WO2021182378A1 - Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same - Google Patents

Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same Download PDF

Info

Publication number
WO2021182378A1
WO2021182378A1 PCT/JP2021/008927 JP2021008927W WO2021182378A1 WO 2021182378 A1 WO2021182378 A1 WO 2021182378A1 JP 2021008927 W JP2021008927 W JP 2021008927W WO 2021182378 A1 WO2021182378 A1 WO 2021182378A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
compound
coated
organic solvent
unsaturated carbonyl
Prior art date
Application number
PCT/JP2021/008927
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 大典
理人 滝本
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to EP21768725.0A priority Critical patent/EP4119617A1/en
Priority to KR1020227030418A priority patent/KR20220147608A/en
Priority to CN202180020559.9A priority patent/CN115279840B/en
Priority to JP2022507168A priority patent/JPWO2021182378A1/ja
Priority to US17/801,830 priority patent/US20240209213A1/en
Publication of WO2021182378A1 publication Critical patent/WO2021182378A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to surface-coated inorganic particles and a method for producing the same, an organic solvent dispersion in which the particles are dispersed and a method for producing the same, a coating composition containing the same, and a method for producing a surface-coated inorganic particle layer.
  • Patent Document 1 discloses metal oxide core particles having a coating layer containing an inorganic substance, (i) a quaternary silane coupling agent and / or (ii) a silane coupling agent, and a hydrophobic agent.
  • Patent Document 2 describes an alkoxysilyl obtained by reacting an aminosilane compound (a) containing a primary or secondary amino group and an alkoxysilyl group with a compound (b) having at least two unsaturated double bonds.
  • a method for producing polymerizable particles which comprises reacting a compound (c) having a group and an unsaturated double bond with a metal oxide particle (d) having a functional group capable of reacting with an alkoxysilyl group on the surface. Is disclosed.
  • Patent Document 1 by having a coating layer containing an aminosilane coupling agent, the dispersibility of the surface coating particles in the dispersion medium is improved from the level at that time, but at present, further improvement is required. Has been done. Further, when the organic-inorganic composite particles described in Patent Document 2 are used as a coating agent, a cured coating film having better transparency, scratch resistance, hardness, solvent resistance, and adhesion than those at that time is produced. However, at present, there is a need for the development of new surface-coated particles capable of providing organic solvent dispersions and coating films with further improved transparency and refraction.
  • the present inventors have conducted intensive studies and found that a silicate compound having an amino group has one ⁇ , ⁇ -unsaturated carbonyl group in the molecule.
  • the desired dispersibility in the organic solvent can be obtained, and the organic solvent dispersion or coating film of the obtained surface-coated inorganic particles can be obtained.
  • it can be made excellent in transparency and refractive property, and completed the present invention.
  • the present invention (1) A surface-coated inorganic particle in which the surface of an inorganic particle is coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule. particle, (2) The surface-coated inorganic particles according to (1), wherein the compound having an ⁇ , ⁇ -unsaturated carbonyl group is a compound having an ether bond.
  • the compounds having an ⁇ , ⁇ -unsaturated carbonyl group are (meth) acrylates having a 5- to 6-membered cyclic group or alkoxypolyalkylene glycol (meth) acrylates, (1) to (3). ), The surface-coated inorganic particles according to any one of the above.
  • the compound having an ⁇ , ⁇ -unsaturated carbonyl group is tetrahydrofurfuryl acrylate, methoxytriethylene glycol acrylate, methoxypolyethylene glycol acrylate or methoxydipropylene glycol acrylate, according to (1) to (4).
  • Surface coated inorganic particles according to any one, (6) When the amino group of the silicate compound having an amino group and / or its hydrolysis product in the reaction product is a mol and the compound having an ⁇ , ⁇ -unsaturated carbonyl group is b mol, it is 0.
  • the inorganic particles are mixed with the silicate compound having an amino group and / or the hydrolysis product thereof in an aqueous solvent, and the silicate compound having an amino group on the surface of the inorganic particles and / or the hydrolysis product thereof.
  • the first step of coating and Next after replacing the aqueous solvent with an organic solvent, a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule is mixed, and the silicate compound having an amino group coated on the surface of the inorganic particles and the silicate compound.
  • a second step of coating the surface of the inorganic particles with a reaction product of the hydrolysis product thereof and the compound having an ⁇ , ⁇ -unsaturated carbonyl group
  • Method for producing surface-coated inorganic particles including (14)
  • the surfactant and the organic solvent are mixed with the aqueous solvent, the inorganic particles are transferred to the organic solvent, the organic solvent is replaced with the aqueous solvent, and then the ⁇ , ⁇ -
  • Inorganic particles, a silicate compound having an amino group and / or a hydrolysis product thereof, and a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule are mixed to obtain the above amino group.
  • a method for producing a surface-coated inorganic particle which comprises coating the surface of the inorganic particle with a reaction product of the silicate compound and / or a hydrolysis product thereof and the compound having an ⁇ , ⁇ -unsaturated carbonyl group.
  • a fourth step of dispersing the recovered surface-coated inorganic particles in an organic solvent, and Method for Producing Organic Solvent Dispersion of Surface-Coated Inorganic Particles, Containing (18)
  • inorganic particles, a silicate compound having an amino group and / or a hydrolysis product thereof, and a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule are mixed.
  • the reaction product of the silicate compound having an amino group and / or its hydrolysis product and the compound having an ⁇ , ⁇ -unsaturated carbonyl group is coated on the surface of the inorganic particles and dispersed in the organic solvent.
  • a method for producing an organic solvent dispersion of surface-coated inorganic particles (19) When the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having an ⁇ , ⁇ -unsaturated carbonyl group is b mol, 0.8 ⁇ The method for producing an organic solvent dispersion according to (18), wherein a / b ⁇ 10. (20) A method for producing a surface-coated inorganic particle layer, wherein the organic solvent dispersion of the surface-coated inorganic particles according to (10) or the coating composition according to (11) or (12) is applied or sprayed onto a substrate. And so on.
  • the dispersibility of the inorganic particles in an organic solvent can be sufficiently improved, whereby the functions and performances of the inorganic particles can be sufficiently exhibited.
  • the organic solvent dispersion or coating film of the surface-coated inorganic particles obtained by the present invention may also provide better transparency and refraction than the organic solvent dispersion or coating film of conventional surface-coated inorganic particles. It is possible. Further, the surface-coated inorganic particles of the present invention and the organic solvent dispersion thereof can be produced by a simple method.
  • the surface of an inorganic particle is coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule. It is an inorganic particle.
  • the inorganic particles are not particularly limited, and are, for example, metal oxide particles such as zinc oxide, titanium oxide, zirconium oxide, tin oxide, cerium oxide, iron oxide, and silicon oxide, barium titanate, strontium titanate, calcium titanate, and the like.
  • Metal composite oxide particles, metal nitrides such as titanium nitride, titanium oxynitride, silicon nitride, silicon oxynitride, aluminum nitride, aluminum oxynitride
  • metal carbides such as titanium carbide, zirconium carbide, silicon carbide, aluminum carbide, etc. Examples include metal compound particles and metal particles such as metallic copper, silver and gold.
  • the average particle size of the inorganic particles can be appropriately designed according to the application, and is preferably in the range of 1 nm to 50 ⁇ m (that is, 1 nm or more and 50 ⁇ m or less), and more preferably 2 nm to 5 ⁇ m (that is, 2 nm or more and 5 ⁇ m). It is more preferably 3 nm to 500 nm (that is, 3 nm or more and 500 nm or less), and most preferably 3 nm to 100 nm (that is, 3 nm or more and 100 nm or less).
  • the average particle size is a numerical value obtained by measuring 100 longest linear portions from an electron micrograph of inorganic particles and averaging the number of these measured values.
  • the inorganic particles may be composed of the inorganic particles themselves, or may be composed of the inorganic core particles and the inorganic compound coated on the surface thereof.
  • the inorganic core particles include the above-mentioned inorganic particles such as titanium oxide, zinc oxide, silicon oxide, and aluminum oxide, and the surface of the particles is oxides such as silicon, aluminum, tin, zinc, titanium, antimony, and zirconium, and water. Those coated with an inorganic compound such as an oxide are preferable.
  • the inorganic particles are composed of the inorganic particles themselves, the inorganic particles are preferably titanium oxide particles.
  • the inorganic core particles are preferably titanium oxide particles.
  • the coating with an inorganic compound means a state in which the inorganic compound is present on the surface of the inorganic core particles by adsorbing or precipitating the inorganic compound on the surface of the inorganic core particles.
  • the coating with the inorganic compound may be in a state where the inorganic compound is present on at least a part of the surface of the inorganic particles.
  • the coating amount of the inorganic compound is preferably 0.1 to 50 parts by mass (that is, 0.1 parts by mass or more and 50 parts by mass or less) with respect to 100 parts by mass of the inorganic particles, and 0.5 to 40 parts by mass (that is, that is). 0.5 parts by mass or more and 40 parts by mass or less) is more preferable, and 1 to 30 parts by mass (that is, 1 part by mass or more and 30 parts by mass or less) is further preferable.
  • the surface of the inorganic core particles of titanium oxide is preferably coated with an oxide such as silicon, aluminum, tin, zinc, titanium, antimony, zirconium or an inorganic compound such as hydroxide, and a titanium dioxide pigment or titanium oxide fine particles. It can be used for such purposes.
  • the average particle size is preferably 0.1 ⁇ m to 0.5 ⁇ m (that is, 0.1 ⁇ m or more and 0.5 ⁇ m or less), and 0.15 ⁇ m to 0.4 ⁇ m (that is, 0.15 ⁇ m or more and 0.4 ⁇ m or less).
  • the following is more preferable, and 0.2 ⁇ m to 0.3 ⁇ m (0.2 ⁇ m or more and 0.3 ⁇ m or less) is further preferable.
  • the average particle size is preferably 1 nm to 100 nm (that is, 1 nm or more and 100 nm or less), more preferably 2 nm to 80 nm (that is, 2 nm or more and 80 nm or less), and 3 nm to 50 nm (that is, 3 nm or more and 50 nm or less). ) Is more preferable.
  • the reactant coated on the surface of the inorganic particles is obtained by reacting a silicate compound having an amino group and / or a hydrolysis product thereof with a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule. ..
  • This is a reaction in which a silicate compound having an amino group is added to a compound).
  • the reactant may be referred to as a Michael adduct.
  • the reaction product is understood to be a compound in which a silicate compound and / or a hydrolysis product thereof is added via an amino group to a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule.
  • the Michael addition reaction is preferably carried out in the presence of the inorganic particles, and the produced Michael adduct can be coated on the surface of the inorganic particles.
  • the hydrogen of the amino group does not remain, that is, two hydrogens of the amino group are ⁇ , ⁇ -non.
  • a reaction may be carried out in which hydrogen of an amino group does not remain after being added to 2 mol of a compound having a saturated carbonyl group, but a reaction in which hydrogen (NH) of an amino group remains, that is, one hydrogen of an amino group is ⁇ , ⁇ -unsaturated carbonyl.
  • a reaction in which 1 mol of a compound having a group is added and one hydrogen of an amino group remains is preferable.
  • the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol
  • the compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule is b mol
  • 0.8 ⁇ The reaction at a molar ratio such that a / b ⁇ 10 is preferable, 1 ⁇ a / b ⁇ 10 is more preferable, 1 ⁇ a / b ⁇ 8 is more preferable, and 1 ⁇ a / b ⁇ 6 is most preferable.
  • the silicate compound having an amino group examples include a silanol compound of -C-Si (OH) 3, an alkoxysilane compound of -C-Si (OR) 3 , and -C-Si (OR) x R'3 -x.
  • x represents an integer of 1 to 3 (that is, 1 or more and 3 or less)
  • y represents an integer of 0 to 2 (that is, 0 or more and 2 or less)
  • z represents 0 to 1 (that is, 0 to 1 (that is, 0 or more and 2 or less). That is, it represents an integer of 0 or 1).
  • x + y + z 3.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (that is, 1 or more and 4 or less).
  • silicate compound having an amino group examples include an amino group-containing alkoxysilane and an amino group-containing di (alkoxysilane), and examples of the former include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • (That is, 2 or more and 10 or less) ethylene glycol chain, polymerization number n 2 to 10 (that is, 2 or more and 10 or less) propylene glycol chain or 5 to 6-membered cyclic group (that is, 5 or 6-membered cyclic group)
  • the compound having the compound is more preferable, and (meth) acrylates having a 5- to 6-membered cyclic group or alkoxypolyalkylene glycol (meth) acrylates are further preferable.
  • the term "(meth) acrylate” means acrylate and / or methacrylate (sometimes referred to as methacrylate).
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (that is, 1 or more and 4 or less).
  • Specific examples of the compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n.
  • -Alkyl (meth) acrylates such as butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate; Cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol ( (Meta) acrylates having a 5- to 6-membered cyclic group such as meta) acrylate; methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (
  • polyester (meth) acrylate polyurethane (meth) acrylate, epoxy (meth) acrylate, (meth) acrylicized maleic acid-modified polybutadiene and the like can be mentioned.
  • (meth) acrylates having a 5- to 6-membered cyclic group or alkoxypolyalkylene glycol (meth) acrylates are preferable, and tetrahydrofurfuryl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and methoxypolyethylene glycol are preferable.
  • (Meta) acrylate or methoxydipropylene glycol (meth) acrylate is more preferable, and among the more preferable ones, tetrahydrofurfuryl acrylate (hereinafter, may be referred to as "THF-A”) and methoxytriethylene glycol acrylate which are acrylates.
  • THF-A tetrahydrofurfuryl acrylate
  • methoxytriethylene glycol acrylate which are acrylates.
  • MMG-A methoxy-triethylene glycol acrylate
  • 130A methoxypolyethylene glycol acrylate
  • methoxydipropylene glycol acrylate hereinafter, it may be described as "methoxydipropylene glycol acrylate” or "DPM-A"
  • DPM-A methoxydipropylene glycol acrylate
  • the reaction product or a part of the reaction product is deformed due to the reaction product adsorbing, precipitating, or reacting on the surface of the inorganic particles.
  • the alkoxy group is decomposed, separated into an alkyl group and a hydroxyl group, and adsorbed on the inorganic particles by the hydroxyl group (-Si-OH-), or the reaction product is hydrolyzed on the surface of the inorganic particles. It means that it exists in the state of existence).
  • the reaction product is preferably a low molecular weight silicate compound having 3 to 100 carbon atoms (that is, 3 or more and 100 or less) and / or a hydrolysis product thereof, and more preferably 3 to 50 carbon atoms (that is, 3 or more and 50 or less). More preferably, the number of carbon atoms is 3 to 40 (that is, 3 or more and 40 or less).
  • the reaction product may be coated as long as it is present on at least a part of the surface of the inorganic particles, and in order to sufficiently disperse the inorganic particles in the organic solvent, it is preferable to coat the reaction product as densely as possible.
  • the coating amount is preferably 0.1 to 50 parts by mass (that is, 0.1 parts by mass or more and 40 parts by mass or less) with respect to 100 parts by mass of the inorganic particles, and 0.5 to 40 parts by mass (that is, 0.5 parts by mass). It is more preferably 1 to 30 parts by mass (that is, 1 part by mass or more and 30 parts by mass or less).
  • the dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent is referred to as an organic solvent dispersion, and the organic solvent can be appropriately selected, and specifically, toluene, xylene, solvent naphtha, normal hexane.
  • At least one selected from amide-based solvents; etc. can be used.
  • these solvents it is preferable to use an alcohol solvent or a glycol ether solvent, among which methanol, ethanol, butanol, IPA (isopropyl alcohol) or PGME (1-methoxy-2-propanol, that is, propylene glycol monomethyl). It is more preferable to use ether).
  • the content of the surface-coated inorganic particles is preferably 0.1 to 95 parts by mass (that is, 0.1 parts by mass or more and 95 parts by mass or less) with respect to 100 parts by mass of the organic solvent, and is preferably 10 to 90 parts by mass (that is, 0.1 parts by mass or more and 95 parts by mass or less). That is, 10 parts by mass or more and 90 parts by mass or less) is more preferable, and 15 to 90 parts by mass (that is, 15 parts by mass or more and 90 parts by mass or less) is further preferable.
  • a coating composition containing the surface-coated inorganic particles, an organic solvent, and a resin, or a coating composition containing the organic solvent dispersion and a resin will be described.
  • the organic solvent the above-mentioned one can be used.
  • Any resin can be used as the resin, and for example, a soluble type in a low-polarity non-aqueous solvent, an emulsion type, a colloidal dispersion type, and the like can be used without limitation.
  • the resin types include polyester resin, urethane-modified polyester resin, epoxy-modified polyester resin, various modified polyester resins such as acrylic-modified polyester, polyether urethane resin, polycarbonate urethane resin, vinyl chloride-vinyl acetate copolymer, and epoxy resin.
  • Phenolic resin acrylic resin, polyamideimide, polyimide, ethyl cellulose, hydroxyethyl cellulose, nitrocellulose, cellulose-acetate-butyrate (CAB), cellulose-acetate-propionate (CAP) and other modified celluloses; polyethylene glycol; polyethylene oxide, etc. Can be mentioned.
  • the blending amount of the resin is preferably in the range of about 0.5 to 100 parts by mass with respect to 100 parts by weight of the surface-coated inorganic particles, more preferably in the range of about 1 to 50 parts by mass, and in the case of about 2 to 25 parts by mass. More preferred.
  • the resin for example, B-309, B-310, M-430, M-406, M-460, M-1100 (manufactured by Toa Synthetic Co., Ltd.) of the Aronix (registered trademark) series; Light acrylate (registered trademark).
  • the above-mentioned organic solvent dispersion or coating composition can be applied or sprayed on a substrate to form a layer of surface-coated inorganic particles, which can be cured if necessary.
  • a titanium oxide layer having high hardness and high visible light transmission can be formed, and can be used as a hard coat, a high refractive index layer, and an ultraviolet shielding layer.
  • the base material is not particularly limited, and glass, plastic, ceramic, metal and the like can be used. The film thickness and the like can be set as appropriate.
  • the surface-coated inorganic particles are intramolecularly composed of a silicate compound having an amino group and / or a hydrolysis product thereof prepared in advance in the presence of the inorganic particles, preferably in the presence of an organic solvent containing the inorganic particles or an aqueous solvent.
  • a reaction product with a compound having one ⁇ , ⁇ -unsaturated carbonyl group can be mixed, and the reaction product can be coated on the surface of the inorganic particles.
  • This mixing may be as simple as mixing and stirring at room temperature, but with heat the coating proceeds faster. It is preferably carried out in the range of room temperature to 150 ° C. for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further.
  • a known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. Coating also proceeds by hydrolyzing the alkoxy groups of the reactants, but this hydrolysis reaction requires a certain amount of water and is 0.5-1.5 with respect to the hydrolyzable groups of the silicate. Equivalent (ie, 0.5 equivalents or more and 1.5 equivalents or less) is added. Further, in order to promote the hydrolysis reaction, an acid or an alkali may be added as a catalyst.
  • the surface-coated inorganic particles can be produced, and a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent can also be produced.
