JP2011068757A - Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition - Google Patents

Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition Download PDF

Info

Publication number
JP2011068757A
JP2011068757A JP2009220486A JP2009220486A JP2011068757A JP 2011068757 A JP2011068757 A JP 2011068757A JP 2009220486 A JP2009220486 A JP 2009220486A JP 2009220486 A JP2009220486 A JP 2009220486A JP 2011068757 A JP2011068757 A JP 2011068757A
Authority
JP
Japan
Prior art keywords
magnesium oxide
resin composition
highly water
coating
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009220486A
Other languages
Japanese (ja)
Inventor
Tomohito Kinoshita
智仁 木下
Masaya Watanabe
昌也 渡辺
Masahide Tanada
正英 棚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2009220486A priority Critical patent/JP2011068757A/en
Publication of JP2011068757A publication Critical patent/JP2011068757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium oxide-based thermoconductive filler for a synthetic resin having improved water-resistance, and to provide a resin composition having good thermal conductivity. <P>SOLUTION: The magnesium oxide-based thermoconductive filler having the improved water-resistance is produced by covering the surface of magnesium oxide having 1-20 m<SP>2</SP>/g of a BET specific surface area and 0.5-20 &mu;m of an average secondary particle diameter with 1-10 mass% of an alkylalkoxysilane by a dry method. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、合成樹脂に配合する酸化マグネシウムフィラーの製造方法及び樹脂組成物に関する。さらに詳しくは、熱伝導性、耐水性、加工性に優れた樹脂組成物を提供するものである。 The present invention relates to a method for producing a magnesium oxide filler to be blended with a synthetic resin and a resin composition. More specifically, the present invention provides a resin composition excellent in thermal conductivity, water resistance, and processability.

従来より、酸化マグネシウムは高い熱伝導性を有するフィラーとして、樹脂組成物に配合されてきた。しかし、酸化マグネシウム固有の特性である低耐水性が問題となり、耐水性を改善する検討も多数行われてきた。
特許文献1と特許文献2では、MgO粉末表面をリン酸マグネシウム系化合物による被覆層を形成し、被覆酸化マグネシウム粉末に対してさらにエチルシリケートを被覆して耐水性を改善している。
特許文献3では、ケイ素とマグネシウムとの複酸化物により、マグネシア粉末の表面を被覆して耐水和性(耐湿性)を改善している。
特許文献4と特許文献5では、アルミニウムとマグネシウムとの複酸化物により、マグネシア粉末の表面を被覆して耐水和性(耐湿性)を改善している。
特許文献6では、酸性リン酸エステルで表面処理して、高耐水和性を改善している。
特許文献7では、死焼マグネシアをカップリング剤で表面処理し、250〜850℃で再焼成して耐水性を改善している。
特許文献8では、酸化マグネシウムの表面に有機シラン層を形成させて高耐水和性に改善している。
特許文献9では、酸化マグネシウムの表面にシリコーンオイルを焼き付けることにより、耐水性を改善している。
特許文献10では、マグネシア粉末に有機珪素化合物を添加した後、加熱処理して、耐水性を改善している。
特許文献11では、シリコーンオイル、シランカップリング剤で酸化マグネシウムを表面処理し、加熱処理して耐水性を改善している。
特許文献12では、ガラス成分(PbOを50wt%以上含有し、残りの成分がB2 O3 ,SiO2 のうち少なくとも1種類以上である成分組成であることを特徴とするガラス)を被覆して耐水性を改善している。
Conventionally, magnesium oxide has been blended in resin compositions as a filler having high thermal conductivity. However, low water resistance, which is a characteristic unique to magnesium oxide, has become a problem, and many studies have been conducted to improve water resistance.
In Patent Document 1 and Patent Document 2, a coating layer made of a magnesium phosphate compound is formed on the MgO powder surface, and the coated magnesium oxide powder is further coated with ethyl silicate to improve water resistance.
In Patent Document 3, the surface of magnesia powder is coated with a double oxide of silicon and magnesium to improve hydration resistance (moisture resistance).
In Patent Document 4 and Patent Document 5, the surface of magnesia powder is coated with a double oxide of aluminum and magnesium to improve hydration resistance (humidity resistance).
In Patent Document 6, surface treatment is performed with an acidic phosphate to improve high hydration resistance.
In patent document 7, dead-burned magnesia is surface-treated with a coupling agent and refired at 250 to 850 ° C. to improve water resistance.
In Patent Document 8, an organic silane layer is formed on the surface of magnesium oxide to improve high hydration resistance.
In Patent Document 9, water resistance is improved by baking silicone oil on the surface of magnesium oxide.
In Patent Document 10, after adding an organosilicon compound to magnesia powder, heat treatment is performed to improve water resistance.
In Patent Literature 11, magnesium oxide is surface-treated with silicone oil and a silane coupling agent, and heat resistance is improved by heat treatment.
In Patent Document 12, the glass component (glass characterized by containing 50 wt% or more of PbO and the remaining component having at least one component selected from B2 O3 and SiO2) is coated with water resistance. It has improved.

