徴とする上記[1]~[6]のいずれか記載の樹脂組成物。
[8](C)エポキシ樹脂で表面処理された無機充填材が、さらにシランカップリング剤、アルコキシシラン、アルコキシオリゴマー、アルミニウム系カップリング剤、チタン系カップリング剤及びジルコニウム系カップリング剤からなる群より選択される1種以上で表面処理されていることを特徴とする上記[1]~[7]のいずれか記載の樹脂組成物。
[9]更に(D)硬化促進剤を含有することを特徴とする上記[1]~[8]のいずれか記載の樹脂組成物。
[10]更に(E)熱可塑性樹脂を含有することを特徴とする上記[1]~[9]のいずれか記載の樹脂組成物。
[11]更に(F)ゴム粒子を含有することを特徴とする上記[1]~[10]のいずれか記載の樹脂組成物。
[12]更に(G)難燃剤を含有することを特徴とする上記[1]~[11]のいずれか記載の樹脂組成物。
[13]樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~330nmであり、二乗平均平方根粗さが10~480nmであり、かつ、粗化処理後の該絶縁層表面にメッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.0kgf/cmであることを特徴とする上記[1]~[12]のいずれか記載の樹脂組成物。
[14]上記[1]~[13]のいずれか記載の樹脂組成物が支持体上に樹脂組成物層として形成された接着フィルム。
[15]樹脂組成物層の最低溶融粘度が500~14000poiseであることを特徴とする上記[14]記載の接着フィルム。
[16]上記[1]~[13]のいずれか記載の樹脂組成物がシート状補強基材に含浸されたプリプレグ。
[17]上記[1]~[13]のいずれか記載の樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板。
[18]上記[17]記載の多層プリント配線板を用いることを特徴とする、半導体装置。
That is, the present invention includes the following contents.
[1] A resin composition comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin.
[2] The above [C] characterized in that the inorganic filler surface-treated with (C) the epoxy resin is surface-treated with 0.05 to 3% by mass of the epoxy resin with respect to 100% by mass of the inorganic filler. 1] The resin composition according to the above.
[3] The above [1] or [2], wherein the inorganic filler surface-treated with the epoxy resin (C) has an average temperature of 20 to 100 ° C. during the surface treatment with the epoxy resin. Resin composition.
[4] The above-mentioned [1] or [2], wherein the inorganic filler surface-treated with the epoxy resin (C) has a maximum reached temperature of 50 to 150 ° C. when surface-treated with the epoxy resin The resin composition as described.
[5] The resin composition as described in any one of [1] to [4] above, wherein the epoxy resin of the inorganic filler surface-treated with an epoxy resin is a liquid epoxy resin.
[6] The resin composition as described in [5] above, wherein the liquid epoxy resin has a viscosity at 25 ° C. of 0.01 to 50 Pa · s.
[7] (C) The epoxy resin of the inorganic filler surface-treated with an epoxy resin is a naphthalene type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a glycerol type epoxy resin or a p-aminophenol type epoxy. The resin composition as described in any one of [1] to [6] above, which is at least one selected from the group consisting of resins.
[8] The group in which the inorganic filler surface-treated with (C) epoxy resin further comprises a silane coupling agent, an alkoxysilane, an alkoxy oligomer, an aluminum coupling agent, a titanium coupling agent, and a zirconium coupling agent. The resin composition as described in any one of [1] to [7] above, which is surface-treated with at least one selected from the above.
[9] The resin composition as described in any one of [1] to [8] above, further comprising (D) a curing accelerator.
[10] The resin composition as described in any one of [1] to [9] above, further comprising (E) a thermoplastic resin.
[11] The resin composition as described in any one of [1] to [10] above, further comprising (F) rubber particles.
[12] The resin composition as described in any one of [1] to [11] above, further comprising (G) a flame retardant.
[13] The resin composition is cured to form an insulating layer, the arithmetic average roughness after roughening the surface of the insulating layer is 10 nm to 330 nm, and the root mean square roughness is 10 to 480 nm. In addition, the peel strength between the conductor layer and the insulating layer obtained by plating on the surface of the insulating layer after the roughening treatment is 0.4 kgf / cm to 1.0 kgf / cm. [12] The resin composition according to any one of [12].
[14] An adhesive film in which the resin composition according to any one of [1] to [13] is formed as a resin composition layer on a support.
[15] The adhesive film as described in [14] above, wherein the resin composition layer has a minimum melt viscosity of 500 to 14000 poise.
[16] A prepreg obtained by impregnating a sheet-like reinforcing base material with the resin composition according to any one of [1] to [13].
[17] A multilayer printed wiring board in which an insulating layer is formed from a cured product of the resin composition according to any one of [1] to [13].
[18] A semiconductor device using the multilayer printed wiring board according to [17].
(A)エポキシ樹脂、(B)硬化剤及び(C)エポキシ樹脂で表面処理された無機充填材を含有することを特徴とする樹脂組成物を用いることにより、湿式粗化工程後の絶縁層表面が低い算術平均粗さ(Ra値)のみならず、低い二乗平均平方根粗さ(Rq値)であっても、メッキ導体層が十分に高いピール強度を呈する、新規樹脂組成物を提供できるようになった。 (A) Insulating layer surface after wet roughening step by using resin composition characterized by containing epoxy resin, (B) curing agent and (C) inorganic filler surface-treated with epoxy resin A new resin composition can be provided in which the plated conductor layer exhibits a sufficiently high peel strength even when it has not only a low arithmetic average roughness (Ra value) but also a low root mean square roughness (Rq value). became.
 本発明は、(A)エポキシ樹脂、(B)硬化剤及び(C)エポキシ樹脂で表面処理された無機充填材を含有することを特徴とする樹脂組成物である。 The present invention is a resin composition comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin.
<(A)エポキシ樹脂>
 本発明に使用するエポキシ樹脂としては、特に限定されないが、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
<(A) Epoxy resin>
The epoxy resin used in the present invention is not particularly limited, but is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol. Type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, epoxy having butadiene structure Resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanedimethanol type epoxy resin, trimethylol type epoxy resin, halogenated epoxy Butter, and the like can be mentioned. These may be used alone or in combination of two or more.
これらの中でも、耐熱性向上、絶縁信頼性向上、金属箔との密着性向上の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。具体的には、例えば、ビスフェノールA型エポキシ樹脂(三菱化学(株)製「エピコート828EL」、「YL980」)、ビスフェノールF型エポキシ樹脂(三菱化学(株)製「jER806H」、「YL983U」)、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032」、「HP4032D」、「HP4032SS」)、ナフタレン型4官能エポキシ樹脂(DIC(株)製「HP4700」、「HP4710」)、ナフトール型エポキシ樹脂(東都化成(株)製「ESN−475V」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB−3600」、「エポリードPB」)、ビフェニル構造を有するエポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」、「NC3100」、三菱化学(株)製「YX4000」、「YX4000H」、「YX4000HK」、「YL6121」)、シクロヘキサンジメタノール型エポキシ樹脂(新日鐵化学(株)製「ZX1658」)、ビフェニルジメタノール型エポキシ樹脂(新日鐵化学(株)製「TX−0934」)、ベンゼンジメタノール型エポキシ樹脂(新日鐵化学(株)製「TX−0929」)、プロピレングリコール型エポキシ樹脂(新日鐵化学(株)製「PG−207」)、脂環式エポキシ樹脂(ダイセル化学工業(株)製「セロキサイド2021P」、「セロキサイド2081」、「セロキサイド3000」、「セロキサイド2000」、「EHPE3150」、「エポリードGT400」、「セルビナース」)、脂環式エポキシ基を有するメタクリレート(ダイセル化学工業(株)製「CYCLOMER M100」)、メチルグリシジル基を有するメタクリレート(ダイセル化学工業(株)製「M−GMA」)、アントラセン型エポキシ樹脂(三菱化学(株)製「YX8800」)、グリセロール型エポキシ樹脂(新日鐵化学(株)製「ZX1542」)、ナフチレンエーテル型エポキシ樹脂(DIC(株)製「EXA−7310」、「EXA−7311」、「EXA−7311L」、「EXA7311−G3」)などが挙げられる。 Among these, bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy from the viewpoint of improving heat resistance, insulation reliability, and adhesion to metal foil. A resin and an epoxy resin having a butadiene structure are preferred. Specifically, for example, bisphenol A type epoxy resin (“Epicoat 828EL”, “YL980” manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resin (“jER806H”, “YL983U” manufactured by Mitsubishi Chemical Corporation), Naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS” manufactured by DIC Corporation), naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), naphthol type epoxy resin (“ESN-475V” manufactured by Tohto Kasei Co., Ltd.), epoxy resins having a butadiene structure (“PB-3600”, “Epolide PB” manufactured by Daicel Chemical Industries, Ltd.), epoxy resins having a biphenyl structure (Nippon Kayaku) “NC3000H”, “NC3000L”, “NC3100” "YX4000", "YX4000H", "YX4000HK", "YL6121") manufactured by Mitsubishi Chemical Corporation, cyclohexanedimethanol type epoxy resin ("ZX1658" manufactured by Nippon Steel Chemical Co., Ltd.), biphenyldimethanol type epoxy resin (“TX-0934” manufactured by Nippon Steel Chemical Co., Ltd.), benzenedimethanol type epoxy resin (“TX-0929” manufactured by Nippon Steel Chemical Co., Ltd.), propylene glycol type epoxy resin (Nippon Steel Chemical Co., Ltd.) ) “PG-207”), cycloaliphatic epoxy resin (Daicel Chemical Industries, Ltd. “Celoxide 2021P”, “Celoxide 2081”, “Celoxide 3000”, “Celoxide 2000”, “EHPE3150”, “Epolide GT400” , "Selviners"), methacrylates with alicyclic epoxy groups ( “CYCLOMER M100” manufactured by Iser Chemical Industries, Ltd., methacrylate having a methylglycidyl group (“M-GMA” manufactured by Daicel Chemical Industries, Ltd.), anthracene type epoxy resin (“YX8800” manufactured by Mitsubishi Chemical Corporation), Glycerol type epoxy resin (“ZX1542” manufactured by Nippon Steel Chemical Co., Ltd.), naphthylene ether type epoxy resin (“EXA-7310”, “EXA-7111”, “EXA-7111L”, “EXA7311” manufactured by DIC Corporation) -G3 ").
エポキシ樹脂は2種以上を併用してもよいが、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含有するのが好ましい。また、1分子中に2個以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂であるエポキシ樹脂、および1分子中に3個以上のエポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂を併用する態様がより好ましい。なお、本発明でいう芳香族系エポキシ樹脂とは、その分子内に芳香環構造を有するエポキシ樹脂を意味する。エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂を併用する場合、樹脂組成物を接着フィルム形態で使用する場合に適度な可撓性を有する点や樹脂組成物の硬化物が適度な破断強度を有する点から、その配合割合(液状エポキシ樹脂:固体状エポキシ樹脂)は質量比で1:0.1~2の範囲が好ましく、1:0.3~1.8の範囲がより好ましく、1:0.6~1.5の範囲が更に好ましい。 Two or more epoxy resins may be used in combination, but it is preferable to contain an epoxy resin having two or more epoxy groups in one molecule. Also, an epoxy resin that is an aromatic epoxy resin that has two or more epoxy groups in one molecule and is liquid at a temperature of 20 ° C., and three or more epoxy groups in one molecule has a temperature of 20 ° C. And an embodiment in which a solid aromatic epoxy resin is used in combination. In addition, the aromatic epoxy resin as used in the field of this invention means the epoxy resin which has an aromatic ring structure in the molecule | numerator. When using a liquid epoxy resin and a solid epoxy resin together as an epoxy resin, when using the resin composition in the form of an adhesive film, the resin composition has an appropriate flexibility and the cured product of the resin composition has an appropriate breaking strength. Therefore, the blending ratio (liquid epoxy resin: solid epoxy resin) is preferably in the range of 1: 0.1 to 2, more preferably in the range of 1: 0.3 to 1.8, and 1: A range of 0.6 to 1.5 is more preferable.
本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、樹脂組成物中の不揮発分を100質量%とした場合、エポキシ樹脂の含有量は3~40質量%であるのが好ましく、5~35質量%であるのがより好ましく、10~30質量%であるのが更に好ましい。 In the resin composition of the present invention, from the viewpoint of improving the mechanical strength and water resistance of the cured product of the resin composition, when the nonvolatile content in the resin composition is 100% by mass, the content of the epoxy resin is 3 to 3%. It is preferably 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass.
 <(B)硬化剤>
本発明に使用する硬化剤としては、特に限定されないが、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、酸無水物系硬化剤等が挙げられ、なかでもフェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤又はシアネートエステル系硬化剤が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
<(B) Curing agent>
The curing agent used in the present invention is not particularly limited, but phenolic curing agent, naphthol curing agent, active ester curing agent, benzoxazine curing agent, cyanate ester curing agent, acid anhydride curing agent, etc. Among them, a phenolic curing agent, a naphthol curing agent, an active ester curing agent or a cyanate ester curing agent is preferable. These may be used alone or in combination of two or more.
 フェノール系硬化剤、ナフトール系硬化剤としては、特に制限はないが、ノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤が挙げられ、フェノールノボラック樹脂、トリアジン骨格含有フェノールノボラック樹脂、ナフトールノボラック樹脂、ナフトールアラルキル型樹脂、トリアジン骨格含有ナフトール樹脂、ビフェニルアラルキル型フェノール樹脂が好ましい。市販品としては、ビフェニルアラルキル型フェノール樹脂として、「MEH−7700」、「MEH−7810」、「MEH−7851」、「MEH7851−4H」(明和化成(株)製)、「GPH」(日本化薬(株)製)、ナフトールノボラック樹脂として、「NHN」、「CBN」(日本化薬(株)製)、ナフトールアラルキル型樹脂として、「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN395」、「SN375」(東都化成(株)製)、フェノールノボラック樹脂として「TD2090」(DIC(株)製)、トリアジン骨格含有フェノールノボラック樹脂「LA3018」、「LA7052」、「LA7054」、「LA1356」(DIC(株)製)等が挙げられる。これらは1種又は2種以上を併用してもよい。 The phenolic curing agent and the naphtholic curing agent are not particularly limited, and examples thereof include a phenolic curing agent having a novolak structure and a naphtholic curing agent having a novolac structure, such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred. Commercially available products include “MEH-7700”, “MEH-7810”, “MEH-7851”, “MEH7851-4H” (Maywa Kasei Co., Ltd.), “GPH” (Nippon Kasei) (Manufactured by Yakuhin Co., Ltd.), as naphthol novolak resin, “NHN”, “CBN” (manufactured by Nippon Kayaku Co., Ltd.), and as naphthol aralkyl type resin, “SN170”, “SN180”, “SN190”, “SN475” , “SN485”, “SN495”, “SN395”, “SN375” (manufactured by Toto Kasei Co., Ltd.), “TD2090” (manufactured by DIC Corporation) as a phenol novolak resin, phenol novolak resin “LA3018” containing a triazine skeleton, “LA7052”, “LA7054”, “LA1356” (manufactured by DIC Corporation), etc. It is. These may be used alone or in combination of two or more.
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤がより好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤が更に好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。活性エステル系硬化剤は1種又は2種以上を使用することができる。活性エステル系硬化剤としては、特開2004−277460号公報に開示されている活性エステル系硬化剤を用いてもよく、また市販のものを用いることもできる。市販されている活性エステル系硬化剤としては、ジシクロペンタジエニルジフェノール構造を含むもの、フェノールノボラックのアセチル化物、フェノールノボラックのベンゾイル化物等が好ましく、なかでもジシクロペンタジエニルジフェノール構造を含むものがより好ましい。具体的には、ジシクロペンタジエニルジフェノール構造を含むものとしてEXB9451、EXB9460、EXB9460S−65T、HPC−8000−65T(DIC(株)製、活性基当量約223)、フェノールノボラックのアセチル化物としてDC808(三菱化学(株)製、活性基当量約149)、フェノールノボラックのベンゾイル化物としてYLH1026(三菱化学(株)製、活性基当量約200)、YLH1030(三菱化学(株)製、活性基当量約201)、YLH1048(三菱化学(株)製、活性基当量約245)、等が挙げられ、中でもHPC−8000−65Tがワニスの保存安定性、硬化物の熱膨張率の観点から好ましい。 Although there is no restriction | limiting in particular as an active ester type hardening | curing agent, Generally ester groups with high reaction activity, such as phenol ester, thiophenol ester, N-hydroxyamine ester, ester of heterocyclic hydroxy compound, are in 1 molecule. A compound having two or more in the above is preferably used. The active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is more preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable. . Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like. 1 type (s) or 2 or more types can be used for an active ester type hardening | curing agent. As the active ester curing agent, an active ester curing agent disclosed in JP-A-2004-277460 may be used, or a commercially available one may be used. Commercially available active ester curing agents include those containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, benzoylated phenol novolacs, etc. Among them, dicyclopentadienyl diphenol structures are preferred. The inclusion is more preferable. Specifically, as an acetylated product of EXB9451, EXB9460, EXB9460S-65T, HPC-8000-65T (manufactured by DIC Corporation, active group equivalent of about 223) as a dicyclopentadienyl diphenol structure, DC808 (Mitsubishi Chemical Corporation, active group equivalent of about 149), YLH1026 (Mitsubishi Chemical Corporation, active group equivalent of about 200), YLH1030 (Mitsubishi Chemical Co., Ltd., active group equivalent) as a benzoylated phenol novolak 201), YLH1048 (manufactured by Mitsubishi Chemical Co., Ltd., active group equivalent of about 245), and the like. Among them, HPC-8000-65T is preferable from the viewpoint of the storage stability of the varnish and the thermal expansion coefficient of the cured product.
ジシクロペンタジエニルジフェノール構造を含む活性エステル系硬化剤として、より具体的には下式(1)のものが挙げられる。 More specifically, examples of the active ester curing agent containing a dicyclopentadienyl diphenol structure include those represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
(式中、Rはフェニル基、ナフチル基であり、kは0又は1を表し、nは繰り返し単位の平均で0.05~2.5である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R is a phenyl group or a naphthyl group, k represents 0 or 1, and n is 0.05 to 2.5 on an average of repeating units.)
誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基が好ましく、一方、kは0が好ましく、また、nは0.25~1.5が好ましい。 From the viewpoint of reducing the dielectric loss tangent and improving the heat resistance, R is preferably a naphthyl group, while k is preferably 0 and n is preferably 0.25 to 1.5.
 ベンゾオキサジン系硬化剤としては、特に制限はないが、具体例としては、F−a、P−d(四国化成(株)製)、HFB2006M(昭和高分子(株)製)などが挙げられる。 Although there is no restriction | limiting in particular as a benzoxazine type hardening | curing agent, As a specific example, Fa, Pd (made by Shikoku Kasei Co., Ltd.), HFB2006M (made by Showa Polymer Co., Ltd.), etc. are mentioned.
