WO2014119462A1 - Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material - Google Patents

Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material Download PDF

Info

Publication number
WO2014119462A1
WO2014119462A1 PCT/JP2014/051366 JP2014051366W WO2014119462A1 WO 2014119462 A1 WO2014119462 A1 WO 2014119462A1 JP 2014051366 W JP2014051366 W JP 2014051366W WO 2014119462 A1 WO2014119462 A1 WO 2014119462A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive filler
magnesium carbonate
heat
resin
resin composition
Prior art date
Application number
PCT/JP2014/051366
Other languages
French (fr)
Japanese (ja)
Inventor
新吾 高田
勝仁 黒木
暢彦 山内
高橋 伸一
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2014559647A priority Critical patent/JP6065922B2/en
Publication of WO2014119462A1 publication Critical patent/WO2014119462A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a heat conductive filler having both heat conductivity and heat and moisture resistance, a resin composition containing the heat conductive filler, a molded product thereof, and a high heat conductive material using the resin composition.
  • ⁇ Plastic materials are widely used as materials for electric, electronic equipment, automobiles, etc. as materials to replace metal materials due to the widespread use of engineering plastics with high heat resistance, as well as productivity and flexibility in shape.
  • higher performance, smaller size, and lighter weight of the equipment, and semiconductor devices have become more highly integrated and larger in capacity.
  • the amount of heat generated from the members has increased. Improving conductivity is an important issue.
  • a technique of adding an inorganic filler As a method for maintaining the insulation of the plastic material and imparting thermal conductivity, a technique of adding an inorganic filler is known, and examples thereof include boron nitride, aluminum nitride, alumina, magnesium oxide, and magnesium carbonate. .
  • Boron nitride is a filler with high thermal conductivity, but its practicality is low in terms of cost, and since it has a hexagonal flaky crystal structure, the filler composed of boron nitride is oriented in the resin composition and molded. There is a problem that anisotropy occurs in the thermal conductivity of the body.
  • Aluminum nitride has no anisotropy in thermal conductivity, but has a problem of low cost practicality like boron nitride, and further easily hydrolyzes to generate ammonia.
  • Alumina has a high Mohs hardness of 9, and there is a problem that the screw in the extrusion process, the blade of the cutter in the pelletizing process, and the screw and mold of the injection molding machine are worn.
  • Magnesium oxide is a filler that has relatively high thermal conductivity, does not cause anisotropy, and has the advantage of low cost, and is promising as a filler that imparts thermal conductivity to thermoplastic resins.
  • magnesium oxide is inferior in heat and moisture resistance. That is, when a molded product containing magnesium oxide as a filler is exposed to high temperature and high humidity, hydrolysis occurs from the surface of the magnesium oxide filler, and it expands by changing to magnesium hydroxide, increasing the size of the molded product. The problem occurs.
  • Magnesium carbonate on the other hand, has good thermal conductivity, low anisotropy in thermal conductivity, low Mohs height of 3.5, low cost, and good moisture resistance, making it useful as a thermal conductive filler it is conceivable that.
  • Magnesium carbonate is generally divided into natural and synthetic products. Natural products are obtained by crushing magnesite ore, but they contain more impurities such as soluble salts, acid insolubles, and calcium salts than synthetic products. However, since the crystallinity is low, there is a problem that the thermal conductivity is inferior.
  • magnesium hydroxide is used as a starting material, carbon dioxide gas is supplied to the magnesium hydroxide slurry and carbonized, or soluble magnesium salt and soluble carbonate are mixed in water to carbonate the magnesium salt. And the like.
  • Magnesium carbonate produced is a magnesium neutral carbonate (MgCO 3 ⁇ 3H 2 O) , and relatively to stable basic magnesium carbonate (mMgCO 3 ⁇ Mg (OH) 2 ⁇ nH 2 O) ripening conversion To do.
  • Basic magnesium carbonate has a lower thermal conductivity than magnesium oxide and alumina, and when it is highly filled in engineering plastics, the crystal water contained in the processing zone at a high temperature of 250 ° C or higher is released, and foaming and discharge are not possible. There is concern that processability such as stability may be adversely affected.
  • anhydrous magnesium carbonate obtained by drying after hydrothermal treatment in an autoclave using basic magnesium carbonate and neutral magnesium carbonate as a starting material is provided as a thermal conductive filler for engineering plastics (for example, patents).
  • a thermal conductive filler for engineering plastics (for example, patents).
  • it has not yet reached a practical level as a thermally conductive filler, and further improvements are required.
  • an object of the present invention is to provide a resin composition that can provide a high thermal conductivity material excellent in thermal conductivity and moisture and heat resistance, a molded body, and a thermal conductivity that can be suitably used as a filler in the high thermal conductivity material. It is in providing a conductive filler and its manufacturing method.
  • the present inventor has processed particles when magnesium oxide is coated with magnesium carbonate and processed into a resin while maintaining high thermal conductivity. Has been found to be excellent and the resulting molded article is excellent in heat and moisture resistance, and the present invention has been completed.
  • the present invention provides a thermally conductive filler characterized in that magnesium oxide is particles coated with magnesium carbonate, a resin composition obtained by blending this with a resin, a molded product thereof, and a high thermal conductivity material. It is to provide.
  • the present invention it is possible to obtain a thermally conductive filler that gives a molded article having both high thermal conductivity and low anisotropy of thermal conductivity, low hardness, and good wet heat resistance.
  • the resin composition containing the heat conductive filler can be easily molded without impairing fluidity, has both high heat conductivity and heat and humidity resistance, and is exposed to a long period of time under high temperature and high humidity.
  • the resin composition of the present invention and the molded product thereof are suitable for highly heat-conductive materials that are desired to be thinner and more complicated, such as electric and electronic parts, automobile parts, water heater parts, fibers, and films. It can use suitably for a use etc.
  • the thermally conductive filler of the present invention is characterized in that it is a particle formed by coating magnesium oxide with magnesium carbonate.
  • magnesium oxide is generally hydrolyzed and gradually converted to magnesium hydroxide Mg (OH) 2 by contact with water vapor in the atmosphere at normal temperature and normal pressure. Further, this outermost layer Mg (OH) 2 reacts with carbon dioxide in the atmosphere and changes to magnesium carbonate. These reactions are changes over a very long period under normal temperature and pressure.
  • Magnesium oxide obtained by firing at a low temperature of about 600 ° C. using magnesium hydroxide or magnesium carbonate as a starting material is relatively easy to undergo these reactions, whereas it is heated at a high temperature of 1000 ° C. or higher. Things are more dense, stable and less prone to these reactions.
  • the reactivity differs depending on the firing conditions of magnesium oxide, and when the container is filled with magnesium oxide, even when comparing the place where the outermost particles are in contact with the place where it is in contact with the outside air Reactivity is different. Therefore, it is extremely difficult to adjust the amount of change from magnesium oxide to magnesium hydroxide and further to magnesium carbonate.
  • it is quantitatively modified to magnesium carbonate while maintaining the shape of magnesium oxide in an industrially short time.
  • the present invention by covering the surface of magnesium oxide with magnesium carbonate, it was made for the purpose of improving the storage stability as a heat conductive filler and the moisture and heat resistance of a molded article containing this as a filler. Is.
  • the heat conductive filler of the present invention is a particle formed by coating magnesium oxide with magnesium carbonate as described above, but the particle diameter is not particularly limited, but it is easy to handle as a filler. From a viewpoint that the molded body is excellent in thermal conductivity and heat-and-moisture resistance, the average particle diameter is preferably 20 to 100 ⁇ m, particularly preferably 30 to 90 ⁇ m.
  • the measuring method of the particle diameter in this invention is the value which measured after implementing ultrasonic dispersion
  • the filler having a spherical shape with low thermal conductivity anisotropy is used in combination with a fibrous high crystalline filler having a high thermal conductivity.
  • a heat conduction path can be formed by contact with the crystalline filler.
  • the larger the particle diameter of the spherical filler the more efficient heat conduction path formation can be expected. From this point of view, when trying to obtain a molded body having a higher thermal conductivity than that exhibited when the spherical thermal conductive filler is highly filled, it is a filler having a large particle diameter. Is required.
  • the average particle diameter of the filler of the present invention is 20 ⁇ m or more.
  • Patent Document 3 since hydrothermal treatment is performed using basic magnesium carbonate or neutral magnesium carbonate that is soluble in water as a starting material, it is difficult to obtain magnesium carbonate having a relatively large particle size. is there.
  • the thermal conductivity is good, but depending on the blending ratio, impact resistance, bending strength, etc.
  • the mechanical properties may be insufficient and may not be exhibited, or the appearance of the thin-film molded body may be inferior in appearance as a protrusion. From these viewpoints, it is preferable to select the particle diameter according to the shape and performance of the target molded article.
  • the particle size of the heat conductive filler from which the particle size of the magnesium oxide particle used as a raw material is obtained is maintained. Therefore, when selecting a particle diameter as a heat conductive filler according to a use, it is easy if the magnesium oxide particle which has the same particle diameter is used as a raw material.
  • the particle size distribution width of the heat conductive filler of the present invention has a coefficient of variation of 0.5 or less. It is preferable that it is 0.4 or less especially.
  • the coefficient of variation used for the evaluation of the particle size distribution width is the standard deviation obtained by (d84% -d16%) / 2 in the particle size distribution measured using a laser diffraction particle size distribution measuring apparatus and water as a solvent. It is a value obtained by dividing by the average particle diameter.
  • the thermally conductive filler of the present invention As a method of making the thermally conductive filler of the present invention within the above range, adjusting the particle size distribution width of the magnesium oxide particles used as a raw material in the hydrothermal treatment described later, or in the drying / pulverization step after the hydrothermal treatment, Examples include a method of incorporating a classification step.
  • the magnesium oxide particles used as the raw material are preferably those having a variation coefficient of the particle size distribution width of 0.5 or less.
  • the BET specific surface area of the particles that are the heat conductive filler of the present invention is preferably 10 m 2 / g or less, particularly preferably in the range of 0.1 to 5 m 2 / g.
  • the BET specific surface area is in this range, it becomes easy to uniformly disperse when kneading with the resin.
  • the thermally conductive filler of the present invention is a particle in which magnesium oxide is coated with magnesium carbonate, but the ratio of the coated magnesium carbonate can be set according to the purpose, specifically The content of magnesium carbonate in the particles can be controlled at 1 to 99.9% by mass.
  • the magnesium carbonate content is preferably in the range of 5 to 50% by mass from the viewpoint of easily obtaining a molded product having both thermal conductivity and heat-and-moisture resistance in a well-balanced manner.
  • the thermally conductive filler of the present invention is produced by hydrothermal treatment of magnesium oxide particles, which will be described later, first, the surface layer of the magnesium oxide particles is hydrolyzed to become magnesium hydroxide. Magnesium hydroxide is decomposed into magnesium ions and hydroxide ions in water, but since carbon dioxide is present in the system, it is neutralized instantaneously and deposited as magnesium carbonate on the surface of the magnesium oxide particles. As a result, the magnesium oxide is coated with magnesium carbonate.
  • the heat conductive filler obtained in this manner includes those that are not perfectly spherical, and may have irregularities on the surface.
  • the coated magnesium carbonate preferably contains anhydrous magnesium carbonate from the viewpoint of being suitably used as a thermally conductive filler.
  • anhydrous magnesium carbonate from the viewpoint of being suitably used as a thermally conductive filler.
  • initially hydrolyzed magnesium ions and hydroxide ions are converted into tetrahydrate basic magnesium carbonate (4MgCO 3 .Mg (OH) 2 .4H 2 ) by the presence of carbon dioxide. Precipitate as O).
  • This basic magnesium carbonate releases crystal water at around 250 ° C. That is, for example, when a TG analysis is performed under a temperature rising rate condition of 10 ° C./min, a peak at the start of weight loss is recognized from around 250 ° C. Since the temperature at which this crystal water is released is lower than the processing temperature of major engineering plastics (300 ° C or higher), water may be removed during extrusion, which may adversely affect workability such as foaming and surging. Less is desirable because it is possible.
  • this basic magnesium carbonate can be changed to anhydrous magnesium carbonate.
  • the basic magnesium carbonate is anhydrous magnesium carbonate in the magnesium carbonate covering the particles that are the heat conductive filler of the present invention, particularly from the viewpoint that it is not suitable as a heat conductive filler used in engineering plastics.
  • the content of is preferably 30% by mass or more, and particularly preferably 50% by mass or more.
  • the thermally conductive filler of the present invention as a method for discriminating whether the magnesium carbonate covering the magnesium oxide is basic magnesium carbonate or anhydrous magnesium carbonate, a diffraction angle 2 ⁇ by X-ray diffraction analysis is used. The method of reading a peak is mentioned. When the coating is tetrahydrate basic magnesium carbonate, a peak can be read at a position where 2 ⁇ is 15 °. On the other hand, when the coating is anhydrous magnesium carbonate, a peak can be read at a position where 2 ⁇ is 33 °.
  • magnesium hydroxide is decomposed into magnesium oxide and water (Mg (OH) 2 ⁇ MgO + H 2 O), and anhydrous magnesium carbonate is thermally decomposed into magnesium oxide and carbon dioxide (MgCO 3 ⁇ MgO + CO 2 ) reaction occurs.
  • TG analysis is performed under the temperature rising rate condition of 10 ° C./min, peaks of weight loss are recognized at around 250 ° C. and around 450 ° C.
  • the amount of magnesium carbonate (wt%) in the particles is determined by the following equation. (Decreased value of X (° C.) obtained by TG analysis ⁇ reduced value of 150 ° C.) ⁇ (466/72)
  • X is a temperature between 300 ° C. and 350 ° C. and after the end point of the weight loss peak starting from around 250 ° C.
  • 466 is a tetrahydrate basic magnesium carbonate 4MgCO 3 .Mg (OH when the atomic weight of Mg is 24, the atomic weight of C is 12, the atomic weight of H is 1, and the atomic weight of O is 16. ) molecular weight of 2 ⁇ 4H 2 O, 72 is the molecular weight of the 4H 2 O.
  • the magnesium carbonate content (wt%) of the coated magnesium oxide particles is determined by the following formula. (800 ° C. weight loss value obtained by TG analysis ⁇ Y (° C.) weight loss value) ⁇ (84/44)
  • Y is a temperature between 450 ° C. and 500 ° C. and after the end point of the weight loss peak starting from around 250 ° C.
  • 84 is the molecular weight of anhydrous magnesium carbonate MgCO 3 when the atomic weight of Mg is 24, the atomic weight of C is 12, the atomic weight of H is 1, and the atomic weight of O is 16, and 44 is the molecular weight of carbon dioxide.
  • 58 is the molecular weight of magnesium hydroxide Mg (OH) 2
  • 18 is the molecular weight of water.
  • the amount of magnesium carbonate (wt%) in the particles is determined by the following equation. (800 ° C. weight loss value obtained by TG analysis ⁇ 450 ° C. weight loss value) ⁇ (84/44)
  • 84 is the molecular weight of anhydrous magnesium carbonate MgCO 3 when the atomic weight of Mg is 24, the atomic weight of C is 12, the atomic weight of H is 1, and the atomic weight of O is 16, 44 is the molecular weight of carbon dioxide, 58 Is the molecular weight of magnesium hydroxide Mg (OH) 2 , and 18 is the molecular weight of water.
  • basic magnesium carbonate and anhydrous magnesium carbonate may coexist.
  • the weight loss peaks around 250 ° C. and 450 ° C. are recognized by TGA analysis of basic magnesium carbonate.
  • the determination can be made by observing a weight loss peak around 550 ° C. due to thermal decomposition of anhydrous magnesium carbonate.
  • the amount of magnesium carbonate (wt%) when basic magnesium carbonate and anhydrous magnesium carbonate are mixed is determined by the following equation.
  • Amount of basic magnesium carbonate A (reduced value of X (° C.) obtained by TG analysis ⁇ reduced value of 150 ° C.) ⁇ (466/72)
  • Anhydrous magnesium carbonate amount B (800 ° C. reduction value obtained by TG analysis ⁇ Y (° C.) reduction value) ⁇ (84/44))
  • Total amount of magnesium carbonate (A + B)
  • Examples of a method for easily obtaining the heat conductive filler of the present invention include a method of hydrothermally treating magnesium oxide particles.
  • the hydrothermal treatment means that a slurry obtained by dispersing magnesium oxide particles in water is subjected to a reforming treatment at a temperature of 100 ° C. or higher in the presence of carbon dioxide.
  • the magnesium oxide particles used as a raw material in the present invention include those obtained by firing magnesium hydroxide or magnesium carbonate, but those obtained by any manufacturing method may be used. Further, the average particle size, the maximum particle size, and the amount of impurities such as alumina and iron oxide are not particularly limited, but by using magnesium oxide having an average particle size of preferably 20 to 100 ⁇ m, more preferably 30 to 70 ⁇ m, In addition to high thermal conductivity, a resin composition giving high fluidity and a molded article having good mechanical properties can be obtained. That is, the average particle diameter and distribution width of the magnesium oxide particles used as the raw material are maintained during the hydrothermal treatment.
  • magnesium hydroxide becomes magnesium ions and hydroxide ions in the water due to the presence of water, but since carbon dioxide is present in the water, it is neutralized instantaneously and magnesium carbonate is formed on the surface of the magnesium oxide particles. To be deposited. Therefore, the amount of change to magnesium carbonate can be adjusted by the hydrothermal treatment time, the amount of water charged into magnesium oxide, and the amount of carbon dioxide.
  • the amount of change to magnesium carbonate increases by lengthening the hydrothermal treatment time. Moreover, the rate of change to magnesium carbonate is improved by increasing the amount of water charged to magnesium oxide and increasing the amount of carbon dioxide. Since the thermal conductivity of magnesium carbonate is smaller than that of magnesium oxide, the thermal conductivity tends to decrease somewhat as the proportion of the volume of magnesium carbonate in the particle in the volume of magnesium oxide increases.
  • the molded body obtained by using this as a heat conductive filler has good heat and moisture resistance.
  • the time for hydrothermal treatment while supplying carbon dioxide to 1 hour or more.
  • the treatment temperature also affects the amount of change to magnesium carbonate.
  • the treatment is preferably performed in the range of 100 to 180 ° C.
  • hydrothermal treatment is performed for 1 hour or more while supplying carbon dioxide at a temperature of 100 ° C. or higher and 180 ° C. or lower.
  • hydrothermal treatment it is desirable to perform hydrothermal treatment for 1 hour or more while supplying carbon dioxide at a temperature of 100 ° C. or more and 250 ° C.
  • the surface of magnesium oxide is changed by the first step, and mainly tetrahydrate basic magnesium carbonate (4MgCO 3 .Mg (OH) 2 .4H 2 O) is generated.
  • the amount of change in magnesium carbonate varies depending on the treatment temperature and is preferably 100 ° C.
  • hydrothermal treatment is performed at a temperature of 100 ° C. or more and 250 ° C. while supplying carbon dioxide, thereby changing magnesium oxide that has not yet been changed to basic magnesium carbonate and producing 4 already produced. Hydrate basic magnesium carbonate can be changed to anhydrous magnesium carbonate.
  • magnesium hydroxide is also produced at the same time, but by performing hydrothermal treatment while supplying carbon dioxide, the produced magnesium hydroxide is also tetrahydrate basic. After changing to magnesium carbonate, it further changes to anhydrous magnesium carbonate. As a result, the final magnesium hydroxide amount can be reduced, and the mass ratio of magnesium carbonate can be increased.
  • magnesium hydroxide in the coating changes in crystallinity depending on the temperature of hydrothermal treatment, and the decomposition temperature into water and magnesium oxide also changes.
  • magnesium hydroxide contained when hydrothermal treatment is performed at 180 ° C. or lower has low crystallinity and a decomposition start temperature of around 350 ° C.
  • the crystallinity is high, and the decomposition start temperature is around 380 ° C.
  • the temperature condition of the hydrothermal treatment is higher in order to control the properties of magnesium hydroxide contained in the particles, especially the second It is desirable to perform hydrothermal treatment at 180 ° C. or higher as a step. That is, in the manufacturing method of this invention, you may have a two-step process from which temperature differs.
  • the slurry fluidity during the hydrothermal reaction is improved and the workability is greatly improved.
  • the conditions under which a sufficient amount of modification to magnesium carbonate is obtained and the workability and productivity are good are preferably in the range of 50 to 2000 parts by mass, more preferably 100 to 1500 parts by mass with respect to 100 parts by mass of the magnesium oxide particles. Is more preferable, and 150 to 1000 parts by mass is most preferable.
  • heat conductive fillers and fillers can be added in accordance with the intended use as long as the effects of the present invention are not impaired.
  • the heat conductive filler include boron nitride, silicon nitride, boehmite, beryllium oxide, zinc oxide, titanium oxide, crystalline silicon oxide, silicon carbide, graphite, and carbon fiber.
  • the filler include talc, silicon oxide, diatomaceous earth, dolomite, clay, mica, and calcium carbonate.
  • a coupling agent such as a silane coupling agent and a titanate coupling agent, a water-soluble solution, and the like for the purpose of further improving dispersibility and hydrophobicity, as long as the effects of the present invention are not impaired.
  • Resin and various conventionally known additives can be added. These are desirably water-soluble during hydrothermal treatment, and for example, Shin-Etsu Silicone KBM-903, KBE-903, Ajinomoto Fine Techno Preneact KR ET, and the like are preferably used. These can be added before the start of the first step heating, added after the completion of the first step heating hold, or added after the completion of the second step heating hold.
  • the heat conductive filler of the present invention can be blended with various resins to form a resin composition.
  • the resin to be blended may be either a thermosetting resin or a thermoplastic resin, and the thermosetting resin is a phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl. Examples include terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, and thermosetting polyimide resin. These thermosetting resins can be used alone or in combination of two or more.
  • Thermoplastic resins include polyolefin resins such as polyethylene and polypropylene and modified products thereof, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, (meth) acrylic resins such as polymethyl methacrylate and polyethyl methacrylate, polystyrene, acrylonitrile-butadiene- Styrene resin, acrylonitrile-acrylic rubber-styrene resin, acrylonitrile-ethylene rubber-styrene resin, styrene resin such as (meth) acrylate ester-styrene resin, styrene-butadiene-styrene resin, ionomer resin, polyacrylonitrile, 6-nylon , 6,6-Nylon, 6T-PA, 9T-PA, MXD6-Nylon and other polyamide resins, ethylene-vinyl acetate resin, ethylene-acrylic Luric acid resin, ethylene-eth
  • thermoplastic resins can be used alone or in combination of two or more. Among these, it can be suitably blended with a resin called an engineering plastic used for an electric / electronic member.
  • Engineering plastics include thermoplastic resins such as polybutylene terephthalate, nylon 9T, fluororesin, polycarbonate resin, modified polyphenylene ether resin, polyphenylene sulfide resin, polyetherimide resin, polyetheretherketone resin, and thermoplastic polyimide resin. .
  • thermoplastic resin when the main component of the resin composition of the present invention is a thermoplastic resin, a small amount of a thermosetting resin may be added within a range that does not impair the properties of the thermoplastic resin. In such a case, it is possible to add a small amount of thermoplastic resin as long as the properties of the thermosetting resin are not impaired.
  • the amount of the thermally conductive filler is appropriately selected depending on the type of resin, other components in the resin composition, and the desired degree of thermal conductivity.
  • it is blended with polyphenylsulfone resin.
  • it is preferably blended in the range of 30 to 500 parts by mass, more preferably in the range of 50 to 450 parts by mass, and in the range of 100 to 400 parts by mass in 100 parts by mass of the polyphenylene resin. Is more preferable.
  • 100 parts by mass of the polyphenylsulfone resin is 50 parts by mass or less, sufficient thermal conductivity cannot be obtained, and when it is 500 parts by mass or more, the viscosity at the time of melting of the resin composition increases. Easy moldability may be reduced.
  • the resin composition may contain various conventionally known heat conductive fillers depending on the application.
  • heat conductive fillers for example, boron nitride, aluminum nitride, magnesium oxide, Silicon nitride, aluminum oxide, boehmite, beryllium oxide, zinc oxide, titanium oxide, crystalline silicon oxide, silicon carbide and composite compounds thereof, metal silicone, graphite, carbon fiber, ceramic fiber, metal fiber, potassium titanate whisker, Examples thereof include metal fibers (such as stainless steel fibers), silicon nitride whiskers, aluminum borate whiskers, boron fibers, tetrapotted zinc oxide whiskers, carbon nanotubes, oil furnace carbon black, channel black, ketjen black, and acetylene black.
  • the resin composition may contain various conventionally known fillers depending on the application as long as the effects of the present invention are not impaired.
  • fillers for example, talc, silica, diatomaceous earth, dolomite, Gypsum, clay, asbestos, mica, glass fiber, glass beads, glass balloon, calcium carbonate, anhydrous magnesium carbonate, barium sulfate, calcium sulfate, calcium sulfite, calcium phosphate, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron oxide, Natural fiber such as asbestos, sodium silicate, calcium silicate, bentonite, wollastonite, mullite, cordierite, holsteinite, quartz powder, aluminum powder, zirconia powder, cellulose fiber, hemp etc., polyamide fiber, polyester fiber, acrylic fiber Synthetic fibers, mineral fibers, etc. Kuuru, etc.) and the like.
  • the resin composition may contain various conventionally known additives depending on its use, as long as the effects of the present invention are not impaired.
  • hydrolysis inhibitor, colorant, Flame retardant, antioxidant polyethylene wax, oxidized polyethylene wax, polypropylene wax, oxidized polypropylene wax, metal soap, styrene oligomer, polyamide oligomer, polymerization initiator, polymerization inhibitor, titanium crosslinking agent, zirconia crosslinking Agents, other cross-linking agents, UV absorbers, antistatic agents, lubricants, mold release agents, antifoaming agents, leveling agents, light stabilizers (eg, benzotriazoles, hindered amines, etc.), crystal nucleating agents, chelating agents, ions
  • examples thereof include an exchange agent, a dispersant, an antioxidant, an inorganic pigment, and an organic pigment.
  • the resin composition may be subjected to a surface treatment with a silane coupling agent or a titanate coupling agent for the purpose of further improving the hydrophobicity as long as the effect of the present invention is not impaired.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyl.
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl tri (dioctyl pyrophosphate) titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl tri (N, N-diaminoethyl).
  • Titanate isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, tetraisopropyl bis (dioctyl phosphate) titanate, tetraoctyl bis (ditridecyl phosphate) Titanate, tetra (2,2-diallyloxymethyl-1 Butyl) bis (ditridecyl) phosphate titanate, bis (dioctyl pyrophosphate) oxy acetate titanate, bis (dioctyl pyrophosphate) ethylene titanate.
  • a publicly known and commonly used method may be used. It can be carried out by a method using a single screw extruder, a twin screw extruder, a pressure kneader, a kneader, a multi-screw extruder or the like.
  • the method for supplying the coated magnesium oxide particles, resin and other additives to the kneader is not particularly limited. Batch supply by dry blending may be used, or each additive may be supplied individually using an individual supply machine.
  • a molded body can be obtained by molding the resin composition of the present invention.
  • the method for molding the molded body is not particularly limited.
  • the resin composition contains a thermosetting resin, various polymerization initiators, curing agents, curing accelerators, polymerization inhibitors, and the like can be blended in the resin composition.
  • an extrusion molding method is generally used, but a flat press is also possible.
  • a profile extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, and the like can be used.
  • the solution casting method can be used in addition to the melt extrusion method.
  • a molded object can be manufactured using the various hardening methods using an active energy ray.
  • the resin composition contains a thermoplastic resin
  • a thermoplastic resin not only injection molding (injection compression molding, injection press molding, gas assist injection molding), various extrusions (cold runner method, hot runner method), foam molding (supercritical fluid)
  • injection molding injection compression molding, injection press molding, gas assist injection molding
  • various extrusions cold runner method, hot runner method
  • foam molding supercritical fluid
  • Various injection molding methods including injection molding), insert molding, in-mold coating molding, heat insulation mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding). It can also be used in the form of articles, various extruded sheets, films, fibers and the like.
  • an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film.
  • it can be formed as a heat-shrinkable tube by applying a specific stretching operation. It is also possible to form a hollow molded product by rotational molding or blow molding.
  • the molded body of the present invention may have any shape depending on the application, and may be a three-dimensional solid shape, a sheet, a film, or a fiber shape. Further, a part of the molded body or several places may be melted by heat treatment and adhered to a resin or a metal substrate. A coating film applied to a resin or a metal substrate may be used, and a laminate may be formed. Further, secondary processing such as annealing treatment, etching treatment, corona treatment, plasma treatment, emboss transfer, cutting, and surface polishing may be performed on the sheet / film / fibrous molded article.
  • the said resin composition When using the said resin composition as a highly heat-conductive material, it can be used for an adhesive agent, a sealing material, a coating material, ink, etc., for example. Moreover, when making a molded object into a highly heat conductive material, what is necessary is just to process according to the intended use, for example, the shape of an electronic-electric-machine member.
  • the high thermal conductive material of the present invention is excellent in thermal conductivity and heat-and-moisture resistance, and therefore can be suitably used for various applications. Examples include, but are not limited to, electrical / electronic parts, automobile parts, lighting parts, water heater parts, aircraft parts, building materials, containers / packaging members, daily necessities, sports / leisure goods, etc. .
  • the molding resin composition was dried in a gear oven at 140 ° C. for 2 hours, and then molded using a small vertical injection molding machine under conditions of a cylinder set temperature of 320 ° C. and a mold temperature of 250 ° C., and had a thickness of 1 mm ⁇ diameter of 10 mm. A cylindrical test piece was obtained.
  • the sample was placed on a mold having a thickness of 1 mm ⁇ long side 110 mm ⁇ short side 70 mm, and a pressure of 2 MPa was applied with a hot press machine at 300 ° C. for 5 hours. After partial heat retention, a pressure of 30 MPa was applied, and pressing was performed at 300 ° C. for 2 minutes. Thereafter, the sample was taken out after cooling to room temperature, and a flat test piece having a thickness of 1 mm ⁇ long side 110 mm ⁇ short side 70 mm was obtained.
  • Example 2 Manufacture of thermally conductive filler 2>
  • the heat conductive filler 2 was manufactured and evaluated in the same manner except that the treatment time was changed from 2 hours to 4 hours.
  • Example 3 Manufacture of thermal conductive filler 3>
  • the heat conductive filler 3 was produced in the same manner except that the treatment time was changed from 2 hours to 8 hours, and evaluated.
  • Example 4 Manufacture of thermally conductive filler 4>
  • Example 5 Manufacture of thermal conductive filler 5>
  • Example 6 Manufacture of thermally conductive filler 6> 100 g of Ube Magnesium Oxide RF-98 (average particle diameter 68 ⁇ m by laser diffraction) and 150 g of water were charged into a 0.5 L autoclave, and the temperature was raised to 120 ° C. over 12 minutes with stirring. At this time, carbon dioxide gas was continuously supplied at a pressure of 0.4 MPa. After reaching 120 ° C., the carbon dioxide gas was continuously supplied and held for 5 hours with stirring to form a coating layer on the surface of the magnesium oxide particles. After holding for 5 hours, the mixture was cooled to 60 ° C., the supply of carbon dioxide gas was stopped and the pressure was reduced, and the product slurry was taken out from the autoclave.
  • Ube Magnesium Oxide RF-98 average particle diameter 68 ⁇ m by laser diffraction
  • Example 7 Manufacture of thermally conductive filler 7>
  • the heat conductive filler 7 was produced and evaluated in the same manner except that the composition of the intermediate 100 g and water 150 g was changed to the intermediate 15 g and water 150 g.
  • Example 8 ⁇ Manufacture of thermally conductive filler 8>
  • heat treatment was carried out in the same manner except that Ube Material magnesium oxide RF-98 (average particle diameter by laser diffraction 68 ⁇ m) was sieved and classified so that the average particle diameter was 23 ⁇ m.
  • Conductive filler 8 was manufactured and evaluated.
  • Example 1 instead of the heat conductive filler 1, untreated magnesium oxide RF-98 was used without passing through the hydrothermal treatment step.
  • the BET specific surface area of this particle was measured, it was 0.2 m 2 / g, and the average particle size was 68 ⁇ m.
  • TG-DTA measurement was performed (temperature increase in Air at 10 ° C./min)
  • Example 1 The blending ratio of 65% by mass of magnesium oxide and 35% by mass of polyphenylene sulfide resin having a melt viscosity at 300 ° C. of 100 poise so that the volume fraction of the heat-conductive filler is the same as that of Example 1 and under the same conditions as in Example 1
  • a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared.
  • Comparative Example 2 In the same manner as in Comparative Example 1, except that commercially available anhydrous magnesium carbonate was used instead of magnesium oxide RF-98, a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared.
  • the BET specific surface area of this anhydrous magnesium carbonate particle was measured, it was 0.5 m ⁇ 2 > / g and the average particle diameter was 25 micrometers.
  • TG-DTA measurement was performed (temperature increase in Air at 10 ° C./min), the weight loss value from 800 ° C. to 450 ° C. was 51.9%.
  • Example 1 is the same as Example 1 except that the blending ratio is 52% by mass of basic magnesium carbonate and 48% by mass of polyphenylene sulfide resin having a melt viscosity of 100 poise of 300 ° C. so that the volume fraction of the heat conductive filler is the same as Example 1. Similarly, a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared.
  • Example 1 In order to make the volume fractions of Example 1 and the heat conductive filler equal, a blend of 60% by mass of basic magnesium carbonate and 40% by mass of polyphenylene sulfide resin having a melt viscosity of 100 poise at 300 ° C. is the same as in Example 1.
  • a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared under the conditions.
  • Comparative Example 6 2 parts by weight of decyltrimethoxysilane was added dropwise to 100 parts by weight of Ube Magnesium Oxide RF-98 and mixed for 2 minutes at 100 rpm with a Henschel mixer. After mixing, 64.1% by mass of RF-98 treated with decyltrimethoxysilane and 35.9% by mass of polyphenylene sulfide resin having a melt viscosity of 100 poise at 300 ° C. were conducted under the same conditions as in Example 1. A test piece for evaluation and a test piece for wet heat resistance test were prepared.
  • Example 9 23% by mass of the thermally conductive filler 7 obtained in Example 7, 27% by mass of boron nitride (BN) (average major axis 20 ⁇ m), which is a plate-like highly thermally conductive filler, 19% by mass of glass fiber (GF), A test piece for heat conduction evaluation and a test piece for moisture and heat resistance test were prepared in the same manner except that the polyphenylene sulfide resin having a melt viscosity of 300 ° C. and 100 poise was changed to 31% by mass.
  • BN boron nitride
  • GF glass fiber
  • Example 9 magnesium oxide RF-98 was used instead of the thermally conductive filler 7.
  • 26% by mass of magnesium oxide 25% by mass of boron nitride (BN) (average major axis 20 ⁇ m), 18% by mass of glass fiber (GF), 300 ° C.
  • BN boron nitride
  • GF glass fiber
  • a test piece for heat conduction evaluation and a test piece for moisture and heat resistance test were prepared in the same manner as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity of 100 poise was 31% by mass.
  • Example 9 a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared in the same manner except that commercially available anhydrous magnesium carbonate was used instead of the heat conductive filler 7. In order that the volume fraction of Example 9 and the heat conductive filler is equivalent, anhydrous magnesium carbonate 23 mass%, boron nitride (BN) (average major axis 20 ⁇ m) 27 mass%, glass fiber (GF) 19 mass%, A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared under the same conditions as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity of 300 ° C. at 100 ° C. was blended in an amount of 31% by mass.
  • BN boron nitride
  • GF glass fiber
  • Example 9 In Example 9, commercially available basic magnesium carbonate was used in place of the thermally conductive filler 7. Example 9 and 18% by mass of basic magnesium carbonate, 28% by mass of boron nitride (BN) (average major axis 20 ⁇ m), 21% by mass of glass fiber (GF), so that the volume fraction of the heat conductive filler is the same as Example 9.
  • a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared in the same manner as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity at 300 ° C. of 100 poise was changed to 33% by mass.
  • Example 9 instead of the thermally conductive filler 7, commercially available natural magnesite was used.
  • BN boron nitride
  • GF glass fiber
  • 300 A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared in the same manner as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity at 100 ° C. of 100 poise was mixed at 31% by mass.
  • TG-DTA analysis All values such as weight loss and decomposition temperature by TG analysis are measured using EXSTAR-6300 manufactured by SII NanoTechnology under the air (200 ml / min), sample amount 5 mg, and heating condition at 10 ° C / min. The value when used was used.
  • PCT Pressure Cooker Test
  • Example 1 The test piece obtained in Example 1 had a relatively high thermal conductivity of 1.4, and the moisture resistance evaluation showed good results in both water absorption and appearance. On the other hand, the test piece obtained in Comparative Example 1 (in the case of using a magnesium oxide-untreated sample) had a rough surface appearance of the plate in the moisture resistance evaluation, and obtained a result that was significantly inferior to Example 1.
  • Comparative Example 3 (when basic magnesium carbonate is used) is inferior to Example 1 in thermal conductivity and water absorption, and further, foaming occurs during the extrusion process to obtain a resin composition. The problem of remarkably lowering occurred.
  • Comparative Example 5 in the case of using a 1: 1 blend of basic magnesium carbonate and magnesium oxide
  • Comparative Example 6 in the case of using magnesium oxide subjected to silane coupling treatment
  • the test piece obtained in Example 7 has a thermal conductivity of 1.3, a synthetic product having an average particle size distribution of 50 ⁇ m or less, and a natural product having a particle size distribution of 50 ⁇ m or more.
  • the results showed good results in both water absorption and appearance.
  • Comparative Example 1 when magnesium oxide is used, the thermal conductivity of magnesium oxide particles is slightly higher than that of anhydrous magnesium carbonate, and thus the thermal conductivity is 1.9 W / mK, which is higher than that of Example 1. Although a value was recognized, a result with poor moisture resistance was obtained.
  • Comparative Example 2 in the case of using commercially available anhydrous magnesium carbonate
  • the moisture resistance evaluation was equivalent to that in Example 7, a result of inferior thermal conductivity was obtained.
  • Comparative Example 3 in the case of using basic magnesium carbonate
  • Example 7 in thermal conductivity and moisture resistance
  • a foaming phenomenon occurs during extrusion to obtain a molding resin composition.
  • the moisture resistance was the same as in Example 7, but the thermal conductivity was inferior.
  • the particle size distribution width is a high value compared with the coefficient of variation 0.6 and 0.39 of Example 7, and it is estimated that the thermal conductivity is inferior from the aspect of forming the heat conduction path.
  • Example 9 when the thermally conductive filler of the present invention was used, the combined use of boron nitride and glass fiber also showed higher thermal conductivity than others. This has an effect as an efficient heat conduction path between boron nitride in the molded product because the average particle diameter of the heat conductive filler is large, and the Mohs hardness of the filler is 3.5 as in anhydrous magnesium carbonate. For this reason, it is presumed that the diameter reduction due to the destruction of boron nitride can be suppressed and high thermal conductivity can be maintained. Also when the magnesium oxide of the comparative example 10 was used, it became a result whose heat conductivity is lower than Example 9, and it is suggested that magnesium oxide has contributed to destruction of boron nitride.
  • the resin assembly of the present invention is suitable for highly heat-conductive materials that are desired to be thinner and more complicated, for example, electrical and electronic parts, automobile parts, lighting parts, water heater parts, fibers, and film applications. It can use suitably for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Provided are: a heat-conductive filler which is characterized by comprising particles which are produced by coating magnesium oxide with magnesium carbonate; a method for producing a heat-conductive filler, which is characterized by comprising the steps of injecting a carbon dioxide gas into a slurry that is prepared by dispersing magnesium oxide particles in water and then performing a hydrothermal treatment while dissolving carbon dioxide in water; a resin composition prepared using the heat-conducive filler; and a molded product of the resin composition. The heat-conductive filler, the resin composition, the molded product of the resin composition, and a highly heat-conductive material produced using the molded article have excellent heat conductivity and wet heat resistance.