  • the silicate compound having an amino group and / or its hydrolysis product and the compound having an ⁇ , ⁇ -unsaturated carbonyl group are mixed in advance in a solvent-free system to cause a partial reaction. Then, by adding the surface-coated inorganic particles to the organic solvent together with the inorganic particles, a dispersion in which the surface-coated inorganic particles are dispersed in the organic solvent can be produced.
  • the surface-coated inorganic particles are intramolecularly composed of a silicate compound having an amino group and / or a hydrolysis product thereof in the presence of the inorganic particles, preferably in an organic solvent or an aqueous solvent containing the inorganic particles.
  • This mixing may be carried out by simply mixing and stirring at room temperature in the same manner as described above, but the reaction proceeds faster when heat is applied. It is preferably carried out in the range of room temperature to 150 ° C. for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further.
  • a known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. Coating also proceeds by hydrolyzing the alkoxy groups of the reactants, but this hydrolysis reaction requires a certain amount of water and is 0.5-1.5 with respect to the hydrolyzable groups of the silicate. Equivalent (ie, 0.5 equivalents or more and 1.5 equivalents or less) is added. Further, in order to promote the hydrolysis reaction, an acid or an alkali may be added as a catalyst. In this way, the surface-coated inorganic particles can be produced, and a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent can also be produced.
  • first step In an aqueous solvent, the inorganic particles are mixed with the silicate compound having an amino group and / or the hydrolysis product thereof, and the surface of the inorganic particles is coated with the silicate compound having an amino group and / or the hydrolysis product thereof. It is a process.
  • Second step Next, after replacing the aqueous solvent with an organic solvent, a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule is mixed, and a silicate compound having an amino group coated on the surface of the inorganic particles. And / or a step of coating the surface of the inorganic particles with a reaction product of the hydrolysis product thereof and the above-mentioned compound having an ⁇ , ⁇ -unsaturated carbonyl group.
  • the inorganic particles and the silicate compound having an amino group and / or the hydrolysis product thereof are mixed in an aqueous solvent to produce the silicate compound having an amino group and / or the hydrolysis product thereof.
  • a substance can be adsorbed on the surface of the inorganic particles, precipitated, or reacted to coat the surface of the inorganic particles.
  • the pH may be adjusted or the silicate compound may be hydrolyzed.
  • the aqueous solvent may contain water or an organic solvent that dissolves in water.
  • Inorganic particles may be previously suspended or dispersed in an aqueous solvent using a normal suspender or disperser, and the aqueous dispersion is mixed with a silicate compound having an amino group and / or a hydrolysis product thereof. You can also.
  • the content of the inorganic particles in the aqueous solvent can be appropriately set.
  • This mixing may be carried out by simply mixing and stirring at room temperature in the same manner as described above, but the reaction proceeds faster when heat is applied. It is preferably carried out in the range of room temperature to heating / reflux temperature for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further.
  • a known disperser can be used when the dispersal is performed.
  • Coating also proceeds by hydrolyzing the alkoxy groups of the reactants, but this hydrolysis reaction requires a certain amount of water and is 0.5-1.5 with respect to the hydrolyzable groups of the silicate. Equivalent (ie, 0.5 equivalents or more and 1.5 equivalents or less) is added. Further, in order to promote the hydrolysis reaction, an acid or an alkali may be added as a catalyst. Both the suspension and the dispersion liquid represent a state in which the fine particles are dispersed in the liquid, but it is generally understood that the suspension is easier for the fine particles to settle than the dispersion liquid. However, in the present specification, for convenience, the suspension and the dispersion liquid are not particularly distinguished, and the suspension is also referred to as a dispersion liquid.
  • the aqueous solvent is replaced with an organic solvent, and the inorganic particles are suspended or dispersed in the organic solvent.
  • the replacement method can be performed by a conventionally known method such as centrifugation, decantation, or flushing.
  • the surfactant and the organic solvent are mixed with the above-mentioned aqueous solvent containing the inorganic particles coated with the silicate compound having an amino group and / or the hydrolysis product thereof, and the inorganic particles are precipitated, if necessary. After solid-liquid separation, the inorganic particles are transferred to an organic solvent.
  • an anionic surfactant (anionic surfactant) is preferable, and when dissociated in water, it becomes an anion, and a silicate compound having an amino group coated in the first step and / or a hydrolysis product thereof.
  • the inorganic particles are coagulated and precipitated by neutralizing.
  • the surfactant include monoalkyl sulfate (ROSO 3 - M + ), alkylpolyoxyethylene sulfate (RO (CH 2 CH 2 O) m SO 3 - M + ), and alkylbenzene sulfonate (RCH 2 CHC 6).
  • R represents an alkyl chain having 12 to 15 carbon atoms (that is, 12 or more and 15 or less), m is an integer of 1 to 150 (that is, 1 or more and 150 or less), and M is an alkali metal or an alkaline earth metal. At least one selected from.
  • a conventionally known method can be used, a method such as centrifugation, filtration, or ultrafiltration can be used, and excess silicate compounds, surfactants, etc. can be removed, which is necessary. It may be washed accordingly.
  • heat treatment at a temperature of 80 to 200 ° C. (that is, 80 ° C. or higher and 200 ° C. or lower) causes a silicate compound having an amino group and / or hydrolysis thereof. It is more preferable because the decomposition product is more firmly coated on the surface of the inorganic particles.
  • a more preferable temperature is 100 to 160 ° C. (that is, 100 ° C.
  • the solid-liquid separated inorganic particles or the heat-treated inorganic particles are suspended or dispersed in an organic solvent using a suspender or a disperser to obtain a dispersion.
  • the content of the inorganic particles can be set as appropriate.
  • the organic solvent the above-mentioned solvent can be appropriately used.
  • the organic solvent preferably does not contain water, and the water content is preferably 1% by mass or less.
  • a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule is added.
  • the surface of the inorganic particles is coated with a reaction product of the silicate compound having an amino group and / or its hydrolysis product and the compound having an ⁇ , ⁇ -unsaturated carbonyl group described above by mixing and reacting.
  • the compound having an ⁇ , ⁇ -unsaturated carbonyl group to be reacted is preferably a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule and having an ether bond in the molecule.
  • the compound having an ⁇ , ⁇ -unsaturated carbonyl group may be mixed by simply mixing and stirring at room temperature in the same manner as described above, but the reaction proceeds faster when heat is applied. It is preferably carried out in the range of room temperature to heating / reflux temperature for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further.
  • a known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. In this way, the surface-coated inorganic particles can be produced, and a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent can also be produced.
  • the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol
  • the compound having an ⁇ , ⁇ -unsaturated carbonyl group is b mol, 0.8 ⁇ a / b. It is preferably ⁇ 10, more preferably 1 ⁇ a / b ⁇ 10, more preferably 1 ⁇ a / b ⁇ 8, and most preferably 1 ⁇ a / b ⁇ 6.
  • step This is a step of adding a poor solvent to the organic solvent dispersion obtained in the second step, separating the solid and liquid, and recovering the surface-coated inorganic particles.
  • step Next, it is a step of dispersing the recovered surface-coated inorganic particles in an organic solvent.
  • a poor solvent is added to the organic solvent in which the surface-coated inorganic particles produced in the second step are suspended, and solid-liquid separation is performed to recover the surface-coated inorganic particles.
  • solid-liquid separation a conventionally known method can be used, and the surface-coated inorganic particles are recovered by a method such as centrifugation, filtration, or ultrafiltration.
  • a poor solvent is mixed with the organic solvent in which the surface-coated inorganic particles are dispersed, the surface-coated inorganic particles aggregate and precipitate, so that solid-liquid separation becomes easy.
  • the poor solvent can be appropriately selected, and a polar solvent such as alcohol or a non-polar solvent such as hexane, benzene or petroleum ether may be used.
  • the amount of the poor solvent added can be appropriately set as long as the surface-coated inorganic particles aggregate.
  • the agglomerated surface-coated inorganic particles can be solid-liquid separated, separated from an organic solvent and a poor solvent, excess compounds and the like can be removed, and may be washed and dried as necessary.
  • the drying temperature can be appropriately set, preferably 80 to 200 ° C. (that is, 80 ° C. or higher and 200 ° C. or lower), and a more preferable temperature is 100 to 160 ° C. (that is, 100 ° C. or higher and 160 ° C. or lower). Is.
  • the recovered surface-coated inorganic particles are mixed with an organic solvent and dispersed in the organic solvent.
  • the solid-liquid separated surface-coated inorganic particles (including the solid-liquid separated and then dried inorganic particles) can be suspended or dispersed in an organic solvent to produce an organic solvent dispersion.
  • the above-mentioned organic solvent can be used, and a known suspender or disperser can be used as the means for suspending or dispersing.
  • An organic solvent dispersion can be produced by mixing the surface-coated inorganic particles produced as described above with an organic solvent.
  • the coating composition can be produced by mixing the surface-coated inorganic particles, the organic solvent, and the resin, or by mixing the resin with the organic solvent dispersion.
  • a known suspender or disperser can be used for mixing. Additives such as a dispersant may be appropriately added to the organic solvent dispersion and the coating composition.
  • a surface-coated inorganic particle layer can be produced by applying or spraying an organic solvent dispersion or a coating composition of surface-coated inorganic particles thus produced onto a substrate.
  • the base material is not particularly limited, and glass, plastic, ceramic, metal and the like can be used.
  • a layer of surface-coated inorganic particles can be formed on the substrate and cured if necessary.
  • Curing can be appropriately carried out by a conventional method, preferably drying at a temperature of 50 to 200 ° C. (that is, 50 ° C. or higher and 200 ° C. or lower), and 80 to 150 ° C. (that is, 80 ° C. or higher and 150 ° C. or lower). Drying at this temperature is more preferred.
  • the curing time can be set as appropriate.
  • the film thickness and the like can be set as appropriate.
  • Example 1 In an aqueous solution obtained by mixing 0.48 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-903, hereinafter referred to as "KBM-903"), 29.76 g of ion-exchanged water, and 0.16 g of acetic acid. , 1.6 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 98 g of 0.05 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, the supernatant was recovered by centrifugation to obtain a titanium oxide aqueous dispersion (TiO 2 concentration 5%) treated with 3-aminopropyltrimethoxysilane.
  • KBM-903 3-aminopropyltrimethoxysilane
  • DSS dioctylsodium sulfosuccinate
  • 40 g of toluene was added to 80 g of the obtained aqueous dispersion, left overnight, and then subjected to solvent replacement. bottom.
  • a Dean-Stark apparatus was attached, and dehydration heating was performed at an oil bath temperature of 140 ° C. for 4 hours to obtain a toluene dispersion of titanium oxide treated with 3-aminopropyltrimethoxysilane (adjusted to a TiO 2 concentration of 10%).
  • PGME propylene glycol monomethyl ether
  • Example 2 Example 1 and Example 1 except that 0.183 g of methoxy-polyethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) 130A, hereinafter referred to as "130A”) was used instead of MTG-A. The same operation was carried out to obtain PGME dispersion 2.
  • methoxy-polyethylene glycol acrylate manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) 130A, hereinafter referred to as "130A”
  • 130A light acrylate (registered trademark) 130A
  • Example 3 In Example 1, the same operation as in Example 1 was performed except that the amount of MTG-A added was 0.061 g and N, N-dimethylacetamide (hereinafter referred to as “DMAc”) was used instead of PGME. , DMAc dispersion 3 was obtained.
  • DMAc N, N-dimethylacetamide
  • Example 4 In a solution obtained by mixing 0.225 g of KBM-903, 0.275 g of MTG-A, and 37.5 g of PGME, 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 4.
  • Titanium oxide was mixed with 0.235 g of KBM-903, 0.265 g of methoxydipropylene glucol acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) DPM-A), and 37.5 g of PGME. 2 g (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads were added and dispersed by a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 5.
  • Example 6 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads were added to a solution obtained by mixing 0.135 g of KBM-903, 0.365 g of 130A, and 37.5 g of PGME. Dispersion treatment was performed with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 6.
  • Example 7 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads were added to a solution obtained by mixing 0.213 g of KBM-903, 0.287 g of 130A, and 37.5 g of PGME. Dispersion treatment was performed with a bead mill. After removing the beads, centrifugation was performed to collect the supernatant to obtain PGME dispersion 7.
  • Example 8 Put 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads in a mixed solution of 0.427 g of KBM-903, 0.173 g of MTG-A, and 37.4 g of DMAc, and bead mill. Distributed processing with. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 8.
  • Example 9 A bead mill containing 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.316 g of KBM-903, 0.284 g of 130A, and 37.4 g of DMAc. Distributed processing with. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 9.
  • Example 10 A bead mill containing 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.414 g of KBM-903, 0.186 g of 130A, and 37.4 g of DMAc. Distributed processing with. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 10.
  • Example 11 Zirconium oxide 2 g (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd .: UEP-100), 0.1 mm zirconia beads 65 g in a solution obtained by mixing 0.316 g of KBM-903, 0.284 g of 130A, and 37.4 g of DMAc. was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 11.
  • [Comparative Example 1] Mix 0.6 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-903) and 37.4 g of DMAc, and add 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) to the mixed solution. 65 g of 0.1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed to recover the supernatant, but the entire amount of titanium oxide was precipitated.
  • the particle size distribution was measured in Examples 1 to 11 and Reference Example 1.
  • the value of D50 of the particle size distribution is around 40 nm or less, which is not much different from that of the aqueous dispersion of Reference Example 1, and is therefore the same as that of the aqueous dispersion of Reference Example 1. It was also found that it was sufficiently dispersed even in an organic solvent.
  • Example 12 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added to a solution obtained by mixing 0.445 g of KBM-903, 1.225 g of 130A, and 21.92 g of PGME. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 12.
  • Example 13 To the solution obtained by mixing 0.716 g of KBM-903, 0.964 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added. It was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 13.
  • Example 14 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added to the solution obtained by mixing 0.885 g of KBM-903, 0.795 g of 130A, and 21.92 g of PGME. It was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 14.
  • Example 15 To the solution obtained by mixing 1.092 g of KBM-903, 0.558 g of 130A and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 15.
  • Example 16 To the solution obtained by mixing 1.324 g of KBM-903, 0.356 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 16.
  • Example 17 After mixing 1.079 g of KBM-903, 0.601 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads are added to this solution. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 17.
  • Example 18 After mixing 0.885 g of KBM-903, 0.795 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads are added to this solution. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 18.
  • Example 19 After mixing 1.092 g of KBM-903, 0.558 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to this solution. It was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 19.
  • Example 20 A mixture of 0.789 g of KBM-903, 0.891 g of methoxydipropylene glucol acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) DPM-A, hereinafter referred to as "DPM-A"), and 21.92 g of PGME. After that, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to this solution, and dispersion treatment was performed with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 20.
  • Example 21 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5), 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.959 g of KBM-903, 0.721 g of DPM-A, and 21.92 g of PGME. was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 21.
  • Example 22 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N), 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.959 g of KBM-903, 0.721 g of DPM-A, and 21.92 g of PGME. was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 22.
  • Example 23 Titanium oxide 8.4 g (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5), 0.1 mm zirconia beads 65 g in a solution obtained by mixing 1.221 g of KBM-903, 0.459 g of DPM-A, and 21.92 g of PGME. was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 23.
  • Example 24 A mixture of 1.063 g of KBM-903, 0.617 g of tetrahydrofurfuryl acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) THF-A, hereinafter referred to as "THF-A"), and 21.92 g of PGME. 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to the obtained solution and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 24.
  • Example 25 After mixing 0.927 g of KBM-903, 0.753 g of MTG-A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were mixed in this solution. Was put in and dispersed with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 25.
  • Example 26 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) in a solution obtained by mixing 0.883 g of KBM-903, 0.797 g of DPM-A, and 21.92 g of PGMEA (propylene glycol monomethyl ether acetate). , 0.1 mm zirconia beads (65 g) were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGMEA dispersion 26.
  • Example 27 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0. 65 g of 1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain an ethanol dispersion 27.
  • Example 28 A solution obtained by mixing 0.959 g of KBM-903, 0.721 g of DPM-A, and 21.92 g of isopropyl alcohol (IPA) was mixed with 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0. .65 g of 1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain an isopropyl alcohol dispersion 28.
  • IPA isopropyl alcohol
  • Example 29 After mixing 0.883 g of KBM-903, 0.797 g of DPM-A, and 21.92 g of methyl ethyl ketone (MEK), 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0. 65 g of 1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a methyl ethyl ketone dispersion 29.
  • MK methyl ethyl ketone
  • Table 2 shows the dispersion states in Examples 12 to 29 and Comparative Examples 2 to 4. Table 2 shows a case where the dispersed state was good, a case where the solid content was dispersed but a concentration crack of 5% or more was indicated by ⁇ , and a case where the solid content was not dispersed was indicated by ⁇ .
  • the present invention is a surface-coated inorganic particle coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one ⁇ , ⁇ -unsaturated carbonyl group in the molecule.
  • the dispersibility of the inorganic particles in the organic solvent can be sufficiently improved, whereby the functions and performances of the inorganic particles can be fully exhibited. Further, the organic solvent dispersion and the coating film of the obtained surface-coated inorganic particles can be made excellent in transparency and refraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Provided are: surface-coated inorganic particles which can have improved dispersibility in organic solvents and enable the function and performance of the original inorganic particles to be sufficiently exhibited; and a method for producing the surface-coated inorganic particles. Also provided are an organic-solvent dispersion and a coating film which are excellent in terms of transparency and refraction property. The surfaces of inorganic particles, e.g., titanium oxide, are coated with a product of reaction between an aminated silicate compound, e.g., aminopropyltrimethoxysilane, and/or a product of the hydrolysis thereof and a compound having one α,β-unsaturated carbonyl group in the molecule, e.g., an alkoxypolyalkylene glycol (meth)acrylate.