シアネートエステル系硬化剤としては、特に制限はないが、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の重量平均分子量は、特に限定されるものではないが、500~4500が好ましく、600~3000がより好ましい。シアネートエステル系硬化剤の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2−ビス(4−シアネート)フェニルプロパン、1,1−ビス(4−シアネートフェニルメタン)、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、ビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。市販されているシアネートエステル樹脂としては、下式(2)で表されるフェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30、シアネート当量124)、下式(3)で表されるビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230、シアネート当量232)、下式(4)で表されるジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT−4000、DT−7000)等が挙げられる。 Although there is no restriction | limiting in particular as cyanate ester type hardening | curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines. The weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000. Specific examples of the cyanate ester curing agent include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples thereof include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins, prepolymers in which these cyanate resins are partially triazines, and these may be used alone or in combination of two or more. Examples of commercially available cyanate ester resins include phenol novolac polyfunctional cyanate ester resins represented by the following formula (2) (Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), and the following formula (3): Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene represented by the following formula (4): a part or all of the bisphenol A dicyanate represented by triazine Structure-containing cyanate ester resin (Lonza Japan Co., Ltd., T-4000, DT-7000), and the like.
Figure JPOXMLDOC01-appb-C000002
[式中、nは平均値として任意の数(好ましくは0~20)を示す。]
Figure JPOXMLDOC01-appb-C000002
[Wherein n represents an arbitrary number (preferably 0 to 20) as an average value. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式中、nは平均値として0~5の数を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, n represents a number of 0 to 5 as an average value.)
酸無水物系硬化剤としては、特に限定されるものではないが、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’−4,4’−ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−C]フラン−1,3−ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸が共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。 The acid anhydride curing agent is not particularly limited, but phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride Hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Acid anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3 ' -4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,3,3 , 4,5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-C] furan-1,3-dione, ethylene glycol bis (anhydrotrimellitate) ), And polymer type acid anhydrides such as styrene / maleic acid resin in which styrene and maleic acid are copolymerized.
本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、(A)エポキシ樹脂のエポキシ基の合計数と、(B)硬化剤の反応基の合計数との比が、1:0.2~2が好ましく、1:0.3~1.5がより好ましく、1:0.4~1が更に好ましい。なお樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。 In the resin composition of the present invention, from the viewpoint of improving the mechanical strength and water resistance of the cured product of the resin composition, (A) the total number of epoxy groups of the epoxy resin and (B) the total of reactive groups of the curing agent The ratio to the number is preferably 1: 0.2 to 2, more preferably 1: 0.3 to 1.5, and still more preferably 1: 0.4 to 1. The total number of epoxy groups of the epoxy resin present in the resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group of the curing agent. The total number of is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all curing agents.
本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、樹脂組成物中の不揮発分を100質量%とした場合、硬化剤の含有量は3~30質量%であるのが好ましく、5~25質量%であるのがより好ましく、7~20質量%であるのが更に好ましい。 In the resin composition of the present invention, from the viewpoint of improving the mechanical strength and water resistance of the cured product of the resin composition, when the nonvolatile content in the resin composition is 100% by mass, the content of the curing agent is 3 to It is preferably 30% by mass, more preferably 5 to 25% by mass, and even more preferably 7 to 20% by mass.
 <(C)エポキシ樹脂で表面処理された無機充填材>
本発明に使用する無機充填材としては、特に限定されないが、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。なかでも、シリカが好ましい。また、無定形シリカ、粉砕シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等のシリカが好ましく、溶融シリカがより好ましい。また、シリカとしては球状のものが好ましい。これらは1種または2種以上組み合わせて使用してもよい。市販されている球状溶融シリカとして、(株)アドマテックス製「SOC2」、「SOC1」が挙げられる。
<(C) Inorganic filler surface-treated with epoxy resin>
The inorganic filler used in the present invention is not particularly limited. For example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, nitriding Examples thereof include boron, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Of these, silica is preferable. In addition, silica such as amorphous silica, pulverized silica, fused silica, crystalline silica, synthetic silica, and hollow silica is preferable, and fused silica is more preferable. Further, the silica is preferably spherical. You may use these 1 type or in combination of 2 or more types. Examples of commercially available spherical fused silica include “SOC2” and “SOC1” manufactured by Admatechs.
無機充填材の平均粒径は、特に限定されるものではないが、絶縁層上へ微細配線形成を行うという観点から、5μm以下が好ましく、3μm以下がより好ましく、1μm以下が更に好ましく、0.7μm以下が更に一層好ましく、0.5μm以下が殊更好ましく、0.4μm以下が特に好ましく、0.3μm以下がとりわけ好ましい。一方、エポキシ樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下するのを防止するという観点から、0.01μm以上が好ましく、0.03μm以上がより好ましく、0.05μm以上が更に好ましく、0.07μm以上が殊更好ましく、0.1μm以上が特に好ましい。上記無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA−500、750、950等を使用することができる。 The average particle size of the inorganic filler is not particularly limited, but is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, from the viewpoint of forming fine wiring on the insulating layer. 7 μm or less is even more preferable, 0.5 μm or less is particularly preferable, 0.4 μm or less is particularly preferable, and 0.3 μm or less is particularly preferable. On the other hand, when the epoxy resin composition is a resin varnish, it is preferably 0.01 μm or more, more preferably 0.03 μm or more, from the viewpoint of preventing the viscosity of the varnish from increasing and handling properties from decreasing. 0.05 μm or more is more preferable, 0.07 μm or more is particularly preferable, and 0.1 μm or more is particularly preferable. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring device, LA-500, 750, 950, etc. manufactured by Horiba Ltd. can be used.
無機充填材を表面処理するためのエポキシ樹脂としては、特に限定されないが、均一な表面処理を可能にするという観点から、液状エポキシ樹脂が好ましい。液状エポキシ樹脂としては、25℃での粘度が0.01~50Pa・sであることが好ましく、0.05~35Pa・sであることがより好ましい。粘度の測定は、E型粘度計(東機産業(株)社製 RE−80)を用いて、25℃に調整した装置内に、シリンジを用いて該液状エポキシ樹脂を約0.2ml計りとり、5~20rpmに設定した回転数にて測定できる。また、無機充填材と高い反応率を得るという観点から、多官能エポキシ樹脂が好ましく、エポキシ当量が50~300である多官能エポキシ樹脂がより好ましい。ここでいう「多官能エポキシ樹脂」とは、1分子中に2個以上のエポキシ基を有するエポキシ樹脂である。また、エポキシ当量(g/eq)とは、平均分子量を1分子あたりのエポキシ基数で割った値のことである。該エポキシ樹脂として、具体的には、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリセロール型エポキシ樹脂、p−アミノフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルメタクリレート樹脂、グリシジルアクリレート樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ビフェニルジメタノール型エポキシ樹脂、ベンゼンジメタノール型エポキシ樹脂、プロピレングリコール型エポキシ樹脂、脂環式エポキシ樹脂、脂環式エポキシ基を有するメタクリレート、メチルグリシジル基を有するメタクリレート等が挙げられる。なかでも、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリセロール型エポキシ樹脂及びp−アミノフェノール型エポキシ樹脂からなる群より選択される1種以上が好ましい。 Although it does not specifically limit as an epoxy resin for surface-treating an inorganic filler, From a viewpoint of enabling a uniform surface treatment, a liquid epoxy resin is preferable. The liquid epoxy resin preferably has a viscosity at 25 ° C. of 0.01 to 50 Pa · s, and more preferably 0.05 to 35 Pa · s. Viscosity was measured using an E-type viscometer (RE-80 manufactured by Toki Sangyo Co., Ltd.), and about 0.2 ml of the liquid epoxy resin was measured using a syringe in an apparatus adjusted to 25 ° C. It can be measured at a rotational speed set to 5 to 20 rpm. Further, from the viewpoint of obtaining a high reaction rate with the inorganic filler, a polyfunctional epoxy resin is preferable, and a polyfunctional epoxy resin having an epoxy equivalent of 50 to 300 is more preferable. The “polyfunctional epoxy resin” referred to here is an epoxy resin having two or more epoxy groups in one molecule. The epoxy equivalent (g / eq) is a value obtained by dividing the average molecular weight by the number of epoxy groups per molecule. Specific examples of the epoxy resin include naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycerol type epoxy resin, p-aminophenol type epoxy resin, biphenyl type epoxy resin, glycidyl methacrylate resin, glycidyl. Acrylate resin, cyclohexanedimethanol type epoxy resin, biphenyldimethanol type epoxy resin, benzenedimethanol type epoxy resin, propylene glycol type epoxy resin, alicyclic epoxy resin, methacrylate having alicyclic epoxy group, having methyl glycidyl group And methacrylate. Among these, at least one selected from the group consisting of naphthalene type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, glycerol type epoxy resins and p-aminophenol type epoxy resins is preferable.
無機充填材をエポキシ樹脂で表面処理する方法としては、無機充填材を攪拌機に投入し、エポキシ樹脂を噴霧しながら、無機充填材を5~30分間攪拌する方法が挙げられる。その際、エポキシ樹脂を噴霧しやすいように、有機溶剤に溶解して粘度を調整しても良い。また、表面処理を効率的に行うという点から、該エポキシ樹脂で表面処理する際の平均温度が20℃以上が好ましく、25℃以上がより好ましく、30℃以上が更に好ましく、35℃以上が更に一層好ましく、40℃以上が殊更好ましく、45℃以上が特に好ましい。一方、該エポキシ樹脂が劣化してしまうのを防止する点から、該エポキシ樹脂で表面処理する際の平均温度が100℃以下が好ましく、95℃以下がより好ましく、90℃以下が更に好ましい。また、表面処理を十分に進行させるという観点から、表面処理時の最高到達温度が50℃以上が好ましく、55℃以上がより好ましく、60℃以上が更に好ましく、65度以上が更に一層好ましく、70℃以上が殊更好ましい。一方、該エポキシ樹脂が劣化してしまうのを防止する点から、該エポキシ樹脂で表面処理する際の最高到達温度が150℃以下が好ましく、140℃以下がより好ましく、130℃以下が更に好ましく、120℃以下が更に一層好ましく、110℃以下が殊更好ましく、105℃以下が特に好ましい。攪拌機としては、回転ミキサー、ドラムミキサー、ロッキングミキサー、振動流動層、粉体乾燥機などが挙げられ、簡便に行えるという点で回転ミキサーが好ましい。回転ミキサーとしてはヘンシェル型混粉機が挙げられる。 Examples of the method for surface-treating the inorganic filler with an epoxy resin include a method in which the inorganic filler is put into a stirrer and the inorganic filler is stirred for 5 to 30 minutes while spraying the epoxy resin. At that time, the viscosity may be adjusted by dissolving in an organic solvent so that the epoxy resin can be easily sprayed. Further, from the viewpoint of efficiently performing the surface treatment, the average temperature during the surface treatment with the epoxy resin is preferably 20 ° C or higher, more preferably 25 ° C or higher, further preferably 30 ° C or higher, and further 35 ° C or higher. More preferred is 40 ° C. or higher, particularly preferred is 45 ° C. or higher. On the other hand, from the viewpoint of preventing the epoxy resin from being deteriorated, the average temperature during the surface treatment with the epoxy resin is preferably 100 ° C. or less, more preferably 95 ° C. or less, and further preferably 90 ° C. or less. Further, from the viewpoint of sufficiently proceeding with the surface treatment, the maximum temperature achieved during the surface treatment is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, and even more preferably 65 ° C. or higher. It is particularly preferable that the temperature is not lower than ° C. On the other hand, from the viewpoint of preventing the epoxy resin from deteriorating, the maximum temperature achieved when the surface treatment is performed with the epoxy resin is preferably 150 ° C. or less, more preferably 140 ° C. or less, still more preferably 130 ° C. or less, 120 degrees C or less is still more preferable, 110 degrees C or less is especially preferable, and 105 degrees C or less is especially preferable. Examples of the agitator include a rotary mixer, a drum mixer, a rocking mixer, a vibrating fluidized bed, and a powder dryer, and the rotary mixer is preferable in that it can be easily performed. As the rotary mixer, a Henschel-type powder mixer can be used.
該エポキシ樹脂の含有量は、樹脂ワニスの分散性向上、無機充填材の被覆率向上という観点から、無機充填材100質量%に対して0.05質量%以上で表面処理されていることが好ましく、0.1質量%以上がより好ましく、0.15質量%以上が更に好ましく、0.2質量%以上が更に一層好ましく、0.25質量%以上が殊更好ましく、0.3質量%以上が特に好ましい。また、粘度の上昇を抑制して効率よく表面処理するという観点から、3質量%以下で表面処理されていることが好ましく、2.8質量%以下がより好ましく、2.6質量%以下が更に好ましく、2.4質量%以下が更に一層好ましく、2.2質量%以下が殊更好ましく、2質量%以下が特に好ましい。 The content of the epoxy resin is preferably 0.05% by mass or more with respect to 100% by mass of the inorganic filler from the viewpoint of improving the dispersibility of the resin varnish and improving the coverage of the inorganic filler. 0.1% by mass or more is more preferable, 0.15% by mass or more is further preferable, 0.2% by mass or more is further more preferable, 0.25% by mass or more is particularly preferable, and 0.3% by mass or more is particularly preferable. preferable. Further, from the viewpoint of efficient surface treatment by suppressing an increase in viscosity, the surface treatment is preferably 3% by mass or less, more preferably 2.8% by mass or less, and further 2.6% by mass or less. Preferably, 2.4 mass% or less is still more preferable, 2.2 mass% or less is especially preferable, and 2 mass% or less is especially preferable.
(C)エポキシ樹脂で表面処理された無機充填材を配合する場合の含有量は、樹脂組成物中の不揮発分を100質量%とした場合、硬化物の熱膨張率を低下させるという観点から、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が更に一層好ましい。また、硬化物の機械特性向上という観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましく、70質量%以下が更に一層好ましい。 (C) The content in the case of blending the inorganic filler surface-treated with an epoxy resin, when the nonvolatile content in the resin composition is 100% by mass, from the viewpoint of reducing the thermal expansion coefficient of the cured product, 20 mass% or more is preferable, 30 mass% or more is more preferable, 40 mass% or more is further more preferable, and 50 mass% or more is still more preferable. Moreover, from a viewpoint of the mechanical characteristic improvement of hardened | cured material, 85 mass% or less is preferable, 80 mass% or less is more preferable, 75 mass% or less is further more preferable, and 70 mass% or less is still more preferable.
無機充填材は、樹脂ワニスの分散性向上、算術平均粗さの低減、二乗平均平方根粗さの低減の観点から、予めシラザン化合物で表面処理した無機充填材を用いることが好ましい。シラザン化合物で表面処理した後に、エポキシ樹脂で表面処理することで、分散性向上、導体層との親和性向上という点で有利となる。シラザン化合物としては、ヘキサメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサ(t−ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、1,3−ジエチルテトラメチルジシラザン、1,3−ジ−n−オクチルテトラメチルジシラザン、1,3−ジフェニルテトラメチルジシラザン、1,3−ジメチルテトラフェニルジシラザン、1,3−ジエチルテトラメチルジシラザン、1,1,3,3−テトラフェニル−1,3−ジメチルジシラザン、1,3−ジプロピルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメチルシクロトリシラザン等を挙げることができ、特にヘキサメチルジシラザンが好ましい。これらは1種または2種以上組み合わせて使用してもよい。ヘキサメチルジシラザンで表面処理した球状溶融シリカとしては、(株)アドマテックス製「SC2050−SQ」が挙げられる。 From the viewpoint of improving the dispersibility of the resin varnish, reducing the arithmetic average roughness, and reducing the root mean square roughness, the inorganic filler is preferably an inorganic filler that has been surface-treated with a silazane compound in advance. After surface treatment with a silazane compound, surface treatment with an epoxy resin is advantageous in terms of improving dispersibility and improving affinity with a conductor layer. Examples of the silazane compound include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyldi. Silazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1,3- Diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, hexaphenyldisilazane, dimethylaminotrimethyl Silazane, trisilazane, cyclotrisilazane, 1,1,3 5,5 hexamethylcyclotrisilazane, etc. can be mentioned, particularly preferably hexamethyldisilazane. You may use these 1 type or in combination of 2 or more types. Examples of spherical fused silica surface-treated with hexamethyldisilazane include “SC2050-SQ” manufactured by Admatechs.
シラザン化合物の処理量は、分散性向上という観点から、無機充填材100質量%に対して0.001~0.3質量%により表面処理されていることが好ましく、0.005~0.2質量%がより好ましく、0.01~0.1質量%が更に好ましく、0.02~0.04質量%が更に一層好ましい。 From the viewpoint of improving dispersibility, the amount of the silazane compound is preferably 0.001 to 0.3% by mass with respect to 100% by mass of the inorganic filler, and 0.005 to 0.2% by mass. % Is more preferable, 0.01 to 0.1% by mass is further preferable, and 0.02 to 0.04% by mass is even more preferable.
(C)エポキシ樹脂で表面処理された無機充填材を、疎水性向上、未反応のシラノール基と反応させることによる分散性のさらなる向上という観点から、シランカップリング剤、アルコキシシラン、アルコキシオリゴマー、アルミニウム系カップリング剤、チタン系カップリング剤及びジルコニウム系カップリング剤からなる群より選択される1種以上で表面処理することが好ましい。この表面処理は、(C)エポキシ樹脂で表面処理された無機充填材に対して直接表面処理しても良いし、樹脂ワニスのなかに添加することでもよい。 (C) From the viewpoint of improving hydrophobicity and further improving dispersibility by reacting an inorganic filler surface-treated with an epoxy resin with an unreacted silanol group, a silane coupling agent, alkoxysilane, alkoxy oligomer, aluminum The surface treatment is preferably carried out with at least one selected from the group consisting of a system coupling agent, a titanium coupling agent and a zirconium coupling agent. This surface treatment may be performed directly on the inorganic filler surface-treated with the epoxy resin (C) or may be added to the resin varnish.
