WO2001010958A1 - Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions - Google Patents

Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions Download PDF

Info

Publication number
WO2001010958A1
WO2001010958A1 PCT/JP2000/005147 JP0005147W WO0110958A1 WO 2001010958 A1 WO2001010958 A1 WO 2001010958A1 JP 0005147 W JP0005147 W JP 0005147W WO 0110958 A1 WO0110958 A1 WO 0110958A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
oxide particles
resin
resin composition
weight
Prior art date
Application number
PCT/JP2000/005147
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Anabuki
Original Assignee
Kyowa Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co., Ltd. filed Critical Kyowa Chemical Industry Co., Ltd.
Priority to AU61839/00A priority Critical patent/AU6183900A/en
Publication of WO2001010958A1 publication Critical patent/WO2001010958A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to magnesium oxide particles and a resin composition having high acid resistance and high hydration resistance.
  • the present invention has a high melting point (about 2,800 ° C), high electrical insulation, low dielectric loss, high light transmission, high thermal conductivity, non-toxicity, basicity, etc. Adds high acid resistance, high hydration resistance and high fluidity to physical properties, and improves thermal conductivity of resin, heat-resistant material, electric insulating material, sealing material, sheathed heater filler, optical material, abrasive material, etc.
  • the present invention relates to magnesium oxide particles useful for:
  • the present invention also relates to a resin composition containing the magnesium oxide particles.
  • Magnesium oxide particles are classified into lightly calcined magnesium oxide (about 600 to 900 ° C and dead calcined magnesium oxide (about 1,100 to 1,500 ° C). It utilizes the excellent chemical activity for neutralization of halogen and neutralization of halogen, and its typical use is, for example, an acid acceptor for halogenated rubber such as chloroprene and chlorosulfonated polyethylene.
  • the latter is a heat-resistant container that makes use of the excellent physical properties of magnesium oxide particles, that is, its high melting point (about 2,800 ° C), high electrical insulation at high temperatures, translucency over a wide wavelength range, and high thermal conductivity.
  • Japanese Patent Application Laid-Open No. 8-85474 proposes a method of firing at a melting temperature of 1,600 ° C or higher and lower than a melting temperature (2,800 ° C).
  • the crystal growth of the magnesium oxide particles is poor for the firing temperature, and the firing results in a large mass, which requires strong grinding.
  • the single crystal of the magnesium oxide particles that have grown so long is broken, and various lattice defects are generated on the crystal surface. For this reason, there was a problem that satisfactory hydration resistance was not exhibited, and at the same time, the external shape was irregular, the flowability was poor, and it was difficult to highly fill the resin.
  • Japanese Patent Application Laid-Open No. 61-36119 discloses that an aqueous solution containing a water-soluble magnesium salt is reacted with 1 to 3.5 equivalents of ammonia with respect to 1 equivalent of magnesium in the presence of magnesium hydroxide species.
  • Magnesium hydroxide consisting of apparent spherical aggregates having an average secondary particle diameter of 5 to 500 / m is synthesized and calcined at 1,200 to 2,000 ° C. Suggest a way.
  • a water-soluble magnesium salt aqueous solution is reacted with a predetermined amount of ammonia in the presence of magnesium hydroxide particles, and then calcined at 1,200 to 2,000 ° C.
  • the magnesium oxide particles obtained have improved fluidity and resin filling properties compared to powdered products.
  • the powdered product is a coarse magnesium oxide particle (not spherical) having an irregular outer shape with an average particle diameter of about 10 to 20 m or less, which is obtained by mechanical pulverization.
  • the magnesium hydroxide particles before calcination are relatively large crystals and have a scaly shape, the sinterability is improved compared to the case of powdered magnesium hydroxide, but it is still unsatisfactory.
  • JP-A-62-28811 and JP-A-6-3-4117 disclose that magnesium oxide fine powder is surface-treated with an organic silicate compound, and then heat-treated. A method of forming a silica coating on the particle surface has been proposed.
  • Japanese Patent Application Laid-Open No. 7-171928 solves the above-mentioned problems of the prior art, and has a high flowability, excellent workability, and a high resin content necessary for sufficient thermal conductivity improvement.
  • the hydration-resistant magnesium oxide particles have a further excellent hydration resistance and can be highly filled into epoxy resin, polyester resin, polyolefin resin, silicone rubber, etc.
  • the present invention provides a method for producing magnesium oxide particles capable of imparting sufficient thermal conductivity without decreasing the inherent mechanical strength and electrical properties of the resin by increasing the affinity between the magnesium oxide particles and the resin.
  • An object of the present invention is to provide magnesium oxide particles in which these problems are improved.
  • Another object of the present invention is to provide a resin composition which has a sufficient thermal conductivity, has a small decrease in mechanical strength, and provides a molded article having excellent properties as an electronic material.
  • Still another object of the present invention is to provide a resin composition which can provide a molded article having sufficiently satisfactory properties even at a high temperature and in an atmosphere in contact with an acidic substance even with a high filling composition of magnesium oxide particles. Is to do. Means for solving the problem
  • Another object of the present invention is to provide (A) 100 parts by weight of a synthetic resin and (B) 50 to 1,000 parts by weight of magnesium oxide particles surface-treated with an acidic phosphate represented by the above formula (1). This is achieved by a resin composition that substantially becomes.
  • the magnesium oxide particles have an average secondary particle diameter of 0.1 to 130 xm, preferably 0.5 to 50 m, as measured by a laser single light diffraction scattering method, and are also measured by a BET method.
  • the specific surface area is between 0.1 and 5 m 2 Zg, preferably between 0.1 and 3 m 2 / g.