特開2008−74683号公報JP 2008-74683 A 特開2006−151778号公報JP 2006-151778 A 特開2003−34523号公報JP 2003-34523 A 特開2003−34522号公報JP 2003-34522 A 特開2004−27177号公報JP 2004-27177 A 特開2001−115057号公報Japanese Patent Laid-Open No. 2001-115057 特開平11−199776号公報Japanese Patent Laid-Open No. 11-199776 特開平6−171928号公報Japanese Patent Laid-Open No. 6-171928 特開2002−212543号公報JP 2002-212543 A 特開平8−12321号公報JP-A-8-12321 特開2007−70608号公報JP 2007-70608 A 特開平7−188579号公報JP-A-7-188579

上記のように、酸化マグネシウムの耐水性を改善すべく、酸化マグネシウムの表面をケイ酸やリン酸で被覆する方法、シリコーンオイルやシランカップリング剤等で被覆、ガラス成分で被覆する方法が検討されてきた。しかし、これら従来の方法ではある程度の耐水性を付与することはできるが充分ではなく、生産性やコスト面の問題も解決されていなかった。   As described above, in order to improve the water resistance of magnesium oxide, a method of coating the surface of magnesium oxide with silicic acid or phosphoric acid, a method of coating with silicone oil or a silane coupling agent, or a method of coating with a glass component has been studied. I came. However, these conventional methods can provide a certain level of water resistance, but are not sufficient, and the problems of productivity and cost have not been solved.

本発明者は、BET比表面積が0.1〜100m2/g、平均2次粒子径が0.5〜20μmの酸化マグネシウムを式(1)に記載のアルキルアルコキシシランで表面被覆することにより、熱伝導性、耐水性、生産性をバランス良く付与でき、コスト面の問題も解決できることを見出し、本発明を完成するに至った。
(CkH(2k+1))n-Si-(OCmH(2m+1))(4-n) [k:6以上、m:2以下、n:1〜3] 式(1)
The inventors have surface-coated magnesium oxide having a BET specific surface area of 0.1 to 100 m 2 / g and an average secondary particle size of 0.5 to 20 μm with the alkylalkoxysilane described in the formula (1), The present inventors have found that heat conductivity, water resistance, and productivity can be imparted in a well-balanced manner and that cost problems can be solved, and the present invention has been completed.
(C k H (2k + 1) ) n -Si- (OC m H (2m + 1) ) (4-n) [k: 6 or more, m: 2 or less, n: 1 to 3] Formula (1)

本発明の酸化マグネシウム系フィラーは、BET比表面積と平均2次粒子径が所定の範囲であれば、軽焼マグネシア、硬焼マグネシア、電融マグネシアのいずれの形態でも対応できる。 As long as the BET specific surface area and the average secondary particle diameter are in a predetermined range, the magnesium oxide filler of the present invention can be used in any form of light-burned magnesia, hard-burned magnesia, and electrofused magnesia.

酸化マグネシウムのBET比表面積は0.1〜100m2/g、平均2次粒子径は0.5〜20μmであり、樹脂への充填性やハンドリング性の観点からBET比表面積は1〜20m2/gの範囲がより好ましい。 Magnesium oxide has a BET specific surface area of 0.1 to 100 m 2 / g and an average secondary particle size of 0.5 to 20 μm. From the viewpoint of resin filling and handling properties, the BET specific surface area is 1 to 20 m 2 / g. The range of g is more preferable.