シランカップリング剤としては、エポキシシラン系カップリング剤、アミノシラン系カップリング剤、メルカプトシラン系カップリング剤等を用いることができる。これらは1種または2種以上組み合わせて使用してもよい。具体的には、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤が挙げられる。 As the silane coupling agent, an epoxy silane coupling agent, an aminosilane coupling agent, a mercaptosilane coupling agent, or the like can be used. You may use these 1 type or in combination of 2 or more types. Specifically, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc. Epoxysilane coupling agents, aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, aminosilane coupling agents such as N-2 (aminoethyl) aminopropyltrimethoxysilane, Examples include mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane.
アルコキシシランとしては、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を用いることができる。これらは1種または2種以上組み合わせて使用してもよい。 As the alkoxysilane, methyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, or the like can be used. You may use these 1 type or in combination of 2 or more types.
アルコキシオリゴマーは、有機基とアルコキシシリル基を併せ持つ低分子樹脂のことを言い、メチル基含有アルコキシオリゴマー、フェニル基含有アルコキシオリゴマー、メチル/フェニル基含有アルコキシオリゴマー、エポキシ基含有アルコキシオリゴマー、メルカプト基含有アルコキシオリゴマー、アミノ基含有アルコキシオリゴマー、アクリル基含有アルコキシオリゴマー、メタクリル基含有アルコキシオリゴマー、ウレイド基含有アルコキシオリゴマー、イソシアネート基含有アルコキシオリゴマー、ビニル基含有アルコキシオリゴマー等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。具体的には、アルコキシオリゴマーは、下記一般式(5)の構造で表すことができる。 An alkoxy oligomer refers to a low molecular resin having both an organic group and an alkoxysilyl group, and includes a methyl group-containing alkoxy oligomer, a phenyl group-containing alkoxy oligomer, a methyl / phenyl group-containing alkoxy oligomer, an epoxy group-containing alkoxy oligomer, and a mercapto group-containing alkoxy. Examples include oligomers, amino group-containing alkoxy oligomers, acrylic group-containing alkoxy oligomers, methacryl group-containing alkoxy oligomers, ureido group-containing alkoxy oligomers, isocyanate group-containing alkoxy oligomers, vinyl group-containing alkoxy oligomers. You may use these 1 type or in combination of 2 or more types. Specifically, the alkoxy oligomer can be represented by the structure of the following general formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(5)中、R1、R2、R3はそれぞれ独立に、炭素数1~10の直鎖または分岐鎖のアルキル基であり、好ましくは炭素数1~5の直鎖または分岐鎖のアルキル基であり、より好ましくは炭素数1~4の直鎖または分岐鎖であり、更に好ましくはメチル基、エチル基、プロピル基であり、更に一層好ましくはメチル基、エチル基である。式(5)中、Xは低級アルキル基、グリシドキシアルキル基、アミノアルキル基、メルカプトアルキル基、アクリロキシアルキル基、メタクリロキシアルキル基、ウレイドアルキル基、イソシアネートアルキル基、ビニルアルキル基が挙げられ、グリシドキシプロピル基、アミノプロピル基、N−2−(アミノエチル)−3−アミノプロピル基、N−フェニル−3−アミノプロピル基、メタクリロキシプロピル基、アクリロキシプロピル基、メルカプトプロピル基、ウレイドプロピル基、イソシアネートプロピル基が好ましく、グリシドキシプロピル基、アミノプロピル基、N−2−(アミノエチル)−3−アミノプロピル基、N−フェニル−3−アミノプロピル基、メルカプトプロピル基がより好ましく、アミノプロピル基、N−2−(アミノエチル)−3−アミノプロピル基、N−フェニル−3−アミノプロピル基が更に好ましい。式(5)中、nは2~10の整数であり、好ましくは2~8の整数であり、より好ましくは2~6の整数であり、更に好ましくは3~5の整数である。 In the formula (5), R 1, R 2 and R 3 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms. More preferably a straight chain or branched chain having 1 to 4 carbon atoms, still more preferably a methyl group, an ethyl group or a propyl group, still more preferably a methyl group or an ethyl group. In the formula (5), X includes a lower alkyl group, a glycidoxyalkyl group, an aminoalkyl group, a mercaptoalkyl group, an acryloxyalkyl group, a methacryloxyalkyl group, a ureidoalkyl group, an isocyanate alkyl group, and a vinylalkyl group. Glycidoxypropyl group, aminopropyl group, N-2- (aminoethyl) -3-aminopropyl group, N-phenyl-3-aminopropyl group, methacryloxypropyl group, acryloxypropyl group, mercaptopropyl group, A ureidopropyl group and an isocyanatepropyl group are preferable, and a glycidoxypropyl group, an aminopropyl group, an N-2- (aminoethyl) -3-aminopropyl group, an N-phenyl-3-aminopropyl group, and a mercaptopropyl group are more preferable. Preferably, an aminopropyl group, N-2- (a Aminoethyl) -3-aminopropyl group, N- phenyl-3-aminopropyl group are more preferable. In the formula (5), n is an integer of 2 to 10, preferably an integer of 2 to 8, more preferably an integer of 2 to 6, and further preferably an integer of 3 to 5.
アルミニウム系カップリング剤としては、アルミニウムイソプロピレート、モノsec−ブトキシアルミニウムジイソプロピレート、アルミニウムsec−ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドステアレート、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドステアレート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Aluminum coupling agents include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum Diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), cyclic aluminum oxide isopropylate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide stearate, cyclic aluminum oxide octylate, cyclic aluminum Examples thereof include oxide stearate. You may use these 1 type or in combination of 2 or more types.
チタン系カップリング剤としては、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ−n−ブトキシチタンモノステアレート、テトラ−n−ブチルチタネート、テトラ(2−エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミドエチル・アミノエチル)チタネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Titanium coupling agents include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, bis (dioctyl pyrophosphate) ethylene titanate, Bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (ditri) Decylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite Isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tridodecylbenzene sulfonyl titanate, isopropyl Examples thereof include tris (dioctylpyrophosphate) titanate, isopropyltri (N-amidoethyl / aminoethyl) titanate, and the like. You may use these 1 type or in combination of 2 or more types.
ジルコニウム系カップリング剤としては、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリスネオデカノラート)、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス(ドデシルベンジルスルフォナート))、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス(ジオクチル)ホスフェート)、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス2−メチル2−プロペノラート)、ジルコニウムIV−ビス(2,2−ビス(2−プロペノラートメチル)ブタノラート,ビスパラアミノベンゾエート)、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス(ジイソオクチル)ピロホスフェート)、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス2−プロペノエート)、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス(2−エチレンジアミノ)エチレート)、ジルコニウムIV,ビス(2,2−ビス(2−プロペノラートメチル)ブタノラート,ビス(3−メルカプトプロパノエート))、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス(2−アミノ)フェニレート)、ジルコニウムIV(2,2−ビス(2−プロペノラートメチル)ブタノラート,トリス(ジイソオクチル)ピロホスフェート),N−置換メタクリルアミド付加物、ジルコニウムIV(2−エチル,2−プロペノラートメチル)−1,3−プロペンジオクレート,シクロジ2,2−(ビス−2−プロペノラートメチル)ブタノラート,ピロホスフェート)、ジルコニウムIV(テトラキス−2,2−(ビス−2−プロペノラートメチル)ブタノラート,ジトリデシルハイドロゲンホスファイト2モル付加物、等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Zirconium-based coupling agents include zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, trisneodecanolate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate). , Tris (dodecylbenzylsulfonate)), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris (dioctyl) phosphate), zirconium IV (2,2-bis (2-propenolate) Methyl) butanolate, tris 2-methyl 2-propenolate), zirconium IV-bis (2,2-bis (2-propenolatemethyl) butanolate, bisparaaminobenzoate), zirconium IV (2,2-bis (2-propene) Noratomethyl) butanolate, tris (diisoo) Til) pyrophosphate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris2-propenoate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris ( 2-ethylenediamino) ethylate), zirconium IV, bis (2,2-bis (2-propenolatemethyl) butanolate, bis (3-mercaptopropanoate)), zirconium IV (2,2-bis (2- Propenolatemethyl) butanolate, tris (2-amino) phenylate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris (diisooctyl) pyrophosphate), N-substituted methacrylamide adduct Zirconium IV (2-ethyl, 2-propenolate) Til) -1,3-propenediocrate, cyclodi2,2- (bis-2-propenolatemethyl) butanolate, pyrophosphate), zirconium IV (tetrakis-2,2- (bis-2-propenolatemethyl) ) Butanolate, ditridecyl hydrogen phosphite 2-mole adduct, etc. These may be used alone or in combination of two or more.
本発明の樹脂組成物を硬化して絶縁層を形成し、粗化処理後の該絶縁層表面にメッキして得られる導体層と絶縁層とのピール強度は、後述する<メッキ導体層の引き剥がし強さ(ピール強度)の測定>に記載の測定方法により把握することができる。 The peel strength between the conductor layer and the insulating layer obtained by curing the resin composition of the present invention to form an insulating layer and plating the surface of the insulating layer after the roughening treatment is described below. It can be grasped by the measurement method described in Measurement of Peel Strength (Peel Strength)>.
ピール強度は、0.8kgf/cm以下が好ましく、0.9kgf/cm以下がより好ましく、1.0kgf/cm以下が更に好ましく、1.5kgf/cm以下が更に一層好ましい。また、ピール強度は、0.4kgf/cm以上が好ましく、0.5kgf/cm以上がより好ましい。 The peel strength is preferably 0.8 kgf / cm or less, more preferably 0.9 kgf / cm or less, still more preferably 1.0 kgf / cm or less, and even more preferably 1.5 kgf / cm or less. The peel strength is preferably 0.4 kgf / cm or more, and more preferably 0.5 kgf / cm or more.
本発明の樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)は、後述する<粗化後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定>に記載の測定方法により把握することができる。 The arithmetic average roughness (Ra value) and the root mean square roughness (Rq value) after curing the resin composition of the present invention to form an insulating layer and roughening the surface of the insulating layer will be described later. It can be grasped by the measuring method described in the section “Measurement of arithmetic average roughness (Ra value) and root mean square roughness (Rq value) after roughening>.
算術平均粗さ(Ra値)は、電気信号の伝送ロスを軽減するために、330nm以下が好ましく、300nm以下がより好ましく、250nm以下が更に好ましく、220nm以下が更に一層好ましく、200nm以下が殊更好ましく、180nm以下が特に好ましい。一方、算術平均粗さ(Ra値)は、ピール強度を向上させるという観点から、10nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が更に一層好ましく、50nm以上が殊更好ましい。 The arithmetic average roughness (Ra value) is preferably 330 nm or less, more preferably 300 nm or less, even more preferably 250 nm or less, still more preferably 220 nm or less, and even more preferably 200 nm or less in order to reduce transmission loss of electrical signals. 180 nm or less is particularly preferable. On the other hand, the arithmetic average roughness (Ra value) is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, still more preferably 40 nm or more, and even more preferably 50 nm or more from the viewpoint of improving peel strength. .
二乗平均平方根粗さ(Rq値)は絶縁層表面の局所的な状態が反映されるため、Rq値により緻密で平滑な絶縁層表面になっていることが確認できることを見出した。Rq値は、平滑な絶縁層表面とするために、480nm以下が好ましく、460nm以下がより好ましく、440nm以下が更に好ましく、420nm以下が更に一層好ましく、400nm以下が殊更好ましく、380nm以下が特に好ましく、360nm以下がとりわけ好ましく、340nm以下がなおさら好ましい。一方、Rq値は、ピール強度を向上させるという観点から、10nm以上が好ましく、30nm以上がより好ましく、50nm以上が更に好ましく、70nm以上が更に一層好ましく、90nm以上が殊更好ましい。 Since the root mean square roughness (Rq value) reflects the local state of the insulating layer surface, it was found that the Rq value can confirm that the surface is dense and smooth. The Rq value is preferably 480 nm or less, more preferably 460 nm or less, still more preferably 440 nm or less, still more preferably 420 nm or less, even more preferably 400 nm or less, particularly preferably 380 nm or less, in order to obtain a smooth insulating layer surface. 360 nm or less is particularly preferable, and 340 nm or less is even more preferable. On the other hand, from the viewpoint of improving peel strength, the Rq value is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, still more preferably 70 nm or more, and particularly preferably 90 nm or more.
本発明の樹脂組成物の硬化物の伸びは、後述する<伸びの測定>に記載の測定方法により把握することができる。伸びが向上することで硬化物の取り扱い性を向上させることができ、割れやひびを防止することができるという観点から、2.4%以上が好ましく、2.6%以上がより好ましく、2.8%以上が更に好ましく、3.0%以上が更に一層好ましい。一方、硬化物の熱膨張率を低下させるという観点から、5%以下が好ましく、4%以下がより好ましい。 The elongation of the cured product of the resin composition of the present invention can be grasped by the measurement method described in <Measurement of elongation> described later. From the viewpoint that the handleability of the cured product can be improved by improving the elongation and cracks and cracks can be prevented, preferably 2.4% or more, more preferably 2.6% or more. 8% or more is further preferable, and 3.0% or more is even more preferable. On the other hand, from the viewpoint of reducing the coefficient of thermal expansion of the cured product, 5% or less is preferable, and 4% or less is more preferable.
本発明の接着フィルムの樹脂組成物層の最低溶融粘度は、後述する<最低溶融粘度の測定>に記載の測定方法により把握することができる。接着フィルムのラミネート性向上、埋め込み性向上、染み出し抑制という観点から、500~14000poiseが好ましく、1000~13000poiseがより好ましく、2000~12000poiseが更に好ましく、3000~11000poiseが更に一層好ましく、4000~10000poiseが殊更好ましい。 The minimum melt viscosity of the resin composition layer of the adhesive film of the present invention can be determined by the measurement method described in <Measurement of minimum melt viscosity> described later. From the viewpoint of improving the laminating property of the adhesive film, improving the embedding property, and suppressing bleeding, 500 to 14000 poise is preferable, 1000 to 13000 poise is more preferable, 2000 to 12000 poise is further preferable, 3000 to 11000 poise is still more preferable, and 4000 to 10,000 poise is further preferable. Particularly preferred.
 <(D)硬化促進剤>
本発明の樹脂組成物は、更に(D)硬化促進剤を含有させることにより、エポキシ樹脂と硬化剤を効率的に硬化させることができる。硬化促進剤としては、特に限定されないが、アミン系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、ホスホニウム系硬化促進剤、金属系硬化促進剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
<(D) Curing accelerator>
The resin composition of this invention can harden an epoxy resin and a hardening | curing agent efficiently by containing (D) hardening accelerator further. Although it does not specifically limit as a hardening accelerator, An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.
アミン系硬化促進剤としては、特に限定されるものではないが、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4−ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)−ウンデセン(以下、DBUと略記する。)等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl). Phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU) and the like. You may use these 1 type or in combination of 2 or more types.
グアニジン系硬化促進剤としては、特に限定されるものではないが、ジシアンジアミド、1−メチルグアニジン、1−エチルグアニジン、1−シクロヘキシルグアニジン、1−フェニルグアニジン、1−(o−トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、1−メチルビグアニド、1−エチルビグアニド、1−n−ブチルビグアニド、1−n−オクタデシルビグアニド、1,1−ジメチルビグアニド、1,1−ジエチルビグアニド、1−シクロヘキシルビグアニド、1−アリルビグアニド、1−フェニルビグアニド、1−(o−トリル)ビグアニド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Although it does not specifically limit as a guanidine type hardening accelerator, Dicyandiamide, 1-methyl guanidine, 1-ethyl guanidine, 1-cyclohexyl guanidine, 1-phenyl guanidine, 1- (o-tolyl) guanidine, dimethyl guanidine , Diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-phenyl Rubiguanido, 1-(o-tolyl) biguanide, and the like. You may use these 1 type or in combination of 2 or more types.
イミダゾール系硬化促進剤としては、特に限定されるものではないが、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−メチルイミダゾリン、2−フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium tri Meritate 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2 '-Undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethyl Imidazole, 2-phenyl-4-methyl-5hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, - dodecyl-2-methyl-3-benzyl-imidazolium chloride, 2-methyl-imidazoline, adduct of 2-phenyl-imidazo imidazole compounds such as phosphorus and imidazole compound and an epoxy resin. You may use these 1 type or in combination of 2 or more types.
ホスホニウム系硬化促進剤としては、特に限定されるものではないが、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n−ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4−メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Although it does not specifically limit as a phosphonium type hardening accelerator, Triphenylphosphine, a phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like. You may use these 1 type or in combination of 2 or more types.
本発明の樹脂組成物において、硬化促進剤(金属系硬化促進剤を除く)の含有量は、樹脂組成物中の不揮発分を100質量%とした場合、0.005~1質量%の範囲が好ましく、0.01~0.5質量%の範囲がより好ましい。0.005質量%未満であると、硬化が遅くなり熱硬化時間が長く必要となる傾向にあり、1質量%を超えると樹脂組成物の保存安定性が低下する傾向となる。 In the resin composition of the present invention, the content of the curing accelerator (excluding the metal curing accelerator) is in the range of 0.005 to 1% by mass when the nonvolatile content in the resin composition is 100% by mass. The range of 0.01 to 0.5% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
金属系硬化促進剤としては、特に限定されるものではないが、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。 Although it does not specifically limit as a metal type hardening accelerator, The organometallic complex or organometallic salt of metals, such as cobalt, copper, zinc, iron, nickel, manganese, tin, is mentioned. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
本発明の樹脂組成物において、金属系硬化促進剤の添加量は、樹脂組成物中の不揮発分を100質量%とした場合、金属系硬化触媒に基づく金属の含有量が25~500ppmの範囲が好ましく、40~200ppmの範囲がより好ましい。25ppm未満であると、低算術平均粗さの絶縁層表面への密着性に優れる導体層の形成が困難となる傾向にあり、500ppmを超えると、樹脂組成物の保存安定性、絶縁性が低下する傾向となる。 In the resin composition of the present invention, the addition amount of the metal-based curing accelerator is such that the metal content based on the metal-based curing catalyst is in the range of 25 to 500 ppm when the nonvolatile content in the resin composition is 100% by mass. The range of 40 to 200 ppm is more preferable. If it is less than 25 ppm, it tends to be difficult to form a conductor layer excellent in adhesion to the surface of the insulating layer having a low arithmetic average roughness. If it exceeds 500 ppm, the storage stability and insulation of the resin composition are lowered. Tend to.
