JP2008174624A - Surface-treated inorganic powder - Google Patents

Surface-treated inorganic powder Download PDF

Info

Publication number
JP2008174624A
JP2008174624A JP2007008464A JP2007008464A JP2008174624A JP 2008174624 A JP2008174624 A JP 2008174624A JP 2007008464 A JP2007008464 A JP 2007008464A JP 2007008464 A JP2007008464 A JP 2007008464A JP 2008174624 A JP2008174624 A JP 2008174624A
Authority
JP
Japan
Prior art keywords
inorganic powder
group
treated
surface treatment
treated inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008464A
Other languages
Japanese (ja)
Inventor
Takeshi Yanagihara
武 楊原
Masahito Noya
雅人 野家
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2007008464A priority Critical patent/JP2008174624A/en
Publication of JP2008174624A publication Critical patent/JP2008174624A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated inorganic powder that hardly suffers from aggregation and is highly stable. <P>SOLUTION: The surface-treated inorganic powder comprises an inorganic powder surface-treated with a surface-treating agent that is an organic compound having a polar part and a non-polar part and is liquid at ordinary temperature. Use of such a surface-treating agent permits protection of functional groups present on the surface of the inorganic powder and therefore effective suppression of aggregation of the inorganic powder. When a substance bearing at least one functional group selected from the group consisting of an amino group, epoxy group, acryl group, methacryl group, hydroxy group, carboxy group, thiol group and vinyl group in the polar part and/or a substance having a hydrocarbon group having a molecular weight of 50-1,000 in the non-polar part is used, the surface-treated inorganic powder exhibits higher preservability. Concrete examples of preferable surface treating agents include an epoxy reactive diluent and an acrylic reactive diluent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、凝集が生起し難い無機粉体である表面処理無機粉体に関する。   The present invention relates to a surface-treated inorganic powder that is an inorganic powder that hardly causes aggregation.

半導体パッケージなどの電子部品に採用される封止材、接着剤、基板などには熱膨張率の低減、高温下での機械的特性の維持などの熱的性質向上などを目指し、球状シリカ粒子などの無機粉体が分散された樹脂組成物を採用することが一般的である(特許文献1、2など)。   For sealing materials, adhesives, substrates, etc. used in electronic components such as semiconductor packages, spherical silica particles, etc., aiming to improve the thermal properties such as reducing the coefficient of thermal expansion and maintaining the mechanical properties at high temperatures It is common to employ a resin composition in which an inorganic powder is dispersed (Patent Documents 1, 2, etc.).

また、無機粉体の表面に対してシリコーンオイルや光重合可能な有機化合物を付着させる技術が開示されている。(特許文献3、4など)。
特表2001−502470号公報 特開2004−511616号公報 特開2005−173208号公報 特開2004−83846号公報
Further, a technique for attaching silicone oil or a photopolymerizable organic compound to the surface of an inorganic powder is disclosed. (Patent Documents 3, 4, etc.).
Special table 2001-502470 gazette JP 2004-511616 A JP-A-2005-173208 JP 2004-83846 A

ところで、球状シリカ粒子などの無機粉体の表面には種々の官能基が存在し、保存状態によっては互いに反応が進行して凝集など予期せぬ状態に至る場合がある。特に、表面改質や後段階での反応性向上などの目的で無機粉体の表面を処理するシランカップリング剤は、その種類によっては相互の反応性が高いことがあり、充分な保存性が得られない場合があった。   By the way, various functional groups exist on the surface of the inorganic powder such as spherical silica particles, and depending on the storage state, the reaction may proceed to an unexpected state such as aggregation. In particular, silane coupling agents that treat the surface of inorganic powders for the purpose of surface modification or improvement of reactivity at a later stage may have high mutual reactivity depending on the type of the silane coupling agent. In some cases, it could not be obtained.

本発明は上記実情に鑑みて完成したものであり、安定性が高い無機粉体を提供することを解決すべき課題とする。   This invention is completed in view of the said situation, and makes it the problem which should be solved to provide inorganic powder with high stability.

上記課題を解決する目的で本発明者らが鋭意検討を行った結果、以下の発明を完成した。すなわち、本発明の表面処理無機粉体は、極性部分と非極性部分とを有する有機化合物であり、常温で液状の表面処理剤にて表面処理された無機粉体を有することを特徴とする。   As a result of intensive studies by the present inventors for the purpose of solving the above problems, the following invention has been completed. That is, the surface-treated inorganic powder of the present invention is an organic compound having a polar part and a non-polar part, and is characterized by having an inorganic powder surface-treated with a liquid surface treatment agent at room temperature.

つまり、上述したような表面処理剤を採用することで、無機粉体の表面に存在する官能基を保護することが可能になり、無機粉体の凝集などを効果的に抑制できる。   That is, by employing the surface treatment agent as described above, it is possible to protect the functional groups present on the surface of the inorganic powder, and effectively suppress the aggregation of the inorganic powder.

特に、前記極性部分がアミノ基、エポキシ基、アクリル基、メタクリル基、水酸基、カルボキシル基、チオール基及びビニル基からなる群から選択される1以上の官能基を含む物質としたり、及び/又は、前記非極性部分の分子量が50〜1000の炭化水素基とした物質にすることで、より高い保存性をもつ表面処理無機粉体にすることができる。   In particular, the polar part may be a substance containing one or more functional groups selected from the group consisting of amino group, epoxy group, acrylic group, methacryl group, hydroxyl group, carboxyl group, thiol group and vinyl group, and / or By using a non-polar portion as a hydrocarbon group having a molecular weight of 50 to 1000, a surface-treated inorganic powder having higher storage stability can be obtained.