Description

表面被覆無機粒子及びその製造方法並びにそれを分散した有機溶媒分散体Surface-coated inorganic particles, a method for producing the same, and an organic solvent dispersion in which the particles are dispersed.
 本発明は、表面被覆無機粒子及びその製造方法並びにそれを分散した有機溶媒分散体及びその製造方法、更にはそれを含有した塗料組成物、表面被覆無機粒子層の製造方法に関する。 The present invention relates to surface-coated inorganic particles and a method for producing the same, an organic solvent dispersion in which the particles are dispersed and a method for producing the same, a coating composition containing the same, and a method for producing a surface-coated inorganic particle layer.
 金属酸化物、金属窒化物、金属などの種々の無機粒子は、顔料、紫外線遮蔽剤、赤外線遮蔽剤、可視光透過剤、フィラー、ハードコート剤、屈折率調整剤などいろいろな用途に用いられている。その際、分散媒への分散性を高めたり、遮蔽性、透過性などの機能を高めたりするために、有機化合物で表面被覆されて用いられることがある。例えば、特許文献1は、無機物質と、(i)四級シランカップリング剤及び/又は(ii)シランカップリング剤と、疎水化剤とを含む被覆層を有する金属酸化物コア粒子を開示しており、シランカップリング剤としてアミノシランカップリング剤を具体的に用いて、有効なUV吸収特性、低減された光活性、改善された皮膚への感触を示すことを記載している。
 また、特許文献2は、一級若しくは二級アミノ基とアルコキシシリル基とを含有するアミノシラン化合物(a)と、少なくとも2つの不飽和二重結合を有する化合物(b)とを反応させてなるアルコキシシリル基と不飽和二重結合とを有する化合物(c)を、アルコキシシリル基と反応しうる官能基を表面に有する金属酸化物粒子(d)と反応させることを特徴とする重合性粒子の製造方法を開示している。
Various inorganic particles such as metal oxides, metal nitrides, and metals are used in various applications such as pigments, ultraviolet shielding agents, infrared shielding agents, visible light transmitting agents, fillers, hard coating agents, and refractive index adjusting agents. There is. At that time, in order to enhance the dispersibility in the dispersion medium and the functions such as shielding property and permeability, the surface may be coated with an organic compound and used. For example, Patent Document 1 discloses metal oxide core particles having a coating layer containing an inorganic substance, (i) a quaternary silane coupling agent and / or (ii) a silane coupling agent, and a hydrophobic agent. It is described that an aminosilane coupling agent is specifically used as a silane coupling agent to exhibit effective UV absorption characteristics, reduced photoactivity, and improved skin feel.
Further, Patent Document 2 describes an alkoxysilyl obtained by reacting an aminosilane compound (a) containing a primary or secondary amino group and an alkoxysilyl group with a compound (b) having at least two unsaturated double bonds. A method for producing polymerizable particles, which comprises reacting a compound (c) having a group and an unsaturated double bond with a metal oxide particle (d) having a functional group capable of reacting with an alkoxysilyl group on the surface. Is disclosed.
特表2015-531734号公報Japanese Patent Application Laid-Open No. 2015-531743 特開2005-220243号公報Japanese Unexamined Patent Publication No. 2005-220243
 前記の特許文献1では、アミノシランカップリング剤を含む被覆層を有することにより、表面被覆粒子の分散媒への分散性などが当時のレベルよりも改良されるものの、現状では、更なる改良が求められている。また、特許文献2に記載の有機無機複合体粒子をコーティング剤に使用した場合、透明性、耐擦傷性、硬度、耐溶剤性、密着性が当時のレベルよりも良好な硬化塗膜を製造することができるものの、現状では、透明性、屈折性が更に改良された有機溶媒分散体や塗膜が提供可能な、新規な表面被覆粒子の開発が希求されている。 In Patent Document 1 described above, by having a coating layer containing an aminosilane coupling agent, the dispersibility of the surface coating particles in the dispersion medium is improved from the level at that time, but at present, further improvement is required. Has been done. Further, when the organic-inorganic composite particles described in Patent Document 2 are used as a coating agent, a cured coating film having better transparency, scratch resistance, hardness, solvent resistance, and adhesion than those at that time is produced. However, at present, there is a need for the development of new surface-coated particles capable of providing organic solvent dispersions and coating films with further improved transparency and refraction.
 本発明者らは、有機化合物を被覆した無機粒子の有機溶媒への分散性を改善するため、鋭意研究したところ、アミノ基を有するシリケート化合物を分子内に一つのα,β-不飽和カルボニル基を有する化合物と反応させた生成物を無機粒子の表面に被覆させると、有機溶媒中での所望の分散性が得られること、また、得られた表面被覆無機粒子の有機溶媒分散体や塗膜は透明性、屈折性に優れたものにできることを見出し、本発明を完成した。 In order to improve the dispersibility of inorganic particles coated with an organic compound in an organic solvent, the present inventors have conducted intensive studies and found that a silicate compound having an amino group has one α, β-unsaturated carbonyl group in the molecule. When the surface of the inorganic particles is coated with the product reacted with the compound having the above, the desired dispersibility in the organic solvent can be obtained, and the organic solvent dispersion or coating film of the obtained surface-coated inorganic particles can be obtained. Has found that it can be made excellent in transparency and refractive property, and completed the present invention.
 すなわち、本発明は、
(1) アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物との反応物を、無機粒子表面に被覆した表面被覆無機粒子、
(2) 前記のα,β-不飽和カルボニル基を有する化合物が、更にエーテル結合を有する化合物である、(1)に記載の表面被覆無機粒子、
(3) 前記のα,β-不飽和カルボニル基を有する化合物が、エチレングリコール鎖(重合数n=2~10)、プロピレングリコール鎖(重合数n=2~10)又は5~6員環状基を有する化合物である、(1)又は(2)に記載の表面被覆無機粒子、
(4) 前記のα,β-不飽和カルボニル基を有する化合物が、5~6員環状基を有する(メタ)アクリレート類又はアルコキシポリアルキレングリコール(メタ)アクリレート類である、(1)乃至(3)のいずれかに記載の表面被覆無機粒子、
(5) 前記のα,β-不飽和カルボニル基を有する化合物が、テトラヒドロフルフリルアクリレート、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート又はメトキシジプロピレングリコールアクリレートである、(1)乃至(4)のいずれかに記載の表面被覆無機粒子、
(6) 前記反応物中のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10となる、(1)乃至(5)のいずれかに記載の表面被覆無機粒子、
(7) 前記反応物が、炭素数3~100の低分子シリケート化合物及び/又はその加水分解生成物である、(1)乃至(6)のいずれかに記載の表面被覆無機粒子、
(8) 前記無機粒子が、無機コア粒子とその表面に被覆された無機化合物で構成される、(1)乃至(7)のいずれかに記載の表面被覆無機粒子、
(9) (1)乃至(7)のいずれかに記載の無機粒子又は(8)に記載の無機コア粒子が、酸化チタン粒子である、表面被覆無機粒子、
(10) (1)乃至(9)のいずれかに記載の表面被覆無機粒子を有機溶媒に分散した、表面被覆無機粒子の有機溶媒分散体、
(11) (1)乃至(9)のいずれかに記載の表面被覆無機粒子と、有機溶媒と、樹脂とを含む塗料組成物、
(12) (10)に記載の有機溶媒分散体と、樹脂とを含む塗料組成物、
(13) 水性溶媒中で無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物とを混合して、無機粒子の表面にアミノ基を有するシリケート化合物及び/又はその加水分解生成物を被覆する第一の工程と、
 次いで、前記水性溶媒を有機溶媒に置換した後、分子内に一つのα,β-不飽和カルボニル基を有する化合物を混合して、前記の無機粒子の表面に被覆したアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を、前記無機粒子の表面に被覆する第二の工程と、
を含む表面被覆無機粒子の製造方法、
(14) 前記第二の工程において、水性溶媒に界面活性剤と有機溶媒を混合して無機粒子を有機溶媒に移行させて前記水性溶媒の有機溶媒置換を行った後、前記のα,β-不飽和カルボニル基を有する化合物を混合する、(13)に記載の表面被覆無機粒子の製造方法、
(15) 無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物とを混合して、前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を前記無機粒子の表面に被覆する、表面被覆無機粒子の製造方法、
(16) 前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10とする、(13)乃至(15)のいずれかに記載の表面被覆無機粒子の製造方法。
(17) (13)又は(14)に記載の第二の工程で得た有機溶媒分散体に貧溶媒を添加し固液分離して、表面被覆無機粒子を回収する第三の工程と、
 次いで、前記の回収した表面被覆無機粒子を有機溶媒に分散させる第四の工程と、
を含む表面被覆無機粒子の有機溶媒分散体の製造方法、
(18) 有機溶媒中で、無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物とを混合して、前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を無機粒子の表面に被覆して前記有機溶媒に分散させる、表面被覆無機粒子の有機溶媒分散体の製造方法、
(19) 前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10とする、(18)に記載の有機溶媒分散体の製造方法。
(20) (10)に記載の表面被覆無機粒子の有機溶媒分散体又は(11)若しくは(12)に記載の塗料組成物を基材に塗布又はスプレーする、表面被覆無機粒子層の製造方法、
などである。
That is, the present invention
(1) A surface-coated inorganic particle in which the surface of an inorganic particle is coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one α, β-unsaturated carbonyl group in the molecule. particle,
(2) The surface-coated inorganic particles according to (1), wherein the compound having an α, β-unsaturated carbonyl group is a compound having an ether bond.
(3) The compound having an α, β-unsaturated carbonyl group is an ethylene glycol chain (polymerization number n = 2 to 10), a propylene glycol chain (polymerization number n = 2 to 10), or a 5- to 6-membered cyclic group. The surface-coated inorganic particles according to (1) or (2), which is a compound having
(4) The compounds having an α, β-unsaturated carbonyl group are (meth) acrylates having a 5- to 6-membered cyclic group or alkoxypolyalkylene glycol (meth) acrylates, (1) to (3). ), The surface-coated inorganic particles according to any one of the above.
(5) The compound having an α, β-unsaturated carbonyl group is tetrahydrofurfuryl acrylate, methoxytriethylene glycol acrylate, methoxypolyethylene glycol acrylate or methoxydipropylene glycol acrylate, according to (1) to (4). Surface coated inorganic particles according to any one,
(6) When the amino group of the silicate compound having an amino group and / or its hydrolysis product in the reaction product is a mol and the compound having an α, β-unsaturated carbonyl group is b mol, it is 0. The surface-coated inorganic particles according to any one of (1) to (5), wherein 8 ≦ a / b ≦ 10.
(7) The surface-coated inorganic particles according to any one of (1) to (6), wherein the reaction product is a small molecule silicate compound having 3 to 100 carbon atoms and / or a hydrolysis product thereof.
(8) The surface-coated inorganic particles according to any one of (1) to (7), wherein the inorganic particles are composed of inorganic core particles and an inorganic compound coated on the surface thereof.
(9) Surface-coated inorganic particles, wherein the inorganic particles according to any one of (1) to (7) or the inorganic core particles according to (8) are titanium oxide particles.
(10) An organic solvent dispersion of surface-coated inorganic particles in which the surface-coated inorganic particles according to any one of (1) to (9) are dispersed in an organic solvent.
(11) A coating composition containing the surface-coated inorganic particles according to any one of (1) to (9), an organic solvent, and a resin.
(12) A coating composition containing the organic solvent dispersion according to (10) and a resin.
(13) The inorganic particles are mixed with the silicate compound having an amino group and / or the hydrolysis product thereof in an aqueous solvent, and the silicate compound having an amino group on the surface of the inorganic particles and / or the hydrolysis product thereof. The first step of coating and
Next, after replacing the aqueous solvent with an organic solvent, a compound having one α, β-unsaturated carbonyl group in the molecule is mixed, and the silicate compound having an amino group coated on the surface of the inorganic particles and the silicate compound. / Or a second step of coating the surface of the inorganic particles with a reaction product of the hydrolysis product thereof and the compound having an α, β-unsaturated carbonyl group.
Method for producing surface-coated inorganic particles, including
(14) In the second step, the surfactant and the organic solvent are mixed with the aqueous solvent, the inorganic particles are transferred to the organic solvent, the organic solvent is replaced with the aqueous solvent, and then the α, β- The method for producing a surface-coated inorganic particle according to (13), wherein a compound having an unsaturated carbonyl group is mixed.
(15) Inorganic particles, a silicate compound having an amino group and / or a hydrolysis product thereof, and a compound having one α, β-unsaturated carbonyl group in the molecule are mixed to obtain the above amino group. A method for producing a surface-coated inorganic particle, which comprises coating the surface of the inorganic particle with a reaction product of the silicate compound and / or a hydrolysis product thereof and the compound having an α, β-unsaturated carbonyl group.
(16) When the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having an α, β-unsaturated carbonyl group is b mol, 0.8 ≦ The method for producing a surface-coated inorganic particle according to any one of (13) to (15), wherein a / b ≦ 10.
(17) A third step of adding a poor solvent to the organic solvent dispersion obtained in the second step according to (13) or (14), solid-liquid separation, and recovering the surface-coated inorganic particles.
Next, a fourth step of dispersing the recovered surface-coated inorganic particles in an organic solvent, and
Method for Producing Organic Solvent Dispersion of Surface-Coated Inorganic Particles, Containing
(18) In an organic solvent, inorganic particles, a silicate compound having an amino group and / or a hydrolysis product thereof, and a compound having one α, β-unsaturated carbonyl group in the molecule are mixed. The reaction product of the silicate compound having an amino group and / or its hydrolysis product and the compound having an α, β-unsaturated carbonyl group is coated on the surface of the inorganic particles and dispersed in the organic solvent. , A method for producing an organic solvent dispersion of surface-coated inorganic particles,
(19) When the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having an α, β-unsaturated carbonyl group is b mol, 0.8 ≦ The method for producing an organic solvent dispersion according to (18), wherein a / b ≦ 10.
(20) A method for producing a surface-coated inorganic particle layer, wherein the organic solvent dispersion of the surface-coated inorganic particles according to (10) or the coating composition according to (11) or (12) is applied or sprayed onto a substrate.
And so on.
 本発明により、無機粒子の有機溶媒への分散性を充分に改善することができ、それにより無機粒子が持つ機能や性能を充分に発揮させることができる。
 また、本発明により得られた表面被覆無機粒子の有機溶媒分散体や塗膜は、従来の表面被覆無機粒子の有機溶媒分散体や塗膜よりも優れた透明性、屈折性を提供することも可能である。
 また、本発明の表面被覆無機粒子やその有機溶媒分散体を簡便な方法により製造することができる。
INDUSTRIAL APPLICABILITY According to the present invention, the dispersibility of the inorganic particles in an organic solvent can be sufficiently improved, whereby the functions and performances of the inorganic particles can be sufficiently exhibited.
In addition, the organic solvent dispersion or coating film of the surface-coated inorganic particles obtained by the present invention may also provide better transparency and refraction than the organic solvent dispersion or coating film of conventional surface-coated inorganic particles. It is possible.
Further, the surface-coated inorganic particles of the present invention and the organic solvent dispersion thereof can be produced by a simple method.
 本発明は、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物との反応物を、無機粒子表面に被覆した表面被覆無機粒子である。 In the present invention, the surface of an inorganic particle is coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one α, β-unsaturated carbonyl group in the molecule. It is an inorganic particle.
 無機粒子は、特に限定されないが、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化セリウム、酸化鉄、酸化ケイ素などの金属酸化物粒子、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムなどの金属複合酸化物粒子、窒化チタン、酸窒化チタン、窒化ケイ素、酸窒化ケイ素、窒化アルミニウム、酸窒化アルミニウムなどの金属窒化物、炭化チタン、炭化ジルコニウム、炭化ケイ素、炭化アルミニウムなどの金属炭化物などの金属化合物粒子、金属銅、銀、金などの金属粒子が挙げられる。無機粒子の平均粒子径は、用途に応じて適宜設計することができ、1nm~50μm(すなわち、1nm以上50μm以下)の範囲であることが好ましく、より好ましくは2nm~5μm(すなわち、2nm以上5μm以下)であり、更に好ましくは3nm~500nm(すなわち、3nm以上500nm以下)であり、最も好ましくは3nm~100nm(すなわち、3nm以上100nm以下)である。平均粒子径は、無機粒子の電子顕微鏡写真から100個の最長の直線部分を測定して、これらの測定値を個数平均して求めた数値である。 The inorganic particles are not particularly limited, and are, for example, metal oxide particles such as zinc oxide, titanium oxide, zirconium oxide, tin oxide, cerium oxide, iron oxide, and silicon oxide, barium titanate, strontium titanate, calcium titanate, and the like. Metal composite oxide particles, metal nitrides such as titanium nitride, titanium oxynitride, silicon nitride, silicon oxynitride, aluminum nitride, aluminum oxynitride, metal carbides such as titanium carbide, zirconium carbide, silicon carbide, aluminum carbide, etc. Examples include metal compound particles and metal particles such as metallic copper, silver and gold. The average particle size of the inorganic particles can be appropriately designed according to the application, and is preferably in the range of 1 nm to 50 μm (that is, 1 nm or more and 50 μm or less), and more preferably 2 nm to 5 μm (that is, 2 nm or more and 5 μm). It is more preferably 3 nm to 500 nm (that is, 3 nm or more and 500 nm or less), and most preferably 3 nm to 100 nm (that is, 3 nm or more and 100 nm or less). The average particle size is a numerical value obtained by measuring 100 longest linear portions from an electron micrograph of inorganic particles and averaging the number of these measured values.