 <(E)熱可塑性樹脂>
本発明の樹脂組成物には、更に(E)熱可塑性樹脂を含有させる事により硬化物の機械強度を向上させることができ、更に接着フィルムの形態で使用する場合のフィルム成型能を向上させることもできる。このような熱可塑性樹脂としては、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂を挙げることができる。これらの熱可塑性樹脂は1種又は2種以上を組み合わせて使用してもよい。フィルム成型能や機械強度向上、樹脂ワニスの相溶性向上という点から、熱可塑性樹脂の重量平均分子量は5000~200000の範囲であるのが好ましい。なお本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
<(E) Thermoplastic resin>
The resin composition of the present invention can further improve the mechanical strength of the cured product by further containing (E) a thermoplastic resin, and further improve the film molding ability when used in the form of an adhesive film. You can also. Examples of such thermoplastic resins include phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Can do. These thermoplastic resins may be used alone or in combination of two or more. The weight average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000 from the viewpoints of improving film molding ability, mechanical strength, and compatibility of the resin varnish. In addition, the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.
本発明の樹脂組成物に、(E)熱可塑性樹脂を配合する場合には、樹脂組成物中の熱可塑性樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発分100質量%に対し、0.1~10質量%が好ましく、1~5質量%がより好ましい。熱可塑性樹脂の含有量が少なすぎるとフィルム成型能や機械強度向上の効果が発揮されない傾向にあり、多すぎると溶融粘度の上昇と、湿式粗化工程後の絶縁層表面の算術平均粗さが増す傾向にある。 When (E) a thermoplastic resin is blended with the resin composition of the present invention, the content of the thermoplastic resin in the resin composition is not particularly limited, but the nonvolatile content in the resin composition is not limited. 0.1 to 10% by mass is preferable with respect to 100% by mass, and 1 to 5% by mass is more preferable. If the content of the thermoplastic resin is too small, the effect of improving the film forming ability and mechanical strength tends to not be exhibited. If the content is too large, the melt viscosity increases and the arithmetic average roughness of the insulating layer surface after the wet roughening process is low. It tends to increase.
 <(F)ゴム粒子>
本発明の樹脂組成物は、更に(F)ゴム粒子を含有させる事により、メッキピール強度を向上させることができ、ドリル加工性の向上、誘電正接の低下、応力緩和効果を得ることもできる。本発明において使用され得るゴム粒子は、例えば、当該樹脂組成物のワニスを調製する際に使用する有機溶剤にも溶解せず、必須成分であるシアネートエステル樹脂やエポキシ樹脂などとも相溶しないものである。従って、該ゴム粒子は、本発明の樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。
<(F) Rubber particles>
The resin composition of the present invention can further improve plating peel strength by containing (F) rubber particles, and can also improve drill workability, decrease dielectric loss tangent, and obtain stress relaxation effects. The rubber particles that can be used in the present invention are, for example, those that do not dissolve in the organic solvent used when preparing the varnish of the resin composition, and are incompatible with the essential components such as cyanate ester resin and epoxy resin. is there. Accordingly, the rubber particles exist in a dispersed state in the varnish of the resin composition of the present invention. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.
本発明で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、又は外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。ゴム粒子は2種以上を組み合わせて使用してもよい。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、IM−401改1、IM−401改7−17 (商品名、ガンツ化成(株)製)、メタブレンKW−4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91(平均粒径0.5μm、JSR(株)製)などが挙げられる。架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)(三菱レイヨン(株)製)を挙げることができる。 Preferable examples of rubber particles that can be used in the present invention include core-shell type rubber particles, cross-linked acrylonitrile butadiene rubber particles, cross-linked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Two or more rubber particles may be used in combination. Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, IM-401 modified 1, IM-401 modified 7-17 (trade name, manufactured by Ganz Kasei Co., Ltd.), Metabrene KW-4426 (trade name, Mitsubishi) Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size: 0.5 μm, manufactured by JSR Corporation). Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm) and W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).
ゴム粒子の平均粒径は、好ましくは0.005~1μmの範囲であり、より好ましくは0.2~0.6μmの範囲である。本発明で使用されるゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(FPAR−1000;大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。 The average particle size of the rubber particles is preferably in the range of 0.005 to 1 μm, more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of the rubber particles used in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of rubber particles is created on a mass basis using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). And it can measure by making the median diameter into an average particle diameter.
ゴム粒子の含有量は、樹脂組成物中の不揮発分100質量%に対し、好ましくは1~10質量%であり、より好ましくは2~5質量%である。 The content of the rubber particles is preferably 1 to 10% by mass, more preferably 2 to 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
<(G)難燃剤>
本発明の樹脂組成物は、更に(G)難燃剤を含有させる事により、難燃性を付与することができる。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、二光(株)製のHCA、HCA−HQ、HCA−NQ等のフェナントレン型リン化合物、昭和高分子(株)製のHFB−2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のTPPO、PPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX305、TX0712等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂、ジャパンエポキシレジン(株)製のYL7613等のリン含有エポキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)社製のSPB100、SPE100、(株)伏見製薬所製FP−series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)社製のB−30、B−325、B−315、B−308、B−303、UFH−20等の水酸化アルミニウム等が挙げられる。
<(G) Flame retardant>
The resin composition of the present invention can impart flame retardancy by further containing (G) a flame retardant. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organophosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Nikko Corporation, and phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd. Leophos 30, 50, 65, 90, 110 manufactured by Ajinomoto Fine Techno Co., Ltd. TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, TPPO manufactured by Hokuko Chemical Co., Ltd., PPQ Phosphoric ester compounds such as OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., Phosphorus-containing epoxy resins such as FX289, FX305, TX0712 manufactured by Toto Kasei Co., Ltd., manufactured by Toto Kasei Co., Ltd. Phosphorus-containing phenoxy resins such as ERF001 and YL7613 and other phosphorous-containing epoxies from Japan Epoxy Resin Co., Ltd. Shi resins. Examples of organic nitrogen-containing phosphorus compounds include phosphoric ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Pharmaceutical Co., Ltd. Phosphazene compounds such as As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308 manufactured by Sakai Kogyo Co., Ltd. Examples thereof include aluminum hydroxide such as B-303 and UFH-20.
難燃剤の含有量は、樹脂組成物中の不揮発分を100質量%とした場合、0.1~10質量%の範囲が好ましく、0.5~8質量%の範囲がより好ましく、1~6質量%の範囲が更に好ましい。 The content of the flame retardant is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 8% by mass, where the nonvolatile content in the resin composition is 100% by mass. A range of mass% is more preferred.
<他の成分>
本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて他の成分を配合することができる。他の成分としては、ビニルベンジル化合物、アクリル化合物、マレイミド化合物、ブロックイソシアネート化合物のような熱硬化性樹脂;シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤;オルベン、ベントン等の増粘剤;シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤;イミダゾール化合物、チアゾール化合物、トリアゾール化合物、シラン系カップリング剤、アルコキシオリゴマー等の密着性付与剤;フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。
<Other ingredients>
In the resin composition of the present invention, other components can be blended as necessary within a range not inhibiting the effects of the present invention. Other components include thermosetting resins such as vinyl benzyl compounds, acrylic compounds, maleimide compounds, and blocked isocyanate compounds; organic fillers such as silicon powder, nylon powder, and fluorine powder; thickeners such as Orben and Benton; Silicone-based, fluorine-based, polymer-based antifoaming agents or leveling agents; adhesion-imparting agents such as imidazole compounds, thiazole compounds, triazole compounds, silane coupling agents, alkoxy oligomers; phthalocyanine blue, phthalocyanine green, and iodin -Colorants such as green, disazo yellow, and carbon black can be listed.
本発明の樹脂組成物の調製方法は、特に限定されるものではなく、例えば、配合成分を、必要により溶媒等を添加し、回転ミキサーなどを用いて混合する方法などが挙げられる。 The method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which the components are mixed using a rotary mixer or the like, if necessary, by adding a solvent or the like.
本発明の樹脂組成物の用途は、特に限定されないが、接着フィルム、プリプレグ等のシート状積層材料、回路基板(積層板、多層プリント配線板等)、ソルダーレジスト、アンダ−フィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途の広範囲に使用できる。なかでも、多層プリント配線板用樹脂組成物の製造において、絶縁層を形成するための樹脂組成物として好適に使用することができ、メッキにより導体層を形成するための樹脂組成物としてより好適に使用することが出来る。本発明の樹脂組成物は、ワニス状態で回路基板に塗布して絶縁層を形成することもできるが、工業的には一般に、接着フィルム、プリプレグ等のシート状積層材料の形態で用いるのが好ましい。樹脂組成物の軟化点は、シート状積層材料のラミネート性の観点から40~150℃が好ましい。 The use of the resin composition of the present invention is not particularly limited, but sheet-like laminated materials such as adhesive films and prepregs, circuit boards (laminates, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials In addition, it can be used in a wide range of applications where a resin composition is required, such as a semiconductor sealing material, hole-filling resin, and component-filling resin. Among them, in the production of a resin composition for multilayer printed wiring boards, it can be suitably used as a resin composition for forming an insulating layer, and more preferably as a resin composition for forming a conductor layer by plating. Can be used. The resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but in general, it is preferably used in the form of a sheet-like laminated material such as an adhesive film or a prepreg. . The softening point of the resin composition is preferably 40 to 150 ° C. from the viewpoint of the laminating property of the sheet-like laminated material.
<接着フィルム>
本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて、支持体に塗布し、加熱あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させる。これにより樹脂組成物が支持体上に樹脂組成物層として形成された接着フィルムを製造することができる。
<Adhesive film>
The adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, and applying the resin varnish to a support using a die coater or the like. Alternatively, the resin composition layer is formed by drying the organic solvent by blowing hot air or the like. Thereby, the adhesive film by which the resin composition was formed as a resin composition layer on a support body can be manufactured.
有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は2種以上を組みわせて用いてもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. And aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Two or more organic solvents may be used in combination.
乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、例えば30~60質量%の有機溶剤を含むワニスを50~150℃で3~10分程度乾燥させることにより、樹脂組成物が支持体上に層形成された接着フィルムを形成することができる。 The drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less. Depending on the amount of the organic solvent in the varnish and the boiling point of the organic solvent, for example, by drying a varnish containing 30 to 60% by mass of the organic solvent at 50 to 150 ° C. for about 3 to 10 minutes, the resin composition is supported on the support. An adhesive film having a layer formed thereon can be formed.
接着フィルムにおいて形成される樹脂組成物層の厚さは、導体層の厚さ以上とするのが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層は10~100μmの厚さを有するのが好ましく、20~80μmの厚さを有するのがより好ましい。 The thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the resin composition layer preferably has a thickness of 10 to 100 μm, more preferably 20 to 80 μm.
支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステルのフィルム、ポリカーボネートフィルム、ポリイミドフィルムなどの各種プラスチックフィルムが挙げられる。また離型紙や銅箔、アルミニウム箔等の金属箔などを使用してもよい。支持体及び後述する保護フィルムには、マッド処理、コロナ処理等の表面処理が施してあってもよい。また、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤で離型処理が施してあってもよい。 Examples of the support include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films. Various plastic films are listed. Moreover, you may use release foil, metal foil, such as copper foil and aluminum foil. The support and a protective film described later may be subjected to surface treatment such as mud treatment or corona treatment. The release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.
支持体の厚さは特に限定されないが、10~150μmが好ましく、25~50μmがより好ましい。 The thickness of the support is not particularly limited, but is preferably 10 to 150 μm, more preferably 25 to 50 μm.
樹脂組成物層の支持体が密着していない面には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚みは、特に限定されるものではないが、例えば、1~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって貯蔵することもできる。 A protective film according to the support can be further laminated on the surface of the resin composition layer on which the support is not in close contact. The thickness of the protective film is not particularly limited, but is, for example, 1 to 40 μm. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The adhesive film can also be stored in a roll.
<接着フィルムを用いた多層プリント配線板>
次に、上記のようにして製造した接着フィルムを用いて多層プリント配線板を製造する方法の一例を説明する。
<Multilayer printed wiring board using adhesive film>
Next, an example of a method for producing a multilayer printed wiring board using the adhesive film produced as described above will be described.
まず、接着フィルムを、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理、銅エッチング等により予め粗化処理が施されていてもよい。 First, an adhesive film is laminated on one side or both sides of a circuit board using a vacuum laminator. Examples of the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like. In addition, a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards. Also, in a multilayer printed wiring board in which conductor layers and insulating layers are alternately laminated, one of the outermost layers of the multilayer printed wiring board is a conductor layer (circuit) in which one or both sides are patterned. It is included in the circuit board. The surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
上記ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて接着フィルム及び回路基板をプレヒートし、接着フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の接着フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。真空ラミネートは、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、(株)日立インダストリイズ製ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。 In the above laminate, when the adhesive film has a protective film, after removing the protective film, the adhesive film and the circuit board are preheated as necessary, and the adhesive film is pressed and heated to the circuit board. Crimp. In the adhesive film of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used. The laminating conditions are not particularly limited. For example, the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C. and the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107 9.9 × 10 4 N / m 2 ), and lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less. The laminating method may be a batch method or a continuous method using a roll. The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.
また、減圧下、加熱及び加圧を行う積層工程は、一般の真空ホットプレス機を用いて行うことも可能である。例えば、加熱されたSUS板等の金属板を支持体層側からプレスすることにより行うことができる。プレス条件は、減圧度を通常1×10−2MPa以下、好ましくは1×10−3MPa以下の減圧下とする。加熱及び加圧は、1段階で行うことも出来るが、樹脂のしみだしを制御する観点から2段階以上に条件を分けて行うのが好ましい。例えば、1段階目のプレスを、温度が70~150℃、圧力が1~15kgf/cm2の範囲、2段階目のプレスを、温度が150~200℃、圧力が1~40kgf/cm2の範囲で行うのが好ましい。各段階の時間は30~120分で行うのが好ましい。市販されている真空ホットプレス機としては、例えば、MNPC−V−750−5−200(株)名機製作所製)、VH1−1603(北川精機(株)製)等が挙げられる。 Moreover, the lamination process which heats and pressurizes under reduced pressure can also be performed using a general vacuum hot press machine. For example, it can be performed by pressing a metal plate such as a heated SUS plate from the support layer side. The pressing condition is that the degree of vacuum is usually 1 × 10 −2 MPa or less, preferably 1 × 10 −3 MPa or less. Although heating and pressurization can be carried out in one stage, it is preferable to carry out the conditions separately in two or more stages from the viewpoint of controlling the oozing of the resin. For example, the first stage press has a temperature of 70 to 150 ° C. and the pressure is in a range of 1 to 15 kgf / cm 2, and the second stage press has a temperature of 150 to 200 ° C. and a pressure in a range of 1 to 40 kgf / cm 2 Preferably it is done. The time for each stage is preferably 30 to 120 minutes. Examples of commercially available vacuum hot press machines include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.
接着フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。熱硬化の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分~180分、より好ましくは160℃~210℃で30~120分の範囲で選択される。 After laminating the adhesive film on the circuit board, it is cooled to around room temperature, and when the support is peeled off, the insulating film can be formed on the circuit board by peeling and thermosetting. The thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. to 210 ° C. It is selected in the range of 30 to 120 minutes at ° C.
