WO2024024604A1 - Highly pure spinel particles and production method therefor - Google Patents

Highly pure spinel particles and production method therefor Download PDF

Info

Publication number
WO2024024604A1
WO2024024604A1 PCT/JP2023/026500 JP2023026500W WO2024024604A1 WO 2024024604 A1 WO2024024604 A1 WO 2024024604A1 JP 2023026500 W JP2023026500 W JP 2023026500W WO 2024024604 A1 WO2024024604 A1 WO 2024024604A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
spinel particles
aluminum
resin
atoms
Prior art date
Application number
PCT/JP2023/026500
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 清岡
高見 新川
浩児 大道
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024024604A1 publication Critical patent/WO2024024604A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/162Magnesium aluminates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to high purity spinel particles and a method for producing the same.
  • Spinel particles are composite oxides of metal elements represented by MgAl 2 O 4 and have the general formula AB 2 It is used in applications such as protective films, fluorescent emitters, catalyst carriers, adsorbents, photocatalysts, and heat-resistant insulating materials. Among them, research is being conducted as a heat dissipation filler because of its excellent thermal conductivity (Patent Documents 1 and 2).
  • Patent Document 1 discloses spinel particles containing magnesium atoms, aluminum atoms, oxygen atoms, and molybdenum, and having a crystallite diameter of 220 nm or more in the [111] plane. It is described that the obtained particles have a significantly large crystallite size on the [111] plane, and as a result, have excellent thermal conductivity.
  • Patent Document 2 describes a spinel structure mainly composed of MgAl 2 O 4 or ZnAl 2 O 4 obtained by firing a raw material containing at least an alumina-based compound and a compound of magnesium or zinc as its main components. Disclosed. Specifically, with a focus on chemical resistance, thermally conductive composite oxides are listed that have an absolute value of mass change rate of 2% or less in chemical resistance tests against hydrochloric acid, sulfuric acid, nitric acid, and sodium hydroxide. has been done.
  • the present invention was made in view of the above circumstances, and provides high purity spinel particles having both high thermal conductivity and low dielectric properties, and a method for producing the same.
  • the present inventors found that spinel particles obtained by firing fine particles of a highly pure magnesium compound and an aluminum compound have high purity and thermal conductivity. The present inventors have discovered that this material has excellent dielectric properties and dielectric properties, and have completed the present invention.
  • the present invention includes the following aspects.
  • (1) Spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom, A spinel particle in which the amount of atoms other than the above atoms is less than 0.27 at.%.
  • (2) Spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom, Spinel particles in which the number of calcium atoms is less than 0.02 atomic % based on the sum of the numbers of magnesium atoms and aluminum atoms.
  • (3) The spinel particles according to (1) or (2) above, having an average particle diameter of 75 ⁇ m or less.
  • the spinel particle according to any one of (1) to (3) above having a dielectric loss tangent of less than 1.0 ⁇ 10 ⁇ 3 at 1 GHz.
  • a resin composition comprising the spinel particles according to any one of (1) to (4) above and a resin.
  • a method for producing spinel particles by mixing and firing an aluminum-based compound and a magnesium-based compound the method comprising: The magnesium-based compound is fine particles with an average particle size of less than 4 ⁇ m, A method for producing spinel particles, wherein the amount of impurities contained in the magnesium-based compound is less than 1.0 atomic %.
  • a method for producing spinel particles by mixing and firing an aluminum-based compound and a magnesium-based compound comprising:
  • the magnesium-based compound is fine particles with an average particle size of less than 4 ⁇ m
  • a method for producing spinel particles, wherein the calcium atomic weight contained in the magnesium-based compound is 0.6 at % or less.
  • the spinel particles are highly purified and have excellent both thermal conductivity and dielectric properties.
  • the spinel particles of the present invention can be easily obtained by mixing and firing fine particles of a highly pure magnesium compound and an aluminum compound, resulting in high productivity and excellent practicality. .
  • 1 is a SEM image of spinel particles of Example 1.
  • 3 is a SEM image of spinel particles of Example 3.
  • 3 is a SEM image of spinel particles of Example 4.
  • 3 is a SEM image of spinel particles of Comparative Example 3.
  • One embodiment of the spinel particle of the present invention is a spinel particle containing at least a magnesium atom, an aluminum atom, and an oxygen atom, wherein the amount of atoms other than the above atoms is 0 with respect to the number of atoms of the spinel particle. It is characterized by being less than .27 atomic %.
  • One embodiment of the spinel particles of the present invention is a spinel particle containing at least a magnesium atom, an aluminum atom, and an oxygen atom, wherein the number of calcium atoms is greater than the sum of the numbers of magnesium atoms and aluminum atoms. , less than 0.02 atomic %.
  • the spinel particles are spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom, and the amount of other atoms is less than 0.27 atom%, more preferably less than 0.2 atom%, and 0. Particularly preferred is less than .1 atomic %. When it is less than the above upper limit, the resulting spinel particles have excellent dielectric properties, which is preferable.
  • the spinel particles are spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom, and the number of calcium atoms is less than 0.02 at% with respect to the sum of the numbers of magnesium atoms and aluminum atoms, and 0.01 It is more preferably less than atomic %, particularly preferably less than 0.005 atomic %. When it is less than the above upper limit, the resulting spinel particles have excellent dielectric properties, which is preferable.
  • the average particle diameter of the spinel particles is preferably 75 ⁇ m or less, more preferably 35 ⁇ m or less, and particularly preferably 10 ⁇ m or less. It is preferable that the particle size is below the above-mentioned particle size because when it is mixed with a resin and processed into a sheet or the like, the surface of the processed product does not become uneven.
  • the "average particle diameter" of spinel particles refers to a particle size distribution system using laser diffraction scattering, such as a laser diffraction scattering particle size distribution analyzer MT3300EXII (manufactured by Microtrac Bell Co., Ltd.). The measured value is indicated by D50.
  • the above-mentioned average particle diameter is the longest diameter determined from the particle image of the primary particle of the spinel particle in a two-dimensional image taken with a scanning electron microscope (SEM). (the longest distance when an individual particle is sandwiched between two parallel line segments) may be used, and the obtained value is almost equivalent to the measured value obtained by the above method. shows.
  • the spinel particles to be measured are at least 50 spinel particles randomly selected from among those whose outlines can be identified as a whole.
  • the dielectric constant of the spinel particles is preferably 20 or less, more preferably 15 or less, and particularly preferably 10 or less. If it is within the above range, power consumption, that is, heat generation, and noise can be suppressed when the resin composition is prepared, so it is preferable.
  • the dielectric loss tangent of the spinel particles at 1 GHz is preferably 1.0 ⁇ 10 ⁇ 3 or less, more preferably 8.0 ⁇ 10 ⁇ 4 or less, and 5.0 ⁇ 10 ⁇ 4 or less. It is particularly preferable. If it is within the above range, power consumption, that is, heat generation, and noise can be suppressed when the resin composition is prepared, so it is preferable.
  • Examples of the shape of spinel particles include polyhedral, spherical, true spherical, elliptical, cylindrical, polygonal columnar, needle-like, rod-like, plate-like, disk-like, flaky, and scaly shapes.
  • a spherical shape is preferable because it increases the filling property when mixed with resin, and a true spherical shape lowers the viscosity of the mixture, increases the filling rate, and tends to form a close-packed structure, so it is especially preferable. preferable.
  • spinel particles having a spherical shape When spinel particles having a spherical shape are included, preferably 50% or more of the particles have a spherical shape based on mass or number, more preferably 80% or more of the particles have a spherical shape, and 90% or more of the particles have a spherical shape. It is further preferred that the above particles have a spherical shape.
  • the shape is spherical or true spherical, it will be packed densely to easily avoid contact and fixation with other particles during molding of the resin composition. Further, due to the shape described above, the fractal dimension of the particle contour is reduced, and the void ratio when filled is suppressed. As a result, a close-packed structure provides excellent thermal conductivity and dielectric properties.
  • the shape is determined visually from a scanning electron microscope (SEM) image, but it can also be determined by calculating circularity.
  • the circularity may be 0.7 or more, 0.75 or more, or 0.8 or more.
  • the above-mentioned “circularity” can be calculated from "4 x ⁇ x area/circumference ⁇ 2", and the area and circumference can be determined by observation using a scanning electron microscope (SEM). can.
  • the crystal structure of the spinel particles has MgAl 2 O 4 having a spinel type crystal structure.
  • the spinel particles of this embodiment which will be described later, mainly have a spinel crystal structure, but may contain impurity phases to the extent that they do not adversely affect the dielectric loss tangent.
  • the content of magnesium atoms in spinel particles is not particularly limited, but when the structural formula of spinel particles is represented by Mg x Al y O z , x is preferably in the range of 0.8 to 1.2, and 0 More preferably, it is in the range of .9 to 1.1.
  • the content of magnesium atoms in spinel particles shall be the value measured by X-ray fluorescence elemental analysis (XRF).
  • the content of aluminum atoms in spinel particles is not particularly limited, but when the structural formula of spinel particles is represented by Mg x Al y O z , y is preferably in the range of 1.8 to 2.2, and 1 More preferably, it is in the range of .9 to 2.1.
  • the content of aluminum atoms in spinel particles shall be the value measured by X-ray fluorescence elemental analysis (XRF).
  • the content of oxygen atoms in spinel particles is not particularly limited, but when the structural formula of spinel particles is represented by Mg x Al y O z , z must be in the range of (x + y + 1.2) to (x + y + 0.8). is preferable, and a range of (x+y+1.1) to (x+y+0.9) is more preferable.
  • atoms in the spinel particles include, but are not particularly limited to, silicon, iron, potassium, sodium, calcium, and the like. These impurities may be contained alone or in combination of two or more types, but the content thereof is preferably less than 0.27 atomic % based on the atoms of the spinel particles. If it is within the above range, it is assumed that scattering of phonons (lattice vibrations) due to impurities is suppressed, and thereby the spinel particles have excellent dielectric properties. For the content of other atoms in the spinel, values measured by X-ray fluorescence elemental analysis (XRF) are used.
  • XRF X-ray fluorescence elemental analysis
  • the number of impurity calcium atoms is preferably less than 0.02 at % based on the sum of the numbers of magnesium and aluminum atoms. Within the above range, it is estimated that scattering of phonons (lattice vibrations) due to impurities caused by calcium atoms substituted by magnesium atoms is suppressed, and the dielectric loss tangent of the spinel particles is excellent.
  • the content of calcium atoms in the spinel particles a value measured by X-ray fluorescence elemental analysis (XRF) is used.
  • either the content of impurities (silicon, iron, potassium, sodium, calcium, etc.) or the number of calcium atoms relative to the sum of the numbers of magnesium and aluminum atoms is within the above range. It is sufficient if both conditions are satisfied. In addition, it is particularly preferable that both of them are within the above-mentioned ranges, since spinel particles having better dielectric properties can be obtained.
  • the method for producing spinel particles includes a step of firing a mixture containing a magnesium-based compound and an aluminum-based compound.
  • the mixing step is a step of mixing a magnesium-based compound and an aluminum-based compound to obtain a mixture.
  • the mixing state of the magnesium-based compound and the aluminum-based compound is not particularly limited.
  • simple mixing methods such as putting the raw materials in a bag or the like and shaking them to mix the powder, mechanical mixing using a grinder or mixer, mixing using a mortar, etc. are performed. .
  • the resulting mixture may be in either a dry state or a wet state, but it is preferably in a dry state from the viewpoint of cost.
  • the mixing ratio of the magnesium-based compound and the aluminum-based compound is not particularly limited, but the molar ratio of the aluminum element of the aluminum-based compound to the magnesium element of the magnesium-based compound (aluminum element/magnesium element) is 1. It is preferable to mix so that it becomes 8 or more and 2.2 or less, and it is more preferable to mix so that it becomes 1.9 or more and 2.1 or less. The contents of the mixture will be explained below.
  • magnesium-based compound examples include, but are not particularly limited to, metal magnesium, magnesium derivatives, magnesium oxoacid salts, magnesium organic salts, and hydrates thereof.
  • magnesium derivatives include magnesium oxide, magnesium hydroxide, magnesium peroxide, magnesium fluoride, magnesium chloride, magnesium bromide, magnesium iodide, magnesium hydride, magnesium diboride, magnesium nitride, and magnesium sulfide. It will be done.
  • magnesium oxoacid salts include magnesium carbonate, calcium magnesium carbonate, magnesium nitrate, magnesium sulfate, magnesium sulfite, magnesium perchlorate, trimagnesium phosphate, magnesium permanganate, and magnesium phosphate.
  • magnesium organic salts include magnesium acetate, magnesium citrate, magnesium malate, magnesium glutamate, magnesium benzoate, magnesium stearate, magnesium acrylate, magnesium methacrylate, magnesium gluconate, magnesium naphthenate, magnesium salicylate, and lactic acid.
  • magnesium organic salts include magnesium, magnesium monoperoxyphthalate, and the like. Note that these magnesium compounds may be used alone or in combination of two or more.
  • magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium acetate, magnesium nitrate, or magnesium sulfate are preferable, and magnesium oxide, magnesium hydroxide, magnesium nitrate, or magnesium acetate is more preferable.
  • the volume-based average particle diameter D50 in the laser diffraction particle size distribution measurement of magnesium-based compounds is determined by using particles with a smaller particle diameter within the range of no agglomeration. particles can be obtained.
  • the average particle diameter D50 is 0.01 ⁇ m or more and less than 4 ⁇ m, more preferably 0.1 ⁇ m or more and 2 ⁇ m or less, even more preferably 0.5 ⁇ m or more and 2 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • it is at least the above lower limit it is possible to suppress particles from agglomerating during mixing.
  • magnesium atoms can diffuse and enter the aluminum-based compound particles without destroying the shape of the aluminum-based compound, and it is possible to grow well-shaped particles.
  • the magnesium-based compound may be a commercially available product or may be prepared by yourself.
  • the reactivity for spinel particle production can be adjusted.
  • magnesium hydroxide with a small particle size can be obtained by neutralizing an acidic aqueous solution of magnesium ions with a base. Since the obtained magnesium hydroxide having a small particle size has high reactivity, the crystallite size of spinel particles obtained using this tends to be large.
  • magnesium compounds may contain impurities such as silicon, iron, potassium, sodium, calcium, phosphorus, sulfur, and chlorine.
  • the total amount of these impurities is preferably less than 1.0 at% and 0.5 at% or less based on magnesium when the value measured by X-ray fluorescence elemental analysis (XRF) is converted to the number of atoms. It is more preferable that it is, and even more preferable that it is 0.3 atom % or less.
  • the atomic weight of calcium contained in the magnesium-based compound of commercially available products or prepared products is preferably 0.6 atomic % or less, more preferably 0.4 atomic % or less, and 0.3 atomic % or less. It is even more preferable.
  • aluminum-based compounds include, but are not limited to, metal aluminum, aluminum derivatives such as alumina (aluminum oxide), aluminum hydroxide, aluminum sulfide, aluminum nitride, aluminum fluoride, aluminum chloride, aluminum bromide, and aluminum iodide; sulfuric acid.
  • metal aluminum aluminum, aluminum derivatives such as alumina (aluminum oxide), aluminum hydroxide, aluminum sulfide, aluminum nitride, aluminum fluoride, aluminum chloride, aluminum bromide, and aluminum iodide
  • sulfuric acid sulfuric acid.
  • Aluminum, aluminum oxoarates such as sodium aluminum sulfate, potassium aluminum sulfate, ammonium aluminum sulfate, aluminum nitrate, aluminum perchlorate, aluminum aluminate, aluminum silicate, aluminum phosphate; aluminum acetate, aluminum lactate, aluminum laurate, stearin Aluminum organic salts such as aluminum acid and aluminum oxalate; alkoxyaluminums such as aluminum propoxide and aluminum butoxide; aluminum-magnesium-containing compounds such as magnesium aluminate, hydrotalcite, and magnesium aluminum isopropoxide; and hydrates thereof etc.
  • aluminum oxide aluminum hydroxide, aluminum chloride, aluminum sulfate, aluminum nitrate, and hydrates thereof, and it is more preferable to use aluminum oxide and aluminum hydroxide.
  • the above-mentioned aluminum-based compounds may be used alone or in combination of two or more types.
  • the volume-based average particle diameter D50 in the laser diffraction particle size distribution measurement of aluminum-based compounds is determined by using particles with a smaller particle diameter within the range of no agglomeration, which improves reactivity during firing and improves purity without impurity phases. It is preferable that spinel particles with high viscosity can be obtained. Since the particle size of the aluminum raw material is correlated with the particle size of the spinel particles to be obtained, it is appropriately selected depending on the desired particle size of the spinel particles.
  • the average particle diameter D50 of the aluminum compound is 0.01 ⁇ m or more and 70 ⁇ m or less, preferably 0.1 ⁇ m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more and 15 ⁇ m or less, and most preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the raw material aluminum compound may be ground by using a grinder or the like.
  • the shape of the aluminum-based compound may be polyhedral, spherical, true spherical, elliptical, cylindrical, polygonal columnar, needle-like, rod-like, plate-like, disk-like, flaky, or scaly; From the viewpoint of the shape of the obtained spinel particles, it is more preferable that the spinel particles are spherical or truly spherical. According to the manufacturing method of this embodiment, since magnesium atoms diffuse and enter into the aluminum compound particles, it is possible to grow the aluminum compound as a raw material without losing its shape during particle growth. It becomes possible to easily control the shape of the spinel particles.
  • the crystal structure of the aluminum-based compound is not particularly limited, and may be a single phase or a mixed phase. Note that when the crystal structure is a mixed phase, the aluminum-based compound often has a true spherical shape.
  • the firing temperature is not particularly limited as long as the desired spinel particles can be obtained, but it is preferably 1100 to 1600°C, more preferably 1200 to 1500°C, and particularly preferably 1300 to 1400°C. It is preferable that the firing temperature is 1100° C. or higher because it suppresses unreacted raw materials, while it is preferable that the firing temperature is 1600° C. or lower because it allows the use of a general-purpose firing furnace and is suitable for mass production.
  • the firing time is not particularly limited, but is preferably 1 to 20 hours, more preferably 5 to 10 hours. It is preferable that the firing time is 1 hour or more because highly crystalline spinel particles can be obtained. On the other hand, it is preferable that the firing time is 20 hours or less because manufacturing costs can be reduced.
  • the firing atmosphere may be an air atmosphere, an inert gas atmosphere such as nitrogen gas or argon gas, an oxygen atmosphere, an ammonia gas atmosphere, or a carbon dioxide atmosphere. . At this time, an air atmosphere is preferable from the viewpoint of manufacturing costs.
  • the pressure during firing is not particularly limited either, and may be under normal pressure, increased pressure, or reduced pressure, but from the viewpoint of manufacturing costs, it is preferable to carry out under normal pressure.
  • the heating means is not particularly limited, but it is preferable to use a firing furnace.
  • Firing furnaces that can be used in this case include box furnaces, tunnel furnaces, roller hearth furnaces, rotary kilns, muffle furnaces, and the like.
  • the manufacturing method of the present invention is a manufacturing method with excellent productivity because it does not require pretreatment such as adsorbing magnesium atoms onto the surface of the aluminum compound.
  • the cooling step is a step in which spinel particles that have grown as crystals in the firing step are cooled and crystallized into particles.
  • the cooling rate is also not particularly limited, but it is preferably 1 to 1000°C/hour, more preferably 5 to 500°C/hour, and even more preferably 100 to 500°C/hour. It is preferable that the cooling rate is 1° C./hour or more because the manufacturing time can be shortened. On the other hand, it is preferable that the cooling rate is 1000° C./hour or less because the firing container is less likely to crack due to heat shock and can be used for a long time.
  • the cooling method is not particularly limited, and may be natural cooling or a cooling device may be used.
  • the manufacturing method of the present invention may include a post-treatment step.
  • the post-treatment step is a step of removing additives and the like.
  • the post-treatment step may be performed after the above-mentioned firing step, after the above-mentioned cooling step, or after the firing step and the cooling step. Further, if necessary, the process may be repeated two or more times.
  • Post-treatment methods include washing and high temperature treatment. These can be done in combination.