具体的に好ましい表面処理剤としてはエポキシ系反応性希釈剤又はアクリル系反応希釈剤が挙げられる。反応性希釈剤とは反応性の官能基をもつ有機化合物からなる液体である。エポキシ系反応性希釈剤は反応性の官能基としてのエポキシ基を有する化合物からなる液体であり、アクリル系反応希釈剤は反応性の官能基としてのアクリル基を有する化合物からなる液体である。   Specific examples of the surface treating agent include an epoxy reactive diluent or an acrylic reactive diluent. The reactive diluent is a liquid made of an organic compound having a reactive functional group. The epoxy reactive diluent is a liquid composed of a compound having an epoxy group as a reactive functional group, and the acrylic reactive diluent is a liquid composed of a compound having an acrylic group as a reactive functional group.

更に、シランカップリング剤にて表面処理されていることが望ましい。シランカップリング剤による無機粉体の表面処理の順序は特に限定されず、シランカップリング剤による表面処理を、表面処理剤による表面処理よりも前に行うことも出来るし、表面処理剤による表面処理よりも後に行うことも出来る。   Furthermore, it is desirable that the surface is treated with a silane coupling agent. The order of the surface treatment of the inorganic powder with the silane coupling agent is not particularly limited, and the surface treatment with the silane coupling agent can be performed before the surface treatment with the surface treatment agent, or the surface treatment with the surface treatment agent. Can be done later.

特に、シランカップリング剤による表面処理を表面処理剤よりも前に行うことで、前記シランカップリング剤は前記無機粉体の周囲に第1層を形成し、前記表面処理剤は該第1層の周囲に第2層を形成する形態になることが望ましい。   In particular, by performing the surface treatment with the silane coupling agent before the surface treatment agent, the silane coupling agent forms a first layer around the inorganic powder, and the surface treatment agent is the first layer. It is desirable that the second layer be formed around the substrate.

ここで、前記表面処理剤は、前記無機粉体及び前記シランカップリング剤との間で共有結合が形成されていないことが望ましい。化学結合が形成されていないので、必要なときに速やかに無機粉体の表面から表面処理剤を脱離することが容易になる。   Here, the surface treatment agent preferably has no covalent bond formed between the inorganic powder and the silane coupling agent. Since no chemical bond is formed, it becomes easy to quickly remove the surface treatment agent from the surface of the inorganic powder when necessary.

前記無機粉体はシリカ又はアルミナが例示できる。特に、金属と酸素とを反応させて得られる球状粉末であることが望ましい。   Examples of the inorganic powder include silica and alumina. In particular, a spherical powder obtained by reacting a metal and oxygen is desirable.

本発明の表面処理無機粉体は、樹脂組成物中に分散された形態で、EMC、液状封止材、基板材料、電子部品用接着剤、樹脂コンパウンド又は塗料に用いられることができる。   The surface-treated inorganic powder of the present invention can be used in an EMC, a liquid sealing material, a substrate material, an electronic component adhesive, a resin compound, or a paint in a form dispersed in a resin composition.

本発明の表面処理無機粉体は上記構成を有することから以下の作用効果を発揮する。すなわち、表面処理剤にて表面処理を行うことで、無機粉体の本来の性質は維持したままで保存性が向上できる。特に、表面処理剤が無機粉体などとの間で化学結合していない状態にすることで表面処理剤を着脱自在とすることができ、保存性の向上(凝集などを効果的に防止できる)と取扱性の向上(実際に使用するときに表面処理剤による影響が少なくなる)との両立を図ることができる。   Since the surface-treated inorganic powder of the present invention has the above configuration, it exhibits the following effects. That is, by performing the surface treatment with the surface treatment agent, it is possible to improve the storage stability while maintaining the original properties of the inorganic powder. In particular, when the surface treatment agent is not chemically bonded to the inorganic powder or the like, the surface treatment agent can be made detachable and storage stability can be improved (aggregation can be effectively prevented). And improved handling (impact of surface treatment agent is reduced when actually used).

本実施形態の表面処理無機粉体は樹脂(組成物)中に分散させた状態で使用することができる。例えば、硬化前のエポキシ樹脂や適正な溶媒に溶解させた高分子化合物などの樹脂組成物中に分散された形態で、EMC、液状封止材、基板材料、電子部品用接着剤、樹脂コンパウンド、塗料に用いることが出来る。特に、本実施形態の表面処理無機粉体を用いて調製した樹脂組成物は安定性が高いので、硬化前のエポキシ樹脂中に分散させた後、必要に応じて硬化させる用途に用いることが出来る。   The surface-treated inorganic powder of the present embodiment can be used in a state dispersed in a resin (composition). For example, in a form dispersed in a resin composition such as an epoxy resin before curing or a polymer compound dissolved in an appropriate solvent, EMC, a liquid sealing material, a substrate material, an adhesive for electronic components, a resin compound, Can be used for paint. In particular, since the resin composition prepared using the surface-treated inorganic powder of the present embodiment has high stability, it can be used for the purpose of curing as needed after being dispersed in the epoxy resin before curing. .

本実施形態の表面処理無機粉体は表面処理剤にて表面処理された無機粉体である。無機粉体としては特に限定されず、シリカ、アルミナ、ジルコニア、チタニアなどの金属酸化物や、それらの複合酸化物が挙げられる。   The surface-treated inorganic powder of this embodiment is an inorganic powder surface-treated with a surface treatment agent. The inorganic powder is not particularly limited, and examples thereof include metal oxides such as silica, alumina, zirconia, and titania, and composite oxides thereof.

無機粉体の形態としては特に限定されず、使用する態様によって適正な形態を採用すれば充分である。例えば、球状とすることで、樹脂組成物中への充填性を向上することができる。無機粉体の粒径も必要に応じて適正に決定すればよい。例えば、液状封止材の用途に用いる場合には体積平均粒径が0.1μm以上、10μm以下にすることが望ましい。   It does not specifically limit as a form of inorganic powder, It is sufficient if a suitable form is employ | adopted according to the aspect to be used. For example, the fillability in the resin composition can be improved by making it spherical. What is necessary is just to determine the particle size of inorganic powder appropriately as needed. For example, when used for a liquid sealing material, it is desirable that the volume average particle size is 0.1 μm or more and 10 μm or less.