  • the magnesium oxide particles may be manufactured by various methods. For example, a method described in JP-A-6-171928, that is, high-dispersion magnesium hydroxide is fired at a predetermined temperature, and then the resulting fired material is pulverized and classified to a predetermined particle size so as not to substantially destroy the crystal. Those obtained by the method can be used. According to this method, magnesium oxide particles having high fluidity, high filling property and high hydration resistance can be obtained. The magnesium oxide particles are obtained by granulating and drying a highly dispersible magnesium hydroxide slurry by spray drying or the like, and firing at a predetermined temperature, preferably at a temperature of about 1,100 to 1,600 ° C. Magnesium oxide particles having an egg-like shape, which are preferable for the resin composition of the present invention.
  • the magnesium oxide particles of the present invention are those whose surfaces have been surface-treated with an acidic phosphoric acid ester represented by the above formula (1) (hereinafter referred to as “surface treating agent”).
  • R is an alkyl group of C 4 to ( ⁇ . Or an alkenyl group of C 4 to C 3Q . And these alkyl or alkenyl groups may be linear or branched.
  • Preferred R is, C 8 ⁇ C 2.
  • N is 1 or 2, which means that the phosphate ester may be either a monoester type or a diester type. Further, a mixture of a monoester type and a diester type may be used.
  • phosphate esters are butyl acid phosphate, 2-ethyl hexyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, g2-ethyl hexyl phosphate, and o. Rail phosphate and the like. Of these, stearyl acid phosphate is most preferred.
  • the amount of the surface treatment agent attached to the magnesium oxide particles is 0.1 to 10% by weight, preferably 0.5 to 7% by weight. If the amount of the surface treatment agent is less than the above range, the effect of improving water resistance and acid resistance is insufficient.If the amount is more than the above range, the effect of improving water resistance and acid resistance is not further improved. Conversely, there is a possibility that the mechanical strength such as tensile strength and Izod impact strength of a molded product obtained from the synthetic resin composition containing the magnesium oxide particles is reduced.
  • the surface treatment of the magnesium oxide particles with the surface treatment agent is a method of directly heating the magnesium oxide particles and the surface treatment agent; the surface treatment agent dissolved in the organic solvent is directly sprayed or mixed on the magnesium oxide particles.
  • a method of adding a surface treating agent dissolved in an organic solvent to a magnesium oxide slurry suspended in an organic solvent, mixing and separating the organic solvent, volatilizing and removing, and the like can be used. Magnesium oxide particles surface-treated by these methods not only have excellent acid resistance and hydration resistance, but also have high fluidity and high filling properties.
  • the advantage can be remarkably exhibited by blending the particles with a synthetic resin.
  • synthetic resin those conventionally used as a high thermal conductive material or an electrical insulating material by mixing magnesium oxide particles can be advantageously used.
  • synthetic resins include epoxy resin Resin, silicone resin, phenol resin, diaryl phthalate resin, polyimide resin, polyphenylene sulfide resin, acrylic rubber, butyl rubber, ethylene propylene rubber, ethylene acetate biel copolymer, ethylene acrylate copolymer or fluorine resin, etc. Is mentioned.
  • epoxy resins or silicone resins are preferred, and epoxy resins are particularly suitable for the resin composition of the present invention.
  • Specific examples of epoxy resins include 4,4'-bis (2,3-epoxypropoxy) biphenyl and 4,4'-bis (2,3-epoxypropoxy) 3,3'5,5'- Tetramethylbiphenyl, 4,4'-bis (2,3-epoxypropoxy) 1,3,3'5,5'-tetraethylbiphenyl, 4,4'-bis (2,3-epoxypropoxy) Biphenyl type epoxy resin having biphenyl skeleton, such as -3,3'5,5, -tetramethyl-2-chlorochlorophenyl; 1,5-di (2,3-epoxypropoxy) naphthalene, 1,6- Di (2,3—epoxypropoxy) naphthene-type epoxy resin such as naphthylene; 4,4'-bis (2,3-epoxypropoxy) stilbene; 4,4'-bis
  • the magnesium oxide particles are 50 to 100 parts by weight, preferably 60 to 500 parts by weight, based on 100 parts by weight of the synthetic resin (A). More preferably, it is blended in an amount of 70 to 400 parts by weight.
  • the mixing of the synthetic resin and the magnesium oxide particles is carried out by a commonly known means in kneading a filler and a resin.
  • ADVANTAGE OF THE INVENTION According to this invention, a magnesium oxide particle can be highly filled into a resin, and since the obtained composition also has excellent fluidity, it is excellent in moldability. Molded articles formed from the resin composition have good acid resistance and hydration resistance, and molded articles highly filled with magnesium oxide have high thermal conductivity. It can be used advantageously as a component material.
  • Magnesium hydroxide having an average secondary particle diameter of 0.80 // m and a BET specific surface area of 6.3 m 2 Zg was calcined at 1,300 ° C to obtain magnesium oxide.
  • This magnesium oxide was pulverized and classified.
  • the obtained magnesium oxide particles have an average secondary particle diameter of about 2 m, a maximum particle diameter of 16 wm, and a BET specific surface area of 1.6 m 2 Zg, as measured by a laser single light diffraction scattering method, and are observed with a scanning electron microscope. As a result, the particles were almost spherical magnesium oxide particles.
  • Comparative Example 1 The same acid resistance test and hydration resistance test as in Example 1 were performed using the magnesium oxide particles before the stearyl acid phosphate treatment of Example 1.
  • Example 2 The same surface treatment and acid resistance test and hydration resistance test as in Example 1 were completed using vinyltriethoxysilane instead of stearyl acid phosphate in Example 1, and the test was completed.
  • Example 1 and Comparative Examples 1 and 2 were blended in an epoxy resin at a ratio satisfying the following blending conditions, and the resulting composition was stirred and kneaded while being pulled by a vacuum pump. Then a stainless steel bat (8 cmX 1 2 cmX 3 cm), pre-cured (110 ° C, 2 hours), and post-cured (150 ° C, 3 hours). The thermal conductivity and the water absorption of the obtained molded product were measured. The results are shown in Table 3.
  • the water absorption and the thermal conductivity were measured by the following methods.
  • the weight change was measured using a thermo-hygrostat (Advantech Toyo AGX-326) at 85 ° C and 85% RH.
  • Epoxy resin (Epicoat 828, manufactured by Yuka Shell) 100 ⁇ 15 Hardener (Rikasid MH-700, manufactured by Shin Nippon Rika) 80 parts Hardening accelerator (BDMA, manufactured by Koei Chemical) 1 part Magnesium oxide particles 300 ⁇ 15
  • the magnesium particles obtained were the particles of Example 1 in Example 2, the particles of Comparative Example 1 in Comparative Example 5, and the particles of Comparative Example 2 in Comparative Example 6.

