JP6195108B2 - Modified boron nitride, its production method and composition - Google Patents

Modified boron nitride, its production method and composition Download PDF

Info

Publication number
JP6195108B2
JP6195108B2 JP2013169139A JP2013169139A JP6195108B2 JP 6195108 B2 JP6195108 B2 JP 6195108B2 JP 2013169139 A JP2013169139 A JP 2013169139A JP 2013169139 A JP2013169139 A JP 2013169139A JP 6195108 B2 JP6195108 B2 JP 6195108B2
Authority
JP
Japan
Prior art keywords
boron nitride
resin
coupling agent
modified
modified boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013169139A
Other languages
Japanese (ja)
Other versions
JP2015036361A (en
Inventor
一男 糸谷
一男 糸谷
正道 林
正道 林
前川 文彦
文彦 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2013169139A priority Critical patent/JP6195108B2/en
Publication of JP2015036361A publication Critical patent/JP2015036361A/en
Application granted granted Critical
Publication of JP6195108B2 publication Critical patent/JP6195108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱伝導性と有する変性窒化ホウ素、及びその製造方法に関する。   The present invention relates to a modified boron nitride having thermal conductivity and a method for producing the same.

プラスチック材料は、高耐熱性を有するエンジニアリングプラスチックの普及に伴い、加えて生産性及び形状の自由度から、金属材料に代わる材料として、電気・電子機器や自動車用等の部材として幅広く使用されている。
一方、近年は機器の高性能化、小型軽量化が一層求められ、半導体デバイスの高集積化・大容量化が進み発熱量が増大したことから、実装部品・周囲部品の熱伝導性向上は重要な課題となっている。また、電気自動車の電費向上として、リチウムイオン電池、モーター、インバーターに使用される絶縁部材の熱伝導性向上が強く求められている。
Plastic materials are widely used as materials for electrical and electronic equipment and automobiles as a substitute for metal materials due to the widespread use of engineering plastics with high heat resistance, as well as productivity and freedom of shape. .
On the other hand, in recent years, there has been a further demand for higher performance, smaller size, and lighter weight of the equipment, and the heat generation has increased due to higher integration and larger capacity of semiconductor devices. It is a difficult issue. In addition, there is a strong demand for improving the thermal conductivity of insulating members used in lithium-ion batteries, motors, and inverters as an improvement in the power consumption of electric vehicles.

プラスチック材料の絶縁性を保持し、熱伝導性を付与する方法としては、無機フィラーを添加する技術が知られており、例えば、窒化ホウ素、窒化アルミ、アルミナ、酸化マグネシウム等がもちいられている。その中でも、窒化ホウ素は高い熱伝導性を有するが、六方晶の薄片用結晶構造であるためフィラーが配向し、熱伝導性に異方性が生じる問題があった。また、窒化ホウ素は吸油量が比較的大きいため、樹脂に対して窒化ホウ素を大量に配合すると、樹脂を吸着するため流動性が著しく低下するという問題があるため、樹脂の成形性を維持するには窒化ホウ素の配合量を少なくする必要があった。 As a method for maintaining the insulation of the plastic material and imparting thermal conductivity, a technique of adding an inorganic filler is known, and for example, boron nitride, aluminum nitride, alumina, magnesium oxide and the like are used. Among them, boron nitride has high thermal conductivity. However, since it has a hexagonal crystal structure for flakes, there is a problem that the filler is oriented and anisotropy occurs in thermal conductivity. In addition, since boron nitride has a relatively large oil absorption amount, if a large amount of boron nitride is added to the resin, there is a problem that the fluidity is remarkably lowered because the resin is adsorbed, so that the moldability of the resin is maintained. Needed to reduce the amount of boron nitride.

このような窒化ホウ素の課題を解決する為、例えば窒化ホウ素表面に化学結合させることによって窒化ホウ素を活性化させる方法や(特許文献3)、超臨界二酸化炭素を用いた窒化ホウ素の表面処理方法(特許文献4)などが開示されている。しかし、これらの方法によっても樹脂の成形性の改善効果は不十分であり、また非常にコストがかかるため、広く産業利用することは難しかった。   In order to solve such a problem of boron nitride, for example, a method of activating boron nitride by chemical bonding to the surface of boron nitride (Patent Document 3), a surface treatment method of boron nitride using supercritical carbon dioxide ( Patent document 4) etc. are disclosed. However, even by these methods, the effect of improving the moldability of the resin is insufficient, and the cost is very high, so that it has been difficult to widely use in industry.