平均2次粒子径は、レーザー回折法粒度分布計を用いて測定した値である。測定はエタノール中に測定許容濃度になるように粉末を懸濁させ、超音波分散機等で分散させてから行う。 The average secondary particle diameter is a value measured using a laser diffraction particle size distribution analyzer. The measurement is carried out after suspending the powder in ethanol so as to obtain a measurement allowable concentration and dispersing it with an ultrasonic disperser or the like.

本発明の酸化マグネシウム系フィラーは、1〜10質量%の(CkH(2k+1))n-Si-(OCmH(2m+1))(4-n) [k:6以上、m:2以下、n:1〜3]で表面被覆して調製される。被覆量が1質量%より少ないと、未被覆部分が残るため耐水性が不十分となる。また、被覆量が10質量%を越えると、コストアップにつながり、好ましくない。
なお、乾式処理に用いる装置は、例えばヘンシェルミキサー等の高速攪拌混合可能なものが効率的に被覆処理できるため好ましい。
The magnesium oxide filler of the present invention is 1 to 10% by mass of (C k H (2k + 1) ) n —Si— (OC m H (2m + 1) ) (4-n) [k: 6 or more, m: 2 or less, n: 1 to 3]. If the coating amount is less than 1% by mass, the uncoated portion remains, resulting in insufficient water resistance. On the other hand, if the coating amount exceeds 10% by mass, the cost increases, which is not preferable.
In addition, as the apparatus used for the dry treatment, for example, a device capable of high-speed stirring and mixing such as a Henschel mixer can be efficiently coated.

本発明で用いる被覆剤は、(CkH(2k+1))n-Si-(OCmH(2m+1))(4-n) [k:6以上、m:2以下、n:1〜3]である。デシルトリメトキシシラン、オクチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン等が使用でき、極性が小さいので通常のシランカップリング剤やシリコーンオイルに較べて撥水性が高く、高い耐水性が付与されるものと考えられる。 The coating agent used in the present invention is (C k H (2k + 1) ) n -Si- (OC m H (2m + 1) ) (4-n) [k: 6 or more, m: 2 or less, n: 1-3]. Decyltrimethoxysilane, octyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, etc. can be used, and since it has low polarity, it has higher water repellency compared to ordinary silane coupling agents and silicone oils, giving it high water resistance It is considered to be done.

本発明の樹脂組成物は、表面被覆された上記の酸化マグネシウム系フィラーを100質量部の合成樹脂に対して100〜500質量部配合したものである。使用する合成樹脂は、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、シンジオタクチックポリスチレン、ポリフェニレンサルファイド、液晶ポリマー、ポリエーテルケトン、ポリエーテルニトリル、ポリカーボネート、変性ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等が挙げられる。 The resin composition of this invention mix | blends 100-500 mass parts of said magnesium oxide type fillers by which surface coating was carried out with respect to 100 mass parts synthetic resin. Synthetic resins used are polyamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, syndiotactic polystyrene, polyphenylene sulfide, liquid crystal polymer, polyether ketone, polyether nitrile, polycarbonate, modified polyphenylene ether, polysulfone, polyether sulfone, poly Examples include arylate, polyamideimide, polyetherimide, and thermoplastic polyimide.

本発明の樹脂組成物は、例えば自動車分野の排ガスバルブ、ランプソケット、各種電装部品、OA・AV機器分野のビデオCD・DVDピックアップ部品、各種コネクター、スイッチ、軸受け、ケースハウジングなどがあげられる。さらに表面実装電子部材(IC部品などの封止)にも適用できる。 Examples of the resin composition of the present invention include exhaust gas bulbs, lamp sockets, various electrical components in the automotive field, video CD / DVD pickup components in the OA / AV equipment field, various connectors, switches, bearings, case housings, and the like. Further, it can be applied to surface mount electronic members (sealing of IC components and the like).