  • the cleaning method is not particularly limited, but it can be removed by, for example, cleaning with water, ammonia aqueous solution, sodium hydroxide aqueous solution, acidic aqueous solution, or the like.
  • Examples of the high-temperature treatment include a method of raising the temperature above the sublimation point or boiling point of the additive.
  • the spinel particles obtained by firing may aggregate and may not satisfy the particle size range suitable for the present invention. In this case, if necessary, the particles may be pulverized to satisfy the particle size range suitable for the present invention.
  • the pulverization method is not particularly limited, and conventionally known pulverization methods such as a ball mill, jaw crusher, jet mill, disk mill, spectromill, grinder, mixer mill, etc. can be applied.
  • the classification method may be either wet or dry, but from the viewpoint of productivity, dry classification is preferable.
  • dry classification includes wind classification that uses the difference between centrifugal force and fluid drag, but from the perspective of classification accuracy, wind classification is preferable, and air classifiers that use the Coanda effect, This can be carried out using a classifier such as a swirling airflow classifier, a forced vortex centrifugal classifier, or a semi-free vortex centrifugal classifier.
  • the above-mentioned pulverization process and classification process can be performed at any necessary stage, including before and after the organic compound layer forming process described below.
  • the average particle diameter of the obtained particles can be adjusted by whether or not these pulverization and classification are performed and by selecting the conditions thereof.
  • a composition that includes spinel particles and a resin.
  • the composition may further contain a curing agent, a curing catalyst, a viscosity modifier, a plasticizer, etc., if necessary.
  • spinel particles As the spinel particles, those explained in the above “spinel particles” can be used, so the explanation will be omitted here.
  • the spinel particles may be further surface-treated by the method described below.
  • surface treatment it is possible to further improve the thermal conductivity of spinel particles.
  • surface-treated spinel particles can be produced from the spinel particles obtained as described above by attaching a surface treatment layer containing an organic compound to at least a portion of the spinel particle surface.
  • the surface treatment layer By attaching the surface treatment layer to at least a portion of the surface of the untreated spinel particles, the wettability with the resin contained in the resin composition is improved, and the adhesion with the spinel particles is improved. Therefore, the formation of voids that tend to occur on the surface of spinel particles is suppressed, and the loss in thermal conductivity is reduced, so that, for example, the thermal conductivity of molded products of the resin composition can be improved.
  • Such technical effects are produced by the fact that a surface treatment layer based on a surface treatment agent based on an organic compound or a cured product thereof is attached to a part of the surface of the spinel particles. If the surface treatment agent is removed from the spinel particles by subsequent firing or the like, it will not be possible to develop the surface treatment agent.
  • spinel particles having a surface treatment layer can be used as one or more of the multiple types.
  • the untreated spinel particles were mixed with a surface treatment agent capable of forming a surface treatment layer containing an organic compound, and the surface treatment agent was attached to at least a portion of the surface of the untreated spinel particles.
  • surface-treated spinel particles can be manufactured by performing drying, curing, etc., for example.
  • the surface treatment agent itself is an organic compound that does not have reactivity but has adsorptive properties, or if it is a solution or dispersion in which the surface treatment agent is dissolved or dispersed in a liquid medium, it may be possible to promote adsorption or If the surface treatment agent is a reactive organic compound, the above-mentioned surface treatment layer can be formed by curing based on the reactive groups of the compound. Can be done. Note that when the surface treatment agent is applied to the entire surface of untreated spinel particles, the untreated spinel particles are covered with the surface treatment layer.
  • the surface treatment agent is preferably a nonpolar silane compound. If it is nonpolar, it does not have a polar substituent, so deterioration of dielectric properties can be suppressed.
  • a polar substituent refers to a group capable of hydrogen bonding or an ionic dissociative group. Such polar substituents include, but are not particularly limited to, -OH, -COOH, -COOM, -NH 3 , -NR 4 + A - , -CONH 2 and the like.
  • M is a cation such as an alkali metal, an alkaline earth metal, or a quaternary ammonium salt
  • R is H or a hydrocarbon group having 8 or less carbon atoms
  • A is an anion such as a halogen atom.
  • the surface treatment agent may be treated by any known and commonly used method, such as a spraying method using a fluid nozzle, stirring with shear force, a dry method using a ball mill or mixer, or a wet method using an aqueous or organic solvent system. law may be adopted. It is desirable that the surface treatment using shear force be carried out to such an extent that the filler will not be destroyed.
  • the internal temperature of the surface treatment agent in the dry method or the drying or curing temperature after treatment in the wet method is appropriately determined in a range where thermal decomposition does not occur depending on the type of the surface treatment agent. For example, it is desirable to heat at a temperature of 80 to 230°C.
  • the amount of nonvolatile content or cured product of the surface treatment agent in the surface treatment layer for untreated spinel particles is not particularly limited, but the amount of nonvolatile content or cured product of the surface treatment agent per 100 parts by mass of untreated spinel particles is It is preferable that the amount of the cured product be 0.01 to 10 parts from the viewpoint of improving functions such as thermal conductivity.
  • Whether unknown spinel particles correspond to the surface-treated spinel particles of the present invention can be determined by, for example, immersing or boiling the unknown spinel particles in a solvent that dissolves the nonvolatile content or cured product of the surface treatment agent.
  • Infrared absorption analysis (IR) and atomic absorption spectrometry reveal that the extracted liquid and the spinel particle surface itself have a chemical structure corresponding to the surface treatment agent itself and its cured product, and the presence of silicon atoms, titanium atoms, or phosphorus atoms. You can check whether it can be observed with (AAS).
  • the resin is not particularly limited, and examples thereof include thermoplastic resins, thermosetting resins, and the like.
  • thermoplastic resin is not particularly limited, and known and commonly used resins used for molding materials and the like can be used. Specifically, for example, polyethylene resin, polypropylene resin, polymethyl methacrylate resin, polyvinyl acetate resin, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile resin. , polyamide resin.
  • Polycarbonate resin polyacetal resin, polyethylene terephthalate resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic urethane resin, polyamino bismaleimide Resin, polyamideimide resin, polyetherimide resin, bismaleimide triazine resin, polymethylpentene resin, fluorinated resin, liquid crystal polymer, olefin-vinyl alcohol copolymer, ionomer resin, polyarylate resin, acrylonitrile-ethylene-styrene copolymer Examples include acrylonitrile-butadiene-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and acrylonitrile-styrene copolymers.
  • the thermosetting resin is a resin that has the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or a catalyst, and is generally used as a molding material, etc.
  • resins can be used. Specifically, for example, phenol resin, epoxy resin, urea resin, resin having a triazine ring, (meth)acrylic resin, vinyl resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, Examples include resins having a benzoxazine ring and cyanate ester resins.
  • the phenol resin include novolac type phenol resin, resol type phenol resin, and the like.
  • Examples of the novolak type phenolic resin include phenol novolak resin, cresol novolak resin, and the like.
  • Examples of the resol type phenolic resin include unmodified resol phenol resin, oil-modified resol phenol resin, and the like.
  • Examples of the oil used for oil modification include tung oil, linseed oil, and walnut oil.
  • Examples of the epoxy resin include bisphenol-type epoxy resins, fatty chain-modified bisphenol-type epoxy resins, novolak-type epoxy resins, biphenyl-type epoxy resins, and polyalkylene glycol-type epoxy resins.
  • Examples of the bisphenol type epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, and the like.
  • Examples of the novolac type epoxy resin include novolac epoxy resin, cresol novolac epoxy resin, and the like.
  • Examples of the resin having a triazine ring include melamine resin.
  • Examples of vinyl resins include vinyl ester resins.
  • thermoplastic resins may be used alone or in combination of two or more.
  • thermosetting resins may be used, and one or more types of thermoplastic resins and one or more types of thermosetting resins may be used. good.
  • the curing agent is not particularly limited, and any known curing agent may be used. Specific examples of the curing agent include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, etc.
  • amine compounds examples include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3- amine complex, and guanidine derivatives.
  • amide compound examples include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like.
  • acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, Examples include methylhexahydrophthalic anhydride.
  • phenolic compounds examples include phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), and resorcin novolac resin.
  • the above curing agents may be used alone or in combination of two or more.
  • the curing accelerator has a function of accelerating curing when curing the resin composition.
  • the curing accelerator is not particularly limited, and examples thereof include phosphorus compounds, tertiary amines, imidazole, organic acid metal salts, Lewis acids, and amine complex salts.
  • the above-mentioned curing accelerators may be used alone or in combination of two or more.
  • the curing catalyst has the function of advancing the curing reaction of a compound having a polymerizable functional group instead of the curing agent.
  • the curing catalyst is not particularly limited, and known and commonly used thermal polymerization initiators and active energy ray polymerization initiators can be used. Note that the curing catalyst may be used alone or in combination of two or more types.
  • the viscosity modifier has the function of adjusting the viscosity of the resin composition.
  • the viscosity modifier is not particularly limited, and for example, organic polymers, polymer particles, inorganic particles, etc. can be used.
  • the above-mentioned viscosity modifiers may be used alone or in combination of two or more.
  • Plasticizers have the function of improving processability, flexibility, and weather resistance of thermoplastic synthetic resins.
  • the plasticizer is not particularly limited, and for example, phthalate ester, adipate ester, phosphate ester, trimellitate ester, polyester, polyolefin, polysiloxane, etc. can be used.
  • the above-mentioned plasticizers may be used alone or in combination of two or more.
  • the resin composition of the present invention can be obtained by mixing spinel particles, a resin, and, if necessary, other compounds.
  • the mixing method There is no particular limitation on the mixing method, and the mixing may be carried out by any known and commonly used method.
  • the resin is a thermosetting resin
  • a general method for mixing the thermosetting resin and spinel particles is to mix a predetermined amount of the thermosetting resin, spinel particles, and other ingredients as necessary.
  • a method of obtaining a liquid composition having fluidity by thoroughly mixing the ingredients using a mixer or the like and then kneading the mixture using a triple roll or the like can be mentioned.
  • thermosetting resin and spinel particles in another embodiment, a predetermined amount of the thermosetting resin, spinel particles, and other components as necessary are sufficiently mixed using a mixer or the like. Afterwards, the mixture may be melt-kneaded using a mixing roll, an extruder, etc., and then cooled to obtain a solid composition. Regarding the mixing state, when a curing agent, a catalyst, etc. are blended, it is sufficient that the curable resin and the blend thereof are sufficiently uniformly mixed, but it is more preferable that the spinel particles are also uniformly dispersed and mixed.
  • the content of spinel particles is preferably 5% by volume or more and 95% by volume or less, more preferably 20% by volume or more and 90% by volume or less, and 30% by volume, based on the volume of the resin composition. Particularly preferred is 80% by volume or more.
  • the content of spinel particles is at least the above lower limit, the resin composition can be provided with more excellent thermal conductivity and dielectric properties.
  • the content of spinel particles is below the above upper limit, the resin composition has excellent fluidity and can be easily molded.
  • thermoplastic resin When the resin is a thermoplastic resin, a general method for mixing the thermoplastic resin with spinel particles, etc. is to mix the thermoplastic resin, spinel particles, and other components as necessary, for example, in a tumbler, Henschel mixer, etc. Examples include a method of pre-mixing using various mixers, and then melt-kneading with a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or a mixing roll.
  • a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or a mixing roll.
  • melt-kneading temperature is not particularly limited, but is usually in the range of 100°C or higher and 320°C or lower.
  • a coupling agent may be externally added to the resin composition because it can further improve the fluidity of the resin composition and the filling properties with fillers such as spinel particles.
  • the adhesion between the resin and spinel particles can be further enhanced, the interfacial thermal resistance between the resin and spinel particles can be reduced, and the thermal conductivity of the resin composition can be improved.
  • Examples of the coupling agent include organic silane compounds.
  • organic silane compound examples include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, and iso-propyltrimethoxysilane.
  • Alkyltrimethoxysilanes in which the alkyl group has 1 to 22 carbon atoms such as propyltriethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, and octenyltrimethoxysilane; 3,3,3-trifluoropropyltri Methoxysilane; Alkyltrichlorosilanes in which the alkyl group has 1 to 22 carbon atoms such as tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; phenyltrimethoxysilane, phenyltriethoxysilane, p- Chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane,
  • the amount of the coupling agent added is not particularly limited, but it is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, based on the mass of the resin. preferable.
  • the resin composition of the present invention is used for a low dielectric heat dissipation material.
  • a thermally conductive material aluminum oxide is often used from the viewpoint of cost, and other materials such as boron nitride, aluminum nitride, magnesium oxide, and magnesium carbonate have also been used.
  • these materials for example, aluminum oxide does not have sufficient dielectric properties, boron nitride has anisotropy derived from its crystal structure, and therefore uniform dielectric properties cannot be obtained in the resin composition.
  • Magnesium oxide and magnesium carbonate have low water resistance and therefore do not have sufficient dielectric properties. Therefore, a material that has both thermal conductivity and dielectric properties has not been found.
  • the spinel particles of the present invention have an unprecedentedly high purity and therefore have both excellent thermal conductivity and dielectric properties, and the resin composition containing the spinel particles has a low purity. Suitable for use in dielectric heat dissipation materials. Further, when the shape of the spinel particles of the present invention is spherical or true spherical, anisotropy is reduced and it becomes possible to obtain uniform dielectric properties in the resin composition, so that it is particularly suitable for use as a low dielectric material.
  • the resin composition of the present invention has excellent thermal conductivity and dielectric properties, it can be used as a base material/substrate for single-layer or multilayer printed circuit boards, flexible printed circuit boards, and the like. It can also be suitably used as an insulating material for wiring, especially for high-frequency signal wiring, such as cover lays, solder resists, build-up materials, interlayer insulating materials, bonding sheets, interlayer adhesives, and bump sheets for flip chip bonders. Can be done.
  • spinel particles can be used for jewelry, catalyst carriers, adsorbents, photocatalysts, optical materials, phosphors, heat-resistant insulating materials, substrates, sensors, etc.
  • a molded article formed by molding the above-mentioned resin composition is provided. Since the spinel particles of the present invention contained in the molded article have excellent thermal conductivity and dielectric properties, the molded article is preferably used as a low dielectric heat dissipation member. As a result, the heat dissipation function of the device can be improved, which not only contributes to making the device smaller and lighter and has higher performance, but also contributes to higher communication functions in high-frequency circuits.
  • Example 1 70 g of alumina particles (manufactured by Denka, DAW-05, spherical, average particle size 6.4 ⁇ m) and magnesium hydroxide (Kisuma 5Q-S, manufactured by Kyowa Chemical Co., Ltd., average particle size 0.66 ⁇ m, Ca impurity amount not detected, total (impurity amount: 0.13 atomic %) was mixed in an absolute mill (manufactured by Osaka Chemical Co., Ltd.) to obtain a mixture. The obtained mixture was placed in a crucible, heated to 1300°C at 5°C/min in a ceramic electric furnace, and held at 1300°C for 10 hours to perform firing. Thereafter, the temperature was lowered to room temperature at a rate of 5° C./min, and the crucible was taken out to obtain about 90 g of white powder.
  • Example 2 The same procedure as in Example 1 was carried out except that the firing temperature was changed to 1400°C.
  • Example 3 The procedure was the same as in Example 1, except that the magnesium hydroxide was changed to Magseyz I went.
  • Example 4 The procedure was carried out in the same manner as in Example 1, except that the magnesium hydroxide was changed to MAGSTAR #5 manufactured by Tateho Industries (average particle size 0.99 ⁇ m, Ca impurity amount 0.28 at%, total impurity amount 0.7 at%). Ta.
  • Example 5 The same procedure as in Example 1 was carried out except that the alumina particles were changed to DAW-03 manufactured by Denka (spherical, average particle diameter 4.9 ⁇ m).
  • Example 6> The same procedure as in Example 1 was carried out except that the alumina particles were changed to DAW-01 (spherical, average particle diameter 1.9 ⁇ m) manufactured by Denka.
  • alumina particles manufactured by Denka, DAW-05, spherical, average particle size 6.4 ⁇ m
  • Comparative Example 1 was carried out in the same manner as Comparative Example 1 except that the firing temperature was changed to 1400°C.
  • Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that the magnesium hydroxide was changed to MAGSTAR #20 manufactured by Kamishima Chemical Industry Co., Ltd. (average particle diameter 4 ⁇ m, Ca impurity amount 0.29 at%, total impurity amount 0.29 at%). Ta.
  • the spinel particles obtained in the Examples and Comparative Examples were used as a test piece and filled into an EM Lab Cavity Resonator CP-001-PW, and measured using a Keysight Network Analyzer P9373A to determine the dielectric constant and dielectric loss tangent at 1 GHz. It was measured.
  • a small amount of the spinel particle powder obtained in Examples and Comparative Examples was placed in a beaker, 50 mL of 0.5% sodium hexametaphosphate aqueous solution was added, and then the mixture was heated for 2 minutes using an ultrasonic homogenizer Sonifier 450D (manufactured by BRANSON).
  • a sample for measurement was prepared by dispersion treatment. The volume accumulation standard D50 of this measurement sample was measured using a laser diffraction scattering particle size distribution analyzer MT3300EXII (manufactured by Microtrac Bell Co., Ltd.).
  • the crystal phase was measured using a Rigaku X-ray diffractometer Ultima IV (40 kV, 40 mA, CuK ⁇ ray).
  • the spinel particles of Examples and Comparative Examples had MgAl 2 O 4 with a spinel crystal structure, and no other impurity phases were observed.
  • Example 7 30.7 g of DIC-PPS LR100G (X-1, polyphenylene sulfide resin manufactured by DIC Corporation, density 1.35 g/cm3) as a thermoplastic resin and 69.3 g of spinel particles obtained in Example 1 were uniformly dried. After blending, they were melt-kneaded using a resin melt-kneading device Labo Plastomill at a kneading temperature of 300° C. and a rotation speed of 80 rpm to obtain a polyphenylene sulfide resin composition having a particle content of 40% by volume. The filler content (volume %) in the resin composition was calculated from the density of the thermoplastic resin and the density of the thermally conductive filler.
  • DIC-PPS LR100G X-1, polyphenylene sulfide resin manufactured by DIC Corporation, density 1.35 g/cm3
  • spinel particles obtained in Example 1 were uniformly dried. After blending, they were melt-kneaded using
  • thermoplastic resin composition (Method for measuring thermal conductivity of thermoplastic resin composition)
  • the obtained resin composition was injection molded using a tabletop injection molding machine (Injection Molding IM 12 manufactured by Xplore) at a cylinder temperature of 320°C and a mold temperature of 140°C to produce a test piece with a diameter of 10 mm and a thickness of 0.2 mm. did.
  • the thermal conductivity was measured at 25° C. using a thermal conductivity measuring device (LFA467 HyperFlash, manufactured by NETZSCH).
  • Examples 8-9 Comparative Example 4
  • a polyphenylene sulfide resin composition having a filler content of 40% by volume was prepared in the same manner as in Example 7, and its thermal conductivity was measured. Note that the fillers used are as shown in Table 2.
  • DAW-05 manufactured by Denka Co., Ltd., spherical alumina was used as a filler.
  • the resin composition containing spinel particles of this embodiment has higher thermal conductivity than resin compositions containing alumina, which generally has high thermal conductivity, and has both high thermal conductivity and low dielectric loss tangent. It can be said that we have achieved a spinel particle that has the following properties.