絶縁層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。 If the support is not peeled off after the insulating layer is formed, it is peeled off here. Next, if necessary, holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
次いで、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、絶縁層表面を、膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行うことによって凸凹のアンカーを形成する。膨潤液による膨潤処理は、絶縁層を50~80℃で5~20分間膨潤液に浸漬させることで行われ、好ましくは55~65℃で5~10分間である。膨潤液としてはアルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、例えば、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。市販されている膨潤液としては、例えば、アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)、スウェリング・ディップ・セキュリガンスSBU(Swelling Dip Securiganth SBU)等を挙げることができる。酸化剤による粗化処理は、絶縁層を60℃~80℃で10分~30分間酸化剤溶液に浸漬させることで行われ、好ましくは70~80℃で10~20分間である。酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等を挙げることができる。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5~10重量%とするのが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製のコンセントレート・コンパクトCP、ドージングソリューション セキュリガンスP等のアルカリ性過マンガン酸溶液が挙げられる。中和液による中和処理は、30~50℃で3~10分間中和液に浸漬させることで行われ、好ましくは35~45℃で3~8分間である。中和液としては、酸性の水溶液が好ましく、市販品としては、アトテックジャパン(株)製のリダクションソリューシン・セキュリガントPが挙げられる。 Next, a conductor layer is formed on the insulating layer by dry plating or wet plating. As the dry plating, a known method such as vapor deposition, sputtering, or ion plating can be used. In the case of wet plating, the surface of the insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor. The swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes, preferably at 55 to 65 ° C. for 5 to 10 minutes. Examples of the swelling liquid include an alkaline solution and a surfactant solution, and an alkaline solution is preferable. Examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution. Examples of commercially available swelling liquids include Swelling Dip Securigans P (Swelling Dip Securiganth P), Swelling Dip Securigans SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to. The roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes, preferably at 70 to 80 ° C. for 10 to 20 minutes. Examples of the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can. The concentration of permanganate in the alkaline permanganate solution is preferably 5 to 10% by weight. Examples of commercially available oxidizing agents include alkaline permanganic acid solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan. The neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes, preferably at 35 to 45 ° C. for 3 to 8 minutes. As the neutralizing solution, an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
次いで、無電解メッキと電解メッキとを組み合わせて導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。 Next, a conductor layer is formed by combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
<プリプレグ>
本発明のプリプレグは、本発明の樹脂組成物をシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱して半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物がシート状補強基材に含浸されたプリプレグとすることができる。シート状補強基材としては、例えば、ガラスクロスやアラミド繊維等のプリプレグ用繊維として常用されている繊維からなるものを用いることができる。
<Prepreg>
The prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing base material by a hot melt method or a solvent method, and heating and semi-curing it. That is, it can be set as the prepreg which the resin composition of this invention impregnated the sheet-like reinforcement base material. As a sheet-like reinforcement base material, what consists of a fiber currently used as prepreg fibers, such as glass cloth and an aramid fiber, can be used, for example.
ホットメルト法は、樹脂を、有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。 In the hot melt method, the resin is once coated on a coated paper having good releasability from the resin without dissolving it in an organic solvent, and then laminated on a sheet-like reinforcing substrate, or the resin is used in an organic solvent. This is a method for producing a prepreg by directly coating a sheet-like reinforcing substrate with a die coater without dissolving it. In the solvent method, a resin varnish is prepared by dissolving a resin in an organic solvent in the same manner as the adhesive film, and a sheet-like reinforcing base material is immersed in the varnish, and then the resin-like varnish is impregnated into the sheet-like reinforcing base material. It is a method of drying.
<プリプレグを用いた多層プリント配線板>
次に、上記のようにして製造したプリプレグを用いて多層プリント配線板を製造する方法の一例を説明する。回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下で真空プレス積層する。加圧・加熱条件は、好ましくは、圧力が5~40kgf/cm(49×10~392×10N/m)、温度が120~200℃で20~100分である。また接着フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。
<Multilayer printed wiring board using prepreg>
Next, an example of a method for producing a multilayer printed wiring board using the prepreg produced as described above will be described. One or several prepregs of the present invention are stacked on a circuit board, sandwiched between metal plates through a release film, and vacuum press laminated under pressure and heating conditions. The pressurizing and heating conditions are preferably a pressure of 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ) and a temperature of 120 to 200 ° C. for 20 to 100 minutes. Similarly to the adhesive film, the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. Thereafter, in the same manner as described above, the surface of the cured prepreg is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.
 <半導体装置>
本発明の多層プリント配線板を用いることで半導体装置を製造することができる。本発明の多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。「導通箇所」とは、「多層プリント配線板における電気信号を伝える箇所」であって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
<Semiconductor device>
A semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention. A semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention. The “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location. The semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
本発明の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。 The semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps. Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
「バンプなしビルドアップ層(BBUL)による実装方法」とは、「半導体チップを多層プリント配線板の凹部に直接埋め込み、半導体チップとプリント配線板上の配線とを接続させる実装方法」のことであり、更に、以下のBBUL方法1)、BBUL方法2)の実装方法に大別される。
 BBUL方法1)アンダーフィル剤を用いて多層プリント配線板の凹部に半導体チップを実装する実装方法
 BBUL方法2)接着フィルム又はプリプレグを用いて多層プリント配線板の凹部に半導体チップを実装する実装方法
“Mounting method by buildup layer without bump (BBUL)” means “a mounting method in which a semiconductor chip is directly embedded in a recess of a multilayer printed wiring board and the semiconductor chip and wiring on the printed wiring board are connected”. Furthermore, the method is roughly divided into the following BBUL method 1) and BBUL method 2).
BBUL method 1) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using underfill agent BBUL method 2) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using adhesive film or prepreg
BBUL方法1)は、具体的には以下の工程を含む。
 工程1)多層プリント配線板の両面から導体層を除去したものを設け、レーザー、機械ドリルによって貫通孔を形成する。
 工程2)多層プリント配線板の片面に粘着テープを貼り付けて、貫通孔の中に半導体チップの底面を粘着テープ上に固定するように配置する。このときの半導体チップは貫通孔の高さより低くすることが好ましい。
 工程3)貫通孔と半導体チップの隙間にアンダーフィル剤を注入、充填することによって、半導体チップを貫通孔に固定する。
 工程4)その後粘着テープを剥がして、半導体チップの底面を露出させる。
 工程5)半導体チップの底面側に本発明の接着フィルム又はプリプレグをラミネートし、半導体チップを被覆する。
 工程6)接着フィルム又はプリプレグを硬化後、レーザーによって穴あけし、半導体チップの底面にあるボンディングパットを露出させ、上記で示した粗化処理、無電解メッキ、電解メッキを行うことで、配線と接続する。必要に応じて更に接着フィルム又はプリプレグを積層してもよい。
The BBUL method 1) specifically includes the following steps.
Step 1) A multi-layer printed wiring board with a conductor layer removed from both sides is provided, and a through hole is formed by a laser or a mechanical drill.
Step 2) Adhesive tape is attached to one side of the multilayer printed wiring board, and the bottom surface of the semiconductor chip is disposed in the through hole so as to be fixed on the adhesive tape. The semiconductor chip at this time is preferably lower than the height of the through hole.
Step 3) The semiconductor chip is fixed to the through hole by injecting and filling an underfill agent into the gap between the through hole and the semiconductor chip.
Step 4) The adhesive tape is then peeled off to expose the bottom surface of the semiconductor chip.
Step 5) The adhesive film or prepreg of the present invention is laminated on the bottom surface side of the semiconductor chip to cover the semiconductor chip.
Step 6) After curing the adhesive film or prepreg, drill with a laser to expose the bonding pad on the bottom surface of the semiconductor chip, and connect with wiring by performing the roughening treatment, electroless plating, and electrolytic plating described above To do. You may laminate | stack an adhesive film or a prepreg further as needed.
BBUL方法2)は、具体的には以下の工程を含む。
 工程1)多層プリント配線板の両面の導体層上に、フォトレジスト膜を形成し、フォトリソグラフィー工法でフォトレジスト膜の片面のみに開口部を形成する。
 工程2)開口部に露出した導体層をエッチング液により除去し、絶縁層を露出させ、その後両面のレジスト膜を除去する。
 工程3)レーザーやドリルを用いて、露出した絶縁層を全て除去して穴あけを行い、凹部を形成する。レーザーのエネルギーは、銅のレーザー吸収率を低くし、絶縁層のレーザー吸収率を高くするようにエネルギーが調整できるレーザーが好ましく、炭酸ガスレーザーがより好ましい。このようなレーザーを用いることで、レーザーは導体層の開口部の対面の導体層を貫通することがなく、絶縁層のみを除去することが可能となる。
 工程4)半導体チップの底面を開口部側に向けて凹部に配置し、本発明の接着フィルム又はプリプレグを開口部の側から、ラミネートし、半導体チップを被覆して、半導体チップと凹部の隙間を埋め込む。このときの半導体チップは凹部の高さより低くすることが好ましい。
 工程5)接着フィルム又はプリプレグを硬化後、レーザーによって穴あけし、半導体チップの底面のボンディングパットを露出させる。
 工程6)上記で示した粗化処理、無電解メッキ、電解メッキを行うことで、配線を接続し、必要に応じて更に接着フィルム又はプリプレグを積層する。
The BBUL method 2) specifically includes the following steps.
Step 1) A photoresist film is formed on the conductor layers on both sides of the multilayer printed wiring board, and an opening is formed only on one side of the photoresist film by a photolithography method.
Step 2) The conductor layer exposed in the opening is removed with an etching solution to expose the insulating layer, and then the resist films on both sides are removed.
Step 3) Using a laser or a drill, all of the exposed insulating layer is removed and drilled to form a recess. The laser energy is preferably a laser whose energy can be adjusted so as to lower the laser absorption rate of copper and increase the laser absorption rate of the insulating layer, and more preferably a carbon dioxide laser. By using such a laser, the laser does not penetrate through the conductor layer facing the opening of the conductor layer, and it is possible to remove only the insulating layer.
Step 4) The bottom surface of the semiconductor chip is placed in the recess with the opening side facing, the adhesive film or prepreg of the present invention is laminated from the opening side, the semiconductor chip is covered, and the gap between the semiconductor chip and the recess is formed. Embed. The semiconductor chip at this time is preferably lower than the height of the recess.
Step 5) After the adhesive film or prepreg is cured, holes are formed with a laser to expose the bonding pad on the bottom surface of the semiconductor chip.
Step 6) By performing the roughening treatment, electroless plating, and electrolytic plating described above, the wiring is connected, and if necessary, an adhesive film or a prepreg is further laminated.
半導体チップの実装方法の中でも、半導体装置の小型化、伝送損失の軽減という観点や、半田を使用しないため半導体チップにその熱履歴が掛からず、さらに半田と樹脂とのひずみを将来的に生じ得ないという観点から、バンプなしビルドアップ層(BBUL)による実装方法が好ましく、BBUL方法1)、BBUL方法2)がより好ましく、BBUL方法2)が更に好ましい。 Among the semiconductor chip mounting methods, the semiconductor device is miniaturized and transmission loss is reduced, and since no solder is used, the semiconductor chip does not have its thermal history, and solder and resin distortion may occur in the future. In view of the absence, a mounting method using a bumpless build-up layer (BBUL) is preferable, the BBUL method 1) and the BBUL method 2) are more preferable, and the BBUL method 2) is more preferable.
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
<測定方法・評価方法>
まずは各種測定方法・評価方法について説明する。
<Measurement method / Evaluation method>
First, various measurement methods and evaluation methods will be described.
<ピール強度、算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)測定用サンプルの調製>
(1)内層回路基板の下地処理
内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES)の両面をメック(株)製CZ8100にて1umエッチングして銅表面の粗化処理をおこなった。
<Preparation of Sample for Measuring Peel Strength, Arithmetic Average Roughness (Ra Value), Root Mean Square Roughness (Rq Value)>
(1) Surface treatment of inner layer circuit board Both sides of a glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 18 μm, substrate thickness 0.3 mm, Matsushita Electric Works R5715ES) on which an inner layer circuit was formed The copper surface was roughened by etching 1 μm with CZ8100 manufactured by MEC Co., Ltd.
(2)接着フィルムのラミネート
実施例1~7及び比較例1~3で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(名機(株)製商品名)を用いて、内層回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(2) Lamination of adhesive film The adhesive film prepared in Examples 1 to 7 and Comparative Examples 1 to 3 was subjected to inner layer circuit using a batch-type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). Laminated on both sides of the substrate. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds.
(3)樹脂組成物の硬化
実施例1~6及び比較例1~3については、ラミネートされた接着フィルムからPETフィルムを剥離した後に、100℃、30分、さらに180℃、30分の硬化条件で樹脂組成物を硬化して絶縁層を形成した。実施例7については、同条件で熱硬化させた後にPETフィルムを剥離した。
(3) Curing conditions for resin compositions For Examples 1 to 6 and Comparative Examples 1 to 3, after peeling the PET film from the laminated adhesive film, the curing conditions were 100 ° C., 30 minutes, and further 180 ° C., 30 minutes. Then, the resin composition was cured to form an insulating layer. For Example 7, the PET film was peeled off after thermosetting under the same conditions.
(4)粗化処理
実施例1~6及び比較例1~3については、絶縁層を形成した内層回路基板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガントP(グリコールエーテル類、水酸化ナトリウムの水溶液)に60℃で5分間浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO4:60g/L、NaOH:40g/Lの水溶液)に80℃で15分間浸漬し、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントP(グリオキザール、硫酸の水溶液)に40℃で5分間浸漬した。実施例7については、膨潤液に60℃10分間浸漬し、粗化液に80℃20分間浸漬し、中和液に40℃5分間浸漬した。その後、80℃で30分乾燥後、この粗化処理後の絶縁層表面について、算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定を行った。
(4) For the roughening treatment Examples 1 to 6 and Comparative Examples 1 to 3, the inner circuit board on which the insulating layer was formed was swollen with a diethylene glycol monobutyl ether-containing swelling dip securit of Atotech Japan Co., Ltd. Immerse in Gantt P (glycol ether, aqueous solution of sodium hydroxide) at 60 ° C. for 5 minutes, and then use Atotech Japan Co., Ltd. Concentrate Compact P (KMnO4: 60 g / L, NaOH: 40 g) as a roughening solution. / L aqueous solution) at 80 ° C. for 15 minutes, and finally, as a neutralization solution, it was immersed in Atotech Japan Co., Ltd. Reduction Sholysin Securigant P (glyoxal, sulfuric acid aqueous solution) at 40 ° C. for 5 minutes. . About Example 7, it was immersed in the swelling liquid at 60 ° C. for 10 minutes, immersed in the roughening liquid at 80 ° C. for 20 minutes, and immersed in the neutralizing liquid at 40 ° C. for 5 minutes. Thereafter, after drying at 80 ° C. for 30 minutes, the surface of the insulating layer after the roughening treatment was measured for arithmetic average roughness (Ra value) and root mean square roughness (Rq value).
(5)セミアディティブ工法によるメッキ
実施例1~7及び比較例1~3について、絶縁層表面に回路を形成するために、内層回路基板を、PdClを含む無電解銅メッキ液に40℃で5分間浸漬し、次に無電解銅メッキ液に25℃で20分間浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、35±5μmの厚さで導体層を形成した。次に、アニール処理を200℃にて60分間行った。この回路基板についてメッキ導体層の引き剥がし強さ(ピール強度)の測定を行った。
(5) For plating examples 1 to 7 and comparative examples 1 to 3 by the semi-additive method, in order to form a circuit on the surface of the insulating layer, the inner layer circuit board was applied to an electroless copper plating solution containing PdCl 2 at 40 ° C. It was immersed for 5 minutes and then immersed in an electroless copper plating solution at 25 ° C. for 20 minutes. After annealing for 30 minutes at 150 ° C., an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 35 ± 5 μm. Next, annealing was performed at 200 ° C. for 60 minutes. The circuit board was measured for peel strength (peel strength) of the plated conductor layer.
<メッキ導体層の引き剥がし強さ(ピール強度)の測定>
回路基板の導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具(株式会社ティー・エス・イー、オートコム型試験機 AC−50C−SL)で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(kgf/cm)を測定した。
<Measurement of peel strength (peel strength) of plated conductor layer>
Make a notch of 10mm width and 100mm length in the conductor layer of the circuit board, peel off one end and grasp it with a gripping tool (TSE Co., Ltd., Autocom type testing machine AC-50C-SL), The load (kgf / cm) when peeling 35 mm in the vertical direction at a speed of 50 mm / min at room temperature was measured.
<粗化後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定>
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値によりRa値、Rq値を求めた。そして、それぞれ無作為に10点の平均値を求めることにより測定した。