本発明では、熱伝導性、耐水性、生産性、コストのバランスのとれた合成樹脂配合用の酸化マグネシウム系高耐水性熱伝導フィラー及びその製造方法、樹脂組成物を提供する。 The present invention provides a magnesium oxide-based highly water-resistant heat conductive filler for synthetic resin blending, which has a good balance of thermal conductivity, water resistance, productivity, and cost, a method for producing the same, and a resin composition.

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

フィラーの調製
基材となる酸化マグネシウムの調製方法および性状を表1に示す。
Table 1 shows the preparation method and properties of magnesium oxide used as the filler preparation base material.

Figure 2011068757
Figure 2011068757

実施例1
酸化マグネシウム(A)500gをヘンシェルミキサー(三井三池化工製、容量30L)に入れ、攪拌しながらデシルトリメトキシシラン10gを徐々に添加した。添加終了後、150℃で30分間表面被覆処理を行い、酸化マグネシウム系フィラー(A-1)を得た。
Example 1
Magnesium oxide (A) (500 g) was placed in a Henschel mixer (manufactured by Mitsui Miike Chemical Co., Ltd., capacity: 30 L), and 10 g of decyltrimethoxysilane was gradually added while stirring. After completion of the addition, a surface coating treatment was performed at 150 ° C. for 30 minutes to obtain a magnesium oxide filler (A-1).

実施例2〜実施例3
表1に示す酸化マグネシウム(B、C)を使用した以外は、実施例1と同様にして、酸化マグネシウム系フィラー(B-1、C-1)を得た。
Example 2 to Example 3
Magnesium oxide fillers (B-1, C-1) were obtained in the same manner as in Example 1 except that the magnesium oxides (B, C) shown in Table 1 were used.

実施例4
実施例1の被覆剤を25gのヘキシルトリメトキシシランに変えた以外は同様に行って、酸化マグネシウム系フィラー(A-2)を得た。
Example 4
A magnesium oxide filler (A-2) was obtained in the same manner except that the coating agent of Example 1 was changed to 25 g of hexyltrimethoxysilane.

比較例1
表1の酸化マグネシウム(A)を被覆剤で処理せずに酸化マグネシウム系フィラー(A-3)とした。
Comparative Example 1
Magnesium oxide (A) in Table 1 was not treated with a coating agent, and was used as a magnesium oxide filler (A-3).

比較例2
実施例1の被覆剤をジメチルジメトキシシランに変えた以外は同様に行って、酸化マグネシウム系フィラー(A-4)を得た。
Comparative Example 2
A magnesium oxide filler (A-4) was obtained in the same manner except that the coating agent of Example 1 was changed to dimethyldimethoxysilane.

比較例3
実施例1の被覆剤をジフェニルジメトキシシランに変えた以外は同様に行って、酸化マグネシウム系フィラー(A-5)を得た。
Comparative Example 3
A magnesium oxide filler (A-5) was obtained in the same manner except that the coating agent of Example 1 was changed to diphenyldimethoxysilane.

比較例4
実施例1の被覆剤をエポキシシランカップリング剤に変えた以外は同様に行って、酸化マグネシウム系フィラー(A-6)を得た。
Comparative Example 4
A magnesium oxide filler (A-6) was obtained in the same manner except that the coating agent of Example 1 was changed to an epoxy silane coupling agent.

比較例5
実施例1の被覆剤をリン酸エステルに変えた以外は同様に行って、酸化マグネシウム系フィラー(A-7)を得た。
Comparative Example 5
A magnesium oxide filler (A-7) was obtained in the same manner except that the coating agent of Example 1 was changed to a phosphate ester.

比較例6
実施例1の被覆剤の処理量を2.5gに変えた以外は同様に行って、酸化マグネシウム系フィラー(A-8)を得た。
Comparative Example 6
A magnesium oxide filler (A-8) was obtained in the same manner except that the treatment amount of the coating agent of Example 1 was changed to 2.5 g.

比較例7
酸化マグネシウム(A)500gをヘンシェルミキサー(三井三池化工製、容量30L)に入れ、撹拌しながらアルコキシ変性シリコンオイル10gを徐々に添加した。添加終了後、ステンレス製トレーに移し、送風乾燥機中で、300℃、1時間加熱処理して、酸化マグネシウム系フィラー(A-9)を得た。
Comparative Example 7
Magnesium oxide (A) (500 g) was put into a Henschel mixer (manufactured by Mitsui Miike Chemical Co., Ltd., volume 30 L), and 10 g of alkoxy-modified silicone oil was gradually added while stirring. After completion of the addition, the mixture was transferred to a stainless steel tray and subjected to heat treatment at 300 ° C. for 1 hour in a blast dryer to obtain a magnesium oxide filler (A-9).