 無機粒子としては、無機粒子自体で構成されていてもよく、又は、無機コア粒子とその表面に被覆された無機化合物で構成されていてもよい。無機コア粒子として、酸化チタン、酸化亜鉛、酸化ケイ素、酸化アルミニウムなどの前記の無機粒子が挙げられ、その粒子表面が、ケイ素、アルミニウム、スズ、亜鉛、チタン、アンチモン、ジルコニウムなどの酸化物や水酸化物などの無機化合物で被覆されたものが好ましい。無機粒子が無機粒子自体で構成されている場合、該無機粒子は酸化チタン粒子であることが好ましい。無機粒子が無機コア粒子とその表面に被覆された無機化合物で構成されている場合、該無機コア粒子が、酸化チタン粒子であることが好ましい。無機化合物での被覆とは、無機コア粒子の表面に無機化合物が吸着したり、析出したりして、無機コア粒子の表面に無機化合物が存在した状態をいう。無機化合物での被覆は、無機粒子の表面の少なくとも一部に無機化合物が存在した状態であればよい。無機化合物の被覆量は、無機粒子100質量部に対して、0.1~50質量部(すなわち、0.1質量部以上50質量部以下)が好ましく、0.5~40質量部(すなわち、0.5質量部以上40質量部以下)がより好ましく、1~30質量部(すなわち、1質量部以上30質量部以下)が更に好ましい。酸化チタンの無機コア粒子の表面に、ケイ素、アルミニウム、スズ、亜鉛、チタン、アンチモン、ジルコニウムなどの酸化物や水酸化物などの無機化合物で被覆されたものが好ましく、二酸化チタン顔料、酸化チタン微粒子などに用いることができる。二酸化チタン顔料として用いる場合は、平均粒子径0.1μm~0.5μm(すなわち、0.1μm以上0.5μm以下)が好ましく、0.15μm~0.4μm(すなわち、0.15μm以上0.4μm以下)がより好ましく、0.2μm~0.3μm(0.2μm以上0.3μm以下)が更に好ましい。酸化チタン微粒子として用いる場合は、平均粒子径1nm~100nm(すなわち、1nm以上100nm以下)が好ましく、2nm~80nm(すなわち、2nm以上80nm以下)がより好ましく、3nm~50nm(すなわち、3nm以上50nm以下)が更に好ましい。 The inorganic particles may be composed of the inorganic particles themselves, or may be composed of the inorganic core particles and the inorganic compound coated on the surface thereof. Examples of the inorganic core particles include the above-mentioned inorganic particles such as titanium oxide, zinc oxide, silicon oxide, and aluminum oxide, and the surface of the particles is oxides such as silicon, aluminum, tin, zinc, titanium, antimony, and zirconium, and water. Those coated with an inorganic compound such as an oxide are preferable. When the inorganic particles are composed of the inorganic particles themselves, the inorganic particles are preferably titanium oxide particles. When the inorganic particles are composed of the inorganic core particles and the inorganic compound coated on the surface thereof, the inorganic core particles are preferably titanium oxide particles. The coating with an inorganic compound means a state in which the inorganic compound is present on the surface of the inorganic core particles by adsorbing or precipitating the inorganic compound on the surface of the inorganic core particles. The coating with the inorganic compound may be in a state where the inorganic compound is present on at least a part of the surface of the inorganic particles. The coating amount of the inorganic compound is preferably 0.1 to 50 parts by mass (that is, 0.1 parts by mass or more and 50 parts by mass or less) with respect to 100 parts by mass of the inorganic particles, and 0.5 to 40 parts by mass (that is, that is). 0.5 parts by mass or more and 40 parts by mass or less) is more preferable, and 1 to 30 parts by mass (that is, 1 part by mass or more and 30 parts by mass or less) is further preferable. The surface of the inorganic core particles of titanium oxide is preferably coated with an oxide such as silicon, aluminum, tin, zinc, titanium, antimony, zirconium or an inorganic compound such as hydroxide, and a titanium dioxide pigment or titanium oxide fine particles. It can be used for such purposes. When used as a titanium dioxide pigment, the average particle size is preferably 0.1 μm to 0.5 μm (that is, 0.1 μm or more and 0.5 μm or less), and 0.15 μm to 0.4 μm (that is, 0.15 μm or more and 0.4 μm or less). The following) is more preferable, and 0.2 μm to 0.3 μm (0.2 μm or more and 0.3 μm or less) is further preferable. When used as titanium oxide fine particles, the average particle size is preferably 1 nm to 100 nm (that is, 1 nm or more and 100 nm or less), more preferably 2 nm to 80 nm (that is, 2 nm or more and 80 nm or less), and 3 nm to 50 nm (that is, 3 nm or more and 50 nm or less). ) Is more preferable.
 無機粒子の表面に被覆される反応物は、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物との反応で得られる。このような反応は、マイケル付加反応といい、分子内にC=C結合を一つ有するモノα,β-不飽和カルボニル化合物(すなわち、分子内に一つのα,β-不飽和カルボニル基を有する化合物)に対してアミノ基を有するシリケート化合物を付加させる反応である。このようなことから、該反応物をマイケル付加物ということがある。該反応物は、分子内に一つのα,β-不飽和カルボニル基を有する化合物にアミノ基を介してシリケート化合物及び/又はその加水分解生成物が付加した化合物であると理解される。マイケル付加反応は、無機粒子の存在下で行うのが好ましく、生成したマイケル付加物を無機粒子の表面に被覆することができる。前記のマイケル付加反応は、シリケート化合物及び/又はその加水分解生成物が有するアミノ基(NH)のうち、アミノ基の水素が残らない反応、すなわちアミノ基の水素2個がα,β-不飽和カルボニル基を有する化合物2モルに付加されてアミノ基の水素が残らない反応でもよいが、アミノ基の水素(NH)が残る反応、すなわちアミノ基の水素1個がα,β-不飽和カルボニル基を有する化合物1モルに付加されアミノ基の水素1個が残る反応が好ましい。このため、アミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、分子内に一つのα,β-不飽和カルボニル基を有する化合物をbモルとすると、0.8≦a/b≦10となるようなモル比での反応が好ましく、1≦a/b≦10がより好ましく、1≦a/b≦8が更に好ましく、1≦a/b≦6が最も好ましい。 The reactant coated on the surface of the inorganic particles is obtained by reacting a silicate compound having an amino group and / or a hydrolysis product thereof with a compound having one α, β-unsaturated carbonyl group in the molecule. .. Such a reaction is called a Michael addition reaction and is a mono-α, β-unsaturated carbonyl compound having one C = C bond in the molecule (that is, having one α, β-unsaturated carbonyl group in the molecule). This is a reaction in which a silicate compound having an amino group is added to a compound). For this reason, the reactant may be referred to as a Michael adduct. The reaction product is understood to be a compound in which a silicate compound and / or a hydrolysis product thereof is added via an amino group to a compound having one α, β-unsaturated carbonyl group in the molecule. The Michael addition reaction is preferably carried out in the presence of the inorganic particles, and the produced Michael adduct can be coated on the surface of the inorganic particles. In the Michael addition reaction, among the amino groups (NH 2 ) contained in the silicate compound and / or its hydrolysis product, the hydrogen of the amino group does not remain, that is, two hydrogens of the amino group are α, β-non. A reaction may be carried out in which hydrogen of an amino group does not remain after being added to 2 mol of a compound having a saturated carbonyl group, but a reaction in which hydrogen (NH) of an amino group remains, that is, one hydrogen of an amino group is α, β-unsaturated carbonyl. A reaction in which 1 mol of a compound having a group is added and one hydrogen of an amino group remains is preferable. Therefore, assuming that the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having one α, β-unsaturated carbonyl group in the molecule is b mol, 0.8 ≦ The reaction at a molar ratio such that a / b ≦ 10 is preferable, 1 ≦ a / b ≦ 10 is more preferable, 1 ≦ a / b ≦ 8 is more preferable, and 1 ≦ a / b ≦ 6 is most preferable.
 アミノ基を有するシリケート化合物としては、具体的に-C-Si(OH)のシラノール化合物、-C-Si(OR)のアルコキシシラン化合物、-C-Si(OR)R´3-xのアルキルアルコキシシラン化合物(xは1~3(すなわち、1以上3以下)の整数)などを含み、下記一般式(1)で示されるアルコキシ基などの加水分解性基を含むものがより好ましい。 Specific examples of the silicate compound having an amino group include a silanol compound of -C-Si (OH) 3, an alkoxysilane compound of -C-Si (OR) 3 , and -C-Si (OR) x R'3 -x. Alkoxyalkoxysilane compounds (x is an integer of 1 to 3 (that is, 1 or more and 3 or less)) and the like, and those containing a hydrolyzable group such as an alkoxy group represented by the following general formula (1) are more preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)中、xは1~3(すなわち、1以上3以下)の整数を表し、yは0~2(すなわち、0以上2以下)の整数を表し、zは0~1(すなわち、0又は1)の整数を表す。ただし、x+y+z=3である。R、R及びRは、それぞれ独立に水素原子又は炭素数1~4(すなわち、1以上4以下)のアルキル基を表す。 In the general formula (1), x represents an integer of 1 to 3 (that is, 1 or more and 3 or less), y represents an integer of 0 to 2 (that is, 0 or more and 2 or less), and z represents 0 to 1 (that is, 0 to 1 (that is, 0 or more and 2 or less). That is, it represents an integer of 0 or 1). However, x + y + z = 3. R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (that is, 1 or more and 4 or less).
 アミノ基を有するシリケート化合物として、具体的には、アミノ基含有アルコキシシランやアミノ基含有ジ(アルコキシシラン)が挙げられ、前者としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、3-(トリメトキシシリルプロピル)アミノプロピルトリメトキシシラン、3-(トリエトキシシリルプロピル)アミノプロピルトリエトキシシラン、2-(トリメトキシシリルプロピル)アミノエチル-3-アミノプロピルトリメトキシシラン、2-(トリエトキシシリルプロピル)アミノエチル-3-アミノプロピルトリエトキシシランなどが例示される。また、後者としては、ビス(トリメトキシシリルプロピル)アミンなどが例示され、それらの加水分解生成物を調製して用いることができる。 Specific examples of the silicate compound having an amino group include an amino group-containing alkoxysilane and an amino group-containing di (alkoxysilane), and examples of the former include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane. , 3-Aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxy Silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane, 3- (trimethoxysilylpropyl) aminopropyltrimethoxysilane , 3- (Triethoxysilylpropyl) Aminopropyltriethoxysilane, 2- (Trimethoxysilylpropyl) Aminoethyl-3-aminopropyltrimethoxysilane, 2- (Triethoxysilylpropyl) Aminoethyl-3-aminopropyltri Examples thereof include ethoxysilane. Further, examples of the latter include bis (trimethoxysilylpropyl) amine, and hydrolysis products thereof can be prepared and used.
 分子内に一つのα,β-不飽和カルボニル基を有する化合物は、分子内に、C=C結合を一つ有するモノα,β-不飽和カルボニル化合物であれば、特に制限はなく、下記一般式(2)で示される骨格を有するものが好ましい。また、分子内に一つのα,β-不飽和カルボニル基を有する化合物は、分子内に更にエーテル結合を有する化合物であることがより好ましく、エーテル結合を有する化合物として、重合数n=2~10(すなわち、2以上10以下)のエチレングリコール鎖、重合数n=2~10(すなわち、2以上10以下)のプロピレングリコール鎖又は5~6員環状基(すなわち、5又は6員環状基)を有する化合物がより好ましく、5~6員環状基を有する(メタ)アクリレート類又はアルコキシポリアルキレングリコール(メタ)アクリレート類が更に好ましい。「(メタ)アクリレート」との表示は、アクリレート及び/又はメタクリレート(メタアクリレートと称することもある)を意味する。 The compound having one α, β-unsaturated carbonyl group in the molecule is not particularly limited as long as it is a mono-α, β-unsaturated carbonyl compound having one C = C bond in the molecule, and is generally described below. Those having a skeleton represented by the formula (2) are preferable. Further, the compound having one α, β-unsaturated carbonyl group in the molecule is more preferably a compound having an ether bond in the molecule, and the compound having an ether bond has a polymerization number of n = 2 to 10. (That is, 2 or more and 10 or less) ethylene glycol chain, polymerization number n = 2 to 10 (that is, 2 or more and 10 or less) propylene glycol chain or 5 to 6-membered cyclic group (that is, 5 or 6-membered cyclic group) The compound having the compound is more preferable, and (meth) acrylates having a 5- to 6-membered cyclic group or alkoxypolyalkylene glycol (meth) acrylates are further preferable. The term "(meth) acrylate" means acrylate and / or methacrylate (sometimes referred to as methacrylate).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)中、Rは、水素原子又は炭素数1~4(すなわち、1以上4以下)のアルキル基を表す。 In the above general formula (2), R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (that is, 1 or more and 4 or less).
 分子内に一つのα,β-不飽和カルボニル基を有する化合物としては、具体的に、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレートのようなアルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートなどの5~6員環状基を有する(メタ)アクリレート類;メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレートなどのアルコキシポリアルキレングリコール(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレートなどの水酸基含有の(メタ)アクリレート類;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、アクリロイルモルホリンなどのN置換型(メタ)アクリルアミド類;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートなどのアミノ基含有(メタ)アクリレート類;などが挙げられる。更に、上記したような化合物の他、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、(メタ)アクリル化マレイン酸変性ポリブタジエンなどが挙げられる。これらの中でも、5~6員環状基を有する(メタ)アクリレート類又はアルコキシポリアルキレングリコール(メタ)アクリレート類が好ましく、テトラヒドロフルフリル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート又はメトキシジプロピレングリコール(メタ)アクリレートが更に好ましく、更に好ましいものの中でも、アクリレートであるテトラヒドロフルフリルアクリレート(以下、「THF-A」と記載することもある)、メトキシトリエチレングリコールアクリレート(以下、「メトキシ-トリエチレングルコールアクリレート」又は「MTG-A」と記載することもある)、メトキシポリエチレングリコールアクリレート(以下、「130A」と記載することもある)又はメトキシジプロピレングリコールアクリレート(以下、「メトキシジプロピレングルコールアクリレート」又は「DPM-A」と記載することもある)が最も好ましい。 Specific examples of the compound having one α, β-unsaturated carbonyl group in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n. -Alkyl (meth) acrylates such as butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate; Cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol ( (Meta) acrylates having a 5- to 6-membered cyclic group such as meta) acrylate; methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) Alkoxypolyalkylene glycol (meth) acrylates such as acrylates, methoxypolypropylene glycol (meth) acrylates and ethoxypolyethylene glycol (meth) acrylates; 2-hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2-hydroxy Hydroxyl-containing (meth) acrylates such as butyl (meth) acrylate, glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide. , N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, diacetone (meth) acrylamide, N-substituted (meth) acrylamides such as acryloylmorpholin; N, N-dimethylaminoethyl (meth) acrylate , N, N-diethylaminoethyl (meth) acrylate and other amino group-containing (meth) acrylates; and the like. Further, in addition to the above-mentioned compounds, polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, (meth) acrylicized maleic acid-modified polybutadiene and the like can be mentioned. Among these, (meth) acrylates having a 5- to 6-membered cyclic group or alkoxypolyalkylene glycol (meth) acrylates are preferable, and tetrahydrofurfuryl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and methoxypolyethylene glycol are preferable. (Meta) acrylate or methoxydipropylene glycol (meth) acrylate is more preferable, and among the more preferable ones, tetrahydrofurfuryl acrylate (hereinafter, may be referred to as "THF-A") and methoxytriethylene glycol acrylate which are acrylates. (Hereinafter, it may be referred to as "methoxy-triethylene glycol acrylate" or "MTG-A"), methoxypolyethylene glycol acrylate (hereinafter, may be referred to as "130A") or methoxydipropylene glycol acrylate (hereinafter, may be referred to as "130A"). Hereinafter, it may be described as "methoxydipropylene glycol acrylate" or "DPM-A"), which is most preferable.
 前記の反応物を無機粒子の表面に被覆しているとは、反応物が無機粒子の表面に吸着したり、析出したり、反応したりして、反応物若しくは、その反応物の一部分が変形した状態(例えば、アルコキシ基が分解し、アルキル基と水酸基に分離し、水酸基によって無機粒子に吸着した状態(-Si-OH-)、該反応物が加水分解した状態などで無機粒子の表面に存在している状態)で存在していることをいう。反応物は、炭素数3~100(すなわち、3以上100以下)の低分子シリケート化合物及び/又はその加水分解生成物が好ましく、炭素数3~50(すなわち、3以上50以下)がより好ましく、炭素数3~40(すなわち、3以上40以下)が更に好ましい。 When the reaction product is coated on the surface of the inorganic particles, the reaction product or a part of the reaction product is deformed due to the reaction product adsorbing, precipitating, or reacting on the surface of the inorganic particles. (For example, the alkoxy group is decomposed, separated into an alkyl group and a hydroxyl group, and adsorbed on the inorganic particles by the hydroxyl group (-Si-OH-), or the reaction product is hydrolyzed on the surface of the inorganic particles. It means that it exists in the state of existence). The reaction product is preferably a low molecular weight silicate compound having 3 to 100 carbon atoms (that is, 3 or more and 100 or less) and / or a hydrolysis product thereof, and more preferably 3 to 50 carbon atoms (that is, 3 or more and 50 or less). More preferably, the number of carbon atoms is 3 to 40 (that is, 3 or more and 40 or less).
 反応物の被覆は、無機粒子の表面の少なくとも一部に存在している状態であればよく、無機粒子を有機溶媒に充分に分散させるためには、可能な限り緻密に被覆するのが好ましい。被覆量は、無機粒子100質量部に対して、0.1~50質量部(すなわち、0.1質量部以上40質量部以下)が好ましく、0.5~40質量部(すなわち、0.5質量部以上40質量部以下)がより好ましく、1~30質量部(すなわち、1質量部以上30質量部以下)が更に好ましい。 The reaction product may be coated as long as it is present on at least a part of the surface of the inorganic particles, and in order to sufficiently disperse the inorganic particles in the organic solvent, it is preferable to coat the reaction product as densely as possible. The coating amount is preferably 0.1 to 50 parts by mass (that is, 0.1 parts by mass or more and 40 parts by mass or less) with respect to 100 parts by mass of the inorganic particles, and 0.5 to 40 parts by mass (that is, 0.5 parts by mass). It is more preferably 1 to 30 parts by mass (that is, 1 part by mass or more and 30 parts by mass or less).
 次に、前記の表面被覆無機粒子を有機溶媒に分散した分散体について説明する。本願では、前記の表面被覆無機粒子を有機溶媒に分散した分散体を有機溶媒分散体と称するが、該有機溶媒は適宜選択することができ、具体的にはトルエン、キシレン、ソルベントナフサ、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、ノルマルヘプタン、トリデカン、テトラデカン、ペンタデカンなどの炭化水素系溶媒;メタノール、EtOH(エタノール)、ブタノール、IPA(イソプロピルアルコール)、ノルマルプロピルアルコール、2-ブタノール、TBA(ターシャリーブタノール)、ブタンジオール、エチルヘキサノール、ベンジルアルコールなどのアルコール系溶媒;アセトン、MEK(メチルエチルケトン)、メチルイソブチルケトン、DIBK(ジイソブチルケトン)、シクロヘキサノン、DAA(ジアセトンアルコール)などのケトン系溶媒;酢酸エチル、酢酸ブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル、γ―ブチルラクトンなどのエステル系容媒;メチルセロソルブ、セロソルブ、ブチルセロソルブ、ジオキサン、MTBE(メチルターシャリーブチルエーテル)、ブチルカルビトールなどのエーテル系溶媒;エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコールなどのグリコール系溶媒;ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、PGME(1-メトキシ-2-プロパノール、すなわちプロピレングリコールモノメチルエーテル)、3-メトキシ-3-メチル-1-ブタノールなどのグリコールエーテル系溶媒;エチレングリコールモノメチルエーテルアセテート、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどのグリコールエステル系溶媒;DMF(N,N-ジメチルホルムアミド)、DEF(N,N-ジエチルホルムアミド)、DMAc(N,N-ジメチルアセトアミド)、NMP(N-メチルピロリドン)などのアミド系溶媒;などから選ばれる少なくとも1種を用いることができる。これらの溶媒の中でも、アルコール系溶媒又はグリコールエーテル系溶媒を使用するのが好ましく、その中でも、メタノール、エタノール、ブタノール、IPA(イソプロピルアルコール)又はPGME(1-メトキシ-2-プロパノール、すなわちプロピレングリコールモノメチルエーテル)を使用するのが更に好ましい。表面被覆無機粒子の含有量は、有機溶媒の質量100質量部に対して、0.1~95質量部(すなわち、0.1質量部以上95質量部以下)が好ましく、10~90質量部(すなわち、10質量部以上90質量部以下)がより好ましく、15~90質量部(すなわち、15質量部以上90質量部以下)が更に好ましい。 Next, a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent will be described. In the present application, the dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent is referred to as an organic solvent dispersion, and the organic solvent can be appropriately selected, and specifically, toluene, xylene, solvent naphtha, normal hexane. , Isohexane, cyclohexane, methylcyclohexane, normal heptane, tridecane, tetradecane, pentadecane and other hydrocarbon solvents; methanol, EtOH (ethanol), butanol, IPA (isopropyl alcohol), normal propyl alcohol, 2-butanol, TBA (terrific) Alcohol-based solvents such as butanol), butanediol, ethylhexanol, and benzyl alcohol; ketone solvents such as acetone, MEK (methylethylketone), methylisobutylketone, DIBK (diisobutylketone), cyclohexanone, DAA (diacetone alcohol); ethyl acetate , Butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate, γ-butyl lactone and other ester-based media; methyl cellosolve, cellosolve, butyl cellosolve, dioxane, Ether solvents such as MTBE (methyl tertiary butyl ether) and butyl carbitol; glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol; diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, PGME (1-methoxy- 2-Propanol, ie propylene glycol monomethyl ether), glycol ether solvents such as 3-methoxy-3-methyl-1-butanol; ethylene glycol monomethyl ether acetate, PGMEA (propylene glycol monomethyl ether acetate), diethylene glycol monobutyl ether acetate, diethylene glycol Glycolester solvents such as monoethyl ether acetate; such as DMF (N, N-dimethylformamide), DEF (N, N-diethylformamide), DMAc (N, N-dimethylacetamide), NMP (N-methylpyrrolidone), etc. At least one selected from amide-based solvents; etc. can be used. Among these solvents, it is preferable to use an alcohol solvent or a glycol ether solvent, among which methanol, ethanol, butanol, IPA (isopropyl alcohol) or PGME (1-methoxy-2-propanol, that is, propylene glycol monomethyl). It is more preferable to use ether). The content of the surface-coated inorganic particles is preferably 0.1 to 95 parts by mass (that is, 0.1 parts by mass or more and 95 parts by mass or less) with respect to 100 parts by mass of the organic solvent, and is preferably 10 to 90 parts by mass (that is, 0.1 parts by mass or more and 95 parts by mass or less). That is, 10 parts by mass or more and 90 parts by mass or less) is more preferable, and 15 to 90 parts by mass (that is, 15 parts by mass or more and 90 parts by mass or less) is further preferable.