<Measurement of Roughness Arithmetic Average Roughness (Ra Value) and Root Mean Square Roughness (Rq Value)>
Using a non-contact type surface roughness meter (WYKO NT3300, manufactured by Beeco Instruments), Ra value and Rq value were obtained from numerical values obtained with a measurement range of 121 μm × 92 μm by a VSI contact mode and a 50 × lens. And it measured by calculating | requiring the average value of 10 points | pieces at random, respectively.
<伸びの測定>
実施例1~7及び比較例1~3で作成した接着フィルムを190℃90分間の硬化条件で熱硬化して硬化物を作成した。JIS K 7127に従い、この硬化物からダンベル状に切り出された試験片を作成し、PETフィルムを剥がして、オリエンテック社製引張試験機RTC−1250Aを用いて引っ張り試験を行い、破断点伸度を測定した。
<Measurement of elongation>
The adhesive films prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were thermally cured under curing conditions at 190 ° C. for 90 minutes to prepare cured products. In accordance with JIS K 7127, a test piece cut out in a dumbbell shape from this cured product is prepared, the PET film is peeled off, a tensile test is performed using an orientec tensile tester RTC-1250A, and the elongation at break is determined. It was measured.
<最低溶融粘度の測定>
実施例1~7及び比較例1~3で作成した接着フィルムにおける樹脂組成物層の溶融粘度を測定した。(株)ユー・ビー・エム社製型式Rheosol−G3000を使用して、樹脂量は1g、直径18mmのパラレルプレートを使用し、開始温度60℃から200℃まで、昇温速度5℃/分、測定温度間隔2.5℃、振動1Hz/degの測定条件にて溶融粘度を測定した。
<Measurement of minimum melt viscosity>
The melt viscosities of the resin composition layers in the adhesive films prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were measured. Using a model Rheosol-G3000 manufactured by UBM Co., Ltd., using a parallel plate having a resin amount of 1 g and a diameter of 18 mm, a starting temperature of 60 ° C. to 200 ° C., a heating rate of 5 ° C./min, The melt viscosity was measured under measurement conditions of a measurement temperature interval of 2.5 ° C. and vibration of 1 Hz / deg.
<製造例1>
球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、液状多官能エポキシ樹脂(DIC(株)製「HP4032SS」、ナフタレン型エポキシ樹脂、25℃の粘度が32Pa・s、エポキシ当量144、不揮発分80質量%のメチルエチルケトン(以下「MEK」と略称する)溶液)2.5質量部を噴霧しながら球状シリカを10分間攪拌し、製造物1を作製した。表面処理時の最高到達温度は約80℃であり、平均温度は約70℃であった。
<Production Example 1>
100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and a liquid polyfunctional epoxy resin (“HP4032SS” manufactured by DIC Corporation), While spraying 2.5 parts by mass of a naphthalene type epoxy resin, a viscosity of 32 Pa · s at 25 ° C., an epoxy equivalent of 144, and a methyl ethyl ketone (hereinafter abbreviated as “MEK”) having a nonvolatile content of 80% by mass, spherical silica is applied for 10 minutes. The product 1 was produced by stirring. The maximum temperature reached during the surface treatment was about 80 ° C., and the average temperature was about 70 ° C.
<製造例2>
球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、液状多官能エポキシ樹脂(三菱化学(株)製「630LSD」、p−アミノフェノール型エポキシ樹脂、25℃の粘度が0.6Pa・s、エポキシ当量95、不揮発分80質量%のMEK溶液)2質量部を噴霧しながら球状シリカを10分間攪拌し、製造物2を作製した。表面処理時の最高到達温度は約65℃であり、平均温度は約60℃であった。
<Production Example 2>
100 parts by weight of spherical silica ("Advertex" SC2050-SQ, average particle size 0.5 [mu] m) was charged into a Henschel-type powder mixer, and a liquid polyfunctional epoxy resin ("630LSD" manufactured by Mitsubishi Chemical Corporation). , P-aminophenol type epoxy resin, MEK solution having a viscosity at 25 ° C. of 0.6 Pa · s, an epoxy equivalent of 95 and a nonvolatile content of 80% by mass), and stirring the spherical silica for 10 minutes while spraying 2 parts by mass. 2 was produced. The maximum temperature reached during the surface treatment was about 65 ° C., and the average temperature was about 60 ° C.
<製造例3>
球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、液状多官能エポキシ樹脂(新日鐵化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂、25℃の粘度が2.3Pa・s、エポキシ当量165、不揮発分75質量%のMEK溶液)2.7質量部を噴霧しながら球状シリカを10分間攪拌し、製造物3を作製した。表面処理時の最高到達温度は約80℃であり、平均温度は約65℃であった。
<Production Example 3>
100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and a liquid polyfunctional epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd.) ZX1059 ”, bisphenol A type epoxy resin and bisphenol F type epoxy resin, MEK solution having a viscosity at 25 ° C. of 2.3 Pa · s, an epoxy equivalent of 165, and a non-volatile content of 75 mass%) while spraying 2.7 parts by mass of spherical silica Was stirred for 10 minutes to produce Product 3. The maximum temperature reached during the surface treatment was about 80 ° C., and the average temperature was about 65 ° C.
<製造例4>
球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、液状多官能エポキシ樹脂(新日鐵化学(株)製「ZX1542」、グリセロール型エポキシ樹脂、25℃の粘度が0.08Pa・s、エポキシ当量240、不揮発分80質量%のMEK溶液)2質量部を噴霧しながら球状シリカを10分間攪拌した後に、ポリ(メチルトリメトキシシラン)(多摩化学(株)製「MTMS−A」)0.3質量部を噴霧しながら5分間攪拌し、製造物4を作製した。表面処理時の最高到達温度は約90℃であり、平均温度は約75℃であった。
<Production Example 4>
100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and a liquid polyfunctional epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd.) ZX1542 ”, a glycerol type epoxy resin, a MEK solution having a viscosity of 25 ° C. of 0.08 Pa · s, an epoxy equivalent of 240, and a non-volatile content of 80% by mass. Methyltrimethoxysilane) (“MTMS-A” manufactured by Tama Chemical Co., Ltd.) (0.3 parts by mass) was stirred for 5 minutes while sprayed to produce Product 4. The maximum temperature reached during the surface treatment was about 90 ° C., and the average temperature was about 75 ° C.
<製造例5>
球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、液状多官能エポキシ樹脂(DIC(株)製「HP4032SS」、ナフタレン型エポキシ樹脂、25℃の粘度が32Pa・s、エポキシ当量144、不揮発分80質量%のMEK溶液)2質量部を噴霧しながら球状シリカを10分間攪拌した後に、N−フェニル−3−アミノプロピル基含有アルコキシオリゴマー(信越化学工業(株)製、25℃の粘度が1000mm/s)0.6質量部を噴霧しながら5分間攪拌し、製造物5を作製した。表面処理時の最高到達温度は約95℃であり、平均温度は約85℃であった。
<Production Example 5>
100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and a liquid polyfunctional epoxy resin (“HP4032SS” manufactured by DIC Corporation), Naphthalene type epoxy resin, MEK solution having a viscosity at 25 ° C. of 32 Pa · s, an epoxy equivalent of 144 and a non-volatile content of 80% by mass) was stirred for 10 minutes while spraying 2 parts by mass of N-phenyl-3-amino. The product 5 was produced by stirring for 5 minutes while spraying 0.6 parts by mass of a propyl group-containing alkoxy oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C. of 1000 mm 2 / s). The maximum temperature reached during the surface treatment was about 95 ° C., and the average temperature was about 85 ° C.
<製造例6>
球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部をへンシェル型混粉機に投入し、エポキシ基含有シランカップリング剤(信越化学工業(株)製「KBM403」)0.6質量部を噴霧しながら5分間攪拌し、製造物6を作製した。表面処理時の最高到達温度は約70℃であり、平均温度は約60℃であった。
<Production Example 6>
100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and an epoxy group-containing silane coupling agent (Shin-Etsu Chemical Co., Ltd.) (Production “KBM403”) was stirred for 5 minutes while spraying 0.6 parts by mass to produce a product 6. The maximum temperature reached during the surface treatment was about 70 ° C., and the average temperature was about 60 ° C.
<実施例1>
ナフタレン型エポキシ樹脂(エポキシ当量144、DIC(株)製「HP4700」)5質量部、液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「jER828EL」)14質量部、ビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000H」)14質量部をソルベントナフサ30質量部に撹拌しながら加熱溶解させ、その後室温にまで冷却した。その混合溶液に、ゴム粒子(ガンツ化成(株)製、スタフィロイドAC3816N)1.5質量部を、ソルベントナフサ6質量部に12時間、20℃で静置膨潤したもの、さらに製造物1を添加し、さらに難燃剤(三光(株)製「HCA−HQ」、10−(2,5−ジヒドロキシフェニル)−10−ヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、平均粒径1μm)5質量部を添加し、3本ロールで混練し分散させた。そこへ、フェノールノボラック系硬化剤(DIC(株)製「LA−7054」、フェノール性水酸基当量124の不揮発分60質量%のメチルエチルケトン(以下「MEK」と略称する)溶液)10質量部、ナフタレン系フェノール樹脂(フェノール性水酸基当量215、新日鐵化学(株)製「SN485」、不揮発分60質量%のMEK溶液)10質量部、フェノキシ樹脂(重量平均分子量35000、三菱化学(株)製「YL7553」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)7質量部、硬化促進剤として4−ジメチルアミノピリジンの5質量%のMEK溶液2質量部、メチルエチルケトン(MEK)4質量部を混合し、回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスをアルキド系離型処理付きポリエチレンテレフタレートフィルム(厚さ38μm)の離型面上に、乾燥後の樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、80~110℃(平均95℃)で5分間乾燥した(樹脂組成物層中の残留溶媒量:約2質量%)。次いで、樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、507×336mmサイズのシート状の接着フィルムを得た。
<Example 1>
5 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “HP4700” manufactured by DIC Corporation), 14 parts by mass of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation), biphenyl type epoxy 14 parts by mass of resin (epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) was dissolved in 30 parts by mass of solvent naphtha with stirring, and then cooled to room temperature. To the mixed solution, 1.5 parts by mass of rubber particles (manufactured by Ganz Kasei Co., Ltd., Staphyloid AC3816N), 6 parts by mass of solvent naphtha for 12 hours at 20 ° C., and product 1 were added. Further, a flame retardant (“HCA-HQ” manufactured by Sanko Co., Ltd., 10- (2,5-dihydroxyphenyl) -10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide, average particle 5 parts by mass) (diameter 1 μm) was added and kneaded and dispersed with three rolls. Thereto, 10 parts by mass of a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, methyl ethyl ketone (hereinafter abbreviated as “MEK”) solution having a non-volatile content of 60% by mass of phenolic hydroxyl group equivalent 124), naphthalene-based Phenol resin (phenolic hydroxyl group equivalent 215, “SN485” manufactured by Nippon Steel Chemical Co., Ltd., MEK solution having a nonvolatile content of 60% by mass), 10 parts by mass, phenoxy resin (weight average molecular weight 35000, manufactured by Mitsubishi Chemical Co., Ltd. “YL7553” 7 parts by mass of a 1: 1 solution of MEK and cyclohexanone having a non-volatile content of 30% by mass), 2 parts by mass of a 5% by mass MEK solution of 4-dimethylaminopyridine as a curing accelerator, and 4 parts by mass of methyl ethyl ketone (MEK) are mixed. The resin varnish was prepared by uniformly dispersing with a rotary mixer. Next, the resin varnish is uniformly applied by a die coater on the release surface of a polyethylene terephthalate film with a alkyd release treatment (thickness 38 μm) so that the thickness of the resin composition layer after drying is 40 μm. And dried at 80 to 110 ° C. (average 95 ° C.) for 5 minutes (residual solvent amount in the resin composition layer: about 2% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition layer. The roll-like adhesive film was slit to a width of 507 mm to obtain a sheet-like adhesive film having a size of 507 × 336 mm.
<実施例2>
実施例1の製造物1を、製造物2に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 2>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 2. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
<実施例3>
実施例1の製造物1を、製造物3に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 3>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 3. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
<実施例4>
実施例1の製造物1を、製造物4に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 4>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 4. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例5>
 実施例1の製造物1を製造物5に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 5>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 5. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例6>
 実施例1の樹脂ワニスにさらにN−フェニル−3−アミノプロピル基含有アルコキシオリゴマー(信越化学工業(株)製、25℃の粘度が1000mm/s)0.6質量部を後添加した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 6>
Except that 0.6 parts by mass of N-phenyl-3-aminopropyl group-containing alkoxy oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C. of 1000 mm 2 / s) was further added to the resin varnish of Example 1. A resin varnish was prepared in exactly the same manner. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例7>
ナフタレン型エポキシ樹脂(エポキシ当量144、DIC(株)製「HP4032SS」)15質量部と、ビキシレノール型エポキシ樹脂(エポキシ当量190、三菱化学(株)製「YX4000HK」)2質量部、変性ナフタレン型エポキシ樹脂(エポキシ当量約330、新日鐵化学(株)製「ESN475V」)18質量部をソルベントナフサ25質量部に撹拌しながら加熱溶解させ、その後室温にまで冷却した。その混合溶液に、ゴム粒子(ガンツ化成(株)製、スタフィロイドAC3816N)1.5質量部を、ソルベントナフサ6質量部に12時間、20℃で静置膨潤したもの、さらに製造物5を160質量部混合し、さらに難燃剤(三光(株)製「HCA−HQ」、10−(2,5−ジヒドロキシフェニル)−10−ヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、平均粒径1μm)3質量部を添加し、3本ロールで混練、均一に分散させた。そこへ、活性エステル硬化剤(DIC(株)製「HPC−8000−65T」、活性基当量約223の不揮発分65質量%のトルエン溶液)20質量部、ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA230S75」、シアネート当量約232、不揮発分75質量%のMEK溶液)30質量部、フェノキシ樹脂(重量平均分子量35000、三菱化学(株)製「YL7553」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)10質量部、硬化促進剤として4−ジメチルアミノピリジンの4質量%のMEK溶液1質量部、コバルト(III)アセチルアセトナート(東京化成(株)製)の1質量%のMEK溶液4質量部を混合し、回転ミキサーで均一に分散して、樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 7>
15 parts by mass of naphthalene type epoxy resin (epoxy equivalent 144, “HP4032SS” manufactured by DIC Corporation), 2 parts by mass of bixylenol type epoxy resin (epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation), modified naphthalene type 18 parts by mass of an epoxy resin (epoxy equivalent: about 330, “ESN475V” manufactured by Nippon Steel Chemical Co., Ltd.) was heated and dissolved in 25 parts by mass of solvent naphtha, and then cooled to room temperature. In this mixed solution, 1.5 parts by mass of rubber particles (manufactured by Gantz Kasei Co., Ltd., Staphyloid AC3816N), 6 parts by mass of solvent naphtha for 12 hours at 20 ° C., and 160% of product 5 were obtained. Further, a flame retardant (“HCA-HQ”, 10- (2,5-dihydroxyphenyl) -10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide manufactured by Sanko Co., Ltd.) was mixed. 3 parts by mass of an average particle diameter of 1 μm) was added, kneaded with three rolls, and uniformly dispersed. Thereto, 20 parts by mass of an active ester curing agent (“PCC-8000-65T” manufactured by DIC Corporation, a toluene solution having a nonvolatile content of 65% by mass with an active group equivalent of about 223), a prepolymer of bisphenol A dicyanate (Lonza Japan ( "BA230S75" manufactured by Co., Ltd., 30 parts by mass of a MEK solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass, a phenoxy resin (weight average molecular weight 35000, MEK having a non-volatile content of 30% by mass, Mitsubishi Chemical Corporation "YL7553" (1: 1 solution of cyclohexanone) 10 parts by weight, 1 part by weight of 4% by weight MEK solution of 4-dimethylaminopyridine as a curing accelerator, 1% by weight of cobalt (III) acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 parts by mass of MEK solution was mixed and uniformly dispersed with a rotary mixer to prepare a resin varnish. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例1>
実施例1の製造物1を球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 1>
A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm). Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例2>
実施例1の製造物1を球状シリカ((株)アドマテックス製「SC2050−SQ」、平均粒径0.5μm)100質量部に変更し、エポキシ樹脂(エポキシ当量144、DIC(株)製「HP4032SS」)2質量部を添加した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative example 2>
The product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm), and an epoxy resin (epoxy equivalent 144, manufactured by DIC Corporation) HP4032SS ") A resin varnish was prepared in the same manner except that 2 parts by mass were added. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例3>
実施例1の製造物1を製造物6に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 3>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 6. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
表1の結果から、実施例1~7の樹脂組成物は、低算術平均粗さ、低二乗平均平方根粗さでピール強度が十分な値が得られていることが分かる。また、伸びが向上し取り扱い性が向上していることが分かる。さらに溶融粘度が低下して接着フィルムの取り扱い性が向上していることも分かる。なお、Rq値は絶縁層表面の局所的な状態が反映されるため、Rq値の減少により緻密な粗面になっていることがわかる。一方、比較例1~3では、算術平均粗さ、二乗平均平方根粗さが大きくなり、メッキが膨れてピール強度が著しく小さい値となった。 From the results in Table 1, it can be seen that the resin compositions of Examples 1 to 7 have sufficient values of peel strength with low arithmetic average roughness and low root mean square roughness. Moreover, it turns out that elongation improves and the handleability is improving. Furthermore, it turns out that melt viscosity falls and the handleability of an adhesive film is improving. Note that the Rq value reflects a local state on the surface of the insulating layer, and thus it can be seen that the Rq value is reduced to a dense rough surface. On the other hand, in Comparative Examples 1 to 3, the arithmetic average roughness and the root mean square roughness were large, the plating was swollen, and the peel strength was extremely small.
 湿式粗化工程後の絶縁層表面が低い算術平均粗さ(Ra値)のみならず、低い二乗平均平方根粗さ(Rq値)であっても、メッキ導体層が十分に高いピール強度を呈する、新規樹脂組成物を提供できるようになった。更にそれを用いた接着フィルム、プリプレグ、多層プリント配線板、半導体装置を提供できるようになった。更にこれらを搭載した、コンピューター、携帯電話、デジタルカメラ、テレビ、等の電気製品や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。 Even if the insulating layer surface after the wet roughening step is not only low arithmetic average roughness (Ra value) but also low root mean square roughness (Rq value), the plated conductor layer exhibits sufficiently high peel strength. A new resin composition can be provided. Furthermore, an adhesive film, a prepreg, a multilayer printed wiring board, and a semiconductor device using the same can be provided. Furthermore, electric products such as computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with these can be provided.