Description

熱伝導性フィラー、その製造方法、これを用いる樹脂組成物、その成形体及び高熱伝導材料Thermally conductive filler, method for producing the same, resin composition using the same, molded product thereof, and high thermal conductive material
 本発明は、熱伝導性と耐湿熱性とを兼ね備えた熱伝導性フィラー、及び該熱伝導性フィラーを含有する樹脂組成物およびその成形体、そしてそれを利用した高熱伝導材料に関する。 The present invention relates to a heat conductive filler having both heat conductivity and heat and moisture resistance, a resin composition containing the heat conductive filler, a molded product thereof, and a high heat conductive material using the resin composition.
 プラスチック材料は、高耐熱性を有するエンジニアリングプラスチックの普及に伴い、加えて生産性及び形状の自由度から、金属材料に代わる材料として電気、電子機器や自動車用等の部材として幅広く使用されている。近年、機器の高性能化・小型軽量化が一層求められ、半導体デバイスの高集積化・大容量化が進み、それに伴い部材より発生する発熱量も増大したことから、実装部品・周囲部品の熱伝導性向上は重要な課題となっている。又、電気自動車の電費向上として、リチウムイオン電池、モーター、インバータに使用される絶縁部材の熱伝導性向上が強く求められている。 ¡Plastic materials are widely used as materials for electric, electronic equipment, automobiles, etc. as materials to replace metal materials due to the widespread use of engineering plastics with high heat resistance, as well as productivity and flexibility in shape. In recent years, there has been a further demand for higher performance, smaller size, and lighter weight of the equipment, and semiconductor devices have become more highly integrated and larger in capacity. As a result, the amount of heat generated from the members has increased. Improving conductivity is an important issue. In addition, there is a strong demand for improving the thermal conductivity of insulating members used in lithium ion batteries, motors, and inverters as an improvement in the electric cost of electric vehicles.
 プラスチック材料の絶縁性を保持し、熱伝導性を付与する方法としては、無機フィラーを添加する技術が知られており、例えば、窒化ホウ素、窒化アルミ、アルミナ、酸化マグネシウム、炭酸マグネシウム等が挙げられる。窒化ホウ素は高熱伝導性をもつフィラーであるが、コスト面で実用性が低く、又、六方晶の薄片状結晶構造であることより、樹脂組成物中で窒化ホウ素からなるフィラーが配向し、成形体の熱伝導性に異方性が生じてしまう問題がある。窒化アルミは、熱伝導性に異方性はないが、窒化ホウ素と同様にコスト面での実用性が低く、更に容易に加水分解してアンモニアを発生するという問題がある。アルミナはモース硬度が9と高く、押出工程時のスクリュウやペレット化工程時のカッターの刃、及び、射出成形機のスクリュウや金型を摩耗させる問題がある。 As a method for maintaining the insulation of the plastic material and imparting thermal conductivity, a technique of adding an inorganic filler is known, and examples thereof include boron nitride, aluminum nitride, alumina, magnesium oxide, and magnesium carbonate. . Boron nitride is a filler with high thermal conductivity, but its practicality is low in terms of cost, and since it has a hexagonal flaky crystal structure, the filler composed of boron nitride is oriented in the resin composition and molded. There is a problem that anisotropy occurs in the thermal conductivity of the body. Aluminum nitride has no anisotropy in thermal conductivity, but has a problem of low cost practicality like boron nitride, and further easily hydrolyzes to generate ammonia. Alumina has a high Mohs hardness of 9, and there is a problem that the screw in the extrusion process, the blade of the cutter in the pelletizing process, and the screw and mold of the injection molding machine are worn.
 酸化マグネシウムは、熱伝導性が比較的高く、異方性も生じないフィラーであり、かつ低コストいう利点もあり、熱可塑性樹脂へ熱伝導性を付与するフィラーとして有望である。しかしながら、酸化マグネシウムは耐湿熱性に劣る。即ち、酸化マグネシウムをフィラーとして含む成形品を高温高湿下に曝露した際、酸化マグネシウムのフィラーの表面から加水分解を起こし、水酸化マグネシウムと変化することで膨張し、成形品の寸法が増大するという問題が起こる。 Magnesium oxide is a filler that has relatively high thermal conductivity, does not cause anisotropy, and has the advantage of low cost, and is promising as a filler that imparts thermal conductivity to thermoplastic resins. However, magnesium oxide is inferior in heat and moisture resistance. That is, when a molded product containing magnesium oxide as a filler is exposed to high temperature and high humidity, hydrolysis occurs from the surface of the magnesium oxide filler, and it expands by changing to magnesium hydroxide, increasing the size of the molded product. The problem occurs.
 耐湿熱性を改善する手法として、酸化マグネシウムをアルキルアルコキシシランで乾式表面処理被覆する手法(例えば、特許文献1参照)や、リン酸マグネシウム系化合物で被覆する手法が挙げられている(例えば、特許文献2参照)。しかしながら、これら他の化合物で表面処理された酸化マグネシウムからなるフィラーを熱可塑性樹脂に配合し成形品としたものにおいても耐湿熱性の改善効果は不十分であり、例えば、温度121℃/湿度100%/圧力2atmのプレッシャークッカーテストでの結果は、前述の用途等における要求レベルには達していない。 As a technique for improving the heat and moisture resistance, a technique of applying a dry surface treatment coating of magnesium oxide with an alkylalkoxysilane (for example, see Patent Document 1) and a technique of coating with a magnesium phosphate compound (for example, Patent Document) 2). However, the effect of improving the moist heat resistance is insufficient even in a molded product obtained by blending a filler made of magnesium oxide surface-treated with these other compounds into a thermoplastic resin. For example, temperature 121 ° C./humidity 100% / The result of the pressure cooker test at a pressure of 2 atm does not reach the required level in the above-mentioned application.
 一方、炭酸マグネシウムは熱伝導率が良好な上、熱伝導率の異方性も少なく、モース高度は3.5と低く、かつ低コストで耐湿性も良好であることより、熱伝導フィラーとして有用と考えられる。 Magnesium carbonate, on the other hand, has good thermal conductivity, low anisotropy in thermal conductivity, low Mohs height of 3.5, low cost, and good moisture resistance, making it useful as a thermal conductive filler it is conceivable that.
 一般的に炭酸マグネシウムは天然品と合成品があり、天然品はマグネサイト鉱を粉砕することで得られるが、可溶性塩、酸不溶物、カルシウム塩等の不純物が合成品と比較し多く含まれ、結晶性も低い為、熱伝導性に劣るという問題がある。一方、合成品としては、水酸化マグネシウムを出発原料とし、水酸化マグネシウムスラリーに二酸化炭素ガスを供給し炭酸化させる方法や、可溶性マグネシウム塩と可溶性炭酸塩を水中で混合し、マグネシウム塩を炭酸化する方法等が挙げられる。生成されるマグネシウム炭酸塩は、中性炭酸マグネシウム(MgCO・3HO)であり、熟成により比較的安定な塩基性炭酸マグネシウム(mMgCO・Mg(OH)・nHO)へと転化する。塩基性炭酸マグネシウムは酸化マグネシウムやアルミナと比較し熱伝導率が低い上、エンジニアリングプラスチック中に高充填した場合、250℃以上の高温での加工域において含有する結晶水が放たれ、発泡や吐出不安定等の加工性に悪影響を及ぼす懸念がある。そこで、エンジニアリングプラスチック用熱伝導性フィラーとして、塩基性炭酸マグネシウム、中性炭酸マグネシウムを出発原料とし、オートクレーブ中で水熱処理した後に乾燥して得られる、無水炭酸マグネシウムが提供されている(例えば、特許文献3参照)が、依然として熱伝導性フィラーとしての実用レベルには到達しておらず、さらなる改良が求められている。 Magnesium carbonate is generally divided into natural and synthetic products. Natural products are obtained by crushing magnesite ore, but they contain more impurities such as soluble salts, acid insolubles, and calcium salts than synthetic products. However, since the crystallinity is low, there is a problem that the thermal conductivity is inferior. On the other hand, as a synthetic product, magnesium hydroxide is used as a starting material, carbon dioxide gas is supplied to the magnesium hydroxide slurry and carbonized, or soluble magnesium salt and soluble carbonate are mixed in water to carbonate the magnesium salt. And the like. Magnesium carbonate produced is a magnesium neutral carbonate (MgCO 3 · 3H 2 O) , and relatively to stable basic magnesium carbonate (mMgCO 3 · Mg (OH) 2 · nH 2 O) ripening conversion To do. Basic magnesium carbonate has a lower thermal conductivity than magnesium oxide and alumina, and when it is highly filled in engineering plastics, the crystal water contained in the processing zone at a high temperature of 250 ° C or higher is released, and foaming and discharge are not possible. There is concern that processability such as stability may be adversely affected. Thus, anhydrous magnesium carbonate obtained by drying after hydrothermal treatment in an autoclave using basic magnesium carbonate and neutral magnesium carbonate as a starting material is provided as a thermal conductive filler for engineering plastics (for example, patents). However, it has not yet reached a practical level as a thermally conductive filler, and further improvements are required.
特開2011-068757号公報JP 2011-068757 A 特開2006-151778号公報JP 2006-151778 A 特開2005-272752号公報Japanese Patent Laid-Open No. 2005-272752
 上記実情に鑑み、本発明の課題は、熱伝導性と耐湿熱性とに優れた高熱伝導材料を与えうる樹脂組成物、成形体、さらに当該高熱伝導材料におけるフィラーとして好適に用いることができる熱伝導性フィラー及びその製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a resin composition that can provide a high thermal conductivity material excellent in thermal conductivity and moisture and heat resistance, a molded body, and a thermal conductivity that can be suitably used as a filler in the high thermal conductivity material. It is in providing a conductive filler and its manufacturing method.
 本発明者は上記課題を解決するために鋭意検討を重ねた結果、酸化マグネシウムが炭酸マグネシウムによって被覆されてなる粒子が、高い熱伝導性を保ちつつ、樹脂へ配合し加工する場合での加工性が良好で、得られる成形体の耐湿熱性に優れることを見出し、本発明を完成するに至った。 As a result of intensive studies in order to solve the above problems, the present inventor has processed particles when magnesium oxide is coated with magnesium carbonate and processed into a resin while maintaining high thermal conductivity. Has been found to be excellent and the resulting molded article is excellent in heat and moisture resistance, and the present invention has been completed.
 即ち、本発明は、酸化マグネシウムが炭酸マグネシウムによって被覆されてなる粒子であることを特徴とする熱伝導性フィラー、これを樹脂に配合してなる樹脂組成物及びその成形体、並びに高熱伝導材料を提供するものである。 That is, the present invention provides a thermally conductive filler characterized in that magnesium oxide is particles coated with magnesium carbonate, a resin composition obtained by blending this with a resin, a molded product thereof, and a high thermal conductivity material. It is to provide.
 本発明により、高熱伝導性と熱伝導の低異方性を併せ持ち、かつ硬度も低く、耐湿熱性も良好な成形体を与える熱伝導性フィラーを得ることができる。また、該熱伝導フィラーを含有する樹脂組成物は、流動性を損なうことなく容易に成形加工が可能であり、高い熱伝導性と耐湿熱性を併せ持ち、高温高湿下に長期曝露した場合おいても、良好な外観の維持が可能な成形体を得ることができる。従って、本発明の樹脂組成物及びその成形体は、より薄肉化、複雑形状化が望まれている高熱伝導材料に適しており、例えば、電気電子部品、自動車部品、給湯機部品、繊維、フィルム用途などに好適に用いることができる。 According to the present invention, it is possible to obtain a thermally conductive filler that gives a molded article having both high thermal conductivity and low anisotropy of thermal conductivity, low hardness, and good wet heat resistance. In addition, the resin composition containing the heat conductive filler can be easily molded without impairing fluidity, has both high heat conductivity and heat and humidity resistance, and is exposed to a long period of time under high temperature and high humidity. However, it is possible to obtain a molded body capable of maintaining a good appearance. Therefore, the resin composition of the present invention and the molded product thereof are suitable for highly heat-conductive materials that are desired to be thinner and more complicated, such as electric and electronic parts, automobile parts, water heater parts, fibers, and films. It can use suitably for a use etc.
[熱伝導性フィラー]
 本発明の熱伝導性フィラーは、酸化マグネシウムが炭酸マグネシウムによって被覆されてなる粒子であることを特徴とするものである。
[Thermal conductive filler]
The thermally conductive filler of the present invention is characterized in that it is a particle formed by coating magnesium oxide with magnesium carbonate.
 酸化マグネシウムは一般的に常温・常圧下、大気中の水蒸気に接する事で序々に加水分解し、水酸化マグネシウムMg(OH)へ変化することが知られている。また、この最表層のMg(OH)は、大気中の二酸化炭素と反応し、炭酸マグネシウムへと変化する。これらの反応は常温常圧下においては、極めて長い期間をかけての変化である。又、水酸化マグネシウムあるいは炭酸マグネシウムを出発原料として、600℃程度の低温で焼成して得た酸化マグネシウムは比較的これらの反応が容易に起こり得るのに対し、1000℃以上の高温で加熱されたものはより密度が高く、安定となりこれらの反応が進行しにくい。即ち、酸化マグネシウムの焼成条件によっても反応性が異なり、かつ酸化マグネシウムが容器に充填されている場合、外気に接触している箇所と、最内部の粒子同士が接触した箇所を比較した場合においても反応性が異なってくる。従って、酸化マグネシウムからの水酸化マグネシウム、更には炭酸マグネシウムへの変化量の調整は極めて難しい。一方で、本発明では、工業的に短時間で酸化マグネシウムの形状を維持しながら、定量的に炭酸マグネシウムへと改質するものである。 It is known that magnesium oxide is generally hydrolyzed and gradually converted to magnesium hydroxide Mg (OH) 2 by contact with water vapor in the atmosphere at normal temperature and normal pressure. Further, this outermost layer Mg (OH) 2 reacts with carbon dioxide in the atmosphere and changes to magnesium carbonate. These reactions are changes over a very long period under normal temperature and pressure. Magnesium oxide obtained by firing at a low temperature of about 600 ° C. using magnesium hydroxide or magnesium carbonate as a starting material is relatively easy to undergo these reactions, whereas it is heated at a high temperature of 1000 ° C. or higher. Things are more dense, stable and less prone to these reactions. That is, the reactivity differs depending on the firing conditions of magnesium oxide, and when the container is filled with magnesium oxide, even when comparing the place where the outermost particles are in contact with the place where it is in contact with the outside air Reactivity is different. Therefore, it is extremely difficult to adjust the amount of change from magnesium oxide to magnesium hydroxide and further to magnesium carbonate. On the other hand, in the present invention, it is quantitatively modified to magnesium carbonate while maintaining the shape of magnesium oxide in an industrially short time.
 即ち、本発明では、酸化マグネシウムの表面を炭酸マグネシウムで被覆することで、熱伝導性フィラーとしての保存安定性や、これをフィラーとして含有する成形体の耐湿熱性を向上させることを目的としてなされたものである。 That is, in the present invention, by covering the surface of magnesium oxide with magnesium carbonate, it was made for the purpose of improving the storage stability as a heat conductive filler and the moisture and heat resistance of a molded article containing this as a filler. Is.
 本発明の熱伝導性フィラーは、前述のように酸化マグネシウムが炭酸マグネシウムで被覆されてなる粒子であるが、その粒子径としては、特に限定されるものではないが、フィラーとしての取り扱いが良好である点、成形体の熱伝導性と耐湿熱性とに優れる観点より、平均粒子径が20~100μmのものであることが好ましく、特に30~90μmの範囲であることが好ましい。なお、本発明における粒子径の測定方法は、レーザー回折式粒度分布測定装置を用い、水を溶媒とし前処理として超音波分散を5分実施後測定した値である。 The heat conductive filler of the present invention is a particle formed by coating magnesium oxide with magnesium carbonate as described above, but the particle diameter is not particularly limited, but it is easy to handle as a filler. From a viewpoint that the molded body is excellent in thermal conductivity and heat-and-moisture resistance, the average particle diameter is preferably 20 to 100 μm, particularly preferably 30 to 90 μm. In addition, the measuring method of the particle diameter in this invention is the value which measured after implementing ultrasonic dispersion | distribution for 5 minutes using water as a solvent using the laser diffraction type particle size distribution measuring apparatus.
 一般的にフィラーの平均粒子径が大きい程、樹脂と混合した場合の樹脂/フィラー界面の面積が低減する事による高熱伝導化が期待できる。又、本発明のような、熱伝導率の異方性が低く球状の形態をしたフィラーは、熱伝導率の高い繊維状の高結晶性フィラーとの併用の際、球状フィラーと繊維状の高結晶フィラーが接する事による熱伝導パスを形成し得るが、この際に球状フィラーの粒子径が大きい程、効率的な熱伝導パス形成が期待できる。この様な観点より、球状の熱伝導性フィラーを高充填した際に発現する熱伝導率より、より高い熱伝導率を有する成形体を得ようとする場合には、大粒子径のフィラーであることが求められる。 In general, the larger the average particle diameter of the filler, the higher the thermal conductivity due to the reduction in the area of the resin / filler interface when mixed with the resin. In addition, the filler having a spherical shape with low thermal conductivity anisotropy, as in the present invention, is used in combination with a fibrous high crystalline filler having a high thermal conductivity. A heat conduction path can be formed by contact with the crystalline filler. At this time, the larger the particle diameter of the spherical filler, the more efficient heat conduction path formation can be expected. From this point of view, when trying to obtain a molded body having a higher thermal conductivity than that exhibited when the spherical thermal conductive filler is highly filled, it is a filler having a large particle diameter. Is required.
 このような観点から、本発明のフィラーにおいても、その平均粒子径が20μm以上であることが好ましい。前記特許文献3では、水への溶解性のある塩基性炭酸マグネシウムや中性炭酸マグネシウムを出発原料として水熱処理を行っていることから、比較的大きな粒子径を有する炭酸マグネシウムを得ることが困難である。 From such a viewpoint, it is preferable that the average particle diameter of the filler of the present invention is 20 μm or more. In Patent Document 3, since hydrothermal treatment is performed using basic magnesium carbonate or neutral magnesium carbonate that is soluble in water as a starting material, it is difficult to obtain magnesium carbonate having a relatively large particle size. is there.
 又、平均粒子径が100μmを超えるようなフィラーを樹脂に混合して成形体を得ようとする場合、熱伝導性は良好となるが、その配合割合によっては、耐衝撃性や曲げ強度等の機械的な物性が十分で発揮されなくなったり、特に薄膜の成形体における表面で突起状として外観を不良とすることがあったりすることがある。これらの観点から、目的とする成形体の形状、性能によって、粒子径を選択することが好ましい。 In addition, when a molded body is obtained by mixing a filler having an average particle diameter exceeding 100 μm with a resin, the thermal conductivity is good, but depending on the blending ratio, impact resistance, bending strength, etc. The mechanical properties may be insufficient and may not be exhibited, or the appearance of the thin-film molded body may be inferior in appearance as a protrusion. From these viewpoints, it is preferable to select the particle diameter according to the shape and performance of the target molded article.
 なお、後述するように酸化マグネシウムの水熱処理によって本発明の熱伝導性フィラーを製造する場合においては、原料として用いる酸化マグネシウム粒子の粒径が得られる熱伝導性フィラーの粒径に維持される。従って、用途に応じて熱伝導性フィラーとして粒子径を選択する場合、同様の粒子径を有する酸化マグネシウム粒子を原料として用いれば容易である。 In addition, when manufacturing the heat conductive filler of this invention by the hydrothermal treatment of magnesium oxide so that it may mention later, the particle size of the heat conductive filler from which the particle size of the magnesium oxide particle used as a raw material is obtained is maintained. Therefore, when selecting a particle diameter as a heat conductive filler according to a use, it is easy if the magnesium oxide particle which has the same particle diameter is used as a raw material.
 熱伝導性フィラーとしての低異方性の観点や、得られる成形体の物性の均質性の観点から、本発明の熱伝導性フィラーの粒子径分布幅は、変動係数が0.5以下であることが好ましく、特に0.4以下であることが好ましい。なお、粒子径分布幅の評価として用いた変動係数は、レーザー回折式粒度分布測定装置を用い、水を溶媒とし測定した粒度分布において、(d84%-d16%)/2で求めた標準偏差を平均粒子径で割ることで求められる値である。 From the viewpoint of low anisotropy as the heat conductive filler and the homogeneity of physical properties of the obtained molded product, the particle size distribution width of the heat conductive filler of the present invention has a coefficient of variation of 0.5 or less. It is preferable that it is 0.4 or less especially. The coefficient of variation used for the evaluation of the particle size distribution width is the standard deviation obtained by (d84% -d16%) / 2 in the particle size distribution measured using a laser diffraction particle size distribution measuring apparatus and water as a solvent. It is a value obtained by dividing by the average particle diameter.