特開2000−233907号公報JP 2000-233907 A 特開2009−221039号公報JP 2009-221039 A 特開2010−529938号公報JP 2010-529938 A 特開2012−529938号公報JP 2012-529938 A

本発明の課題は、熱伝導性を維持しつつ、樹脂への充填率や加工性にも優れた変性窒化ホウ素、及びその製造方法を提供するものである。   The subject of this invention is providing the modified | denatured boron nitride excellent in the filling rate and processability to resin, maintaining its heat conductivity, and its manufacturing method.

本発明者らは鋭意検討した結果、窒化ホウ素をメカノケミカル処理することで、上記課題を解決しうる変性窒化ホウ素を製造できることを見出した。   As a result of intensive studies, the present inventors have found that modified boron nitride capable of solving the above problems can be produced by mechanochemical treatment of boron nitride.

すなわち本発明は、窒化ホウ素をメカノケミカル処理する工程を有することを特徴とする、変性窒化ホウ素の製造方法、およびそれによって製造される変性窒化ホウ素を提供するものである。 That is, the present invention provides a method for producing modified boron nitride, which comprises a step of mechanochemically treating boron nitride, and a modified boron nitride produced thereby.

また、水または有機溶媒の存在下においてメカノケミカル処理するものである変性窒化ホウ素の製造方法、およびそれによって製造される変性窒化ホウ素を提供するものである。 The present invention also provides a method for producing modified boron nitride that is mechanochemically treated in the presence of water or an organic solvent, and a modified boron nitride produced thereby.

また、上記製造方法によって得られる変性窒化ホウ素と金属カップリング剤とを含有する変性窒化ホウ素組成物を提供するものである。 Moreover, the modified boron nitride composition containing the modified boron nitride obtained by the said manufacturing method and a metal coupling agent is provided.

また、上記製造方法によって得られる変性窒化ホウ素と金属カップリング剤とを反応させて得られる表面処理変性窒化ホウ素を提供するものである。 The present invention also provides a surface-treated modified boron nitride obtained by reacting a modified boron nitride obtained by the above production method with a metal coupling agent.

また、上記変性窒化ホウ素、または表面処理変性窒化ホウ素と樹脂とを含有する樹脂組成物、及び該樹脂組成物を成形してなる成形体を提供するものである。 The present invention also provides a resin composition containing the modified boron nitride or the surface-treated modified boron nitride and a resin, and a molded body formed by molding the resin composition.

本発明の製造方法で得られる変性窒化ホウ素は、熱伝導性を維持しつつ、樹脂への充填率や加工性にも優れるため、成形樹脂用の熱伝導性フィラーとして優れる。また、該変性窒化ホウ素を金属カップリング剤で処理して得られる表面処理窒化ホウ素は、より熱伝導性に優れるため、成形樹脂用の熱伝導性フィラーとして好適である。また、本発明の変性窒化ホウ素及び表面処理変性窒化ホウ素を含有する樹脂組成物は、熱伝導材料として好適であり、得られる成形体の熱伝導性は良好である。   The modified boron nitride obtained by the production method of the present invention is excellent as a heat conductive filler for a molding resin because it is excellent in filling rate and processability to the resin while maintaining thermal conductivity. In addition, the surface-treated boron nitride obtained by treating the modified boron nitride with a metal coupling agent is more excellent in thermal conductivity, and thus is suitable as a thermally conductive filler for molding resin. Moreover, the resin composition containing the modified boron nitride and the surface-treated modified boron nitride of the present invention is suitable as a heat conductive material, and the resulting molded article has good heat conductivity.

〔窒化ホウ素〕
本発明では、窒化ホウ素をメカノケミカル処理によって変性することで、変性窒化ホウ素を得ることができる。窒化ホウ素(BN)には、六方晶BN、立方晶BN等いろいろな結晶構造のものが知られているが、本発明では、いずれをも用いることができる。これらBNの中で工業的規模で入手し易く、安価であることから、六方晶BNが好ましい。この六方晶窒化ホウ素は、ホウ素を窒素気流中で高温加熱すること、アンモニアと酸化ホウ素とを加熱すること、あるいは塩化アンモニウムとホウ砂とを加熱することなどにより得られる。こうして得られる窒化ホウ素は、鱗片状又は多角板状の形態が一般的であり熱伝導材料に用いるには結晶サイズが大きい粒子が有利であり、窒化ホウ素の平均粒径は10μm以上であると好ましく、15〜60μmであるとより好ましい。
[Boron nitride]
In the present invention, modified boron nitride can be obtained by modifying boron nitride by mechanochemical treatment. Boron nitride (BN) is known to have various crystal structures such as hexagonal BN and cubic BN, and any of them can be used in the present invention. Among these BN, hexagonal BN is preferable because it is easily available on an industrial scale and is inexpensive. This hexagonal boron nitride can be obtained by heating boron at a high temperature in a nitrogen stream, heating ammonia and boron oxide, or heating ammonium chloride and borax. The boron nitride thus obtained is generally in the form of a scaly or polygonal plate, and particles having a large crystal size are advantageous for use in a heat conductive material. The average particle size of boron nitride is preferably 10 μm or more. More preferably, it is 15-60 micrometers.