Abstract

The purpose of the present invention is to provide: a highly pure metal composite oxide having excellent thermal conductivity and dielectric characteristics; and a method for efficiently producing said metal composite oxide. Specifically, the present invention is characterized by the use of spinel particles including at least magnesium atoms, aluminum atoms, and oxygen atoms, wherein the quantity of atoms other than said atoms is less than 0.27 at% and/or the number of calcium atoms relative to the sum of the number of magnesium atoms and aluminum atoms is less than 0.02 at%.

Description

高純度スピネル粒子およびその製造方法High purity spinel particles and their manufacturing method
 本発明は、高純度スピネル粒子およびその製造方法に関する。 The present invention relates to high purity spinel particles and a method for producing the same.
 スピネル粒子は、MgAlで表される、一般式ABとなる金属元素の複合酸化物であり、宝石類として使用される他、その多孔構造や修飾容易性の観点から、電極保護膜、蛍光発光体、触媒担体、吸着剤、光触媒、耐熱絶縁材料等の用途に適用されている。なかでも、熱伝導性に優れることから放熱フィラーとしての研究がなされている(特許文献1および2)。 Spinel particles are composite oxides of metal elements represented by MgAl 2 O 4 and have the general formula AB 2 It is used in applications such as protective films, fluorescent emitters, catalyst carriers, adsorbents, photocatalysts, and heat-resistant insulating materials. Among them, research is being conducted as a heat dissipation filler because of its excellent thermal conductivity (Patent Documents 1 and 2).
 一方、近年、情報通信の高速化および大容量化が急速に拡大し、第5世代通信システム(5G)、さらには第6世代移動通信システム(6G)といったミリ波帯電磁波の通信インフラが注目されている。この結果、パワー系高周波デバイスのプリント基板等における伝送損失を低減するため、優れた誘電特性(低誘電率、低誘電正接)を有する放熱フィラーが求められてきている。 On the other hand, in recent years, the speed and capacity of information communication has rapidly increased, and communication infrastructure using millimeter wave electromagnetic waves, such as fifth generation communication systems (5G) and even sixth generation mobile communication systems (6G), is attracting attention. ing. As a result, in order to reduce transmission loss in printed circuit boards and the like of power-system high-frequency devices, heat dissipation fillers with excellent dielectric properties (low dielectric constant, low dielectric loss tangent) are being sought.
 これに対して、特許文献1には、マグネシウム原子、アルミニウム原子、および酸素原子と、モリブデンを含み、[111]面の結晶子径が220nm以上のスピネル粒子が開示されている。得られる粒子は、[111]面の結晶子径が著しく大きく、その結果熱伝導性に優れることが記載されている。 On the other hand, Patent Document 1 discloses spinel particles containing magnesium atoms, aluminum atoms, oxygen atoms, and molybdenum, and having a crystallite diameter of 220 nm or more in the [111] plane. It is described that the obtained particles have a significantly large crystallite size on the [111] plane, and as a result, have excellent thermal conductivity.
 また、特許文献2には、少なくとも、アルミナ系化合物と、マグネシウム又は亜鉛の化合物とを主成分として含む原料を焼成して得られるMgAl又はZnAlを主成分とするスピネル構造が開示されている。具体的には、耐薬品性に着目し、塩酸、硫酸、硝酸及び水酸化ナトリウムに対する耐薬品性試験における質量の変化率の絶対値がいずれも2%以下である熱伝導性複合酸化物が記載されている。 Further, Patent Document 2 describes a spinel structure mainly composed of MgAl 2 O 4 or ZnAl 2 O 4 obtained by firing a raw material containing at least an alumina-based compound and a compound of magnesium or zinc as its main components. Disclosed. Specifically, with a focus on chemical resistance, thermally conductive composite oxides are listed that have an absolute value of mass change rate of 2% or less in chemical resistance tests against hydrochloric acid, sulfuric acid, nitric acid, and sodium hydroxide. has been done.
国際公開第2017/221372号International Publication No. 2017/221372 特開2016-135841号公報JP2016-135841A
 いずれの文献も熱伝導性あるいは、熱伝導性および耐薬品性に着目したものであり、誘電特性について検討されたものではなかった。また、発明者らは、成形物において低い誘電特性を得るために、スピネル粒子の形状を球状とし、樹脂と混合した際の充填性を向上することが重要と考えているが、球状のスピネル粒子を生産方法はいまだ検討の余地がある。 All of the documents focused on thermal conductivity or thermal conductivity and chemical resistance, and did not examine dielectric properties. In addition, the inventors believe that in order to obtain low dielectric properties in molded products, it is important to make the shape of spinel particles spherical and improve the filling property when mixed with resin, but spherical spinel particles The production method is still subject to consideration.
 本発明は、上記事情を鑑みてなされたものであって、高い熱伝導性と低い誘電特性を兼ね備えた高純度スピネル粒子およびその製造方法を提供するものである。 The present invention was made in view of the above circumstances, and provides high purity spinel particles having both high thermal conductivity and low dielectric properties, and a method for producing the same.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、微粒子かつ高純度なマグネシウム系化合物と、アルミニウム系化合物を焼成して得られたスピネル粒子は、高純度であり、熱伝導率、誘電特性に優れるものであることを見出し、本発明を完成するに至った。 As a result of extensive research to achieve the above object, the present inventors found that spinel particles obtained by firing fine particles of a highly pure magnesium compound and an aluminum compound have high purity and thermal conductivity. The present inventors have discovered that this material has excellent dielectric properties and dielectric properties, and have completed the present invention.
 すなわち、本発明は、以下の態様を含む。
(1) マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含むスピネル粒子であって、
 前記原子以外の原子の量が0.27原子%未満である、スピネル粒子。
(2) マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含むスピネル粒子であって、
 カルシウム原子の数が、マグネシウム原子とアルミニウム原子の数の和に対し、0.02原子%未満である、スピネル粒子。
(3) 平均粒子径が75μm以下である、上記(1)または(2)に記載のスピネル粒子。
(4) 1GHzにおける誘電正接が1.0×10-3未満である、上記(1)~(3)のいずれかに記載のスピネル粒子。
(5) 上記(1)~(4)のいずれかに1つに記載のスピネル粒子と、樹脂と、を含む樹脂組成物。
(6) 上記(5)に記載の樹脂組成物の成形物。
(7) アルミニウム系化合物と、マグネシウム系化合物と、を混合し焼成するスピネル粒子の製造方法であって、
 前記マグネシウム系化合物が、平均粒子径4μm未満の微粒子であり、
 前記マグネシウム系化合物中に含まれる不純物量が1.0原子%未満である、スピネル粒子の製造方法。
(8) アルミニウム系化合物と、マグネシウム系化合物と、を混合し焼成するスピネル粒子の製造方法であって、
 前記マグネシウム系化合物が、平均粒子径4μm未満の微粒子であり、
 前記マグネシウム系化合物中に含まれるカルシウム原子量が0.6原子%以下である、スピネル粒子の製造方法。
(9) 前記アルミニウム系化合物の形状が球状または真球状である、上記(7)または(8)に記載の製造方法。
That is, the present invention includes the following aspects.
(1) Spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom,
A spinel particle in which the amount of atoms other than the above atoms is less than 0.27 at.%.
(2) Spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom,
Spinel particles in which the number of calcium atoms is less than 0.02 atomic % based on the sum of the numbers of magnesium atoms and aluminum atoms.
(3) The spinel particles according to (1) or (2) above, having an average particle diameter of 75 μm or less.
(4) The spinel particle according to any one of (1) to (3) above, having a dielectric loss tangent of less than 1.0×10 −3 at 1 GHz.
(5) A resin composition comprising the spinel particles according to any one of (1) to (4) above and a resin.
(6) A molded article of the resin composition according to (5) above.
(7) A method for producing spinel particles by mixing and firing an aluminum-based compound and a magnesium-based compound, the method comprising:
The magnesium-based compound is fine particles with an average particle size of less than 4 μm,
A method for producing spinel particles, wherein the amount of impurities contained in the magnesium-based compound is less than 1.0 atomic %.
(8) A method for producing spinel particles by mixing and firing an aluminum-based compound and a magnesium-based compound, the method comprising:
The magnesium-based compound is fine particles with an average particle size of less than 4 μm,
A method for producing spinel particles, wherein the calcium atomic weight contained in the magnesium-based compound is 0.6 at % or less.
(9) The manufacturing method according to (7) or (8) above, wherein the aluminum-based compound has a spherical or true spherical shape.
 本発明によれば、従来のスピネル粒子と比べて、高純度のスピネル粒子であり、熱伝導性と誘電特性の両方を兼ね備えた優れたものである。また、微粒子かつ高純度なマグネシウム系化合物と、アルミニウム系化合物と、を混合し焼成することで本発明のスピネル粒子を容易に得ることが可能な為、生産性が高く実用性に優れるものである。 According to the present invention, compared to conventional spinel particles, the spinel particles are highly purified and have excellent both thermal conductivity and dielectric properties. In addition, the spinel particles of the present invention can be easily obtained by mixing and firing fine particles of a highly pure magnesium compound and an aluminum compound, resulting in high productivity and excellent practicality. .
実施例1のスピネル粒子のSEM画像である。1 is a SEM image of spinel particles of Example 1. 実施例3のスピネル粒子のSEM画像である。3 is a SEM image of spinel particles of Example 3. 実施例4のスピネル粒子のSEM画像である。3 is a SEM image of spinel particles of Example 4. 比較例3のスピネル粒子のSEM画像である。3 is a SEM image of spinel particles of Comparative Example 3.
 以下、本発明を実施するための形態について詳細に説明する。
<スピネル粒子>
 本発明のスピネル粒子の一実施形態としては、マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含む、スピネル粒子であって、前記原子以外の原子の量がスピネル粒子の原子数に対して0.27原子%未満であることを特徴とする。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail.
<Spinel particles>
One embodiment of the spinel particle of the present invention is a spinel particle containing at least a magnesium atom, an aluminum atom, and an oxygen atom, wherein the amount of atoms other than the above atoms is 0 with respect to the number of atoms of the spinel particle. It is characterized by being less than .27 atomic %.
 本発明のスピネル粒子の一実施形態としては、マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含む、スピネル粒子であって、カルシウム原子の数が、マグネシウム原子とアルミニウム原子の数の和に対し、0.02原子%未満であることを特徴とする。 One embodiment of the spinel particles of the present invention is a spinel particle containing at least a magnesium atom, an aluminum atom, and an oxygen atom, wherein the number of calcium atoms is greater than the sum of the numbers of magnesium atoms and aluminum atoms. , less than 0.02 atomic %.
 スピネル粒子は、マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含むスピネル粒子であり、その他原子の量が0.27原子%未満であり、0.2原子%未満であるとより好ましく、0.1原子%未満であると特に好ましい。前記上限値未満であると、得られるスピネル粒子の誘電特性に優れ好ましい。 The spinel particles are spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom, and the amount of other atoms is less than 0.27 atom%, more preferably less than 0.2 atom%, and 0. Particularly preferred is less than .1 atomic %. When it is less than the above upper limit, the resulting spinel particles have excellent dielectric properties, which is preferable.
 スピネル粒子は、マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含むスピネル粒子であり、マグネシウム原子とアルミニウム原子の数の和に対するカルシウム原子の数が0.02原子%未満であり、0.01原子%未満であるとより好ましく、0.005原子%未満であると特に好ましい。前記上限値未満であると、得られるスピネル粒子の誘電特性に優れ好ましい。 The spinel particles are spinel particles containing at least a magnesium atom, an aluminum atom, and an oxygen atom, and the number of calcium atoms is less than 0.02 at% with respect to the sum of the numbers of magnesium atoms and aluminum atoms, and 0.01 It is more preferably less than atomic %, particularly preferably less than 0.005 atomic %. When it is less than the above upper limit, the resulting spinel particles have excellent dielectric properties, which is preferable.
 スピネル粒子の平均粒子径は、75μm以下であることが好ましく、35μm以下であることがより好ましく、10μm以下であることが特に好ましい。前記粒子径サイズ以下であると、樹脂と混合してシート等に加工した際、加工物の表面が凹凸とならないため好ましい。 The average particle diameter of the spinel particles is preferably 75 μm or less, more preferably 35 μm or less, and particularly preferably 10 μm or less. It is preferable that the particle size is below the above-mentioned particle size because when it is mixed with a resin and processed into a sheet or the like, the surface of the processed product does not become uneven.
 本明細書において、スピネル粒子の「平均粒子径」とは、例えば、レーザー回折散乱式粒度分布測定装置MT3300EXII(マイクロトラック・ベル株式会社製)のような、レーザー回折散乱を用いた粒度分布系により計測した値を示し、D50で示される。 In this specification, the "average particle diameter" of spinel particles refers to a particle size distribution system using laser diffraction scattering, such as a laser diffraction scattering particle size distribution analyzer MT3300EXII (manufactured by Microtrac Bell Co., Ltd.). The measured value is indicated by D50.
 また、前述の平均粒子径は、走査型電子顕微鏡(SEM)で撮影された二次元画像において、スピネル粒子の一次粒子の粒子像から判別される最長径(最も長い直径:観察視野上又はその画像上で、個々の粒子を平行な2本の線分で挟みこんだときの最長距離)の算術平均値を用いてもよく、得られる値は、上記方法により得られる測定値とほぼ同等の値を示す。
 なお、測定対象のスピネル粒子は、その輪郭線の全体像が識別可能なもののなかから、無作為に選出された少なくとも50個以上のスピネル粒子を対象とする。
In addition, the above-mentioned average particle diameter is the longest diameter determined from the particle image of the primary particle of the spinel particle in a two-dimensional image taken with a scanning electron microscope (SEM). (the longest distance when an individual particle is sandwiched between two parallel line segments) may be used, and the obtained value is almost equivalent to the measured value obtained by the above method. shows.
The spinel particles to be measured are at least 50 spinel particles randomly selected from among those whose outlines can be identified as a whole.
 スピネル粒子の誘電率は、20以下であることが好ましく、15以下であることがより好ましく、10以下であることが特に好ましい。前記範囲内にあると、樹脂組成物とした際に、電力消費すなわち熱発生やノイズを抑制できるため好ましい。 The dielectric constant of the spinel particles is preferably 20 or less, more preferably 15 or less, and particularly preferably 10 or less. If it is within the above range, power consumption, that is, heat generation, and noise can be suppressed when the resin composition is prepared, so it is preferable.
 スピネル粒子の1GHz下での誘電正接は、1.0×10-3以下であることが好ましく、8.0×10-4以下であることがより好ましく、5.0×10-4以下であることが特に好ましい。前記範囲内にあると、樹脂組成物とした際に、電力消費すなわち熱発生やノイズを抑制できるため好ましい。 The dielectric loss tangent of the spinel particles at 1 GHz is preferably 1.0×10 −3 or less, more preferably 8.0×10 −4 or less, and 5.0×10 −4 or less. It is particularly preferable. If it is within the above range, power consumption, that is, heat generation, and noise can be suppressed when the resin composition is prepared, so it is preferable.
 スピネル粒子の形状としては、多面体状、球状、真球状、楕円状、円柱状、多角柱状、針状、棒状、板状、円板状、薄片状、鱗片状等が挙げられる。これらのうち、球状であると樹脂と混合した際に充填性が高くなり好ましく、真球状であると、混合物の粘度がより低下し充填率が向上し、さらに最密充填構造となりやすいため、特に好ましい。 Examples of the shape of spinel particles include polyhedral, spherical, true spherical, elliptical, cylindrical, polygonal columnar, needle-like, rod-like, plate-like, disk-like, flaky, and scaly shapes. Among these, a spherical shape is preferable because it increases the filling property when mixed with resin, and a true spherical shape lowers the viscosity of the mixture, increases the filling rate, and tends to form a close-packed structure, so it is especially preferable. preferable.
 球状の形状を有するスピネル粒子を含む場合、質量基準又は個数基準で50%以上の粒子が球状の形状を有することが好ましく、80%以上の粒子が球状の形状を有することがより好ましく、90%以上の粒子が球状の形状を有することがさらに好ましい。 When spinel particles having a spherical shape are included, preferably 50% or more of the particles have a spherical shape based on mass or number, more preferably 80% or more of the particles have a spherical shape, and 90% or more of the particles have a spherical shape. It is further preferred that the above particles have a spherical shape.
 なお、形状が球状または真球状であると、樹脂組成物の成形時に、他粒子との接触固定を容易に回避する為、密に充填される。また、前記形状であることにより、粒子輪郭線のフラクタル次元が減少し、充填した際の空間率が抑制される。結果として、最密充填構造を取ることにより、熱伝導性、誘電特性に優れたものを与える。 Note that if the shape is spherical or true spherical, it will be packed densely to easily avoid contact and fixation with other particles during molding of the resin composition. Further, due to the shape described above, the fractal dimension of the particle contour is reduced, and the void ratio when filled is suppressed. As a result, a close-packed structure provides excellent thermal conductivity and dielectric properties.
 本明細書において、形状は走査型電子顕微鏡(SEM)画像から目視により判断しているが、円形度を算出し判断することもできる。例えば、円形度としては、0.7以上であればよく、0.75以上であってもよく、0.8以上であってもよい。なお、前述の「円形度」とは、「4×π×面積/円周^2」から算出することができ、面積及び円周は、それぞれ走査型電子顕微鏡(SEM)による観察で求めることができる。 In this specification, the shape is determined visually from a scanning electron microscope (SEM) image, but it can also be determined by calculating circularity. For example, the circularity may be 0.7 or more, 0.75 or more, or 0.8 or more. The above-mentioned "circularity" can be calculated from "4 x π x area/circumference^2", and the area and circumference can be determined by observation using a scanning electron microscope (SEM). can.
 スピネル粒子の結晶構造は、スピネル型結晶構造のMgAlを有している。なお、後述する本実施形態のスピネル粒子はスピネル型結晶構造を主とするものであるが、誘電正接に悪影響を与えない程度に不純物相を含有していても良い。 The crystal structure of the spinel particles has MgAl 2 O 4 having a spinel type crystal structure. The spinel particles of this embodiment, which will be described later, mainly have a spinel crystal structure, but may contain impurity phases to the extent that they do not adversely affect the dielectric loss tangent.
<各原子の含有量>
(マグネシウム原子)
 スピネル粒子中のマグネシウム原子の含有量は、特に制限されないが、スピネル粒子の構造式をMgAlで表す場合、xは0.8~1.2の範囲であることが好ましく、0.9~1.1の範囲であることがより好ましい。なお、本明細書において、スピネル粒子中のマグネシウム原子の含有量は蛍光X線元素分析法(XRF)により測定された値を採用するものとする。
<Content of each atom>
(magnesium atom)
The content of magnesium atoms in spinel particles is not particularly limited, but when the structural formula of spinel particles is represented by Mg x Al y O z , x is preferably in the range of 0.8 to 1.2, and 0 More preferably, it is in the range of .9 to 1.1. In addition, in this specification, the content of magnesium atoms in spinel particles shall be the value measured by X-ray fluorescence elemental analysis (XRF).
(アルミニウム原子)
 スピネル粒子中のアルミニウム原子の含有量は、特に制限されないが、スピネル粒子の構造式をMgAlで表す場合、yは1.8~2.2の範囲であることが好ましく、1.9~2.1の範囲であることがより好ましい。なお、本明細書において、スピネル粒子中のアルミニウム原子の含有量は蛍光X線元素分析法(XRF)により測定された値を採用するものとする。
(aluminum atom)
The content of aluminum atoms in spinel particles is not particularly limited, but when the structural formula of spinel particles is represented by Mg x Al y O z , y is preferably in the range of 1.8 to 2.2, and 1 More preferably, it is in the range of .9 to 2.1. In addition, in this specification, the content of aluminum atoms in spinel particles shall be the value measured by X-ray fluorescence elemental analysis (XRF).
(酸素原子)
 スピネル粒子中の酸素原子の含有量は、特に制限されないが、スピネル粒子の構造式をMgAlで表す場合、zは(x+y+1.2)~(x+y+0.8)の範囲であることが好ましく、(x+y+1.1)~(x+y+0.9)の範囲であることがより好ましい。
(oxygen atom)
The content of oxygen atoms in spinel particles is not particularly limited, but when the structural formula of spinel particles is represented by Mg x Al y O z , z must be in the range of (x + y + 1.2) to (x + y + 0.8). is preferable, and a range of (x+y+1.1) to (x+y+0.9) is more preferable.
(その他原子)
 その他原子とは原料中に存在したり、製造工程において不可避的にスピネル粒子に混入するものであり、本来は不要なものであり、スピネル粒子の特性に影響を及ぼす不純物を意味する。
(Other atoms)
Other atoms are those present in the raw materials or unavoidably mixed into the spinel particles during the manufacturing process, are essentially unnecessary, and mean impurities that affect the characteristics of the spinel particles.
 スピネル粒子中のその他原子としては、特に制限されないが、ケイ素、鉄、カリウム、ナトリウム、カルシウム等が挙げられる。これらの不純物は単独で含まれていても、2種以上が含まれていてもよいが、その含有量は、スピネル粒子の原子に対して0.27原子%未満であることが好ましい。前記範囲内であると不純物によるフォノン(格子振動)の散乱が抑制されると想定され、これによりスピネル粒子の誘電特性に優れる。スピネル中のその他原子の含有量は蛍光X線元素分析法(XRF)により測定された値を採用するものとする。 Other atoms in the spinel particles include, but are not particularly limited to, silicon, iron, potassium, sodium, calcium, and the like. These impurities may be contained alone or in combination of two or more types, but the content thereof is preferably less than 0.27 atomic % based on the atoms of the spinel particles. If it is within the above range, it is assumed that scattering of phonons (lattice vibrations) due to impurities is suppressed, and thereby the spinel particles have excellent dielectric properties. For the content of other atoms in the spinel, values measured by X-ray fluorescence elemental analysis (XRF) are used.