 本発明の熱伝導性フィラーを上記範囲のものとする方法としては、後述する水熱処理において原料として用いる酸化マグネシウム粒子の粒径分布幅を調節することや、水熱処理後の乾燥・粉砕工程において、分級工程を組み入れる方法等が挙げられる。また、原料として用いる酸化マグネシウム粒子は、粒度分布幅の変動係数が0.5以下のものを用いることが好ましい。 As a method of making the thermally conductive filler of the present invention within the above range, adjusting the particle size distribution width of the magnesium oxide particles used as a raw material in the hydrothermal treatment described later, or in the drying / pulverization step after the hydrothermal treatment, Examples include a method of incorporating a classification step. The magnesium oxide particles used as the raw material are preferably those having a variation coefficient of the particle size distribution width of 0.5 or less.
 また、本発明の熱伝導性フィラーである粒子のBET比表面積としては10m/g以下であることが好ましく、特に0.1~5m/gの範囲であることが好ましい。BET比表面積がこの範囲であると、樹脂との混練の際に、均一に分散させることが容易となる。 In addition, the BET specific surface area of the particles that are the heat conductive filler of the present invention is preferably 10 m 2 / g or less, particularly preferably in the range of 0.1 to 5 m 2 / g. When the BET specific surface area is in this range, it becomes easy to uniformly disperse when kneading with the resin.
 本発明の熱伝導性フィラーは、酸化マグネシウムが炭酸マグネシウムで被覆されてなる粒子であるが、被覆している炭酸マグネシウムの割合は、目的に応じて設定することが可能であり、具体的には、粒子中の炭酸マグネシウムの含有率を1~99.9質量%でコントロールすることができる。 The thermally conductive filler of the present invention is a particle in which magnesium oxide is coated with magnesium carbonate, but the ratio of the coated magnesium carbonate can be set according to the purpose, specifically The content of magnesium carbonate in the particles can be controlled at 1 to 99.9% by mass.
 特に熱伝導性と耐湿熱性とをバランスよく兼備させた成形体を容易に得ることができる観点より、前記炭酸マグネシウムの含有率としては、5~50質量%の範囲のものを用いることが好ましい。 In particular, the magnesium carbonate content is preferably in the range of 5 to 50% by mass from the viewpoint of easily obtaining a molded product having both thermal conductivity and heat-and-moisture resistance in a well-balanced manner.
 後述する、酸化マグネシウム粒子の水熱処理で本発明の熱伝導性フィラーを製造する場合、最初、酸化マグネシウム粒子の表層が加水分解し水酸化マグネシウムとなる。水酸化マグネシウムは水中でマグネシウムイオンと水酸化物イオンへと分解するが、系内に二酸化炭素が存在することから、瞬時に中和され、酸化マグネシウムの粒子の表面に炭酸マグネシウムとして析出する。その結果として酸化マグネシウムが炭酸マグネシウムで被覆されることになる。このようにして得られる熱伝導性フィラーは、完全な球形でないものも含み、表面に凹凸をもつ場合もある。 When the thermally conductive filler of the present invention is produced by hydrothermal treatment of magnesium oxide particles, which will be described later, first, the surface layer of the magnesium oxide particles is hydrolyzed to become magnesium hydroxide. Magnesium hydroxide is decomposed into magnesium ions and hydroxide ions in water, but since carbon dioxide is present in the system, it is neutralized instantaneously and deposited as magnesium carbonate on the surface of the magnesium oxide particles. As a result, the magnesium oxide is coated with magnesium carbonate. The heat conductive filler obtained in this manner includes those that are not perfectly spherical, and may have irregularities on the surface.
 被覆している炭酸マグネシウムとしては、熱伝導性フィラーとして好適に用いられる観点より、無水炭酸マグネシウムを含むものであることが好ましい。後述する水熱処理で製造する場合、当初加水分解されたマグネシウムイオンと水酸化物イオンは、二酸化炭素の存在によって、4水和物の塩基性炭酸マグネシウム(4MgCO・Mg(OH)・4HO)として析出する。この塩基性炭酸マグネシウムは、250℃付近で結晶水を放出する。即ち、例えば、10℃/minの昇温速度条件にてTG分析を行った場合、250℃付近より減量開始のピークが認められる。この結晶水を放出する温度は、主要なエンジニアリングプラスチックの加工温度(300℃以上)よりも低い為、押出加工する際に水が脱離し、発泡やサージング等、加工性に悪影響を及ぼす可能性があり得る為、より少ないことが望ましい。 The coated magnesium carbonate preferably contains anhydrous magnesium carbonate from the viewpoint of being suitably used as a thermally conductive filler. In the case of producing by hydrothermal treatment described later, initially hydrolyzed magnesium ions and hydroxide ions are converted into tetrahydrate basic magnesium carbonate (4MgCO 3 .Mg (OH) 2 .4H 2 ) by the presence of carbon dioxide. Precipitate as O). This basic magnesium carbonate releases crystal water at around 250 ° C. That is, for example, when a TG analysis is performed under a temperature rising rate condition of 10 ° C./min, a peak at the start of weight loss is recognized from around 250 ° C. Since the temperature at which this crystal water is released is lower than the processing temperature of major engineering plastics (300 ° C or higher), water may be removed during extrusion, which may adversely affect workability such as foaming and surging. Less is desirable because it is possible.
 水熱処理をさらに継続すると、この塩基性炭酸マグネシウムは、無水炭酸マグネシウムに変化させることができる。 If the hydrothermal treatment is further continued, this basic magnesium carbonate can be changed to anhydrous magnesium carbonate.
 上記のように、塩基性炭酸マグネシウムは、特にエンジニアリングプラスチックに用いる熱伝導性フィラーとしてはあまりふさわしくない観点より、本発明の熱伝導性フィラーである粒子を被覆している炭酸マグネシウム中、無水炭酸マグネシウムの含有率は30質量%以上であることが好ましく、特に50質量%以上であることが好ましい。 As described above, the basic magnesium carbonate is anhydrous magnesium carbonate in the magnesium carbonate covering the particles that are the heat conductive filler of the present invention, particularly from the viewpoint that it is not suitable as a heat conductive filler used in engineering plastics. The content of is preferably 30% by mass or more, and particularly preferably 50% by mass or more.
 本発明の熱伝導性フィラーにおいて、酸化マグネシウムを被覆している炭酸マグネシウムが、塩基性炭酸マグネシウムであるか、または無水炭酸マグネシウムであるかの判別方法としては、X線回折分析による回折角2θのピークを読み取る方法が挙げられる。被覆物が4水和物の塩基性炭酸マグネシウムである場合、2θが15°の位置にピークを読み取ることができる。一方、被覆物が無水炭酸マグネシウムである場合、2θが33°の位置にピークを読み取る事ができる。 In the thermally conductive filler of the present invention, as a method for discriminating whether the magnesium carbonate covering the magnesium oxide is basic magnesium carbonate or anhydrous magnesium carbonate, a diffraction angle 2θ by X-ray diffraction analysis is used. The method of reading a peak is mentioned. When the coating is tetrahydrate basic magnesium carbonate, a peak can be read at a position where 2θ is 15 °. On the other hand, when the coating is anhydrous magnesium carbonate, a peak can be read at a position where 2θ is 33 °.
 被覆物が4水和物の塩基性炭酸マグネシウムである場合、100℃から300℃にかけて結晶水を放出し、無水炭酸マグネシウムと水酸化マグネシウムへと分解する(4MgCO・Mg(OH)・4HO→4MgCO+Mg(OH)+4HO)。また、350℃から500℃にかけて水酸化マグネシウムが酸化マグネシウムと水へ分解する(Mg(OH)→MgO+HO)反応と、無水炭酸マグネシウムが熱分解し酸化マグネシウム、及び二酸化炭素となる(MgCO→MgO+CO)反応が起こる。10℃/minの昇温速度条件にてTG分析を行うと、250℃付近、450℃付近で減量のピークが認められる。 When the coating is tetrahydrate basic magnesium carbonate, crystal water is released from 100 ° C. to 300 ° C. and decomposes into anhydrous magnesium carbonate and magnesium hydroxide (4MgCO 3 .Mg (OH) 2 .4H 2 O → 4 MgCO 3 + Mg (OH) 2 + 4H 2 O). Further, from 350 ° C. to 500 ° C., magnesium hydroxide is decomposed into magnesium oxide and water (Mg (OH) 2 → MgO + H 2 O), and anhydrous magnesium carbonate is thermally decomposed into magnesium oxide and carbon dioxide (MgCO 3 → MgO + CO 2 ) reaction occurs. When TG analysis is performed under the temperature rising rate condition of 10 ° C./min, peaks of weight loss are recognized at around 250 ° C. and around 450 ° C.
 被覆物が塩基性炭酸マグネシウムである場合、粒子中の炭酸マグネシウム量(wt%)は、以下の式で求めることとする。
 (TG分析により得られるX(℃)の減量値-150℃の減量値)×(466/72)
When the coating is basic magnesium carbonate, the amount of magnesium carbonate (wt%) in the particles is determined by the following equation.
(Decreased value of X (° C.) obtained by TG analysis−reduced value of 150 ° C.) × (466/72)
 上記式中、Xは300℃から350℃の間で、250℃付近より始まる減量ピークの終点以降の温度とする。また、上記式中、466はMgの原子量を24、Cの原子量を12、Hの原子量を1、Oの原子量を16とした場合の、4水和物塩基性炭酸マグネシウム4MgCO・Mg(OH)・4HOの分子量、72は4HOの分子量である。 In the above formula, X is a temperature between 300 ° C. and 350 ° C. and after the end point of the weight loss peak starting from around 250 ° C. Further, in the above formula, 466 is a tetrahydrate basic magnesium carbonate 4MgCO 3 .Mg (OH when the atomic weight of Mg is 24, the atomic weight of C is 12, the atomic weight of H is 1, and the atomic weight of O is 16. ) molecular weight of 2 · 4H 2 O, 72 is the molecular weight of the 4H 2 O.
 被覆物が無水炭酸マグネシウムである場合、被覆酸化マグネシウム粒子の炭酸マグネシウム量(wt%)は、以下の式で求めることとする。
(TG分析により得られる800℃の減量値-Y(℃)の減量値)×(84/44)
 上記式中、Yは450℃から500℃の間で、250℃付近より始まる減量ピークの終点以降の温度とする。
When the coating is anhydrous magnesium carbonate, the magnesium carbonate content (wt%) of the coated magnesium oxide particles is determined by the following formula.
(800 ° C. weight loss value obtained by TG analysis−Y (° C.) weight loss value) × (84/44)
In the above formula, Y is a temperature between 450 ° C. and 500 ° C. and after the end point of the weight loss peak starting from around 250 ° C.
 また、上記式中、84はMgの原子量を24、Cの原子量を12、Hの原子量を1、Oの原子量を16とした場合の、無水炭酸マグネシウムMgCOの分子量、44は二酸化炭素の分子量、58は水酸化マグネシウムMg(OH)の分子量、18は水の分子量である。 In the above formula, 84 is the molecular weight of anhydrous magnesium carbonate MgCO 3 when the atomic weight of Mg is 24, the atomic weight of C is 12, the atomic weight of H is 1, and the atomic weight of O is 16, and 44 is the molecular weight of carbon dioxide. , 58 is the molecular weight of magnesium hydroxide Mg (OH) 2 , and 18 is the molecular weight of water.
 また、被覆物が無水炭酸マグネシウムと水酸化マグネシウムの混合物である場合、粒子の中の炭酸マグネシウム量(wt%)は、以下の式で求める。
 (TG分析により得られる800℃の減量値-450℃の減量値)×(84/44)
When the coating is a mixture of anhydrous magnesium carbonate and magnesium hydroxide, the amount of magnesium carbonate (wt%) in the particles is determined by the following equation.
(800 ° C. weight loss value obtained by TG analysis−450 ° C. weight loss value) × (84/44)
 上記式中、84はMgの原子量を24、Cの原子量を12、Hの原子量を1、Oの原子量を16とした場合の、無水炭酸マグネシウムMgCOの分子量、44は二酸化炭素の分子量、58は水酸化マグネシウムMg(OH)の分子量、18は水の分子量である。 In the above formula, 84 is the molecular weight of anhydrous magnesium carbonate MgCO 3 when the atomic weight of Mg is 24, the atomic weight of C is 12, the atomic weight of H is 1, and the atomic weight of O is 16, 44 is the molecular weight of carbon dioxide, 58 Is the molecular weight of magnesium hydroxide Mg (OH) 2 , and 18 is the molecular weight of water.
 また、水熱条件によっては、塩基性炭酸マグネシウムと無水炭酸マグネシウムが混在する場合があるが、この場合、塩基性炭酸マグネシウムのTGA分析で認められる、250℃付近、450℃付近の減量のピークの他に、無水炭酸マグネシウムの熱分解による550℃付近の減量ピークが認められることにより判別ができる。塩基性炭酸マグネシウムと無水炭酸マグネシウムが混在する場合の炭酸マグネシウム量(wt%)は以下の式で求めることとする。 Depending on the hydrothermal conditions, basic magnesium carbonate and anhydrous magnesium carbonate may coexist. In this case, the weight loss peaks around 250 ° C. and 450 ° C. are recognized by TGA analysis of basic magnesium carbonate. In addition, the determination can be made by observing a weight loss peak around 550 ° C. due to thermal decomposition of anhydrous magnesium carbonate. The amount of magnesium carbonate (wt%) when basic magnesium carbonate and anhydrous magnesium carbonate are mixed is determined by the following equation.
 塩基性炭酸マグネシウム量A=(TG分析により得られるX(℃)の減量値-150℃の減量値)×(466/72)
 無水炭酸マグネシウム量B=(TG分析により得られる800℃の減量値-Y(℃)の減量値)×(84/44))
 全炭酸マグネシウム量=(A+B)
Amount of basic magnesium carbonate A = (reduced value of X (° C.) obtained by TG analysis−reduced value of 150 ° C.) × (466/72)
Anhydrous magnesium carbonate amount B = (800 ° C. reduction value obtained by TG analysis−Y (° C.) reduction value) × (84/44))
Total amount of magnesium carbonate = (A + B)
[水熱処理]
 本発明の熱伝導性フィラーを容易に得る方法としては、酸化マグネシウム粒子を水熱処理する方法が挙げられる。
[Hydrothermal treatment]
Examples of a method for easily obtaining the heat conductive filler of the present invention include a method of hydrothermally treating magnesium oxide particles.
 本発明においての水熱処理とは、酸化マグネシウム粒子を水中に分散してなるスラリーを、二酸化炭素の存在下で100℃以上の温度下で改質処理を行うことをいうものである。 In the present invention, the hydrothermal treatment means that a slurry obtained by dispersing magnesium oxide particles in water is subjected to a reforming treatment at a temperature of 100 ° C. or higher in the presence of carbon dioxide.
 本発明で原料として用いる酸化マグネシウム粒子は、水酸化マグネシウムや炭酸マグネシウムを焼成して得たもの等が挙げられるが、いかなる製法で得られたものを使用しても構わない。又、平均粒子径、最大粒子径、アルミナ・酸化鉄等の不純物量に特に制限は無いが、好ましくは20~100μm、より好ましくは30~70μmの平均粒子径である酸化マグネシウムを用いることで、高熱伝導率のみならず、高流動性を与える樹脂組成物及び良機械物性を有する成形体を得る事ができる。即ち、原料として用いる酸化マグネシウム粒子の平均粒子径、及びその分布幅は、水熱処理中に維持されることになる。 The magnesium oxide particles used as a raw material in the present invention include those obtained by firing magnesium hydroxide or magnesium carbonate, but those obtained by any manufacturing method may be used. Further, the average particle size, the maximum particle size, and the amount of impurities such as alumina and iron oxide are not particularly limited, but by using magnesium oxide having an average particle size of preferably 20 to 100 μm, more preferably 30 to 70 μm, In addition to high thermal conductivity, a resin composition giving high fluidity and a molded article having good mechanical properties can be obtained. That is, the average particle diameter and distribution width of the magnesium oxide particles used as the raw material are maintained during the hydrothermal treatment.
 水熱処理することで、前述のように酸化マグネシウム粒子の表層が加水分解し水酸化マグネシウムとなる。水酸化マグネシウムは水の存在によって、水中にマグネシウムイオンと水酸化物イオンとになるが、水中には二酸化炭素を存在させていることから、瞬時に中和され、酸化マグネシウム粒子の表面で炭酸マグネシウムとして析出する。したがって、炭酸マグネシウムへの変化量は水熱処理時間と、酸化マグネシウムに対する水の仕込み量、二酸化炭素の量で調整する事ができる。 By hydrothermal treatment, the surface layer of the magnesium oxide particles is hydrolyzed into magnesium hydroxide as described above. Magnesium hydroxide becomes magnesium ions and hydroxide ions in the water due to the presence of water, but since carbon dioxide is present in the water, it is neutralized instantaneously and magnesium carbonate is formed on the surface of the magnesium oxide particles. To be deposited. Therefore, the amount of change to magnesium carbonate can be adjusted by the hydrothermal treatment time, the amount of water charged into magnesium oxide, and the amount of carbon dioxide.
 水熱処理時間を長くする事で炭酸マグネシウムへの変化量は増大する。また、酸化マグネシウムに対する水の仕込み量を多くする事、二酸化炭素の量を増やすことで、炭酸マグネシウムへの変化速度は向上する。炭酸マグネシウムの熱伝導率が酸化マグネシウムに比較し小さい為、粒子中の、炭酸マグネシウム体積量が酸化マグネシウム体積量に占める割合が大きくなる程、熱伝導率はやや低下する傾向を示すが、一方でこれを熱伝導性フィラーとして用いて得られる成形体の耐湿熱性は良好となる。 The amount of change to magnesium carbonate increases by lengthening the hydrothermal treatment time. Moreover, the rate of change to magnesium carbonate is improved by increasing the amount of water charged to magnesium oxide and increasing the amount of carbon dioxide. Since the thermal conductivity of magnesium carbonate is smaller than that of magnesium oxide, the thermal conductivity tends to decrease somewhat as the proportion of the volume of magnesium carbonate in the particle in the volume of magnesium oxide increases. The molded body obtained by using this as a heat conductive filler has good heat and moisture resistance.
 例えば、酸化マグネシウムの耐湿性改善のために、質量換算で20%以上を炭酸マグネシウムとする方法としては、二酸化炭素を供給しながら水熱処理する時間を1時間以上とすることが好ましい。処理温度も炭酸マグネシウムへの変化量に影響を与えるものであり、同じく20%以上を変化させるには、100~180℃の範囲で処理を行うことが好ましい。 For example, in order to improve the moisture resistance of magnesium oxide, as a method of using 20% or more of magnesium carbonate in terms of mass, it is preferable to set the time for hydrothermal treatment while supplying carbon dioxide to 1 hour or more. The treatment temperature also affects the amount of change to magnesium carbonate. Similarly, in order to change 20% or more, the treatment is preferably performed in the range of 100 to 180 ° C.
 粒子中の炭酸マグネシウム量を90質量%以上とするためには、例えば、第一ステップとして100℃以上180℃以下の温度下、二酸化炭素を供給しながら1時間以上水熱処理した後、更に第二ステップとして、100℃以上250℃の温度下で、二酸化炭素を供給しながら1時間以上水熱処理を行う事ことが望ましい。第一ステップにより酸化マグネシウムの表面が変化し、主に4水和物の塩基性炭酸マグネシウム(4MgCO・Mg(OH)・4HO)が生成する。このとき、処理温度によっても炭酸マグネシウム変化量は異なり、100℃~180℃が望ましいが、より好ましくは120℃~140℃である。100℃以下であると、水熱処理による炭酸マグネシウム変化速度が小さくなる。又、180℃以上となると水中へ溶解する二酸化炭素量が減少する為、炭酸マグネシウムへの変化速度が低減する。更に第二ステップとして、二酸化炭素を供給しながら100℃以上250℃の温度下で水熱処理を行うことで、未だ変化していない酸化マグネシウムを塩基性炭酸マグネシウムへと変化させるとともに、既に生成した4水和物の塩基性炭酸マグネシウムを無水炭酸マグネシウムへと変化させることができる。塩基性炭酸マグネシウムが無水炭酸マグネシウムへと変化する際に、水酸化マグネシウムも同時に生成するが、二酸化炭素を供給しながら水熱処理を行うことで、生成した水酸化マグネシウムも4水和物の塩基性炭酸マグネシウムへと変化した後、更に無水炭酸マグネシウムへと変化する。その結果、最終的な水酸化マグネシウム量を低減させることができ、炭酸マグネシウムの質量割合を増大させることができる。 In order to set the amount of magnesium carbonate in the particles to 90% by mass or more, for example, as a first step, hydrothermal treatment is performed for 1 hour or more while supplying carbon dioxide at a temperature of 100 ° C. or higher and 180 ° C. or lower. As a step, it is desirable to perform hydrothermal treatment for 1 hour or more while supplying carbon dioxide at a temperature of 100 ° C. or more and 250 ° C. The surface of magnesium oxide is changed by the first step, and mainly tetrahydrate basic magnesium carbonate (4MgCO 3 .Mg (OH) 2 .4H 2 O) is generated. At this time, the amount of change in magnesium carbonate varies depending on the treatment temperature and is preferably 100 ° C. to 180 ° C., more preferably 120 ° C. to 140 ° C. When the temperature is 100 ° C. or lower, the rate of change of magnesium carbonate by hydrothermal treatment is reduced. Moreover, since the amount of carbon dioxide which melt | dissolves in water will reduce when it becomes 180 degreeC or more, the rate of change to magnesium carbonate will reduce. Furthermore, as a second step, hydrothermal treatment is performed at a temperature of 100 ° C. or more and 250 ° C. while supplying carbon dioxide, thereby changing magnesium oxide that has not yet been changed to basic magnesium carbonate and producing 4 already produced. Hydrate basic magnesium carbonate can be changed to anhydrous magnesium carbonate. When basic magnesium carbonate changes to anhydrous magnesium carbonate, magnesium hydroxide is also produced at the same time, but by performing hydrothermal treatment while supplying carbon dioxide, the produced magnesium hydroxide is also tetrahydrate basic. After changing to magnesium carbonate, it further changes to anhydrous magnesium carbonate. As a result, the final magnesium hydroxide amount can be reduced, and the mass ratio of magnesium carbonate can be increased.