無機粉体はシランカップリング剤にて表面処理されていることが望ましい。シランカップリング剤の量は無機粉体の表面積に応じて設定することが望ましい。採用できるシランカップリング剤としては特に限定されず、目的に応じて適正に選択されたシランカップリング剤が採用できる。例えば、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、メチルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、フェニルトリエトキシシラン、p−スチリルトリメトキシシランが挙げられる。   The inorganic powder is preferably surface-treated with a silane coupling agent. The amount of the silane coupling agent is desirably set according to the surface area of the inorganic powder. The silane coupling agent that can be adopted is not particularly limited, and a silane coupling agent appropriately selected according to the purpose can be adopted. For example, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, methyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxy Silane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, phenyltriethoxysilane, p -Styryltrimethoxysilane.

無機粉体として金属酸化物を採用する場合に、金属酸化物はどのように製造されたものでも構わないが、含酸素雰囲気下にて対応する金属粉末を酸化させて得られる方法(VMC法)や、火炎溶融法などが好ましい方法として挙げられる。   When employing a metal oxide as the inorganic powder, the metal oxide may be produced in any way, but a method obtained by oxidizing the corresponding metal powder in an oxygen-containing atmosphere (VMC method) Further, a preferable method is a flame melting method.

VMC法は、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を得る方法である。   In the VMC method, a chemical flame is formed by a burner in an atmosphere containing oxygen, and an amount of metal powder that forms part of the target oxide particles is added to the chemical flame so that a dust cloud is formed. In this method, deflagration is caused to obtain oxide particles.

VMC法の作用について説明すれば以下のようになる。まず、容器中に反応ガスである酸素を含有するガスを充満させ、この反応ガス中で化学炎を形成する。次いで、この化学炎に金属粉末を投入し高濃度(500g/m以上)の粉塵雲を形成する。すると、化学炎により金属粉末表面に熱エネルギが与えられ、金属粉末の表面温度が上昇し、金属粉末表面から金属の蒸気が周囲に広がる。この金属蒸気が酸素ガスと反応して発火し火炎を生じる。この火炎により生じた熱は、さらに金属粉末の気化を促進し、生じた金属蒸気と反応ガスが混合され、連鎖的に発火伝播する。このとき金属粉末自体も破壊して飛散し、火炎伝播を促す。燃焼後に生成ガスが自然冷却されることにより、酸化物粒子の雲ができる。得られた酸化物粒子は、バグフィルターや電気集塵器等により捕集される。 The operation of the VMC method will be described as follows. First, the container is filled with a gas containing oxygen as a reaction gas, and a chemical flame is formed in the reaction gas. Next, metal powder is introduced into this chemical flame to form a dust cloud with a high concentration (500 g / m 3 or more). Then, thermal energy is given to the metal powder surface by the chemical flame, the surface temperature of the metal powder rises, and metal vapor spreads from the metal powder surface to the surroundings. This metal vapor reacts with oxygen gas to ignite and produce a flame. The heat generated by the flame further promotes the vaporization of the metal powder, and the generated metal vapor and the reaction gas are mixed and propagated in a chain. At this time, the metal powder itself is destroyed and scattered, which promotes flame propagation. The product gas is naturally cooled after combustion, thereby forming a cloud of oxide particles. The obtained oxide particles are collected by a bag filter, an electric dust collector or the like.

VMC法は粉塵爆発の原理を利用するものである。VMC法によれば、瞬時に大量の酸化物粒子が得られる。得られる酸化物粒子は、略真球状の形状をなす。目的とする球状金属酸化物粒子の組成に応じて、例えば、シリカ粒子を得る場合にはシリコン粉末を投入し、アルミナ粒子を得る場合にはアルミニウム粉末を投入する。投入するシリコン粉末などの粒子径、投入量、火炎温度等を調整することにより、得られる酸化物粒子の粒子径を調整することが可能である。また、原料物質としては金属微粉末に加えて、金属酸化物粉末も添加することができる。   The VMC method uses the principle of dust explosion. According to the VMC method, a large amount of oxide particles can be obtained instantaneously. The resulting oxide particles have a substantially spherical shape. Depending on the composition of the target spherical metal oxide particles, for example, when obtaining silica particles, silicon powder is introduced, and when obtaining alumina particles, aluminum powder is introduced. It is possible to adjust the particle diameter of the obtained oxide particles by adjusting the particle diameter, the input amount, the flame temperature, and the like of the silicon powder to be input. In addition to the metal fine powder, a metal oxide powder can also be added as a raw material.

なお、本球状シリカ粒子は、好ましいと考えられるVMC法以外にも、乾式法としての火炎溶融法、PVS(Physical Vapor Synthesis)法等の燃焼法や、湿式法としての沈降法やゲル法などによって製造できる。火炎溶融法は目的とする球状金属酸化物粒子を構成する金属酸化物を粉砕などにより粉末化した後に、火炎中に投入・溶解させた後、冷却・固化させることで、球状金属酸化物粒子を製造する方法である。   In addition to the VMC method, which is considered preferable, the present spherical silica particles may be produced by a combustion method such as a flame melting method as a dry method, a PVS (Physical Vapor Synthesis) method, a sedimentation method or a gel method as a wet method, and the like. Can be manufactured. In the flame melting method, the metal oxide constituting the target spherical metal oxide particles is pulverized by pulverization or the like, and then charged and dissolved in a flame. It is a manufacturing method.

表面処理剤は常温で液状の有機化合物である。ここで、常温とは保存が想定される温度であり、25℃である。表面処理剤の化学構造は極性部分と非極性部分とをもつ。例えば、反応性希釈剤や界面活性剤が好ましい表面処理剤として挙げられる。反応性希釈剤としてはエポキシ系反応希釈剤、アクリル系反応希釈剤が例示される。   The surface treatment agent is an organic compound that is liquid at room temperature. Here, the normal temperature is a temperature at which storage is assumed and is 25 ° C. The chemical structure of the surface treatment agent has a polar part and a nonpolar part. For example, reactive diluents and surfactants are preferable surface treatment agents. Examples of the reactive diluent include an epoxy reaction diluent and an acrylic reaction diluent.