比較例8
酸化マグネシウム(A)500gとデシルトリメトキシシラン10gをエタノール5Lに分散させ、1時間混合撹拌後、ろ過、乾燥、解砕して、酸化マグネシウム系フィラー(A-10)を得た。
Comparative Example 8
Magnesium oxide (A) 500 g and decyltrimethoxysilane 10 g were dispersed in 5 L of ethanol, mixed and stirred for 1 hour, filtered, dried and crushed to obtain a magnesium oxide filler (A-10).

比較例9
酸化マグネシウム(D)500gとヒュームドシリカ50gをエタノール5Lに分散させ、10分間撹拌混合した。ろ過、乾燥した後、衝撃型粉砕機で解砕し、1400℃で1時間加熱処理し、酸化マグネシウム系フィラー(D-1)を得た。
Comparative Example 9
Magnesium oxide (D) (500 g) and fumed silica (50 g) were dispersed in ethanol (5 L) and mixed with stirring for 10 minutes. After filtration and drying, the mixture was pulverized with an impact pulverizer and heat-treated at 1400 ° C. for 1 hour to obtain a magnesium oxide filler (D-1).

実施例1〜4及び比較例1〜9で得られた酸化マグネシウム系フィラーについて耐水性試験を行った。
「耐水性試験」:秤量瓶に試料2.0gを入れ、温度85℃/湿度85%の恒温恒湿槽中に1週間放置後、試験前後の重量変化を測定した。
重量変化が1.0重量%未満であれば良好とし、1.0重量%以上を不良とした。試験結果を表2に示す。
A water resistance test was performed on the magnesium oxide fillers obtained in Examples 1 to 4 and Comparative Examples 1 to 9.
“Water resistance test”: 2.0 g of a sample was placed in a weighing bottle and left in a constant temperature and humidity chamber at a temperature of 85 ° C./humidity of 85% for 1 week, and the weight change before and after the test was measured.
A weight change of less than 1.0% by weight was considered good, and 1.0% by weight or more was judged bad. The test results are shown in Table 2.

Figure 2011068757
Figure 2011068757

表2の実施例1〜4の結果より、本発明の請求項で規定したBET比表面積と平均2次粒子径を有する酸化マグネシウムを所定の被覆剤で処理することにより耐水性の良好な酸化マグネシウムが得られることがわかる。
しかし、比較例6のように本発明の請求項で規定した酸化マグネシウムを所定の被覆剤で処理しても、被覆剤量が所定量以下であると耐水性は改善されない。
また、比較例2〜5及び比較例7〜8のように、従来検討されてきた被覆剤を同様に処理しても、耐水性は本発明の実施例と比較していずれも劣り、不良の評価であった。
なお、比較例9の耐水性評価は良好の範囲であったが、本発明の実施例に較べると劣っていた。
From the results of Examples 1 to 4 in Table 2, magnesium oxide having good water resistance can be obtained by treating magnesium oxide having a BET specific surface area and an average secondary particle diameter defined in the claims of the present invention with a predetermined coating agent. It can be seen that
However, even if the magnesium oxide specified in the claims of the present invention is treated with a predetermined coating agent as in Comparative Example 6, the water resistance is not improved if the coating amount is not more than the predetermined amount.
In addition, as in Comparative Examples 2 to 5 and Comparative Examples 7 to 8, even if the conventionally studied coating agents are treated in the same manner, the water resistance is inferior to that of the Examples of the present invention and is poor. It was evaluation.
In addition, although the water resistance evaluation of the comparative example 9 was the favorable range, it was inferior compared with the Example of this invention.