 被覆物中における水酸化マグネシウムは、水熱処理の温度により結晶性が変わり、水と酸化マグネシウムへの分解温度も変わることが知られている。例えば、180℃以下で水熱処理を行った場合に含まれる水酸化マグネシウムは、結晶性が低く、分解開始温度が350℃付近となる。また、180℃以上で水熱処理を行った場合は結晶性が高く、分解開始温度が380℃付近となる。このような観点から、得られる粒子を熱伝導性フィラーとして好適に用いる場合、粒子中に含まれる水酸化マグネシウムの性質をコントロールする上で、水熱処理の温度条件は高い方が望ましく、特に第二ステップとして180℃以上で水熱処理することが望ましい。即ち、本発明の製造方法においては、温度が異なる2段階の工程を有していてもよい。 It is known that magnesium hydroxide in the coating changes in crystallinity depending on the temperature of hydrothermal treatment, and the decomposition temperature into water and magnesium oxide also changes. For example, magnesium hydroxide contained when hydrothermal treatment is performed at 180 ° C. or lower has low crystallinity and a decomposition start temperature of around 350 ° C. Further, when hydrothermal treatment is performed at 180 ° C. or higher, the crystallinity is high, and the decomposition start temperature is around 380 ° C. From this point of view, when the obtained particles are suitably used as a thermally conductive filler, it is desirable that the temperature condition of the hydrothermal treatment is higher in order to control the properties of magnesium hydroxide contained in the particles, especially the second It is desirable to perform hydrothermal treatment at 180 ° C. or higher as a step. That is, in the manufacturing method of this invention, you may have a two-step process from which temperature differs.
 酸化マグネシウム粒子に対する水の仕込み量が少ない程、炭酸マグネシウムへの変化速度が小さくなる。これは酸化マグネシウムが加水分解し、水酸化マグネシウムとなり、水中へマグネシウムイオンと水酸化物イオンへと分解し水へ溶出する際、水の量によりマグネシウムが溶出する量が異なる為である。炭酸マグネシウムへの変化量が増すにつれ、酸化マグネシウムが炭酸マグネシウムで被覆され、酸化マグネシウムが露出する面積が減少することで、マグネシウムイオンの溶出速度は徐々に減少し、その結果炭酸マグネシウムへの変化速度が小さくなる。 The smaller the amount of water charged into the magnesium oxide particles, the lower the rate of change to magnesium carbonate. This is because when magnesium oxide is hydrolyzed to magnesium hydroxide and decomposed into magnesium ions and hydroxide ions into water and eluted into water, the amount of magnesium eluted differs depending on the amount of water. As the amount of change to magnesium carbonate increases, magnesium oxide is coated with magnesium carbonate, and the area where magnesium oxide is exposed decreases, so that the elution rate of magnesium ions gradually decreases, resulting in the rate of change to magnesium carbonate. Becomes smaller.
 また、酸化マグネシウム粒子に対する水の量が少ない程、スラリーの粘度が上昇し、水熱処理後の濾過や洗浄工程の生産性が低下する。酸化マグネシウム粒子が水により加水分解する工程において、等モル量より過剰に水を加える事で、水熱反応時のスラリー流動性が向上し、作業性が大幅に向上する。ただし、水の量が多すぎると、熱伝導性フィラーの取れ高が小さくなり生産性が低下する。十分な炭酸マグネシウムへの改質量が得られ、かつ作業性、生産性が良好である条件としては、酸化マグネシウム粒子100質量部に対し50~2000質量部の範囲が好ましく、さらに100~1500質量部がより好ましく、150~1000質量部が最も好ましい。 Also, the smaller the amount of water with respect to the magnesium oxide particles, the higher the viscosity of the slurry, and the lower the productivity of the filtration and washing process after hydrothermal treatment. In the step of hydrolyzing the magnesium oxide particles with water, by adding water in excess of an equimolar amount, the slurry fluidity during the hydrothermal reaction is improved and the workability is greatly improved. However, when there is too much quantity of water, the yield of a heat conductive filler will become small and productivity will fall. The conditions under which a sufficient amount of modification to magnesium carbonate is obtained and the workability and productivity are good are preferably in the range of 50 to 2000 parts by mass, more preferably 100 to 1500 parts by mass with respect to 100 parts by mass of the magnesium oxide particles. Is more preferable, and 150 to 1000 parts by mass is most preferable.
 また、前記水熱処理において、本発明の効果が損なわれない範囲であれば、その用途に応じて従来公知の各種熱伝導フィラー、充填剤を加えることができる。熱伝導フィラーとしては、例えば、窒化ホウ素、窒化ケイ素、ベーマイト、酸化ベリリウム、酸化亜鉛、酸化チタン、結晶性酸化ケイ素、炭化ケイ素、黒鉛、炭素繊維などが挙げられる。また、充填剤としては、例えば、タルク、酸化ケイ素、珪藻土、ドロマイト、クレー、マイカ、炭酸カルシウムなどが挙げられる。このような他の粒子を併用して水熱処理することで、得られる熱伝導性フィラーがあらかじめ混合されたものとして得ることができ、後の樹脂組成物を調製する際の煩雑性を軽減することが可能となる。 In the hydrothermal treatment, conventionally known various heat conductive fillers and fillers can be added in accordance with the intended use as long as the effects of the present invention are not impaired. Examples of the heat conductive filler include boron nitride, silicon nitride, boehmite, beryllium oxide, zinc oxide, titanium oxide, crystalline silicon oxide, silicon carbide, graphite, and carbon fiber. Examples of the filler include talc, silicon oxide, diatomaceous earth, dolomite, clay, mica, and calcium carbonate. By hydrothermally treating in combination with such other particles, the resulting heat conductive filler can be obtained as a premixed mixture, reducing the complexity of preparing a subsequent resin composition Is possible.
 また、前記水熱処理において、本発明の効果が損なわれない範囲であれば、分散性、疎水性の更なる向上等を目的として、シランカップリング剤、チタネートカップリング剤などのカップリング剤、水溶性樹脂、及び従来公知の各種添加剤を加えることができる。これらは水熱処理時においては水溶性であることが望ましく、例えば信越シリコーン製のKBM-903、KBE-903、味の素ファインテクノ製のプレンアクトKR ETなどが好ましく用いられる。これらは第一ステップ加熱開始前に添加することも、第一ステップ加熱保持完了後に添加することも、また第二ステップ加熱保持完了後に添加することも可能である。 Further, in the hydrothermal treatment, a coupling agent such as a silane coupling agent and a titanate coupling agent, a water-soluble solution, and the like for the purpose of further improving dispersibility and hydrophobicity, as long as the effects of the present invention are not impaired. Resin and various conventionally known additives can be added. These are desirably water-soluble during hydrothermal treatment, and for example, Shin-Etsu Silicone KBM-903, KBE-903, Ajinomoto Fine Techno Preneact KR ET, and the like are preferably used. These can be added before the start of the first step heating, added after the completion of the first step heating hold, or added after the completion of the second step heating hold.
[樹脂組成物]
 本発明の熱伝導性フィラーは、各種樹脂に配合して樹脂組成物とすることができる。配合する樹脂としては、熱硬化性樹脂と熱可塑性樹脂のどちらでもよく、熱硬化性樹脂としてはフェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。熱可塑性樹脂としては、ポリエチレンやポリプロピレンなどのポリオレフィン樹脂及びその変性物、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル樹脂、ポリメチルメタクリレートやポリエチルメタクリレートなどの(メタ)アクリル樹脂、ポリスチレン、アクリロニトリル-ブタジエン-スチレン樹脂、アクリロニトリル-アクリルゴム-スチレン樹脂、アクリロニトリル-エチレンゴム-スチレン樹脂、(メタ)アクリル酸エステル-スチレン樹脂、スチレン-ブタジエン-スチレン樹脂などのスチレン樹脂、アイオノマー樹脂、ポリアクリルニトリル、6-ナイロン、6,6-ナイロン、6T-PA、9T-PA、MXD6-ナイロンなどのポリアミド樹脂、エチレン-酢酸ビニル樹脂、エチレン-アクリル酸樹脂、エチレン-エチルアクリレート樹脂、エチレン-ビニルアルコール樹脂、ポリ塩化ビニルやポリ塩化ビニリデンなどの塩素樹脂、ポリフッ化ビニルやポリフッ化ビニリデンなどのフッ素樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル樹脂、メチルペンテン樹脂、セルロース樹脂等、ならびにオレフィン系エラストマー、グリシジル変性オレフィン系エラストマー、マレイン酸変性オレフィン系エラストマー、塩化ビニル系エラストマー、スチレン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマー、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。この中でも特に電気電子部材に用いられる、いわゆるエンジニアリングプラスチックと呼ばれる樹脂にも好適に配合することが可能である。エンジニアリングプラスチックとしては、ポリブチレンテレフタレート、ナイロン9T、フッ素樹脂、ポリカーボネート樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂などの熱可塑性樹脂が挙げられる。
[Resin composition]
The heat conductive filler of the present invention can be blended with various resins to form a resin composition. The resin to be blended may be either a thermosetting resin or a thermoplastic resin, and the thermosetting resin is a phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl. Examples include terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, and thermosetting polyimide resin. These thermosetting resins can be used alone or in combination of two or more. Thermoplastic resins include polyolefin resins such as polyethylene and polypropylene and modified products thereof, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, (meth) acrylic resins such as polymethyl methacrylate and polyethyl methacrylate, polystyrene, acrylonitrile-butadiene- Styrene resin, acrylonitrile-acrylic rubber-styrene resin, acrylonitrile-ethylene rubber-styrene resin, styrene resin such as (meth) acrylate ester-styrene resin, styrene-butadiene-styrene resin, ionomer resin, polyacrylonitrile, 6-nylon , 6,6-Nylon, 6T-PA, 9T-PA, MXD6-Nylon and other polyamide resins, ethylene-vinyl acetate resin, ethylene-acrylic Luric acid resin, ethylene-ethyl acrylate resin, ethylene-vinyl alcohol resin, chlorine resin such as polyvinyl chloride and polyvinylidene chloride, fluorine resin such as polyvinyl fluoride and polyvinylidene fluoride, polycarbonate resin, modified polyphenylene ether resin, methylpentene Resins, cellulose resins, etc., and thermoplastic elastomers such as olefin elastomers, glycidyl modified olefin elastomers, maleic acid modified olefin elastomers, vinyl chloride elastomers, styrene elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, Polyphenylene sulfide resin, polyether imide resin, polyether ether ketone resin, thermoplastic polyimide resin, etc. . These thermoplastic resins can be used alone or in combination of two or more. Among these, it can be suitably blended with a resin called an engineering plastic used for an electric / electronic member. Engineering plastics include thermoplastic resins such as polybutylene terephthalate, nylon 9T, fluororesin, polycarbonate resin, modified polyphenylene ether resin, polyphenylene sulfide resin, polyetherimide resin, polyetheretherketone resin, and thermoplastic polyimide resin. .
 また、本発明の樹脂組成物の主成分が熱可塑性樹脂の場合、熱可塑性樹脂の特性を損なわない範囲で少量の熱硬化性樹脂を添加することや、逆に主成分が熱硬化性樹脂の場合に熱硬化性樹脂の特性を損なわない範囲で少量の熱可塑性樹脂を添加することも可能である。 Further, when the main component of the resin composition of the present invention is a thermoplastic resin, a small amount of a thermosetting resin may be added within a range that does not impair the properties of the thermoplastic resin. In such a case, it is possible to add a small amount of thermoplastic resin as long as the properties of the thermosetting resin are not impaired.
 前記熱伝導性フィラーの配合量としては、樹脂の種類、樹脂組成物中の他の成分、所望の熱伝導率の程度によって適宜選択されるものであるが、例えば、ポリフェニルサルフォン樹脂に配合する場合、ポリフェニレン樹脂100質量部中、30~500質量部の範囲で配合することが好ましく、50~450質量部の範囲で配合することがより好ましく、100~400質量部の範囲で配合することがより好ましい。ポリフェニルサルフォン樹脂100質量部に対し、50質量部以下の配合であると十分な熱伝導率を得られず、500質量部以上であると、樹脂組成物の溶融時の粘度が上昇し、易成形加工性が低下する場合がある。 The amount of the thermally conductive filler is appropriately selected depending on the type of resin, other components in the resin composition, and the desired degree of thermal conductivity. For example, it is blended with polyphenylsulfone resin. In this case, it is preferably blended in the range of 30 to 500 parts by mass, more preferably in the range of 50 to 450 parts by mass, and in the range of 100 to 400 parts by mass in 100 parts by mass of the polyphenylene resin. Is more preferable. When 100 parts by mass of the polyphenylsulfone resin is 50 parts by mass or less, sufficient thermal conductivity cannot be obtained, and when it is 500 parts by mass or more, the viscosity at the time of melting of the resin composition increases. Easy moldability may be reduced.
[その他の熱伝導フィラー]
 前記樹脂組成物には、本発明の効果が損なわれない範囲であれば、その用途に応じて従来公知の各種熱伝導フィラーを含有しても良く、例えば、窒化ホウ素、窒化アルニウム、酸化マグネシウム、窒化ケイ素、酸化アルミニウム、ベーマイト、酸化ベリリウム、酸化亜鉛、酸化チタン、結晶性酸化ケイ素、炭化ケイ素及びこれらの複合した化合物、金属シリコーン、黒鉛、炭素繊維、セラミック繊維、金属繊維、チタン酸カリウムウイスカー、金属繊維(ステンレス繊維等)、窒化ケイ素ウイスカー、ホウ酸アルミニウムウィスカ-、ボロン繊維、テトラポット状酸化亜鉛ウイスカー、カーボンナノチューブ、オイルファーネスカーボンブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラックなどが挙げられる。
[Other heat conductive fillers]
As long as the effect of the present invention is not impaired, the resin composition may contain various conventionally known heat conductive fillers depending on the application. For example, boron nitride, aluminum nitride, magnesium oxide, Silicon nitride, aluminum oxide, boehmite, beryllium oxide, zinc oxide, titanium oxide, crystalline silicon oxide, silicon carbide and composite compounds thereof, metal silicone, graphite, carbon fiber, ceramic fiber, metal fiber, potassium titanate whisker, Examples thereof include metal fibers (such as stainless steel fibers), silicon nitride whiskers, aluminum borate whiskers, boron fibers, tetrapotted zinc oxide whiskers, carbon nanotubes, oil furnace carbon black, channel black, ketjen black, and acetylene black.
[その他の充填剤]
 また、前記樹脂組成物には、本発明の効果が損なわれない範囲であれば、その用途に応じて従来公知の各種充填剤を含有しても良く、例えば、タルク、シリカ、珪藻土、ドロマイト、石膏、クレー、アスベスト、マイカ、ガラス繊維、ガラスビーズ、ガラスバルーン、炭酸カルシウム、無水炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム、リン酸カルシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、酸化鉄、アスベスト、ケイ酸ナトリウム、ケイ酸カルシウム、ベントナイト、ワラストナイト、ムライト、コージェライト、ホルステナイト、石英粉、アルミ粉、ジルコニア粉、セルロース繊維、麻等の天然繊維、ポリアミド繊維、ポリエステル繊維、アクリル繊維等の合成繊維、鉱物繊維(ロックウール等)などが挙げられる。
[Other fillers]
In addition, the resin composition may contain various conventionally known fillers depending on the application as long as the effects of the present invention are not impaired. For example, talc, silica, diatomaceous earth, dolomite, Gypsum, clay, asbestos, mica, glass fiber, glass beads, glass balloon, calcium carbonate, anhydrous magnesium carbonate, barium sulfate, calcium sulfate, calcium sulfite, calcium phosphate, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron oxide, Natural fiber such as asbestos, sodium silicate, calcium silicate, bentonite, wollastonite, mullite, cordierite, holsteinite, quartz powder, aluminum powder, zirconia powder, cellulose fiber, hemp etc., polyamide fiber, polyester fiber, acrylic fiber Synthetic fibers, mineral fibers, etc. Kuuru, etc.) and the like.
[その他の添加剤]
 また、前記樹脂組成物には、本発明の効果が損なわれない範囲であれば、その用途に応じて従来公知の各種添加剤を含有しても良く、例えば、加水分解防止剤、着色剤、難燃剤、酸化防止剤、ポリエチレンワックス、酸化型ポリエチレンワックス、ポリプロピレンワックス、酸化型ポリプロピレンワックス、金属石鹸、スチレン系オリゴマー、ポリアミド系オリゴマー、重合開始剤、重合禁止剤、チタン系架橋剤、ジルコニア系架橋剤、その他の架橋剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、消泡剤、レベリング剤、光安定剤(例えば、ベンゾトリアゾール系、ヒンダードアミン等)、結晶核剤、キレート剤、イオン交換剤、分散剤、酸化防止剤、無機顔料、有機顔料等をあげることができる。
[Other additives]
Further, the resin composition may contain various conventionally known additives depending on its use, as long as the effects of the present invention are not impaired. For example, hydrolysis inhibitor, colorant, Flame retardant, antioxidant, polyethylene wax, oxidized polyethylene wax, polypropylene wax, oxidized polypropylene wax, metal soap, styrene oligomer, polyamide oligomer, polymerization initiator, polymerization inhibitor, titanium crosslinking agent, zirconia crosslinking Agents, other cross-linking agents, UV absorbers, antistatic agents, lubricants, mold release agents, antifoaming agents, leveling agents, light stabilizers (eg, benzotriazoles, hindered amines, etc.), crystal nucleating agents, chelating agents, ions Examples thereof include an exchange agent, a dispersant, an antioxidant, an inorganic pigment, and an organic pigment.
 また、前記樹脂組成物には、本発明の効果が損なわれない範囲であれば、疎水性を更に向上させる目的で、シランカップリング剤、またはチタネートカップリング剤などにより、表面処理を施してもよい。シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3アミノプロピルトリメトキシシラン、3-アミノプロプルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。 Further, the resin composition may be subjected to a surface treatment with a silane coupling agent or a titanate coupling agent for the purpose of further improving the hydrophobicity as long as the effect of the present invention is not impaired. Good. Examples of silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyl. Triethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxy Silane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3aminopropyltrimethoxysilane, 3-aminopropyl Pulltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltri Examples include methoxysilane, bis (triethoxysilylpropyl) tetrasulfide, and 3-isocyanatopropyltriethoxysilane.
 また、チタネートカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリ(ジオクチルパイロフォスフェート)チタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(N,N-ジアミノエチル)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルフォスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルフォスフェート)チタネート、テトラオクチルビス(ジトリデシルフォスフェート)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)フォスフェートチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロフォスフェート)エチレンチタネートなどが挙げられる。 Examples of titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl tri (dioctyl pyrophosphate) titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl tri (N, N-diaminoethyl). Titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, tetraisopropyl bis (dioctyl phosphate) titanate, tetraoctyl bis (ditridecyl phosphate) Titanate, tetra (2,2-diallyloxymethyl-1 Butyl) bis (ditridecyl) phosphate titanate, bis (dioctyl pyrophosphate) oxy acetate titanate, bis (dioctyl pyrophosphate) ethylene titanate.
 本発明の熱伝導性フィラーを樹脂に配合するには、公知慣用の方法を用いればよく、例えば、プラネタリミキサー、ディスパー、遊星型ミキサー、三本ロール、リボンブレンダー、ドラムタンブラー、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、加圧ニーダー、コニーダ、多軸スクリュー押出機等を用いる方法により行うことができる。被覆酸化マグネシウム粒子、樹脂およびその他の添加剤の混練機への供給方法は特に制限されない。ドライブレンドによる一括供給でもよく、また個別の供給機を用い各添加剤を個別に供給しても良い。また、予め被覆酸化マグネシウム粒と樹脂のマスターバッチを作製した後、混練機で樹脂と混合希釈しても良いし、マスターバッチを用いず、全量を一括混合し混練してもよい。 In order to blend the heat conductive filler of the present invention into the resin, a publicly known and commonly used method may be used. It can be carried out by a method using a single screw extruder, a twin screw extruder, a pressure kneader, a kneader, a multi-screw extruder or the like. The method for supplying the coated magnesium oxide particles, resin and other additives to the kneader is not particularly limited. Batch supply by dry blending may be used, or each additive may be supplied individually using an individual supply machine. In addition, after preparing a master batch of coated magnesium oxide particles and a resin in advance, it may be mixed and diluted with the resin with a kneader, or the entire amount may be mixed and kneaded without using the master batch.