 スピネル粒子において、不純物のカルシウム原子の数が、マグネシウムとアルミニウムの原子の数の和に対し、0.02原子%未満であることが好ましい。前記範囲内であると、マグネシウム原子に置換されたカルシウム原子による不純物によるフォノン(格子振動)の散乱が抑制されると推定され、スピネル粒子の誘電正接に優れる。スピネル粒子中のカルシウム原子の含有量は蛍光X線元素分析法(XRF)により測定された値を採用するものとする。 In the spinel particles, the number of impurity calcium atoms is preferably less than 0.02 at % based on the sum of the numbers of magnesium and aluminum atoms. Within the above range, it is estimated that scattering of phonons (lattice vibrations) due to impurities caused by calcium atoms substituted by magnesium atoms is suppressed, and the dielectric loss tangent of the spinel particles is excellent. As for the content of calcium atoms in the spinel particles, a value measured by X-ray fluorescence elemental analysis (XRF) is used.
 なお、本発明のスピネル粒子においては、不純物(ケイ素、鉄、カリウム、ナトリウム、カルシウム等)の含有量と、マグネシウムとアルミニウムの原子の数の和に対するカルシウム原子の数のいずれかが前述の範囲内にあればよく、両方を満たしていてもよい。なお、いずれも前述の範囲内にあると、より優れた誘電特性を有するスピネル粒子が得られる為、特に好ましい。 In addition, in the spinel particles of the present invention, either the content of impurities (silicon, iron, potassium, sodium, calcium, etc.) or the number of calcium atoms relative to the sum of the numbers of magnesium and aluminum atoms is within the above range. It is sufficient if both conditions are satisfied. In addition, it is particularly preferable that both of them are within the above-mentioned ranges, since spinel particles having better dielectric properties can be obtained.
<スピネル粒子の製造方法>
 スピネル粒子の製造方法は、マグネシウム系化合物と、アルミニウム系化合物と、を含む混合物を焼成する工程を含む。
<Method for manufacturing spinel particles>
The method for producing spinel particles includes a step of firing a mixture containing a magnesium-based compound and an aluminum-based compound.
[混合工程]
 混合工程は、マグネシウム系化合物と、アルミニウム系化合物とを混合して混合物を得る工程である。この際、マグネシウム系化合物およびアルミニウム系化合物の混合状態は、特に限定されない。両者を混合する場合には、袋などに原料を入れて振とうさせ粉体を混ぜ合わせる簡便な混合、粉砕機やミキサー等を用いた機械的な混合、乳鉢等を用いた混合等が行われる。この際、得られる混合物は、乾式状態、湿式状態のいずれであってもよいが、コストの観点から乾式状態であることが好ましい。
[Mixing process]
The mixing step is a step of mixing a magnesium-based compound and an aluminum-based compound to obtain a mixture. At this time, the mixing state of the magnesium-based compound and the aluminum-based compound is not particularly limited. When mixing the two, simple mixing methods such as putting the raw materials in a bag or the like and shaking them to mix the powder, mechanical mixing using a grinder or mixer, mixing using a mortar, etc. are performed. . At this time, the resulting mixture may be in either a dry state or a wet state, but it is preferably in a dry state from the viewpoint of cost.
 混合工程において、マグネシウム系化合物と、アルミニウム系化合物との混合比は特別な限定はないが、マグネシウム系化合物のマグネシウム元素に対するアルミニウム系化合物のアルミニウム元素のモル比(アルミニウム元素/マグネシウム元素)が1.8以上2.2以下となるように混合することが好ましく、1.9以上2.1以下となるように混合することがより好ましい。
 以下、混合物の内容について説明をする。
In the mixing step, the mixing ratio of the magnesium-based compound and the aluminum-based compound is not particularly limited, but the molar ratio of the aluminum element of the aluminum-based compound to the magnesium element of the magnesium-based compound (aluminum element/magnesium element) is 1. It is preferable to mix so that it becomes 8 or more and 2.2 or less, and it is more preferable to mix so that it becomes 1.9 or more and 2.1 or less.
The contents of the mixture will be explained below.
(マグネシウム系化合物)
 マグネシウム系化合物としては、特に制限されないが、金属マグネシウム、マグネシウム誘導体、マグネシウムオキソ酸塩、マグネシウム有機塩、およびこれらの水和物等が挙げられる。マグネシウム誘導体としては、例えば、酸化マグネシウム、水酸化マグネシウム、過酸化マグネシウム、フッ化マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、水素化マグネシウム、二ホウ化マグネシウム、窒化マグネシウム、硫化マグネシウム等が挙げられる。マグネシウムオキソ酸塩としては、例えば、炭酸マグネシウム、炭酸カルシウムマグネシウム、硝酸マグネシウム、硫酸マグネシウム、亜硫酸マグネシウム、過塩素酸マグネシウム、リン酸三マグネシウム、過マンガン酸マグネシウム、リン酸マグネシウム等が挙げられる。マグネシウム有機塩としては、例えば、酢酸マグネシウム、クエン酸マグネシウム、リンゴ酸マグネシウム、グルタミン酸マグネシウム、安息香酸マグネシウム、ステアリン酸マグネシウム、アクリル酸マグネシウム、メタクリル酸マグネシウム、グルコン酸マグネシウム、ナフテン酸マグネシウム、サリチル酸マグネシウム、乳酸マグネシウム、モノペルオキシフタル酸マグネシウム等が挙げられる。なお、これらマグネシウム系化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Magnesium-based compound)
Examples of the magnesium compound include, but are not particularly limited to, metal magnesium, magnesium derivatives, magnesium oxoacid salts, magnesium organic salts, and hydrates thereof. Examples of magnesium derivatives include magnesium oxide, magnesium hydroxide, magnesium peroxide, magnesium fluoride, magnesium chloride, magnesium bromide, magnesium iodide, magnesium hydride, magnesium diboride, magnesium nitride, and magnesium sulfide. It will be done. Examples of magnesium oxoacid salts include magnesium carbonate, calcium magnesium carbonate, magnesium nitrate, magnesium sulfate, magnesium sulfite, magnesium perchlorate, trimagnesium phosphate, magnesium permanganate, and magnesium phosphate. Examples of magnesium organic salts include magnesium acetate, magnesium citrate, magnesium malate, magnesium glutamate, magnesium benzoate, magnesium stearate, magnesium acrylate, magnesium methacrylate, magnesium gluconate, magnesium naphthenate, magnesium salicylate, and lactic acid. Examples include magnesium, magnesium monoperoxyphthalate, and the like. Note that these magnesium compounds may be used alone or in combination of two or more.
 中でも、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硝酸マグネシウム又は硫酸マグネシウムであることが好ましく、酸化マグネシウム、水酸化マグネシウム、硝酸マグネシウム又は酢酸マグネシウムであることがより好ましい。 Among these, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium acetate, magnesium nitrate, or magnesium sulfate are preferable, and magnesium oxide, magnesium hydroxide, magnesium nitrate, or magnesium acetate is more preferable.
 マグネシウム系化合物のレーザー回折式粒度分布測定における体積基準の平均粒子径D50は、凝集がない範囲でより小さい粒子径のものを用いることで、焼成時の均質化が図れ、粒度のより揃ったスピネル粒子を得ることができる。前記平均粒子径D50としては、0.01μm以上4μm未満であり、0.1μm以上2μm以下がより好ましく、0.5μm以上2μm以下がさらに好ましく、0.5μm以上1.5μm以下が特に好ましい。上記下限値以上であると混合時に粒子が凝集することを抑制できる。上記上限値未満であると、アルミニウム系化合物の形状を壊す事なく、マグネシウム原子がアルミニウム系化合物粒子の中に拡散し入り込み、形状の整った粒子を成長させることが可能である。 The volume-based average particle diameter D50 in the laser diffraction particle size distribution measurement of magnesium-based compounds is determined by using particles with a smaller particle diameter within the range of no agglomeration. particles can be obtained. The average particle diameter D50 is 0.01 μm or more and less than 4 μm, more preferably 0.1 μm or more and 2 μm or less, even more preferably 0.5 μm or more and 2 μm or less, and particularly preferably 0.5 μm or more and 1.5 μm or less. When it is at least the above lower limit, it is possible to suppress particles from agglomerating during mixing. When it is less than the above upper limit, magnesium atoms can diffuse and enter the aluminum-based compound particles without destroying the shape of the aluminum-based compound, and it is possible to grow well-shaped particles.
 マグネシウム系化合物は市販品を使用してもよく、自ら調製してもよい。マグネシウム系化合物を自ら調製する場合、スピネル粒子製造のための反応性を調整することができる。例えば、マグネシウムイオンの酸性水溶液を塩基で中和することで粒子径の小さい水酸化マグネシウムを得ることができる。得られる粒径の小さい水酸化マグネシウムは反応性が高いため、これを用いて得られるスピネル粒子の結晶子径は大きくなる傾向がある。 The magnesium-based compound may be a commercially available product or may be prepared by yourself. When preparing the magnesium-based compound yourself, the reactivity for spinel particle production can be adjusted. For example, magnesium hydroxide with a small particle size can be obtained by neutralizing an acidic aqueous solution of magnesium ions with a base. Since the obtained magnesium hydroxide having a small particle size has high reactivity, the crystallite size of spinel particles obtained using this tends to be large.
 市販品あるいは調製品のマグネシウム系化合物中には、ケイ素、鉄、カリウム、ナトリウム、カルシウム、リン、硫黄、塩素といった不純物が含まれる場合がある。これら不純物の総量は、蛍光X線元素分析法(XRF)により測定された値を原子数に換算した場合、マグネシウムに対して1.0原子%未満であることが好ましく、0.5原子%以下であるとより好ましく、0.3原子%以下であるとさらに好ましい。 Commercially available or prepared magnesium compounds may contain impurities such as silicon, iron, potassium, sodium, calcium, phosphorus, sulfur, and chlorine. The total amount of these impurities is preferably less than 1.0 at% and 0.5 at% or less based on magnesium when the value measured by X-ray fluorescence elemental analysis (XRF) is converted to the number of atoms. It is more preferable that it is, and even more preferable that it is 0.3 atom % or less.
 市販品あるいは調製品のマグネシウム系化合物中に含有されるカルシウム原子量については、0.6原子%以下であることが好ましく、0.4原子%以下であるとより好ましく、0.3原子%以下であるとさらに好ましい。 The atomic weight of calcium contained in the magnesium-based compound of commercially available products or prepared products is preferably 0.6 atomic % or less, more preferably 0.4 atomic % or less, and 0.3 atomic % or less. It is even more preferable.
(アルミニウム系化合物)
 アルミニウム系化合物としては、特に制限されないが、金属アルミニウム、アルミナ(酸化アルミニウム)、水酸化アルミニウム、硫化アルミニウム、窒化アルミニウム、フッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム等のアルミニウム誘導体;硫酸アルミニウム、硫酸ナトリウムアルミニウム、硫酸カリウムアルミニウム、硫酸アンモニウムアルミニウム、硝酸アルミニウム、過塩素酸アルミニウム、アルミン酸アルミニウム、ケイ酸アルミニウム、リン酸アルミニウム等のアルミニウムオキソ酸塩;酢酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、シュウ酸アルミニウム等のアルミニウム有機塩;アルミニウムプロポキシド、アルミニウムブトキシド等のアルコキシアルミニウム;アルミン酸マグネシウム、ハイドロタルサイト、マグネシウムアルミニウムイソプロポキシド等のアルミニウム-マグネシウム含有化合物;およびこれらの水和物等が挙げられる。これらのうち、酸化アルミニウム、水酸化アルミニウム、塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、およびこれらの水和物を用いることが好ましく、酸化アルミニウム、水酸化アルミニウムを用いることがより好ましい。
 なお、上述のアルミニウム系化合物は単独で用いても、2種以上を組み合わせて用いてもよい。
(aluminum compound)
Examples of aluminum-based compounds include, but are not limited to, metal aluminum, aluminum derivatives such as alumina (aluminum oxide), aluminum hydroxide, aluminum sulfide, aluminum nitride, aluminum fluoride, aluminum chloride, aluminum bromide, and aluminum iodide; sulfuric acid. Aluminum, aluminum oxoarates such as sodium aluminum sulfate, potassium aluminum sulfate, ammonium aluminum sulfate, aluminum nitrate, aluminum perchlorate, aluminum aluminate, aluminum silicate, aluminum phosphate; aluminum acetate, aluminum lactate, aluminum laurate, stearin Aluminum organic salts such as aluminum acid and aluminum oxalate; alkoxyaluminums such as aluminum propoxide and aluminum butoxide; aluminum-magnesium-containing compounds such as magnesium aluminate, hydrotalcite, and magnesium aluminum isopropoxide; and hydrates thereof etc. Among these, it is preferable to use aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum sulfate, aluminum nitrate, and hydrates thereof, and it is more preferable to use aluminum oxide and aluminum hydroxide.
In addition, the above-mentioned aluminum-based compounds may be used alone or in combination of two or more types.
 アルミニウム系化合物のレーザー回折式粒度分布測定における体積基準の平均粒子径D50は、凝集がない範囲でより小さい粒子径のものを用いることで、焼成時の反応性が向上し、不純物相がなく純度の高いスピネル粒子を得ることができ好ましい。アルミニウム原料の粒径は、得られるスピネル粒子の粒径と相関するため、所望のスピネル粒子の粒径に応じて適宜選定される。アルミニウム系化合物の平均粒子径D50としては、0.01μm以上70μm以下であり、0.1μm以上30μm以下が好ましく、0.1μm以上15μm以下がより好ましく、0.5μm以上10μm以下が最も好ましい。 The volume-based average particle diameter D50 in the laser diffraction particle size distribution measurement of aluminum-based compounds is determined by using particles with a smaller particle diameter within the range of no agglomeration, which improves reactivity during firing and improves purity without impurity phases. It is preferable that spinel particles with high viscosity can be obtained. Since the particle size of the aluminum raw material is correlated with the particle size of the spinel particles to be obtained, it is appropriately selected depending on the desired particle size of the spinel particles. The average particle diameter D50 of the aluminum compound is 0.01 μm or more and 70 μm or less, preferably 0.1 μm or more and 30 μm or less, more preferably 0.1 μm or more and 15 μm or less, and most preferably 0.5 μm or more and 10 μm or less.
 前記平均粒子径D50とするために、粉砕機等を用いて原料のアルミニウム系化合物を粉砕して調整してもよい。なお、後述するアルミニウム系化合物の粒子形状と得られるスピネル粒子の形状の観点から、粒子径調整のための粉砕を必要としないアルミニウム系化合物を原料として用いることがより好ましい。 In order to obtain the average particle diameter D50, the raw material aluminum compound may be ground by using a grinder or the like. In addition, from the viewpoint of the particle shape of the aluminum-based compound described later and the shape of the obtained spinel particles, it is more preferable to use an aluminum-based compound that does not require pulverization for particle size adjustment as the raw material.
 アルミニウム系化合物の形状は、多面体状、球状、真球状、楕円状、円柱状、多角柱状、針状、棒状、板状、円板状、薄片状、鱗片状のいずれであってもよいが、得られるスピネル粒子の形状の観点から、球状または真球状であるとより好ましい。本実施形態の製造方法によると、マグネシウム原子がアルミニウム系化合物粒子の中に、拡散し入り込むため、粒子成長の際に原料のアルミニウム系化合物の形状が崩れることなく成長することが可能であり、得られるスピネル粒子の形状を容易に制御することが可能となる。 The shape of the aluminum-based compound may be polyhedral, spherical, true spherical, elliptical, cylindrical, polygonal columnar, needle-like, rod-like, plate-like, disk-like, flaky, or scaly; From the viewpoint of the shape of the obtained spinel particles, it is more preferable that the spinel particles are spherical or truly spherical. According to the manufacturing method of this embodiment, since magnesium atoms diffuse and enter into the aluminum compound particles, it is possible to grow the aluminum compound as a raw material without losing its shape during particle growth. It becomes possible to easily control the shape of the spinel particles.
 アルミニウム系化合物の結晶構造は、特に制限されるものではなく、単相であっても混相であってもよい。なお、結晶構造が混相であるとアルミニウム系化合物の形状は真球状である場合が多い。 The crystal structure of the aluminum-based compound is not particularly limited, and may be a single phase or a mixed phase. Note that when the crystal structure is a mixed phase, the aluminum-based compound often has a true spherical shape.
[焼成工程]
 前記混合物を、焼成炉中において高温で焼成することで、スピネル粒子を得ることができる。
[Firing process]
Spinel particles can be obtained by firing the mixture at a high temperature in a firing furnace.
 焼成温度は、所望のスピネル粒子を得ることができれば特に制限されないが、1100~1600℃であることが好ましく、1200~1500℃であることがより好ましく、1300~1400℃であると特に好ましい。焼成温度が1100℃以上であると、原料未反応が抑制されるため好ましく、一方、焼成温度が1600℃以下であると、汎用の焼成炉が使用できるため量産適性の関連から好ましい。 The firing temperature is not particularly limited as long as the desired spinel particles can be obtained, but it is preferably 1100 to 1600°C, more preferably 1200 to 1500°C, and particularly preferably 1300 to 1400°C. It is preferable that the firing temperature is 1100° C. or higher because it suppresses unreacted raw materials, while it is preferable that the firing temperature is 1600° C. or lower because it allows the use of a general-purpose firing furnace and is suitable for mass production.
 焼成時間は、特に制限されないが、1~20時間であることが好ましく、5~10時間であることがより好ましい。焼成時間が1時間以上であると、高結晶なスピネル粒子を得ることができるため好ましい。一方、焼成時間が20時間以内であると、製造コストが低くなり得ることから好ましい。 The firing time is not particularly limited, but is preferably 1 to 20 hours, more preferably 5 to 10 hours. It is preferable that the firing time is 1 hour or more because highly crystalline spinel particles can be obtained. On the other hand, it is preferable that the firing time is 20 hours or less because manufacturing costs can be reduced.
 焼成雰囲気は、空気雰囲気であっても、窒素ガスやアルゴンガス等の不活性ガス雰囲気であっても、酸素雰囲気であっても、アンモニアガス雰囲気であっても、二酸化炭素雰囲気であってもよい。この際、製造コストの観点からは空気雰囲気であることが好ましい。 The firing atmosphere may be an air atmosphere, an inert gas atmosphere such as nitrogen gas or argon gas, an oxygen atmosphere, an ammonia gas atmosphere, or a carbon dioxide atmosphere. . At this time, an air atmosphere is preferable from the viewpoint of manufacturing costs.
 焼成時の圧力についても特に制限されず、常圧下であっても、加圧下であっても、減圧下であってもよいが、製造コストの観点から常圧下で行う事が好ましい。 The pressure during firing is not particularly limited either, and may be under normal pressure, increased pressure, or reduced pressure, but from the viewpoint of manufacturing costs, it is preferable to carry out under normal pressure.
 加熱手段としては、特に制限されないが、焼成炉を用いることが好ましい。この際使用されうる焼成炉としては、箱型炉、トンネル炉、ローラーハース炉、ロータリーキルン、マッフル炉等が挙げられる。 The heating means is not particularly limited, but it is preferable to use a firing furnace. Firing furnaces that can be used in this case include box furnaces, tunnel furnaces, roller hearth furnaces, rotary kilns, muffle furnaces, and the like.
 一般的な火焔法等による製造方法と比較して、上述の製造方法では、粒子成長の際に、マグネシウム原子が表面拡散あるいは粒界拡散をするのではなく、アルミニウム系化合物粒子内を拡散経路とする体積拡散を行うと考えており、この結果、原料のアルミニウム系化合物の形状を維持したまま粒子成長することが可能となったと想定している。
 また、本発明の製造方法は、アルミニウム系化合物表面にマグネシウム原子を吸着させるといった前処理が不要である為、生産性に優れる製造方法である。
Compared to manufacturing methods such as the general flame method, in the above manufacturing method, magnesium atoms do not diffuse through the surface or grain boundaries during particle growth, but instead use the diffusion route within the aluminum compound particles. As a result, it is assumed that particle growth is possible while maintaining the shape of the raw material aluminum-based compound.
Further, the manufacturing method of the present invention is a manufacturing method with excellent productivity because it does not require pretreatment such as adsorbing magnesium atoms onto the surface of the aluminum compound.
 [冷却工程]
 冷却工程は、焼成工程において結晶成長したスピネル粒子を冷却し、結晶化して粒子状とする工程である。
[Cooling process]
The cooling step is a step in which spinel particles that have grown as crystals in the firing step are cooled and crystallized into particles.
 冷却速度についても特に制限されないが、1~1000℃/時間であることが好ましく、5~500℃/時間であることがより好ましく、100~500℃/時間であることがさらに好ましい。冷却速度が1℃/時間以上であると、製造時間が短縮されうることから好ましい。一方、冷却速度が1000℃/時間以下であると、焼成容器がヒートショックで割れることが少なく、長く使用できることから好ましい。
 冷却方法は特に制限されず、自然放冷であっても、冷却装置を使用してもよい。
The cooling rate is also not particularly limited, but it is preferably 1 to 1000°C/hour, more preferably 5 to 500°C/hour, and even more preferably 100 to 500°C/hour. It is preferable that the cooling rate is 1° C./hour or more because the manufacturing time can be shortened. On the other hand, it is preferable that the cooling rate is 1000° C./hour or less because the firing container is less likely to crack due to heat shock and can be used for a long time.
The cooling method is not particularly limited, and may be natural cooling or a cooling device may be used.
 本発明の製造方法は、後処理工程を含んでいてもよい。当該後処理工程は、添加剤等を除去する工程である。後処理工程は、上述の焼成工程の後に行ってもよく、上述の冷却工程の後に行っても良く、焼成工程および冷却工程の後に行ってもよい。また、必要に応じて、2度以上繰り返し行ってもよい。 The manufacturing method of the present invention may include a post-treatment step. The post-treatment step is a step of removing additives and the like. The post-treatment step may be performed after the above-mentioned firing step, after the above-mentioned cooling step, or after the firing step and the cooling step. Further, if necessary, the process may be repeated two or more times.
 後処理の方法としては、洗浄及び高温処理が挙げられる。これらは組み合わせて行うことができる。
 前記洗浄方法としては、特に制限されないが、例えば、水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液等で洗浄することにより除去することができる。
 また、高温処理の方法としては、添加剤の昇華点または沸点以上に昇温する方法が挙げられる。
Post-treatment methods include washing and high temperature treatment. These can be done in combination.
The cleaning method is not particularly limited, but it can be removed by, for example, cleaning with water, ammonia aqueous solution, sodium hydroxide aqueous solution, acidic aqueous solution, or the like.
Examples of the high-temperature treatment include a method of raising the temperature above the sublimation point or boiling point of the additive.
[粉砕工程]
 焼成により得られるスピネル粒子は凝集し、本発明に好適な粒子径の範囲を満たさない場合がある。この場合、必要に応じて、本発明に好適な粒子径の範囲を満たすように粉砕してもよい。
[Crushing process]
The spinel particles obtained by firing may aggregate and may not satisfy the particle size range suitable for the present invention. In this case, if necessary, the particles may be pulverized to satisfy the particle size range suitable for the present invention.
 粉砕の方法は特に限定されず、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等の従来公知の粉砕方法を適用できる。 The pulverization method is not particularly limited, and conventionally known pulverization methods such as a ball mill, jaw crusher, jet mill, disk mill, spectromill, grinder, mixer mill, etc. can be applied.
[分級工程]
 スピネル粒子は、平均粒子径を調整し、粉体の流動性を向上するため、またはマトリックスを形成するためのバインダーに配合した時の粘度上昇を抑制するために、分級処理することもできる。「分級処理」とは、粒子の大きさによって粒子をグループ分けする操作をいう。
[Classification process]
Spinel particles can also be subjected to classification treatment in order to adjust the average particle diameter and improve the fluidity of the powder, or to suppress an increase in viscosity when added to a binder for forming a matrix. "Classification processing" refers to an operation of dividing particles into groups according to their size.