〔メカノケミカル処理〕
本発明のメカノケミカル処理とは、窒化ホウ素に対し、圧縮力と剪断力を同時にかける処理をいう。メカノケミカル処理は、被処理物に圧縮力と剪断力とを同時にかけることができる装置であればよく、装置構造は特に限定されない。このような装置として、たとえば、ビーズミルなどの媒体攪拌ミル、ペイントコンディショナーなどの分散機、遊星型ボールミル(フリッチュ社製)、振動ミル、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株)製)などを使用することができる。
[Mechanochemical treatment]
The mechanochemical treatment of the present invention refers to a treatment in which a compressive force and a shear force are simultaneously applied to boron nitride. The mechanochemical treatment is not particularly limited as long as it is an apparatus capable of simultaneously applying a compressive force and a shearing force to an object to be processed. Examples of such apparatuses include a medium agitation mill such as a bead mill, a disperser such as a paint conditioner, a planetary ball mill (manufactured by Fritsch), a vibration mill, a pressure kneader, a kneader such as a two-roll mill, a rotating ball mill, a high A hybridization system (manufactured by Nara Machinery Co., Ltd.), mechanomicros (manufactured by Nara Machinery Co., Ltd.), mechanofusion system (manufactured by Hosokawa Micron Corporation), and the like can be used.

上記のようなメカノケミカル処理条件は、使用する装置によっても異なり一概にはいえないが、処理によって生成する変性窒化ホウ素の粒子を破壊しないように設定することが好ましい。負荷エネルギーが強すぎると粒子破壊が進行し、小粒径化とフィラーの分解が部分的に発生するので処理条件を適切にコントロールすることが重要である。たとえばペイントコンディショナーを用いる場合にはガラスビーズなど軽量のビーズを用いて処理時間を20〜60分間で行い、遊星型ボールミルを用いる場合には、台座の回転数を200〜600rpmで、処理時間を5〜20分間で、行えばよい。 The mechanochemical treatment conditions as described above vary depending on the apparatus to be used and cannot be said unconditionally, but are preferably set so as not to destroy the modified boron nitride particles produced by the treatment. If the load energy is too strong, particle breakage progresses, and particle size reduction and filler decomposition occur partially. Therefore, it is important to appropriately control the processing conditions. For example, when using a paint conditioner, the processing time is 20 to 60 minutes using light beads such as glass beads. When using a planetary ball mill, the rotation speed of the pedestal is 200 to 600 rpm and the processing time is 5 It can be done in ~ 20 minutes.

メカノケミカル処理により、窒化ホウ素の表面が活性化し、変性窒化ホウ素となる。どのように変性しているかの詳細は不明であるが、窒化ホウ素が粉砕される過程で、表面原子/分子数が増大し、それらの結合状態の乱れから、活性化するものと考えられている。 By the mechanochemical treatment, the surface of boron nitride is activated to become modified boron nitride. The details of how it is modified are unknown, but it is believed that the surface atoms / number of molecules increases in the process of pulverizing boron nitride, and is activated by the disorder of their bonding state. .

メカノケミカル処理は、水または有機溶剤を用いた湿式法と用いない乾式法のどちらも使用することができるが、水または有機溶剤を用いた湿式法でのメカノケミカル処理が好ましい。湿式法でのメカノケミカル処理により、窒化ホウ素の変性が促進されるためである。   As the mechanochemical treatment, either a wet method using water or an organic solvent or a dry method not using it can be used, but a mechanochemical treatment using a wet method using water or an organic solvent is preferable. This is because the modification of boron nitride is promoted by the mechanochemical treatment in the wet method.