ここで、表面処理剤が無機粉体に対して行う表面処理としては、共有結合を実質的に伴わずに表面処理剤が無機粉体の表面に結合することが望ましく、全く共有結合を伴わずに結合することがより望ましい。例えば、ファンデルワールス力やイオン結合などによる結合、特にファンデルワールスなどによる物理的な吸着に類する結合によって、無機粉体の表面に表面処理剤が結合する形態を採用することで、後に表面処理剤を容易に脱離することが可能になる。シランカップリング剤による表面処理が行われる場合は、表面処理剤による表面処理とシランカップリング剤による表面処理との前後は特に限定しない。つまり、シランカップリング剤による表面処理を先に行っても後に行っても同時に行っても良い。   Here, as the surface treatment that the surface treatment agent performs on the inorganic powder, it is desirable that the surface treatment agent is bonded to the surface of the inorganic powder without substantially covalent bonding, and is not accompanied by any covalent bond. It is more desirable to bind to. For example, by adopting a form in which the surface treatment agent is bonded to the surface of the inorganic powder by bonding by van der Waals force or ionic bond, especially by bonding similar to physical adsorption by van der Waals, surface treatment is performed later. The agent can be easily detached. In the case where surface treatment with a silane coupling agent is performed, there is no particular limitation before and after the surface treatment with the surface treatment agent and the surface treatment with the silane coupling agent. That is, the surface treatment with the silane coupling agent may be performed first or later or simultaneously.

特に、シランカップリング剤による表面処理の後に表面処理剤による表面処理を行うことでシランカップリング剤の官能基の保護を効果的に達成できる。この場合には、シランカップリング剤は無機粉体の周囲に第1層を形成し、表面処理剤はその第1層の周囲に第2層を形成することになり、表面処理剤によって効果的に第1層(シランカップリング剤による表面処理層)を保護することが出来る。   In particular, the functional group of the silane coupling agent can be effectively protected by performing the surface treatment with the surface treatment agent after the surface treatment with the silane coupling agent. In this case, the silane coupling agent forms a first layer around the inorganic powder, and the surface treatment agent forms a second layer around the first layer. In addition, the first layer (surface treatment layer with a silane coupling agent) can be protected.

表面処理剤における極性部分の構造としては、N、OやSなどを含む構造や二重結合が偏在する構造が例示される。特に、アミノ基、エポキシ基、アクリル基、メタクリル基、水酸基、カルボキシル基、チオール基及びビニル基からなる群から選択される1以上の官能基を含むことが望ましい。特に、エポキシ基及び/又はアクリル基が望ましい。極性部分は表面処理剤の化学構造における端部に結合されることが望ましい。特に、細長い化学構造をもつ表面処理剤の端部に極性部分を有することが望ましい。   Examples of the structure of the polar part in the surface treatment agent include a structure containing N, O, S and the like, and a structure in which double bonds are unevenly distributed. In particular, it is desirable to include one or more functional groups selected from the group consisting of amino groups, epoxy groups, acrylic groups, methacrylic groups, hydroxyl groups, carboxyl groups, thiol groups, and vinyl groups. In particular, an epoxy group and / or an acrylic group is desirable. It is desirable that the polar part is bonded to an end in the chemical structure of the surface treatment agent. In particular, it is desirable to have a polar portion at the end of the surface treatment agent having an elongated chemical structure.

非極性部分としては、その部分の分子量が50〜1000とすることが望ましい。そして、非極性部分の構造としては炭化水素(炭化水素から任意の水素を脱離して残る炭化水素基など)が例示される。特に、非極性部分の分子量が50〜1000の炭化水素基とすることが望ましい。   As a nonpolar part, it is desirable for the molecular weight of the part to be 50-1000. And as a structure of a nonpolar part, hydrocarbons (hydrocarbon group etc. which remain | survive after removing arbitrary hydrogen from a hydrocarbon) are illustrated. In particular, it is desirable to use a hydrocarbon group having a molecular weight of 50 to 1000 for the nonpolar portion.