樹脂組成物の調製Preparation of resin composition

実施例11
ポリアミド樹脂100質量部に対し、酸化マグネシウム系フィラー(A-1)300質量部を配合して、250℃で5分間混練した。混練物を金型(150×50×10mm)に入れ、20MPaに加圧して250℃で5分間プレスして成型体を作製した。
Example 11
300 parts by mass of magnesium oxide filler (A-1) was blended with 100 parts by mass of the polyamide resin, and kneaded at 250 ° C. for 5 minutes. The kneaded product was put into a mold (150 × 50 × 10 mm), pressurized to 20 MPa and pressed at 250 ° C. for 5 minutes to prepare a molded body.

実施例12〜14及び比較例11〜19
実施例2〜4及び比較例1〜9で得られた酸化マグネシウム系フィラー(B-1、C-1、A-2、A-3、A-4、A-5、A-6、A-7、A-8、A-9、A-10、D-1)について、実施例11と同様にして成型体を得た。
Examples 12-14 and Comparative Examples 11-19
Magnesium oxide fillers obtained in Examples 2 to 4 and Comparative Examples 1 to 9 (B-1, C-1, A-2, A-3, A-4, A-5, A-6, A- 7, A-8, A-9, A-10, D-1) were obtained in the same manner as in Example 11 to obtain a molded product.

上記の方法により作製した樹脂組成物成型体の熱伝導率を測定した。
「熱伝導率測定」:ASTM−E1503に準拠して測定した。熱伝導率が3.0W/mK以上であれば良好とし、それより小さいものは不良とした。測定結果を表3に示す。
The thermal conductivity of the molded resin composition produced by the above method was measured.
“Thermal conductivity measurement”: Measured according to ASTM-E1503. A thermal conductivity of 3.0 W / mK or higher was considered good, and a smaller thermal conductivity was considered defective. Table 3 shows the measurement results.

Figure 2011068757
Figure 2011068757

表3の結果より、実施例11〜14と比較例11を較べると明らかに実施例の熱伝導率が良好であることがわかる。これは、本発明の請求項に規定の酸化マグネシウムであっても被覆剤で処理されていないため、樹脂組成物の混練時に酸化マグネシウムが樹脂中に均一に分散しなかったためと推察する。
また、比較例14は処理剤にエポキシシランカップリング剤を用いたもので、比較的良好な熱伝導率を示したが、耐水性評価が不良であり使用できない。
耐水性が良好で樹脂に混練した時の樹脂組成物の熱伝導率が良好な酸化マグネシウムは、本発明の請求項に記載のBET比表面積と平均2次粒子径を有する酸化マグネシウムを本発明の請求項に記載の被覆剤で処理した酸化マグネシウム系フィラーである。
From the results of Table 3, it can be seen that when Examples 11 to 14 and Comparative Example 11 are compared, the thermal conductivity of Examples is clearly good. This is presumably because the magnesium oxide specified in the claims of the present invention was not treated with the coating agent, so that the magnesium oxide was not uniformly dispersed in the resin during the kneading of the resin composition.
Moreover, although the comparative example 14 used the epoxy silane coupling agent for the processing agent and showed comparatively favorable heat conductivity, water resistance evaluation is unsatisfactory and cannot be used.
Magnesium oxide having good water resistance and good thermal conductivity of the resin composition when kneaded with resin is magnesium oxide having a BET specific surface area and an average secondary particle diameter according to the claims of the present invention. A magnesium oxide filler treated with the coating agent according to claim.

Claims (4)