[成形体]
 本発明の樹脂組成物を成形することで、成形体を得ることができる。成形体を成形する方法については、特に限定されない。樹脂組成物が熱硬化性樹脂を含有する場合、種々の重合開始剤、硬化剤、硬化促進剤、重合禁止剤などを樹脂組成物に配合することができる。板状の製品を製造するのであれば、押出成形法が一般的であるが、平面プレスによっても可能である。この他、異形押出成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて成形体を製造する事ができる。
[Molded body]
A molded body can be obtained by molding the resin composition of the present invention. The method for molding the molded body is not particularly limited. When the resin composition contains a thermosetting resin, various polymerization initiators, curing agents, curing accelerators, polymerization inhibitors, and the like can be blended in the resin composition. If a plate-shaped product is to be manufactured, an extrusion molding method is generally used, but a flat press is also possible. In addition, a profile extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, and the like can be used. If a film-like product is manufactured, the solution casting method can be used in addition to the melt extrusion method. When the melt molding method is used, inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding are used. , Fiber molding, blow molding, injection molding, rotational molding, coating molding, and the like. Moreover, in the case of resin hardened | cured with an active energy ray, a molded object can be manufactured using the various hardening methods using an active energy ray.
 樹脂組成物が熱可塑性樹脂を含有する場合、射出成型(射出圧縮成形、射出プレス成形、ガスアシスト射出成型)はもとより、各種押出(コールドランナー方式、ホットランナー方式)、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、及び超高速射出成形などの射出成形法)による各種異形押出成形品、また種々の押出成形によるシート、フィルム、繊維などの形で用いることもできる。また、シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども用いることができる。さらに、特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また、回転成形やブロー成形などにより中空成形品とすることも可能である。 When the resin composition contains a thermoplastic resin, not only injection molding (injection compression molding, injection press molding, gas assist injection molding), various extrusions (cold runner method, hot runner method), foam molding (supercritical fluid) Various injection molding methods including injection molding), insert molding, in-mold coating molding, heat insulation mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding). It can also be used in the form of articles, various extruded sheets, films, fibers and the like. In addition, an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film. Furthermore, it can be formed as a heat-shrinkable tube by applying a specific stretching operation. It is also possible to form a hollow molded product by rotational molding or blow molding.
 本発明の成形体は、用途によってどのような形状であってもよく、三次元の立体形状でも、シート・フィルム・繊維状でも構わない。また、成形体の一部、又は数箇所を加熱処理する事により溶融させ、樹脂や金属基板に接着して用いても構わない。樹脂や金属基板に塗布する塗膜であってもよく、積層体を形成してもよい。また、シート・フィルム・繊維状の成形体につき、アニール処理、エッチング処理、コロナ処理、プラズマ処理、シボ転写、切削、表面研磨などの二次加工を行っても構わない。 The molded body of the present invention may have any shape depending on the application, and may be a three-dimensional solid shape, a sheet, a film, or a fiber shape. Further, a part of the molded body or several places may be melted by heat treatment and adhered to a resin or a metal substrate. A coating film applied to a resin or a metal substrate may be used, and a laminate may be formed. Further, secondary processing such as annealing treatment, etching treatment, corona treatment, plasma treatment, emboss transfer, cutting, and surface polishing may be performed on the sheet / film / fibrous molded article.
[高熱伝導材料]
 上記樹脂組成物を高熱伝導材料とする場合、例えば、接着剤、封止材、塗料、インキ等に用いることができる。また、成形体を高熱伝導材料とする場合、目的とする用途、たとえば電子電機部材等の形状に合わせて加工を行えばよい。
[High thermal conductivity materials]
When using the said resin composition as a highly heat-conductive material, it can be used for an adhesive agent, a sealing material, a coating material, ink, etc., for example. Moreover, when making a molded object into a highly heat conductive material, what is necessary is just to process according to the intended use, for example, the shape of an electronic-electric-machine member.
 本発明の高熱伝導材料は、熱伝導性と耐湿熱性に優れることから、様々な用途に好適に使用することが可能である。例えば、電気・電子部品、自動車部品、照明用部品、給湯機部品、航空機部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品等が挙げられるが、これらに限定される物ではない。 The high thermal conductive material of the present invention is excellent in thermal conductivity and heat-and-moisture resistance, and therefore can be suitably used for various applications. Examples include, but are not limited to, electrical / electronic parts, automobile parts, lighting parts, water heater parts, aircraft parts, building materials, containers / packaging members, daily necessities, sports / leisure goods, etc. .
 以下、本発明の実施例を記載するが、本発明はこの記述に限定されるものではないことは言うまでもない。 Hereinafter, examples of the present invention will be described, but it is needless to say that the present invention is not limited to this description.
 実施例1
〈熱伝導性フィラー1の製造〉
 宇部マテリアル製酸化マグネシウム粒子RF-98(レーザー回折による平均粒子径 68μm)100g、水150g(水/酸化マグネシウム粒子比=1.5)を0.5Lオートクレーブに仕込み、攪拌しながら18分かけ175℃まで温度を昇温させた。このとき、二酸化炭素ガスを1MPaの圧力で連続的に供給させた。175℃まで到達後、二酸化炭素ガスを供給し続け、攪拌しながら2時間保持し、酸化マグネシウム粒子の表面に被覆層を形成させた。2時間保持が終了後、60℃まで冷却し、二酸化炭素ガスの供給を止め減圧した後、生成物のスラリーをオートクレーブより取り出した。これを濾過後150℃で2時間乾燥、粉砕して、白色粒子状の熱伝導性フィラー1を得た。
Example 1
<Manufacture of heat conductive filler 1>
100 g of Ube Magnesium oxide particles RF-98 (average particle diameter 68 μm by laser diffraction) and 150 g of water (water / magnesium oxide particle ratio = 1.5) were charged into a 0.5 L autoclave and stirred at 175 ° C. over 18 minutes. The temperature was raised to At this time, carbon dioxide gas was continuously supplied at a pressure of 1 MPa. After reaching 175 ° C., the carbon dioxide gas was continuously supplied and held for 2 hours with stirring to form a coating layer on the surface of the magnesium oxide particles. After holding for 2 hours, the mixture was cooled to 60 ° C., the supply of carbon dioxide gas was stopped and the pressure was reduced, and the product slurry was taken out from the autoclave. This was filtered, dried at 150 ° C. for 2 hours and pulverized to obtain a white particle-like thermally conductive filler 1.
〈熱伝導性評価用試験片の作成〉
 上記の製造例で得られた熱伝導性フィラー1を62.7質量%と、ポリフェニレンサルファイド樹脂(300℃の溶融粘度100poise)37.3質量%の配合(熱伝導性フィラーの体積%が40%となる様調整した)でハンドブレンドした後、東洋精機製作所製ラボプラストミルに60ccミキサーを装着した混合機を用い、ミキサー温度300℃、ローター回転数100rpm、混合時間5分の条件で溶融混練した。この際、加工性の評価として、発泡、発煙の発生等の不具合がないかを確認した。5分混練後、混練物を取り出し放冷し、固形塊状の樹脂組成物を得た。当該成形用樹脂組成物を140℃のギヤオーブンで2時間乾燥後、小型縦型射出成形機を用い、シリンダ設定温度320℃、金型温度250℃の条件で成形し、厚み1mm×直径10mmの円筒状の試験片を得た。
<Preparation of test piece for thermal conductivity evaluation>
62.7% by mass of the heat conductive filler 1 obtained in the above production example and 37.3% by mass of polyphenylene sulfide resin (melt viscosity of 100 ° C. at 300 ° C.) of 37.3% (volume% of the heat conductive filler is 40%) And then blended by using a mixer equipped with a 60 cc mixer in a lab plast mill manufactured by Toyo Seiki Seisakusho, at a mixer temperature of 300 ° C., a rotor rotation speed of 100 rpm, and a mixing time of 5 minutes. . At this time, as an evaluation of processability, it was confirmed whether there were any defects such as foaming and smoke generation. After kneading for 5 minutes, the kneaded product was taken out and allowed to cool to obtain a solid lump-like resin composition. The molding resin composition was dried in a gear oven at 140 ° C. for 2 hours, and then molded using a small vertical injection molding machine under conditions of a cylinder set temperature of 320 ° C. and a mold temperature of 250 ° C., and had a thickness of 1 mm × diameter of 10 mm. A cylindrical test piece was obtained.
〈耐湿熱性評価用試験片の作成〉
 上記の製造例で得られた熱伝導性フィラー1を62.7質量%と、ポリフェニレンサルファイド樹脂(300℃の溶融粘度100poise)37.3質量%の配合でハンドブレンドした後、東洋精機製作所製ラボプラストミルに60ccミキサーを装着した混合機を用い、ミキサー温度300℃、ローター回転数100rpm、混合時間5分の条件で溶融混練した。当該成形用樹脂組成物を140℃のギヤオーブンで2時間乾燥後、厚み1mm×長辺110mm×短辺70mmの金型に試料を乗せ、加熱プレス機にて2MPaの圧力をかけ300℃で5分余熱後、30MPaの圧力をかけ300℃で2分プレスを行い、その後冷却プレスにかけ室温まで冷却後試料を取り出し、厚み1mm×長辺110mm×短辺70mmの平板状の試験片を得た。
<Creation of test piece for wet heat resistance evaluation>
After hand blending 62.7% by mass of the heat conductive filler 1 obtained in the above production example and 37.3% by mass of polyphenylene sulfide resin (melt viscosity of 100 ° C. at 300 ° C.) of 37.3% by mass, a laboratory manufactured by Toyo Seiki Seisakusho Using a mixer equipped with a 60 cc mixer in a plast mill, the mixture was melt-kneaded under conditions of a mixer temperature of 300 ° C., a rotor rotation speed of 100 rpm, and a mixing time of 5 minutes. After drying the molding resin composition in a gear oven at 140 ° C. for 2 hours, the sample was placed on a mold having a thickness of 1 mm × long side 110 mm × short side 70 mm, and a pressure of 2 MPa was applied with a hot press machine at 300 ° C. for 5 hours. After partial heat retention, a pressure of 30 MPa was applied, and pressing was performed at 300 ° C. for 2 minutes. Thereafter, the sample was taken out after cooling to room temperature, and a flat test piece having a thickness of 1 mm × long side 110 mm × short side 70 mm was obtained.
 実施例2
〈熱伝導性フィラー2の製造〉
 実施例1において、処理時間を2時間から4時間に変更した以外は同様にして、熱伝導性フィラー2を製造し、評価を行った。
Example 2
<Manufacture of thermally conductive filler 2>
In Example 1, the heat conductive filler 2 was manufactured and evaluated in the same manner except that the treatment time was changed from 2 hours to 4 hours.
 実施例3
〈熱伝導性フィラー3の製造〉
 実施例1において、処理時間を2時間から8時間に変更した以外は同様にして、熱伝導性フィラー3を製造し、評価を行った。
Example 3
<Manufacture of thermal conductive filler 3>
In Example 1, the heat conductive filler 3 was produced in the same manner except that the treatment time was changed from 2 hours to 8 hours, and evaluated.
 実施例4
〈熱伝導性フィラー4の製造〉
 実施例2において、酸化マグネシウム粒子100g、水150gから、酸化マグネシウム粒子50g、水150g(水/酸化マグネシウム粒子比=3)に変更した以外は同様にして、熱伝導性フィラー4を製造し、評価を行った。
Example 4
<Manufacture of thermally conductive filler 4>
In Example 2, the heat conductive filler 4 was produced and evaluated in the same manner except that the magnesium oxide particles 100 g and the water 150 g were changed to the magnesium oxide particles 50 g and the water 150 g (water / magnesium oxide particle ratio = 3). Went.
 実施例5
〈熱伝導性フィラー5の製造〉
 実施例2において、酸化マグネシウム粒子100g、水150gから、酸化マグネシウム粒子15g、水150g(水/酸化マグネシウム粒子比=10)に変更した以外は同様にして、熱伝導性フィラー5を製造し、評価を行った。
Example 5
<Manufacture of thermal conductive filler 5>
In Example 2, the heat conductive filler 5 was produced and evaluated in the same manner except that the magnesium oxide particles 100 g and the water 150 g were changed to the magnesium oxide particles 15 g and the water 150 g (water / magnesium oxide particle ratio = 10). Went.
 実施例6
〈熱伝導性フィラー6の製造〉
 宇部マテリアル製酸化マグネシウムRF-98(レーザー回折による平均粒子径 68μm)100g、水150gを0.5Lオートクレーブに仕込み、攪拌しながら12分かけ120℃まで温度を昇温させた。このとき、二酸化炭素ガスを0.4MPaの圧力で連続的に供給させた。120℃まで到達後、二酸化炭素ガスを供給し続け、攪拌しながら5時間保持し、酸化マグネシウム粒子の表面に被覆層を形成させた。5時間保持が終了後、60℃まで冷却し、二酸化炭素ガスの供給を止め減圧した後、生成物スラリーをオートクレーブより取り出した。これを濾過し150℃2時間の条件で乾燥させ、白色粉状の中間体を得た。本中間体100g、水150gを再度0.5Lオートクレーブに仕込み、攪拌しながら18分かけ175℃まで温度を昇温させた。このとき、二酸化炭素ガスを1.0MPaの圧力で連続的に供給させた。175℃まで到達後、攪拌しながら更に8時間保持した。8時間保持が終了後、60℃まで冷却し、二酸化炭素ガスの供給を止め減圧した後、生成物のスラリーをオートクレーブより取り出した。これを濾過後150℃で2時間乾燥、粉砕して、白色粒子状の熱伝導性フィラー6を得た。
Example 6
<Manufacture of thermally conductive filler 6>
100 g of Ube Magnesium Oxide RF-98 (average particle diameter 68 μm by laser diffraction) and 150 g of water were charged into a 0.5 L autoclave, and the temperature was raised to 120 ° C. over 12 minutes with stirring. At this time, carbon dioxide gas was continuously supplied at a pressure of 0.4 MPa. After reaching 120 ° C., the carbon dioxide gas was continuously supplied and held for 5 hours with stirring to form a coating layer on the surface of the magnesium oxide particles. After holding for 5 hours, the mixture was cooled to 60 ° C., the supply of carbon dioxide gas was stopped and the pressure was reduced, and the product slurry was taken out from the autoclave. This was filtered and dried at 150 ° C. for 2 hours to obtain a white powdery intermediate. 100 g of this intermediate and 150 g of water were again charged into a 0.5 L autoclave, and the temperature was raised to 175 ° C. over 18 minutes while stirring. At this time, carbon dioxide gas was continuously supplied at a pressure of 1.0 MPa. After reaching 175 ° C., the mixture was further kept for 8 hours with stirring. After holding for 8 hours, the mixture was cooled to 60 ° C., the supply of carbon dioxide gas was stopped and the pressure was reduced, and the product slurry was taken out from the autoclave. This was filtered, dried at 150 ° C. for 2 hours and pulverized to obtain a white particulate heat conductive filler 6.
 実施例7
〈熱伝導性フィラー7の製造〉
 実施例6において、中間体100g、水150gの配合を、中間体15g、水150gに変更した以外は同様にして、熱伝導性フィラー7を製造し、評価を行った。
Example 7
<Manufacture of thermally conductive filler 7>
In Example 6, the heat conductive filler 7 was produced and evaluated in the same manner except that the composition of the intermediate 100 g and water 150 g was changed to the intermediate 15 g and water 150 g.
 実施例8
〈熱伝導性フィラー8の製造〉
 実施例2において、宇部マテリアル製酸化マグネシウムRF-98(レーザー回折による平均粒子径 68μm)を篩にかけ分級し、平均粒子径が23μmとなる様に調整したものを用いた以外は同様にして、熱伝導性フィラー8を製造し、評価を行った。
Example 8
<Manufacture of thermally conductive filler 8>
In Example 2, heat treatment was carried out in the same manner except that Ube Material magnesium oxide RF-98 (average particle diameter by laser diffraction 68 μm) was sieved and classified so that the average particle diameter was 23 μm. Conductive filler 8 was manufactured and evaluated.
 比較例1
 実施例1において、熱伝導性フィラー1の代わりに、水熱処理工程を経ず、未処理の酸化マグネシウムRF-98を用いた。この粒子のBET比表面積を測定したところ、0.2m/g、平均粒子径を測定したところ68μmであった。また、TG-DTA測定(Air中、10℃/min昇温)を行ったところ、800℃から450℃の減量値は0.1%であった。これより、上述した被覆炭酸マグネシウムの量を求める式を用いて炭酸マグネシウム量を求めると、0.1×84/44=0.2質量%となる。実施例1と熱伝導フィラーの体積分率が同等となる様、酸化マグネシウム65質量%と、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂35質量%の配合とし、実施例1と同様の条件で熱伝導評価用試験片、耐湿熱性試験用試験片を作製した
Comparative Example 1
In Example 1, instead of the heat conductive filler 1, untreated magnesium oxide RF-98 was used without passing through the hydrothermal treatment step. When the BET specific surface area of this particle was measured, it was 0.2 m 2 / g, and the average particle size was 68 μm. Further, when TG-DTA measurement was performed (temperature increase in Air at 10 ° C./min), the weight loss value from 800 ° C. to 450 ° C. was 0.1%. From this, when the amount of magnesium carbonate is determined using the above-described equation for determining the amount of coated magnesium carbonate, 0.1 × 84/44 = 0.2 mass%. The blending ratio of 65% by mass of magnesium oxide and 35% by mass of polyphenylene sulfide resin having a melt viscosity at 300 ° C. of 100 poise so that the volume fraction of the heat-conductive filler is the same as that of Example 1 and under the same conditions as in Example 1 A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared.
 比較例2
 比較例1において、酸化マグネシウムRF-98の代わりに市販の無水炭酸マグネシウムを用いた以外は同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。この無水炭酸マグネシウム粒子のBET比表面積を測定したところ、0.5m/g、平均粒子径を測定したところ25μmであった。また、TG-DTA測定(Air中、10℃/min昇温)を行ったところ、800℃から450℃までの減量値は51.9%であった。これより、上述した被覆炭酸マグネシウムの量を求める式を用いて炭酸マグネシウム量を求めると、51.9×84/44=99質量%となる。実施例1と熱伝導フィラーの体積分率が同等となる様、無水炭酸マグネシウム60質量%と、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂40質量%の配合とし、同様の条件で熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 2
In the same manner as in Comparative Example 1, except that commercially available anhydrous magnesium carbonate was used instead of magnesium oxide RF-98, a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared. When the BET specific surface area of this anhydrous magnesium carbonate particle was measured, it was 0.5 m < 2 > / g and the average particle diameter was 25 micrometers. Further, when TG-DTA measurement was performed (temperature increase in Air at 10 ° C./min), the weight loss value from 800 ° C. to 450 ° C. was 51.9%. From this, when the amount of magnesium carbonate is determined using the above-described equation for determining the amount of coated magnesium carbonate, 51.9 × 84/44 = 99% by mass. In order to make the volume fraction of Example 1 and the heat conductive filler equal, a blend of 60% by weight of anhydrous magnesium carbonate and 40% by weight of polyphenylene sulfide resin having a melt viscosity of 300 ° C. at 100 ° C. was carried out under the same conditions. Test pieces and wet heat resistance test pieces were prepared.
 比較例3
 比較例1において、酸化マグネシウムRF-98の代わりに市販の塩基性炭酸マグネシウムを用いた。この粒子のBET比表面積を測定したところ、30m/g、平均粒子径を測定したところ23μmであった。また、TG-DTA測定(Air中、10℃/min昇温)を行ったところ、320℃から150℃までの減量値は15.0%であった。これより、上述した被覆炭酸マグネシウムの量を求める式を用いて炭酸マグネシウム量を求めると、15.0×466/72=97質量%となる。実施例1と熱伝導フィラーの体積分率が同等となる様、塩基性炭酸マグネシウム52質量%と、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂48質量%の配合とした以外は実施例1と同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 3