 分級の方法は湿式、乾式のいずれでも良いが、生産性の観点からは、乾式の分級が好ましい。乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級等があるが、分級精度の観点からは、風力分級が好ましく、コアンダ効果を利用した気流分級機、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機等の分級機を用いて行うことができる。 The classification method may be either wet or dry, but from the viewpoint of productivity, dry classification is preferable. In addition to classification using a sieve, dry classification includes wind classification that uses the difference between centrifugal force and fluid drag, but from the perspective of classification accuracy, wind classification is preferable, and air classifiers that use the Coanda effect, This can be carried out using a classifier such as a swirling airflow classifier, a forced vortex centrifugal classifier, or a semi-free vortex centrifugal classifier.
 上述した粉砕工程や分級工程は、後述する有機化合物層形成工程の前後を含めて、必要な段階において行うことができる。これら粉砕や分級の有無やそれらの条件選定により、例えば、得られる粒子の平均粒子径を調整することができる。 The above-mentioned pulverization process and classification process can be performed at any necessary stage, including before and after the organic compound layer forming process described below. For example, the average particle diameter of the obtained particles can be adjusted by whether or not these pulverization and classification are performed and by selecting the conditions thereof.
 <樹脂組成物>
 本発明の一形態によれば、スピネル粒子と、樹脂とを含む、組成物が提供される。この際、前記組成物は、必要に応じて、硬化剤、硬化触媒、粘度調節剤、可塑剤等をさらに含んでいてもよい。
<Resin composition>
According to one aspect of the invention, a composition is provided that includes spinel particles and a resin. At this time, the composition may further contain a curing agent, a curing catalyst, a viscosity modifier, a plasticizer, etc., if necessary.
(スピネル粒子)
 スピネル粒子としては、上記「スピネル粒子」において説明したものが用いられ得ることから、ここでは説明を省略する。
(spinel particles)
As the spinel particles, those explained in the above "spinel particles" can be used, so the explanation will be omitted here.
 なお、前記スピネル粒子としては、さらに、後述の方法により表面処理したものを用いても良い。表面処理することにより、スピネル粒子の熱伝導性を更に改善することが可能である。
 例えば、上記の様にして得られたスピネル粒子は、スピネル粒子表面の少なくとも一部に有機化合物を含む表面処理層を付着させることで、表面処理スピネル粒子を製造することができる。
Note that the spinel particles may be further surface-treated by the method described below. By surface treatment it is possible to further improve the thermal conductivity of spinel particles.
For example, surface-treated spinel particles can be produced from the spinel particles obtained as described above by attaching a surface treatment layer containing an organic compound to at least a portion of the spinel particle surface.
 未処理スピネル粒子の表面の少なくとも一部に、表面処理層が付着されている状態とすることで、樹脂組成物に含まれる樹脂との濡れ性が向上し、スピネル粒子との密着性が向上することから、スピネル粒子表面に生じやすい空隙の生成が抑えられるため、熱伝導率のロスが低くなることから、例えば、樹脂組成物の成形物の熱伝導性を改善することができる。この様な技術的効果は、スピネル粒子の表面の一部に、有機化合物に基づく表面処理剤またはその硬化物に基づく表面処理層が付着していることで発現するものであり、例えば、表面処理後に焼成を行う等して、表面処理剤を当該スピネル粒子から除去した場合には、発現させることはできない。 By attaching the surface treatment layer to at least a portion of the surface of the untreated spinel particles, the wettability with the resin contained in the resin composition is improved, and the adhesion with the spinel particles is improved. Therefore, the formation of voids that tend to occur on the surface of spinel particles is suppressed, and the loss in thermal conductivity is reduced, so that, for example, the thermal conductivity of molded products of the resin composition can be improved. Such technical effects are produced by the fact that a surface treatment layer based on a surface treatment agent based on an organic compound or a cured product thereof is attached to a part of the surface of the spinel particles. If the surface treatment agent is removed from the spinel particles by subsequent firing or the like, it will not be possible to develop the surface treatment agent.
 また、複数種のスピネル粒子を用いる場合、これら複数種のうち一種以上として、表面処理層を有するスピネル粒子を用いることができる。 Furthermore, when multiple types of spinel particles are used, spinel particles having a surface treatment layer can be used as one or more of the multiple types.
 具体的には、上記未処理スピネル粒子と、有機化合物を含む表面処理層を形成しうる表面処理剤とを混合し、未処理スピネル粒子の表面の少なくとも一部に当該表面処理剤を付着させた後に、例えば、乾燥や硬化等を行うことで、表面処理スピネル粒子を製造することができる。 Specifically, the untreated spinel particles were mixed with a surface treatment agent capable of forming a surface treatment layer containing an organic compound, and the surface treatment agent was attached to at least a portion of the surface of the untreated spinel particles. Afterwards, surface-treated spinel particles can be manufactured by performing drying, curing, etc., for example.
 表面処理剤自体が反応性を有しないが吸着性を有する有機化合物であったり、表面処理剤が液媒体に溶解又は分散した様な溶液又は分散液である場合は、吸着を促進したり液媒体を除去する目的で乾燥を行えば良いし、表面処理剤が反応性を有する有機化合物である場合は、当該化合物の反応性基に基づく硬化を行うことで、前記した表面処理層を形成させることができる。なお、未処理スピネル粒子の表面全体に当該表面処理剤を付着させた場合は、表面処理層で未処理スピネル粒子は被覆されることになる。 If the surface treatment agent itself is an organic compound that does not have reactivity but has adsorptive properties, or if it is a solution or dispersion in which the surface treatment agent is dissolved or dispersed in a liquid medium, it may be possible to promote adsorption or If the surface treatment agent is a reactive organic compound, the above-mentioned surface treatment layer can be formed by curing based on the reactive groups of the compound. Can be done. Note that when the surface treatment agent is applied to the entire surface of untreated spinel particles, the untreated spinel particles are covered with the surface treatment layer.
 前記表面処理剤としては、無極性シラン化合物であることが好ましい。無極性であると、極性置換基を有さないため、誘電特性の悪化を抑制することができる。極性置換基とは、水素結合しうる基、または、イオン性解離基を言う。このような極性置換基としては、特に限定されないが、例えば、-OH、-COOH、-COOM、-NH、-NR 、-CONH等が挙げられる。ここで、Mは、アルカリ金属、アルカリ土類金属、4級アンモニウム塩等のカチオンであり、Rは、Hまたは炭素数8以下の炭化水素基、Aはハロゲン原子等のアニオンである。 The surface treatment agent is preferably a nonpolar silane compound. If it is nonpolar, it does not have a polar substituent, so deterioration of dielectric properties can be suppressed. A polar substituent refers to a group capable of hydrogen bonding or an ionic dissociative group. Such polar substituents include, but are not particularly limited to, -OH, -COOH, -COOM, -NH 3 , -NR 4 + A - , -CONH 2 and the like. Here, M is a cation such as an alkali metal, an alkaline earth metal, or a quaternary ammonium salt, R is H or a hydrocarbon group having 8 or less carbon atoms, and A is an anion such as a halogen atom.
 表面処理剤の処理方法としては、公知慣用の方法で行えばよく、例えば、流体ノズルを用いた噴霧方式、せん断力のある攪拌、ボールミル、ミキサー等の乾式法、水系または有機溶剤系等の湿式法を採用することができる。せん断力を利用した表面処理は、フィラーの破壊が起こらない程度にして行うことが望ましい。 The surface treatment agent may be treated by any known and commonly used method, such as a spraying method using a fluid nozzle, stirring with shear force, a dry method using a ball mill or mixer, or a wet method using an aqueous or organic solvent system. law may be adopted. It is desirable that the surface treatment using shear force be carried out to such an extent that the filler will not be destroyed.
 また表面処理剤の乾式法における系内温度ないしは湿式法における処理後の乾燥または硬化の温度は、表面処理剤の種類に応じ熱分解しない領域で適宜決定される。例えば80~230℃の温度で加熱することが望ましい。 Furthermore, the internal temperature of the surface treatment agent in the dry method or the drying or curing temperature after treatment in the wet method is appropriately determined in a range where thermal decomposition does not occur depending on the type of the surface treatment agent. For example, it is desirable to heat at a temperature of 80 to 230°C.
 未処理スピネル粒子に対する表面処理層中の表面処理剤の不揮発分または硬化物の量は、特に制限されるものではないが、未処理スピネル粒子の質量換算100部当たり、表面処理剤における不揮発分または硬化物が、0.01~10部となる様にすることが、熱伝導性等の機能向上の点では好ましい。 The amount of nonvolatile content or cured product of the surface treatment agent in the surface treatment layer for untreated spinel particles is not particularly limited, but the amount of nonvolatile content or cured product of the surface treatment agent per 100 parts by mass of untreated spinel particles is It is preferable that the amount of the cured product be 0.01 to 10 parts from the viewpoint of improving functions such as thermal conductivity.
 未知のスピネル粒子が、本発明の表面処理スピネル粒子に相当するかどうかは、例えば、当該未知のスピネル粒子を、表面処理剤の不揮発分または硬化物を溶解する溶媒に浸漬したり煮沸する等して抽出した抽出液やそのスピネル粒子表面自体に、表面処理剤自体やその硬化物に対応する化学構造や、珪素原子、チタン原子或いは燐原子の存在が、赤外線吸収分析(IR)や原子吸光分析(AAS)にて観測できるか否かで、確認することができる。 Whether unknown spinel particles correspond to the surface-treated spinel particles of the present invention can be determined by, for example, immersing or boiling the unknown spinel particles in a solvent that dissolves the nonvolatile content or cured product of the surface treatment agent. Infrared absorption analysis (IR) and atomic absorption spectrometry reveal that the extracted liquid and the spinel particle surface itself have a chemical structure corresponding to the surface treatment agent itself and its cured product, and the presence of silicon atoms, titanium atoms, or phosphorus atoms. You can check whether it can be observed with (AAS).
(樹脂)
 樹脂としては、特に制限されず、例えば、熱可塑性樹脂、熱硬化性樹脂等が挙げられる。
(resin)
The resin is not particularly limited, and examples thereof include thermoplastic resins, thermosetting resins, and the like.
 前記熱可塑性樹脂としては、特に制限されず、成形材料等に使用される公知慣用の樹脂が用いられうる。具体的には、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメタクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂。ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ビスマレイミドトリアジン樹脂、ポリメチルペンテン樹脂、フッ化樹脂、液晶ポリマー、オレフィン-ビニルアルコール共重合体、アイオノマー樹脂、ポリアリレート樹脂、アクリロニトリル-エチレン-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体等が挙げられる。 The thermoplastic resin is not particularly limited, and known and commonly used resins used for molding materials and the like can be used. Specifically, for example, polyethylene resin, polypropylene resin, polymethyl methacrylate resin, polyvinyl acetate resin, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile resin. , polyamide resin. Polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic urethane resin, polyamino bismaleimide Resin, polyamideimide resin, polyetherimide resin, bismaleimide triazine resin, polymethylpentene resin, fluorinated resin, liquid crystal polymer, olefin-vinyl alcohol copolymer, ionomer resin, polyarylate resin, acrylonitrile-ethylene-styrene copolymer Examples include acrylonitrile-butadiene-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and acrylonitrile-styrene copolymers.
 前記熱硬化性樹脂としては、加熱又は放射線や触媒等の手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂であり、一般的には、成形材料等に使用される公知慣用の樹脂が用いられうる。具体的には、例えば、フェノール樹脂、エポキシ樹脂、ユリア樹脂、トリアジン環を有する樹脂、(メタ)アクリル樹脂、ビニル樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂等が挙げられる。フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられる。ノボラック型フェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。レゾール型フェノール樹脂としては、例えば、未変性のレゾールフェノール樹脂、油変性レゾールフェノール樹脂等が挙げられる。油変性に用いられる油としては、例えば、桐油、アマニ油、クルミ油等が挙げられる。エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、脂肪鎖変性ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ポリアルキレングルコール型エポキシ樹脂等が挙げられる。ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等が挙げられる。ノボラック型エポキシ樹脂としては、例えば、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等が挙げられる。トリアジン環を有する樹脂としては、例えば、メラミン樹脂等が挙げられる。ビニル樹脂としては、例えば、ビニルエステル樹脂等が挙げられる。 The thermosetting resin is a resin that has the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or a catalyst, and is generally used as a molding material, etc. Known and commonly used resins can be used. Specifically, for example, phenol resin, epoxy resin, urea resin, resin having a triazine ring, (meth)acrylic resin, vinyl resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, Examples include resins having a benzoxazine ring and cyanate ester resins. Examples of the phenol resin include novolac type phenol resin, resol type phenol resin, and the like. Examples of the novolak type phenolic resin include phenol novolak resin, cresol novolak resin, and the like. Examples of the resol type phenolic resin include unmodified resol phenol resin, oil-modified resol phenol resin, and the like. Examples of the oil used for oil modification include tung oil, linseed oil, and walnut oil. Examples of the epoxy resin include bisphenol-type epoxy resins, fatty chain-modified bisphenol-type epoxy resins, novolak-type epoxy resins, biphenyl-type epoxy resins, and polyalkylene glycol-type epoxy resins. Examples of the bisphenol type epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, and the like. Examples of the novolac type epoxy resin include novolac epoxy resin, cresol novolac epoxy resin, and the like. Examples of the resin having a triazine ring include melamine resin. Examples of vinyl resins include vinyl ester resins.
 上述の樹脂は単独で用いてもよく、2種以上を組み合わせて用いてもよい。この際、熱可塑性樹脂を2種以上使用してもよく、熱硬化性樹脂を2種以上使用してもよく、熱可塑性樹脂を1種以上及び熱硬化性樹脂を1種以上使用してもよい。 The above resins may be used alone or in combination of two or more. At this time, two or more types of thermoplastic resins may be used, two or more types of thermosetting resins may be used, and one or more types of thermoplastic resins and one or more types of thermosetting resins may be used. good.
(硬化剤)
硬化剤としては、特に制限されず、公知のものが使用されうる。硬化剤として具体的には、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物等が挙げられる
(hardening agent)
The curing agent is not particularly limited, and any known curing agent may be used. Specific examples of the curing agent include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, etc.
 前記アミン系化合物としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体等が挙げられる。 Examples of the amine compounds include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3- amine complex, and guanidine derivatives.
 前記アミド系化合物としては、例えば、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。 Examples of the amide compound include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like.
 前記酸無水物系化合物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。 Examples of the acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, Examples include methylhexahydrophthalic anhydride.
 前記フェノール系化合物としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミン等でフェノール核が連結された多価フェノール化合物)、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物等が挙げられる。 Examples of the phenolic compounds include phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), and resorcin novolac resin. Polyhydric phenol novolac resins synthesized from polyhydric hydroxy compounds and formaldehyde, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylolethane resins, naphthol novolac resins, naphthol-phenol cocondensed novolak resins, naphthol-cresol cocondensed novolak resins , biphenyl-modified phenolic resin (a polyhydric phenol compound with a phenol nucleus linked by a bismethylene group), biphenyl-modified naphthol resin (a polyhydric naphthol compound with a phenol nucleus linked by a bismethylene group), aminotriazine-modified phenol resin (melamine, benzoguanamine) Polyhydric phenol compounds such as polyhydric phenol compounds in which the phenol nucleus is linked with phenol, etc.), alkoxy group-containing aromatic ring-modified novolac resins (polyhydric phenol compound in which the phenol nucleus and the alkoxy group-containing aromatic ring are linked with formaldehyde), etc. Can be mentioned.
 上述の硬化剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The above curing agents may be used alone or in combination of two or more.
(硬化促進剤)
 硬化促進剤は、樹脂組成物を硬化する際に硬化を促進させる機能を有する。
 前記硬化促進剤としては、特に制限されないが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。
 上述の硬化促進剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(hardening accelerator)
The curing accelerator has a function of accelerating curing when curing the resin composition.
The curing accelerator is not particularly limited, and examples thereof include phosphorus compounds, tertiary amines, imidazole, organic acid metal salts, Lewis acids, and amine complex salts.
The above-mentioned curing accelerators may be used alone or in combination of two or more.
 硬化触媒は、前記硬化剤の代わりに、重合性官能基を有する化合物の硬化反応を進行させる機能を有する。
 硬化触媒としては、特に制限されず、公知慣用の熱重合開始剤や活性エネルギー線重合開始剤が用いられうる。
 なお、硬化触媒は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The curing catalyst has the function of advancing the curing reaction of a compound having a polymerizable functional group instead of the curing agent.
The curing catalyst is not particularly limited, and known and commonly used thermal polymerization initiators and active energy ray polymerization initiators can be used.
Note that the curing catalyst may be used alone or in combination of two or more types.
(粘度調節剤)
 粘度調節剤は、樹脂組成物の粘度を調整する機能を有する。
 粘度調節剤としては、特に制限されず、例えば、有機ポリマー、ポリマー粒子、無機粒子等が用いられうる。
 上述の粘度調節剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(viscosity modifier)
The viscosity modifier has the function of adjusting the viscosity of the resin composition.
The viscosity modifier is not particularly limited, and for example, organic polymers, polymer particles, inorganic particles, etc. can be used.
The above-mentioned viscosity modifiers may be used alone or in combination of two or more.
(可塑剤)
 可塑剤は、熱可塑性合成樹脂の加工性、柔軟性、耐候性を向上させる機能を有する。
 可塑剤としては、特に制限されず、例えば、フタル酸エステル、アジピン酸エステル、リン酸エステル、トリメリット酸エステル、ポリエステル、ポリオレフィン、ポリシロキサン等が用いられうる。
 上述の可塑剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Plasticizer)
Plasticizers have the function of improving processability, flexibility, and weather resistance of thermoplastic synthetic resins.
The plasticizer is not particularly limited, and for example, phthalate ester, adipate ester, phosphate ester, trimellitate ester, polyester, polyolefin, polysiloxane, etc. can be used.
The above-mentioned plasticizers may be used alone or in combination of two or more.
[混合]
 本発明の樹脂組成物は、スピネル粒子と樹脂、さらに必要に応じてその他の配合物を混合することにより得られる。その混合方法に特に限定はなく、公知慣用の方法により、混合される。
 前記樹脂が熱硬化性樹脂である場合、一般的な熱硬化性樹脂とスピネル粒子等との混合方法としては、所定の配合量の熱硬化性樹脂と、スピネル粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、三本ロール等で混練し、流動性を有する液状の組成物を得る方法が挙げられる。また、別の実施形態における熱硬化性樹脂とスピネル粒子等との混合方法として、所定の配合量の熱硬化性樹脂と、スピネル粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、ミキシングロール、押出機等で溶融混練した後、冷却することで、固形の組成物として得る方法が挙げられる。混合状態に関して、硬化剤や触媒等を配合した場合は、硬化性樹脂とそれらの配合物が充分に均一に混合されていればよいが、スピネル粒子も均一に分散混合された方がより好ましい。
[mixture]
The resin composition of the present invention can be obtained by mixing spinel particles, a resin, and, if necessary, other compounds. There is no particular limitation on the mixing method, and the mixing may be carried out by any known and commonly used method.
When the resin is a thermosetting resin, a general method for mixing the thermosetting resin and spinel particles is to mix a predetermined amount of the thermosetting resin, spinel particles, and other ingredients as necessary. A method of obtaining a liquid composition having fluidity by thoroughly mixing the ingredients using a mixer or the like and then kneading the mixture using a triple roll or the like can be mentioned. In addition, as a method for mixing the thermosetting resin and spinel particles in another embodiment, a predetermined amount of the thermosetting resin, spinel particles, and other components as necessary are sufficiently mixed using a mixer or the like. Afterwards, the mixture may be melt-kneaded using a mixing roll, an extruder, etc., and then cooled to obtain a solid composition. Regarding the mixing state, when a curing agent, a catalyst, etc. are blended, it is sufficient that the curable resin and the blend thereof are sufficiently uniformly mixed, but it is more preferable that the spinel particles are also uniformly dispersed and mixed.