具体的に好ましい表面処理剤としてはメチルグリシジルエーテル(例えば、エピオールM:日本油脂)、2−エチルヘキシルグリシジルエーテル(例えば、エピオールEH:日本油脂)、デシルグリシジルエーテル(例えば、エピオールL−41:日本油脂)、ステアリルグリシジルエーテル(例えば、エピオールSK:日本油脂)、p−sec−ブチルフェニルグリシジルエーテル(例えば、エピオールSB:日本油脂)、p−tert−ブチルフェニルグリシジルエーテル(例えば、エピオールTB:日本油脂)、ポリエチレングリコールジグリシジルエーテル(ポリエチレングリコール(重合度が約9)の両端にグリシジル基が結合されている:例えば、エピオールE−400:日本油脂)、ポリエチレングリコールジグリシジルエーテル(ポリエチレングリコール(重合度が約23)の両端にグリシジル基が結合されている:例えば、エピオールE−1000:日本油脂)、ポリプロピレングリコールジグリシジルエーテル(ポリプロピレングリコール(重合度が約3)の両端にグリシジル基が結合されている:例えば、エピオールP−200:日本油脂)、ネオペンチルグリコールジグリシジルエーテル(例えば、エピオールNPG−100:日本油脂)、トリメチロールプロパンポリグリシジルエーテル(例えば、エピオールTMP−100:日本油脂)、グリシード(例えば、エピオールOH**:日本油脂)、下記式(1)で表される有機化合物(nは0又は1:例えば、エピオールG−100:日本油脂)、下記式(2)で表される有機化合物(例えば、エピオールE−100:日本油脂)、下記式(3)で表される有機化合物(例えば、ED−501:ADEKA(旧旭電化工業))、下記式(4)で表される有機化合物(例えば、ED−502、ED−502S:ADEKA)、下記式(5)で表される有機化合物(例えば、ED−509E:ADEKA)、下記式(6)で表される有機化合物(例えば、ED−518:ADEKA)、下記式(7)で表される有機化合物(例えば、ED−529E:ADEKA)、下記式(8)で表される有機化合物(例えば、ED−503:ADEKA)、下記式(9)で表される有機化合物(例えば、ED−506:ADEKA)、下記式(10)で表される有機化合物(例えば、ED−523T:ADEKA)、下記式(11)で表される有機化合物(例えば、ED−612:ADEKA)などのエポキシ系反応性希釈剤、2−ヒドロキシエチルアクリレート、テトラヒドロフルフリルアクリレート、4−ビニルピリジン、2−エチルヘキシルアクリレート、2−ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、グリシジルメタクリレート、ネオペンチルグリコールジアクリレート、ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレートなどのアクリル系反応希釈剤が例示できる。   Specifically preferable surface treatment agents include methyl glycidyl ether (for example, Epiol M: Nippon Oil & Fats), 2-ethylhexyl glycidyl ether (for example, Epiol EH: Nippon Oil & Fats), and decyl glycidyl ether (for example, Epiol L-41: Nippon Oil & Fats). ), Stearyl glycidyl ether (for example, Epiol SK: Nippon Oil & Fats), p-sec-butylphenyl glycidyl ether (for example, Epiol SB: Nippon Oil & Fats), p-tert-butylphenyl glycidyl ether (for example, Epiol TB: Nippon Oil & Fats) , Polyethylene glycol diglycidyl ether (a glycidyl group is bonded to both ends of polyethylene glycol (degree of polymerization of about 9): for example, Epiol E-400: Nippon Oil & Fats), polyethylene glycol diglycidyl ether Glycidyl groups are bonded to both ends of polyethylene glycol (polymerization degree is about 23): for example, Epiol E-1000: Nippon Oil & Fats, polypropylene glycol diglycidyl ether (polypropylene glycol (degree of polymerization is about 3) both ends A glycidyl group is bonded to: for example, Epiol P-200: Nippon Oil & Fats, neopentyl glycol diglycidyl ether (for example, Epiol NPG-100: Nippon Oil & Fats), trimethylolpropane polyglycidyl ether (for example, Epiol TMP- 100: Japanese fat and oil), Glycede (for example, Epiol OH **: Japanese fat and oil), an organic compound represented by the following formula (1) (n is 0 or 1: For example, Epiol G-100: Japanese fat and oil), the following formula The organic compound represented by (2) (for example, epio E-100: Japanese fats and oils), an organic compound represented by the following formula (3) (for example, ED-501: ADEKA (former Asahi Denka Kogyo)), an organic compound represented by the following formula (4) (for example, ED-502, ED-502S: ADEKA), an organic compound represented by the following formula (5) (for example, ED-509E: ADEKA), an organic compound represented by the following formula (6) (for example, ED-518: ADEKA), an organic compound represented by the following formula (7) (for example, ED-529E: ADEKA), an organic compound represented by the following formula (8) (for example, ED-503: ADEKA), and the following formula (9) (For example, ED-506: ADEKA), an organic compound represented by the following formula (10) (for example, ED-523T: ADEKA), an organic compound represented by the following formula (11) (for example, ED-612: ADEKA), 2-hydroxyethyl acrylate, tetrahydrofurfuryl acrylate, 4-vinylpyridine, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate And acrylic reactive diluents such as neopentyl glycol diacrylate, hexanediol diacrylate, and trimethylolpropane triacrylate.

Figure 2008174624
Figure 2008174624

(試験例1)
体積平均粒径0.5μmのシリカ(SO−C2:アドマテックス製)を100質量部と、シランカップリング剤(KBM−403:3−グリシドキシプロピルトリメトキシシラン:信越化学工業製)を0.5質量部と、表面処理剤(ED−529E、分子量164、非極性部分の分子量121:エポキシ系反応性希釈液:上記式(7)の化合物:旭電化製)を0.5質量部とをミキサーにて充分に混合した。
(Test Example 1)
100 parts by mass of silica (SO-C2: manufactured by Admatex) having a volume average particle size of 0.5 μm and 0 of a silane coupling agent (KBM-403: 3-glycidoxypropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass and 0.5 parts by mass of a surface treating agent (ED-529E, molecular weight 164, molecular weight 121 of nonpolar part: epoxy reactive diluent: compound of the above formula (7): manufactured by Asahi Denka) Was thoroughly mixed with a mixer.

得られた本試験例の表面処理無機粉体を20gとエポキシ樹脂(ZX−1059:東都化成製)を12gとイミダゾール系硬化剤(2PHZ:四国化成製)を1gとを混合して本試験例の試験樹脂組成物とした。   20 g of the obtained surface-treated inorganic powder of this test example, 12 g of an epoxy resin (ZX-1059: manufactured by Tohto Kasei) and 1 g of an imidazole-based curing agent (2PHZ: manufactured by Shikoku Kasei) were mixed in this test example. The test resin composition was obtained.

(試験例2)
体積平均粒径0.5μmのシリカ(SO−C2)を100質量部と、シランカップリング剤(KBM−503:3−メタクリロキシプロピルトリメトキシシラン:信越化学工業製)を0.5質量部と、表面処理剤(ED−529E:エポキシ系反応性希釈液)を0.5質量部とをミキサーにて充分に混合して本試験例の表面処理無機粉体とした。
(Test Example 2)
100 parts by mass of silica (SO-C2) having a volume average particle size of 0.5 μm and 0.5 parts by mass of a silane coupling agent (KBM-503: 3-methacryloxypropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd.) Then, 0.5 part by mass of a surface treatment agent (ED-529E: epoxy reactive diluent) was sufficiently mixed with a mixer to obtain a surface-treated inorganic powder of this test example.

