JP6657784B2 - Composite resin composition, molded body, heat conductive material and heat conductive material - Google Patents

Composite resin composition, molded body, heat conductive material and heat conductive material Download PDF

Info

Publication number
JP6657784B2
JP6657784B2 JP2015211844A JP2015211844A JP6657784B2 JP 6657784 B2 JP6657784 B2 JP 6657784B2 JP 2015211844 A JP2015211844 A JP 2015211844A JP 2015211844 A JP2015211844 A JP 2015211844A JP 6657784 B2 JP6657784 B2 JP 6657784B2
Authority
JP
Japan
Prior art keywords
resin
heat conductive
fiber
resin composition
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015211844A
Other languages
Japanese (ja)
Other versions
JP2016089169A (en
Inventor
一男 糸谷
一男 糸谷
伊藤 大介
大介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JP2016089169A publication Critical patent/JP2016089169A/en
Application granted granted Critical
Publication of JP6657784B2 publication Critical patent/JP6657784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱伝導性に優れた複合樹脂組成物、成形体に関する。また、該複合樹脂組成物を含有する熱伝導性材料、及び該成形体を含有する熱伝導材料に関する。   The present invention relates to a composite resin composition having excellent thermal conductivity and a molded article. Further, the present invention relates to a heat conductive material containing the composite resin composition and a heat conductive material containing the molded article.

プラスチック材料は、高耐熱性を有するエンジニアリングプラスチックの普及に伴い、加えて生産性及び形状の自由度から、金属材料に代わる材料として電気、電子機器や自動車用等の部材として幅広く使用されている。近年、機器の高性能化、小型軽量化が一層求められ、半導体デバイスの高集積化・大容量化が進み、発熱量が増大したことから、実装部品・周囲部品の熱伝導性向上は重要な課題となっている。又、電気自動車の電費向上として、リチウムイオン電池、モーター、インバータに使用される絶縁部材の熱伝導性向上が強く求められている。
プラスチック成形材料の絶縁性を保持し、熱伝導性を付与する方法としては、無機フィラーを添加する技術が知られている。成形材料を高熱伝導化させるためにはフィラーを高充填する必要があるが、充填剤の添加量が極端に少なくなると、充填剤層にミクロ又はナノボイドが発生したり、充填剤表面の不規則部分に空隙が発生することにより、熱伝導率が低い空気層が介在することになる。これが熱伝導パスの障害となり、理論値に比べ成形体の低下原因となっている。
2. Description of the Related Art With the spread of engineering plastics having high heat resistance, plastic materials are widely used as materials for electric, electronic devices, automobiles, and the like as materials to replace metal materials due to productivity and freedom of shape. In recent years, the demand for higher performance, smaller size and lighter weight of devices has been increasing, and the integration and capacity of semiconductor devices have been progressing, and the amount of heat generated has increased. It has become a challenge. In addition, as an improvement in electric power consumption of electric vehicles, there is a strong demand for improving the thermal conductivity of insulating members used for lithium ion batteries, motors, and inverters.
As a method for maintaining the insulating property of a plastic molding material and imparting thermal conductivity, a technique of adding an inorganic filler is known. In order to make the molding material highly thermally conductive, it is necessary to fill the filler with a high amount.However, if the amount of the filler is extremely small, micro or nano voids are generated in the filler layer, and irregular portions on the filler surface are generated. When a void is generated, an air layer having a low thermal conductivity is interposed. This becomes a hindrance to the heat conduction path and causes the molded product to be lower than the theoretical value.

前記課題に対し、特許文献1においては、高熱伝導樹脂であるポリベンゾオキサゾール繊維をフィラーとした熱伝導性の高い複合樹脂組成物及び成形体が開示されている。使用しているポリベンゾオキサゾール繊維の繊維長は500μm〜10mmであり、この繊維を面内方向(平行方向)に配向させることで、面内方向の熱伝導率が厚み方向の熱伝導率に対し2〜10倍高い成形体が得られている。
しかし、機器の小型化・高集積化が進む今日、求められている熱伝導性は、厚み方向での熱伝導性であり、この点での課題は克服されていなかった。
To solve the above problem, Patent Document 1 discloses a composite resin composition and a molded article having high thermal conductivity using polybenzoxazole fiber, which is a high thermal conductive resin, as a filler. The fiber length of the polybenzoxazole fiber used is 500 μm to 10 mm, and by orienting the fiber in the in-plane direction (parallel direction), the heat conductivity in the in-plane direction is smaller than the heat conductivity in the thickness direction. A molded product 2 to 10 times higher is obtained.
However, as the miniaturization and high integration of devices are progressing, the required thermal conductivity is thermal conductivity in the thickness direction, and the problem in this respect has not been overcome.

特開2014−109024JP 2014-109024 A

本発明の課題は、軽量で、高熱伝導であって、更には熱伝導性に異方性が無く、絶縁性の高い樹脂組成物、及び成形体を提供することにある。また、該樹脂組成物を含有する熱伝導材料および、該成形体を含有する熱伝導部材を提供することにある。   An object of the present invention is to provide a resin composition which is lightweight, has high thermal conductivity, has no thermal conductivity anisotropy, and has high insulating properties, and a molded article. Another object of the present invention is to provide a heat conductive material containing the resin composition and a heat conductive member containing the molded article.

本発明者らは鋭意検討した結果、平均繊維径200nm以下のポリベンザゾール繊維と、熱伝導性フィラーと、樹脂とを含有することを特徴とする、複合樹脂組成物、及び該組成物を成形してなる成形体を提供することで、上記課題を解決できることを見出した。   The present inventors have conducted intensive studies and have found that a composite resin composition comprising polybenzazole fibers having an average fiber diameter of 200 nm or less, a thermally conductive filler, and a resin, and molding the composition. It has been found that the above-mentioned problems can be solved by providing a molded body made of the above.

すなわち本発明は、平均繊維径200nm以下のポリベンザゾール繊維と、熱伝導性フィラーと、樹脂とを含有することを特徴とする、複合樹脂組成物、及び、該複合樹脂組成物を成形してなる成形体を提供するものである。   That is, the present invention is characterized by containing a polybenzazole fiber having an average fiber diameter of 200 nm or less, a thermally conductive filler, and a resin, a composite resin composition, and molding the composite resin composition. To provide a molded article.

また、上記複合樹脂組成物を含有する熱伝導材料および、上記成形体を含有する熱伝導部材を提供するものである。   Another object is to provide a heat conductive material containing the composite resin composition and a heat conductive member containing the molded article.