 次に、前記の表面被覆無機粒子と、有機溶媒と、樹脂とを含む塗料組成物、又は、前記の有機溶媒分散体と、樹脂とを含む塗料組成物について説明する。有機溶媒としては前記のものを用いることができる。樹脂としては、どのような樹脂でも用いることができ、例えば、低極性非水溶媒に対する溶解型、エマルジョン型、コロイダルディスパージョン型などを制限なく用いることができる。また、樹脂種としては、ポリエステル樹脂、ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステルなどの各種変性ポリエステル樹脂、ポリエーテルウレタン樹脂、ポリカーボネートウレタン樹脂、塩化ビニル-酢酸ビニル共重合体、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリアミドイミド、ポリイミド、エチルセルロース、ヒドロキシエチルセルロース、ニトロセルロース、セルロース-アセテート-ブチレート(CAB)、セルロース-アセテート-プロピオネート(CAP)などの変性セルロース類;ポリエチレングリコール;ポリエチレンオキシドなどが挙げられる。樹脂の配合量は、表面被覆無機粒子100重量部に対し0.5~100質量部程度の範囲が好ましく、より好ましい範囲は1~50質量部程度であり、2~25質量部程度であれば更に好ましい。 Next, a coating composition containing the surface-coated inorganic particles, an organic solvent, and a resin, or a coating composition containing the organic solvent dispersion and a resin will be described. As the organic solvent, the above-mentioned one can be used. Any resin can be used as the resin, and for example, a soluble type in a low-polarity non-aqueous solvent, an emulsion type, a colloidal dispersion type, and the like can be used without limitation. The resin types include polyester resin, urethane-modified polyester resin, epoxy-modified polyester resin, various modified polyester resins such as acrylic-modified polyester, polyether urethane resin, polycarbonate urethane resin, vinyl chloride-vinyl acetate copolymer, and epoxy resin. , Phenolic resin, acrylic resin, polyamideimide, polyimide, ethyl cellulose, hydroxyethyl cellulose, nitrocellulose, cellulose-acetate-butyrate (CAB), cellulose-acetate-propionate (CAP) and other modified celluloses; polyethylene glycol; polyethylene oxide, etc. Can be mentioned. The blending amount of the resin is preferably in the range of about 0.5 to 100 parts by mass with respect to 100 parts by weight of the surface-coated inorganic particles, more preferably in the range of about 1 to 50 parts by mass, and in the case of about 2 to 25 parts by mass. More preferred.
 樹脂として具体的には、例えばアロニックス(登録商標)シリーズのB-309、B-310、M-430、M-406、M-460、M-1100(東亞合成社製);ライトアクリレート(登録商標)シリーズのMTG-A、DPM-A、THF-A、IB-XA、HOA-HH(N)、1,6HX-A、1,9ND-A、PE-3A、PE-4A(共栄社化学社製);エポライト(商品名)シリーズの40E、4000、3002(N)(共栄社化学社製);NKエステル(登録商標)シリーズのA-TMM-3、A-9550、A-DPH(新中村化学社製);KAYARAD(登録商標)シリーズのDPHA、DPEA-12、DPCA-60(日本化薬社製)などが挙げられる。 Specifically, as the resin, for example, B-309, B-310, M-430, M-406, M-460, M-1100 (manufactured by Toa Synthetic Co., Ltd.) of the Aronix (registered trademark) series; Light acrylate (registered trademark). ) Series MTG-A, DPM-A, THF-A, IB-XA, HOA-HH (N), 1,6HX-A, 1,9ND-A, PE-3A, PE-4A (manufactured by Kyoeisha Chemical Co., Ltd.) ); Epolite (trade name) series 40E, 4000, 3002 (N) (manufactured by Kyoeisha Chemical Co., Ltd.); NK Ester (registered trademark) series A-TMM-3, A-9550, A-DPH (Shin-Nakamura Chemical Co., Ltd.) KAYARAD (registered trademark) series DPHA, DPEA-12, DPCA-60 (manufactured by Nippon Kayaku Co., Ltd.) and the like.
 前記の有機溶媒分散体又は塗料組成物は、基材上に塗布又はスプレーして表面被覆無機粒子の層とし、必要に応じて硬化することができる。表面被覆無機粒子として酸化チタン微粒子を用いた場合、硬度が高く可視光透過性の高い酸化チタン層を形成することができ、ハードコート、高屈折率層、紫外線遮蔽層として用いることができる。基材は特に制限はなく、ガラス、プラスチック、セラミック、金属などを用いることができる。膜厚などは適宜設定することができる。 The above-mentioned organic solvent dispersion or coating composition can be applied or sprayed on a substrate to form a layer of surface-coated inorganic particles, which can be cured if necessary. When titanium oxide fine particles are used as the surface-coated inorganic particles, a titanium oxide layer having high hardness and high visible light transmission can be formed, and can be used as a hard coat, a high refractive index layer, and an ultraviolet shielding layer. The base material is not particularly limited, and glass, plastic, ceramic, metal and the like can be used. The film thickness and the like can be set as appropriate.
 表面被覆無機粒子は、無機粒子の存在下、好ましくは無機粒子を含む有機溶媒又は水性溶媒の存在下において、予め調製したアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物との反応物を混合して、その反応物を無機粒子の表面に被覆させることができる。この混合は、室温で混合し撹拌するだけでもよいが、熱をかけると被覆はより早く進行する。室温から150℃の範囲で10分から20時間で行うのが好ましい。分散させながら混合すると被覆は更に進行するので好ましい。分散させながら行う際には、公知の分散機を使用することができる。具体的には、サンドミル、ホモジナイザー、ボールミル、ペイントシェーカー、超音波分散機などが挙げられる。被覆は、反応物が有するアルコキシ基を加水分解することによっても進行するが、この加水分解反応に一定量の水分が必要であり、シリケートの加水分解性基に対して0.5~1.5当量(すなわち、0.5当量以上1.5当量以下)添加する。また、加水分解反応を促進させるために、触媒として酸やアルカリを添加してもよい。このようにして、表面被覆無機粒子を製造できるとともに、表面被覆無機粒子を有機溶媒に分散した分散体も製造することができる。別の方法として、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物を予め、無溶媒系で混合して部分的な反応を起こさせてから、無機粒子とともに、有機溶媒中に添加することによっても、表面被覆無機粒子を有機溶媒に分散した分散体を製造することができる。 The surface-coated inorganic particles are intramolecularly composed of a silicate compound having an amino group and / or a hydrolysis product thereof prepared in advance in the presence of the inorganic particles, preferably in the presence of an organic solvent containing the inorganic particles or an aqueous solvent. A reaction product with a compound having one α, β-unsaturated carbonyl group can be mixed, and the reaction product can be coated on the surface of the inorganic particles. This mixing may be as simple as mixing and stirring at room temperature, but with heat the coating proceeds faster. It is preferably carried out in the range of room temperature to 150 ° C. for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further. A known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. Coating also proceeds by hydrolyzing the alkoxy groups of the reactants, but this hydrolysis reaction requires a certain amount of water and is 0.5-1.5 with respect to the hydrolyzable groups of the silicate. Equivalent (ie, 0.5 equivalents or more and 1.5 equivalents or less) is added. Further, in order to promote the hydrolysis reaction, an acid or an alkali may be added as a catalyst. In this way, the surface-coated inorganic particles can be produced, and a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent can also be produced. Alternatively, the silicate compound having an amino group and / or its hydrolysis product and the compound having an α, β-unsaturated carbonyl group are mixed in advance in a solvent-free system to cause a partial reaction. Then, by adding the surface-coated inorganic particles to the organic solvent together with the inorganic particles, a dispersion in which the surface-coated inorganic particles are dispersed in the organic solvent can be produced.
 また、別の方法として、表面被覆無機粒子は、無機粒子の存在下、好ましくは無機粒子を含む有機溶媒又は水性溶媒において、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物とを混合し反応させて、その反応物を無機粒子の表面に被覆させることができる。この混合は、前記と同じように室温で混合し撹拌するだけでもよいが、熱をかけると反応はより早く進行する。室温から150℃の範囲で10分から20時間で行うのが好ましい。分散させながら混合すると被覆は更に進行するので好ましい。分散させながら行う際には、公知の分散機を使用することができる。具体的には、サンドミル、ホモジナイザー、ボールミル、ペイントシェーカー、超音波分散機などが挙げられる。被覆は、反応物が有するアルコキシ基を加水分解することによっても進行するが、この加水分解反応に一定量の水分が必要であり、シリケートの加水分解性基に対して0.5~1.5当量(すなわち、0.5当量以上1.5当量以下)添加する。また、加水分解反応を促進させるために、触媒として酸やアルカリを添加してもよい。このようにして、表面被覆無機粒子を製造できるとともに、表面被覆無機粒子を有機溶媒に分散した分散体も製造することができる。 Alternatively, the surface-coated inorganic particles are intramolecularly composed of a silicate compound having an amino group and / or a hydrolysis product thereof in the presence of the inorganic particles, preferably in an organic solvent or an aqueous solvent containing the inorganic particles. Can be mixed with a compound having one α, β-unsaturated carbonyl group and reacted to coat the surface of the inorganic particles with the reaction product. This mixing may be carried out by simply mixing and stirring at room temperature in the same manner as described above, but the reaction proceeds faster when heat is applied. It is preferably carried out in the range of room temperature to 150 ° C. for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further. A known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. Coating also proceeds by hydrolyzing the alkoxy groups of the reactants, but this hydrolysis reaction requires a certain amount of water and is 0.5-1.5 with respect to the hydrolyzable groups of the silicate. Equivalent (ie, 0.5 equivalents or more and 1.5 equivalents or less) is added. Further, in order to promote the hydrolysis reaction, an acid or an alkali may be added as a catalyst. In this way, the surface-coated inorganic particles can be produced, and a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent can also be produced.
 本発明では、上記の方法でも製造できるが、より高度の表面被覆無機粒子を製造するためには、次の第一の工程と第二の工程を備えるのが好ましい。
(第一の工程)
 水性溶媒中で無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物とを混合して、無機粒子の表面にアミノ基を有するシリケート化合物及び/又はその加水分解生成物を被覆する工程である。
(第二の工程)
 次いで、前記の水性溶媒を有機溶媒に置換した後、分子内に一つのα,β-不飽和カルボニル基を有する化合物を混合して、前記の無機粒子の表面に被覆したアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を、無機粒子の表面に被覆する工程である。
In the present invention, it can be produced by the above method, but in order to produce more advanced surface-coated inorganic particles, it is preferable to include the following first step and second step.
(First step)
In an aqueous solvent, the inorganic particles are mixed with the silicate compound having an amino group and / or the hydrolysis product thereof, and the surface of the inorganic particles is coated with the silicate compound having an amino group and / or the hydrolysis product thereof. It is a process.
(Second step)
Next, after replacing the aqueous solvent with an organic solvent, a compound having one α, β-unsaturated carbonyl group in the molecule is mixed, and a silicate compound having an amino group coated on the surface of the inorganic particles. And / or a step of coating the surface of the inorganic particles with a reaction product of the hydrolysis product thereof and the above-mentioned compound having an α, β-unsaturated carbonyl group.
 まず、第一の工程において、水性溶媒中で無機粒子とアミノ基を有するシリケート化合物及び/又はその加水分解生成物とを混合して、前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物を無機粒子の表面に吸着したり、析出したり、反応したりして無機粒子の表面に被覆することができる。必要に応じてpHを調整したり、シリケート化合物を加水分解したりしてもよい。水性溶媒は、水又は水に溶解する有機溶媒を含んでいてもよい。水性溶媒中で、無機粒子とアミノ基を有するシリケート化合物及び/又はその加水分解生成物とを混合する際に、通常の懸濁機又は分散機を用いて無機粒子を懸濁又は分散させた分散液を調製するのが好ましい。無機粒子を水性溶媒に通常の懸濁機又は分散機を用いて予め懸濁又は分散させてもよく、その水性分散液にアミノ基を有するシリケート化合物及び/又はその加水分解生成物を混合することもできる。水性溶媒中の無機粒子の含有量は適宜設定することができる。この混合は、前記と同じように室温で混合し撹拌するだけでもよいが、熱をかけると反応はより早く進行する。室温~加熱還流温度の範囲で10分~20時間で行うのが好ましい。分散させながら混合すると被覆は更に進行するので好ましい。分散させながら行う際には、公知の分散機を使用することができる。具体的には、サンドミル、ホモジナイザー、ボールミル、ペイントシェーカー、超音波分散機などが挙げられる。被覆は、反応物が有するアルコキシ基を加水分解することによっても進行するが、この加水分解反応に一定量の水分が必要であり、シリケートの加水分解性基に対して0.5~1.5当量(すなわち、0.5当量以上1.5当量以下)添加する。また、加水分解反応を促進させるために、触媒として酸やアルカリを添加してもよい。なお、懸濁液も分散液も、微粒子が液体中で分散している状態を表すが、一般には、懸濁液の方が分散液よりも微粒子が沈降し易いと理解されている。しかし、本明細書中では便宜上、懸濁液と分散液を特に区別せず、懸濁液も分散液と呼ぶ。 First, in the first step, the inorganic particles and the silicate compound having an amino group and / or the hydrolysis product thereof are mixed in an aqueous solvent to produce the silicate compound having an amino group and / or the hydrolysis product thereof. A substance can be adsorbed on the surface of the inorganic particles, precipitated, or reacted to coat the surface of the inorganic particles. If necessary, the pH may be adjusted or the silicate compound may be hydrolyzed. The aqueous solvent may contain water or an organic solvent that dissolves in water. When the inorganic particles and the silicate compound having an amino group and / or its hydrolysis product are mixed in an aqueous solvent, the inorganic particles are suspended or dispersed using a normal suspender or disperser. It is preferable to prepare a liquid. Inorganic particles may be previously suspended or dispersed in an aqueous solvent using a normal suspender or disperser, and the aqueous dispersion is mixed with a silicate compound having an amino group and / or a hydrolysis product thereof. You can also. The content of the inorganic particles in the aqueous solvent can be appropriately set. This mixing may be carried out by simply mixing and stirring at room temperature in the same manner as described above, but the reaction proceeds faster when heat is applied. It is preferably carried out in the range of room temperature to heating / reflux temperature for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further. A known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. Coating also proceeds by hydrolyzing the alkoxy groups of the reactants, but this hydrolysis reaction requires a certain amount of water and is 0.5-1.5 with respect to the hydrolyzable groups of the silicate. Equivalent (ie, 0.5 equivalents or more and 1.5 equivalents or less) is added. Further, in order to promote the hydrolysis reaction, an acid or an alkali may be added as a catalyst. Both the suspension and the dispersion liquid represent a state in which the fine particles are dispersed in the liquid, but it is generally understood that the suspension is easier for the fine particles to settle than the dispersion liquid. However, in the present specification, for convenience, the suspension and the dispersion liquid are not particularly distinguished, and the suspension is also referred to as a dispersion liquid.
 次に、第二の工程において、前記の水性溶媒を有機溶媒に置換し、前記の無機粒子を有機溶媒に懸濁又は分散させる。置換方法は、遠心分離、デカンテーション、フラッシングなどの従来公知の方法で行うことができる。好ましい方法としては、アミノ基を有するシリケート化合物及び/又はその加水分解生成物を被覆した無機粒子を含む前記の水性溶媒に界面活性剤と有機溶媒を混合し、無機粒子を沈殿させ、必要に応じて固液分離した後、無機粒子を有機溶媒に移行させる。界面活性剤としては、陰イオン界面活性剤(アニオン界面活性剤)が好ましく、水中で解離したとき陰イオンとなり、第一の工程で被覆したアミノ基を有するシリケート化合物及び/又はその加水分解生成物を中和するなどして、無機粒子を凝集沈殿させる。界面活性剤としては、モノアルキル硫酸塩(ROSO )、アルキルポリオキシエチレン硫酸塩(RO(CHCHO)SO )、アルキルベンゼンスルホン酸塩(RCHCHCSO )、モノアルキルリン酸塩(ROPO(OH)O)などが挙げられるが、ジ(2-エチルヘキシル)スルホコハク酸ナトリウムなどのジアルキルスルホサクシネートが好ましい。上記のRは炭素数12~15(すなわち、12以上15以下)のアルキル鎖を表し、mは1~150(すなわち、1以上150以下)の整数であり、Mはアルカリ金属又はアルカリ土類金属から選ばれる少なくとも1種である。固液分離は、従来公知の方法を用いることができ、遠心分離、ろ過、限外ろ過などの方法を用いることができ、余剰のシリケート化合物、界面活性剤などを除去することができ、必要に応じて洗浄してもよい。更に、沈殿した無機粒子を固液分離により回収した後、80~200℃(すなわち、80℃以上200℃以下)の温度で加熱処理(乾燥)すると、アミノ基を有するシリケート化合物及び/又はその加水分解生成物が無機粒子の表面により強固に被覆されるためより好ましい。より好ましい温度は100~160℃(すなわち、100℃以上160℃以下)である。次いで、固液分離した無機粒子又は加熱処理した無機粒子は、懸濁機又は分散機を用いて、有機溶媒に懸濁又は分散させて分散体とする。無機粒子の含有量は適宜設定することができる。有機溶媒としては前記のものを適宜用いることができる。有機溶媒中には水は含有していない状態が好ましく、水の含有量は1質量%以下とするのがよい。 Next, in the second step, the aqueous solvent is replaced with an organic solvent, and the inorganic particles are suspended or dispersed in the organic solvent. The replacement method can be performed by a conventionally known method such as centrifugation, decantation, or flushing. As a preferred method, the surfactant and the organic solvent are mixed with the above-mentioned aqueous solvent containing the inorganic particles coated with the silicate compound having an amino group and / or the hydrolysis product thereof, and the inorganic particles are precipitated, if necessary. After solid-liquid separation, the inorganic particles are transferred to an organic solvent. As the surfactant, an anionic surfactant (anionic surfactant) is preferable, and when dissociated in water, it becomes an anion, and a silicate compound having an amino group coated in the first step and / or a hydrolysis product thereof. The inorganic particles are coagulated and precipitated by neutralizing. Examples of the surfactant include monoalkyl sulfate (ROSO 3 - M + ), alkylpolyoxyethylene sulfate (RO (CH 2 CH 2 O) m SO 3 - M + ), and alkylbenzene sulfonate (RCH 2 CHC 6). Examples thereof include H 4 SO 3 - M + ) and monoalkyl phosphate (ROPO (OH) O - M + ), but dialkyl sulfosuccinates such as di (2-ethylhexyl) sodium sulfosuccinate are preferable. The above R represents an alkyl chain having 12 to 15 carbon atoms (that is, 12 or more and 15 or less), m is an integer of 1 to 150 (that is, 1 or more and 150 or less), and M is an alkali metal or an alkaline earth metal. At least one selected from. For the solid-liquid separation, a conventionally known method can be used, a method such as centrifugation, filtration, or ultrafiltration can be used, and excess silicate compounds, surfactants, etc. can be removed, which is necessary. It may be washed accordingly. Further, after recovering the precipitated inorganic particles by solid-liquid separation, heat treatment (drying) at a temperature of 80 to 200 ° C. (that is, 80 ° C. or higher and 200 ° C. or lower) causes a silicate compound having an amino group and / or hydrolysis thereof. It is more preferable because the decomposition product is more firmly coated on the surface of the inorganic particles. A more preferable temperature is 100 to 160 ° C. (that is, 100 ° C. or higher and 160 ° C. or lower). Next, the solid-liquid separated inorganic particles or the heat-treated inorganic particles are suspended or dispersed in an organic solvent using a suspender or a disperser to obtain a dispersion. The content of the inorganic particles can be set as appropriate. As the organic solvent, the above-mentioned solvent can be appropriately used. The organic solvent preferably does not contain water, and the water content is preferably 1% by mass or less.