得られた本試験例の表面処理無機粉体を20gとエポキシ樹脂(ZX−1059)を12gとイミダゾール系硬化剤(2PHZ)を1gとを混合して本試験例の試験樹脂組成物とした。   20 g of the obtained surface-treated inorganic powder of this test example, 12 g of epoxy resin (ZX-1059), and 1 g of imidazole-based curing agent (2PHZ) were mixed to obtain a test resin composition of this test example.

(試験例3)
体積平均粒径0.5μmのシリカ(SO−C2)を100質量部と、シランカップリング剤(KBM−403)を1.0質量部とをミキサーにて充分に混合して本試験例の表面処理無機粉体とした。
(Test Example 3)
100 parts by mass of silica (SO-C2) having a volume average particle size of 0.5 μm and 1.0 part by mass of a silane coupling agent (KBM-403) were sufficiently mixed with a mixer to obtain the surface of this test example. Treated inorganic powder was obtained.

得られた本試験例の表面処理無機粉体を20gとエポキシ樹脂(ZX−1059)を12gとイミダゾール系硬化剤(2PHZ)を1gとを混合して本試験例の試験樹脂組成物とした。   20 g of the obtained surface-treated inorganic powder of this test example, 12 g of epoxy resin (ZX-1059), and 1 g of imidazole-based curing agent (2PHZ) were mixed to obtain a test resin composition of this test example.

(試験例4)
体積平均粒径0.5μmのシリカ(SO−C2)を100質量部と、シランカップリング剤(KBM−403)を0.5質量部とバイコポール24(分子量1472、非極性部分分子量1401:北村化学産業製:エポキシ系反応性希釈剤:
(Test Example 4)
100 parts by mass of silica (SO-C2) having a volume average particle size of 0.5 μm, 0.5 parts by mass of silane coupling agent (KBM-403) and bicopol 24 (molecular weight 1472, nonpolar partial molecular weight 1401: Kitamura Chemical) Industrial: Epoxy-based reactive diluent:

Figure 2008174624
Figure 2008174624

)を0.5質量部とをミキサーにて充分に混合して本試験例の表面処理無機粉体とした。 ) And 0.5 part by mass were sufficiently mixed with a mixer to obtain the surface-treated inorganic powder of this test example.

得られた本試験例の表面処理無機粉体を20gとエポキシ樹脂(ZX−1059)を12gとイミダゾール系硬化剤(2PHZ)を1gとを混合して本試験例の試験樹脂組成物とした。   20 g of the obtained surface-treated inorganic powder of this test example, 12 g of epoxy resin (ZX-1059), and 1 g of imidazole-based curing agent (2PHZ) were mixed to obtain a test resin composition of this test example.

(試験)
本試験例の表面処理無機粉体のそれぞれについてエポキシ樹脂などを混合して試験樹脂組成物を調製する前に、加湿処理及び加熱処理を行い、進入度を測定した。
(test)
Before each of the surface-treated inorganic powders of this test example was mixed with an epoxy resin or the like to prepare a test resin composition, a humidification treatment and a heat treatment were performed, and the degree of penetration was measured.

加湿処理は、試験例1〜4における表面処理無機粉体のそれぞれについて、雰囲気温度40℃、相対湿度80%の雰囲気中にて24時間放置して行った。   The humidification treatment was performed by leaving each of the surface-treated inorganic powders in Test Examples 1 to 4 for 24 hours in an atmosphere having an atmospheric temperature of 40 ° C. and a relative humidity of 80%.

加熱処理は、加湿処理を行った表面処理無機粉体と、加湿処理を行っていない製造後そのままの表面処理無機粉体とのそれぞれについて、密閉系にて60℃で1週間加熱した。   In the heat treatment, each of the surface-treated inorganic powder subjected to the humidification treatment and the surface-treated inorganic powder as-produced without being subjected to the humidification treatment was heated in a closed system at 60 ° C. for one week.

加湿処理及び加熱処理を行った表面処理無機粉体についても、その後、上述したそれぞれのエポキシ樹脂及び硬化剤を所定量混合し、各試験例の加熱後の試験樹脂組成物とした。   About the surface treatment inorganic powder which performed the humidification process and the heat processing after that, each epoxy resin and hardening | curing agent which were mentioned above were mixed in a predetermined amount, and it was set as the test resin composition after the heating of each test example.

従って、各試験例毎に加湿処理及び加熱処理の有無により4種類の試験樹脂組成物が得られた。すなわち、(A)表面処理無機粉体から、そのまま試験樹脂組成物を調製した試料、(B)表面処理無機粉体に対して、加熱処理のみを行い試験樹脂組成物を調製した試料、(C)表面処理無機粉体に対して、加湿処理のみを行い試験樹脂組成物を調製した試料、(D)表面処理無機粉体に対して、加湿処理及び加熱処理の双方の処理を行い試験樹脂組成物を調製した試料である。   Therefore, four types of test resin compositions were obtained depending on the presence or absence of humidification treatment and heat treatment for each test example. That is, (A) a sample in which the test resin composition was prepared as it was from the surface-treated inorganic powder, (B) a sample in which the test resin composition was prepared by performing only the heat treatment on the surface-treated inorganic powder, (C ) A sample in which only a humidification treatment was performed on the surface-treated inorganic powder to prepare a test resin composition, and (D) both the humidification treatment and the heat treatment were performed on the surface-treated inorganic powder. It is the sample which prepared the thing.

試験例1〜4のそれぞれにおける(A)〜(D)の試験樹脂組成物について以下に示す方法で進入度の測定を行った。まず、30mm×20mm角のガラス板の短辺下側に厚さ50μm、幅5mmの両面テープを貼付し、30mm×30mm角のガラス板の上に載せた。つまり、2枚のガラス板を50μmの間隔にて対向させた。そして、両面テープを貼付していない一辺(短辺)に満遍なく試験樹脂組成物をディスペンスし、ガラス板の間を20mm進入するのに要する時間を測定した。結果を表1に示す。   About the test resin composition of (A)-(D) in each of Test Examples 1-4, the approach degree was measured by the method shown below. First, a double-sided tape having a thickness of 50 μm and a width of 5 mm was applied to the lower side of a short side of a 30 mm × 20 mm square glass plate and placed on a 30 mm × 30 mm square glass plate. That is, the two glass plates were opposed to each other at an interval of 50 μm. Then, the test resin composition was dispensed evenly on one side (short side) where the double-sided tape was not applied, and the time required to enter 20 mm between the glass plates was measured. The results are shown in Table 1.