〔金属カップリング剤〕
本発明の変性窒化ホウ素は、表面が変性しているため、金属カップリング剤による表面処理を行うと、表面材が強固に付着しやすい。そのため、流動性等、金属カップリング剤による表面処理の効果がより得られやすい。
[Metal coupling agent]
Since the surface of the modified boron nitride of the present invention is modified, the surface material tends to adhere firmly when surface treatment is performed with a metal coupling agent. Therefore, effects of surface treatment with a metal coupling agent such as fluidity are more easily obtained.

本発明で用いる金属カップリング剤としては、たとえば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤、スズカップリング剤等の各種カップリング剤を使用でき、好ましくはシランカップリング剤である。   Examples of the metal coupling agent used in the present invention include various coupling agents such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a tin coupling agent. It is a coupling agent.

シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン;および、その他のシランカップリング剤として、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルメチルジメトキシシラン、γ−クロロプロピルメチルジエトキシシラン等が挙げられる。   Examples of the silane coupling agent include vinyl silanes such as vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; γ-methacryloxypropyltrimethoxysilane; β- (3,4 -Epoxycyclohexyl) Epoxy silane such as ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane; N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane Aminosilanes such as N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane; and other silane coupling agents , Γ-mercaptopropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, and the like.

チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N−アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。   Examples of titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) Titanate, tetra (2,2-diallyloxymethyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl Titanate, isopropyl isostearoyl diacryl titanate, isop Pirutori (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, diisostearoyl ethylene titanate.

ジルコニウムカップリング剤としては、例えば、テトラ−n−プロポキシジルコニウム、テトラ−ブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等が挙げられる。   Examples of the zirconium coupling agent include tetra-n-propoxyzirconium, tetra-butoxyzirconium, zirconium tetraacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetylacetonate bis. (Ethyl acetoacetate) and the like.

アルミ二ウムカップリング剤としては、例えば、アルミニウムイソプロピレート、モノsec−ブトキシアルミニウムジイソプロピレート、アルミニウムsec−ブチレート、アルミニウムエチレート、エチルアセトアセテエートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトアセテート)等を挙げることができる。   Examples of the aluminum coupling agent include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethylacetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), Alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetoacetate) and the like can be mentioned.

上記金属カップリング剤と変性窒化ホウ素を反応させる方法としては、公知慣用の方法を用いればよく、例えば金属カップリング剤と変性窒化ホウ素混合し、加熱するなどすればよい。金属カップリング剤が、変性された窒化ホウ素の表面に結合することで、表面改質変性窒化ホウ素となる。   As a method of reacting the metal coupling agent with the modified boron nitride, a known and commonly used method may be used. For example, the metal coupling agent and the modified boron nitride may be mixed and heated. When the metal coupling agent is bonded to the surface of the modified boron nitride, the surface-modified modified boron nitride is obtained.

〔樹脂組成物〕
本発明の樹脂組成物は、樹脂と、上記変性窒化ホウ素または表面改質変性窒化ホウ素を含有するものである。
樹脂としては、熱硬化性樹脂や熱可塑性樹脂を用いることができる。
(Resin composition)
The resin composition of the present invention contains a resin and the modified boron nitride or the surface-modified modified boron nitride.
As the resin, a thermosetting resin or a thermoplastic resin can be used.

熱硬化性樹脂とは、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。   The thermosetting resin is a resin having characteristics that can be substantially insoluble and infusible when cured by heating or means such as radiation or a catalyst. Specific examples include phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene. Examples thereof include resins and thermosetting polyimide resins. These thermosetting resins can be used alone or in combination of two or more.

熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。   The thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone Fat, polyarylate resins, thermoplastic polyimide resins, polyamideimide resins, polyether ether ketone resin, polyketone resin, liquid crystal polyester resins, fluorine resins, syndiotactic polystyrene resin, cyclic polyolefin resin. These thermoplastic resins can be used alone or in combination of two or more.

〔熱伝導材料〕
本発明の樹脂組成物は、熱伝導材料として好適に使用可能である。
また、得られる硬化物についても熱伝導性に優れるため、熱伝導部材として良好である。
[Heat conduction material]
The resin composition of the present invention can be suitably used as a heat conductive material.
Moreover, since the cured | curing material obtained is excellent also in heat conductivity, it is favorable as a heat conductive member.

以下、実施例を持って本発明を説明するが、もちろんこの記述に限定されるものではない。   Hereinafter, the present invention will be described with examples, but the present invention is of course not limited thereto.