 次に、前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物を被覆した無機粒子を有機溶媒に分散させた後、分子内に一つのα,β-不飽和カルボニル基を有する化合物を混合し反応させて、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を、無機粒子の表面に被覆する。 Next, after dispersing the above-mentioned silicate compound having an amino group and / or inorganic particles coated with a hydrolysis product thereof in an organic solvent, a compound having one α, β-unsaturated carbonyl group in the molecule is added. The surface of the inorganic particles is coated with a reaction product of the silicate compound having an amino group and / or its hydrolysis product and the compound having an α, β-unsaturated carbonyl group described above by mixing and reacting.
 前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物を被覆した無機粒子の有機溶媒分散体に、分子内に一つのα,β-不飽和カルボニル基を有する化合物を混合すると、この化合物が無機粒子の表面に被覆したアミノ基を有するシリケート化合物及び/又はその加水分解生成物と反応して、生成した反応物が無機粒子の表面に被覆される。無機粒子の表面に被覆したアミノ基を有するシリケート化合物及び/又はその加水分解生成物とα,β-不飽和カルボニル化合物とが結合して、無機粒子の表面に炭素数の長いアルキル鎖を有するシリケート化合物が合成できる。反応させるα,β-不飽和カルボニル基を有する化合物としては、分子内に一つのα,β-不飽和カルボニル基を有する化合物であって、分子内に更にエーテル結合を有する化合物であることが好ましく、エーテル結合を有する化合物として、重合数n=2~10(すなわち、2以上10以下)のエチレングリコール鎖、重合数n=2~10(すなわち、2以上10以下)のプロピレングリコール鎖又は5~6員環状基を有する化合物がより好ましく、5~6員環状基(すなわち、5又は6員環状基)を有する(メタ)アクリレート類又はアルコキシポリアルキレングリコール(メタ)アクリレート類が更に好ましい。 When a compound having one α, β-unsaturated carbonyl group in the molecule is mixed with the organic solvent dispersion of inorganic particles coated with the silicate compound having an amino group and / or its hydrolysis product, this compound is obtained. Reacts with a silicate compound having an amino group and / or a hydrolysis product thereof, which is coated on the surface of the inorganic particles, and the produced reactant is coated on the surface of the inorganic particles. A silicate having an amino group coated on the surface of the inorganic particle and / or a hydrolysis product thereof is bonded to an α, β-unsaturated carbonyl compound to form a silicate having an alkyl chain having a long carbon number on the surface of the inorganic particle. Compounds can be synthesized. The compound having an α, β-unsaturated carbonyl group to be reacted is preferably a compound having one α, β-unsaturated carbonyl group in the molecule and having an ether bond in the molecule. As a compound having an ether bond, an ethylene glycol chain having a polymerization number of n = 2 to 10 (that is, 2 or more and 10 or less), a propylene glycol chain having a polymerization number of n = 2 to 10 (that is, 2 or more and 10 or less) or 5 to Compounds having a 6-membered cyclic group are more preferable, and (meth) acrylates or alkoxypolyalkylene glycol (meth) acrylates having a 5- to 6-membered cyclic group (that is, a 5- or 6-membered cyclic group) are further preferable.
 α,β-不飽和カルボニル基を有する化合物の混合は、前記と同じように室温で混合し撹拌するだけでもよいが、熱をかけると反応はより早く進行する。室温から加熱還流温度の範囲で10分から20時間で行うのが好ましい。分散させながら混合すると被覆は更に進行するので好ましい。分散させながら行う際には、公知の分散機を使用することができる。具体的には、サンドミル、ホモジナイザー、ボールミル、ペイントシェーカー、超音波分散機などが挙げられる。このようにして、表面被覆無機粒子を製造できるとともに、表面被覆無機粒子を有機溶媒に分散した分散体も製造することができる。前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10とするのが好ましく、1≦a/b≦10とするのがより好ましく、更に好ましくは1≦a/b≦8であり、最も好ましくは1≦a/b≦6である。 The compound having an α, β-unsaturated carbonyl group may be mixed by simply mixing and stirring at room temperature in the same manner as described above, but the reaction proceeds faster when heat is applied. It is preferably carried out in the range of room temperature to heating / reflux temperature for 10 minutes to 20 hours. Mixing while dispersing is preferable because the coating proceeds further. A known disperser can be used when the dispersal is performed. Specific examples include a sand mill, a homogenizer, a ball mill, a paint shaker, and an ultrasonic disperser. In this way, the surface-coated inorganic particles can be produced, and a dispersion in which the surface-coated inorganic particles are dispersed in an organic solvent can also be produced. When the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having an α, β-unsaturated carbonyl group is b mol, 0.8 ≦ a / b. It is preferably ≦ 10, more preferably 1 ≦ a / b ≦ 10, more preferably 1 ≦ a / b ≦ 8, and most preferably 1 ≦ a / b ≦ 6.
 本発明では、より高度の有機溶媒分散体を製造するためには、次の第三の工程と第四の工程を備えるのが好ましい。
(第三の工程)
 第二の工程で得た有機溶媒分散体に貧溶媒を添加し固液分離して、表面被覆無機粒子を回収する工程である。
(第四の工程)
 次いで、前記の回収した表面被覆無機粒子を有機溶媒に分散させる工程である。
In the present invention, in order to produce a more advanced organic solvent dispersion, it is preferable to include the following third and fourth steps.
(Third step)
This is a step of adding a poor solvent to the organic solvent dispersion obtained in the second step, separating the solid and liquid, and recovering the surface-coated inorganic particles.
(Fourth step)
Next, it is a step of dispersing the recovered surface-coated inorganic particles in an organic solvent.
 第三の工程において、前記の第二の工程で製造した表面被覆無機粒子が懸濁した有機溶媒に貧溶媒を添加し固液分離し、表面被覆無機粒子を回収する。固液分離は、従来公知の方法を用いることができ、遠心分離、ろ過、限外ろ過などの方法を用いて、表面被覆無機粒子を回収する。表面被覆無機粒子が分散した有機溶媒に、貧溶媒を混合すると表面被覆無機粒子が凝集し沈殿するため、固液分離が容易になる。貧溶媒としては、適宜選択することができ、アルコールなどの極性溶媒やヘキサン、ベンゼン、石油エーテルなどの無極性溶媒を用いてもよい。貧溶媒の添加量は、表面被覆無機粒子が凝集する程度であれば適宜設定することができる。凝集した表面被覆無機粒子は、固液分離し、有機溶媒、貧溶媒と分離することができ、余剰の化合物などを除去することができ、必要に応じて洗浄し、乾燥してもよい。乾燥温度は適宜設定することができ、80~200℃(すなわち、80℃以上200℃以下)の温度で行うのが好ましく、より好ましい温度は100~160℃(すなわち、100℃以上160℃以下)である。 In the third step, a poor solvent is added to the organic solvent in which the surface-coated inorganic particles produced in the second step are suspended, and solid-liquid separation is performed to recover the surface-coated inorganic particles. For the solid-liquid separation, a conventionally known method can be used, and the surface-coated inorganic particles are recovered by a method such as centrifugation, filtration, or ultrafiltration. When a poor solvent is mixed with the organic solvent in which the surface-coated inorganic particles are dispersed, the surface-coated inorganic particles aggregate and precipitate, so that solid-liquid separation becomes easy. The poor solvent can be appropriately selected, and a polar solvent such as alcohol or a non-polar solvent such as hexane, benzene or petroleum ether may be used. The amount of the poor solvent added can be appropriately set as long as the surface-coated inorganic particles aggregate. The agglomerated surface-coated inorganic particles can be solid-liquid separated, separated from an organic solvent and a poor solvent, excess compounds and the like can be removed, and may be washed and dried as necessary. The drying temperature can be appropriately set, preferably 80 to 200 ° C. (that is, 80 ° C. or higher and 200 ° C. or lower), and a more preferable temperature is 100 to 160 ° C. (that is, 100 ° C. or higher and 160 ° C. or lower). Is.
 第四の工程において、回収した表面被覆無機粒子を有機溶媒と混合して、有機溶媒に分散させる。前記の第三の工程の後、固液分離した表面被覆無機粒子(固液分離した後乾燥した無機粒子を含む)を有機溶媒に懸濁又は分散させて、有機溶媒分散体を製造することができる。有機溶媒は前記のものを用いることができ、また、懸濁又は分散させる手段は公知の懸濁機又は分散機を用いることができる。 In the fourth step, the recovered surface-coated inorganic particles are mixed with an organic solvent and dispersed in the organic solvent. After the third step, the solid-liquid separated surface-coated inorganic particles (including the solid-liquid separated and then dried inorganic particles) can be suspended or dispersed in an organic solvent to produce an organic solvent dispersion. can. The above-mentioned organic solvent can be used, and a known suspender or disperser can be used as the means for suspending or dispersing.
 前記のようにして製造した表面被覆無機粒子と有機溶媒を混合すると、有機溶媒分散体を製造することができる。また、表面被覆無機粒子と、前記の有機溶媒と、樹脂とを混合したり、前記の有機溶媒分散体に樹脂を混合したりして、塗料組成物を製造することができる。混合には、公知の懸濁機又は分散機を用いることができる。有機溶媒分散体や塗料組成物には、分散剤等の添加剤を適宜添加してもよい。このようにして製造した表面被覆無機粒子の有機溶媒分散体又は塗料組成物を基材に塗布又はスプレーして、表面被覆無機粒子層を製造することができる。基材は特に制限はなく、ガラス、プラスチック、セラミック、金属などを用いることができる。基材上に表面被覆無機粒子の層を形成し、必要に応じて硬化することができる。硬化は、適宜従来の方法で行うことができ、50~200℃(すなわち、50℃以上200℃以下)の温度で乾燥するのが好ましく、80~150℃(すなわち、80℃以上150℃以下)の温度での乾燥がより好ましい。硬化時間は、適宜設定することができる。また、膜厚なども適宜設定することができる。 An organic solvent dispersion can be produced by mixing the surface-coated inorganic particles produced as described above with an organic solvent. Further, the coating composition can be produced by mixing the surface-coated inorganic particles, the organic solvent, and the resin, or by mixing the resin with the organic solvent dispersion. A known suspender or disperser can be used for mixing. Additives such as a dispersant may be appropriately added to the organic solvent dispersion and the coating composition. A surface-coated inorganic particle layer can be produced by applying or spraying an organic solvent dispersion or a coating composition of surface-coated inorganic particles thus produced onto a substrate. The base material is not particularly limited, and glass, plastic, ceramic, metal and the like can be used. A layer of surface-coated inorganic particles can be formed on the substrate and cured if necessary. Curing can be appropriately carried out by a conventional method, preferably drying at a temperature of 50 to 200 ° C. (that is, 50 ° C. or higher and 200 ° C. or lower), and 80 to 150 ° C. (that is, 80 ° C. or higher and 150 ° C. or lower). Drying at this temperature is more preferred. The curing time can be set as appropriate. In addition, the film thickness and the like can be set as appropriate.
 以下に実施例と比較例を示すが、本発明はこれらの実施例に限定されるものではない。 Examples and comparative examples are shown below, but the present invention is not limited to these examples.
〔実施例1〕
 3-アミノプロピルトリメトキシシラン(信越化学工業社製:KBM-903、以下「KBM-903」と記載)0.48g、イオン交換水29.76g、酢酸0.16gを混合して得た水溶液に、酸化チタン1.6g(石原産業社製:TTO-51A)、0.05mmジルコニアビーズ98gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い上澄みを回収し、3-アミノプロピルトリメトキシシランが処理された酸化チタン水性分散液(TiO濃度5%)を得た。
[Example 1]
In an aqueous solution obtained by mixing 0.48 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-903, hereinafter referred to as "KBM-903"), 29.76 g of ion-exchanged water, and 0.16 g of acetic acid. , 1.6 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 98 g of 0.05 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, the supernatant was recovered by centrifugation to obtain a titanium oxide aqueous dispersion (TiO 2 concentration 5%) treated with 3-aminopropyltrimethoxysilane.
 次に、得られた水性分散液80gにトルエン40gに溶解させたジオクチルソジウムスルホサクシネート(シグマアルドリッチジャパン社製:以下「DSS」と記載)3.76gを入れ、一晩放置後、溶媒置換した。ディーンスターク装置を取り付け、オイルバス温度140℃で4時間脱水加熱し、3-アミノプロピルトリメトキシシランが処理された酸化チタンのトルエン分散体(TiO濃度10%に調整)を得た。 Next, 3.76 g of dioctylsodium sulfosuccinate (manufactured by Sigma-Aldrich Japan Co., Ltd .: hereinafter referred to as "DSS") dissolved in 40 g of toluene was added to 80 g of the obtained aqueous dispersion, left overnight, and then subjected to solvent replacement. bottom. A Dean-Stark apparatus was attached, and dehydration heating was performed at an oil bath temperature of 140 ° C. for 4 hours to obtain a toluene dispersion of titanium oxide treated with 3-aminopropyltrimethoxysilane (adjusted to a TiO 2 concentration of 10%).
 次に、得られたトルエン分散体10gに1-メトキシ-2-プロパノール、すなわちプロピレングリコールモノメチルエーテル(以下「PGME」と記載)を10g加えた後、メトキシ-トリエチレングルコールアクリレート0.183g(共栄社化学社製:ライトアクリレート(商標登録)MTG-A、以下「MTG-A」と記載)とトリエチルアミン(富士フィルム和光純薬社製)0.339gを入れ、65℃で24時間撹拌した。撹拌終了後、石油エーテル(貧溶媒)を40g入れ、遠心分離により沈殿物を回収した。その沈殿物にPGMEを加え分散させてPGME分散体1を得た。 Next, 10 g of 1-methoxy-2-propanol, that is, propylene glycol monomethyl ether (hereinafter referred to as "PGME") was added to 10 g of the obtained toluene dispersion, and then 0.183 g of methoxy-triethylene glycol acrylate (Kyoeisha Co., Ltd.) Chemical Co., Ltd .: Light acrylate (registered trademark) MTG-A (hereinafter referred to as "MTG-A") and 0.339 g of triethylamine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added, and the mixture was stirred at 65 ° C. for 24 hours. After completion of stirring, 40 g of petroleum ether (poor solvent) was added, and the precipitate was recovered by centrifugation. PGME was added to the precipitate and dispersed to obtain PGME dispersion 1.
〔実施例2〕
 実施例1において、MTG-Aに代えてメトキシ-ポリエチレングリコールアクリレート(共栄社化学社製:ライトアクリレート(商標登録)130A、以下「130A」と記載)0.183gを用いたこと以外は実施例1と同様の操作を行い、PGME分散体2を得た。
[Example 2]
Example 1 and Example 1 except that 0.183 g of methoxy-polyethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) 130A, hereinafter referred to as "130A") was used instead of MTG-A. The same operation was carried out to obtain PGME dispersion 2.
〔実施例3〕
 実施例1において、MTG-Aの添加量を0.061gとし、PGMEの代わりにN,N-ジメチルアセトアミド(以下「DMAc」と記載)を用いたこと以外は実施例1と同様の操作を行い、DMAc分散体3を得た。
[Example 3]
In Example 1, the same operation as in Example 1 was performed except that the amount of MTG-A added was 0.061 g and N, N-dimethylacetamide (hereinafter referred to as “DMAc”) was used instead of PGME. , DMAc dispersion 3 was obtained.
〔実施例4〕
 KBM-903を0.225g、MTG-Aを0.275g、PGMEを37.5g混合して得た溶液に、酸化チタン2g(石原産業社製:TTO-51A)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体4を得た。
[Example 4]
In a solution obtained by mixing 0.225 g of KBM-903, 0.275 g of MTG-A, and 37.5 g of PGME, 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads Was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 4.
〔実施例5〕
 KBM-903を0.235g、メトキシジプロピレングルコールアクリレート(共栄社化学社製:ライトアクリレート(商標登録)DPM-A)を0.265g、PGMEを37.5g混合して得た溶液に、酸化チタン2g(石原産業社製:TTO-51A)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体5を得た。
[Example 5]
Titanium oxide was mixed with 0.235 g of KBM-903, 0.265 g of methoxydipropylene glucol acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) DPM-A), and 37.5 g of PGME. 2 g (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads were added and dispersed by a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 5.
〔実施例6〕
 KBM-903を0.135g、130Aを0.365g、PGMEを37.5g混合して得た溶液に酸化チタン2g(石原産業社製:TTO-51A)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体6を得た。
[Example 6]
2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads were added to a solution obtained by mixing 0.135 g of KBM-903, 0.365 g of 130A, and 37.5 g of PGME. Dispersion treatment was performed with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 6.
〔実施例7〕
 KBM-903を0.213g、130Aを0.287g、PGMEを37.5g混合して得た溶液に酸化チタン2g(石原産業社製:TTO-51A)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体7を得た。
[Example 7]
2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads were added to a solution obtained by mixing 0.213 g of KBM-903, 0.287 g of 130A, and 37.5 g of PGME. Dispersion treatment was performed with a bead mill. After removing the beads, centrifugation was performed to collect the supernatant to obtain PGME dispersion 7.
〔実施例8〕
 KBM-903を0.427g、MTG-Aを0.173g、DMAcを37.4g混合した溶液に酸化チタン2g(石原産業社製:TTO-51A)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、DMAc分散体8を得た。
[Example 8]
Put 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads in a mixed solution of 0.427 g of KBM-903, 0.173 g of MTG-A, and 37.4 g of DMAc, and bead mill. Distributed processing with. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 8.
〔実施例9〕
 KBM-903を0.316g、130Aを0.284g、DMAcを37.4g混合して得た溶液に酸化チタン2g(石原産業社製:TTO-51A)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、DMAc分散体9を得た。
[Example 9]
A bead mill containing 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.316 g of KBM-903, 0.284 g of 130A, and 37.4 g of DMAc. Distributed processing with. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 9.
〔実施例10〕
 KBM-903を0.414g、130Aを0.186g、DMAcを37.4g混合して得た溶液に酸化チタン2g(石原産業社製:TTO-51A)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、DMAc分散体10を得た。
[Example 10]
A bead mill containing 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) and 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.414 g of KBM-903, 0.186 g of 130A, and 37.4 g of DMAc. Distributed processing with. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 10.
〔実施例11〕
 KBM-903を0.316g、130Aを0.284g、DMAcを37.4g混合して得た溶液に酸化ジルコニウム2g(第一稀元素化学工業社製:UEP-100)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、DMAc分散体11を得た。
[Example 11]
Zirconium oxide 2 g (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd .: UEP-100), 0.1 mm zirconia beads 65 g in a solution obtained by mixing 0.316 g of KBM-903, 0.284 g of 130A, and 37.4 g of DMAc. Was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a DMAc dispersion 11.
〔比較例1〕
 3-アミノプロピルトリメトキシシラン(信越化学工業社製:KBM-903)を0.6g、DMAcを37.4g混合し、その混合した溶液に酸化チタン2g(石原産業社製:TTO-51A)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収したが、酸化チタンは全量沈殿した状態であった。
[Comparative Example 1]
Mix 0.6 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-903) and 37.4 g of DMAc, and add 2 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51A) to the mixed solution. 65 g of 0.1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed to recover the supernatant, but the entire amount of titanium oxide was precipitated.
〔参考例1〕
 実施例1において調製した3-アミノプロピルトリメトキシシランが処理された酸化チタン水分散体(TiO濃度5%)を分散性評価の基準としての参考試料として用いた。
[Reference Example 1]
The titanium oxide aqueous dispersion (TiO 2 concentration 5%) prepared in Example 1 treated with 3-aminopropyltrimethoxysilane was used as a reference sample as a reference for the dispersibility evaluation.