Figure 2008174624
Figure 2008174624

表1より明らかなように、試験例1及び2の試験樹脂組成物は、加湿により却って進入度が向上したばかりか、加湿の有無に係わらず加熱の前後で進入度に大きな変化は認められなかった。   As is clear from Table 1, the test resin compositions of Test Examples 1 and 2 not only improved the degree of penetration by humidification, but did not show any significant change in the degree of penetration before and after heating regardless of the presence or absence of humidification. It was.

それに対し、試験例3の試験樹脂組成物は加湿前では加熱の前後で進入度の大きな変化はないが、加湿を行うと進入度が極めて低下することが明らかになった。試験例4の試験樹脂組成物は加湿前には加熱の前後で進入度の大きな変化はないものの、加湿後では加熱によって進入度が極めて低下することが明らかになった。しかしながら、試験例3と比べて、加湿後で加熱の前における進入度の低下が抑制されているので、ある程度の保存性向上効果は発揮されることが判った。   In contrast, the test resin composition of Test Example 3 had no significant change in the degree of penetration before and after heating before humidification, but it was revealed that the degree of penetration was extremely reduced when humidified. Although the test resin composition of Test Example 4 had no significant change in the degree of penetration before and after heating before humidification, it became clear that the degree of penetration was significantly reduced by heating after humidification. However, as compared with Test Example 3, it was found that the degree of storage stability was improved to some extent because a decrease in the degree of penetration after humidification and before heating was suppressed.

以上の結果から、試験例1及び2の試験樹脂組成物のように本発明の表面処理無機粉体を採用すると、極めて高い安定性を発揮させることが可能になることが明らかになった。   From the above results, it was revealed that when the surface-treated inorganic powder of the present invention was employed as in the test resin compositions of Test Examples 1 and 2, extremely high stability can be exhibited.

試験例3の試験樹脂組成物は表面処理剤を含有していないので加湿による水分の混入によってシランカップリング剤の加水分解が進行して凝集したものと推測できる。試験例4の試験樹脂組成物は表面処理剤を含有しているので試験例3の試験樹脂組成物よりは加湿による安定性に優れるものの、非極性部分の分子量が大きいので表面処理剤自身が水分を取り込んでしまうものと推測できる。   Since the test resin composition of Test Example 3 does not contain a surface treatment agent, it can be presumed that the hydrolysis of the silane coupling agent has progressed due to the mixing of moisture due to humidification, resulting in aggregation. Since the test resin composition of Test Example 4 contains a surface treatment agent, the stability by humidification is superior to that of the test resin composition of Test Example 3, but the surface treatment agent itself has a moisture content because the molecular weight of the nonpolar part is large. Can be guessed.

Claims (10)

極性部分と非極性部分とを有する有機化合物であり、常温で液状の表面処理剤にて表面処理された無機粉体を有することを特徴とする表面処理無機粉体。   A surface-treated inorganic powder, which is an organic compound having a polar part and a non-polar part, and has an inorganic powder surface-treated with a surface treatment agent that is liquid at room temperature. 前記極性部分がアミノ基、エポキシ基、アクリル基、メタクリル基、水酸基、カルボキシル基、チオール基及びビニル基からなる群から選択される1以上の官能基を含む請求項1に記載の表面処理無機粉体。   The surface-treated inorganic powder according to claim 1, wherein the polar part contains one or more functional groups selected from the group consisting of an amino group, an epoxy group, an acrylic group, a methacryl group, a hydroxyl group, a carboxyl group, a thiol group, and a vinyl group. body. 前記非極性部分の分子量が50〜1000の炭化水素基である請求項1又は2に記載の表面処理無機粉体。   The surface-treated inorganic powder according to claim 1 or 2, wherein the nonpolar portion is a hydrocarbon group having a molecular weight of 50 to 1,000. 前記表面処理剤はエポキシ系反応性希釈剤又はアクリル系反応希釈剤である請求項1〜3のいずれかに記載の表面処理無機粉体。   The surface treatment inorganic powder according to any one of claims 1 to 3, wherein the surface treatment agent is an epoxy reactive diluent or an acrylic reaction diluent. 更に、シランカップリング剤にて表面処理されている請求項1〜4のいずれかに記載の表面処理無機粉体。   Furthermore, the surface treatment inorganic powder in any one of Claims 1-4 currently surface-treated with the silane coupling agent. 前記表面処理剤は、前記無機粉体及び前記シランカップリング剤との間で共有結合が形成されていない請求項1〜5のいずれかに記載の表面処理無機粉体。   The surface-treated inorganic powder according to any one of claims 1 to 5, wherein no covalent bond is formed between the surface-treating agent and the inorganic powder and the silane coupling agent. 前記シランカップリング剤は前記無機粉体の周囲に第1層を形成し、
前記表面処理剤は該第1層の周囲に第2層を形成する請求項1〜6のいずれかに記載の表面処理無機粉体。
The silane coupling agent forms a first layer around the inorganic powder,
The surface-treated inorganic powder according to any one of claims 1 to 6, wherein the surface treatment agent forms a second layer around the first layer.
前記無機粉体はシリカ又はアルミナである請求項1〜7のいずれかに記載の表面処理無機粉体。   The surface-treated inorganic powder according to any one of claims 1 to 7, wherein the inorganic powder is silica or alumina. 前記無機粉体は金属と酸素とを反応させて得られる球状粉末である請求項8に記載の表面処理無機粉体。   The surface-treated inorganic powder according to claim 8, wherein the inorganic powder is a spherical powder obtained by reacting a metal and oxygen. 樹脂組成物中に分散された形態で、EMC、液状封止材、基板材料、電子部品用接着剤、樹脂コンパウンド又は塗料に用いられる請求項1〜9のいずれかに記載の表面処理無機粉体。   The surface-treated inorganic powder according to any one of claims 1 to 9, wherein the surface-treated inorganic powder is used for EMC, liquid encapsulant, substrate material, adhesive for electronic parts, resin compound or paint in a form dispersed in a resin composition. .
JP2007008464A 2007-01-17 2007-01-17 Surface-treated inorganic powder Pending JP2008174624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008464A JP2008174624A (en) 2007-01-17 2007-01-17 Surface-treated inorganic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008464A JP2008174624A (en) 2007-01-17 2007-01-17 Surface-treated inorganic powder