<実施例1>
窒化ホウ素(電気化学工業製デンカボロンナイトライドSGP)40部及びトルエン100部の混合物を、ペイントコンディショナーで、直径0.5mmのガラスビーズを用いて、1時間分散した。得られた分散液から溶媒をろ別して、ろ過ケーキを送風乾燥して、変性窒化ホウ素(D−1)を得た。
<Example 1>
A mixture of 40 parts of boron nitride (DENKABORON NITRIDE SGP manufactured by Denki Kagaku Kogyo) and 100 parts of toluene was dispersed with a paint conditioner for 1 hour using glass beads having a diameter of 0.5 mm. The solvent was filtered off from the obtained dispersion, and the filter cake was blown and dried to obtain modified boron nitride (D-1).

(樹脂組成物)
ビスフェノールAのジグリシジルエーテル(DIC株式会社製: 商品名EPICLON 850−S、エポキシ当量188g/eq.)45.5g、ポリテトラメチレングリコールジグリシジルエーテル30(阪本薬品(株)社製、エポキシ当量412g/eq.)の50g、ジシアンジアミド アミキュアAH−154(味の素ファインテクノ(株)製)4.5gを混合し樹脂混合液(E)を調整した。
得られた樹脂混合液(E)に対し、上記変性窒化ホウ素(D−1)下記表1の配合表に従い配合し、3本ロールで混練し脱泡することで樹脂組成物を得た。
(Resin composition)
Diglycidyl ether of bisphenol A (manufactured by DIC Corporation: trade name EPICLON 850-S, epoxy equivalent 188 g / eq.) 45.5 g, polytetramethylene glycol diglycidyl ether 30 (Sakamoto Pharmaceutical Co., Ltd., epoxy equivalent 412 g) / Eq.) 50 g and dicyandiamide Amicure AH-154 (Ajinomoto Fine Techno Co., Ltd.) 4.5 g were mixed to prepare a resin mixed solution (E).
With respect to the obtained resin liquid mixture (E), the said modified boron nitride (D-1) was mix | blended according to the compounding table | surface of following Table 1, knead | mixed with three rolls, and the resin composition was obtained by defoaming.

〔評価方法〕
下記各評価を行い、結果を表1に記した。
○樹脂組成物の流動性
RHEOSTRESS RS150(HAAKE社製)を用いて測定温度25℃、せん断速度1.0(1/s)における樹脂組成物の粘度測定を行い、粘度が600Pa・s以下の場合を◎、粘度が600〜1000Pa・sの場合を○、1000Pa・sを超える場合を×とした。
〔Evaluation method〕
The following evaluations were performed and the results are shown in Table 1.
○ Fluidity of the resin composition When the viscosity of the resin composition is measured at 25 ° C and a shear rate of 1.0 (1 / s) using RHEOSTRES RS150 (manufactured by HAAKE), the viscosity is 600 Pa · s or less. ◎, a case where the viscosity is 600 to 1000 Pa · s is made ◯, and a case where the viscosity exceeds 1000 Pa · s is made X.

○樹脂成形体評価(厚み方向)
樹脂組成物を用いて、熱プレス成形により硬化させ、樹脂成形体試験片A(60×110×0.8mm)を作成した(仮硬化条件170℃×20分、本硬化条件170℃×2時間)。得られた成形体から10×10mmに切り出した試験片について、熱伝導率測定装置(LFA447nanoflash、NETZSCH社製)を用いて熱伝導率の測定を行った。
○ Resin molded body evaluation (thickness direction)
Using the resin composition, it was cured by hot press molding to prepare a resin molded article test piece A (60 × 110 × 0.8 mm) (temporary curing conditions 170 ° C. × 20 minutes, main curing conditions 170 ° C. × 2 hours). ). About the test piece cut out to 10x10 mm from the obtained molded object, the heat conductivity was measured using the heat conductivity measuring apparatus (LFA447 nanoflash, the product made from NETZSCH).

○成形体の熱伝導性(面内方向)
樹脂組成物を用いて、熱プレス成形により樹脂成形体試験片B(110mm×70mm×1mm)を作成し、熱線法式熱伝導率測定装置(京都電子工業製QTM−500)を用いて熱伝導率を測定した。
○ Thermal conductivity of molded body (in-plane direction)
Using the resin composition, a resin molded body test piece B (110 mm × 70 mm × 1 mm) is prepared by hot press molding, and heat conductivity is measured using a hot wire type thermal conductivity measuring device (QTM-500 manufactured by Kyoto Electronics Industry). Was measured.