式(1)の被覆剤を酸化マグネシウムに対して1〜10質量%表面被覆した、BET比表面積が0.1〜100m2/g、平均2次粒子径が0.5〜20μmの酸化マグネシウムであることを特徴とする高耐水性熱伝導フィラー。
(CkH(2k+1))n-Si-(OCmH(2m+1))(4-n) [k:6以上、m:2以下、n:1〜3] 式(1)
Magnesium oxide having a BET specific surface area of 0.1 to 100 m 2 / g and an average secondary particle diameter of 0.5 to 20 μm, which is obtained by coating the coating agent of formula (1) with 1 to 10% by mass with respect to magnesium oxide. A highly water resistant heat conductive filler characterized by being.
(C k H (2k + 1) ) n -Si- (OC m H (2m + 1) ) (4-n) [k: 6 or more, m: 2 or less, n: 1 to 3] Formula (1)
BET比表面積が1〜20m2/g、平均2次粒子径が0.5〜20μmの酸化マグネシウムである請求項1に記載の高耐水性熱伝導フィラー。 The highly water-resistant heat conductive filler according to claim 1, which is magnesium oxide having a BET specific surface area of 1 to 20 m 2 / g and an average secondary particle diameter of 0.5 to 20 µm. BET比表面積が1〜50m2/g、平均2次粒子径が0.5〜5μmの水酸化マグネシウムを800〜2000℃で焼成して得られた酸化マグネシウムを、式(1)の被覆剤で酸化マグネシウムに対して1〜10質量%乾式表面被覆した請求項1又は請求項2に記載の高耐水性熱伝導フィラー。 Magnesium oxide obtained by baking magnesium hydroxide having a BET specific surface area of 1 to 50 m 2 / g and an average secondary particle size of 0.5 to 5 μm at 800 to 2000 ° C. is coated with the coating agent of the formula (1). The highly water-resistant heat conductive filler according to claim 1 or 2, wherein the dry surface coating is 1 to 10 mass% with respect to magnesium oxide. 合成樹脂100質量部に対し、請求項1又は請求項2に記載の高耐水性熱伝導フィラーを100〜500質量部配合した樹脂組成物。
The resin composition which mix | blended 100-500 mass parts of the highly water-resistant heat conductive fillers of Claim 1 or Claim 2 with respect to 100 mass parts of synthetic resins.
JP2009220486A 2009-09-25 2009-09-25 Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition Pending JP2011068757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220486A JP2011068757A (en) 2009-09-25 2009-09-25 Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220486A JP2011068757A (en) 2009-09-25 2009-09-25 Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition

Publications (1)

Publication Number Publication Date
JP2011068757A true JP2011068757A (en) 2011-04-07

Family

ID=44014337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220486A Pending JP2011068757A (en) 2009-09-25 2009-09-25 Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition

Country Status (1)

Country Link
JP (1) JP2011068757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119462A1 (en) * 2013-01-30 2014-08-07 Dic株式会社 Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material
WO2018180123A1 (en) * 2017-03-28 2018-10-04 宇部マテリアルズ株式会社 Coated magnesium oxide particle and method for producing same, and thermally conductive resin composition
US10121717B2 (en) 2014-09-29 2018-11-06 Sekisui Chemical Co., Ltd. Carbon-coated thermal conductive material
WO2021193690A1 (en) * 2020-03-26 2021-09-30 日本アエロジル株式会社 Insulating filler and production method therefor, insulating material containing said insulating filler and production method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH09235447A (en) * 1996-02-28 1997-09-09 Polyplastics Co Polyoxymethylene composition
JPH09509687A (en) * 1994-02-28 1997-09-30 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー TiO 2 with a fluoride ion coating Bottom 2 Organosilicon treatment of pigments
JPH11199776A (en) * 1998-01-12 1999-07-27 Kyowa Chem Ind Co Ltd Flowable thermally conductive silicone rubber composition
JPH11209618A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Heat-conductive silicone rubber composition
JP2000129160A (en) * 1998-08-17 2000-05-09 Shin Etsu Chem Co Ltd Aluminum nitride powder
JP2001115057A (en) * 1999-08-06 2001-04-24 Kyowa Chem Ind Co Ltd Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
JP2004131542A (en) * 2002-10-09 2004-04-30 Asahi Kasei Chemicals Corp Aluminum pigment
JP2006501345A (en) * 2002-10-03 2006-01-12 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Pigment composition containing metallic aluminum particles
WO2009136508A1 (en) * 2008-05-08 2009-11-12 富士高分子工業株式会社 Heat conductive resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH09509687A (en) * 1994-02-28 1997-09-30 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー TiO 2 with a fluoride ion coating Bottom 2 Organosilicon treatment of pigments
JPH09235447A (en) * 1996-02-28 1997-09-09 Polyplastics Co Polyoxymethylene composition
JPH11199776A (en) * 1998-01-12 1999-07-27 Kyowa Chem Ind Co Ltd Flowable thermally conductive silicone rubber composition
JPH11209618A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Heat-conductive silicone rubber composition
JP2000129160A (en) * 1998-08-17 2000-05-09 Shin Etsu Chem Co Ltd Aluminum nitride powder
JP2001115057A (en) * 1999-08-06 2001-04-24 Kyowa Chem Ind Co Ltd Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
JP2006501345A (en) * 2002-10-03 2006-01-12 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Pigment composition containing metallic aluminum particles
JP2004131542A (en) * 2002-10-09 2004-04-30 Asahi Kasei Chemicals Corp Aluminum pigment
WO2009136508A1 (en) * 2008-05-08 2009-11-12 富士高分子工業株式会社 Heat conductive resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119462A1 (en) * 2013-01-30 2014-08-07 Dic株式会社 Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material
JPWO2014119462A1 (en) * 2013-01-30 2017-01-26 Dic株式会社 Thermally conductive filler, method for producing the same, resin composition using the same, molded product thereof, and high thermal conductive material
US10121717B2 (en) 2014-09-29 2018-11-06 Sekisui Chemical Co., Ltd. Carbon-coated thermal conductive material
WO2018180123A1 (en) * 2017-03-28 2018-10-04 宇部マテリアルズ株式会社 Coated magnesium oxide particle and method for producing same, and thermally conductive resin composition
WO2021193690A1 (en) * 2020-03-26 2021-09-30 日本アエロジル株式会社 Insulating filler and production method therefor, insulating material containing said insulating filler and production method therefor
JP2021155243A (en) * 2020-03-26 2021-10-07 日本アエロジル株式会社 Insulating filler and method for manufacturing the same, and insulating material containing the insulating filler and method for manufacturing the same
TWI800807B (en) * 2020-03-26 2023-05-01 日商日本艾羅西爾股份有限公司 Insulating filler and method for producing same, insulating material containing same and method for producing same
US11718729B2 (en) 2020-03-26 2023-08-08 Nippon Aerosil Co., Ltd. Insulating filler and production method therefor, insulating material containing said insulating filler and production method therefor