本発明の複合樹脂組成物は、軽量で絶縁性に優れ、得られる成形体は面内方向だけでなく厚さ方向であっても熱伝導性に優れるものである。よって、得られる複合樹脂組成物は熱伝導材料として好適であり、該成形体を含有する熱伝導部材は熱伝導性に優れることから電子・電気機器や自動車用部材など、様々な分野で好適に使用可能である。   The composite resin composition of the present invention is lightweight and has excellent insulating properties, and the obtained molded article has excellent thermal conductivity not only in the in-plane direction but also in the thickness direction. Therefore, the obtained composite resin composition is suitable as a heat conductive material, and the heat conductive member containing the molded article is suitably used in various fields such as electronic / electrical equipment and automobile members because of its excellent thermal conductivity. Can be used.

<ポリベンザゾール繊維>
本発明は、ポリベンザゾール繊維(以下、PBZ繊維と略する)と、熱伝導性フィラーと、樹脂とを含有する複合樹脂組成物に関する。
PBZ繊維とは、ポリベンザゾール樹脂を繊維状にしたものであり、ポリベンゾオキサゾール(PBO)ホモポリマー、ポリベンゾチアゾール(PBT)ホモポリマー及びそれらPBO、PBTのランダム、シーケンシャルあるいはブロック共重合ポリマーをいう。
<Polybenzazole fiber>
The present invention relates to a composite resin composition containing polybenzazole fiber (hereinafter abbreviated as PBZ fiber), a thermally conductive filler, and a resin.
The PBZ fiber is a fiber formed from a polybenzazole resin, and is obtained by mixing a polybenzoxazole (PBO) homopolymer, a polybenzothiazole (PBT) homopolymer and a random, sequential or block copolymer of PBO and PBT. Say.

PBZ繊維は、樹脂を繊維状にしたものであるため、軽量でかつフレキシブルである。PBZ繊維は、金属繊維や無機繊維と比べ、樹脂との馴染みが良いことから、樹脂に配合する際に配合が容易である。特に、樹脂に配合した際に空隙が生じにくいことから、樹脂と繊維との界面抵抗が生じにくいため、熱伝導率が低下しにくい。また、樹脂繊維であることから、絶縁性にも優れる。   Since the PBZ fiber is a fibrous resin, it is lightweight and flexible. PBZ fiber is more easily blended with resin than metal fiber or inorganic fiber, so that it can be easily blended with resin. In particular, since voids are unlikely to be formed when blended with the resin, interface resistance between the resin and the fiber is hardly generated, so that the thermal conductivity is not easily reduced. Moreover, since it is a resin fiber, it has excellent insulation properties.

PBZポリマーに含まれる構造単位としては、好ましくはライオトロピック液晶ポリマーから選択され、モノマー単位は下記構造式化1〜8で示される。そのポリマーは好ましくは、本質的に構造式化1〜8から選択されているモノマー単位からなり、さらに好ましくは、本質的に下記構造式化1〜3から選択されたモノマー単位からなり、さらに好ましくは下記構造式1からなるポリフェニレンベンゾオキサゾールである。   The structural unit contained in the PBZ polymer is preferably selected from a lyotropic liquid crystal polymer, and the monomer unit is represented by the following structural formulas 1 to 8. The polymer preferably consists essentially of monomer units selected from structural formulas 1-8, more preferably consists essentially of monomer units selected from structural formulas 1-3 below, more preferably Is a polyphenylene benzoxazole having the following structural formula 1.

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

PBZポリマーのドープを形成するための好適な溶媒としては、クレゾールやそのポリマーを溶解し得る非酸化性の酸が含まれる。好適な酸溶媒の例としては、ポリリン酸、メタンスルホン酸及び高濃度の硫酸あるいはそれらの混合物が挙げられ、さらに適する溶媒はポリリン酸及びメタンスルホン酸である。また最も適する溶媒は、ポリリン酸である。   Suitable solvents for forming the PBZ polymer dope include cresol and non-oxidizing acids that can dissolve the polymer. Examples of suitable acid solvents include polyphosphoric acid, methanesulfonic acid and concentrated sulfuric acid or mixtures thereof, and more suitable solvents are polyphosphoric acid and methanesulfonic acid. The most suitable solvent is polyphosphoric acid.

溶液のポリマー濃度は好ましくは少なくとも約7重量%であり、さらに好ましくは、少なくとも10重量%、最も好ましくは少なくとも14重量%である。最大濃度は、例えばポリマーの溶解性やドープ粘度といった実際上の取扱い性により限定される。それらの限界要因のために、ポリマー濃度は通常では20重量%を越えることはない。   The polymer concentration of the solution is preferably at least about 7% by weight, more preferably at least 10% by weight, and most preferably at least 14% by weight. The maximum concentration is limited by practical handling properties such as, for example, polymer solubility and dope viscosity. Because of these limiting factors, the polymer concentration usually does not exceed 20% by weight.

本発明のPBZ繊維は、平均繊維径が200nm以下である。200nmであれば、樹脂と複合化した際に、面内方向だけでなく、厚み方向等、全方向に対して熱伝導性を発揮できる。
また、本発明のPBZ繊維は、平均繊維長が50μm以下であることが好ましく、より好ましくは30μm以下である。50μm以下であれば、得られる成形体がフィルムのような薄い形状であっても、厚さ方向の熱伝導性を発揮しやすく、成形体の強度も低下しにくい。
The PBZ fiber of the present invention has an average fiber diameter of 200 nm or less. If it is 200 nm, when it is compounded with a resin, it can exhibit thermal conductivity not only in the in-plane direction but also in all directions such as the thickness direction.
The average fiber length of the PBZ fiber of the present invention is preferably 50 μm or less, more preferably 30 μm or less. When the thickness is 50 μm or less, even if the obtained molded body has a thin shape such as a film, the thermal conductivity in the thickness direction is easily exhibited, and the strength of the molded body is not easily reduced.

<ポリベンザゾール繊維のナノファイバー化>
ナノファイバーは、超比表面積効果、ナノサイズ効果、超分子配列効果により、多様な性質が発現するため、その製造技術の開発とともに、特性を利用した広範な用途開発研究が進められている。
ナノファイバーは、エレクトロスピニング、メルトスピニング、自己組織化、鋳型合成、エレクトロブロー、forcespinningなど、いくつかの方法で製造することができる。
現在、工業的規模でナノファイバーを製造する方法としては、ナノファイバーを製造するためのソースとしてのポリマー溶液と高電圧を使用するエレクトロスピニング法が知られている。
<Nanofiber of polybenzazole fiber>
Nanofibers exhibit various properties due to the super-specific surface area effect, the nanosize effect, and the supramolecular arrangement effect. Therefore, in addition to the development of the manufacturing technology, a wide range of application development research utilizing the characteristics is being advanced.
Nanofibers can be manufactured in several ways, including electrospinning, melt spinning, self-assembly, template synthesis, electroblowing, and forcespinning.
At present, as a method for producing nanofibers on an industrial scale, an electrospinning method using a polymer solution and a high voltage as a source for producing nanofibers is known.

しかし,ポリベンザゾールは不溶不融で加工性が低いことから,エレクトロスピニングによるナノファイバー化は困難であった。この問題を解決するために溶解性に優れたポリベンザゾール前駆体にエレクトロスピニングを適用することでポリベンザゾール樹脂のナノファイバー調製が可能となる。
例えばポリベンゾオキサゾール樹脂ではテトラキストリメチルシリル化(o−ビスアミノフェノール)と芳香族ジカルボン酸クロリドとの低温重縮合によりポリベンゾビスオキサゾール樹脂の前駆体であるポリ(o−ヒドロキシアミド)溶液を用いることでナノファイバー調製が可能となる。
However, since polybenzazole is insoluble and infusible and has low processability, it has been difficult to form nanofibers by electrospinning. By applying electrospinning to a polybenzazole precursor having excellent solubility in order to solve this problem, it becomes possible to prepare nanofibers of a polybenzazole resin.
For example, in the case of a polybenzoxazole resin, a poly (o-hydroxyamide) solution which is a precursor of the polybenzobisoxazole resin is obtained by low-temperature polycondensation of tetrakistrimethylsilylation (o-bisaminophenol) and aromatic dicarboxylic acid chloride. Nanofiber preparation becomes possible.

<熱伝導性フィラー>
本発明の熱伝導性フィラーは、熱伝導性が高いフィラーであればよく、より好ましくは絶縁性も高いフィラーである。
熱伝導性フィラーとしては、具体的には金属系ファイラー、無機化合物フィラー、炭素系フィラー等が使用される。具体的には、例えば、銀、銅、アルミニウム、鉄、ステンレス等の金属系フィラー、アルミナ、マグネシア、ベリリア、シリカ、窒化ホウ素、窒化アルミニウム、炭化ケイ素、炭化ホウ素、炭化チタン等の無機系フィラー、ダイヤモンド、黒鉛、グラファイト、炭素繊維等の炭素系フィラーなどが挙げられる。少なくとも1種の熱伝導性フィラーが選択されて使用されるが、結晶形、粒子サイズ等が異なる1種あるいは複数種の熱伝導性フィラーを組み合わせて使用する事も可能である。電子機器等の用途で放熱性が必要とされる場合には、電気絶縁性が求められる事が多く、これらのフィラーの内、熱伝導性と体積固有抵抗のいずれも高い、アルミナ、酸化マグネシウム、酸化亜鉛、ベリリア、窒化ホウ素、窒化アルミニウム、ダイヤモンドから選択される少なくとも1種の絶縁性の熱伝導性フィラーの使用が好ましい。複合樹脂組成物に対する熱伝導性フィラーの充填量には限りがあり、充填量が多くなりすぎると成形性等の物性を低下させてしまうため、熱伝導率の高い熱伝導フィラーの使用が好ましく、10W/m・K以上の熱伝導性フィラーの使用がより好ましい。
<Thermal conductive filler>
The heat conductive filler of the present invention may be a filler having high heat conductivity, and more preferably a filler having high insulation.
Specific examples of the heat conductive filler include metal-based filers, inorganic compound fillers, and carbon-based fillers. Specifically, for example, silver, copper, aluminum, iron, metal filler such as stainless steel, alumina, magnesia, beryllia, silica, boron nitride, aluminum nitride, silicon carbide, boron carbide, inorganic filler such as titanium carbide, Examples thereof include carbon-based fillers such as diamond, graphite, graphite, and carbon fiber. At least one kind of heat conductive filler is selected and used, but it is also possible to use one kind or plural kinds of heat conductive fillers having different crystal forms, particle sizes and the like in combination. When heat dissipation is required in applications such as electronic equipment, electrical insulation is often required, and among these fillers, both thermal conductivity and volume resistivity are high, alumina, magnesium oxide, It is preferable to use at least one kind of insulating heat conductive filler selected from zinc oxide, beryllia, boron nitride, aluminum nitride, and diamond. The filling amount of the heat conductive filler for the composite resin composition is limited, and if the filling amount is too large, the physical properties such as moldability will be reduced. It is more preferable to use a heat conductive filler of 10 W / m · K or more.

中でもアルミナ、窒化アルミニウム、窒化ホウ素、酸化マグネシウムが熱伝導性と絶縁性の確保の点で好ましく、特にアルミナが熱伝導性と絶縁性に加えて樹脂に対する充填性が良くなるのでより好ましい。 Among them, alumina, aluminum nitride, boron nitride, and magnesium oxide are preferable from the viewpoint of ensuring thermal conductivity and insulating properties, and alumina is more preferable because it improves the resin filling property in addition to the thermal conductivity and insulating properties.

これらの熱伝導性フィラーとして、表面処理を行ったものを使用する事もできる。例えば、無機系フィラーなどは、シラン系、チタネート系およびアルミネート系カップリング剤などで、表面改質されたものを使用する事ができる。 As these heat conductive fillers, those subjected to a surface treatment can also be used. For example, inorganic fillers and the like that have been surface-modified with silane-based, titanate-based, and aluminate-based coupling agents can be used.

複合樹脂組成物の流動性やその成形体の熱伝導率をから、前記のカップリング剤で、処理した熱伝導性フィラーを用いた方が良い場合が多く、例えば、表面処理により、硬化物における樹脂と熱伝導性フィラーの密着性が更に高められ、樹脂と熱伝導性フィラーの間での界面熱抵抗が低下し、熱伝導性が向上する。   From the fluidity of the composite resin composition and the thermal conductivity of the molded product thereof, it is often better to use a thermally conductive filler treated with the above-described coupling agent. The adhesion between the resin and the thermally conductive filler is further enhanced, the interfacial thermal resistance between the resin and the thermally conductive filler is reduced, and the thermal conductivity is improved.

カップリング剤の中でも、シラン系カップリング剤の使用が好ましく、例えば、シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β(3,4エポキシシンクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシリメトキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン等が挙げられる。 Among the coupling agents, it is preferable to use a silane coupling agent. For example, as the silane coupling agent, vinyl trichlorosilane, vinyl triethoxy silane, vinyl trimethoxy silane, γ-methacryloxypropyl trimethoxy silane, β ( 3,4 epoxy synchrohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycylimethoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N- β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane And the like.

上記の熱伝導性フィラーの平均粒子径は特に限定されないが、好ましい下限が0.2μm、好ましい上限が80μmである。上記の熱伝導性フィラーの平均粒子径が0.2μm未満であると、複合樹脂組成物の粘度が高くなって、作業性等が低下することがある。上記の熱伝導性フィラーの平均粒子径が80μmを超えたものを多量に使用すると、複合樹脂組成物の成形性が不足して、電子部品の反りが大きくなったり、冷熱サイクル下等においてクラック又は剥離が生じたりすることがある。上記の熱伝導性フィラーの平均粒子径のより好ましい下限は0.4μm、より好ましい上限は50μmである。 Although the average particle size of the above-mentioned heat conductive filler is not particularly limited, a preferable lower limit is 0.2 μm and a preferable upper limit is 80 μm. When the average particle diameter of the above-mentioned heat conductive filler is less than 0.2 μm, the viscosity of the composite resin composition becomes high, and workability and the like may be reduced. When a large amount of the above-mentioned thermally conductive filler having an average particle diameter of more than 80 μm is used in a large amount, the moldability of the composite resin composition becomes insufficient, the warpage of the electronic component increases, or cracks or Peeling may occur. A more preferred lower limit of the average particle diameter of the above-mentioned heat conductive filler is 0.4 μm, and a more preferred upper limit is 50 μm.

上記の熱伝導性フィラーの形状は特に限定されないが、複合樹脂組成物の流動性からは真球に近い方が好ましい。例えば、アスペクト比(粒子の短径の長さに対する粒子の長径の長さの比(長径の長さ/短径の長さ))は、特に限定されないが、1に近いほど好ましく、好ましくは、1〜80であり、さらに好ましくは1〜10である。 The shape of the above-mentioned heat conductive filler is not particularly limited, but it is preferably closer to a true sphere from the fluidity of the composite resin composition. For example, the aspect ratio (the ratio of the major axis length of the particle to the minor axis length of the particle (major axis length / minor axis length)) is not particularly limited, but is preferably as close to 1 as possible, and more preferably 1 to 80, and more preferably 1 to 10.

<樹脂>
本発明の樹脂は、公知慣用の樹脂を用いればよく、熱可塑性樹脂でも熱硬化性樹脂でも構わない。本発明に用いるPBZ繊維は、熱分解温度が非常に高いため、成形時に高熱となる熱可塑性樹脂や、硬化時に加熱が必要な熱硬化性樹脂を用いたとしても、複合後のPBZ繊維は繊維の形状を保つため、高い熱伝導性を発揮する。
<Resin>
The resin of the present invention may be a known and commonly used resin, and may be a thermoplastic resin or a thermosetting resin. The PBZ fiber used in the present invention has a very high thermal decomposition temperature. Therefore, even if a thermoplastic resin that becomes high in temperature during molding or a thermosetting resin that requires heating during curing is used, the PBZ fiber after compounding is a fiber. Demonstrate high thermal conductivity to maintain the shape of

熱硬化性樹脂とは、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。   The thermosetting resin is a resin having a property of being substantially insoluble and infusible when cured by heating or a means such as radiation or a catalyst. Specific examples thereof include phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene Resins, thermosetting polyimide resins, and the like. These thermosetting resins can be used alone or in combination of two or more.

熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。   The thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, and polyvinyl chloride resin. Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone Fat, polyarylate resins, thermoplastic polyimide resins, polyamideimide resins, polyether ether ketone resin, polyketone resin, liquid crystal polyester resins, fluorine resins, syndiotactic polystyrene resin, cyclic polyolefin resin. These thermoplastic resins can be used alone or in combination of two or more.

<その他の配合物>
本発明の複合樹脂組成物には、本発明の効果を損ねない範囲であれば、その他の配合物を配合してもかまわない。
例えば、有機顔料、無機顔料、体質顔料、各種樹脂、反応性化合物、触媒、重合開始剤、有機フィラー、無機フィラー、有機溶剤、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、可塑剤等などが挙げられる。
<Other compounds>
Other compounds may be added to the composite resin composition of the present invention as long as the effects of the present invention are not impaired.
For example, organic pigments, inorganic pigments, extender pigments, various resins, reactive compounds, catalysts, polymerization initiators, organic fillers, inorganic fillers, organic solvents, clay minerals, waxes, surfactants, stabilizers, flow regulators, dyes , Leveling agents, rheology control agents, ultraviolet absorbers, antioxidants, plasticizers and the like.

<複合樹脂組成物>
本発明の複合樹脂組成物は、上記PBZ繊維、熱伝導フィラー、樹脂とを複合して得られる樹脂組成物である。
本発明のPBZ繊維は、熱伝導性が多く、高熱伝導フィラーと併用することで、高熱伝導粒子間を取り持つ熱伝導性パスとして機能すると考えられる。本発明のPBZ繊維はナノ繊維であることから、複合化した際のボイドや空隙が発生しにくいため、熱伝導性にすぐれる。また、本発明のPBZ繊維はナノ繊維であることから、樹脂に複合化した際に異方性が生じにくいため、面内方向だけ無く、厚さ方向も含めた全方向に熱伝導性を発揮する。
<Composite resin composition>
The composite resin composition of the present invention is a resin composition obtained by compounding the PBZ fiber, the heat conductive filler, and the resin.
The PBZ fiber of the present invention has a high thermal conductivity and is considered to function as a thermal conductive path covering between the high thermal conductive particles when used in combination with the high thermal conductive filler. Since the PBZ fiber of the present invention is a nanofiber, voids and voids are less likely to be generated when the PBZ fiber is composited, so that the PBZ fiber has excellent thermal conductivity. In addition, since the PBZ fiber of the present invention is a nanofiber, it hardly generates anisotropy when it is compounded with a resin, and therefore exhibits thermal conductivity not only in the in-plane direction but also in all directions including the thickness direction. I do.

PBZ繊維、熱伝導フィラー、樹脂とを複合化する方法としては、特に限定は無く、公知慣用の混合方法を用いればよい。具体的には、押出機、ニ−ダ、ロ−ル、プラネタリミキサー、自転−公転型混練装置等を用いればよい。所定の配合量の樹脂にフィラー及び繊維を配合し、攪拌機等で十分に混合した後、ニーダ、ロール、プラネタリミキサー等で混練することで、熱伝導粒子を均一に分散させた組成物を得ることができる。混練の際には、加温したり、溶剤を用いたりしてもよい。   The method of compounding the PBZ fiber, the heat conductive filler, and the resin is not particularly limited, and a known and commonly used mixing method may be used. Specifically, an extruder, a kneader, a roll, a planetary mixer, a rotation-revolution type kneading device, or the like may be used. After blending a filler and a fiber with a predetermined amount of resin and mixing them sufficiently with a stirrer or the like, kneading with a kneader, a roll, a planetary mixer or the like to obtain a composition in which the heat conductive particles are uniformly dispersed. Can be. In kneading, heating or solvent may be used.

樹脂と、PBZ繊維と、熱伝導性フィラーの配合量としては、樹脂とPBZ繊維と熱伝導性フィラーの合計を100質量%としたときに、PBZ繊維と熱伝導性フィラーの合計含有率が50〜95質量%であることが好ましい。PBZ繊維と熱伝導性フィラーの合計含有量が50質量%以上であれば、樹脂組成物は充分な熱伝導性が得られる。PBZ繊維と熱伝導性フィラーの合計含有量が95質量%以下であれば、樹脂組成物の成形性や塗工性が良好である。また、樹脂組成物を積層体にした場合の剥がれ等がおきにくい。熱伝導性フィラーの機能を効果的に発現し、高い熱伝導性を得るためには、PBZ繊維と熱伝導性フィラーが高充填されているほうが好ましく、合計含有率が60〜95質量%の使用が好ましい。樹脂組成物の流動性も考慮すると、より好ましくは、60〜85質量%の使用である。   When the total amount of the resin, the PBZ fiber and the heat conductive filler is 100% by mass, the total content of the PBZ fiber and the heat conductive filler is 50%. It is preferable that it is 95% by mass. When the total content of the PBZ fiber and the thermally conductive filler is 50% by mass or more, the resin composition has sufficient thermal conductivity. When the total content of the PBZ fiber and the thermally conductive filler is 95% by mass or less, the moldability and coatability of the resin composition are good. Moreover, when the resin composition is formed into a laminate, peeling or the like hardly occurs. In order to effectively exhibit the function of the thermally conductive filler and obtain high thermal conductivity, it is preferable that the PBZ fiber and the thermally conductive filler are highly filled, and the total content is 60 to 95% by mass. Is preferred. Considering also the fluidity of the resin composition, it is more preferable to use 60 to 85% by mass.

また、複合樹脂組成物において、PBZ繊維と熱伝導性フィラーの配合比としては、PBZ繊維と熱伝導性フィラーの合計を100質量%としたときに、PBZ繊維の含有率が0.2〜20質量%であることが好ましい。PBZ繊維の含有率が0.2質量%以上であれば、熱伝導性向上の効果が十分得られ、20質量%以下であれば樹脂の成形性や塗工性に優れる。より好ましくは0.2〜5質量%であり、特に好ましくは0.5〜3質量%であり、0.5〜1質量%であると、熱伝導性と成形性のバランスに優れるため好ましい。   In the composite resin composition, the content ratio of the PBZ fiber and the thermally conductive filler is 0.2 to 20 when the total of the PBZ fiber and the thermally conductive filler is 100% by mass. It is preferable that the content is mass%. When the content of the PBZ fiber is 0.2% by mass or more, the effect of improving the thermal conductivity is sufficiently obtained, and when the content is 20% by mass or less, the moldability and coatability of the resin are excellent. It is more preferably from 0.2 to 5% by mass, particularly preferably from 0.5 to 3% by mass, and more preferably from 0.5 to 1% by mass because the balance between thermal conductivity and moldability is excellent.

<成形体>
本発明の成形体は、上記複合樹脂組成物を成形して得られる成形体である。成形方法は公知慣用の方法を用いればよく、樹脂の種類あるいは用途によって適時選択すればよい。
例えば板状の製品を製造するのであれば、押し出し成形法が一般的であるが、平面プレスによっても可能である。この他、異形押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて成形体を製造する事ができる。
<Molded body>
The molded article of the present invention is a molded article obtained by molding the above-mentioned composite resin composition. The molding method may be a known and commonly used method, and may be appropriately selected depending on the type or use of the resin.
For example, if a plate-shaped product is to be manufactured, an extrusion molding method is generally used, but it is also possible to use a flat press. In addition, a modified extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, or the like can be used. In addition, if a film-shaped product is to be produced, a solution casting method can be used in addition to a melt extrusion method. When a melt molding method is used, blown film molding, cast molding, extrusion lamination molding, calender molding, sheet molding. , Fiber molding, blow molding, injection molding, rotational molding, coating molding and the like. In the case of a resin that cures with an active energy ray, a molded article can be manufactured using various curing methods using an active energy ray.

本発明の複合樹脂組成物を成形して得られる成形体としては、密度比が高いほうが好ましい。密度比が高いと、成形体中のボイドが少ないため、熱伝導率が低下しにくい。密度比としては95%以上が好ましく、より好ましくは98%以上であって、更に好ましくは99%以上である。   A molded article obtained by molding the composite resin composition of the present invention preferably has a higher density ratio. When the density ratio is high, the voids in the molded body are small, so that the thermal conductivity does not easily decrease. The density ratio is preferably 95% or more, more preferably 98% or more, and still more preferably 99% or more.

<熱伝導材料>
本発明の複合樹脂組成物は、熱伝導性に優れることから、熱伝導材料として好適に用いることができる。熱伝導材料としては、熱伝導性接着剤等に用いることができる。
<Heat conductive material>
Since the composite resin composition of the present invention has excellent heat conductivity, it can be suitably used as a heat conductive material. As the heat conductive material, a heat conductive adhesive or the like can be used.

<熱伝導部材>
本発明の熱伝導性部材は、本発明の成形体を含有する。本発明の熱伝導性部材は面内方向だけでなく厚み方向にも熱伝導性に優れることから、熱伝導性シートや熱伝導性フィルムのような、層間熱伝導材に特に良好に使用可能である。また、熱伝導性に異方性が少なく小型・薄層であっても効果が高いうえ、絶縁性にも優れることから、電気、電子機器や自動車用等の部材、半導体デバイス部材、リチウムイオン電池、モーター、インバータに使用される絶縁部材に特に好適に使用可能である。
<Heat conduction member>
The heat conductive member of the present invention contains the molded article of the present invention. Since the heat conductive member of the present invention has excellent heat conductivity not only in the in-plane direction but also in the thickness direction, it can be particularly preferably used for an interlayer heat conductive material such as a heat conductive sheet or a heat conductive film. is there. In addition, since the heat conductivity is low in anisotropy, the effect is high even in a small and thin layer, and the insulating property is excellent, the members for electric, electronic equipment and automobiles, semiconductor device members, lithium ion batteries In particular, it can be suitably used for insulating members used for motors and inverters.

以下、本発明を実施例を挙げて説明するが、本発明は実施例に限定されるものではない。また、以下の実施例において、部、%は特に言及のない場合は重量換算である。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples. In the following examples, parts and% are by weight unless otherwise specified.

<合成例1>
○樹脂合成
テトラキストリメチルシリル化(4,6’−ジアミノレゾルシノール)とテレフタル酸ジクロリドをジメチルアセトアミド(DMAc)中で低温重縮合することによりポリベンゾビスオキサゾール樹脂の前駆体であるシリル化ポリ(o−ヒドロキシアミド)溶液を調製した。
○ナノファイバー調製
約1mlの上記樹脂合成で得たシリル化ポリ(o−ヒドロキシアミド)溶液を内径12mmのシリンジに入れ、直流高圧電源(東和計測)を用いて内径340μmの針先に電圧印加することによりエレクトロスピニングを行った.ターゲット電極にはアルミ箔で覆ったステンレス板(10cm×10cm)を用い,針先とターゲット電極間の距離を20cmとした。
エレクトロスピニングにより生成したヤーンはメタノールに浸漬させた後、真空中300℃で3時間熱処理することによりポリベンゾビスオキサゾール樹脂に変換することで、ポリベンゾビスオキサゾール樹脂とし、これをアトマイザー粉砕機で1時間粉砕することで平均繊維長50μm、平均繊維径100nmのポリベンゾビスオキサゾールのナノファイバー(F−1)を得た。
ファイバーの直径及び繊維長はFE−SEM(SU8010,株式会社日立ハイテクノロジー社製)により測定し,直径及び繊維長の分布は10箇所以上の測定から求めた。
<Synthesis example 1>
-Resin synthesis Tetrakis trimethylsilylation (4,6'-diaminoresorcinol) and terephthalic acid dichloride are subjected to low-temperature polycondensation in dimethylacetamide (DMAc) to obtain silylated poly (o-hydroxy) which is a precursor of polybenzobisoxazole resin. Amide) solution was prepared.
Preparation of nanofibers About 1 ml of the silylated poly (o-hydroxyamide) solution obtained in the above resin synthesis is placed in a syringe having an inner diameter of 12 mm, and a voltage is applied to a needle having an inner diameter of 340 μm using a DC high-voltage power supply (Towa Keisoku). Electrospinning was performed. A stainless steel plate (10 cm × 10 cm) covered with aluminum foil was used as the target electrode, and the distance between the needle tip and the target electrode was 20 cm.
The yarn produced by electrospinning is immersed in methanol, and then heat-treated at 300 ° C. for 3 hours in a vacuum to convert the yarn into a polybenzobisoxazole resin, thereby obtaining a polybenzobisoxazole resin. By milling for an hour, nanofibers (F-1) of polybenzobisoxazole having an average fiber length of 50 μm and an average fiber diameter of 100 nm were obtained.
The diameter and the fiber length of the fiber were measured by FE-SEM (SU8010, manufactured by Hitachi High-Technologies Corporation), and the distribution of the diameter and the fiber length was determined from measurements at 10 or more locations.

<合成例2>
アトマイザー粉砕機での粉砕時間を2時間とする以外は合成例1と同様にして平均繊維長30μm、平均繊維径100nmのポリベンゾビスオキサゾールのナノファイバー(F−2)を得た。
<Synthesis Example 2>
Polybenzobisoxazole nanofibers (F-2) having an average fiber length of 30 µm and an average fiber diameter of 100 nm were obtained in the same manner as in Synthesis Example 1 except that the pulverization time in the atomizer pulverizer was changed to 2 hours.

<実施例1>
○樹脂組成物の調製
ビスフェノールAのジグリシジルエーテル(DIC株式会社製:商品名EPICLON 850−S、エポキシ当量188g/eq.)45.5g、ポリテトラメチレングリコールジグリシジルエーテル30(阪本薬品(株)社製、エポキシ当量412g/eq.)の50g、ジシアンジアミド アミキュアAH−154(味の素ファインテクノ(株)製)4.5gを混合し樹脂混合液(E)を調整する。この樹脂混合液(E)と合成例1で得た高熱伝導繊維(F−1)と熱伝導性フィラーを表の充填比率に従い配合し、3本ロールで混練し脱泡することで樹脂組成物(C−1)を得た。
<Example 1>
-Preparation of resin composition 45.5 g of diglycidyl ether of bisphenol A (manufactured by DIC: EPICLON 850-S, epoxy equivalent: 188 g / eq.), Polytetramethylene glycol diglycidyl ether 30 (Sakamoto Yakuhin Co., Ltd.) (Epoxy equivalent: 412 g / eq.) And 4.5 g of Dicyandiamide Amicure AH-154 (manufactured by Ajinomoto Fine Techno Co., Ltd.) to prepare a resin mixture (E). This resin mixture (E), the high heat conductive fiber (F-1) obtained in Synthesis Example 1 and the heat conductive filler are blended according to the filling ratio in the table, kneaded with three rolls, and defoamed to obtain a resin composition. (C-1) was obtained.

○樹脂硬化物の熱伝導性(厚み方向)
樹脂組成物を用いて、熱プレス成形により樹脂硬化物試験片(60×110×0.8mm)を作成した(仮硬化条件170℃×20分、本硬化条件170℃×2時間)。得られた硬化物から10×10mmに切り出した試験片について、熱伝導率測定装置(LFA447nanoflash、NETZSCH社製)を用いて熱伝導率の測定を行った。
○硬化物の熱伝導性(面内方向)
樹脂組成物を用いて、熱プレス成形により樹脂硬化物試験片(110mm×70mm×1mm)を作成し、熱線法式熱伝導率測定装置(京都電子工業製QTM−500)を用いて熱伝導率を測定した。
○ Thermal conductivity of cured resin (thickness direction)
Using the resin composition, a resin cured product test piece (60 × 110 × 0.8 mm) was prepared by hot press molding (temporary curing conditions: 170 ° C. × 20 minutes, main curing conditions: 170 ° C. × 2 hours). For a test piece cut out to a size of 10 × 10 mm from the obtained cured product, the thermal conductivity was measured using a thermal conductivity measuring device (LFA447 nanoflash, manufactured by NETZSCH).
○ Thermal conductivity of cured product (in-plane direction)
Using the resin composition, a resin cured product test piece (110 mm × 70 mm × 1 mm) was prepared by hot press molding, and the thermal conductivity was measured using a hot-wire method thermal conductivity measuring device (QTM-500 manufactured by Kyoto Electronics Industry). It was measured.

○樹脂硬化物の密度比
上記厚み方向の熱伝導性測定法と同様にして、硬化物から10×10mmに切り出した試験片を切り出した。得られた試験片に対し、アルキメデス法により密度測定を行い、計測した密度値を組成物比から算出した理論密度値で除した値を密度比とした。
O Density ratio of cured resin A test piece cut out to a size of 10 x 10 mm from the cured product was cut out in the same manner as in the method of measuring the thermal conductivity in the thickness direction. The density of the obtained test piece was measured by the Archimedes method, and the value obtained by dividing the measured density value by the theoretical density value calculated from the composition ratio was defined as the density ratio.

○接着性(接着強度)評価
樹脂組成物C−1を熱伝導性接着剤とし、積層体を作成した。アルミ片同士の片側(25mm×100mm×1.6mm)の一端部(25mm×12.5mm)に樹脂組成物1を塗布し、もう一枚同型の金属片を張り合わせたうえ、170℃×2時間、200℃×2時間で硬化させ、積層体1を作成した。接着強度測定装置「ストログラフ APII(東洋精機製作所)」を使用し、引っ張りせん断接着強さの試験方法(JISK6850)により、測定した。得られた積層体1の接着面に対し、平行に引っ張り、破断した際の最大荷重を接着(せん断)面積で割り、接着強度を求めた。接着性の評価として接着強度が5MPa以上を○、3MPa以上5MPa未満を△、3MPa未満を×とした。
-Adhesion (adhesion strength) evaluation The resin composition C-1 was used as a heat conductive adhesive to prepare a laminate. The resin composition 1 was applied to one end (25 mm × 100 mm × 1.6 mm) of one side (25 mm × 100 mm × 1.6 mm) of the aluminum pieces, and another piece of the same type of metal was laminated, and then 170 ° C. × 2 hours And cured at 200 ° C. for 2 hours to produce a laminate 1. Using an adhesive strength measuring device “Strograph APII (Toyo Seiki Seisakusho)”, the tensile strength was measured according to a test method (JIS K6850) for shear adhesive strength. The obtained laminate 1 was pulled in parallel with the bonding surface, and the maximum load at the time of breakage was divided by the bonding (shear) area to determine the bonding strength. As the evaluation of adhesiveness, ○ indicates that the adhesive strength was 5 MPa or more, and Δ indicates that the adhesive strength was 3 MPa or more and less than 5 MPa.

<実施例2>〜<実施例8>
表1および表2に示す条件を用いる以外は実施例1と同様にして、樹脂組成物(C−2)〜(C−8)を得て、実施例1と同様に評価を行った。
<Example 2> to <Example 8>
Resin compositions (C-2) to (C-8) were obtained and evaluated in the same manner as in Example 1, except that the conditions shown in Tables 1 and 2 were used.

<比較例1、比較例4〜7>高熱伝導繊維は添加せず、表1および表2に示す配合条件で実施例1と同様な処方にて、樹脂組成物 (HC−1)、(HC−5〜7)を得て、実施例1と同様に評価を行った。

<比較例2>〜<比較例3>
高熱伝導繊維に市販のポリパラフェニレンベンゾオキサゾール繊維(繊維長3mm、繊維径12μm、東洋紡績(株)製、商品名ザイロンHM)(HF−1)を用いて、表1に示す配合条件で実施例1と同様な処方にて樹脂組成物(HC−2)〜(HC−3)を得て、実施例1と同様に評価を行った。
<Comparative Example 1, Comparative Examples 4 to 7> Resin compositions (HC-1) and (HC) were prepared by adding the high heat conductive fiber and adding the same formulation as in Example 1 under the blending conditions shown in Tables 1 and 2. -5 to 7), and evaluated in the same manner as in Example 1.

<Comparative Example 2> to <Comparative Example 3>
A commercially available polyparaphenylene benzoxazole fiber (fiber length: 3 mm, fiber diameter: 12 μm, manufactured by Toyobo Co., Ltd., trade name: Zylon HM) (HF-1) was used as the high heat conductive fiber under the blending conditions shown in Table 1. Resin compositions (HC-2) to (HC-3) were obtained with the same formulation as in Example 1, and evaluated in the same manner as in Example 1.

Figure 0006657784
Figure 0006657784

Figure 0006657784
Figure 0006657784

表中の略語は以下の通りである。
DAW45(球状酸化アルミニウム 50%粒子径45μm) 電気化学工業(株)
DAW05(球状酸化アルミニウム 50%粒子径5μm) 電気化学工業(株)
ASFP20(球状酸化アルミニウム 50%粒子径0.3μm) 電気化学工業(株)
Abbreviations in the table are as follows.
DAW45 (Spherical aluminum oxide 50% particle size 45 μm) Denki Kagaku Kogyo Co., Ltd.
DAW05 (Spherical aluminum oxide 50% particle size 5 μm) Denki Kagaku Kogyo Co., Ltd.
ASFP20 (Spherical aluminum oxide 50% particle size 0.3 μm) Denki Kagaku Kogyo Co., Ltd.

本発明の複合樹脂組成物は、軽量で絶縁性に優れ、得られる成形体は面内方向だけでなく厚さ方向であっても熱伝導性に優れるものである。よって、得られる複合樹脂組成物は熱伝導材料として好適であり、該成形体を含有する熱伝導部材は熱伝導性に優れることから電子・電気機器や自動車用部材など、様々な分野で好適に使用可能である。   The composite resin composition of the present invention is lightweight and has excellent insulating properties, and the obtained molded article has excellent thermal conductivity not only in the in-plane direction but also in the thickness direction. Therefore, the obtained composite resin composition is suitable as a heat conductive material, and the heat conductive member containing the molded article is suitably used in various fields such as electronic / electrical equipment and automobile members because of its excellent thermal conductivity. Can be used.

Claims (7)

平均繊維径200nm以下のポリベンザゾール繊維と、熱伝導性フィラーと、樹脂とを含有し、樹脂とポリベンザゾール繊維と熱伝導性フィラーの合計を100質量%としたときに、ポリベンザゾール繊維と熱伝導性フィラーの合計含有率が50〜95質量%であることを特徴とする、複合樹脂組成物。、 Polybenzazole fiber containing a polybenzazole fiber having an average fiber diameter of 200 nm or less, a heat conductive filler, and a resin, and when the total of the resin, the polybenzazole fiber, and the heat conductive filler is 100% by mass, the polybenzazole fiber And a total content of the heat conductive filler is 50 to 95% by mass . , 前記ポリベンザゾール繊維の平均繊維長が50μm以下である、請求項1に記載の複合樹脂組成物。 The composite resin composition according to claim 1, wherein the average fiber length of the polybenzazole fiber is 50 µm or less. 前記ポリベンザゾール繊維が、ポリフェニレンベンゾオキサゾール繊維である、請求項1または2に記載の複合樹脂組成物。 The composite resin composition according to claim 1, wherein the polybenzazole fiber is a polyphenylene benzoxazole fiber. 前記樹脂組成物において、ポリベンザゾール繊維と熱伝導性フィラーの合計を100質量%としたときに、ポリベンザゾール繊維の含有率が0.2〜20質量%である、請求項1〜3のいずれか一項に記載の樹脂組成物。 4. The resin composition according to claim 1, wherein the content of the polybenzazole fiber is 0.2 to 20% by mass, when the total of the polybenzazole fiber and the thermally conductive filler is 100% by mass. 5. the resin composition according to any one. 請求項1〜4のいずれか一項に記載の複合樹脂組成物を成形してなる成形体。 A molded article obtained by molding the composite resin composition according to any one of claims 1 to 4 . 請求項1〜4のいずれか一項に記載の複合樹脂組成物を含有することを特徴とする、熱伝導材料。 Characterized in that it contains a composite resin composition according to any one of claims 1-4, thermally conductive material. 請求項に記載の成形体を含有することを特徴とする、熱伝導部材。 A heat conductive member comprising the molded product according to claim 5 .
JP2015211844A 2014-10-30 2015-10-28 Composite resin composition, molded body, heat conductive material and heat conductive material Active JP6657784B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221432 2014-10-30
JP2014221432 2014-10-30

Publications (2)

Publication Number Publication Date
JP2016089169A JP2016089169A (en) 2016-05-23
JP6657784B2 true JP6657784B2 (en) 2020-03-04

Family

ID=56018874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211844A Active JP6657784B2 (en) 2014-10-30 2015-10-28 Composite resin composition, molded body, heat conductive material and heat conductive material

Country Status (1)

Country Link
JP (1) JP6657784B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338614B2 (en) 2016-04-27 2018-06-06 株式会社Subaru Vehicle travel control device
WO2020105215A1 (en) * 2018-11-20 2020-05-28 太陽インキ製造株式会社 High-withstand-voltage, heat-dissipating, insulating resin composition and electronic component in which same is used
JP2020189914A (en) * 2019-05-21 2020-11-26 昭和電工マテリアルズ株式会社 Composition, sheet and article
CN113388249B (en) * 2020-03-13 2022-11-22 中国科学院化学研究所 Benzoxazole polymer nanofiber-based insulating heat-conducting polymer composite material as well as preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646824B2 (en) * 1996-03-26 2005-05-11 東洋紡績株式会社 Thermoplastic resin composition and molded article thereof
JP2000273196A (en) * 1999-03-24 2000-10-03 Polymatech Co Ltd Heat-conductive resin substrate and semiconductor package
JP2002088345A (en) * 2000-09-19 2002-03-27 Tomoegawa Paper Co Ltd Friction material for brake
JP2003059346A (en) * 2001-08-21 2003-02-28 Toyobo Co Ltd Small-diameter wire cord
JP3852681B2 (en) * 2001-10-12 2006-12-06 東洋紡績株式会社 Polybenzazole fiber
JP2008248048A (en) * 2007-03-30 2008-10-16 Shin Kobe Electric Mach Co Ltd Molding material of high heat conductive thermoplastic resin
JP2009090757A (en) * 2007-10-05 2009-04-30 Bridgestone Corp Tire
JP2009203313A (en) * 2008-02-27 2009-09-10 Toyobo Co Ltd Polyimide fiber-reinforced bismaleimide triazine resin platelet and method for producing the same
WO2010001754A1 (en) * 2008-06-30 2010-01-07 東洋紡績株式会社 Prepreg for printed wiring board and printed wiring board

Also Published As

Publication number Publication date
JP2016089169A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
KR102265034B1 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition, and resin sheet
JP6678999B2 (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
JP5330910B2 (en) Resin composition and use thereof
JP2005146057A (en) High-thermal-conductivity molding and method for producing the same
Wang et al. Combining alumina particles with three-dimensional alumina foam for high thermally conductive epoxy composites
JP6657784B2 (en) Composite resin composition, molded body, heat conductive material and heat conductive material
JP6538337B2 (en) Resin composition and method for producing the same
US20180354792A1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
KR102016474B1 (en) Insulating composition for substrate, prepreg and substrate using the same
JP2021091604A (en) Hexagonal boron nitride powder and its manufacturing method, as well as composition and heat dissipation material using the same
JP6125273B2 (en) Boron nitride molded body, production method and use thereof
JP6044880B2 (en) COMPOSITE MATERIAL COMPRISING INORGANIC ORGANIC COMPOSITE COMPOSITION AND METHOD FOR PRODUCING THE SAME
KR101401574B1 (en) Electrical conductive adhesives with hybrid fillers and fabrication method therof
JP2011090868A (en) Insulating sheet, circuit board, and process for production of insulating sheet
US11577957B2 (en) Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2012026012A1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2006335957A (en) Method of manufacturing thermally conductive molded article and thermally conductive molded article
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
JP6195108B2 (en) Modified boron nitride, its production method and composition
JP2019189840A (en) Thermosetting resin composition, and cured product thereof, laminate, metal base substrate and power module
WO2013069271A1 (en) Polymer structure
JP2015000937A (en) Heat-conductive resin composition
JP2013136658A (en) Thermally conductive filler
JP2009108424A (en) Thermally conductive filler and molded product using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6657784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250