 実施例1~実施例11、参考例1において、粒度分布を測定した。 The particle size distribution was measured in Examples 1 to 11 and Reference Example 1.
〔粒度分布測定〕
 動的光散乱式(DLS:Dynamic Light Scattering)粒子径分布測定装置(マイクロトラック・ベル社製:Nanotrac(登録商標) Wave2 UZ152)を用いて、分散体中での無機粒子の粒度分布を測定し、累積粒度分布D10、D50、D90を計測した。その結果を表1に示す。なお、表1中に記載したa/bは、前記したように、反応物中のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたときのアミノ基とα,β-不飽和カルボニル基を有する化合物のモル比を表す。なお、実施例1~3では、「溶媒置換」が行われているため、アミノ基を有するシリケート化合物及び/又はその加水分解生成物の仕込み量とα,β-不飽和カルボニル基を有する化合物の仕込み量から得られるa/bと、実際のa/bとの間にはズレがある。そのため、実施例1~3のa/bは、各々得られた有機溶媒分散体を熱重量分析し、質量減少量から計算した計算値を表1に示した。
[Measurement of particle size distribution]
Using a dynamic light scattering (DLS: Dynamic Light Scattering) particle size distribution measuring device (Microtrac Bell, Inc .: Nanotrac® Wave2 UZ152), the particle size distribution of inorganic particles in the dispersion is measured. , Cumulative particle size distributions D10, D50, D90 were measured. The results are shown in Table 1. As described above, a / b described in Table 1 contains a molar amino group of a silicate compound having an amino group in the reaction product and / or a hydrolysis product thereof, and the above-mentioned α, β-non. It represents the molar ratio of the compound having an α, β-unsaturated carbonyl group to the amino group when the compound having a saturated carbonyl group is b mol. In Examples 1 to 3, since "solvent substitution" was performed, the amount of the silicate compound having an amino group and / or its hydrolysis product and the compound having an α, β-unsaturated carbonyl group were charged. There is a discrepancy between the a / b obtained from the charged amount and the actual a / b. Therefore, for a / b of Examples 1 to 3, the obtained organic solvent dispersions were subjected to thermogravimetric analysis, and the calculated values calculated from the amount of mass loss are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~11の分散体において、粒度分布のD50の値は40nm付近以下であり、参考例1の水性分散体のD50と比べても大差ないことから、参考例1の水性分散体と同様に、有機溶媒中でも充分に分散していることがわかった。 In the dispersions of Examples 1 to 11, the value of D50 of the particle size distribution is around 40 nm or less, which is not much different from that of the aqueous dispersion of Reference Example 1, and is therefore the same as that of the aqueous dispersion of Reference Example 1. It was also found that it was sufficiently dispersed even in an organic solvent.
〔実施例12〕
 KBM-903を0.445g、130Aを1.225g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-51N)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体12を得た。
[Example 12]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added to a solution obtained by mixing 0.445 g of KBM-903, 1.225 g of 130A, and 21.92 g of PGME. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 12.
〔実施例13〕
 KBM-903を0.716g、130Aを0.964g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-51N)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体13を得た。
[Example 13]
To the solution obtained by mixing 0.716 g of KBM-903, 0.964 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added. It was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 13.
〔実施例14〕
 KBM-903を0.885g、130Aを0.795g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-51N)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体14を得た。
[Example 14]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added to the solution obtained by mixing 0.885 g of KBM-903, 0.795 g of 130A, and 21.92 g of PGME. It was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 14.
〔実施例15〕
 KBM-903を1.092g、130Aを0.558g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-51N)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体15を得た。
[Example 15]
To the solution obtained by mixing 1.092 g of KBM-903, 0.558 g of 130A and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 15.
〔実施例16〕
 KBM-903を1.324g、130Aを0.356g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-51N)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体16を得た。
[Example 16]
To the solution obtained by mixing 1.324 g of KBM-903, 0.356 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N) and 65 g of 0.1 mm zirconia beads were added. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 16.
〔実施例17〕
 KBM-903を1.079g、130Aを0.601g、PGMEを21.92g混合した後、この溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体17を得た。
[Example 17]
After mixing 1.079 g of KBM-903, 0.601 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads are added to this solution. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 17.
〔実施例18〕
 KBM-903を0.885g、130Aを0.795g、PGMEを21.92g混合した後、この溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体18を得た。
[Example 18]
After mixing 0.885 g of KBM-903, 0.795 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads are added to this solution. , Dispersion treatment with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 18.
〔実施例19〕
 KBM-903を1.092g、130Aを0.558g、PGMEを21.92g混合した後、この溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体19を得た。
[Example 19]
After mixing 1.092 g of KBM-903, 0.558 g of 130A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to this solution. It was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGME dispersion 19.
〔実施例20〕
 KBM-903を0.789g、メトキシジプロピレングルコールアクリレート(共栄社化学社製:ライトアクリレート(商標登録)DPM-A、以下「DPM-A」と記載)を0.891g、PGMEを21.92g混合した後、この溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体20を得た。
[Example 20]
A mixture of 0.789 g of KBM-903, 0.891 g of methoxydipropylene glucol acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) DPM-A, hereinafter referred to as "DPM-A"), and 21.92 g of PGME. After that, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to this solution, and dispersion treatment was performed with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 20.
〔実施例21〕
 KBM-903を0.959g、DPM-Aを0.721g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体21を得た。
[Example 21]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5), 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.959 g of KBM-903, 0.721 g of DPM-A, and 21.92 g of PGME. Was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 21.
〔実施例22〕
 KBM-903を0.959g、DPM-Aを0.721g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-51N)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体22を得た。
[Example 22]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-51N), 65 g of 0.1 mm zirconia beads in a solution obtained by mixing 0.959 g of KBM-903, 0.721 g of DPM-A, and 21.92 g of PGME. Was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 22.
〔実施例23〕
 KBM-903を1.221g、DPM-Aを0.459g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体23を得た。
[Example 23]
Titanium oxide 8.4 g (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5), 0.1 mm zirconia beads 65 g in a solution obtained by mixing 1.221 g of KBM-903, 0.459 g of DPM-A, and 21.92 g of PGME. Was put in and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 23.
〔実施例24〕
 KBM-903を1.063g、テトラヒドロフルフリルアクリレート(共栄社化学社製:ライトアクリレート(商標登録)THF-A、以下「THF-A」と記載)を0.617g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体24を得た。
[Example 24]
A mixture of 1.063 g of KBM-903, 0.617 g of tetrahydrofurfuryl acrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) THF-A, hereinafter referred to as "THF-A"), and 21.92 g of PGME. 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to the obtained solution and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 24.
〔実施例25〕
 KBM-903を0.927g、MTG-Aを0.753g、PGMEを21.92g混合した後、この溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体25を得た。
[Example 25]
After mixing 0.927 g of KBM-903, 0.753 g of MTG-A, and 21.92 g of PGME, 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were mixed in this solution. Was put in and dispersed with a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a PGME dispersion 25.
〔実施例26〕
 KBM-903を0.883g、DPM-Aを0.797g、PGMEA(プロピレングリコールモノメチルエーテルアセテート)を21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGMEA分散体26を得た。
[Example 26]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) in a solution obtained by mixing 0.883 g of KBM-903, 0.797 g of DPM-A, and 21.92 g of PGMEA (propylene glycol monomethyl ether acetate). , 0.1 mm zirconia beads (65 g) were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain PGMEA dispersion 26.
〔実施例27〕
 KBM-903を0.959g、DPM-Aを0.721g、エタノール(EtOH)を21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、エタノール分散体27を得た。
[Example 27]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0. 65 g of 1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain an ethanol dispersion 27.
〔実施例28〕
 KBM-903を0.959g、DPM-Aを0.721g、イソプロピルアルコール(IPA)を21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、イソプロピルアルコール分散体28を得た。
[Example 28]
A solution obtained by mixing 0.959 g of KBM-903, 0.721 g of DPM-A, and 21.92 g of isopropyl alcohol (IPA) was mixed with 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0. .65 g of 1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain an isopropyl alcohol dispersion 28.
〔実施例29〕
 KBM-903を0.883g、DPM-Aを0.797g、メチルエチルケトン(MEK)を21.92g混合した後、この溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収し、メチルエチルケトン分散体29を得た。
[Example 29]
After mixing 0.883 g of KBM-903, 0.797 g of DPM-A, and 21.92 g of methyl ethyl ketone (MEK), 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0. 65 g of 1 mm zirconia beads were added and dispersed in a bead mill. After removing the beads, centrifugation was performed and the supernatant was recovered to obtain a methyl ethyl ketone dispersion 29.
〔比較例2〕
 KBM-903を1.030g、1,6-ヘキサンジオールジアクリレート(共栄社化学社製:ライトアクリレート(商標登録)1,6HX-A)を0.650g、PGMを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収したが、酸化チタンは全量沈殿した状態であった。
[Comparative Example 2]
A solution obtained by mixing 1.030 g of KBM-903, 0.650 g of 1,6-hexanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) 1,6HX-A), and 21.92 g of PGM. 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were placed therein and dispersed in a bead mill. After removing the beads, centrifugation was performed to recover the supernatant, but the entire amount of titanium oxide was precipitated.
〔比較例3〕
 KBM-903を0.539g、PEG600#ジアクリレート(共栄社化学社製:ライトアクリレート(商標登録)14EG-A)を1.141g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収したが、酸化チタンは全量沈殿した状態であった。
[Comparative Example 3]
8.4 g of titanium oxide in a solution obtained by mixing 0.539 g of KBM-903, 1.141 g of PEG600 # diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) 14EG-A), and 21.92 g of PGME. (Ishihara Sangyo Co., Ltd .: TTO-V5), 0.1 mm zirconia beads (65 g) were added and dispersed with a bead mill. After removing the beads, centrifugation was performed to recover the supernatant, but the entire amount of titanium oxide was precipitated.
〔比較例4〕
 KBM-903を1.083g、トリメチロールプロパントリアクリレート(東亞合成社製:アロニックス(商標登録)M-309)を0.650g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。ビーズ除去後、遠心分離を行い、上澄みを回収したが、酸化チタンは全量沈殿した状態であった。
[Comparative Example 4]
1.083 g of KBM-903, 0.650 g of trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd .: Aronix (registered trademark) M-309), and 21.92 g of PGME were mixed to obtain 8.4 g of titanium oxide. (Ishihara Sangyo Co., Ltd .: TTO-V5), 0.1 mm zirconia beads (65 g) were added and dispersed with a bead mill. After removing the beads, centrifugation was performed to recover the supernatant, but the entire amount of titanium oxide was precipitated.
 実施例12~実施例29及び比較例2~4における分散状態を表2に記載した。分散状態が良好な場合を〇、分散はしていたが固形分として5%以上の濃度割れがあった場合を△、分散しない場合を×と表記して表2に示した。なお、表2中のα,β-不飽和カルボニル化合物としては、実施例12~実施例29では分子内に、C=C結合を一つ有しているモノα,β-不飽和カルボニル化合物(すなわち、分子内に一つのα,β-不飽和カルボニル基を有する化合物)を用い、比較例2~4では分子内に、C=C結合を2~3個有するその他のジ又はトリ不飽和カルボニル化合物を用いた。 Table 2 shows the dispersion states in Examples 12 to 29 and Comparative Examples 2 to 4. Table 2 shows a case where the dispersed state was good, a case where the solid content was dispersed but a concentration crack of 5% or more was indicated by Δ, and a case where the solid content was not dispersed was indicated by ×. The α, β-unsaturated carbonyl compounds in Table 2 include mono-α, β-unsaturated carbonyl compounds having one C = C bond in the molecule in Examples 12 to 29 (Examples 12 to 29). That is, a compound having one α, β-unsaturated carbonyl group in the molecule) is used, and in Comparative Examples 2 to 4, another di or triunsaturated carbonyl having 2 to 3 C = C bonds in the molecule is used. A compound was used.
〔塗料調製1〕
 実施例12~16及び実施例22で得た各二酸化チタン微粒子(TTO-51N)含有有機溶媒分散体を4g、ジペンタエリスリトールヘキサアクリレート(東亞合成社製:M-405)を0.25g、ウレタンアクリレート(東亞合成社製:M-1200)を0.25g、IRGACURE(登録商標)-184を0.025g、ジアセトンアルコールを0.4g、レベリング剤(信越化学工業社製:KY-1203)を0.04g混合し、膜の屈折率が1.8~1.82となるように、各硬化性コーティング組成物を調製した。
[Paint preparation 1]
4 g of each titanium dioxide fine particle (TTO-51N) -containing organic solvent dispersion obtained in Examples 12 to 16 and Example 22, 0.25 g of dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd .: M-405), urethane. 0.25 g of acrylate (manufactured by Toagosei Co., Ltd .: M-1200), 0.025 g of IRGACURE (registered trademark) -184, 0.4 g of diacetone alcohol, leveling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KY-1203) 0.04 g was mixed, and each curable coating composition was prepared so that the refractive index of the film was 1.8 to 1.82.
〔塗料調製2〕
 実施例17~21、23~29及び比較例2~4で得た各二酸化チタン微粒子(TTO-V5)含有有機溶媒分散体を4g、ジペンタエリスリトールヘキサアクリレート(東亞合成社製:M-405)を0.21g、ウレタンアクリレート(東亞合成社製:M-1200)を0.21g、IRGACURE(登録商標)-184を0.021g、ジアセトンアルコールを0.4g、レベリング剤(信越化学工業社製:KY-1203)を0.04g混合し、膜の屈折率が1.8~1.82になるように、各硬化性コーティング組成物を調製した。
[Paint preparation 2]
4 g of each titanium dioxide fine particle (TTO-V5) -containing organic solvent dispersion obtained in Examples 17 to 21, 23 to 29 and Comparative Examples 2 to 4, dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd .: M-405) 0.21 g, urethane acrylate (manufactured by Toagosei Co., Ltd .: M-1200) 0.21 g, IRGACURE (registered trademark) -184 0.021 g, diacetone alcohol 0.4 g, leveling agent (manufactured by Shin-Etsu Chemical Co., Ltd.) : KY-1203) was mixed, and each curable coating composition was prepared so that the refractive index of the film was 1.8 to 1.82.
〔被膜の屈折率等の測定〕
 上記の調製された硬化性コーティング組成物毎に、塗料調製したコーティング液としてガラス基板に塗布し、150℃で5分間、予備乾燥した後、高圧水銀灯を照射して硬化させ、該硬化性コーティング組成物毎に3個の膜厚を代えた被膜を形成した。得られた被膜のヘーズをヘーズメーター(NDH-7000 日本電色工業社製)にて測定し、被膜の膜厚及び測定波長589nmでの屈折率をエリプソメーター(SmartSE 堀場製作所製)で測定した。膜厚とHAZE値をプロットし、直線近似で膜厚3μmのHAZE値を算出し、表2にあわせて示した。
[Measurement of refractive index of film]
Each of the above-prepared curable coating compositions is applied to a glass substrate as a coating liquid prepared as a paint, pre-dried at 150 ° C. for 5 minutes, and then cured by irradiating with a high-pressure mercury lamp to cure the curable coating composition. Three films with different film thicknesses were formed for each object. The haze of the obtained coating film was measured with a haze meter (NDH-7000 manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the film thickness of the coating film and the refractive index at the measurement wavelength of 589 nm were measured with an ellipsometer (manufactured by SmartSE Horiba, Ltd.). The film thickness and the HAZE value were plotted, and the HAZE value with a film thickness of 3 μm was calculated by linear approximation and shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔参考例A〕
 3-メルカプトプロピルトリメトキシシラン(信越化学工業社製:KBM-803、以下「KBM-803」と記載)を0.827g、DPM-Aを0.853g、PGMEを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。なお、KBM-803とDPM-Aとのモル比は1:1である。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGME分散体Aを得た。分散状態を前記と同様に測定したところ、該状態は△であった。また、膜厚3μmのHAZE値を算出したところ、1.43であった。
[Reference Example A]
It was obtained by mixing 0.827 g of 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-803, hereinafter referred to as "KBM-803"), 0.853 g of DPM-A, and 21.92 g of PGME. 8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 65 g of 0.1 mm zirconia beads were added to the solution and dispersed in a bead mill. The molar ratio of KBM-803 to DPM-A is 1: 1. After removing the beads, centrifugation was performed to collect the supernatant to obtain PGME dispersion A. When the dispersed state was measured in the same manner as described above, the state was Δ. Moreover, when the HAZE value of the film thickness of 3 μm was calculated, it was 1.43.
〔参考例B〕
 KBM-803を0.827g、DPM-Aを0.853g、PGMEAを21.92g混合して得た溶液に酸化チタン8.4g(石原産業社製:TTO-V5)と、0.1mmジルコニアビーズ65gを入れ、ビーズミルで分散処理した。なお、KBM-803とDPM-Aとのモル比は1:1である。ビーズ除去後、遠心分離を行い、上澄みを回収し、PGMEA分散体Bを得た。分散状態を前記と同様に測定したところ、該状態は〇であった。また、膜厚3μmのHAZE値を算出したところ、1.19であった。
[Reference Example B]
8.4 g of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: TTO-V5) and 0.1 mm zirconia beads were mixed in a solution obtained by mixing 0.827 g of KBM-803, 0.853 g of DPM-A, and 21.92 g of PGMEA. 65 g was added and dispersed with a bead mill. The molar ratio of KBM-803 to DPM-A is 1: 1. After removing the beads, centrifugation was performed to collect the supernatant to obtain PGMEA dispersion B. When the dispersed state was measured in the same manner as described above, the state was ◯. Moreover, when the HAZE value of the film thickness of 3 μm was calculated, it was 1.19.
 本発明は、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物との反応物を被覆した表面被覆無機粒子であって、無機粒子の有機溶媒への分散性を充分に改善することができ、それにより無機粒子が持つ機能や性能を充分に発揮させることができる。また、得られた表面被覆無機粒子の有機溶媒分散体や塗膜は透明性、屈折性に優れたものとすることが可能である。
 