Abstract

Magnesium oxide particles whose surfaces are treated with an acid phosphate ester represented by the general formula (1) and which exhibit high acid resistance and high hydration resistance; and synthetic resin compositions containing the magnesium oxide particles (wherein n is 1 or 2; and R is C4-C30 alkyl or C4-C30 alkenyl). The resin compositions permit high magnesium oxide contents and are excellent in fluidity and easy of molding. Articles molded from the compositions have high acid resistance and high hydration resistance, thus being valuable as materials of electronic or electrical components.

Description

明 細 書 高耐酸性および高耐水和性の酸化マグネシゥム粒子および樹脂組成物 発明の詳細な説明  Description Magnesium oxide particles and resin composition having high acid resistance and high hydration resistance Detailed description of the invention
発明の属する技術分野  Technical field to which the invention belongs
本発明は高耐酸性および高耐水和性の酸化マグネシウム粒子および樹脂組成物 に関する。  The present invention relates to magnesium oxide particles and a resin composition having high acid resistance and high hydration resistance.
さらに詳しくは、 本発明は高融点 (約 2 , 8 0 0 °C)、 高電気絶縁性、 低誘電体 損失、 高透光性、 高熱伝導性、 無毒性、 塩基性等の酸化マグネシウム本来の物性 に、 さらに高耐酸性、 高耐水和性および高流動性を付加し、 樹脂の熱伝導性改良 剤、 耐熱材料、 電気絶縁材料、 封止材、 シーズヒーター充填剤、 光学材料、 研磨 材等に有用な酸化マグネシウム粒子に関する。 また本発明は、 この酸化マグネシ ゥム粒子を含有する樹脂組成物にも関する。  More specifically, the present invention has a high melting point (about 2,800 ° C), high electrical insulation, low dielectric loss, high light transmission, high thermal conductivity, non-toxicity, basicity, etc. Adds high acid resistance, high hydration resistance and high fluidity to physical properties, and improves thermal conductivity of resin, heat-resistant material, electric insulating material, sealing material, sheathed heater filler, optical material, abrasive material, etc. The present invention relates to magnesium oxide particles useful for: The present invention also relates to a resin composition containing the magnesium oxide particles.
従来の技術  Conventional technology
酸化マグネシウム粒子は軽焼成酸化マグネシウム (約6 0 0〜9 0 0 °0 と死 焼成酸化マグネシウム (約 1 , 1 0 0〜1 , 5 0 0 °C) とに分類される。 前者は 酸物質の中和およびハロゲンの中和に対する優れた化学的活性を利用するもので あり、 その代表的な用途としては例えばクロ口プレン、 クロロスルホン化ポリエ チレン等のハロゲン化ゴムの受酸剤がある。 後者は酸化マグネシウム粒子の優れ た物理的性質、 すなわち高融点 (約 2 , 8 0 0 °C)、 高温における高電気絶縁性、 広い波長域に亙る透光性および高熱伝導性を利用した耐熱容器、 耐熱部品、 断熱 材、 I C基板、 レンズ、 ナトリウムランプ容器、 シーズヒーター、 樹脂等の充填 材、 研磨材等に用いられる。 しかし酸化マグネシウム粒子は水または水蒸気によ り徐々に侵されて水酸化マグネシウム粒子に変化 (水和) し、 上記した種々の優 れた物理的性質が失われるという問題点があり、 その利用範囲を狭めている。 この問題点を改良するため、 特開昭 6 1 - 8 5 4 7 4号公報は、 1 , 6 0 0 °C 以上溶融温度 (2, 8 0 0 °C) 未満で焼成する方法を提案している。 しかし 1, 6 0 0 °C以上酸化マグネシウム粒子の溶融温度未満で焼成する方法では、 焼成温 度の割には酸化マグネシウム粒子の結晶成長が悪く、 しかも焼成により大きな塊 となり、 強度の粉碎を必要とするため、 せっかく成長した酸化マグネシウム粒子 の単結晶が破壊され、 結晶表面に種々の格子欠陥を生ずる。 このため、 満足でき る耐水和性を示さず、 同時に外形が不定形となり、 流動性も悪く、 樹脂への高充 填を困難ならしめるという問題があつた。 Magnesium oxide particles are classified into lightly calcined magnesium oxide (about 600 to 900 ° C and dead calcined magnesium oxide (about 1,100 to 1,500 ° C). It utilizes the excellent chemical activity for neutralization of halogen and neutralization of halogen, and its typical use is, for example, an acid acceptor for halogenated rubber such as chloroprene and chlorosulfonated polyethylene. The latter is a heat-resistant container that makes use of the excellent physical properties of magnesium oxide particles, that is, its high melting point (about 2,800 ° C), high electrical insulation at high temperatures, translucency over a wide wavelength range, and high thermal conductivity. It is used for heat-resistant parts, heat-insulating materials, IC substrates, lenses, sodium lamp containers, sheathed heaters, fillers such as resins, abrasives, etc. However, magnesium oxide particles are gradually attacked by water or water vapor and become hydroxylated. There is a problem that magnesium particles are changed (hydrated) and the above-mentioned various excellent physical properties are lost, and the range of use is narrowed. Japanese Patent Application Laid-Open No. 8-85474 proposes a method of firing at a melting temperature of 1,600 ° C or higher and lower than a melting temperature (2,800 ° C). In the method of firing at a temperature of 600 ° C or higher and lower than the melting temperature of the magnesium oxide particles, the crystal growth of the magnesium oxide particles is poor for the firing temperature, and the firing results in a large mass, which requires strong grinding. However, the single crystal of the magnesium oxide particles that have grown so long is broken, and various lattice defects are generated on the crystal surface. For this reason, there was a problem that satisfactory hydration resistance was not exhibited, and at the same time, the external shape was irregular, the flowability was poor, and it was difficult to highly fill the resin.
また特開昭 6 1 - 3 6 1 1 9号公報は、水溶性マグネシウム塩を含む水溶液に、 マグネシウム 1当量に対し 1〜3 . 5当量のアンモニアを水酸化マグネシウムの 種の存在下に反応させ、 平均 2次粒子径 5〜 5 0 0 / mの見掛上球形の凝集体か らなる水酸化マグネシウムを合成し、 これを 1, 2 0 0〜2, 0 0 0 °Cで焼成す る方法を提案している。  Japanese Patent Application Laid-Open No. 61-36119 discloses that an aqueous solution containing a water-soluble magnesium salt is reacted with 1 to 3.5 equivalents of ammonia with respect to 1 equivalent of magnesium in the presence of magnesium hydroxide species. Magnesium hydroxide consisting of apparent spherical aggregates having an average secondary particle diameter of 5 to 500 / m is synthesized and calcined at 1,200 to 2,000 ° C. Suggest a way.