Publications (1)

Publication Number Publication Date
JP2008174624A true JP2008174624A (en) 2008-07-31

Family

ID=39701882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008464A Pending JP2008174624A (en) 2007-01-17 2007-01-17 Surface-treated inorganic powder

Country Status (1)

Country Link
JP (1) JP2008174624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086463A1 (en) 2010-12-20 2012-06-28 株式会社ダイセル Curable epoxy resin composition and photosemiconductor device using same
JP2012149266A (en) * 2010-09-30 2012-08-09 Hitachi Chemical Co Ltd Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
WO2013111345A1 (en) * 2012-01-23 2013-08-01 味の素株式会社 Resin composition
CN103890088A (en) * 2011-10-26 2014-06-25 味之素株式会社 Resin composition
WO2021182378A1 (en) * 2020-03-10 2021-09-16 石原産業株式会社 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240769A (en) * 1984-05-16 1985-11-29 Nippon Steel Chem Co Ltd Production of inorganic material having hydrophobic surface
JPS60260633A (en) * 1985-05-31 1985-12-23 Asahi Glass Co Ltd Siliceous filter for polyurethane
JPH10306234A (en) * 1997-05-06 1998-11-17 Mitsubishi Materials Corp Organically decorated inorganic powder, its production and use thereof
JPH10306233A (en) * 1997-05-08 1998-11-17 Mitsubishi Materials Corp Inorganic powder having epoxy group on surface, its production and use thereof
JP2005042128A (en) * 2004-11-16 2005-02-17 Shiraishi Kogyo Kaisha Ltd Silane-terminated urethane-containing resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240769A (en) * 1984-05-16 1985-11-29 Nippon Steel Chem Co Ltd Production of inorganic material having hydrophobic surface
JPS60260633A (en) * 1985-05-31 1985-12-23 Asahi Glass Co Ltd Siliceous filter for polyurethane
JPH10306234A (en) * 1997-05-06 1998-11-17 Mitsubishi Materials Corp Organically decorated inorganic powder, its production and use thereof
JPH10306233A (en) * 1997-05-08 1998-11-17 Mitsubishi Materials Corp Inorganic powder having epoxy group on surface, its production and use thereof
JP2005042128A (en) * 2004-11-16 2005-02-17 Shiraishi Kogyo Kaisha Ltd Silane-terminated urethane-containing resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149266A (en) * 2010-09-30 2012-08-09 Hitachi Chemical Co Ltd Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
WO2012086463A1 (en) 2010-12-20 2012-06-28 株式会社ダイセル Curable epoxy resin composition and photosemiconductor device using same
CN103890088A (en) * 2011-10-26 2014-06-25 味之素株式会社 Resin composition
WO2013111345A1 (en) * 2012-01-23 2013-08-01 味の素株式会社 Resin composition
JP5413522B1 (en) * 2012-01-23 2014-02-12 味の素株式会社 Resin composition
CN104053721A (en) * 2012-01-23 2014-09-17 味之素株式会社 Resin composition
WO2021182378A1 (en) * 2020-03-10 2021-09-16 石原産業株式会社 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same
CN115279840A (en) * 2020-03-10 2022-11-01 石原产业株式会社 Surface-coated inorganic particles, method for producing same, and organic solvent dispersion having surface-coated inorganic particles dispersed therein

Similar Documents

Publication Publication Date Title
JP6927298B2 (en) UV curable silicone adhesive composition and its cured product
JP2008174624A (en) Surface-treated inorganic powder
Mansourian‐Tabaei et al. Lap shear strength and thermal stability of diglycidyl ether of bisphenol a/epoxy novolac adhesives with nanoreinforcing fillers
TW201529709A (en) Resin composition
CN102666723A (en) Single-component epoxy resin composition and use thereof
JP5112157B2 (en) Silica fine particles and silica fine particle-containing resin composition
KR20130048738A (en) Liquid curable composition
JP4927363B2 (en) Composition containing fine particles
WO2022131199A1 (en) Hydrophobic aluminum nitride powder and production method therefor
WO2011125636A1 (en) Thermally conductive moisture curable resin composition
WO2006104290A1 (en) Water-based coating composition and heat-shielding coating material
JP5793160B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
TWI773698B (en) Silicone resin adhesive composition and protective sheet for preventing electrification
WO2020240703A1 (en) Thermally conductive resin composition, thermally conductive sheet, and production methods
WO2019159753A1 (en) Thermally conductive moisture-curable resin composition and cured product thereof
TWI793287B (en) Powder composed of organic-inorganic composite particles
JP2011198844A (en) Adhesive film for bonding electronic component
JP2015000920A (en) Filler for encapsulant and encapsulant using the same
JP2012207116A (en) Sheet-like adhesive having molecular blocking property
JP2017101171A (en) Thermal conductive room temperature curable organopolysiloxane composition and member
JP6648761B2 (en) Curable composition
JP2005162924A (en) Surface treating agent for silicone gel molded product and silicone gel molded product
JP6537763B1 (en) Silicone-coated filler, method for producing the same, and resin composition
JP2011063715A (en) Adhesive for bonding electronic component
CN103254601A (en) Inorganic flame-retardant unsaturated resin and viscosity reducing dispersing auxiliary for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522