<実施例2>
実施例1で配合したトルエン40部に代えてメタノール40部を用いる以外は実施例1と同様の操作を行い、変性窒化ホウ素(D−2)及び樹脂組成物、樹脂成形体を得、評価を行った。-
<Example 2>
The same operation as in Example 1 was performed except that 40 parts of methanol was used instead of 40 parts of toluene blended in Example 1, to obtain a modified boron nitride (D-2), a resin composition, and a resin molded body, and evaluation was performed. went. -

<実施例3>
実施例1で配合したトルエン40部に代えて水40部を用いる以外は実施例1と同様の操作を行い、変性窒化ホウ素(D−3)及び樹脂組成物、樹脂成形体を得、評価を行った。
<Example 3>
The same operation as in Example 1 was performed except that 40 parts of water was used instead of 40 parts of toluene blended in Example 1, to obtain a modified boron nitride (D-3), a resin composition, and a resin molded body, and evaluation was performed. went.

<実施例4>
窒化ホウ素(SGP)40部及び水100部の混合物を、ペイントコンディショナーで、直径0.5mmのガラスビーズを用いて、1時間分散した。得られた分散液から溶媒をろ別したろ過ケーキを、フラスコに入れ、イソプロパノール50部、3−(N−フェニル)アミノプロピルトリメトキシシラン0.8部を加え、75℃で3時間反応させ、反応生成物をろ別乾燥してカップリング剤処理変性窒化ホウ素(D−4)を得た。得られたD−4に対し、表1の組成に従って樹脂組成物を作成し、実施例1と同様にして樹脂成形体を得、厚み方向の熱伝導率を測定した。
<Example 4>
A mixture of 40 parts boron nitride (SGP) and 100 parts water was dispersed with a paint conditioner for 1 hour using glass beads with a diameter of 0.5 mm. The filter cake obtained by filtering the solvent from the obtained dispersion was put into a flask, 50 parts of isopropanol and 0.8 part of 3- (N-phenyl) aminopropyltrimethoxysilane were added, and the mixture was reacted at 75 ° C. for 3 hours. The reaction product was filtered and dried to obtain a coupling agent-treated modified boron nitride (D-4). For the obtained D-4, a resin composition was prepared according to the composition shown in Table 1, a resin molded product was obtained in the same manner as in Example 1, and the thermal conductivity in the thickness direction was measured.

<実施例5>
上記D−4に対し、表1の組成に従って樹脂組成物を作成し、実施例1と同様にして樹脂成形体を得、実施例1と同様にして樹脂成形体を得、厚み方向の熱伝導率を測定した。
<Example 5>
For D-4, a resin composition was prepared according to the composition of Table 1, a resin molded body was obtained in the same manner as in Example 1, a resin molded body was obtained in the same manner as in Example 1, and heat conduction in the thickness direction The rate was measured.

<実施例6>
実施例4で配合した3−(N− フェニル) アミノプロピルトリメトキシシラン0.8部に代えてイソプロピルトリイソステアロイルチタネート0.8部を用いる以外は実施例4と同様の操作を行い、カップリング剤処理変性窒化ホウ素(D−5)を得た。得られたD−5に対し、表1の組成に従って樹脂組成物を作成し、実施例1と同様にして樹脂成形体を得、厚み方向の熱伝導率を測定した。
<Example 6>
Coupling was carried out in the same manner as in Example 4 except that 0.8 part of isopropyltriisostearoyl titanate was used instead of 0.8 part of 3- (N-phenyl) aminopropyltrimethoxysilane compounded in Example 4. Agent-treated modified boron nitride (D-5) was obtained. For the obtained D-5, a resin composition was prepared according to the composition shown in Table 1, a resin molded product was obtained in the same manner as in Example 1, and the thermal conductivity in the thickness direction was measured.

<比較例1>
市販の窒化ホウ素(電気化学工業製デンカボロンナイトライドSGP)をそのまま用い、表1の組成に従って樹脂組成物を作成し、実施例1と同様にして樹脂成形体を得、評価を行った。
<Comparative Example 1>
Commercially available boron nitride (DENKABORON NITRIDE SGP manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as it was, and a resin composition was prepared according to the composition shown in Table 1. A resin molded product was obtained and evaluated in the same manner as in Example 1.

<比較例2>
表1の組成に従って樹脂組成物を作成し、実施例1と同様にして樹脂成形体を得、評価を行った。
<Comparative example 2>
Resin compositions were prepared according to the compositions in Table 1, resin molded bodies were obtained and evaluated in the same manner as in Example 1.