この提案方法において、 水溶性マグネシゥム塩水溶液と所定量のアンモニアを 水酸化マグネシウム粒子の種の存在下に反応させ、 ついで、 1 , 2 0 0〜2 , 0 0 0 °Cで焼成する方法により得られた酸化マグネシウム粒子は、 流動性と樹脂へ の充填性は、 粉末品に比して改良されている。 なお、 粉末品とは、 機械的粉砕で 得られる平均粒子径約 1 0〜2 0 m以下の外形が不定形である粗い酸化マグネ シゥム粒子 (球形でない) である。 しかし焼成前の水酸化マグネシウム粒子が比 較的大きな結晶であり、 しかも鱗片状外形をしているため、 焼結性は粉末水酸化 マグネシウムの場合よりも改良されてはいるが未だ満足できるものではなく、 ま た高温の焼成を必要とする。 また凝集体内部だけでなく凝集体同士が結合するた め、 強度の粉砕を必要とし、 このためほぼ球形の元の 2次凝集体も同時に破壊さ れるとともに、 結晶表面の欠陥部分が増加し、 その結果耐水和性が不十分である という問題を有している。  In this proposed method, a water-soluble magnesium salt aqueous solution is reacted with a predetermined amount of ammonia in the presence of magnesium hydroxide particles, and then calcined at 1,200 to 2,000 ° C. The magnesium oxide particles obtained have improved fluidity and resin filling properties compared to powdered products. Note that the powdered product is a coarse magnesium oxide particle (not spherical) having an irregular outer shape with an average particle diameter of about 10 to 20 m or less, which is obtained by mechanical pulverization. However, since the magnesium hydroxide particles before calcination are relatively large crystals and have a scaly shape, the sinterability is improved compared to the case of powdered magnesium hydroxide, but it is still unsatisfactory. And requires high temperature firing. In addition, not only the inside of the agglomerate but also the agglomerates are bonded to each other, so that strong pulverization is required. As a result, there is a problem that the hydration resistance is insufficient.
特開昭 6 2— 2 8 8 1 1 4号公報および特開昭 6 3— 4 5 1 1 7号公報は、 酸 化マグネシウム微粉末を有機シリケート化合物で表面処理後熱処理して酸化マグ ネシゥムの粒子表面にシリカの被膜を形成させる方法を提案している。  JP-A-62-28811 and JP-A-6-3-4117 disclose that magnesium oxide fine powder is surface-treated with an organic silicate compound, and then heat-treated. A method of forming a silica coating on the particle surface has been proposed.
この提案方法において酸化マグネシウム微粉末を有機シラン化合物で表面処理 して酸化マグネシウムの粒子表面にシラン化合物の被膜を形成させる方法は、 酸 化マグネシウム粒子の表面をシラン化合物で被膜するので、 単位面積当たりの耐 水和性は酸化マグネシウムそれ自体よりも改良された酸化マグネシウム粒子を提 供する。 しかし、 表面積が大きいため耐水和性が不十分であり、 また表面積が約In this proposed method, a method of forming a coating of a silane compound on the surface of magnesium oxide particles by surface-treating a fine powder of magnesium oxide with an organic silane compound is disclosed in US Pat. Since the surface of the magnesium oxide particles is coated with the silane compound, it provides magnesium oxide particles having improved hydration resistance per unit area over magnesium oxide itself. However, the hydration resistance is insufficient due to the large surface area, and the surface area is about
5〜2 0 m 2 Z gと大きいことに起因して多くの有機シランが必要となるので、 経済的でないことは勿論、 酸化マグネシウム粒子の優れた熱伝導性を低下させる という問題点を有していた。 Since a large amount of 5 to 20 m 2 Z g requires a large amount of organic silane, it is not economical and, of course, has a problem of lowering the excellent thermal conductivity of the magnesium oxide particles. I was
特開平 6— 1 7 1 9 2 8号公報は上記従来の技術が有していた課題を解決し、 流動性が高く作業性に優れるとともに、 十分な熱伝導性改良に必要な樹脂への高 充填を可能ならしめる 2次粒子径と高密度を有し、 かつ高耐水和性の酸化マグネ シゥムを従来の方法よりも、 より低温焼成で製造する方法を提供している。 さら には上記高耐水和性酸化マグネシウム粒子を有機シラン処理することにより、 一 層優れた耐水和性を有すると共に、 エポキシ樹脂、 ポリエステル樹脂、 ポリオレ フィン樹脂、 シリコーンゴム等への高充填か可能であり、 また酸化マグネシウム 粒子と樹脂との親和性が増し、 樹脂本来の機械的強度、 電気的性質を低下させず に十分な熱伝導性を付与できる酸化マグネシウム粒子の製造方法を提供している。  Japanese Patent Application Laid-Open No. 7-171928 solves the above-mentioned problems of the prior art, and has a high flowability, excellent workability, and a high resin content necessary for sufficient thermal conductivity improvement. We provide a method for producing magnesium oxide with a secondary particle size and high density that enables filling, and with high hydration resistance by firing at a lower temperature than conventional methods. Furthermore, by treating the above-mentioned highly hydrated magnesium oxide particles with an organic silane, the hydration-resistant magnesium oxide particles have a further excellent hydration resistance and can be highly filled into epoxy resin, polyester resin, polyolefin resin, silicone rubber, etc. In addition, the present invention provides a method for producing magnesium oxide particles capable of imparting sufficient thermal conductivity without decreasing the inherent mechanical strength and electrical properties of the resin by increasing the affinity between the magnesium oxide particles and the resin.
発明が解決しょうとする課題  Problems to be solved by the invention
しかしながら、 各用途とも高湿度および酸性物質との接触を余儀なくされる雰 囲気、 または条件下で使用されることが多々あり、 未だ低耐酸性および低耐水和 性という問題があった。  However, each application is often used in an atmosphere or under conditions where high humidity and contact with acidic substances are required, and there is still a problem of low acid resistance and low hydration resistance.
本発明の目的は、 これらの問題点が改良された酸化マグネシウム粒子を提供す ることにある。  An object of the present invention is to provide magnesium oxide particles in which these problems are improved.
本発明の他の目的は、 十分な熱伝導性を有しかつ機械的強度の低下が少なく、 電子材料として優れた性質を有する成形品を与える樹脂組成物を提供することに ある。  Another object of the present invention is to provide a resin composition which has a sufficient thermal conductivity, has a small decrease in mechanical strength, and provides a molded article having excellent properties as an electronic material.
本発明のさらに他の目的は、 酸化マグネシウム粒子の高充填組成であっても、 高温度および酸性物質との接触する雰囲気下において、 十分満足すべき性質の成 形品を与える樹脂組成物を提供することにある。 課題を解決するための手段 Still another object of the present invention is to provide a resin composition which can provide a molded article having sufficiently satisfactory properties even at a high temperature and in an atmosphere in contact with an acidic substance even with a high filling composition of magnesium oxide particles. Is to do. Means for solving the problem
本発明者の研究によれば、 本発明の目的は、 下記式 (1) According to the study of the present inventors, the object of the present invention is to obtain the following formula (1)