Similar Documents

Publication Publication Date Title
JP5484329B2 (en) Surface-modified silica produced by pyrolysis
JP4884691B2 (en) Synthetic rubber composition
JP6574324B2 (en) Resin composition for semiconductor encapsulation
JP2011068757A (en) Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition
WO2018189919A1 (en) Filler for resin composition, filler-containing slurry composition, and filler-containing resin composition
WO2022059661A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
JP2020100561A (en) Silane-treated forsterite microparticles and method for producing the same, organic solvent dispersion of silane-treated forsterite microparticles, and method for producing the same
JP6378315B2 (en) Aluminum nitride powder with excellent water resistance
JP7171829B2 (en) Aluminum nitride filler
JP5924463B1 (en) Method for producing barium sulfate powder and barium sulfate powder
JP2006052279A (en) Carbon black colorant for semiconductor sealing material and method for producing the same
JP6805538B2 (en) Silica particle dispersion and surface-treated silica particles
JP2009286668A (en) Magnesium hydroxide-based thermally conductive filler, method for producing the same, thermally conductive resin composition and molded product
KR101164054B1 (en) Preparation method of carbonaceous refractories using surface-treated graphite aggregate
WO2022059659A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipating component
JP6622285B2 (en) Magnesium oxide powder, resin composition containing the same, and method for producing magnesium oxide powder
TWI630188B (en) Thermal conductive filler and thermal conductive resin composition containing the same
WO2021200486A1 (en) Carbon-containing alumina powder, resin composition, heat dissipating component, and method for producing carbon-containing alumina powder
JP2015193493A (en) High density alumina and manufacturing method thereof
SG188093A1 (en) Siliceous powder, process for production of the same, and use thereof
WO2001010958A1 (en) Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP6312735B2 (en) Thermally conductive filler for resin
CN115298138B (en) Insulating filler and method for producing same, insulating material containing same, and method for producing same
WO2024190205A1 (en) Magnesium oxide particle fused body and method for producing same
JP2022178874A (en) Magnesium oxide particle, resin composition, and method of producing magnesium oxide particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

RD02 Notification of acceptance of power of attorney

Effective date: 20120402

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Effective date: 20130528

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029