<比較例3>
窒化ホウ素(電気化学工業製デンカボロンナイトライドSGP)をフラスコに入れ、イソプロパノール50部、3−(N− フェニル) アミノプロピルトリメトキシシラン0.8部を加え、75℃で3時間反応させ、反応生成物をろ別乾燥してカップリング剤処理窒化ホウ素(H−1)を得た。得られたH−1に対し表1の組成に従って樹脂組成物を作成し、実施例1と同様にして樹脂成形体を得、厚み方向の熱伝導率を測定した。
<Comparative Example 3>
Boron nitride (DENKABORON NITRIDE SGP manufactured by Denki Kagaku Kogyo) is put in a flask, 50 parts of isopropanol and 0.8 part of 3- (N-phenyl) aminopropyltrimethoxysilane are added and reacted at 75 ° C. for 3 hours. The product was filtered and dried to obtain a coupling agent-treated boron nitride (H-1). A resin composition was prepared for the obtained H-1 according to the composition shown in Table 1, a resin molded product was obtained in the same manner as in Example 1, and the thermal conductivity in the thickness direction was measured.

Figure 0006195108
Figure 0006195108

本発明の変性窒化ホウ素は熱伝導性材料として優れており、該変性窒化ホウ素を含有する樹脂組成物は、熱伝導材料として好適に使用可能である。
また、得られる硬化物についても熱伝導性に優れるため、熱伝導部材として良好である。
The modified boron nitride of the present invention is excellent as a heat conductive material, and the resin composition containing the modified boron nitride can be suitably used as a heat conductive material.
Moreover, since the cured | curing material obtained is excellent also in heat conductivity, it is favorable as a heat conductive member.

Claims (4)

窒化ホウ素を、水または有機溶媒の存在下において粒子を破壊しないように、メカノケミカル処理する工程を有することを特徴とする、平均粒径15〜60μmの、熱伝導材料用変性窒化ホウ素の製造方法。 Production of modified boron nitride for heat conductive material having an average particle size of 15 to 60 μm, comprising a step of mechanochemical treatment of boron nitride in the presence of water or an organic solvent so as not to destroy the particles Method. メカノケミカル処理による窒化ホウ素の変性された表面と、金属カップリング剤とを更に反応させる、請求項1記載の製造方法 The manufacturing method according to claim 1, wherein the modified surface of boron nitride by mechanochemical treatment is further reacted with a metal coupling agent . 金属カップリング剤が、シランカップリング剤、チタネートカップリング剤、ジルコネートカップリング剤、アルミン酸ジルコニウムカップリング剤、アルミネートカップリング剤から選ばれる少なくとも一種である、請求項2記載の製造方法。   The production method according to claim 2, wherein the metal coupling agent is at least one selected from a silane coupling agent, a titanate coupling agent, a zirconate coupling agent, a zirconium aluminate coupling agent, and an aluminate coupling agent. 請求項1〜3のいずれか一項に記載の製造方法で得られた変性窒化ホウ素と、樹脂とを混合する熱伝導材料用樹脂組成物の製造方法 The manufacturing method of the resin composition for heat conductive materials which mixes the modified | denatured boron nitride obtained with the manufacturing method as described in any one of Claims 1-3, and resin .
JP2013169139A 2013-08-16 2013-08-16 Modified boron nitride, its production method and composition Active JP6195108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013169139A JP6195108B2 (en) 2013-08-16 2013-08-16 Modified boron nitride, its production method and composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169139A JP6195108B2 (en) 2013-08-16 2013-08-16 Modified boron nitride, its production method and composition

Publications (2)

Publication Number Publication Date
JP2015036361A JP2015036361A (en) 2015-02-23
JP6195108B2 true JP6195108B2 (en) 2017-09-13

Family

ID=52686997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169139A Active JP6195108B2 (en) 2013-08-16 2013-08-16 Modified boron nitride, its production method and composition

Country Status (1)

Country Link
JP (1) JP6195108B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193504A (en) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 Boron nitride particle, resin composition and heat-conductive sheet
EP3524573B1 (en) * 2016-10-07 2022-05-04 Denka Company Limited Boron nitride aggregated grain, method for producing same, and thermally conductive resin composition using same
KR102360935B1 (en) * 2016-10-21 2022-02-09 덴카 주식회사 Fine spherical boron nitride powder, manufacturing method thereof, and heat conductive resin composition using same
KR101848241B1 (en) 2017-01-05 2018-05-28 경희대학교 산학협력단 Method for manufacturing epoxy composites comprising boron nitride
KR101848239B1 (en) * 2017-01-05 2018-04-16 경희대학교 산학협력단 Method for manufacturing polymer composites comprising boron nitride
JP2019137581A (en) * 2018-02-09 2019-08-22 三菱瓦斯化学株式会社 Surface-roughened hexagonal boron nitride particles, composition, cured product, monolayer resin sheet, multilayer resin sheet, prepreg, metal foil-coated multilayer plate, printed circuit board, sealing material, fiber-reinforced composite material and adhesive