0  0
II  II
(RO)3-nP-(OH)n (1) (式中、 nは 1または 2、 Rは C4〜C3。のアルキル基または C4〜C3。のァルケ 二ル基を示す、) (RO) 3-n P- (OH) n (1) (wherein, n represents 1 or 2, R represents a C 4 to C 3 alkyl group or a C 4 to C 3 alkyl group) ,)
で表される酸性リン酸エステルで表面処理された高耐酸性および高耐水和性の酸 化マグネシウム粒子によって達成される。 This is achieved by high acid resistance and high hydration resistance magnesium oxide particles surface-treated with an acid phosphate represented by the formula:
また本発明の他の目的は、 (A)合成樹脂 100重量部および(B)前記式(1) で表される酸性リン酸エステルで表面処理された酸化マグネシウム粒子 50〜 1 , 000重量部より実質的になる樹脂組成物によって達成される。  Another object of the present invention is to provide (A) 100 parts by weight of a synthetic resin and (B) 50 to 1,000 parts by weight of magnesium oxide particles surface-treated with an acidic phosphate represented by the above formula (1). This is achieved by a resin composition that substantially becomes.
以下本発明についてさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明において、 酸化マグネシウム粒子は、 レーザ一光回折散乱法により測定 された平均二次粒子径が 0. 1〜130 xm、 好ましくは 0. 5〜 50 mであ り、 また BET法により測定された比表面積が 0. l〜5m2Zg、 好ましくは 0. 1〜 3m2/ gであるのが有利である。 In the present invention, the magnesium oxide particles have an average secondary particle diameter of 0.1 to 130 xm, preferably 0.5 to 50 m, as measured by a laser single light diffraction scattering method, and are also measured by a BET method. Advantageously, the specific surface area is between 0.1 and 5 m 2 Zg, preferably between 0.1 and 3 m 2 / g.
酸化マグネシゥム粒子は種々の方法で製造されたものでもよい。 例えば特開平 6 - 171928号公報に記載の方法、 すなわち、 高分散性水酸化マグネシウム を所定の温度で焼成し、 ついで該焼成物の結晶を実質的に破壊しないように所定 粒径に粉砕分級する方法により得られたものが使用できる。 この方法によれば、 高流動性、 高充填性かつ高耐水和性を有する酸化マグネシウム粒子が得られる。 この酸化マグネシウム粒子は高分散性水酸化マグネシウムスラリーを、 噴霧乾燥 などにより造粒乾燥し、 所定の温度で好ましくは約 1, 100〜1, 600°Cの 温度で焼成することにより得られる球状もしくはたまご状の形状を有する酸化マ グネシゥム粒子であって、 本発明の樹脂組成物のために好ましい。  The magnesium oxide particles may be manufactured by various methods. For example, a method described in JP-A-6-171928, that is, high-dispersion magnesium hydroxide is fired at a predetermined temperature, and then the resulting fired material is pulverized and classified to a predetermined particle size so as not to substantially destroy the crystal. Those obtained by the method can be used. According to this method, magnesium oxide particles having high fluidity, high filling property and high hydration resistance can be obtained. The magnesium oxide particles are obtained by granulating and drying a highly dispersible magnesium hydroxide slurry by spray drying or the like, and firing at a predetermined temperature, preferably at a temperature of about 1,100 to 1,600 ° C. Magnesium oxide particles having an egg-like shape, which are preferable for the resin composition of the present invention.
本発明の酸化マグネシウム粒子は、 その表面と前記式 (1) で表される酸性リ ン酸エステル (以下 "表面処理剤" という) で表面処理されたものである。 前記 式(1) において Rは C4〜(^。のアルキル基または C4〜C3Qのアルケニル基で あり、 これらアルキル基またはアルケニル基は直鎖でもよくまた分岐していても よい。 好ましい Rは、 C 8〜C 2。のアルキル基である。 また nは 1または 2であ り、 このことはリン酸エステルはモノエステル型もしくはジエステル型いずれで もよいことを意味する。 またモノエステル型とジエステル型の混合物であっても よい。 リン酸エステルの例としてはブチルアシッドフォスフェイ卜、 2—ェチル へキシルアシッドフォスフェイト、 ラウリルアシッドフォスフェイト、 トリデシ ルアシッドフォスフェイト、 ステアリルアシッドフォスフェイト、 ジー 2—ェチ ルへキシルフォスフェイト、 ォレイルァシッドフォスフェイト等が挙げられる。 これらのうち、 ステアリルアシッドフォスフェイトが最も好ましい。 The magnesium oxide particles of the present invention are those whose surfaces have been surface-treated with an acidic phosphoric acid ester represented by the above formula (1) (hereinafter referred to as “surface treating agent”). In the above formula (1), R is an alkyl group of C 4 to (^. Or an alkenyl group of C 4 to C 3Q . And these alkyl or alkenyl groups may be linear or branched. Preferred R is, C 8 ~C 2. Is an alkyl group. N is 1 or 2, which means that the phosphate ester may be either a monoester type or a diester type. Further, a mixture of a monoester type and a diester type may be used. Examples of phosphate esters are butyl acid phosphate, 2-ethyl hexyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, g2-ethyl hexyl phosphate, and o. Rail phosphate and the like. Of these, stearyl acid phosphate is most preferred.
酸化マグネシウム粒子を表面処理したときの表面処理剤の酸化マグネシウム粒 子に対する付着量は 0 . 1〜 1 0重量%、 好ましくは、 0 . 5〜7重量%である。 表面処理剤の付着量が、 上記範囲より少ない場合には耐水、 耐酸性の改善効果が 不十分であり、 また上記範囲より多い場合には耐水、 耐酸性の改善効果をさらに 向上させるものではなく、 逆に該酸化マグネシウム粒子を配合した合成樹脂組成 物から得られた成形品の引張強度、 アイゾット衝撃強度等の機械的強度等を低下 させる可能性がある。  When the magnesium oxide particles are subjected to the surface treatment, the amount of the surface treatment agent attached to the magnesium oxide particles is 0.1 to 10% by weight, preferably 0.5 to 7% by weight. If the amount of the surface treatment agent is less than the above range, the effect of improving water resistance and acid resistance is insufficient.If the amount is more than the above range, the effect of improving water resistance and acid resistance is not further improved. Conversely, there is a possibility that the mechanical strength such as tensile strength and Izod impact strength of a molded product obtained from the synthetic resin composition containing the magnesium oxide particles is reduced.
表面処理剤による酸化マグネシウム粒子の表面処理方法は酸化マグネシウム粒 子と表面処理剤を直接加熱する方法;有機溶剤に溶解させた表面処理剤を、 酸化 マグネシウム粒子に直接噴霧または混合処理後、 有機溶剤を揮発除去する方法; 有機溶剤に懸濁させた酸化マグネシウムスラリーに有機溶剤に溶解した表面処理 剤を加え、 混合処理後、 有機溶剤を分離、 揮発除去する方法等を用いることがで きる。 これら方法により表面処理された酸化マグネシウム粒子は耐酸性および耐 水和性が優れてレ ^るだけでなく高流動性および高充填性をも有している。  The surface treatment of the magnesium oxide particles with the surface treatment agent is a method of directly heating the magnesium oxide particles and the surface treatment agent; the surface treatment agent dissolved in the organic solvent is directly sprayed or mixed on the magnesium oxide particles. A method of adding a surface treating agent dissolved in an organic solvent to a magnesium oxide slurry suspended in an organic solvent, mixing and separating the organic solvent, volatilizing and removing, and the like can be used. Magnesium oxide particles surface-treated by these methods not only have excellent acid resistance and hydration resistance, but also have high fluidity and high filling properties.