In Comparative Example 1, commercially available basic magnesium carbonate was used instead of magnesium oxide RF-98. When the BET specific surface area of this particle was measured, it was 30 m 2 / g, and the average particle size was 23 μm. Further, when TG-DTA measurement (temperature increase in Air at 10 ° C./min) was performed, the weight loss value from 320 ° C. to 150 ° C. was 15.0%. From this, when the amount of magnesium carbonate is determined using the above-described equation for determining the amount of coated magnesium carbonate, it is 15.0 × 466/72 = 97 mass%. Example 1 is the same as Example 1 except that the blending ratio is 52% by mass of basic magnesium carbonate and 48% by mass of polyphenylene sulfide resin having a melt viscosity of 100 poise of 300 ° C. so that the volume fraction of the heat conductive filler is the same as Example 1. Similarly, a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared.
 比較例4
 比較例1において、酸化マグネシウムRF-98の代わりに市販の天然マグネサイトを粉砕したものを用いた。この粒子のBET比表面積を測定したところ、0.2m/g、平均粒子径を測定したところ60μmであった。また、TG-DTA測定(Air中、10℃/min昇温)を行ったところ、800から450℃の減量値は50.3%であった。これより、上述した被覆炭酸マグネシウムの量を求める式を用いて炭酸マグネシウム量を求めると、50.3×84/44=96質量%となる。実施例1と熱伝導フィラーの体積分率が同等となる様、塩基性炭酸マグネシウム60質量%と、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂40質量%の配合とし、実施例1と同様の条件で熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 4
In Comparative Example 1, commercially available natural magnesite was ground instead of magnesium oxide RF-98. When the BET specific surface area of this particle was measured, it was 0.2 m 2 / g, and the average particle size was 60 μm. Further, when TG-DTA measurement was performed (temperature increase in Air at 10 ° C./min), the weight loss value from 800 to 450 ° C. was 50.3%. From this, when the amount of magnesium carbonate is determined using the above-described equation for determining the amount of coated magnesium carbonate, 50.3 × 84/44 = 96% by mass. In order to make the volume fractions of Example 1 and the heat conductive filler equal, a blend of 60% by mass of basic magnesium carbonate and 40% by mass of polyphenylene sulfide resin having a melt viscosity of 100 poise at 300 ° C. is the same as in Example 1. A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared under the conditions.
 比較例5
 比較例1において、酸化マグネシウムRF98を32.1質量%、市販の塩基性炭酸マグネシウムを29.9質量%(体積比で酸化マグネシウム:塩基性炭酸マグネシウム=1:1)、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を38質量%とし、実施例1と同様の条件で熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 5
In Comparative Example 1, magnesium oxide RF98 was 32.1% by mass, commercially available basic magnesium carbonate was 29.9% by mass (magnesium oxide: basic magnesium carbonate = 1: 1 by volume), and the melt viscosity at 300 ° C. 100 poise polyphenylene sulfide resin was 38% by mass, and a test piece for heat conduction evaluation and a test piece for heat and humidity resistance test were prepared under the same conditions as in Example 1.
 比較例6
 宇部マテリアル製酸化マグネシウムRF-98が100質量部に対し、デシルトリメトキシシラン2質量部を滴下し、ヘンシェルミキサーで100rpmで2分混合を行った。混合後、デシルトリメトキシシランで処理されたRF-98を64.1質量%、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を35.9質量%とし、実施例1と同様の条件で熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 6
2 parts by weight of decyltrimethoxysilane was added dropwise to 100 parts by weight of Ube Magnesium Oxide RF-98 and mixed for 2 minutes at 100 rpm with a Henschel mixer. After mixing, 64.1% by mass of RF-98 treated with decyltrimethoxysilane and 35.9% by mass of polyphenylene sulfide resin having a melt viscosity of 100 poise at 300 ° C. were conducted under the same conditions as in Example 1. A test piece for evaluation and a test piece for wet heat resistance test were prepared.
 実施例9
 実施例7で得られた熱伝導性フィラー7を23質量%、板状の高熱伝導フィラーである窒化ホウ素(BN)(平均長径20μm)を27質量%、ガラスファイバー(GF)を19質量%、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を31質量%の配合に変更した以外は同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Example 9
23% by mass of the thermally conductive filler 7 obtained in Example 7, 27% by mass of boron nitride (BN) (average major axis 20 μm), which is a plate-like highly thermally conductive filler, 19% by mass of glass fiber (GF), A test piece for heat conduction evaluation and a test piece for moisture and heat resistance test were prepared in the same manner except that the polyphenylene sulfide resin having a melt viscosity of 300 ° C. and 100 poise was changed to 31% by mass.
 比較例7
 実施例9において、熱伝導性フィラー7の代わりに酸化マグネシウムRF-98を用いた。実施例9と熱伝導フィラーの体積分率が同等となる様、酸化マグネシウム26質量%、窒化ホウ素(BN)(平均長径20μm)を25質量%、ガラスファイバー(GF)を18質量%、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を31質量%の配合とした以外は実施例9と同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 7
In Example 9, magnesium oxide RF-98 was used instead of the thermally conductive filler 7. In order to make the volume fraction of Example 9 and the heat conductive filler equal, 26% by mass of magnesium oxide, 25% by mass of boron nitride (BN) (average major axis 20 μm), 18% by mass of glass fiber (GF), 300 ° C. A test piece for heat conduction evaluation and a test piece for moisture and heat resistance test were prepared in the same manner as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity of 100 poise was 31% by mass.
 比較例8
 実施例9において、熱伝導性フィラー7の代わりに市販の無水炭酸マグネシウムを用いた以外は同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。実施例9と熱伝導フィラーの体積分率が同等となる様、無水炭酸マグネシウム23質量%と、窒化ホウ素(BN)(平均長径20μm)を27質量%、ガラスファイバー(GF)を19質量%、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を31質量%の配合とし、実施例9と同様の条件で熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 8
In Example 9, a test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared in the same manner except that commercially available anhydrous magnesium carbonate was used instead of the heat conductive filler 7. In order that the volume fraction of Example 9 and the heat conductive filler is equivalent, anhydrous magnesium carbonate 23 mass%, boron nitride (BN) (average major axis 20 μm) 27 mass%, glass fiber (GF) 19 mass%, A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared under the same conditions as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity of 300 ° C. at 100 ° C. was blended in an amount of 31% by mass.
 比較例9
 実施例9において、熱伝導性フィラー7の代わりに市販の塩基性炭酸マグネシウムを用いた。実施例9と熱伝導フィラーの体積分率が同等となる様、塩基性炭酸マグネシウム18質量%、窒化ホウ素(BN)(平均長径20μm)を28質量%、ガラスファイバー(GF)を21質量%、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を33質量%の配合とした以外は実施例9と同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 9
In Example 9, commercially available basic magnesium carbonate was used in place of the thermally conductive filler 7. Example 9 and 18% by mass of basic magnesium carbonate, 28% by mass of boron nitride (BN) (average major axis 20 μm), 21% by mass of glass fiber (GF), so that the volume fraction of the heat conductive filler is the same as Example 9. A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared in the same manner as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity at 300 ° C. of 100 poise was changed to 33% by mass.
 比較例10
 実施例9において、熱伝導性フィラー7の代わりに市販の天然マグネサイトを用いた。実施例9と熱伝導フィラーの体積分率が同等となる様、天然マグネサイト23質量%、窒化ホウ素(BN)(平均長径20μm)を27質量%、ガラスファイバー(GF)を19質量%、300℃の溶融粘度が100poiseのポリフェニレンサルファイド樹脂を31質量%の配合とした以外は実施例9と同様にして、熱伝導評価用試験片、耐湿熱性試験用試験片を作製した。
Comparative Example 10
In Example 9, instead of the thermally conductive filler 7, commercially available natural magnesite was used. In order to make the volume fractions of Example 9 and the heat conductive filler equal, natural magnesite 23 mass%, boron nitride (BN) (average major axis 20 μm) 27 mass%, glass fiber (GF) 19 mass%, 300 A test piece for heat conduction evaluation and a test piece for wet heat resistance test were prepared in the same manner as in Example 9 except that a polyphenylene sulfide resin having a melt viscosity at 100 ° C. of 100 poise was mixed at 31% by mass.
 得られた熱伝導性フィラーや各種試験片の評価は以下の方法で行った。
〔平均粒子径とその分布幅〕
 レーザー回折式粒度分布測定装置を用い、水を溶媒とし前処理として超音波分散を5分実施後、粒度分布を測定した。また粒子径分布幅の評価として、変動係数は(d84%-d16%)/2で求めた標準偏差を平均粒子径で割ること得られた変動係数を用いた。
Evaluation of the obtained heat conductive filler and various test pieces was performed by the following methods.
[Average particle size and distribution width]
Using a laser diffraction particle size distribution analyzer, ultrasonic dispersion was performed for 5 minutes as a pretreatment using water as a solvent, and then the particle size distribution was measured. Further, as an evaluation of the particle size distribution width, a variation coefficient obtained by dividing the standard deviation obtained by (d84% −d16%) / 2 by the average particle diameter was used.
〔BET比表面積〕
 島津製作所製FlowSorb II 2300を用い、窒素を吸着ガスとし、脱ガス条件として100℃30分の前処理を行い測定した。
[BET specific surface area]
Using FlowSorb II 2300 manufactured by Shimadzu Corporation, nitrogen was used as an adsorption gas, and pretreatment was performed at 100 ° C. for 30 minutes as a degassing condition.
〔TG-DTA分析〕
 TG分析による減量値、分解温度等の値は全て、エスアイアイ・ナノテクノロジー製EXSTAR-6300を用い、空気中下(200ml/min)、試料量5mg、昇温条件を10℃/minにて測定した場合の値を用いた。
[TG-DTA analysis]
All values such as weight loss and decomposition temperature by TG analysis are measured using EXSTAR-6300 manufactured by SII NanoTechnology under the air (200 ml / min), sample amount 5 mg, and heating condition at 10 ° C / min. The value when used was used.
〔プレッシャークッカーテスト(PCT)〕
 得られた試験片をエスペック製加速寿命測地装置(プレシャークッカー)を用い、設定温度121℃、湿度100RH%、圧力2atmの条件にて200時間曝露した。曝露後の試験片の質量を測定し、曝露前に対する質量増加率を求め吸水率(%)とした。また、プレート表面の外観を観察し、クラックが発生していない場合は○、クラックが発生し表面荒れが起こっている場合は×とした。
[Pressure Cooker Test (PCT)]
The obtained test piece was exposed for 200 hours under the conditions of a set temperature of 121 ° C., a humidity of 100 RH%, and a pressure of 2 atm using an accelerated life geodetic device (Pre-Shear Cooker) manufactured by Espec. The mass of the test piece after the exposure was measured, and the mass increase rate with respect to that before the exposure was determined to obtain the water absorption rate (%). Further, the appearance of the plate surface was observed, and when the crack was not generated, it was evaluated as “◯”, and when the crack was generated and the surface was roughed, it was evaluated as “X”.
〔熱伝導率〕
 小型縦型射出成形機を用いて得た、厚み1mm×直径10mmの円筒状の試験片を、測定開始温度25℃で、キセノンフラッシュ熱伝導率計(Bruker AXS社製 LFA447)を用い、熱伝導率を求めた。
〔Thermal conductivity〕
A cylindrical test piece having a thickness of 1 mm and a diameter of 10 mm obtained using a small vertical injection molding machine was subjected to heat conduction at a measurement start temperature of 25 ° C. using a xenon flash thermal conductivity meter (LFA447 manufactured by Bruker AXS). The rate was determined.
〔炭酸マグネシウム中の無水炭酸マグネシウム含有率(%)〕
 TG-DTA分析にて得られた減量曲線を用い、下記の式より求めることとする。
 塩基性炭酸マグネシウム量A=(TG分析により得られるX(℃)の減量値-150℃の減量値)×(466/72)
 無水炭酸マグネシウム量B=(TG分析により得られる800℃の減量値-Y(℃)の減量値)×(84/44))
 無水炭酸マグネシウム含有率(%)=(B/(A+B))×100
X:300℃から350℃の間で、250℃付近より始まる減量ピークの終点以降の温度
Y:450℃から500℃の間で、250℃付近より始まる減量ピークの終点以降の温度
[Content of anhydrous magnesium carbonate in magnesium carbonate (%)]
Using the weight loss curve obtained by the TG-DTA analysis, the following equation is used.
Amount of basic magnesium carbonate A = (reduced value of X (° C.) obtained by TG analysis−reduced value of 150 ° C.) × (466/72)
Anhydrous magnesium carbonate amount B = (800 ° C. reduction value obtained by TG analysis−Y (° C.) reduction value) × (84/44))
Anhydrous magnesium carbonate content (%) = (B / (A + B)) × 100
X: Temperature after end point of weight loss peak between 300 ° C. and 350 ° C. starting from around 250 ° C. Y: Temperature after end point of weight loss peak starting at around 250 ° C. between 450 ° C. and 500 ° C.
 以上の評価結果を表1~4に示す。 The above evaluation results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1で得た試験片は熱伝導率が1.4と比較的高く、耐湿性評価についても吸水率、外観ともに良好な結果を示した。これに対し、比較例1で得た試験片(酸化マグネシウム未処理のものを用いた場合)は耐湿性評価でプレート外観の表面荒れが起こり、実施例1と比較し著しく劣る結果を得た。 The test piece obtained in Example 1 had a relatively high thermal conductivity of 1.4, and the moisture resistance evaluation showed good results in both water absorption and appearance. On the other hand, the test piece obtained in Comparative Example 1 (in the case of using a magnesium oxide-untreated sample) had a rough surface appearance of the plate in the moisture resistance evaluation, and obtained a result that was significantly inferior to Example 1.
 また、比較例3(塩基性炭酸マグネシウムを用いた場合)は熱伝導性及び吸水率が実施例1と比較し劣り、更に樹脂組成物を得る為の押出加工の際、発泡現象が起こり加工性を著しく低下する問題が発生した。 Further, Comparative Example 3 (when basic magnesium carbonate is used) is inferior to Example 1 in thermal conductivity and water absorption, and further, foaming occurs during the extrusion process to obtain a resin composition. The problem of remarkably lowering occurred.
 更に、比較例5(塩基性炭酸マグネシウムと酸化マグネシウムの1:1ブレンドを用いた場合)、比較例6(酸化マグネシウムにシランカップリング処理を施したものを用いた場合)は耐湿性評価でプレート外観の表面荒れが起こり、実施例1と比較し著しく劣る結果となった。 Further, Comparative Example 5 (in the case of using a 1: 1 blend of basic magnesium carbonate and magnesium oxide) and Comparative Example 6 (in the case of using magnesium oxide subjected to silane coupling treatment) are plates with a moisture resistance evaluation. Surface roughness of the appearance occurred, and the result was significantly inferior to that of Example 1.
 実施例7で得た試験片は熱伝導率が1.3と合成品で平均粒度分布が50μm以下、及び天然品で粒度分布が50μm以上である他のフィラーよりも比較的高く、耐湿性評価についても吸水率、外観ともに良好な結果を示した。比較例1(酸化マグネシウムを用いた場合)は、酸化マグネシウム粒子の熱伝導率が、無水炭酸マグネシウムの熱伝導率よりやや高いことより、熱伝導率は1.9W/mKと実施例1より高い値が認められたが、耐湿性が劣る結果が得られた。比較例2(市販の無水炭酸マグネシウムを用いた場合)耐湿性評価では実施例7と比較し同等であるものの、熱伝導率が劣る結果を得た。また、比較例3(塩基性炭酸マグネシウムを用いた場合)は熱伝導性及び耐湿性が実施例7と比較し劣り、更に成形用樹脂組成物を得る為の押出加工の際、発泡現象が起こり加工性を著しく低下する問題が発生した。比較例4(天然マグネサイトを用いた場合)耐湿性は実施例7と同等であるが、熱伝導率が劣る結果となった。粒度分布幅が変動係数0.6と実施例7の0.39と比較し高い値であり、熱伝導パス形成の面からも熱伝導率が劣る結果が推測される。 The test piece obtained in Example 7 has a thermal conductivity of 1.3, a synthetic product having an average particle size distribution of 50 μm or less, and a natural product having a particle size distribution of 50 μm or more. The results showed good results in both water absorption and appearance. In Comparative Example 1 (when magnesium oxide is used), the thermal conductivity of magnesium oxide particles is slightly higher than that of anhydrous magnesium carbonate, and thus the thermal conductivity is 1.9 W / mK, which is higher than that of Example 1. Although a value was recognized, a result with poor moisture resistance was obtained. Comparative Example 2 (in the case of using commercially available anhydrous magnesium carbonate) Although the moisture resistance evaluation was equivalent to that in Example 7, a result of inferior thermal conductivity was obtained. Further, Comparative Example 3 (in the case of using basic magnesium carbonate) is inferior to Example 7 in thermal conductivity and moisture resistance, and further, a foaming phenomenon occurs during extrusion to obtain a molding resin composition. There was a problem that the workability was significantly reduced. Comparative Example 4 (when natural magnesite was used) The moisture resistance was the same as in Example 7, but the thermal conductivity was inferior. The particle size distribution width is a high value compared with the coefficient of variation 0.6 and 0.39 of Example 7, and it is estimated that the thermal conductivity is inferior from the aspect of forming the heat conduction path.
 また、実施例9の通り、本発明の熱伝導性フィラーを用いた場合は、窒化ホウ素とガラスファイバーとの併用についても他と比較し高い熱伝導率を示した。これは熱伝導性フィラーの平均粒子径が大きいことより、成形品内に窒化ホウ素間の効率的な熱伝導パスとして効果を及ぼすとともに、フィラーのモース硬度が無水炭酸マグネシウムと同様3.5である為、窒化ホウ素の破壊による小径化を抑え、高い熱伝導率を保持し得る為と推察される。比較例10の酸化マグネシウムを用いた場合も、実施例9より熱伝導率が低い結果となり、酸化マグネシウムが窒化ホウ素の破壊に寄与していることが示唆される。 Also, as in Example 9, when the thermally conductive filler of the present invention was used, the combined use of boron nitride and glass fiber also showed higher thermal conductivity than others. This has an effect as an efficient heat conduction path between boron nitride in the molded product because the average particle diameter of the heat conductive filler is large, and the Mohs hardness of the filler is 3.5 as in anhydrous magnesium carbonate. For this reason, it is presumed that the diameter reduction due to the destruction of boron nitride can be suppressed and high thermal conductivity can be maintained. Also when the magnesium oxide of the comparative example 10 was used, it became a result whose heat conductivity is lower than Example 9, and it is suggested that magnesium oxide has contributed to destruction of boron nitride.
 本発明により、耐湿熱性が改善された熱伝導フィラー得ることができる。また、該熱伝導フィラーを含有する樹脂組成物は、流動性を損なうことなく容易に成形加工が可能であり、高い熱伝導性と耐湿熱性を併せ持ち、高温高湿下に長期曝露した場合おいても、良好な外観の維持が可能な成形体を得ることができる。したがって、本発明の樹脂組物はより薄肉化、複雑形状化が望まれている高熱伝導材料に適しており、例えば、電気電子部品、自動車部品、照明用部品、給湯機部品、繊維、フィルム用途などに好適に用いることができる。 According to the present invention, it is possible to obtain a heat conductive filler having improved moisture and heat resistance. In addition, the resin composition containing the heat conductive filler can be easily molded without impairing fluidity, has both high heat conductivity and heat and humidity resistance, and is exposed to a long period of time under high temperature and high humidity. However, it is possible to obtain a molded body capable of maintaining a good appearance. Therefore, the resin assembly of the present invention is suitable for highly heat-conductive materials that are desired to be thinner and more complicated, for example, electrical and electronic parts, automobile parts, lighting parts, water heater parts, fibers, and film applications. It can use suitably for.