 なお、スピネル粒子の含有量は、樹脂組成物の体積に対して、5容量%以上95容量%以下であることが好ましく、20容量%以上90容量%以下であることがより好ましく、30容量%以上80容量%が特に好ましい。スピネル粒子の含有量が上記下限値以上であると、樹脂組成物により優れた熱伝導性および誘電特性を付与できる。一方、スピネル粒子の含有量が上記上限値以下であると、流動性に優れ容易に成形することができる。 The content of spinel particles is preferably 5% by volume or more and 95% by volume or less, more preferably 20% by volume or more and 90% by volume or less, and 30% by volume, based on the volume of the resin composition. Particularly preferred is 80% by volume or more. When the content of spinel particles is at least the above lower limit, the resin composition can be provided with more excellent thermal conductivity and dielectric properties. On the other hand, when the content of spinel particles is below the above upper limit, the resin composition has excellent fluidity and can be easily molded.
 前記樹脂が熱可塑性樹脂である場合の一般的な熱可塑性樹脂とスピネル粒子等との混合方法としては、熱可塑性樹脂、スピネル粒子、及び必要に応じてその他の成分を、例えばタンブラーやヘンシェルミキサー等の各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー、混合ロール等の混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常100℃以上320℃以下の範囲である。
 樹脂組成物の流動性やスピネル粒子等のフィラー充填性をより高められることから、樹脂組成物にカップリング剤を外添してもよい。なお、カップリング剤を外添することで、樹脂とスピネル粒子の密着性が更に高められ、樹脂とスピネル粒子の間での界面熱抵抗が低下し、樹脂組成物の熱伝導性が向上しうる。
When the resin is a thermoplastic resin, a general method for mixing the thermoplastic resin with spinel particles, etc. is to mix the thermoplastic resin, spinel particles, and other components as necessary, for example, in a tumbler, Henschel mixer, etc. Examples include a method of pre-mixing using various mixers, and then melt-kneading with a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or a mixing roll. Note that the melt-kneading temperature is not particularly limited, but is usually in the range of 100°C or higher and 320°C or lower.
A coupling agent may be externally added to the resin composition because it can further improve the fluidity of the resin composition and the filling properties with fillers such as spinel particles. In addition, by externally adding a coupling agent, the adhesion between the resin and spinel particles can be further enhanced, the interfacial thermal resistance between the resin and spinel particles can be reduced, and the thermal conductivity of the resin composition can be improved. .
 前記カップリング剤としては、有機シラン化合物等が挙げられる。 Examples of the coupling agent include organic silane compounds.
 前記有機シラン化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクテニルトリメトキシシラン等のアルキル基の炭素数が1以上22以下のアルキルトリメトキシシラン類;3,3,3-トリフルオロプロピルトリメトキシシラン;トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリクロロシラン等のアルキル基の炭素数が1以上22以下のアルキルトリクロロシラン類;フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-クロロメチルフェニルトリメトキシシラン、p-クロロメチルフェニルトリエトキシシラン;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、グリシドキシオクチルトリメトキシシラン等のエポキシシラン類;γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン類;3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン類;p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、メタクリロキシオクチルトリメトキシシラン等のビニルシラン類;さらに、エポキシ系、アミノ系、ビニル系の高分子タイプのシランが挙げられる。なお、上記有機シラン化合物は、単独で含まれていてもよく、2種以上を含んでいてもよい。 Examples of the organic silane compound include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, and iso-propyltrimethoxysilane. - Alkyltrimethoxysilanes in which the alkyl group has 1 to 22 carbon atoms, such as propyltriethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, and octenyltrimethoxysilane; 3,3,3-trifluoropropyltri Methoxysilane; Alkyltrichlorosilanes in which the alkyl group has 1 to 22 carbon atoms such as tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; phenyltrimethoxysilane, phenyltriethoxysilane, p- Chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane; γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane , glycidoxyoctyltrimethoxysilane; γ-aminopropyltriethoxysilane, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyldimethoxy Aminosilanes such as silane, γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane; Mercaptosilanes such as 3-mercaptopropyltrimethoxysilane; p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris(β- Vinyl silanes such as methoxyethoxy) silane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, and methacryloxyoctyltrimethoxysilane; Examples include silane. In addition, the said organic silane compound may be contained independently and may contain 2 or more types.
 カップリング剤の添加量は特に制限されないが、樹脂の質量に対して、0.01質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることがより好ましい。 The amount of the coupling agent added is not particularly limited, but it is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, based on the mass of the resin. preferable.
<用途>
 本発明の一実施形態によれば、本発明の樹脂組成物は、低誘電放熱材料に使用される。
 一般的に、熱伝導性材料としては、コストの観点から酸化アルミニウムがよく使用されており、その他、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、炭酸マグネシウム等が使用されていた。しかしながら、これら材料は、例えば、酸化アルミニウムは誘電特性が十分ではなく、窒化ホウ素は結晶構造に由来する異方性を有しそのため樹脂組成物中で均一な誘電特性を得られず、窒化アルミニウム、酸化マグネシウム、炭酸マグネシウムは耐水性が低いため誘電特性は十分なものではなかった。したがって、熱伝導性と誘電特性の両方を兼ね備える材料は見いだせていなかった。
<Application>
According to one embodiment of the present invention, the resin composition of the present invention is used for a low dielectric heat dissipation material.
Generally, as a thermally conductive material, aluminum oxide is often used from the viewpoint of cost, and other materials such as boron nitride, aluminum nitride, magnesium oxide, and magnesium carbonate have also been used. However, these materials, for example, aluminum oxide does not have sufficient dielectric properties, boron nitride has anisotropy derived from its crystal structure, and therefore uniform dielectric properties cannot be obtained in the resin composition. Magnesium oxide and magnesium carbonate have low water resistance and therefore do not have sufficient dielectric properties. Therefore, a material that has both thermal conductivity and dielectric properties has not been found.
 これに対し、本発明のスピネル粒子は、従来にはない高い純度を有しるため、優れた熱伝導性と誘電特性の両方を兼ね備えており、前記スピネル粒子を含有する樹脂組成物は、低誘電放熱材料に好適に用いられる。また、本発明のスピネル粒子の形状が球状あるいは真球状である場合、異方性が低減され樹脂組成物中で均一な誘電特性を得ることが可能となり、低誘電材料に特に好適に用いられる。 On the other hand, the spinel particles of the present invention have an unprecedentedly high purity and therefore have both excellent thermal conductivity and dielectric properties, and the resin composition containing the spinel particles has a low purity. Suitable for use in dielectric heat dissipation materials. Further, when the shape of the spinel particles of the present invention is spherical or true spherical, anisotropy is reduced and it becomes possible to obtain uniform dielectric properties in the resin composition, so that it is particularly suitable for use as a low dielectric material.
 本発明の樹脂組成物が、熱伝導性、及び誘電特性に優れることから、単層又は多層であるプリント基板、フレキシブルプリント基板等の基材・基板として用いることができる。また、配線用、特に高周波信号の配線用の絶縁材料として、例えばカバーレイ、ソルダーレジスト、ビルドアップ材、層間絶縁剤、ボンディングシート、層間接着剤、フリップチップボンダー用のバンプシートとして好適に用いることができる。 Since the resin composition of the present invention has excellent thermal conductivity and dielectric properties, it can be used as a base material/substrate for single-layer or multilayer printed circuit boards, flexible printed circuit boards, and the like. It can also be suitably used as an insulating material for wiring, especially for high-frequency signal wiring, such as cover lays, solder resists, build-up materials, interlayer insulating materials, bonding sheets, interlayer adhesives, and bump sheets for flip chip bonders. Can be done.
 その他、スピネル粒子は、宝石類、触媒担体、吸着剤、光触媒、光学材料、蛍光体、耐熱絶縁材料、基板、センサー等の用途にも使用することができる。 In addition, spinel particles can be used for jewelry, catalyst carriers, adsorbents, photocatalysts, optical materials, phosphors, heat-resistant insulating materials, substrates, sensors, etc.
 本発明の一形態によれば、上述の樹脂組成物を成形してなる成形物が提供される。成形物に含有される、本発明のスピネル粒子は熱伝導性および誘電特性に優れることから、当該成形物は、好ましくは低誘電放熱部材として使用される。これにより、機器の放熱機能を向上させることができ、機器の小型軽量化、高性能化に寄与できるだけでなく、高周波回路において通信機能の高機能化に寄与することができる。 According to one embodiment of the present invention, a molded article formed by molding the above-mentioned resin composition is provided. Since the spinel particles of the present invention contained in the molded article have excellent thermal conductivity and dielectric properties, the molded article is preferably used as a low dielectric heat dissipation member. As a result, the heat dissipation function of the device can be improved, which not only contributes to making the device smaller and lighter and has higher performance, but also contributes to higher communication functions in high-frequency circuits.
 以下、本発明を実施例に基づいてさらに詳述するが、本記述は本発明を限定するものではない。実施例中、特に断りのない限り原子数換算である。 Hereinafter, the present invention will be explained in more detail based on Examples, but this description is not intended to limit the present invention. In the examples, values are expressed in terms of the number of atoms unless otherwise specified.
(原料のマグネシウム系化合物内に含まれる元素量の分析)
 蛍光X線分析装置Supermini200(株式会社リガク製)を用い、マグネシウム系化合物約5gを用いて組成分析を行った。
 XRF分析結果を用いて、酸素以外の元素に関して、モル比(原子の数)から不純物量を計算した。すなわち、不純物量(原子%)=(Mg以外の原子数)/(Mgの原子数)×100とした。
 Caも同様にCa不純物量(原子%)=(Caの原子数)/(Mgの原子数)×100とした。
(Analysis of the amount of elements contained in the raw material magnesium compound)
Composition analysis was performed using a fluorescent X-ray analyzer Supermini 200 (manufactured by Rigaku Co., Ltd.) using about 5 g of a magnesium-based compound.
Using the XRF analysis results, the amount of impurities was calculated from the molar ratio (number of atoms) for elements other than oxygen. That is, the amount of impurities (atomic %)=(number of atoms other than Mg)/(number of atoms of Mg)×100.
Similarly, Ca impurity amount (atomic %)=(number of Ca atoms)/(number of Mg atoms)×100.
(スピネル粒子の合成)
<実施例1>
 アルミナ粒子(デンカ社製、DAW-05、球状、平均粒子径6.4μm)70gと、水酸化マグネシウム(協和化学工業社製キスマ5Q-S 平均粒子径0.66μm・Ca不純物量未検出・合計不純物量0.13原子%)40gとをアブソリュートミル(大阪ケミカル株式会社製)で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉にて5℃/分の条件で1300℃まで昇温し、1300℃で10時間保持し焼成を行った。その後5℃/分の条件で室温まで降温後、坩堝を取り出し、約90gの白色の粉末を得た。
(Synthesis of spinel particles)
<Example 1>
70 g of alumina particles (manufactured by Denka, DAW-05, spherical, average particle size 6.4 μm) and magnesium hydroxide (Kisuma 5Q-S, manufactured by Kyowa Chemical Co., Ltd., average particle size 0.66 μm, Ca impurity amount not detected, total (impurity amount: 0.13 atomic %) was mixed in an absolute mill (manufactured by Osaka Chemical Co., Ltd.) to obtain a mixture. The obtained mixture was placed in a crucible, heated to 1300°C at 5°C/min in a ceramic electric furnace, and held at 1300°C for 10 hours to perform firing. Thereafter, the temperature was lowered to room temperature at a rate of 5° C./min, and the crucible was taken out to obtain about 90 g of white powder.
<実施例2>
 焼成温度を1400℃に変更した以外は、実施例1と同様にして行った。
<Example 2>
The same procedure as in Example 1 was carried out except that the firing temperature was changed to 1400°C.
<実施例3>
 水酸化マグネシウムを神島化学工業製マグシーズX-6(平均粒子径0.81μm・Ca不純物量0.1原子%・合計不純物量0.1原子%)に変更した以外は、実施例1と同様にして行った。
<Example 3>
The procedure was the same as in Example 1, except that the magnesium hydroxide was changed to Magseyz I went.
<実施例4>
 水酸化マグネシウムをタテホ工業製MAGSTAR #5(平均粒子径0.99μm・Ca不純物量0.28原子%・合計不純物量0.7原子%)に変更した以外は、実施例1と同様にして行った。
<Example 4>
The procedure was carried out in the same manner as in Example 1, except that the magnesium hydroxide was changed to MAGSTAR #5 manufactured by Tateho Industries (average particle size 0.99 μm, Ca impurity amount 0.28 at%, total impurity amount 0.7 at%). Ta.
<実施例5>
 アルミナ粒子をデンカ社製DAW-03(球状、平均粒子径4.9μm)に変更した以外は、実施例1と同様にして行った。
<Example 5>
The same procedure as in Example 1 was carried out except that the alumina particles were changed to DAW-03 manufactured by Denka (spherical, average particle diameter 4.9 μm).
<実施例6>
 アルミナ粒子をデンカ社製DAW-01(球状、平均粒子径1.9μm)に変更した以外は、実施例1と同様にして行った。
<Example 6>
The same procedure as in Example 1 was carried out except that the alumina particles were changed to DAW-01 (spherical, average particle diameter 1.9 μm) manufactured by Denka.
<比較例1>
 アルミナ粒子(デンカ社製、DAW-05、球状、平均粒子径6.4μm)70gと、酸化マグネシウム(協和化学工業社製キョーワマグMF-150 平均粒子径0.71μm・Ca不純物量0.64原子%・合計不純物量1.7原子%)27.67gとをアブソリュートミル(大阪ケミカル株式会社製)で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉にて5℃/分の条件で1300℃まで昇温し、1300℃で10時間保持し焼成を行った。その後5℃/分の条件で室温まで降温後、坩堝を取り出し、約90gの白色の粉末を得た。
<Comparative example 1>
70 g of alumina particles (manufactured by Denka, DAW-05, spherical, average particle size 6.4 μm) and magnesium oxide (Kyowa Mag MF-150, manufactured by Kyowa Chemical Co., Ltd., average particle size 0.71 μm, Ca impurity content 0.64 atomic %) 27.67 g (total impurity amount: 1.7 at%) were mixed in an absolute mill (manufactured by Osaka Chemical Co., Ltd.) to obtain a mixture. The obtained mixture was placed in a crucible, heated to 1300°C at 5°C/min in a ceramic electric furnace, and held at 1300°C for 10 hours to perform firing. Thereafter, the temperature was lowered to room temperature at a rate of 5° C./min, and the crucible was taken out to obtain about 90 g of white powder.
<比較例2>
 焼成温度を1400℃に変更した以外は、比較例1と同様にして行った。
<Comparative example 2>
Comparative Example 1 was carried out in the same manner as Comparative Example 1 except that the firing temperature was changed to 1400°C.
<比較例3>
 水酸化マグネシウムを、神島化学工業製MAGSTAR #20(平均粒子径4μm・Ca不純物量0.29原子%・合計不純物量0.29原子%)に変更した以外は、比較例1と同様にして行った。
<Comparative example 3>
Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that the magnesium hydroxide was changed to MAGSTAR #20 manufactured by Kamishima Chemical Industry Co., Ltd. (average particle diameter 4 μm, Ca impurity amount 0.29 at%, total impurity amount 0.29 at%). Ta.
[評価方法]
 下記方法に従って、得られたスピネル粒子の測定および評価を行った。
[Evaluation method]
The obtained spinel particles were measured and evaluated according to the following method.
(誘電特性の測定)
 実施例および比較例で得られたスピネル粒子を試験片として、EMラボ社空洞共振器CP-001-PWに充填し、Keysight社ネットワークアラナイザP9373Aにて測定し、1GHzの誘電率・誘電正接を測定した。
(Measurement of dielectric properties)
The spinel particles obtained in the Examples and Comparative Examples were used as a test piece and filled into an EM Lab Cavity Resonator CP-001-PW, and measured using a Keysight Network Analyzer P9373A to determine the dielectric constant and dielectric loss tangent at 1 GHz. It was measured.
(平均粒子径)
 実施例および比較例で得られたスピネル粒子粉末を少量ビーカーに取り、0.5%ヘキサメタリン酸ナトリウム水溶液を50mL添加し、その後、超音波分ホモジナイザー ソニファイアー450D(BRANSON社製)を用いて2分間分散処理して測定用サンプルを調製した。この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300EXII(マイクロトラック・ベル株式会社製)を用いて、体積累積基準D50を測定した。
(Average particle size)
A small amount of the spinel particle powder obtained in Examples and Comparative Examples was placed in a beaker, 50 mL of 0.5% sodium hexametaphosphate aqueous solution was added, and then the mixture was heated for 2 minutes using an ultrasonic homogenizer Sonifier 450D (manufactured by BRANSON). A sample for measurement was prepared by dispersion treatment. The volume accumulation standard D50 of this measurement sample was measured using a laser diffraction scattering particle size distribution analyzer MT3300EXII (manufactured by Microtrac Bell Co., Ltd.).
(スピネル粒子内に含まれる元素量の分析)
 蛍光X線分析装置Supermini200(株式会社リガク製)を用い、作製した試料約5gを用いて組成分析を行った。
 XRF分析結果を用いて、酸素以外の元素に関して、モル比(原子の数)から不純物量を計算した。すなわち、不純物量(原子%)=(Al・Mg以外の原子数)/(Alの原子数+Mgの原子数)×100とした。AlとMgの比は、同じ方法で原子の数の比を求めた。
 Caも同様にCa不純物量(原子%)=(Caの原子数)/(Alの原子数+Mgの原子数)×100とした。
(Analysis of the amount of elements contained in spinel particles)
Composition analysis was performed using a fluorescent X-ray analyzer Supermini 200 (manufactured by Rigaku Co., Ltd.) using about 5 g of the prepared sample.
Using the XRF analysis results, the amount of impurities was calculated from the molar ratio (number of atoms) for elements other than oxygen. That is, the amount of impurities (atomic %)=(number of atoms other than Al/Mg)/(number of Al atoms+number of Mg atoms)×100. The ratio of Al and Mg was determined by the ratio of the number of atoms using the same method.
Similarly, Ca impurity amount (atomic %)=(number of Ca atoms)/(number of Al atoms+number of Mg atoms)×100.
 結晶相をリガク社X線回折装置UltimaIV(40kV・40mA・CuKα線)にて測定した。実施例および比較例のスピネル粒子は、スピネル型結晶構造のMgAlを有しており、その他の不純物相は確認されなかった。 The crystal phase was measured using a Rigaku X-ray diffractometer Ultima IV (40 kV, 40 mA, CuKα ray). The spinel particles of Examples and Comparative Examples had MgAl 2 O 4 with a spinel crystal structure, and no other impurity phases were observed.
 上記の各評価の結果を表1に示す。「N.D.」はnot detectedの略であり、不検出であることを表す。 The results of each of the above evaluations are shown in Table 1. "N.D." is an abbreviation for "not detected" and represents non-detection.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例3より、粒径の大きいマグネシウム系化合物を用いると、アルミニウムにマグネシウム源が拡散していくというメカニズムが崩れて不定形になるため、微粒子のマグネシウム系化合物を使う必要がある事がわかった。 From Comparative Example 3, it was found that if a magnesium compound with a large particle size was used, the mechanism of diffusion of the magnesium source into aluminum would be disrupted, resulting in an amorphous shape, so it was necessary to use a fine particle magnesium compound. .
(樹脂組成物の調製)
<実施例7>
 熱可塑性樹脂としてDIC-PPS LR100G(X-1、DIC株式会社製ポリフェニレンスルフィド樹脂、密度1.35g/cm3)の30.7g、実施例1で得られたスピネル粒子の69.3gを均一にドライブレンドした後、樹脂溶融混練装置ラボプラストミルにより混練温度300℃、回転数80rpmの条件で溶融混練処理し、前記粒子の含有量が40容量%のポリフェニレンスルフィド樹脂組成物を得た。樹脂組成物中のフィラー含有量(容量%)は、熱可塑性樹脂の密度と熱伝導性フィラーの密度より計算した。
(Preparation of resin composition)
<Example 7>
30.7 g of DIC-PPS LR100G (X-1, polyphenylene sulfide resin manufactured by DIC Corporation, density 1.35 g/cm3) as a thermoplastic resin and 69.3 g of spinel particles obtained in Example 1 were uniformly dried. After blending, they were melt-kneaded using a resin melt-kneading device Labo Plastomill at a kneading temperature of 300° C. and a rotation speed of 80 rpm to obtain a polyphenylene sulfide resin composition having a particle content of 40% by volume. The filler content (volume %) in the resin composition was calculated from the density of the thermoplastic resin and the density of the thermally conductive filler.
(熱可塑性樹脂組成物の熱伝導率の測定方法)
 得られた樹脂組成物を卓上の射出成形機(Xplore社製 Injection Moulding IM 12)を用いてシリンダー温度320℃、金型温度140℃で射出成型し、直径10mm厚み0.2mmの試験片を作製した。熱伝導率測定装置(LFA467 HyperFlash、NETZSCH社製)を用いて、25℃における熱伝導率の測定を行った。
(Method for measuring thermal conductivity of thermoplastic resin composition)
The obtained resin composition was injection molded using a tabletop injection molding machine (Injection Molding IM 12 manufactured by Xplore) at a cylinder temperature of 320°C and a mold temperature of 140°C to produce a test piece with a diameter of 10 mm and a thickness of 0.2 mm. did. The thermal conductivity was measured at 25° C. using a thermal conductivity measuring device (LFA467 HyperFlash, manufactured by NETZSCH).
(実施例8~9、比較例4)
 実施例7と同様にして、フィラー含有量が40容量%のポリフェニレンスルフィド樹脂組成物を作製し、熱伝導率の測定を行った。なお、用いるフィラーは表2に示す通りである。
 なお、比較例4では、DAW-05(デンカ株式会社製、球状アルミナ)をフィラーとして用いた。
(Examples 8-9, Comparative Example 4)
A polyphenylene sulfide resin composition having a filler content of 40% by volume was prepared in the same manner as in Example 7, and its thermal conductivity was measured. Note that the fillers used are as shown in Table 2.
In Comparative Example 4, DAW-05 (manufactured by Denka Co., Ltd., spherical alumina) was used as a filler.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態のスピネル粒子を含む樹脂組成物は、一般的に熱伝導が高いアルミナを含む樹脂組成物と比較して高い熱伝導率を有しており、高熱伝導率および低誘電正接の両方を兼ね備えるスピネル粒子が実現できたと言える。 The resin composition containing spinel particles of this embodiment has higher thermal conductivity than resin compositions containing alumina, which generally has high thermal conductivity, and has both high thermal conductivity and low dielectric loss tangent. It can be said that we have achieved a spinel particle that has the following properties.