前記した酸性リン酸エステルで表面処理された酸化マグネシウム粒子は、 耐酸 性および耐水和性が著しく優れているので、 この粒子を合成樹脂に配合すること によって、 その利点を顕著に発現することができる。 合成樹脂としては、 従来酸 化マグネシゥム粒子を配合して高熱伝導性材料あるいは電気絶縁材料などに使用 されているものが有利に利用できる。 合成樹脂の例としては、 例えばエポキシ樹 脂、 シリコーン樹脂、 フエノール樹脂、 ジァリルフタレート樹脂、 ポリイミド樹 脂、 ポリフエ二レンサルファイド樹脂、 アクリルゴム、 プチルゴム、 エチレンプ ロピレンゴム、 エチレン酢酸ビエル共重合体、 エチレンアクリル酸エステル共重 合体またはフッ素樹脂等が挙げられる。 これらのうち、 エポキシ樹脂またはシリ コーン樹脂が好ましく、ことにエポキシ樹脂が本発明の樹脂組成物に適している。 エポキシ樹脂の具体例としては、 例えば 4, 4 ' —ビス (2, 3 —エポキシプ ロボキシ) ビフエ二ル、 4 , 4 ' —ビス (2, 3—エポキシプロポキシ) 3 , 3 ' 5, 5 ' —テトラメチルビフエニル、 4, 4 ' 一ビス (2, 3 —エポキシプロボ キシ) 一 3 , 3 ' 5, 5 ' ーテトラェチルビフエニル、 4, 4 ' —ビス (2 , 3 一エポキシプロボキシ) ー3, 3 ' 5 , 5, ーテトラメチル— 2 —クロロビフエ ニルなど、 ビフエ二ル骨格を有するビフエ二ル型エポキシ樹脂; 1, 5—ジ (2, 3 —エポキシプロポキシ) ナフタレン、 1, 6—ジ (2 , 3 —エポキシプロポキ シ) ナフ夕レンなどのナフ夕レン型エポキシ樹脂; 4, 4 ' —ビス (2, 3—ェ ポキシプロポキシ) スチルベン、 4, 4 ' 一ビス (2 , 3 —エポキシプロポキシ) 一 3, 3 ' 5, 5 ' —テトラメチルスチルベンなどのスチルベン型エポキシ樹脂; クレゾールノボラック型エポキシ樹脂; フエノールノボラック型エポキシ樹脂; ビスフエノール A骨格含有ノボラック型エポキシ樹脂などのノボラック型ェポキ シ樹脂; フエノールァラルキル型エポキシ樹脂;ナフトールァラルキル型ェポキ シ樹脂などのァリールァラルキル型エポキシ樹脂;ジシクロペン夕ジェン骨格含 有エポキシ樹脂、 トリス (2, 3—エポキシプロボキシ) フエニルメタンなどの 多官能エポキシ樹脂などが挙げられる。 これらの中で、 ビフエニル型エポキシ樹 脂、 ナフ夕レン型エポキシ樹脂、 スチルベン型エポキシ樹脂等の 2官能エポキシ 樹脂が特に好ましく用いられる。 Since the magnesium oxide particles surface-treated with the above-mentioned acidic phosphate ester have remarkably excellent acid resistance and hydration resistance, the advantage can be remarkably exhibited by blending the particles with a synthetic resin. . As the synthetic resin, those conventionally used as a high thermal conductive material or an electrical insulating material by mixing magnesium oxide particles can be advantageously used. Examples of synthetic resins include epoxy resin Resin, silicone resin, phenol resin, diaryl phthalate resin, polyimide resin, polyphenylene sulfide resin, acrylic rubber, butyl rubber, ethylene propylene rubber, ethylene acetate biel copolymer, ethylene acrylate copolymer or fluorine resin, etc. Is mentioned. Of these, epoxy resins or silicone resins are preferred, and epoxy resins are particularly suitable for the resin composition of the present invention. Specific examples of epoxy resins include 4,4'-bis (2,3-epoxypropoxy) biphenyl and 4,4'-bis (2,3-epoxypropoxy) 3,3'5,5'- Tetramethylbiphenyl, 4,4'-bis (2,3-epoxypropoxy) 1,3,3'5,5'-tetraethylbiphenyl, 4,4'-bis (2,3-epoxypropoxy) Biphenyl type epoxy resin having biphenyl skeleton, such as -3,3'5,5, -tetramethyl-2-chlorochlorophenyl; 1,5-di (2,3-epoxypropoxy) naphthalene, 1,6- Di (2,3—epoxypropoxy) naphthene-type epoxy resin such as naphthylene; 4,4'-bis (2,3-epoxypropoxy) stilbene; 4,4'-bis (2,3) —Epoxypropoxy) 1,3'5,5'-Tetramethylstilbe Cresol novolak epoxy resin; phenol novolak epoxy resin; novolak epoxy resin such as bisphenol A skeleton-containing novolak epoxy resin; phenol aralkyl epoxy resin; naphthol aralkyl epoxy resin Examples include arylalkyl type epoxy resins such as silicone resins; epoxy resins having a dicyclopentene skeleton; polyfunctional epoxy resins such as tris (2,3-epoxypropoxy) phenylmethane. Among them, bifunctional epoxy resins such as biphenyl type epoxy resin, naphthylene type epoxy resin and stilbene type epoxy resin are particularly preferably used.
本発明の樹脂組成物において、 (A) 合成樹脂 1 0 0重量部に対して (B ) 前記 酸化マグネシウム粒子は 5 0〜 1, 0 0 0重量部、 好ましくは 6 0〜5 0 0重量 部、 より好ましくは 7 0〜4 0 0重量部の割合で配合される。 合成樹脂と酸化マ グネシゥム粒子との混合は、 充填剤と樹脂との混練において通常知られた手段が 採用される。 本発明によれば、 酸化マグネシウム粒子を樹脂中に高充填することができ、 ま た得られた組成物は流動性も優れているので成形加工性に優れている。 また樹脂 組成物から形成された成形物は、 耐酸性および耐水和性が良好であり、 酸化マグ ネシゥムを高充填した成形品は高い熱伝導性を有しているので、 電子部品もしく は電気部品の材料として有利に利用できる。 In the resin composition of the present invention, (B) the magnesium oxide particles are 50 to 100 parts by weight, preferably 60 to 500 parts by weight, based on 100 parts by weight of the synthetic resin (A). More preferably, it is blended in an amount of 70 to 400 parts by weight. The mixing of the synthetic resin and the magnesium oxide particles is carried out by a commonly known means in kneading a filler and a resin. ADVANTAGE OF THE INVENTION According to this invention, a magnesium oxide particle can be highly filled into a resin, and since the obtained composition also has excellent fluidity, it is excellent in moldability. Molded articles formed from the resin composition have good acid resistance and hydration resistance, and molded articles highly filled with magnesium oxide have high thermal conductivity. It can be used advantageously as a component material.
以下実施例を挙げ本発明を詳述する。  Hereinafter, the present invention will be described in detail with reference to examples.
実施例  Example
実施例 1 Example 1
平均 2次粒子径 0. 80 //m、 BET法比表面積 6. 3m2Zgである水酸化 マグネシウムを 1, 300°Cで焼成し酸化マグネシウムを得た。 この酸化マグネ シゥムを粉砕分級した。 得られた酸化マグネシゥム粒子はレーザ一光回折散乱法 で測定した平均 2次粒子径が約 2 m、 最大粒子径 16 wm、 BET法比表面積 1. 6m2Zgであり、 走査型電子顕微鏡で観察すると、 ほぼ球状の酸化マグネ シゥム粒子であった。 Magnesium hydroxide having an average secondary particle diameter of 0.80 // m and a BET specific surface area of 6.3 m 2 Zg was calcined at 1,300 ° C to obtain magnesium oxide. This magnesium oxide was pulverized and classified. The obtained magnesium oxide particles have an average secondary particle diameter of about 2 m, a maximum particle diameter of 16 wm, and a BET specific surface area of 1.6 m 2 Zg, as measured by a laser single light diffraction scattering method, and are observed with a scanning electron microscope. As a result, the particles were almost spherical magnesium oxide particles.