Claims (18)

  1. (A)エポキシ樹脂、(B)硬化剤及び(C)エポキシ樹脂で表面処理された無機充填材を含有することを特徴とする樹脂組成物。 A resin composition comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler surface-treated with an epoxy resin.
  2. (C)エポキシ樹脂で表面処理された無機充填材が、無機充填材100質量%に対して該エポキシ樹脂0.05~3質量%により表面処理されていることを特徴とする請求項1記載の樹脂組成物。 (C) The inorganic filler surface-treated with an epoxy resin is surface-treated with 0.05 to 3% by mass of the epoxy resin with respect to 100% by mass of the inorganic filler. Resin composition.
  3. (C)エポキシ樹脂で表面処理された無機充填材は、該エポキシ樹脂で表面処理する際の平均温度が20~100℃であることを特徴とする請求項1又は2記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the inorganic filler surface-treated with the epoxy resin has an average temperature of 20 to 100 ° C. when the surface treatment is performed with the epoxy resin.
  4. (C)エポキシ樹脂で表面処理された無機充填材は、該エポキシ樹脂で表面処理する際の最高到達温度が50~150℃であることを特徴とする請求項1又は2記載の樹脂組成物。 (C) The resin composition according to claim 1 or 2, wherein the inorganic filler surface-treated with an epoxy resin has a maximum reached temperature of 50 to 150 ° C when the surface treatment is performed with the epoxy resin.
  5. (C)エポキシ樹脂で表面処理された無機充填材の該エポキシ樹脂が液状エポキシ樹脂であることを特徴とする請求項1~4のいずれか1項記載の樹脂組成物。 5. The resin composition according to claim 1, wherein the epoxy resin of the inorganic filler surface-treated with an epoxy resin is a liquid epoxy resin.
  6. 該液状エポキシ樹脂の25℃での粘度が0.01~50Pa・sであることを特徴とする請求項5記載の樹脂組成物。 6. The resin composition according to claim 5, wherein the viscosity of the liquid epoxy resin at 25 ° C. is 0.01 to 50 Pa · s.
  7. (C)エポキシ樹脂で表面処理された無機充填材の該エポキシ樹脂が、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリセロール型エポキシ樹脂及びp−アミノフェノール型エポキシ樹脂からなる群より選択される1種以上であることを特徴とする請求項1~6のいずれか1項記載の樹脂組成物。 (C) The epoxy resin of the inorganic filler surface-treated with an epoxy resin comprises a naphthalene type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a glycerol type epoxy resin and a p-aminophenol type epoxy resin. 7. The resin composition according to claim 1, wherein the resin composition is at least one selected from the group.
  8. (C)エポキシ樹脂で表面処理された無機充填材が、さらにシランカップリング剤、アルコキシシラン、アルコキシオリゴマー、アルミニウム系カップリング剤、チタン系カップリング剤及びジルコニウム系カップリング剤からなる群より選択される1種以上で表面処理されていることを特徴とする請求項1~7のいずれか1項記載の樹脂組成物。 (C) The inorganic filler surface-treated with an epoxy resin is further selected from the group consisting of a silane coupling agent, an alkoxysilane, an alkoxy oligomer, an aluminum coupling agent, a titanium coupling agent, and a zirconium coupling agent. The resin composition according to any one of claims 1 to 7, wherein the resin composition is surface-treated with one or more of the above.
  9. 更に(D)硬化促進剤を含有することを特徴とする請求項1~8のいずれか1項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, further comprising (D) a curing accelerator.
  10. 更に(E)熱可塑性樹脂を含有することを特徴とする請求項1~9のいずれか1項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, further comprising (E) a thermoplastic resin.
  11. 更に(F)ゴム粒子を含有することを特徴とする請求項1~10のいずれか1項記載の樹脂組成物。 11. The resin composition according to any one of claims 1 to 10, further comprising (F) rubber particles.
  12. 更に(G)難燃剤を含有することを特徴とする請求項1~11のいずれか1項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, further comprising (G) a flame retardant.
  13. 樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~330nmであり、二乗平均平方根粗さが10~480nmであり、かつ、粗化処理後の該絶縁層表面にメッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.0kgf/cmであることを特徴とする請求項1~12のいずれか1項記載の樹脂組成物。 The resin composition is cured to form an insulating layer, the arithmetic average roughness after roughening the surface of the insulating layer is 10 nm to 330 nm, the root mean square roughness is 10 to 480 nm, 13. The peel strength between the conductor layer obtained by plating on the surface of the insulating layer after the crystallization treatment and the insulating layer is 0.4 kgf / cm to 1.0 kgf / cm. Item 1. The resin composition according to item 1.
  14. 請求項1~13のいずれか1項記載の樹脂組成物が支持体上に樹脂組成物層として形成された接着フィルム。 An adhesive film, wherein the resin composition according to any one of claims 1 to 13 is formed as a resin composition layer on a support.
  15. 樹脂組成物層の最低溶融粘度が500~14000poiseであることを特徴とする請求項14記載の接着フィルム。 15. The adhesive film according to claim 14, wherein the resin composition layer has a minimum melt viscosity of 500 to 14000 poise.
  16. 請求項1~13のいずれか1項記載の樹脂組成物がシート状補強基材に含浸されたプリプレグ。 A prepreg obtained by impregnating a sheet-like reinforcing base material with the resin composition according to any one of claims 1 to 13.
  17. 請求項1~13のいずれか1項記載の樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板。 A multilayer printed wiring board in which an insulating layer is formed of a cured product of the resin composition according to any one of claims 1 to 13.
  18. 請求項17記載の多層プリント配線板を用いることを特徴とする、半導体装置。 A semiconductor device using the multilayer printed wiring board according to claim 17.
PCT/JP2012/051901 2012-01-23 2012-01-23 Resin composition WO2013111345A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/051901 WO2013111345A1 (en) 2012-01-23 2012-01-23 Resin composition
KR1020147023391A KR101897955B1 (en) 2012-01-23 2012-01-23 Resin composition
CN201280067707.3A CN104053721B (en) 2012-01-23 2012-01-23 Resin combination
JP2012553132A JP5413522B1 (en) 2012-01-23 2012-01-23 Resin composition
TW102102469A TWI572663B (en) 2012-01-23 2013-01-23 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051901 WO2013111345A1 (en) 2012-01-23 2012-01-23 Resin composition