The present invention is a surface-coated inorganic particle coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one α, β-unsaturated carbonyl group in the molecule. , The dispersibility of the inorganic particles in the organic solvent can be sufficiently improved, whereby the functions and performances of the inorganic particles can be fully exhibited. Further, the organic solvent dispersion and the coating film of the obtained surface-coated inorganic particles can be made excellent in transparency and refraction.

Claims (20)

  1.  アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物との反応物を、無機粒子表面に被覆した表面被覆無機粒子。 A surface-coated inorganic particle in which the surface of an inorganic particle is coated with a reaction product of a silicate compound having an amino group and / or a hydrolysis product thereof and a compound having one α, β-unsaturated carbonyl group in the molecule.
  2.  前記のα,β-不飽和カルボニル基を有する化合物が、更にエーテル結合を有する化合物である、請求項1に記載の表面被覆無機粒子。 The surface-coated inorganic particles according to claim 1, wherein the compound having an α, β-unsaturated carbonyl group is a compound having an ether bond.
  3.  前記のα,β-不飽和カルボニル基を有する化合物が、エチレングリコール鎖(重合数n=2~10)、プロピレングリコール鎖(重合数n=2~10)又は5~6員環状基を有する化合物である、請求項1又は請求項2に記載の表面被覆無機粒子。 The compound having an α, β-unsaturated carbonyl group is an ethylene glycol chain (polymerization number n = 2 to 10), a propylene glycol chain (polymerization number n = 2 to 10), or a compound having a 5 to 6-membered cyclic group. The surface-coated inorganic particles according to claim 1 or 2.
  4.  前記のα,β-不飽和カルボニル基を有する化合物が、5~6員環状基を有する(メタ)アクリレート類又はアルコキシポリアルキレングリコール(メタ)アクリレート類である、請求項1乃至請求項3のいずれかに記載の表面被覆無機粒子。 Any of claims 1 to 3, wherein the compound having an α, β-unsaturated carbonyl group is a (meth) acrylate having a 5- to 6-membered cyclic group or an alkoxypolyalkylene glycol (meth) acrylate. Surface-coated inorganic particles described in Crab.
  5.  前記のα,β-不飽和カルボニル基を有する化合物が、テトラヒドロフルフリルアクリレート、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート又はメトキシジプロピレングリコールアクリレートである、請求項1乃至請求項4のいずれかに記載の表面被覆無機粒子。 The compound according to any one of claims 1 to 4, wherein the compound having an α, β-unsaturated carbonyl group is tetrahydrofurfuryl acrylate, methoxytriethylene glycol acrylate, methoxypolyethylene glycol acrylate or methoxydipropylene glycol acrylate. The surface-coated inorganic particles described.
  6.  前記反応物中のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10となる、請求項1乃至請求項5のいずれかに記載の表面被覆無機粒子。 When the amino group of the silicate compound having an amino group and / or its hydrolysis product in the reaction product is a mol, and the compound having an α, β-unsaturated carbonyl group is b mol, 0.8 ≦ The surface-coated inorganic particle according to any one of claims 1 to 5, wherein a / b ≦ 10.
  7.  前記反応物が、炭素数3~100の低分子シリケート化合物及び/又はその加水分解生成物である、請求項1乃至請求項6のいずれかに記載の表面被覆無機粒子。 The surface-coated inorganic particles according to any one of claims 1 to 6, wherein the reaction product is a small molecule silicate compound having 3 to 100 carbon atoms and / or a hydrolysis product thereof.
  8.  前記無機粒子が、無機コア粒子とその表面に被覆された無機化合物で構成される、請求項1乃至請求項7のいずれかに記載の表面被覆無機粒子。 The surface-coated inorganic particles according to any one of claims 1 to 7, wherein the inorganic particles are composed of inorganic core particles and an inorganic compound coated on the surface thereof.
  9.  請求項1乃至請求項7のいずれかに記載の無機粒子又は請求項8に記載の無機コア粒子が、酸化チタン粒子である、表面被覆無機粒子。 Surface-coated inorganic particles in which the inorganic particles according to any one of claims 1 to 7 or the inorganic core particles according to claim 8 are titanium oxide particles.
  10.  請求項1乃至請求項9のいずれかに記載の表面被覆無機粒子を有機溶媒に分散した、表面被覆無機粒子の有機溶媒分散体。 An organic solvent dispersion of surface-coated inorganic particles in which the surface-coated inorganic particles according to any one of claims 1 to 9 are dispersed in an organic solvent.
  11.  請求項1乃至請求項9のいずれかに記載の表面被覆無機粒子と、有機溶媒と、樹脂とを含む塗料組成物。 A coating composition containing the surface-coated inorganic particles according to any one of claims 1 to 9, an organic solvent, and a resin.
  12.  請求項10に記載の有機溶媒分散体と、樹脂とを含む塗料組成物。 A coating composition containing the organic solvent dispersion according to claim 10 and a resin.
  13.  水性溶媒中で無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物とを混合して、無機粒子の表面にアミノ基を有するシリケート化合物及び/又はその加水分解生成物を被覆する第一の工程と、
     次いで、前記水性溶媒を有機溶媒に置換した後、分子内に一つのα,β-不飽和カルボニル基を有する化合物を混合して、前記の無機粒子の表面に被覆したアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を、前記無機粒子の表面に被覆する第二の工程と、
    を含む表面被覆無機粒子の製造方法。
    The inorganic particles are mixed with the silicate compound having an amino group and / or the hydrolysis product thereof in an aqueous solvent, and the surface of the inorganic particles is coated with the silicate compound having an amino group and / or the hydrolysis product thereof. The first step and
    Next, after replacing the aqueous solvent with an organic solvent, a compound having one α, β-unsaturated carbonyl group in the molecule is mixed, and the silicate compound having an amino group coated on the surface of the inorganic particles and the silicate compound. / Or a second step of coating the surface of the inorganic particles with a reaction product of the hydrolysis product thereof and the compound having an α, β-unsaturated carbonyl group.
    A method for producing surface-coated inorganic particles including.
  14.  前記第二の工程において、水性溶媒に界面活性剤と有機溶媒を混合して無機粒子を有機溶媒に移行させて前記水性溶媒の有機溶媒置換を行った後、前記のα,β-不飽和カルボニル基を有する化合物を混合する、請求項13に記載の表面被覆無機粒子の製造方法。 In the second step, the surfactant and the organic solvent are mixed with the aqueous solvent, the inorganic particles are transferred to the organic solvent, the organic solvent is replaced with the aqueous solvent, and then the α, β-unsaturated carbonyl is used. The method for producing a surface-coated inorganic particle according to claim 13, wherein a compound having a group is mixed.
  15.  無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物とを混合して、前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を前記無機粒子の表面に被覆する、表面被覆無機粒子の製造方法。 A silicate compound having an amino group is obtained by mixing an inorganic particle, a silicate compound having an amino group and / or a hydrolysis product thereof, and a compound having one α, β-unsaturated carbonyl group in the molecule. And / or a method for producing a surface-coated inorganic particle, wherein the reaction product of the hydrolysis product thereof and the compound having an α, β-unsaturated carbonyl group is coated on the surface of the inorganic particle.
  16.  前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10とする、請求項13乃至請求項15のいずれかに記載の表面被覆無機粒子の製造方法。 When the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having an α, β-unsaturated carbonyl group is b mol, 0.8 ≦ a / b. The method for producing a surface-coated inorganic particle according to any one of claims 13 to 15, wherein ≦ 10.
  17.  請求項13又は請求項14に記載の第二の工程で得た有機溶媒分散体に貧溶媒を添加し固液分離して、表面被覆無機粒子を回収する第三の工程と、
     次いで、前記の回収した表面被覆無機粒子を有機溶媒に分散させる第四の工程と、
    を含む表面被覆無機粒子の有機溶媒分散体の製造方法。
    A third step of adding a poor solvent to the organic solvent dispersion obtained in the second step of claim 13 or claim 14, solid-liquid separation, and recovering the surface-coated inorganic particles.
    Next, a fourth step of dispersing the recovered surface-coated inorganic particles in an organic solvent, and
    A method for producing an organic solvent dispersion of surface-coated inorganic particles containing.
  18.  有機溶媒中で、無機粒子と、アミノ基を有するシリケート化合物及び/又はその加水分解生成物と、分子内に一つのα,β-不飽和カルボニル基を有する化合物とを混合して、前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物と、前記のα,β-不飽和カルボニル基を有する化合物との反応物を無機粒子の表面に被覆して前記有機溶媒に分散させる、表面被覆無機粒子の有機溶媒分散体の製造方法。 In an organic solvent, inorganic particles, a silicate compound having an amino group and / or a hydrolysis product thereof, and a compound having one α, β-unsaturated carbonyl group in the molecule are mixed to form the above amino. A surface coating in which a reaction product of a silicate compound having a group and / or a hydrolysis product thereof and the compound having an α, β-unsaturated carbonyl group is coated on the surface of inorganic particles and dispersed in the organic solvent. A method for producing an organic solvent dispersion of inorganic particles.
  19.  前記のアミノ基を有するシリケート化合物及び/又はその加水分解生成物のアミノ基をaモル、前記のα,β-不飽和カルボニル基を有する化合物をbモルとしたとき、0.8≦a/b≦10とする、請求項18に記載の有機溶媒分散体の製造方法。 When the amino group of the silicate compound having an amino group and / or its hydrolysis product is a mol, and the compound having an α, β-unsaturated carbonyl group is b mol, 0.8 ≦ a / b. The method for producing an organic solvent dispersion according to claim 18, wherein ≦ 10.
  20.  請求項10に記載の表面被覆無機粒子の有機溶媒分散体又は請求項11若しくは請求項12に記載の塗料組成物を基材に塗布又はスプレーする、表面被覆無機粒子層の製造方法。
     
    A method for producing a surface-coated inorganic particle layer, wherein the organic solvent dispersion of the surface-coated inorganic particles according to claim 10 or the coating composition according to claim 11 or 12 is applied or sprayed onto a substrate.
PCT/JP2021/008927 2020-03-10 2021-03-08 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same WO2021182378A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21768725.0A EP4119617A1 (en) 2020-03-10 2021-03-08 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same
KR1020227030418A KR20220147608A (en) 2020-03-10 2021-03-08 Surface-coated inorganic particles, method for producing the same, and organic solvent dispersion dispersing the same
CN202180020559.9A CN115279840B (en) 2020-03-10 2021-03-08 Surface-coated inorganic particles, method for producing same, and organic solvent dispersion in which surface-coated inorganic particles are dispersed
JP2022507168A JPWO2021182378A1 (en) 2020-03-10 2021-03-08
US17/801,830 US20240209213A1 (en) 2020-03-10 2021-08-03 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040631 2020-03-10
JP2020-040631 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021182378A1 true WO2021182378A1 (en) 2021-09-16

Family

ID=77672360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008927 WO2021182378A1 (en) 2020-03-10 2021-03-08 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same

Country Status (7)

Country Link
US (1) US20240209213A1 (en)
EP (1) EP4119617A1 (en)
JP (1) JPWO2021182378A1 (en)
KR (1) KR20220147608A (en)
CN (1) CN115279840B (en)
TW (1) TW202204527A (en)
WO (1) WO2021182378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068207A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Metal oxide particle-containing composition with reduced occurrence of volatile aldehydes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068258A (en) * 2003-08-22 2005-03-17 Denki Kagaku Kogyo Kk Spherical alumina powder and its application
JP2005220243A (en) * 2004-02-06 2005-08-18 Toyo Ink Mfg Co Ltd Polymerizable organic-inorganic composite particle
JP2008031309A (en) * 2006-07-28 2008-02-14 Tokuyama Dental Corp Method for producing surface-treated inorganic filler
JP2008174624A (en) * 2007-01-17 2008-07-31 Admatechs Co Ltd Surface-treated inorganic powder
JP2009209025A (en) * 2008-03-06 2009-09-17 Oji Paper Co Ltd Composite fine particle, method for producing the same and inkjet recording body using the same
WO2011052762A1 (en) * 2009-10-29 2011-05-05 堺化学工業株式会社 Method for producing organic solvent dispersion of inorganic oxide microparticles
JP2012121933A (en) * 2009-03-31 2012-06-28 Kansai Paint Co Ltd Clear coating material composition, and method for producing the same
JP2015531734A (en) * 2012-08-06 2015-11-05 クローダ インターナショナル パブリック リミティド カンパニー Particulate metal oxide particles having a metal oxide core and a coating layer containing an inorganic substance, a silane coupling agent and / or a hydrophobizing agent

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037611A1 (en) * 2005-08-05 2007-02-15 Eckart Gmbh & Co. Kg Metallic effect pigments with an inorganic / organic mixed layer, process for the preparation of such metallic effect pigments and their use
JP2009083223A (en) * 2007-09-28 2009-04-23 Jgc Catalysts & Chemicals Ltd Manufacturing method of polymer silane coupling agent coated metal oxide particles used for base material with hard coat film, coating solution for forming hard coat film and hard coat film
CA2792151C (en) * 2010-03-26 2016-07-05 Benjamin Moore & Co. Hybrid organic-inorganic nanocomposites
US8961831B2 (en) * 2011-05-31 2015-02-24 E Ink California, Llc Silane-containing pigment particles for electrophoretic display
CN103540162B (en) * 2012-07-17 2018-08-10 广州奥翼电子科技股份有限公司 The method for preparing electrophoresis particle using organic pigment
CN102993782B (en) * 2012-12-12 2014-04-16 江南大学 Preparation method of polyurethane acrylate oligomer surface modified silica
US20160046771A1 (en) * 2013-03-15 2016-02-18 Adama Materials, Inc. Oligomer-grafted nanofillers and advanced composite materials
JP2015078341A (en) * 2013-09-10 2015-04-23 昭和電工株式会社 Curable composition and cured product thereof as well as hard coat material and hard coat film
CN103665269B (en) * 2013-11-12 2015-12-30 江南大学 A kind of preparation method of amphiphilic acrylate copolymer surface graft modification nano silicon
CN107250291B (en) * 2014-12-05 2021-02-05 维络斯弗洛有限责任公司 Multifunctional superhydrophobic particles for chemical adhesion and blooming
CN108026384B (en) * 2015-09-24 2021-03-12 关西涂料株式会社 Method for producing acrylic resin-coated silica particle dispersion
CN106833093A (en) * 2016-11-28 2017-06-13 江南大学 A kind of preparation method of photocuring hydrophobic resin modified manometer silicon dioxide
CN106947105B (en) * 2017-03-31 2019-07-19 中国科学院宁波材料技术与工程研究所 Reduce the surface modification method of micro-nano granules surface protein non-specific adsorption

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068258A (en) * 2003-08-22 2005-03-17 Denki Kagaku Kogyo Kk Spherical alumina powder and its application
JP2005220243A (en) * 2004-02-06 2005-08-18 Toyo Ink Mfg Co Ltd Polymerizable organic-inorganic composite particle
JP2008031309A (en) * 2006-07-28 2008-02-14 Tokuyama Dental Corp Method for producing surface-treated inorganic filler
JP2008174624A (en) * 2007-01-17 2008-07-31 Admatechs Co Ltd Surface-treated inorganic powder
JP2009209025A (en) * 2008-03-06 2009-09-17 Oji Paper Co Ltd Composite fine particle, method for producing the same and inkjet recording body using the same
JP2012121933A (en) * 2009-03-31 2012-06-28 Kansai Paint Co Ltd Clear coating material composition, and method for producing the same
WO2011052762A1 (en) * 2009-10-29 2011-05-05 堺化学工業株式会社 Method for producing organic solvent dispersion of inorganic oxide microparticles
JP2015531734A (en) * 2012-08-06 2015-11-05 クローダ インターナショナル パブリック リミティド カンパニー Particulate metal oxide particles having a metal oxide core and a coating layer containing an inorganic substance, a silane coupling agent and / or a hydrophobizing agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068207A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Metal oxide particle-containing composition with reduced occurrence of volatile aldehydes
JPWO2023068207A1 (en) * 2021-10-18 2023-04-27
JP7365010B2 (en) 2021-10-18 2023-10-19 日産化学株式会社 Composition containing metal oxide particles that reduces volatile aldehyde generation

Also Published As

Publication number Publication date
CN115279840B (en) 2024-05-28
US20240209213A1 (en) 2024-06-27
KR20220147608A (en) 2022-11-03
CN115279840A (en) 2022-11-01
TW202204527A (en) 2022-02-01
EP4119617A1 (en) 2023-01-18
JPWO2021182378A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US6048910A (en) Coating compositions, hydrophilic films, and hydrophilic film-coated articles
JP3991172B2 (en) Coating composition, hydrophilic film, and coated article having hydrophilic film
CA2792151C (en) Hybrid organic-inorganic nanocomposites
CN1240787C (en) Radiation-curable metal particles and curable resin compositions comprising these prrticles
JP5795840B2 (en) Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
JP5048304B2 (en) Hard coat film and antireflection film
JP5483810B2 (en) Resin composition
WO1998036016A1 (en) Polyalkoxysiloxane compounds, process for producing the same, and coating composition containing the same
JPWO2007145285A1 (en) Polymer-coated metal oxide fine particles and their applications
JP5700903B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
WO2005092933A1 (en) Curable composition containing surface-modified particles
JP4283482B2 (en) Surface modified pigment
JP2010138156A (en) Nano-substance, nano-composite, nano liquid dispersion, method for producing the same, and various agents comprising the liquid dispersion
WO2021182378A1 (en) Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same
WO2008007649A1 (en) Oxide particle-containing resin composition and method for producing the same
JP4913627B2 (en) Antireflection film and method for producing the same
JP2012207112A (en) Composition for surface coat
JP2008274242A (en) Aqueous coating composition, organic-inorganic composite coating film, silane condensate dispersion and method for producing the same
JP5934990B2 (en) Metal pigment composition
JPH11293157A (en) Anode deposition type electrodeposition coating material composition excellent in scratch resistance performance
WO2020255731A1 (en) Surface-coated inorganic particles and method for manufacturing same, and organic solvent dispersion containing same
JP2021091859A (en) Antifogging agent containing hydrophilic polymer
JP3336922B2 (en) Silicone resin-containing emulsion composition, method for producing the same, and article having cured coating of the composition
WO2020105405A1 (en) Reactive silicone composition and cured product of same
KR20110044606A (en) Surface-treatment agent composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17801830

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022507168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021768725

Country of ref document: EP

Effective date: 20221010