得られた酸化マグネシウム粒子 100 k gを三井三池製作所 (株) 製へンシェ ルミキサーに投入し、 攪拌下にステアリルァシッドフォスフェイト l k gを 6 0°Cエタノール 20リットルに溶解した液を徐々に加え、 5分間攪拌した後、 8 0 °c以上に加熱し溶媒のエタノールを除去した。  100 kg of the obtained magnesium oxide particles was put into a Henschel mixer manufactured by Mitsui Miike Seisakusho Co., Ltd. A solution prepared by dissolving lkg of stearyl acid phosphate in 20 liters of ethanol at 60 ° C was gradually added with stirring. After stirring for minutes, the mixture was heated to 80 ° C. or higher to remove the solvent ethanol.
次に、 東亜電波工業 (株) 製自動ス夕ット滴定装置 AUT— 21を用いて、 耐 酸性試験を行った。 以下にその内容を示す。  Next, an acid resistance test was performed using an automatic squirt titrator AUT-21 manufactured by Toa Denpa Kogyo KK. The details are shown below.
ステアリルァシッドフォスフェイト処理酸化マグネシウム粒子 0. 5 gをエタ ノ一ル:水 = 1 : 1の混合溶液 50 c cに懸濁し、 攪拌下に 0. 1 N—硝酸を滴 下することにより pHを 4. 0に維持しながら一定時間後の 0. 1N—硝酸の消 費量を測定した。 その結果を表 1に示す。  0.5 g of magnesium oxide particles treated with stearyl acid phosphate are suspended in 50 cc of a mixed solution of ethanol: water = 1: 1, and the pH is lowered by dropping 0.1 N-nitric acid with stirring. While maintaining at 4.0, the consumption of 0.1N-nitric acid after a certain time was measured. The results are shown in Table 1.
耐水和性試験は、 ステアリルアシッドフォスフェイト処理酸化マグネシウムを 2. 5倍(重量比) の水と混合し、 105DCで 2. 5時間乾燥した後の重量増加% を測定した。 その結果を表 2に示す。 In the hydration resistance test, stearyl acid phosphate-treated magnesium oxide was mixed with 2.5 times (weight ratio) of water, and the weight gain after drying at 105 DC for 2.5 hours was measured. The results are shown in Table 2.
比較例 1 実施例 1のステアリルァシッドフォスフェイ卜処理前の酸化マグネシウム粒子 を用いて実施例 1と同様の耐酸性試験および耐水和性試験を行った。 Comparative Example 1 The same acid resistance test and hydration resistance test as in Example 1 were performed using the magnesium oxide particles before the stearyl acid phosphate treatment of Example 1.
比較例 2 Comparative Example 2
実施例 1のステアリルァシッドフォスフェイトの代わりにビニルトリエトキシ シランを用いて実施例 1と同様の表面処理および耐酸性試験および耐水和性試験 ¾τί了った。  The same surface treatment and acid resistance test and hydration resistance test as in Example 1 were completed using vinyltriethoxysilane instead of stearyl acid phosphate in Example 1, and the test was completed.
比較例 3 Comparative Example 3
比較例 2のビニルトリエトキシシラン処理酸化マグネシウム粒子を 800°Cで 1時間焼成し、 実施例 1と同様の耐酸性試験および耐水和性試験を行った。 実施例 1および比較例 1、 2、 3の結果を表 1および表 2に示す。 表 1  The vinyltriethoxysilane-treated magnesium oxide particles of Comparative Example 2 were fired at 800 ° C. for 1 hour, and subjected to the same acid resistance test and hydration resistance test as in Example 1. Tables 1 and 2 show the results of Example 1 and Comparative Examples 1, 2, and 3. table 1
Figure imgf000010_0001
表 2
Figure imgf000010_0001
Table 2
Figure imgf000010_0002
実施例 2および比較例 4〜 6
Figure imgf000010_0002
Example 2 and Comparative Examples 4 to 6
実施例 1および比較例 1〜 2で得られたそれぞれの酸化マグネシウム粒子を下 記配合条件となる割合でエポキシ樹脂に配合し、 得られた組成物を真空ポンプで 引きながら攪拌し、 混練した。 次いでステンレスバット (8 cmX 1 2 cmX 3 cm) に流し込み、 前硬化 (1 10°C、 2時間) させ、 さらに後硬化 (150°C、 3時間) させた。 得られた成形物の熱伝導率および吸水率を測定した。 その結果 を表 3に示す。 The respective magnesium oxide particles obtained in Example 1 and Comparative Examples 1 and 2 were blended in an epoxy resin at a ratio satisfying the following blending conditions, and the resulting composition was stirred and kneaded while being pulled by a vacuum pump. Then a stainless steel bat (8 cmX 1 2 cmX 3 cm), pre-cured (110 ° C, 2 hours), and post-cured (150 ° C, 3 hours). The thermal conductivity and the water absorption of the obtained molded product were measured. The results are shown in Table 3.
なお、 酸化マグネシウム粒子を配合しない場合を比較例 4として示した。  The case where no magnesium oxide particles were added was shown as Comparative Example 4.
吸水率および熱伝導率の測定は以下の方法で行つた。  The water absorption and the thermal conductivity were measured by the following methods.
1) 吸水率  1) Water absorption
恒温恒湿槽 (アドバンテック東洋 AGX— 326) を用い 85°C、 85%RH の条件で重量変化を測定した。  The weight change was measured using a thermo-hygrostat (Advantech Toyo AGX-326) at 85 ° C and 85% RH.
2) 熱伝導率  2) Thermal conductivity
京都電子工業 (株) 製の QTM迅速熱伝導率計を用いて、 プローブ法にて測定 した。  It was measured by a probe method using a QTM rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd.
配合条件; Blending conditions;
エポキシ樹脂 (ェピコート 828、 油化シェル製) 100咅 15 硬化剤 (リカシッド MH— 700、 新日本理化製) 80部 硬化促進剤 (BDMA、 広栄化学製) 1部 酸化マグネシウム粒子 300咅 15 なお使用されたマグネシウム粒子は、 実施例 2では実施例 1の粒子、 比較例 5 では比較例 1の粒子、 比較例 6では比較例 2の粒子であつた。  Epoxy resin (Epicoat 828, manufactured by Yuka Shell) 100 咅 15 Hardener (Rikasid MH-700, manufactured by Shin Nippon Rika) 80 parts Hardening accelerator (BDMA, manufactured by Koei Chemical) 1 part Magnesium oxide particles 300 咅 15 The magnesium particles obtained were the particles of Example 1 in Example 2, the particles of Comparative Example 1 in Comparative Example 5, and the particles of Comparative Example 2 in Comparative Example 6.
表 3 実施例 2 比較例 4 比較例 5 比較例 6 エポキシ樹脂 1 00 100 100 100 硬化剤 80 80 80 80 硬化促進剤 1 1 1 1 酸化マグネシウム粒子 300 300 300 表面処理剤 ステアリルアシッド ビニルトリエト Table 3 Example 2 Comparative Example 4 Comparative Example 5 Comparative Example 6 Epoxy resin 100 00 100 100 Curing agent 80 80 80 80 Curing accelerator 1 1 1 1 Magnesium oxide particles 300 300 300 Surface treatment agent Stearyl acid vinyl triet
フォスフェイト キシシラン 熱伝導率 (WZm · k ) 0. 704 0. 1 8 1 0. 709 0. 693 吸水率 (%) 0. 37 0. 65 0. 45 0. 40  Phosphate xysilane Thermal conductivity (WZm · k) 0.704 0.18 1 0.709 0.6963 Water absorption (%) 0.37 0.65 65.45 0.40