Claims (9)

  1.  マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含むスピネル粒子であって、
     前記原子以外の原子の量が0.27原子%未満である、スピネル粒子。
    A spinel particle containing at least a magnesium atom, an aluminum atom, and an oxygen atom,
    A spinel particle in which the amount of atoms other than the above atoms is less than 0.27 at.%.
  2.  マグネシウム原子、アルミニウム原子、および酸素原子と、を少なくとも含むスピネル粒子であって、
     カルシウム原子の数が、マグネシウム原子とアルミニウム原子の数の和に対し、0.02原子%未満である、スピネル粒子。
    A spinel particle containing at least a magnesium atom, an aluminum atom, and an oxygen atom,
    Spinel particles in which the number of calcium atoms is less than 0.02 atomic % based on the sum of the numbers of magnesium atoms and aluminum atoms.
  3.  平均粒子径が75μm以下である、請求項1または2に記載のスピネル粒子。 The spinel particles according to claim 1 or 2, having an average particle diameter of 75 μm or less.
  4.  1GHzにおける誘電正接が1.0×10-3未満である、請求項1または2に記載のスピネル粒子。 The spinel particles according to claim 1 or 2, having a dielectric loss tangent of less than 1.0×10 −3 at 1 GHz.
  5.  請求項1又は2に記載のスピネル粒子と、樹脂と、を含む樹脂組成物。 A resin composition comprising the spinel particles according to claim 1 or 2 and a resin.
  6.  請求項5に記載の樹脂組成物の成形物。 A molded article of the resin composition according to claim 5.
  7.  アルミニウム系化合物と、マグネシウム系化合物と、を混合し焼成するスピネル粒子の製造方法であって、
     前記マグネシウム系化合物が、平均粒子径4μm未満の微粒子であり、
     前記マグネシウム系化合物中に含まれる不純物量が1.0原子%未満である、スピネル粒子の製造方法。
    A method for producing spinel particles by mixing and firing an aluminum-based compound and a magnesium-based compound, the method comprising:
    The magnesium-based compound is fine particles with an average particle size of less than 4 μm,
    A method for producing spinel particles, wherein the amount of impurities contained in the magnesium-based compound is less than 1.0 atomic %.
  8.  アルミニウム系化合物と、マグネシウム系化合物と、を混合し焼成するスピネル粒子の製造方法であって、
     前記マグネシウム系化合物が、平均粒子径4μm未満の微粒子であり、
     前記マグネシウム系化合物中に含まれるカルシウム原子量が0.6原子%以下である、スピネル粒子の製造方法。
    A method for producing spinel particles by mixing and firing an aluminum-based compound and a magnesium-based compound, the method comprising:
    The magnesium-based compound is fine particles with an average particle size of less than 4 μm,
    A method for producing spinel particles, wherein the calcium atomic weight contained in the magnesium-based compound is 0.6 at % or less.
  9.  前記アルミニウム系化合物の形状が球状または真球状である、請求項7または8に記載の製造方法。 The manufacturing method according to claim 7 or 8, wherein the aluminum-based compound has a spherical or true spherical shape.
PCT/JP2023/026500 2022-07-28 2023-07-20 Highly pure spinel particles and production method therefor WO2024024604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120426 2022-07-28
JP2022-120426 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024604A1 true WO2024024604A1 (en) 2024-02-01