Claims (16)

  1. 酸化マグネシウムが炭酸マグネシウムによって被覆されてなる粒子であることを特徴とする熱伝導性フィラー。 A thermally conductive filler, wherein the magnesium oxide is a particle formed by coating with magnesium carbonate.
  2. 前記粒子の平均粒子径が20~100μmの範囲であって、〔(d84%-d16%/2)/平均粒子径〕で得られる値が0.5以下である請求項1記載の熱伝導性フィラー。 2. The thermal conductivity according to claim 1, wherein the average particle diameter of the particles is in the range of 20 to 100 μm, and the value obtained by [(d84% −d16% / 2) / average particle diameter] is 0.5 or less. Filler.
  3. 前記粒子中の炭酸マグネシウムの含有率が1.0~99.9質量%である請求項1又は2記載の熱伝導性フィラー。 The thermally conductive filler according to claim 1 or 2, wherein the content of magnesium carbonate in the particles is 1.0 to 99.9 mass%.
  4. 前記炭酸マグネシウムが、無水炭酸マグネシウムを含有する請求項1~3の何れか1項記載の熱伝導性フィラー。 The thermally conductive filler according to any one of claims 1 to 3, wherein the magnesium carbonate contains anhydrous magnesium carbonate.
  5. 前記炭酸マグネシウム中の無水炭酸マグネシウムの含有率が30質量%以上である請求項4記載の熱伝導性フィラー。 The thermally conductive filler according to claim 4, wherein the content of anhydrous magnesium carbonate in the magnesium carbonate is 30% by mass or more.
  6. 酸化マグネシウム粒子を水中に分散してなるスラリーを、二酸化炭素の存在下で水熱処理を行う工程を含むことを特徴とする熱伝導性フィラーの製造方法。 The manufacturing method of the heat conductive filler characterized by including the process of hydrothermally treating the slurry formed by disperse | distributing magnesium oxide particle | grains in water in presence of a carbon dioxide.
  7. 前記酸化マグネシウム粒子の平均粒子径が20~100μmの範囲である請求項6記載の熱伝導性フィラーの製造方法。 The method for producing a thermally conductive filler according to claim 6, wherein the average particle diameter of the magnesium oxide particles is in the range of 20 to 100 µm.
  8. 前記スラリーにおける酸化マグネシウム粒子と水との使用割合が、酸化マグネシウム粒子100質量部に対し、水が50~2000質量部の範囲である請求項6又は7記載の熱伝導性フィラーの製造方法。 The method for producing a thermally conductive filler according to claim 6 or 7, wherein the use ratio of the magnesium oxide particles and water in the slurry is in the range of 50 to 2000 parts by mass of water with respect to 100 parts by mass of the magnesium oxide particles.
  9. 前記水熱処理が、二酸化炭素の存在下で100℃以上270℃以下の温度下で保持する工程を有する請求項6~8の何れか1項記載の熱伝導性フィラーの製造方法。 The method for producing a thermally conductive filler according to any one of claims 6 to 8, wherein the hydrothermal treatment includes a step of holding at a temperature of 100 ° C or higher and 270 ° C or lower in the presence of carbon dioxide.
  10. 前記水熱処理が、温度が異なる2段階の工程を有する請求項6~9の何れか1項記載の熱伝導性フィラーの製造方法。 The method for producing a thermally conductive filler according to any one of claims 6 to 9, wherein the hydrothermal treatment has a two-stage process at different temperatures.
  11. 請求項6~10の何れか1項記載の製造方法で得られるものである熱伝導性フィラー。 A thermally conductive filler obtained by the production method according to any one of claims 6 to 10.
  12. 請求項1~5、又は11の何れか1項記載の熱伝導性フィラーと樹脂とを含有することを特徴とする樹脂組成物。 A resin composition comprising the thermally conductive filler according to any one of claims 1 to 5 or 11, and a resin.
  13. 前記樹脂が熱可塑性樹脂である請求項12記載の樹脂組成物。 The resin composition according to claim 12, wherein the resin is a thermoplastic resin.
  14. 請求項12又は13記載の樹脂組成物を含有することを特徴とする高熱伝導材料。 A highly heat-conductive material comprising the resin composition according to claim 12 or 13.
  15. 請求項12又は13記載の樹脂組成物を成形してなることを特徴とする成形体。 A molded article obtained by molding the resin composition according to claim 12 or 13.
  16. 請求項15記載の成形体からなる高熱伝導材料。 A highly heat-conductive material comprising the molded product according to claim 15.
PCT/JP2014/051366 2013-01-30 2014-01-23 Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material WO2014119462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559647A JP6065922B2 (en) 2013-01-30 2014-01-23 Thermally conductive filler, method for producing the same, resin composition using the same, molded product thereof, and high thermal conductive material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013015436 2013-01-30
JP2013-015436 2013-01-30
JP2013-161309 2013-08-02
JP2013161309 2013-08-02