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312316A (en) * 1989-06-12 1991-01-21 Shin Etsu Chem Co Ltd Boron nitride powder and its sintered body
JPH0551540A (en) * 1991-08-27 1993-03-02 Kawasaki Steel Corp Treatment of boron nitride
JPH0953022A (en) * 1995-08-10 1997-02-25 Pola Chem Ind Inc Silicone-treated powder and composition containing the same
US6660241B2 (en) * 2000-05-01 2003-12-09 Saint-Gobain Ceramics & Plastics, Inc. Highly delaminated hexagonal boron nitride powders, process for making, and uses thereof
JP2003192938A (en) * 2001-12-27 2003-07-09 Toyo Ink Mfg Co Ltd Surface-coated inorganic pigment, pigment dispersion and coloring resin composition
US7527859B2 (en) * 2006-10-08 2009-05-05 Momentive Performance Materials Inc. Enhanced boron nitride composition and compositions made therewith
JP5053968B2 (en) * 2008-09-24 2012-10-24 三井化学株式会社 Sheet with metal foil and laminate for circuit board
JP5530318B2 (en) * 2010-09-10 2014-06-25 電気化学工業株式会社 Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same
TWI572555B (en) * 2011-11-29 2017-03-01 Mitsubishi Chem Corp Boron nitride agglomerated particles, a composition containing the particles, and a shaped body containing the particles or the composition

Also Published As

Publication number Publication date
JP2015036361A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6195108B2 (en) Modified boron nitride, its production method and composition
Karger‐Kocsis et al. Polymer/boehmite nanocomposites: A review
CN107848801B (en) Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
WO2017145869A1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
Suihkonen et al. Performance of epoxy filled with nano-and micro-sized magnesium hydroxide
Akhina et al. Plasticized PVC graphene nanocomposites: Morphology, mechanical, and dynamic mechanical properties
JP2014513186A (en) Polyethylene terephthalate-graphene nanocomposite
Zabihi et al. Investigation of mechanical properties and cure behavior of DGEBA/nano-Fe2O3 with polyamine dendrimer
Kim et al. Fabrication of covalently linked exfoliated boron nitride nanosheet/multi-walled carbon nanotube hybrid particles for thermal conductive composite materials
Zhang et al. Improving thermal properties of ultrafine-glass-fiber reinforced PTFE hybrid composite via surface modification by (3-aminopropyl) triethoxysilane
JP2016023114A (en) Magnesium oxide particles and method for producing the same, thermally conductive filler and heat-conductive resin composition using the same, molded article thereof and high thermal conductive material
Haider et al. Overview of various sorts of polymer nanocomposite reinforced with layered silicate
JP6657784B2 (en) Composite resin composition, molded body, heat conductive material and heat conductive material
JP6065922B2 (en) Thermally conductive filler, method for producing the same, resin composition using the same, molded product thereof, and high thermal conductive material
Shahamatifard et al. Thermal and mechanical properties of carbon-based rubber nanocomposites: A review
JP2018030741A (en) Surface-modified nanodiamond, and dispersion liquid and composite material containing the surface-modified nanodiamond
JP6037263B2 (en) Inorganic organic composite composition
Karak Nanocomposites of epoxy and metal oxide nanoparticles
Miranda et al. Hierarchical microstructure of nanoparticles of calcium carbonate/epoxy composites: thermomechanical and surface properties
Wang et al. Build a rigid–flexible graphene/silicone interface by embedding SiO2 for adhesive application
WO2006082880A1 (en) Thermoplastic-resin composite composition, process for producing the same, and use thereof
JP2015151297A (en) Method for producing magnesium oxide particle
JP5129448B2 (en) Organized layered silicate, method for producing the same, and resin composition
JP2012107084A (en) Crystalline resin composite material and method for producing the same
Liu et al. Effect of Al 2 O 3-coated SiO 2 on properties of Al 2 O 3-coated SiO 2/PI composite films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170802

R151 Written notification of patent or utility model registration

Ref document number: 6195108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250