Family

ID=89706300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026500 WO2024024604A1 (en) 2022-07-28 2023-07-20 Highly pure spinel particles and production method therefor

Country Status (1)

Country Link
WO (1) WO2024024604A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440584B1 (en) * 2010-12-23 2013-05-14 Lehigh University Methods for decontamination of powders
JP2014005540A (en) * 2007-08-27 2014-01-16 Rohm & Haas Electronic Materials Llc Polycrystalline monolithic magnesium aluminate spinel
JP2016121049A (en) * 2014-12-25 2016-07-07 第一稀元素化学工業株式会社 Spinel powder and method of producing the same
JP2016135841A (en) * 2015-01-15 2016-07-28 大日精化工業株式会社 Heat-conductive composite oxide, heat-conductive resin composition and coating liquid
US20170029285A1 (en) * 2015-07-29 2017-02-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Low absorption spinel formed by acidic and basic treatments
JP2018508446A (en) * 2015-01-15 2018-03-29 ウブロ・エスアー・ジュネーヴ Manufacturing method of ceramic composite material
CN109748303A (en) * 2019-03-19 2019-05-14 大连交通大学 The preparation method of high pure spherical magnesia alumina spinel nanopowder
JP2020514516A (en) * 2017-03-22 2020-05-21 ウブロ・エスアー・ジュネーヴ Colored composite material
WO2020145343A1 (en) * 2019-01-11 2020-07-16 Dic株式会社 Plate-shaped spinel particles and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005540A (en) * 2007-08-27 2014-01-16 Rohm & Haas Electronic Materials Llc Polycrystalline monolithic magnesium aluminate spinel
US8440584B1 (en) * 2010-12-23 2013-05-14 Lehigh University Methods for decontamination of powders
JP2016121049A (en) * 2014-12-25 2016-07-07 第一稀元素化学工業株式会社 Spinel powder and method of producing the same
JP2016135841A (en) * 2015-01-15 2016-07-28 大日精化工業株式会社 Heat-conductive composite oxide, heat-conductive resin composition and coating liquid
JP2018508446A (en) * 2015-01-15 2018-03-29 ウブロ・エスアー・ジュネーヴ Manufacturing method of ceramic composite material
US20170029285A1 (en) * 2015-07-29 2017-02-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Low absorption spinel formed by acidic and basic treatments
JP2020514516A (en) * 2017-03-22 2020-05-21 ウブロ・エスアー・ジュネーヴ Colored composite material
WO2020145343A1 (en) * 2019-01-11 2020-07-16 Dic株式会社 Plate-shaped spinel particles and method for producing same
CN109748303A (en) * 2019-03-19 2019-05-14 大连交通大学 The preparation method of high pure spherical magnesia alumina spinel nanopowder

Similar Documents

Publication Publication Date Title
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP6678999B2 (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
KR102400206B1 (en) Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
TWI691461B (en) Spinel particles, method for producing the same, and composition and formed article including the aforementioned spinel particles
WO2017145869A1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
EP3476805B1 (en) Spinel particles, method for producing same, and composition and molded article including spinel particles
KR20160078340A (en) Resin composition, heat-dissipating material, and heat-dissipating member
JP2017178719A (en) Aluminum nitride-boron nitride composite agglomerated particles and method for producing the same
JP7459801B2 (en) Plate-like alumina particles, method for producing plate-like alumina particles, and resin composition
WO2018207679A1 (en) Spinel-type composite oxide particles and method for producing same, resin composition containing spinel-type composite oxide particles, and molded article
JP2018188342A (en) Production method of spinel particles, spinel particles, resin composition and mold containing spinel particles
WO2019194159A1 (en) Resin composition containing alumina, and heat dissipation member
JP6597911B2 (en) Surface-treated spinel particles, method for producing the same, resin composition and molded product
WO2024024604A1 (en) Highly pure spinel particles and production method therefor
WO2019194160A1 (en) Resin composition containing plate-shape alumina, and heat dissipation member
JP7468808B1 (en) Gahnite particles and method for producing same
TW202406847A (en) High-purity spinel particles and manufacturing method thereof, resin composition and molded article
TW202406850A (en) Zinc spinel particles and manufacturing method thereof, resin composition and molded article
JP7392869B2 (en) Zinc oxide particles, method for producing zinc oxide particles, and resin composition
WO2020145342A1 (en) Spinel particles, method for producing same, resin composition, molded article, composition, green sheet, fired article, and glass-ceramic substrate
JP5987322B2 (en) Method for producing metal oxide-containing boron nitride
JP7435473B2 (en) Resin compositions, molded products, compositions, green sheets, fired products, and glass ceramic substrates
WO2024034604A1 (en) Method for producing granular boron nitride, and granular boron nitride
JP7151935B2 (en) Plate-like alumina particles and method for producing plate-like alumina particles
WO2018194117A1 (en) Method for producing spinel particles, method for producing resin composition, and method for producing molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846335

Country of ref document: EP

Kind code of ref document: A1