Publications (1)

Publication Number Publication Date
WO2013111345A1 true WO2013111345A1 (en) 2013-08-01

Family

ID=48873106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051901 WO2013111345A1 (en) 2012-01-23 2012-01-23 Resin composition

Country Status (5)

Country Link
JP (1) JP5413522B1 (en)
KR (1) KR101897955B1 (en)
CN (1) CN104053721B (en)
TW (1) TWI572663B (en)
WO (1) WO2013111345A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012763A (en) * 2012-07-04 2014-01-23 Ajinomoto Co Inc Resin composition
JP2014145017A (en) * 2013-01-29 2014-08-14 Toray Ind Inc Epoxy resin composition, molding material and fiber-reinforced composite material
CN104194272A (en) * 2014-09-03 2014-12-10 苏州苏月新材料有限公司 Basalt fiber prepreg and preparation method thereof
JP2015059185A (en) * 2013-09-19 2015-03-30 静岡県公立大学法人 Resin composition, resin molding and semiconductor device
JP2015061720A (en) * 2013-08-23 2015-04-02 味の素株式会社 Method of manufacturing component sealing film
JP2015151483A (en) * 2014-02-17 2015-08-24 三菱瓦斯化学株式会社 Resin sheet, metal foil clad laminate sheet and printed wiring board
WO2015186744A1 (en) * 2014-06-04 2015-12-10 日立化成株式会社 Film-shaped epoxy resin composition, method for manufacturing film-shaped epoxy resin composition, and method for manufacturing semiconductor device
KR20160002381A (en) * 2014-06-30 2016-01-07 아지노모토 가부시키가이샤 Resin composition
JP2017103329A (en) * 2015-12-01 2017-06-08 味の素株式会社 Resin sheet
JP2017149874A (en) * 2016-02-25 2017-08-31 住友ベークライト株式会社 Resin sheet for manufacturing semiconductor device, semiconductor device, method of manufacturing semiconductor device, organic resin substrate, and method of manufacturing organic resin substrate
JP2018030981A (en) * 2016-08-26 2018-03-01 味の素株式会社 Resin composition
JPWO2016204183A1 (en) * 2015-06-16 2018-04-05 日立化成株式会社 Film forming resin composition, sealing film using the same, sealing film with support, and semiconductor device
WO2019187588A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Curable resin composition, dry film, cured object, and electronic component
US10601011B2 (en) 2015-06-29 2020-03-24 Zeon Corporation Composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP2020522593A (en) * 2017-12-11 2020-07-30 エルジー・ケム・リミテッド Thermosetting resin composition for metal thin film coating and metal laminate using the same
JPWO2019155896A1 (en) * 2018-02-09 2020-12-03 Dic株式会社 Adhesive tape, articles and methods of manufacturing articles
WO2021171782A1 (en) 2020-02-28 2021-09-02 日本ゼオン株式会社 Intercell spacer and battery module

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974169B2 (en) 2015-02-03 2018-05-15 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminate, resin composite sheet, and printed wiring board
JP6834144B2 (en) * 2016-02-29 2021-02-24 味の素株式会社 Resin sheet with support
CN107722687B (en) * 2017-09-19 2020-02-07 河北晨阳工贸集团有限公司 Water-based peelable resin and preparation method thereof
CN111164151A (en) * 2017-10-10 2020-05-15 味之素株式会社 Cured product, method for producing same, resin sheet, and resin composition
JP7259913B2 (en) * 2018-05-09 2023-04-18 味の素株式会社 Adhesive sheet with support
JP6965823B2 (en) * 2018-05-09 2021-11-10 味の素株式会社 Adhesive sheet with support
EP3938457B1 (en) * 2019-03-15 2024-02-28 Henkel AG & Co. KGaA Thermally conductive potting composition
CN111055585B (en) * 2019-12-26 2021-12-24 艾蒙特成都新材料科技有限公司 Flame-retardant low-dielectric copper-clad plate and preparation method thereof
TWI724806B (en) * 2020-03-02 2021-04-11 聯茂電子股份有限公司 Halogen-free low-dielectric composition, laminated substrate and printed circuit board therof
WO2022120715A1 (en) * 2020-12-10 2022-06-16 深圳先进技术研究院 Insulating adhesive film material, preparation method therefor and application thereof
CN112724867B (en) * 2020-12-10 2023-01-10 深圳先进技术研究院 Insulating adhesive film material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370159A (en) * 1991-03-19 1992-12-22 Matsushita Electric Works Ltd Combination filler and epoxy resin composition compounded with the combination filler
JPH05222165A (en) * 1992-02-13 1993-08-31 Shin Etsu Chem Co Ltd Light-transmitting epoxy resin composition and optical semiconductor device
JP2008174624A (en) * 2007-01-17 2008-07-31 Admatechs Co Ltd Surface-treated inorganic powder
JP2009235359A (en) * 2008-03-28 2009-10-15 Osaka Gas Co Ltd Fluorene-based resin composition
JP2010275334A (en) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd Process for producing surface treated silica particle, surface treated silica particle, epoxy resin composition and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095901A (en) 1996-02-16 1998-04-14 Shikibo Ltd Organic-inorganic hybridized compound, manufacture of the same and the use of the same
JP4529268B2 (en) * 2000-10-05 2010-08-25 住友ベークライト株式会社 Epoxy resin composition, prepreg and copper-clad laminate using the same
US20110189432A1 (en) 2008-07-29 2011-08-04 Sekisui Chemical Co., Ltd. Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
JP4674730B2 (en) 2008-09-24 2011-04-20 積水化学工業株式会社 Semi-cured body, cured body, laminate, method for producing semi-cured body, and method for producing cured body
WO2010035452A1 (en) 2008-09-24 2010-04-01 積水化学工業株式会社 Resin composition, cured body and multilayer body
TWI494364B (en) * 2009-01-30 2015-08-01 Ajinomoto Kk Resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370159A (en) * 1991-03-19 1992-12-22 Matsushita Electric Works Ltd Combination filler and epoxy resin composition compounded with the combination filler
JPH05222165A (en) * 1992-02-13 1993-08-31 Shin Etsu Chem Co Ltd Light-transmitting epoxy resin composition and optical semiconductor device
JP2008174624A (en) * 2007-01-17 2008-07-31 Admatechs Co Ltd Surface-treated inorganic powder
JP2009235359A (en) * 2008-03-28 2009-10-15 Osaka Gas Co Ltd Fluorene-based resin composition
JP2010275334A (en) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd Process for producing surface treated silica particle, surface treated silica particle, epoxy resin composition and semiconductor device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012763A (en) * 2012-07-04 2014-01-23 Ajinomoto Co Inc Resin composition
JP2014145017A (en) * 2013-01-29 2014-08-14 Toray Ind Inc Epoxy resin composition, molding material and fiber-reinforced composite material
JP2015061720A (en) * 2013-08-23 2015-04-02 味の素株式会社 Method of manufacturing component sealing film
JP2015059185A (en) * 2013-09-19 2015-03-30 静岡県公立大学法人 Resin composition, resin molding and semiconductor device
JP2015151483A (en) * 2014-02-17 2015-08-24 三菱瓦斯化学株式会社 Resin sheet, metal foil clad laminate sheet and printed wiring board
US9873771B2 (en) 2014-06-04 2018-01-23 Hitachi Chemical Company, Ltd. Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
WO2015186744A1 (en) * 2014-06-04 2015-12-10 日立化成株式会社 Film-shaped epoxy resin composition, method for manufacturing film-shaped epoxy resin composition, and method for manufacturing semiconductor device
CN105339410B (en) * 2014-06-04 2019-08-20 日立化成株式会社 The manufacturing method of membranaceous composition epoxy resin, the manufacturing method of membranaceous composition epoxy resin and semiconductor device
CN105339410A (en) * 2014-06-04 2016-02-17 日立化成株式会社 Film-shaped epoxy resin composition, method for manufacturing film-shaped epoxy resin composition, and method for manufacturing semiconductor device
KR102359868B1 (en) * 2014-06-04 2022-02-07 쇼와덴코머티리얼즈가부시끼가이샤 Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
KR20170015086A (en) * 2014-06-04 2017-02-08 히타치가세이가부시끼가이샤 Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
US20170073481A1 (en) * 2014-06-04 2017-03-16 Hitachi Chemical Company, Ltd. Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
JPWO2015186744A1 (en) * 2014-06-04 2017-04-20 日立化成株式会社 Film-like epoxy resin composition, method for producing film-like epoxy resin composition, and method for producing semiconductor device
TWI643900B (en) * 2014-06-04 2018-12-11 日商日立化成股份有限公司 Film-like epoxy resin composition, method for manufacturing film-like epoxy resin composition, and method for manufacturing semiconductor device
JP2016027097A (en) * 2014-06-30 2016-02-18 味の素株式会社 Resin composition
KR20160002381A (en) * 2014-06-30 2016-01-07 아지노모토 가부시키가이샤 Resin composition
KR102324291B1 (en) * 2014-06-30 2021-11-11 아지노모토 가부시키가이샤 Resin composition
JP2020033568A (en) * 2014-06-30 2020-03-05 味の素株式会社 Resin composition and adhesive film
JP2021119245A (en) * 2014-06-30 2021-08-12 味の素株式会社 Resin composition, adhesive film, printed wiring board and semiconductor device
JP7279732B2 (en) 2014-06-30 2023-05-23 味の素株式会社 Resin composition, adhesive film, printed wiring board and semiconductor device
CN104194272A (en) * 2014-09-03 2014-12-10 苏州苏月新材料有限公司 Basalt fiber prepreg and preparation method thereof
JPWO2016204183A1 (en) * 2015-06-16 2018-04-05 日立化成株式会社 Film forming resin composition, sealing film using the same, sealing film with support, and semiconductor device
US10601011B2 (en) 2015-06-29 2020-03-24 Zeon Corporation Composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP2017103329A (en) * 2015-12-01 2017-06-08 味の素株式会社 Resin sheet
JP2017149874A (en) * 2016-02-25 2017-08-31 住友ベークライト株式会社 Resin sheet for manufacturing semiconductor device, semiconductor device, method of manufacturing semiconductor device, organic resin substrate, and method of manufacturing organic resin substrate
JP2022159316A (en) * 2016-08-26 2022-10-17 味の素株式会社 resin composition
JP7111233B2 (en) 2016-08-26 2022-08-02 味の素株式会社 resin composition
JP7435665B2 (en) 2016-08-26 2024-02-21 味の素株式会社 resin composition
JP2021185239A (en) * 2016-08-26 2021-12-09 味の素株式会社 Resin composition
JP2018030981A (en) * 2016-08-26 2018-03-01 味の素株式会社 Resin composition
JP7024174B2 (en) 2016-08-26 2022-02-24 味の素株式会社 Resin composition
JP2020522593A (en) * 2017-12-11 2020-07-30 エルジー・ケム・リミテッド Thermosetting resin composition for metal thin film coating and metal laminate using the same
US11274218B2 (en) 2017-12-11 2022-03-15 Lg Chem, Ltd. Thermosetting resin composition for coating metal thin film and metal laminate using the same
JPWO2019155896A1 (en) * 2018-02-09 2020-12-03 Dic株式会社 Adhesive tape, articles and methods of manufacturing articles
CN111936575A (en) * 2018-03-30 2020-11-13 太阳油墨制造株式会社 Curable resin composition, dry film, cured product, and electronic component
WO2019187588A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Curable resin composition, dry film, cured object, and electronic component
WO2021171782A1 (en) 2020-02-28 2021-09-02 日本ゼオン株式会社 Intercell spacer and battery module

Also Published As

Publication number Publication date
CN104053721A (en) 2014-09-17
JP5413522B1 (en) 2014-02-12
JPWO2013111345A1 (en) 2015-05-11
CN104053721B (en) 2016-12-21
TWI572663B (en) 2017-03-01
KR101897955B1 (en) 2018-09-12
KR20140124792A (en) 2014-10-27
TW201348324A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5413522B1 (en) Resin composition
JP5234229B1 (en) Resin composition
JP6123169B2 (en) Resin composition
JP5950005B2 (en) Resin composition
JP6163803B2 (en) Resin composition
KR101489175B1 (en) Resin composition
JP6069887B2 (en) Resin composition
TWI650368B (en) Resin composition
JP6123177B2 (en) Resin composition
JP6119441B2 (en) Resin composition
JP6534986B2 (en) Resin composition
JP6418273B2 (en) Resin composition
JP6007663B2 (en) Resin composition
JP6489148B2 (en) Resin composition
JP6337917B2 (en) Resin composition
JP5234231B1 (en) Resin composition
JP2019116630A (en) Resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012553132

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147023391

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12866854

Country of ref document: EP

Kind code of ref document: A1