Publications (1)

Publication Number Publication Date
WO2014119462A1 true WO2014119462A1 (en) 2014-08-07

Family

ID=51262176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051366 WO2014119462A1 (en) 2013-01-30 2014-01-23 Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material

Country Status (2)

Country Link
JP (1) JP6065922B2 (en)
WO (1) WO2014119462A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041110A1 (en) * 2013-09-17 2015-03-26 宇部マテリアルズ株式会社 Thermally conductive filler and thermally conductive resin composition containing same
WO2016147862A1 (en) * 2015-03-16 2016-09-22 宇部マテリアルズ株式会社 Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder
CN108009309A (en) * 2017-10-17 2018-05-08 西安建筑科技大学 A kind of construction material thermal conductivity factor computational methods
CN113473700A (en) * 2021-06-30 2021-10-01 江苏传艺科技股份有限公司 Bending-resistant and pressure-resistant 5G flexible circuit board and production process thereof
US20220372245A1 (en) * 2019-10-25 2022-11-24 Panasonic Intellectual Property Management Co., Ltd. Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027177A (en) * 2001-12-25 2004-01-29 Tateho Chem Ind Co Ltd Resin composition containing magnesium oxide powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2006291078A (en) * 2005-04-13 2006-10-26 Konoshima Chemical Co Ltd Filler and manufacturing method of it, synthetic resin composition and synthetic rubber composition
JP2011046760A (en) * 2009-08-25 2011-03-10 Shin Kobe Electric Mach Co Ltd Method for producing magnesium oxide powder, thermosetting resin composition, prepreg, and method for manufacturing laminated sheet
JP2011068757A (en) * 2009-09-25 2011-04-07 Konoshima Chemical Co Ltd Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition
JP2012119180A (en) * 2010-12-01 2012-06-21 Sekisui Chem Co Ltd Insulation material and laminate structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027177A (en) * 2001-12-25 2004-01-29 Tateho Chem Ind Co Ltd Resin composition containing magnesium oxide powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2006291078A (en) * 2005-04-13 2006-10-26 Konoshima Chemical Co Ltd Filler and manufacturing method of it, synthetic resin composition and synthetic rubber composition
JP2011046760A (en) * 2009-08-25 2011-03-10 Shin Kobe Electric Mach Co Ltd Method for producing magnesium oxide powder, thermosetting resin composition, prepreg, and method for manufacturing laminated sheet
JP2011068757A (en) * 2009-09-25 2011-04-07 Konoshima Chemical Co Ltd Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition
JP2012119180A (en) * 2010-12-01 2012-06-21 Sekisui Chem Co Ltd Insulation material and laminate structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041110A1 (en) * 2013-09-17 2015-03-26 宇部マテリアルズ株式会社 Thermally conductive filler and thermally conductive resin composition containing same
US9828538B2 (en) 2013-09-17 2017-11-28 Ube Material Industries, Ltd. Thermally conductive filler and thermally conductive resin composition containing same
WO2016147862A1 (en) * 2015-03-16 2016-09-22 宇部マテリアルズ株式会社 Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder
US10501635B2 (en) 2015-03-16 2019-12-10 Ube Material Industries, Ltd. Magnesium oxide powder, resin composition including same, and method for producing magnesium oxide powder
CN108009309A (en) * 2017-10-17 2018-05-08 西安建筑科技大学 A kind of construction material thermal conductivity factor computational methods
CN108009309B (en) * 2017-10-17 2020-12-11 西安建筑科技大学 Method for calculating heat conductivity coefficient of building material
US20220372245A1 (en) * 2019-10-25 2022-11-24 Panasonic Intellectual Property Management Co., Ltd. Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board
US11814502B2 (en) * 2019-10-25 2023-11-14 Panasonic Intellectual Property Management Co., Ltd. Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board
CN113473700A (en) * 2021-06-30 2021-10-01 江苏传艺科技股份有限公司 Bending-resistant and pressure-resistant 5G flexible circuit board and production process thereof

Also Published As

Publication number Publication date
JP6065922B2 (en) 2017-01-25
JPWO2014119462A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6065922B2 (en) Thermally conductive filler, method for producing the same, resin composition using the same, molded product thereof, and high thermal conductive material
JP2016023114A (en) Magnesium oxide particles and method for producing the same, thermally conductive filler and heat-conductive resin composition using the same, molded article thereof and high thermal conductive material
JP5418720B2 (en) Inorganic filler composite, thermally conductive resin composition, and molded body
US20160325994A1 (en) High aspect boron nitride, methods, and composition containing the same
JP5122116B2 (en) Thermally conductive resin composition
KR20180040654A (en) Alumina-based thermally conductive oxides and method for manufacturing the same
JP6474457B2 (en) Thermally conductive complex oxide, method for producing the same, and thermally conductive complex oxide-containing composition
WO2011074552A1 (en) Thermoplastic resin composition with high heat dissipation function, and molded products thereof
EP3560890B1 (en) Hexagonal boron nitride powder and method for producing same
EP2835400B1 (en) Resin composition
JP6195108B2 (en) Modified boron nitride, its production method and composition
JP2015151297A (en) Method for producing magnesium oxide particle
JP2006282783A (en) Highly heat-conductive resin composition
JP2012236867A (en) Method for producing crystal nucleating agent for resin
JP4953421B2 (en) Method for producing composite magnesium hydroxide particles
JP2023510249A (en) High thermal conductivity layered phase change composite
Kong et al. Low‐temperature synthesis of Mg (OH) 2 nanoparticles from MgO as halogen‐free flame retardant for polypropylene
JP2016037598A (en) Fiber reinforced thermoplastic resin composition and molded body thereof
KR102085040B1 (en) Fine particle composite metal hydroxide, its baked material, its manufacturing method, and its resin composition
JP2016135719A (en) Magnesium carbonate fine particle and method for producing the same, resin composition, high heat-conductive material, molding, and high heat-conductive material
JP2012107084A (en) Crystalline resin composite material and method for producing the same
JP2015129069A (en) Magnesium oxide particle, production method of the same, heat-conductive filler, heat-conductive resin composition using the same, molded article of the composition, and high heat-conductive material
JPWO2014109134A1 (en) Hexagonal boron nitride and high thermal conductive resin molding using the same
WO2019142353A1 (en) Powder and uses thereof
JP2013234112A (en) Plate-like magnesium oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746639

Country of ref document: EP

Kind code of ref document: A1