Claims

請求の範囲 The scope of the claims
1. 下記式 (1) 1. The following equation (1)
0  0
II  II
(RO)3-nP-(OH)n (1) (RO) 3-n P- (OH) n (1)
(式中、 nは 1または 2、 Rは C4〜(: 3。のアルキル基または C4〜C3。のァルケ 二ル基を示す、) (In the formula, n 1 or 2, R is C 4 ~ (:. 3 alkyl group or a C 4 -C 3 are shown the Aruke group,).
で表される酸性リン酸エステルで表面処理された高耐酸性および高耐水和性の酸 化マグネシウム粒子。 Highly acid-resistant and hydration-resistant magnesium oxide particles surface-treated with an acid phosphate represented by the formula:
2. 該酸化マグネシウム粒子は 0. 1〜 1 30 ^ mの平均 2次粒子径を有する請 求項 1記載の酸化マグネシウム粒子。 2. The magnesium oxide particles according to claim 1, wherein said magnesium oxide particles have an average secondary particle diameter of 0.1 to 130 ^ m.
3. 該酸化マグネシウム粒子は、 0. 1〜 5m2/ gの BET法比表面積を有す る請求項 1記載の酸化マグネシウム粒子。 3. The magnesium oxide particles according to claim 1, wherein the magnesium oxide particles have a BET specific surface area of 0.1 to 5 m 2 / g.
4. 該酸化マグネシウム粒子は、 球状もしくはたまご状の粒形を有する請求項 1 記載の酸化マグネシウム粒子。 4. The magnesium oxide particles according to claim 1, wherein the magnesium oxide particles have a spherical or egg-like particle shape.
5. 該酸性リン酸エステルは、 前記式 (1) において Rが C8〜C2。のアルキル 基の化合物である請求項 1記載の酸化マグネシウム粒子。 5. In the acidic phosphate ester, R is C 8 to C 2 in the formula (1). The magnesium oxide particles according to claim 1, which is a compound of an alkyl group represented by the formula:
6. 該酸化マグネシウム粒子は、 前記式 (1) で表される酸性リン酸エステルの 合計量が 0. 1〜10重量%である請求項 1記載の酸化マグネシウム粒子。 6. The magnesium oxide particles according to claim 1, wherein the total amount of the acidic phosphate represented by the formula (1) is 0.1 to 10% by weight.
7. (A) 合成樹脂 1 00重量部および 7. (A) 100 parts by weight of synthetic resin and
( B ) 請求項 1記載の酸化マグネシゥム粒子 50〜 1, 000重量部、 より実質的になる樹脂組成物。 (B) A resin composition comprising 50 to 1,000 parts by weight of the magnesium oxide particles according to claim 1.
8. (A) 合成樹脂 100重量部および 8. (A) 100 parts by weight of synthetic resin and
(B) 請求項 1記載の酸化マグネシウム粒子 70〜400重量部、 より実質的になる請求項 7記載の樹脂組成物。  (B) The resin composition according to claim 7, which is substantially 70 to 400 parts by weight of the magnesium oxide particles according to claim 1.
9. 該合成樹脂が、 エポキシ樹脂、 シリコーン樹脂、 フエノール樹脂、 ジァリル フタレート樹脂、 ポリイミド樹脂、 ポリフエ二レンサルファイド樹脂、 アクリル ゴム、 ブチルゴム、 エチレンプロピレンゴム、 エチレン酢酸ビニル共重合体、 ェ チレンァクリル酸エステル共重合体またはフッ素樹脂である請求項 7記載の樹脂 組成物。 9. The synthetic resin is an epoxy resin, a silicone resin, a phenol resin, a diaryl phthalate resin, a polyimide resin, a polyphenylene sulfide resin, an acrylic rubber, a butyl rubber, an ethylene propylene rubber, an ethylene vinyl acetate copolymer, or an ethylene acrylate copolymer. 8. The resin composition according to claim 7, which is a polymer or a fluororesin.
10. 該合成樹脂が、 エポキシ樹脂である請求項 7記載の樹脂組成物。 10. The resin composition according to claim 7, wherein the synthetic resin is an epoxy resin.
1 1. 請求項 7記載の樹脂組成物より形成された成形品。 1 1. A molded article formed from the resin composition according to claim 7.
12. 請求項 7記載の樹脂組成物より形成された電子材料封止剤。 12. An electronic material sealing agent formed from the resin composition according to claim 7.
13. 請求項 7記載の樹脂組成物より形成された電気絶縁材料。 13. An electrical insulating material formed from the resin composition according to claim 7.
PCT/JP2000/005147 1999-08-06 2000-07-31 Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions WO2001010958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61839/00A AU6183900A (en) 1999-08-06 2000-07-31 Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/224157 1999-08-06
JP22415799 1999-08-06

Publications (1)

Publication Number Publication Date
WO2001010958A1 true WO2001010958A1 (en) 2001-02-15

Family

ID=16809436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005147 WO2001010958A1 (en) 1999-08-06 2000-07-31 Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions

Country Status (2)

Country Link
AU (1) AU6183900A (en)
WO (1) WO2001010958A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033215A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
WO2005033216A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
US7393885B2 (en) 2004-12-01 2008-07-01 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same, and resin composition containing such powder
CN1974681B (en) * 2005-09-20 2011-01-05 宇部材料工业株式会社 Magnesium oxide powder for soil hardening material
CN106103601A (en) * 2014-06-30 2016-11-09 积水化成品工业株式会社 Solution containing nano-particle and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170131A (en) * 1983-03-17 1984-09-26 Daihachi Kagaku Kogyosho:Kk Surface-modified inorganic powder
JPS63265960A (en) * 1987-04-24 1988-11-02 Asahi Glass Co Ltd Flame-retarding resin composition
JPS6433157A (en) * 1987-04-10 1989-02-03 Sanyo Chemical Ind Ltd Surface-treating agent for inorganic filler
JPH0563116A (en) * 1991-02-12 1993-03-12 Toshiba Corp Resin-sealed semiconductor device
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH08169991A (en) * 1994-12-20 1996-07-02 Furukawa Electric Co Ltd:The Flame-retardant resin composition, and flame-retardant electric wire and cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170131A (en) * 1983-03-17 1984-09-26 Daihachi Kagaku Kogyosho:Kk Surface-modified inorganic powder
JPS6433157A (en) * 1987-04-10 1989-02-03 Sanyo Chemical Ind Ltd Surface-treating agent for inorganic filler
JPS63265960A (en) * 1987-04-24 1988-11-02 Asahi Glass Co Ltd Flame-retarding resin composition
JPH0563116A (en) * 1991-02-12 1993-03-12 Toshiba Corp Resin-sealed semiconductor device
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JPH08169991A (en) * 1994-12-20 1996-07-02 Furukawa Electric Co Ltd:The Flame-retardant resin composition, and flame-retardant electric wire and cable

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033215A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
WO2005033216A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder capable of being highly filled and method for production thereof, and resin composition comprising the powder
WO2005033214A1 (en) * 2003-10-03 2005-04-14 Tateho Chemical Industries Co., Ltd. Coated magnesium oxide powder exhibiting high flowability, and resin composition comprising the powder
JPWO2005033215A1 (en) * 2003-10-03 2006-12-14 タテホ化学工業株式会社 Spherical coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
US7393885B2 (en) 2004-12-01 2008-07-01 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same, and resin composition containing such powder
CN100509630C (en) * 2004-12-01 2009-07-08 达泰豪化学工业株式会社 Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
EP1818311A4 (en) * 2004-12-01 2009-07-22 Tateho Kagaku Kogyo Kk Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
CN1974681B (en) * 2005-09-20 2011-01-05 宇部材料工业株式会社 Magnesium oxide powder for soil hardening material
CN106103601A (en) * 2014-06-30 2016-11-09 积水化成品工业株式会社 Solution containing nano-particle and application thereof
CN106103601B (en) * 2014-06-30 2018-04-20 积水化成品工业株式会社 Solution containing nano particle and application thereof

Also Published As

Publication number Publication date
AU6183900A (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JP5771055B2 (en) Method for producing spherical alumina powder
KR101907328B1 (en) Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition
JP3821633B2 (en) Resin composition containing magnesium oxide particles having high acid resistance and high hydration resistance
JP6553831B1 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
JP6977666B2 (en) Low soda α-alumina powder and its manufacturing method
US20120291670A1 (en) Magnesium oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition
US20230416501A1 (en) Hydrophobic aluminum nitride powder and method for producing the same
JP2019151839A (en) Epoxy resin composition
KR101941990B1 (en) Magnesium hydroxide particle and resin composition containing same
WO2001010958A1 (en) Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
TWI712560B (en) Silane-treated forsterite fine particles and manufacturing method thereof, and organic solvent dispersion liquid of silane-treated forsterite fine particles and manufacturing method thereof
EP3877333A1 (en) Precipitated silica and process for its manufacture
WO2020179703A1 (en) Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition
JP2003201116A (en) Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
WO2013146223A1 (en) Magnesium hydroxide particles and resin composition containing same
JP4193244B2 (en) Aluminum hydroxide for resin filling
JP2020147486A (en) Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition
JP5877745B2 (en) Composite metal hydroxide particles and resin composition containing the same
KR20230027217A (en) Compound and its manufacturing method, and composite material
JP2000264619A (en) Siliceous powder and its production
JP4131620B2 (en) Silica powder and its use
JP2004099690A (en) Curing agent composition for epoxy compound
JP7239608B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
WO2024024604A1 (en) Highly pure spinel particles and production method therefor
TWI836228B (en) Compound and method for manufacturing the same, and composite material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID KR NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase