JP2015000937A - Heat-conductive resin composition - Google Patents

Heat-conductive resin composition Download PDF

Info

Publication number
JP2015000937A
JP2015000937A JP2013126030A JP2013126030A JP2015000937A JP 2015000937 A JP2015000937 A JP 2015000937A JP 2013126030 A JP2013126030 A JP 2013126030A JP 2013126030 A JP2013126030 A JP 2013126030A JP 2015000937 A JP2015000937 A JP 2015000937A
Authority
JP
Japan
Prior art keywords
filler
fibrous filler
resin composition
heat
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013126030A
Other languages
Japanese (ja)
Other versions
JP6526939B2 (en
Inventor
義則 小野
Yoshinori Ono
義則 小野
上利 泰幸
Yasuyuki Agari
泰幸 上利
寛 平野
Hiroshi Hirano
寛 平野
門多 丈治
Joji Kadota
丈治 門多
哲周 岡田
Tetsushu Okada
哲周 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Osaka Municipal Technical Research Institute
Original Assignee
Starlite Co Ltd
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd, Osaka Municipal Technical Research Institute filed Critical Starlite Co Ltd
Priority to JP2013126030A priority Critical patent/JP6526939B2/en
Publication of JP2015000937A publication Critical patent/JP2015000937A/en
Application granted granted Critical
Publication of JP6526939B2 publication Critical patent/JP6526939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat-conductive resin composition using a specific combination of inexpensive and general-purpose heat-conductive filler, which has excellent moldability and provides a molded article having high heat conductivity.SOLUTION: The heat-conductive resin composition comprises (a) a base resin comprising a thermosetting resin or a thermoplastic resin, in which is loaded (b) scaly filler and (c) fibrous filler, both of which have heat conductivity. One or more scaly filler surfaces are arranged in the same plane to form a planar structure; the planar structures are arranged with the same plane direction to form one or more layer structures; in a resin layer which is in contact with the planar structure, the fibrous filler forms a dispersion layer; and the fibrous filler forms a heat-conduction path between the layers.

Description

本発明は、熱伝導性樹脂組成物に係わり、更に詳しくは熱伝導率が高く経済的な熱伝導性樹脂組成物に関するものである。   The present invention relates to a thermally conductive resin composition, and more particularly to an economical thermally conductive resin composition having high thermal conductivity.

近年、電気・電子部品の小型化、高性能化にともない部品内での発熱が顕著となり、熱の蓄積による機器の性能低下が問題となっている。そこで、安全性や信頼性の観点から熱伝導性に優れた材料が求められている。従来、高い熱伝導性を必要とする材料には金属材料が用いられてきたが、部品の小型化、高性能化のため材料には軽量性や易成形加工性が要求されており、樹脂への代替が進んでいる。しかしながら、樹脂は熱伝導性が元々低く、樹脂自体の高熱伝導化には限界がある。   In recent years, with the miniaturization and high performance of electric / electronic components, heat generation in the components has become remarkable, and there has been a problem that the performance of the equipment is deteriorated due to heat accumulation. Therefore, a material excellent in thermal conductivity is required from the viewpoint of safety and reliability. Conventionally, metal materials have been used for materials that require high thermal conductivity. However, materials are required to be lightweight and easy to process to reduce the size and performance of parts. Substitution is progressing. However, the resin has low thermal conductivity from the beginning, and there is a limit to increasing the thermal conductivity of the resin itself.

従来は熱伝導率の高い無機フィラーを高充填することで熱伝導率を向上させるのが主な技術であった。ナノフィラーを単独で用いる技術が見られるが、熱伝導率を向上させるには高充填する必要がある。ナノフィラーの大量充填は均一な分散が難しく、流動性も悪くなるので成形性が悪くなる上に、ナノフィラー自体が高価であるため実用的でない。   Conventionally, the main technique has been to improve the thermal conductivity by highly filling an inorganic filler having a high thermal conductivity. Although a technique using a nanofiller alone can be seen, high filling is required to improve thermal conductivity. A large amount of nanofillers is not practical because it is difficult to uniformly disperse and the fluidity also deteriorates, resulting in poor moldability, and the nanofillers themselves are expensive.

カーボンファイバー(CF)とその他の熱伝導性ナノフィラーの組み合わせにより熱伝導率を上げる方法もあるが、本質はナノフィラーを高充填して熱伝導率を向上させるものであり、ナノフィラーの分散性の悪さや、CF、ナノフィラーの価格が高いという面からやはり実用的ではない。また、CFとナノフィラーの組み合わせでは、線として存在するCFは、ナノフィラーと熱伝導パスを形成する能力において、面として存在する平板状フィラーよりも劣る。また、平板状フィラーとナノフィラーの組み合わせの組成物もあるが、ナノフィラーの特殊構造により熱伝導率を向上させており、本質的にはナノフィラーを高充填して熱伝導率を向上させるという考え方である。   Although there is a method to increase the thermal conductivity by combining carbon fiber (CF) and other thermally conductive nanofillers, the essence is to improve the thermal conductivity by highly filling the nanofillers. It is not practical because of its poor quality and the high price of CF and nanofillers. In the combination of CF and nanofiller, CF existing as a line is inferior to flat filler existing as a surface in the ability to form a heat conduction path with the nanofiller. In addition, there is a composition of a combination of a flat filler and a nanofiller, but the thermal conductivity is improved by the special structure of the nanofiller. Essentially, the nanofiller is highly filled to improve the thermal conductivity. It is a way of thinking.

CFと比べると平板状フィラーで若干のコスト低減効果の可能性はあるものの、ナノフィラー大量充填は分散性の悪さや価格の面からやはり実用的ではない。樹脂に、フレーク状アルミニウムフィラーとカーボンナノチューブ(CNT)を混合し熱伝導率を向上させる技術もある(特許文献1)。この技術は熱伝導率をある程度まで向上させる手法としては効果的であるが、金属の中でも軟らかいアルミを用いているためアルミニウムフィラーが互いに接触する程の量を充填するとアルミニウムが変形してしまい、熱伝導率向上に重要な層構造を形成できなくなる。これは特許文献1の実施例で熱伝導率の異方性がそれほど大きくないところから推察できる。従って、フレーク状アルミフィラーとCNTの組み合わせからなる熱伝導性樹脂組成物は、金属並の高熱伝導率(10W/m・K以上)を実現するのは困難である。   Compared with CF, a flat filler may have a slight cost reduction effect, but nanofiller mass filling is still impractical in view of poor dispersibility and cost. There is also a technique for improving thermal conductivity by mixing a flaky aluminum filler and carbon nanotubes (CNT) in a resin (Patent Document 1). Although this technique is effective as a technique for improving the thermal conductivity to a certain extent, since soft aluminum is used among metals, if the filler is filled in such an amount that the aluminum fillers are in contact with each other, the aluminum is deformed, and the heat It becomes impossible to form a layer structure important for improving the conductivity. This can be inferred from the fact that the thermal conductivity anisotropy is not so large in the example of Patent Document 1. Therefore, it is difficult for a heat conductive resin composition comprising a combination of flaky aluminum filler and CNT to achieve a metal-like high heat conductivity (10 W / m · K or more).

また、特許文献2には、核部と該核部から伸びた針状結晶部とからなる酸化亜鉛ウィスカーと、六方晶窒化ホウ素又は平板形状酸化アルミからなる平板形状無機充填材とを、これら熱伝導性充填材の配合量合計が10〜70体積%とになるように、熱可塑性樹脂に配合させた電気絶縁性の熱伝導性樹脂組成物が開示されている。酸化亜鉛ウィスカーと窒化ホウ素などの平板形状無機充填材を組み合わせることにより、効率よく熱伝導パスが形成されるので、それぞれ単独で同量充填した場合よりも高い熱伝導率が得られ、また比較的少量の熱伝導性充填材の添加によって、高い熱伝導率を付与でき、射出成形性も良好である点が記載されている。   Patent Document 2 discloses a zinc oxide whisker comprising a core part and a needle-like crystal part extending from the core part, and a plate-like inorganic filler made of hexagonal boron nitride or plate-like aluminum oxide. An electrically insulating thermally conductive resin composition blended in a thermoplastic resin so that the total blending amount of the conductive filler is 10 to 70% by volume is disclosed. By combining zinc oxide whiskers and flat inorganic fillers such as boron nitride, a heat conduction path is formed efficiently, so that a higher thermal conductivity can be obtained than when the same amount is filled individually, It is described that high thermal conductivity can be imparted by adding a small amount of heat conductive filler and injection moldability is also good.

特開2012−072363号公報JP 2012-072363 A 特開2011−132264号公報JP 2011-132264 A

しかしながら、高熱伝導率の無機フィラーを高充填する方法では、加工機スクリューの摩滅や材料の流動性低下による加工性の低下、材料の機械特性の低下が課題であった。フィラー間の距離が縮まったとしても、熱伝導の妨げになる樹脂がフィラー間に存在し、該フィラーではこの隙間をつなぐ熱伝導パスが形成できず、高熱伝導率のフィラーを高充填しても得られる効果は限定的であった。また、ナノフィラーを高充填する手法は分散性が悪く、加工性や品質安定性の低下が課題であった。また、ナノフィラーの大量充填及び炭素繊維の採用によるコストアップが課題であった。特許文献1のように軟質金属を用いた場合、充填率を上げても層構造を維持できるか、すなわち熱伝導率を更に向上できるかが課題となる。   However, in the method of highly filling an inorganic filler with high thermal conductivity, there are problems of wear of a processing machine screw, deterioration of workability due to lowering of fluidity of the material, and deterioration of mechanical properties of the material. Even if the distance between the fillers is shortened, a resin that hinders heat conduction exists between the fillers, and the filler cannot form a heat conduction path connecting the gaps. Even if the filler with high thermal conductivity is highly filled, The effect obtained was limited. Moreover, the method of highly filling the nanofiller has poor dispersibility, and there has been a problem of deterioration in processability and quality stability. Moreover, the cost increase by mass filling of nanofillers and adoption of carbon fibers has been a problem. When a soft metal is used as in Patent Document 1, it becomes a problem whether the layer structure can be maintained even when the filling rate is increased, that is, the thermal conductivity can be further improved.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、安価で汎用的な熱伝導性フィラーの特定の組み合わせを用いて、成形性に優れ、高熱伝導率の成形品を得ることができる熱伝導性樹脂組成物を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem by using a specific combination of inexpensive and general-purpose heat conductive fillers to obtain a molded product having excellent moldability and high thermal conductivity. It exists in the point which provides the heat conductive resin composition which can be performed.

本発明は、前述の課題解決のために、(a)熱硬化性樹脂又は熱可塑性樹脂からなるベース樹脂中に、共に熱伝導性を有する(b)鱗片状フィラー及び(c)繊維状フィラーを充填し、1つ以上の鱗片状フィラーの面が互いに同一平面内に並んだ平面構造を形成し、該平面構造が同一平面方向を向いた1つ以上の層構造を形成し、該平面構造に接触する樹脂層において繊維状フィラーの分散層を形成し、繊維状フィラーが層間に熱伝導パスを形成してなることを特徴とする熱伝導性樹脂組成物を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention provides (a) a base resin made of a thermosetting resin or a thermoplastic resin, and (b) a scaly filler and (c) a fibrous filler both having thermal conductivity. Forming a planar structure in which the surfaces of one or more scale-like fillers are aligned in the same plane, forming one or more layered structures in which the planar structure faces the same planar direction, A dispersed layer of fibrous filler is formed in the resin layer to be contacted, and the fibrous filler is formed by forming a heat conduction path between the layers (claim 1).

ここで、(a)ベース樹脂、(b)鱗片状フィラー、(c)繊維状フィラーの合計を100体積%とした場合に、(b)鱗片状フィラーと(c)繊維状フィラーの合計体積が、5〜70体積%であることが好ましい(請求項2)。   Here, when the total of (a) base resin, (b) flaky filler, and (c) fibrous filler is 100% by volume, the total volume of (b) flaky filler and (c) fibrous filler is 5 to 70% by volume is preferable (claim 2).

また、(c)繊維状フィラーの直径が10nm〜30μm、繊維長が1μm〜3mmであり、アスペクト比が100以上である(請求項3)。   (C) The fibrous filler has a diameter of 10 nm to 30 μm, a fiber length of 1 μm to 3 mm, and an aspect ratio of 100 or more.

更に、(c)繊維状フィラーが、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)からなる群より選ばれる1種以上の導電性繊維状フィラーであることがより好ましい(請求項4)。   Further, (c) the fibrous filler is more preferably one or more conductive fibrous fillers selected from the group consisting of carbon nanofibers (CNF) and carbon nanotubes (CNT).

そして、(a)ベース樹脂、(b)鱗片状フィラー、(c)繊維状フィラーの合計を100体積%とした場合に、(c)繊維状フィラーの配合量が0.1〜15体積%である(請求項5)。   And when the sum total of (a) base resin, (b) scale-like filler, and (c) fibrous filler is 100 volume%, the compounding quantity of (c) fibrous filler is 0.1-15 volume%. (Claim 5).

また、(b)鱗片状フィラーの面方向の径が0.1μm〜200μmであり、アスペクト比が10以上であることが好ましい(請求項6)。   Moreover, it is preferable that the diameter of the surface direction of (b) scale-like filler is 0.1 micrometer-200 micrometers, and an aspect-ratio is 10 or more (Claim 6).

(b)鱗片状フィラーが、グラファイト、グラフェンからなる群より選ばれる1種以上の導電性鱗片状フィラーであることがより好ましい(請求項7)。   (B) It is more preferable that the scaly filler is one or more conductive scaly fillers selected from the group consisting of graphite and graphene.

以上にしてなる本発明の熱伝導性樹脂組成物は、(a)熱硬化性樹脂又は熱可塑性樹脂からなるベース樹脂中に、共に熱伝導性を有する(b)鱗片状フィラー及び(c)繊維状フィラーを充填し、1つ以上の鱗片状フィラーの面が互いに同一平面内に並んだ平面構造を形成し、該平面構造が同一平面方向を向いた1つ以上の層構造を形成し、該平面構造に接触する樹脂層において繊維状フィラーの分散層を形成し、繊維状フィラーが層間に熱伝導パスを形成することにより、熱の伝達を阻害していた樹脂層領域の熱伝導能力を大きく向上させることができる。   The thermally conductive resin composition of the present invention as described above comprises (a) a base resin composed of a thermosetting resin or a thermoplastic resin, both having thermal conductivity (b) a scale-like filler and (c) a fiber. Forming a planar structure in which the surfaces of one or more scaly fillers are aligned in the same plane, and forming one or more layered structures in which the planar structure faces the same planar direction, By forming a dispersion layer of fibrous filler in the resin layer in contact with the planar structure, and forming a heat conduction path between the fibrous filler, the heat conduction ability of the resin layer region that has hindered heat transfer is increased. Can be improved.

繊維状フィラーは、サイズが小さくアスペクト比が大きいので、鱗片状フィラーの作る層構造間に熱伝導パスを効率良く形成できることから、少ないフィラーの量で所定の熱伝導率を達成できる。それにより、同じ熱伝導率を持つ材料において従来の高充填量の技術と比較した場合、スクリューの摩滅、流動性の低下、加工性の低下といった課題を解決できる。   Since the fibrous filler has a small size and a large aspect ratio, a heat conduction path can be efficiently formed between the layer structures formed by the scaly filler, so that a predetermined thermal conductivity can be achieved with a small amount of filler. Thereby, when compared with the conventional high filling amount technology in materials having the same thermal conductivity, problems such as screw wear, lower fluidity, and lower workability can be solved.

本発明は従来の技術のように、ナノフィラー同士が製品全体に熱伝導パスを巡らせて熱伝導率を向上させるものではなく、鱗片状フィラーの層間の樹脂層に熱伝導パスを形成する構造のため、ナノフィラーが少量で済み、低コスト化とフィラーの分散性を良くするのに効果を発揮する。   The present invention does not improve the thermal conductivity of the nano fillers through the heat conduction path throughout the product as in the prior art, but has a structure in which a heat conduction path is formed in the resin layer between the scale-like filler layers. Therefore, a small amount of nanofiller is required, which is effective in reducing costs and improving the dispersibility of the filler.

また、フィラーの第1成分として鱗片状フィラー、特にグラファイトを用いているため、繊維状ナノフィラーと熱伝導パスを形成する能力が炭素繊維よりも高く、一般に価格も安価なためコスト低減効果がある。更に、剛性の高いグラファイトを用いることで、フィラーが変形することなく充填でき、効率的な層構造を形成することが可能となり、これまで達成できなかった熱伝導率を実現することが可能となった。   Further, since a scale-like filler, particularly graphite, is used as the first component of the filler, the ability to form a heat conduction path with the fibrous nanofiller is higher than that of carbon fiber, and the cost is generally low because the price is generally low. . Furthermore, by using highly rigid graphite, it is possible to fill the filler without deformation, and it is possible to form an efficient layer structure, and it is possible to realize a thermal conductivity that could not be achieved so far. It was.

エポキシ樹脂にグラファイトのみを充填した場合と、グラファイトにカーボンナノチューブを2体積%加えて充填した場合のグラファイト充填量に対する熱伝導率の変化を示すグラフである。It is a graph which shows the change of the thermal conductivity with respect to the graphite filling amount at the time of filling only graphite with epoxy resin, and the case where 2 volume% of carbon nanotubes are added to graphite. 本発明の熱伝導性樹脂組成物を用いた成形品の断面構造を模式的示したものであり、(a)は層構造に平行な面の断面、(b)は層構造に直交する面の断面を示している。1 schematically shows a cross-sectional structure of a molded article using the heat conductive resin composition of the present invention, in which (a) is a cross section of a plane parallel to the layer structure, and (b) is a plane orthogonal to the layer structure. A cross section is shown. 本発明の熱伝導性樹脂組成物を用いた成形品の断面SEM画像である。It is a cross-sectional SEM image of the molded article using the heat conductive resin composition of this invention.

先ず、本発明の熱伝導性樹脂組成物は、(a)ベース樹脂中に、共に熱伝導性を有する(b)鱗片状フィラー及び(c)繊維状フィラーを充填し、良好な熱伝導性、放熱性を有するとともに、成形性にも優れた特性を有するものである。   First, the thermally conductive resin composition of the present invention is filled with (b) flaky filler and (c) fibrous filler, both having thermal conductivity in (a) base resin, and good thermal conductivity, It has heat dissipation and has excellent moldability.

(a)ベース樹脂は、熱硬化性樹脂あるいは熱可塑性樹脂であれば特に限定されず、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリアミドイミド等の熱硬化性樹脂、ポリプロピレン、ポリエチレン、ポリアミド6、ポリアミド66、ポリアミド12、ポリエーテルエーテルケトン、ポリブチレンテレフタレート、ポリオキシメチレン、液晶ポリマー、ポリカーボネート、ポリ乳酸等、好ましくは、ポリプロピレン以上の耐熱性を有する熱可塑性樹脂が挙げられる。これらは1種単独あるいは2種以上の併用もできる。   (A) Base resin will not be specifically limited if it is a thermosetting resin or a thermoplastic resin, Thermosetting resins, such as an epoxy resin, a phenol resin, a polyimide, a polyamideimide, a polypropylene, polyethylene, polyamide 6, polyamide 66, Polyamide 12, polyetheretherketone, polybutylene terephthalate, polyoxymethylene, liquid crystal polymer, polycarbonate, polylactic acid, and the like, preferably a thermoplastic resin having heat resistance higher than that of polypropylene. These can be used alone or in combination of two or more.

(b)鱗片状フィラーは、面方向の径が0.1μm〜200μmであり、アスペクト比が10以上であることが好ましい。望ましくは面方向の径が1μm〜30μmでアスペクト比が50以上100以下である。   (B) It is preferable that the scale-like filler has a surface direction diameter of 0.1 μm to 200 μm and an aspect ratio of 10 or more. Desirably, the diameter in the plane direction is 1 μm to 30 μm and the aspect ratio is 50 or more and 100 or less.

鱗片状フィラーとは、鱗片状のもの以外に、平板状若しくはフレーク状であれば限定されることはないが、特にグラファイト(黒鉛)が良好である。グラファイトの種類として、αグラファイト及びβグラファイトどちらでも良い。また、天然グラファイト、人工グラファイトのどちらでも良い。グラファイト以外には、グラフェン等が挙げられる。また、グラファイトとグラフェンを組み合わせても良い。   The scaly filler is not limited as long as it is a flat plate or flake other than the scaly one, but graphite (graphite) is particularly preferable. As the type of graphite, either α graphite or β graphite may be used. Either natural graphite or artificial graphite may be used. In addition to graphite, graphene and the like can be mentioned. Further, graphite and graphene may be combined.

(c)繊維状フィラーは、直径が10nm〜30μm、繊維長が1μm〜3mmであり、アスペクト比が100以上であることが好ましい。特に、繊維状フィラーが、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)からなる群より選ばれる1種以上の導電性繊維状フィラーであることがより好ましい。カーボンナノチューブ(CNT)は、シングルウォールでもマルチウォールでも良い。また、カーボンナノファイバー(CNF)は、直径がナノメートルサイズで、繊維長がマイクロメートルサイズであることが好ましい。   (C) The fibrous filler preferably has a diameter of 10 nm to 30 μm, a fiber length of 1 μm to 3 mm, and an aspect ratio of 100 or more. In particular, the fibrous filler is more preferably at least one conductive fibrous filler selected from the group consisting of carbon nanofibers (CNF) and carbon nanotubes (CNT). The carbon nanotube (CNT) may be a single wall or a multiwall. Moreover, it is preferable that a carbon nanofiber (CNF) has a diameter of nanometer size and a fiber length of micrometer size.

(a)ベース樹脂、(b)鱗片状フィラー、(c)繊維状フィラーの合計を100体積%とした場合に、(b)鱗片状フィラーと(c)繊維状フィラーの合計体積が、5〜70体積%である。また、(b)鱗片状フィラーの配合量は、1〜70体積%、望ましくは5〜50体積%である。そして、(c)繊維状フィラーの配合量は、0.1〜15体積%、望ましくは0.1〜10体積%。更に望ましくは0.1〜5体積%である。繊維状フィラーの配合量の上限は、流動性とコストで決まるが、比較的少量でも熱伝導率の増加効果は大きい。   When the total of (a) base resin, (b) flaky filler, and (c) fibrous filler is 100% by volume, the total volume of (b) flaky filler and (c) fibrous filler is 5 to 5%. 70% by volume. Moreover, the compounding quantity of (b) scale-like filler is 1-70 volume%, Preferably it is 5-50 volume%. And the compounding quantity of (c) fibrous filler is 0.1-15 volume%, desirably 0.1-10 volume%. More desirably, it is 0.1 to 5% by volume. The upper limit of the blending amount of the fibrous filler is determined by fluidity and cost, but the effect of increasing the thermal conductivity is large even with a relatively small amount.

また、フィラーの分散性を上げるために分散剤を添加しても良い。更に、第三成分として、難燃剤、流動性改善剤、硬化剤、硬化促進剤、硬化遅延剤、潤滑剤、酸化防止剤、補強効果のある充填材等を同時に添加しても良い。   Further, a dispersant may be added to increase the dispersibility of the filler. Further, as a third component, a flame retardant, a fluidity improver, a curing agent, a curing accelerator, a curing retarder, a lubricant, an antioxidant, a reinforcing filler, and the like may be added simultaneously.

本発明の熱伝導性樹脂組成物は、(a)熱硬化性樹脂又は熱可塑性樹脂からなるベース樹脂中に、共に熱伝導性を有する(b)鱗片状フィラー及び(c)繊維状フィラーを充填し、1つ以上の鱗片状フィラーの面が互いに同一平面内に並んだ平面構造を形成し、該平面構造が同一平面方向を向いた1つ以上の層構造を形成し、該平面構造に接触する樹脂層において繊維状フィラーの分散層を形成し、繊維状フィラーが層間に熱伝導パスを形成するのである。ここで、平面方向に平行に切り出した断面に存在する鱗片状フィラーの投影面積が、鱗片状フィラーの表面積に対して35%以上を占める場合に同一平面と規定する。望ましくは40%を以上占めることが好ましい。   The thermally conductive resin composition of the present invention is filled with (b) scale-like filler and (c) fibrous filler, both of which have thermal conductivity in a base resin made of (a) thermosetting resin or thermoplastic resin. A plane structure in which the surfaces of one or more scale-like fillers are arranged in the same plane, and the plane structure forms one or more layer structures facing the same plane direction, and is in contact with the plane structure In the resin layer, a fibrous filler dispersion layer is formed, and the fibrous filler forms a heat conduction path between the layers. Here, when the projected area of the scale-like filler existing in the cross section cut out in parallel to the plane direction occupies 35% or more with respect to the surface area of the scale-like filler, it is defined as the same plane. Desirably, it occupies 40% or more.

鱗片状フィラーとして、平均粒子径40μmのグラファイトを用い、繊維状フィラーとして、平均繊維径150nm及び平均繊維長10μmのカーボンナノファイバー(製品名:VGCF−H(昭和電工株式会社製))を用いて、エポキシ樹脂をベース樹脂とした熱伝導性樹脂組成物の熱伝導率を実測した結果を図1に示す。グラファイト(図中でGrと表示)は充填量を0〜70体積%まで変化させ、カーボンナノファイバー(図中でVGCFと表示)は2体積%に固定した。図2には、鱗片状フィラーと繊維状フィラーを添加した樹脂成形品の断面構造を模式的示している。図2(a)は層構造に平行な面の断面、図2(b)は層構造に直交する面の断面を示し、図中符号1はベース樹脂、2は鱗片状フィラー、3は繊維状フィラーを示している。図3は、本発明の熱伝導性樹脂組成物による樹脂成形品の断面を走査電子顕微鏡(SEM)で観察した画像である。   As the scale-like filler, graphite having an average particle diameter of 40 μm is used, and as the fibrous filler, carbon nanofibers (product name: VGCF-H (manufactured by Showa Denko KK)) having an average fiber diameter of 150 nm and an average fiber length of 10 μm are used. FIG. 1 shows the results of actual measurement of the thermal conductivity of the thermally conductive resin composition using an epoxy resin as a base resin. Graphite (shown as Gr in the figure) had a filling amount changed from 0 to 70% by volume, and carbon nanofibers (shown as VGCF in the figure) were fixed at 2% by volume. FIG. 2 schematically shows a cross-sectional structure of a resin molded product to which scale-like filler and fibrous filler are added. 2 (a) shows a cross section of a plane parallel to the layer structure, FIG. 2 (b) shows a cross section of a plane orthogonal to the layer structure, in which 1 is a base resin, 2 is a scaly filler, 3 is a fibrous shape The filler is shown. FIG. 3 is an image obtained by observing a cross section of a resin molded article using the heat conductive resin composition of the present invention with a scanning electron microscope (SEM).

図1の実線は、グラファイトのみを充填した場合の熱伝導率の変化を示し、グラファイトの充填量の増加と共に指数関数的に熱伝導率が増加することが分かるが、70体積%を超えると成形性が極端に悪化する。図1の破線は、グラファイトに少量のカーボンナノファイバーに加えた場合の熱伝導率の変化を示し、グラファイトのみの場合と比較して熱伝導率が中間領域(20〜60体積%)で大幅に増加していることが分かる。グラファイトの少ない範囲(1〜10体積%)では、グラファイト同士の接触が少ないため、充分に層構造が形成されず、また層構造が形成されたとしても層間隔が広いため、カーボンナノファイバーによる熱伝導パスが効果的に形成されないために、熱伝導率が低いものと考えられる。一方、グラファイトの多い範囲(60〜70体積%)では、グラファイト同士の接触が限界に近づき、グラファイト自体が熱伝導パスを形成してしまうために、カーボンナノファイバーの添加が熱伝導率の増加に寄与しなかったものと考えられる。   The solid line in FIG. 1 shows the change in thermal conductivity when only graphite is filled, and it can be seen that the thermal conductivity increases exponentially with the increase in the graphite filling amount. Sexually deteriorates. The broken line in FIG. 1 shows the change in thermal conductivity when graphite is added to a small amount of carbon nanofibers, and the thermal conductivity is significantly higher in the intermediate region (20 to 60% by volume) than in the case of graphite alone. It can be seen that it has increased. In the range with a small amount of graphite (1 to 10% by volume), the contact between the graphite is small, so that the layer structure is not sufficiently formed, and even if the layer structure is formed, the layer spacing is wide, so the heat generated by the carbon nanofibers. It is considered that the thermal conductivity is low because the conduction path is not effectively formed. On the other hand, in the range with a large amount of graphite (60 to 70% by volume), the contact between the graphites approaches the limit, and the graphite itself forms a heat conduction path, so the addition of carbon nanofibers increases the heat conductivity. It is thought that he did not contribute.

(製造方法)
本発明の熱伝導性樹脂組成物は、ミクロンサイズの鱗片状フィラーと、ナノサイズの直径を有する繊維状フィラーと樹脂とを混合することで得られるものである。これらを混練する方法は特に限定されないが、たとえば、溶媒を用いたワニス状の熱硬化性樹脂に混合する場合、超音波や遊星回転による分散混合を用いる。あるいは熱可塑性樹脂に混合する場合は二軸式混練押出機を用いて混練することが好ましい。ここでの超音波を用いた分散は2kHz〜200kHz程度の超音波ホモジナイザーであっても良いし、超音波槽でも良い。上記方法では鱗片状フィラー、繊維状フィラー、樹脂の3成分の投入順は適宜選択しても良いし、3成分を同時に投入し攪拌混合してもよい。
(Production method)
The heat conductive resin composition of the present invention is obtained by mixing a micron-sized scaly filler, a fibrous filler having a nano-sized diameter, and a resin. The method of kneading these is not particularly limited. For example, when mixing with a varnish-like thermosetting resin using a solvent, dispersion mixing by ultrasonic waves or planetary rotation is used. Or when mixing with a thermoplastic resin, it is preferable to knead | mix using a biaxial kneading extruder. The dispersion using ultrasonic waves here may be an ultrasonic homogenizer of about 2 kHz to 200 kHz, or an ultrasonic tank. In the above method, the order of adding the three components of the flaky filler, the fibrous filler, and the resin may be selected as appropriate, or the three components may be added simultaneously and stirred and mixed.

上記の二軸混練時の温度は、用いる樹脂に適した温度で行なわれる。例えばポリプロピレン樹脂を用いる場合は180℃以上230℃以下であることが好ましく、より好ましくは200℃以上220℃以下である。ポリフェニレンサルファイド樹脂を用いる場合は280℃以上350℃以下が好ましい。このような温度で混練することにより、樹脂へのせん断力を適切に調節することができる。なお、混練するにあたって上記3成分の混合順は、特に制限されることなく、同時に添加しても良いし、順番に添加しても良い。また、溶融した樹脂にフィラーを添加しても良く、このような順序で混練することにより、混練時に鱗片状フィラー及び繊維状フィラーに加わるせん断応力などの機械的負荷を最小限に抑制することができ、これらが破壊されるのを防ぐことができる。   The temperature during the biaxial kneading is performed at a temperature suitable for the resin used. For example, when a polypropylene resin is used, it is preferably 180 ° C. or higher and 230 ° C. or lower, more preferably 200 ° C. or higher and 220 ° C. or lower. When polyphenylene sulfide resin is used, it is preferably 280 ° C. or higher and 350 ° C. or lower. By kneading at such a temperature, the shearing force to the resin can be adjusted appropriately. In the kneading, the mixing order of the three components is not particularly limited, and may be added simultaneously or in order. In addition, fillers may be added to the molten resin, and kneading in this order can minimize mechanical loads such as shear stress applied to the scale-like filler and fibrous filler during kneading. And prevent them from being destroyed.

混練する前の繊維状フィラーについて、粉末状態(短繊維)のナノ繊維を用いても良いし、有機溶剤によってペースト状態にしたものを用いても良いし、熱伝導性樹脂組成物に用いる樹脂と同種の樹脂をナノ繊維とあらかじめ混合して、ペレットにしたマスターバッチを用いても良い。   As for the fibrous filler before kneading, nanofibers in a powder state (short fibers) may be used, those made into a paste state with an organic solvent, or a resin used for a heat conductive resin composition You may use the masterbatch which mixed the resin of the same kind with the nanofiber previously, and was made into the pellet.

(放熱材)
放熱材は、目的に応じた成形方法で本発明の熱伝導性樹脂組成物を成形することによって作製される。かかる熱伝導性樹脂組成物は、軽量であって、かつ熱伝導性が高く、さらにナノフィラー量が少ないために容易に分散できるという優れた性質を示すため、これによって形成される放熱材は、半導体デバイス、LED照明のケーシング、自動車のヘッドランプやフォグランプ、パワーモジュールや燃料電池モジュールなどの電子デバイスの他、電子部品などに好適に用いることができる。
(Heat dissipation material)
The heat dissipating material is produced by molding the heat conductive resin composition of the present invention by a molding method according to the purpose. Such a heat conductive resin composition is lightweight, has high heat conductivity, and further exhibits an excellent property of being easily dispersible because of a small amount of nanofiller. In addition to electronic devices such as semiconductor devices, casings for LED lighting, automobile headlamps and fog lamps, power modules and fuel cell modules, they can be suitably used for electronic components.

ここで、本発明の放熱材を成形する方法としては、例えばFRP成形、トランスファー成形などの圧縮成形法;キャスト成形、封入注型などの注型法;カレンダ成形などのロール加工法;RIM成形、射出発泡成形などの射出成形法;押出し発泡成形などの発泡技術法;インフレーションフィルム成形、Tダイフィルム成形などの押出し成形法などを挙げることができる。   Here, as a method for molding the heat radiation material of the present invention, for example, compression molding methods such as FRP molding and transfer molding; casting methods such as cast molding and encapsulated casting; roll processing methods such as calendar molding; RIM molding; Examples thereof include injection molding methods such as injection foam molding; foaming technology methods such as extrusion foam molding; extrusion molding methods such as inflation film molding and T-die film molding.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1〜10及び比較例1〜11>
各実施例及び各比較例の熱伝導性樹脂組成物は、以下の各成分を表1に示す混合比となるようにして後述する方法により得られたものである。
尚、樹脂、鱗片状フィラー及び繊維状フィラー(ナノ繊維)を熱伝導性樹脂組成物の構成成分として混合するにあたっては、樹脂をメチルエチルケトン(MEK)に溶解させた溶液に繊維状フィラーを予め混合し、超音波にて繊維状フィラーを分散させた後、鱗片状フィラーを投入し遊星回転の攪拌機にて混合した。実施例10のポリプロピレン樹脂ベースについては、樹脂、鱗片状フィラー及び繊維状フィラー(ナノ繊維)をドライブレンドした後、二軸混練押出機で溶融混練しペレット形状とした。
<Examples 1-10 and Comparative Examples 1-11>
The heat conductive resin composition of each Example and each Comparative Example was obtained by the method described later with the following components having the mixing ratio shown in Table 1.
In addition, when mixing resin, a scale-like filler, and fibrous filler (nanofiber) as a structural component of a heat conductive resin composition, a fibrous filler is previously mixed with the solution which melt | dissolved resin in methyl ethyl ketone (MEK). After dispersing the fibrous filler with ultrasonic waves, the flaky filler was added and mixed with a planetary rotating stirrer. The polypropylene resin base of Example 10 was dry blended with resin, scaly filler, and fibrous filler (nanofiber), and then melt-kneaded with a biaxial kneading extruder to form a pellet.

(1)樹脂
(1−1)実施例1〜9、比較例1〜11;
エポキシ樹脂:製品名:エピクロン850(DIC株式会社製)。
硬化剤:酸無水物 EPICLON B−570H(DIC株式会社製)。
樹脂と硬化剤を当量で添加した。
(1−2)実施例10;
ポリプロピレン:プライムポリプロ BJS−MU(プライムポリマー株式会社製)。
(2)鱗片状フィラー
グラファイト:CB150、平均粒子径40μm(日本黒鉛株式会社製)。
(3)繊維状フィラー
(3−1)ナノ繊維
CNF:平均繊維径150nm及び平均繊維長10μmのカーボンナノファイバー(製品名:VGCF−H(昭和電工株式会社製))。
(3−2)炭素繊維
炭素繊維:平均繊維径11μm及び平均繊維長6mmのピッチ系炭素繊維(製品名:ダイアリードK6371T(三菱樹脂株式会社製))。
(4)球状フィラー
球状化黒鉛:CGC−50 平均粒子径50μm(日本黒鉛株式会社製)。
(1) Resin (1-1) Examples 1 to 9, Comparative Examples 1 to 11;
Epoxy resin: Product name: Epicron 850 (manufactured by DIC Corporation).
Curing agent: acid anhydride EPICLON B-570H (manufactured by DIC Corporation).
Resin and curing agent were added in equivalent amounts.
(1-2) Example 10;
Polypropylene: Prime Polypro BJS-MU (manufactured by Prime Polymer Co., Ltd.).
(2) Scale-like filler Graphite: CB150, average particle diameter of 40 μm (manufactured by Nippon Graphite Co., Ltd.).
(3) Fibrous filler (3-1) Nanofiber CNF: Carbon nanofiber having an average fiber diameter of 150 nm and an average fiber length of 10 μm (product name: VGCF-H (manufactured by Showa Denko KK)).
(3-2) Carbon fiber Carbon fiber: Pitch-based carbon fiber having an average fiber diameter of 11 μm and an average fiber length of 6 mm (product name: DIALEAD K6371T (manufactured by Mitsubishi Plastics)).
(4) Spherical filler Spheroidized graphite: CGC-50 Average particle diameter of 50 μm (manufactured by Nippon Graphite Co., Ltd.).

これら超音波による分散、遊星回転撹拌機または、二軸混練押出機による混合を行なうことにより各実施例及び各比較例の熱伝導性樹脂組成物を作製した。次に、これを面板温度180℃で所定の圧力にてプレス成形することにより、シート状物を得た。尚、得られた該シート状物の平面方向に切り出した断面に存在する鱗片状フィラーの投影面積は、グラファイトを用いた実施例及び比較例においていずれも鱗片状フィラーの表面積に対して35%以上であった。   The heat conductive resin composition of each Example and each comparative example was produced by performing dispersion | distribution by these ultrasonic waves, and mixing with a planetary rotary stirrer or a biaxial kneading extruder. Next, this was press-molded at a face plate temperature of 180 ° C. at a predetermined pressure to obtain a sheet-like material. The projected area of the flaky filler present in the cross-section cut out in the plane direction of the obtained sheet-like material is 35% or more with respect to the surface area of the flaky filler in both Examples and Comparative Examples using graphite. Met.

(特性評価)
上記で得られた各実施例及び各比較例の熱伝導性樹脂組成物の熱伝導率を評価するために、シート状物を切削加工し、10.0mm×10.0mm×厚み1mmの試験片を準備した。この試験片の密度、比熱、熱拡散率及び熱伝導率をそれぞれ、下記の方法によって測定した。その結果を以下の表1に示す。
(Characteristic evaluation)
In order to evaluate the thermal conductivity of the thermally conductive resin compositions of the Examples and Comparative Examples obtained above, the sheet-like material was cut and processed to be a 10.0 mm × 10.0 mm × 1 mm thick test piece. Prepared. The density, specific heat, thermal diffusivity and thermal conductivity of this test piece were measured by the following methods, respectively. The results are shown in Table 1 below.

(密度)
室温(25℃)で水中置換法によって測定した。
(density)
The measurement was carried out at room temperature (25 ° C.) by the water displacement method.

(比熱)
測定方法:示差走査熱量測定法(DSC:Differential scanning calorimetry)。
測定装置:入力補償型示差走査熱量測定装置(装置名:DSC6220(エスアイアイ・ナノテクノロジー))。
昇温速度:10℃/min。
試料量:10mg。
(specific heat)
Measuring method: Differential scanning calorimetry (DSC).
Measuring device: Input-compensated differential scanning calorimeter (device name: DSC6220 (SII Nanotechnology)).
Temperature increase rate: 10 ° C./min.
Sample amount: 10 mg.

(熱拡散率)
測定方法:レーザーフラッシュ法。
測定装置:熱物性測定装置(製品名:TC−7000(アルバック理工))。
測定方向:面内方向の熱拡散率を測定。
(Thermal diffusivity)
Measuring method: Laser flash method.
Measuring device: Thermophysical property measuring device (Product name: TC-7000 (ULVAC Riko)).
Measurement direction: Measures the thermal diffusivity in the in-plane direction.

(熱伝導率)
上記で得られた密度、比熱、及び熱拡散率の各値をそれぞれ、下記の式に代入することにより熱伝導率を算出した。なお、この熱伝導率の値が高いほど、放熱性に優れる。
熱伝導率(W/m・K)=密度(kg/m3)×比熱(kJ/kg・K)×熱拡散率(m2/s)×1000(kJ/J)
(Thermal conductivity)
The thermal conductivity was calculated by substituting each value of the density, specific heat, and thermal diffusivity obtained above into the following equations. In addition, it is excellent in heat dissipation, so that the value of this heat conductivity is high.
Thermal conductivity (W / m · K) = density (kg / m 3 ) × specific heat (kJ / kg · K) × thermal diffusivity (m 2 / s) × 1000 (kJ / J)

(評価結果及び考察)
表1において、例えば実施例1〜4と比較例1〜4とを対比すると、グラファイトの充填量が同じでも、高々1体積%の僅かの量のカーボンナノファイバー(CNF)を添加することのよって、熱伝導性樹脂組成物の面内方向の熱伝導率が大幅に増加することがわかる。例えば、実施例3(グラファイト35体積%、VGCF0.5体積%)の熱伝導率は、31W/m・Kであるのに対し、比較例3(グラファイト35体積%)の熱伝導率は18W/m・Kである。つまり、鱗片状フィラーに少量の繊維状フィラーを添加することの効果は歴然である。
(Evaluation results and discussion)
In Table 1, for example, when comparing Examples 1 to 4 and Comparative Examples 1 to 4, even if the graphite filling amount is the same, by adding a small amount of carbon nanofibers (CNF) of at most 1% by volume, It can be seen that the thermal conductivity in the in-plane direction of the thermally conductive resin composition is greatly increased. For example, the thermal conductivity of Example 3 (35% by volume of graphite, 0.5% by volume of VGCF) is 31 W / m · K, whereas the thermal conductivity of Comparative Example 3 (35% by volume of graphite) is 18 W / m. m · K. That is, the effect of adding a small amount of fibrous filler to the scaly filler is obvious.

この理由としては、実施例1〜4においては、鱗片状フィラーと繊維状フィラーを併用することによって、鱗片状フィラーが作る層構造の間を繊維状フィラーで熱伝導パスを効率良く形成することで熱伝導率を高めることができたのに対し、比較例2においては、鱗片状フィラーによる層構造のみが形成され、層間はベース樹脂層が存在して熱伝達パスが充分に形成されず、熱伝導率を高められなかったものと考えられる。   The reason for this is that in Examples 1 to 4, by using a scaly filler and a fibrous filler in combination, a heat conduction path is efficiently formed with a fibrous filler between the layer structures formed by the scaly filler. Whereas the thermal conductivity could be increased, in Comparative Example 2, only the layer structure of scaly filler was formed, the base resin layer was present between the layers, and the heat transfer path was not sufficiently formed. It is considered that the conductivity could not be increased.

実施例1〜3に対比し比較例6〜9では、鱗片状フィラーのグラファイトに対して形状の異なる繊維状のフィラーを配合した場合、実施例4(グラファイト50体積%、VGCF0.5体積%)の熱伝導率が53W/m・Kであるのに対し、比較例9(CF50体積%、VGCF0.5体積%)では25.4W/m・Kであり、30%も少ない充填量の鱗片状フィラーを用いた実施例3(グラファイト35体積%、VGCF0.5体積%)の熱伝導性樹脂組成物の方が優れた熱伝導性を示すことが明らかとなった。   In Comparative Examples 6 to 9, in contrast to Examples 1 to 3, Example 4 (graphite 50 volume%, VGCF 0.5 volume%) was obtained when a fibrous filler having a different shape was blended with the scale-like filler graphite. The thermal conductivity of 53 W / m · K is 25.4 W / m · K in Comparative Example 9 (CF 50 vol%, VGCF 0.5 vol%), and the amount of filling is as small as 30%. It was revealed that the thermal conductive resin composition of Example 3 (35% by volume of graphite and 0.5% by volume of VGCF) using a filler exhibits superior thermal conductivity.

これは、比較例9の炭素繊維(CF)が線でナノ繊維と接触するのに対し、実施例4では鱗片状フィラーを用いることで、樹脂中に層を効率よく形成し、かつナノ繊維と面で接触することにより熱伝導パスを形成しやすくなることで、熱伝導率を高めることができたものと考えられる。   This is because the carbon fiber (CF) of Comparative Example 9 is in contact with the nanofibers with a line, whereas in Example 4, a scale-like filler is used to efficiently form a layer in the resin, and the nanofibers It is considered that the thermal conductivity can be increased by making it easier to form a heat conduction path by contacting the surface.

また、実施例8と実施例9とを比較すると、グラファイトの充填量は20体積%と同じで、カーボンナノファイバー(CNF)の充填量が実施例8で5体積%、実施例9で15体積%と3倍に増やしているにも係わらず、熱伝導率は実施例8が25W/m・K、実施例9が28W/m・Kとあまり増加していないことが分かる。このことから、熱伝導率を高めるには、カーボンナノファイバー(CNF)の充填量を増やすよりも、グラファイトの充填量を増やした上で、カーボンナノファイバー(CNF)を少量添加することが最も効果的である。   Moreover, when Example 8 and Example 9 are compared, the filling amount of graphite is the same as 20% by volume, and the filling amount of carbon nanofiber (CNF) is 5% by volume in Example 8 and 15% by Example 9. It can be seen that the thermal conductivity does not increase so much at 25 W / m · K in Example 8 and 28 W / m · K in Example 9 despite the fact that it is increased by 3 times. Therefore, to increase the thermal conductivity, it is most effective to add a small amount of carbon nanofiber (CNF) after increasing the graphite filling amount rather than increasing the carbon nanofiber (CNF) filling amount. Is.

また、実施例3と実施例10とを比較すれば、ベース樹脂がエポキシ樹脂であってもポリプロピレン樹脂であっても、グラファイトとカーボンナノファイバー(CNF)の充填量が同じであれば、略同じ熱伝導率が得られることを示している。   In addition, comparing Example 3 and Example 10, whether the base resin is an epoxy resin or a polypropylene resin is substantially the same as long as the filling amount of graphite and carbon nanofiber (CNF) is the same. It shows that thermal conductivity can be obtained.

また、実施例3と比較例11とを比較すると、鱗片状のグラファイトが球状化黒鉛であった場合は充填量が同じであってもカーボンナノファイバーによる熱伝導率の増加効果が得られないことを示している。   Moreover, when Example 3 and Comparative Example 11 are compared, when the scaly graphite is spheroidized graphite, the effect of increasing the thermal conductivity by the carbon nanofibers cannot be obtained even if the filling amount is the same. Is shown.

以上の結果から、本発明の熱伝導性樹脂組成物は、熱伝導性を示す材料として、鱗片状フィラー及び繊維状フィラー(ナノ繊維)を併用することにより、グラファイトのみを使用した場合あるいは炭素繊維とナノ繊維とを併用した場合と比べて、非常に高い熱伝導性を示すことが明らかとなった。   From the above results, the thermally conductive resin composition of the present invention is a case where only graphite or carbon fiber is used as a material exhibiting thermal conductivity by using a scaly filler and a fibrous filler (nanofiber) in combination. As compared with the case of using nanofiber with nanofiber, it has been clarified that the heat conductivity is very high.

以上のように本発明の実施の形態及び実施例について説明を行なったが、上述の各実施の形態及び実施例の構成を適宜組み合わせることもできる。
今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではなく、本発明の範囲は、上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
Although the embodiments and examples of the present invention have been described above, the configurations of the above-described embodiments and examples can be appropriately combined.
The embodiments and examples disclosed herein are illustrative and non-restrictive in every respect, and the scope of the present invention is indicated by the scope of the claims, rather than the description above, and the scope of the claims It is intended that all changes within the meaning and scope equivalent to are included.

1 ベース樹脂
2 鱗片状フィラー
3 繊維状フィラー
1 Base resin 2 Scale-like filler 3 Fibrous filler

エポキシ樹脂にグラファイトのみを充填した場合と、グラファイトにカーボンナノファイバーを2体積%加えて充填した場合のグラファイト充填量に対する熱伝導率の変化を示すグラフである。And when filled with only graphite epoxy resin is a graph showing the change in thermal conductivity for graphite-filled volume, when filled by adding the carbon nanofibers 2% by volume of graphite. 本発明の熱伝導性樹脂組成物を用いた成形品の断面構造を模式的示したものであり、(a)は層構造に平行な面の断面、(b)は層構造に直交する面の断面を示している。1 schematically shows a cross-sectional structure of a molded article using the heat conductive resin composition of the present invention, in which (a) is a cross section of a plane parallel to the layer structure, and (b) is a plane orthogonal to the layer structure. A cross section is shown. 本発明の熱伝導性樹脂組成物を用いた成形品の断面SEM画像である。It is a cross-sectional SEM image of the molded article using the heat conductive resin composition of this invention.

本発明の熱伝導性樹脂組成物は、(a)熱硬化性樹脂又は熱可塑性樹脂からなるベース樹脂中に、共に熱伝導性を有する(b)鱗片状フィラー及び(c)繊維状フィラーを充填し、1つ以上の鱗片状フィラーの面が互いに同一平面内に並んだ平面構造を形成し、該平面構造が同一平面方向を向いた1つ以上の層構造を形成し、該平面構造に接触する樹脂層において繊維状フィラーの分散層を形成し、繊維状フィラーが層間に熱伝導パスを形成するのである。ここで、平面方向に平行に切り出した断面に存在する鱗片状フィラーの投影面積が、鱗片状フィラーの表面積に対して35%以上を占める場合に同一平面と規定する。望ましくは40%以上を占めることが好ましい。 The thermally conductive resin composition of the present invention is filled with (b) scale-like filler and (c) fibrous filler, both of which have thermal conductivity in a base resin made of (a) thermosetting resin or thermoplastic resin. A plane structure in which the surfaces of one or more scale-like fillers are arranged in the same plane, and the plane structure forms one or more layer structures facing the same plane direction, and is in contact with the plane structure In the resin layer, a fibrous filler dispersion layer is formed, and the fibrous filler forms a heat conduction path between the layers. Here, when the projected area of the scale-like filler existing in the cross section cut out in parallel to the plane direction occupies 35% or more with respect to the surface area of the scale-like filler, it is defined as the same plane. Desirably, it occupies 40% or more .

図1の実線は、グラファイトのみを充填した場合の熱伝導率の変化を示し、グラファイトの充填量の増加と共に指数関数的に熱伝導率が増加することが分かるが、70体積%を超えると成形性が極端に悪化する。図1の破線は、グラファイトに少量のカーボンナノファイバー加えた場合の熱伝導率の変化を示し、グラファイトのみの場合と比較して熱伝導率が中間領域(20〜60体積%)で大幅に増加していることが分かる。グラファイトの少ない範囲(1〜10体積%)では、グラファイト同士の接触が少ないため、充分に層構造が形成されず、また層構造が形成されたとしても層間隔が広いため、カーボンナノファイバーによる熱伝導パスが効果的に形成されないために、熱伝導率が低いものと考えられる。一方、グラファイトの多い範囲(60〜70体積%)では、グラファイト同士の接触が限界に近づき、グラファイト自体が熱伝導パスを形成してしまうために、カーボンナノファイバーの添加が熱伝導率の増加に寄与しなかったものと考えられる。
The solid line in FIG. 1 shows the change in thermal conductivity when only graphite is filled, and it can be seen that the thermal conductivity increases exponentially with the increase in the graphite filling amount. Sexually deteriorates. The broken line in FIG. 1 shows the change in thermal conductivity when a small amount of carbon nanofibers is added to graphite, and the thermal conductivity is significantly higher in the intermediate region (20 to 60% by volume) than in the case of graphite alone. It can be seen that it has increased. In the range with a small amount of graphite (1 to 10% by volume), the contact between the graphite is small, so that the layer structure is not sufficiently formed, and even if the layer structure is formed, the layer spacing is wide, so the heat generated by the carbon nanofibers. It is considered that the thermal conductivity is low because the conduction path is not effectively formed. On the other hand, in the range with a large amount of graphite (60 to 70% by volume), the contact between the graphites approaches the limit, and the graphite itself forms a heat conduction path, so the addition of carbon nanofibers increases the heat conductivity. It is thought that he did not contribute.

Claims (7)

(a)熱硬化性樹脂又は熱可塑性樹脂からなるベース樹脂中に、共に熱伝導性を有する(b)鱗片状フィラー及び(c)繊維状フィラーを充填し、1つ以上の鱗片状フィラーの面が互いに同一平面内に並んだ平面構造を形成し、該平面構造が同一平面方向を向いた1つ以上の層構造を形成し、該平面構造に接触する樹脂層において繊維状フィラーの分散層を形成し、繊維状フィラーが層間に熱伝導パスを形成してなることを特徴とする熱伝導性樹脂組成物。   (A) A base resin made of a thermosetting resin or a thermoplastic resin is filled with (b) scaly filler and (c) fibrous filler, both of which have thermal conductivity, and the surface of one or more scaly fillers Form a planar structure in which the planar structures are aligned in the same plane, the planar structure forms one or more layered structures facing the same planar direction, and a dispersed layer of fibrous filler is formed in the resin layer in contact with the planar structure. A thermally conductive resin composition, wherein the fibrous filler is formed by forming a thermal conduction path between layers. (a)ベース樹脂、(b)鱗片状フィラー、(c)繊維状フィラーの合計を100体積%とした場合に、(b)鱗片状フィラーと(c)繊維状フィラーの合計体積が、5〜70体積%である請求項1記載の導電性繊維である熱伝導性樹脂組成物。   When the total of (a) base resin, (b) flaky filler, and (c) fibrous filler is 100% by volume, the total volume of (b) flaky filler and (c) fibrous filler is 5 to 5%. The heat conductive resin composition which is a conductive fiber according to claim 1, which is 70% by volume. (c)繊維状フィラーの直径が10nm〜30μm、繊維長が1μm〜3mmであり、アスペクト比が100以上である請求項1又は2記載の熱伝導性樹脂組成物。   (C) The thermally conductive resin composition according to claim 1 or 2, wherein the fibrous filler has a diameter of 10 nm to 30 µm, a fiber length of 1 µm to 3 mm, and an aspect ratio of 100 or more. (c)繊維状フィラーが、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)からなる群より選ばれる1種以上の導電性繊維状フィラーである請求項1〜3何れか1項に記載の熱伝導性樹脂組成物。   The heat according to any one of claims 1 to 3, wherein (c) the fibrous filler is at least one conductive fibrous filler selected from the group consisting of carbon nanofibers (CNF) and carbon nanotubes (CNT). Conductive resin composition. (a)ベース樹脂、(b)鱗片状フィラー、(c)繊維状フィラーの合計を100体積%とした場合に、(c)繊維状フィラーの配合量が0.1〜15体積%である請求項1〜4何れか1項に記載の熱伝導性樹脂組成物。   When the total of (a) base resin, (b) scale-like filler, and (c) fibrous filler is 100% by volume, (c) the amount of fibrous filler is 0.1 to 15% by volume. Item 5. The thermal conductive resin composition according to any one of Items 1 to 4. (b)鱗片状フィラーの面方向の径が0.1μm〜200μmでアスペクト比が10以上である請求項1〜5何れか1項に記載の熱伝導性樹脂組成物。   (B) The diameter of the scale-like filler in the surface direction is 0.1 μm to 200 μm and the aspect ratio is 10 or more. The heat conductive resin composition according to claim 1. (b)鱗片状フィラーが、グラファイト、グラフェンからなる群より選ばれる1種以上の導電性鱗片状フィラーである請求項1〜6何れか1項に記載の熱伝導性樹脂組成物。   (B) The scaly filler is one or more conductive scaly fillers selected from the group consisting of graphite and graphene. The heat conductive resin composition according to any one of claims 1 to 6.
JP2013126030A 2013-06-14 2013-06-14 Thermal conductive resin molding Active JP6526939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126030A JP6526939B2 (en) 2013-06-14 2013-06-14 Thermal conductive resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126030A JP6526939B2 (en) 2013-06-14 2013-06-14 Thermal conductive resin molding

Publications (2)

Publication Number Publication Date
JP2015000937A true JP2015000937A (en) 2015-01-05
JP6526939B2 JP6526939B2 (en) 2019-06-05

Family

ID=52295663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126030A Active JP6526939B2 (en) 2013-06-14 2013-06-14 Thermal conductive resin molding

Country Status (1)

Country Link
JP (1) JP6526939B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204570A (en) * 2015-04-27 2016-12-08 スターライト工業株式会社 Heat conductive resin molded body and manufacturing method therefor
WO2017169482A1 (en) * 2016-03-28 2017-10-05 日信工業株式会社 Thermoplastic resin composition and method for producing thermoplastic resin composition
JP2021500695A (en) * 2017-10-26 2021-01-07 信越ポリマー株式会社 Heat dissipation structure and battery with it
WO2021034144A1 (en) * 2019-08-21 2021-02-25 주식회사 아모그린텍 Heat-dissipating plastic
CN114341273A (en) * 2019-09-30 2022-04-12 积水保力马科技株式会社 Thermally conductive sheet and method for producing same
KR20220098886A (en) * 2021-01-05 2022-07-12 주식회사 휴비스 A foam sheet having excellent thermal conductivity, and heatsink containing the same
CN114341273B (en) * 2019-09-30 2024-05-03 积水保力马科技株式会社 Thermally conductive sheet and method for producing same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029649A (en) * 2003-07-09 2005-02-03 Toray Ind Inc Resin composition, tablet, molded product and chassis or casing of equipment
JP2005053964A (en) * 2003-08-05 2005-03-03 Toray Ind Inc Resin composition for inkjet printer head part and inkjet printer head part obtained therefrom
JP2005146124A (en) * 2003-11-14 2005-06-09 Toray Ind Inc Highly-filled resin composition, and molded article obtained therefrom
JP2007146105A (en) * 2005-11-04 2007-06-14 Tosoh Corp Polyarylene sulfide composition
JP2008133382A (en) * 2006-11-29 2008-06-12 Polyplastics Co Heat-conductive resin composition
JP2008231138A (en) * 2007-03-16 2008-10-02 Toray Ind Inc Resin composition highly filled with filler, method for producing tablet and molded article comprising the same
US20090035469A1 (en) * 2007-08-02 2009-02-05 The Texas A&M University System Dispersion, alignment and deposition of nanotubes
WO2010053226A1 (en) * 2008-11-05 2010-05-14 Cheil Industries Inc. Electrically insulated thermal conductive polymer composition
WO2010084845A1 (en) * 2009-01-20 2010-07-29 ユニチカ株式会社 Resin composition and molded article comprising the same
JP2011038078A (en) * 2009-08-17 2011-02-24 Laird Technologies Inc Highly thermal conductive and formable thermoplastic composite material and composition
US20110260116A1 (en) * 2010-04-22 2011-10-27 Arkema France Thermoplastic and/or elastomeric composite based on carbon nanotubes and graphenes
JP2012072363A (en) * 2010-08-31 2012-04-12 Miki Polymer Co Ltd Heat-conductive resin composition and heat-radiating material comprising the same
JP2012509972A (en) * 2008-11-27 2012-04-26 アルケマ フランス Use of expanded graphite in polymer raw materials
US20120175548A1 (en) * 2010-12-31 2012-07-12 Cheil Industries Inc. Thermally Conductive Resin Composition Including a Milled Pitch Based Carbon Fiber
JP2013023608A (en) * 2011-07-22 2013-02-04 Tosoh Corp Polyarylene sulfide-based composition

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029649A (en) * 2003-07-09 2005-02-03 Toray Ind Inc Resin composition, tablet, molded product and chassis or casing of equipment
JP2005053964A (en) * 2003-08-05 2005-03-03 Toray Ind Inc Resin composition for inkjet printer head part and inkjet printer head part obtained therefrom
JP2005146124A (en) * 2003-11-14 2005-06-09 Toray Ind Inc Highly-filled resin composition, and molded article obtained therefrom
JP2007146105A (en) * 2005-11-04 2007-06-14 Tosoh Corp Polyarylene sulfide composition
JP2008133382A (en) * 2006-11-29 2008-06-12 Polyplastics Co Heat-conductive resin composition
JP2008231138A (en) * 2007-03-16 2008-10-02 Toray Ind Inc Resin composition highly filled with filler, method for producing tablet and molded article comprising the same
US20090035469A1 (en) * 2007-08-02 2009-02-05 The Texas A&M University System Dispersion, alignment and deposition of nanotubes
WO2010053226A1 (en) * 2008-11-05 2010-05-14 Cheil Industries Inc. Electrically insulated thermal conductive polymer composition
JP2012509972A (en) * 2008-11-27 2012-04-26 アルケマ フランス Use of expanded graphite in polymer raw materials
WO2010084845A1 (en) * 2009-01-20 2010-07-29 ユニチカ株式会社 Resin composition and molded article comprising the same
JP2011038078A (en) * 2009-08-17 2011-02-24 Laird Technologies Inc Highly thermal conductive and formable thermoplastic composite material and composition
US20110260116A1 (en) * 2010-04-22 2011-10-27 Arkema France Thermoplastic and/or elastomeric composite based on carbon nanotubes and graphenes
JP2012072363A (en) * 2010-08-31 2012-04-12 Miki Polymer Co Ltd Heat-conductive resin composition and heat-radiating material comprising the same
US20120175548A1 (en) * 2010-12-31 2012-07-12 Cheil Industries Inc. Thermally Conductive Resin Composition Including a Milled Pitch Based Carbon Fiber
JP2013023608A (en) * 2011-07-22 2013-02-04 Tosoh Corp Polyarylene sulfide-based composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TIMCAL TIMREX(R) BNB90 EXPANDED GRAPHITE, JPN6018010565, ISSN: 0003764752 *
VGCF−H(昭和電工株式会社製)の製品説明ホームページ, JPN6017040061, JP, ISSN: 0003664512 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204570A (en) * 2015-04-27 2016-12-08 スターライト工業株式会社 Heat conductive resin molded body and manufacturing method therefor
WO2017169482A1 (en) * 2016-03-28 2017-10-05 日信工業株式会社 Thermoplastic resin composition and method for producing thermoplastic resin composition
CN108779337A (en) * 2016-03-28 2018-11-09 日信工业株式会社 The manufacturing method of thermoplastic resin composition and thermoplastic resin composition
JP7116781B2 (en) 2017-10-26 2022-08-10 信越ポリマー株式会社 Heat dissipation structure and battery with same
JP2021500695A (en) * 2017-10-26 2021-01-07 信越ポリマー株式会社 Heat dissipation structure and battery with it
WO2021034144A1 (en) * 2019-08-21 2021-02-25 주식회사 아모그린텍 Heat-dissipating plastic
KR20210023755A (en) * 2019-08-21 2021-03-04 주식회사 아모그린텍 Heat radiating plastic
KR102425103B1 (en) * 2019-08-21 2022-07-26 주식회사 아모그린텍 Heat radiating plastic
CN114341273A (en) * 2019-09-30 2022-04-12 积水保力马科技株式会社 Thermally conductive sheet and method for producing same
EP4039471A4 (en) * 2019-09-30 2024-01-03 Sekisui Polymatech Co Ltd Thermally conductive sheet and manufacturing method thereof
CN114341273B (en) * 2019-09-30 2024-05-03 积水保力马科技株式会社 Thermally conductive sheet and method for producing same
KR20220098886A (en) * 2021-01-05 2022-07-12 주식회사 휴비스 A foam sheet having excellent thermal conductivity, and heatsink containing the same
KR102547787B1 (en) * 2021-01-05 2023-06-27 주식회사 휴비스 A foam sheet having excellent thermal conductivity, and heatsink containing the same

Also Published As

Publication number Publication date
JP6526939B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
Wei et al. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance
Kuang et al. Creating poly (lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller
Li et al. Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability
Cao et al. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres
Eksik et al. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives
Ren et al. Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets
Cui et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect
Kumar et al. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites
JP6526939B2 (en) Thermal conductive resin molding
Ren et al. A double mixing process to greatly enhance thermal conductivity of graphene filled polyamide 6 composites
Kim et al. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
Ghose et al. Thermal conductivity of UltemTM/carbon nanofiller blends
KR101735819B1 (en) Material for carbon-based heat dissipating structurem, method for producing carbon-based heat dissipating structure using material and carbon-based heat dissipating structure produced by the same
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
Zhang et al. Enhanced thermal conductivity and dielectric properties in electrostatic self-assembly 3D pBN@ nCNTs fillers loaded in epoxy resin composites
Wang et al. Epoxy composites with high thermal conductivity by constructing three-dimensional carbon fiber/carbon/nickel networks using an electroplating method
KR20210087026A (en) Boron nitride nanomaterial, and resin composition
Wei et al. Constructing a “Pearl-Necklace-Like” architecture for enhancing thermal conductivity of composite films by electrospinning
Peng et al. FDM-3D printing LLDPE/BN@ GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding
Xu et al. Enhanced thermal conductivity and electrically insulating of polymer composites
Prolongo et al. Heat dissipation on electrical conductor composites by combination of carbon nanotubes and graphene nanoplatelets
Bai et al. Constructing network structure of graphene nanoplatelets/carbon nanofibers in polystyrene and the resultant heat resistance, thermal and conductive properties
JP2011132264A (en) Thermally conductive resin composition
Lee et al. Thermally conductive 3D binetwork structured aggregated boron nitride/Cu-foam/polymer composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190509

R150 Certificate of patent or registration of utility model

Ref document number: 6526939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250