WO2010084845A1 - Resin composition and molded article comprising the same - Google Patents

Resin composition and molded article comprising the same Download PDF

Info

Publication number
WO2010084845A1
WO2010084845A1 PCT/JP2010/050516 JP2010050516W WO2010084845A1 WO 2010084845 A1 WO2010084845 A1 WO 2010084845A1 JP 2010050516 W JP2010050516 W JP 2010050516W WO 2010084845 A1 WO2010084845 A1 WO 2010084845A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
compound
thermoplastic resin
composition according
Prior art date
Application number
PCT/JP2010/050516
Other languages
French (fr)
Japanese (ja)
Inventor
顕 伊藤
夕哉 正鑄
幹夫 古川
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to CN201080003109.0A priority Critical patent/CN102203191B/en
Priority to JP2010547480A priority patent/JP5686605B2/en
Publication of WO2010084845A1 publication Critical patent/WO2010084845A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • C08L77/08Polyamides derived from polyamines and polycarboxylic acids from polyamines and polymerised unsaturated fatty acids

Definitions

  • the present invention relates to a resin composition and a molded body comprising the same, and more particularly to a resin composition having melt fluidity during molding and a molded body comprising the same.
  • thermoplastic resins used as raw materials for molding include polypropylene (PP), ABS, polyamide (PA6, PA66, etc.), polyester (PET, PBT, etc.), polycarbonate (PC), liquid crystal polyester (LCP), polyphenylene sulfide. (PPS). These resins are widely used in fields such as various electronic devices, electronic parts, and machine parts. These thermoplastic resins are improved in strength and heat resistance by blending reinforcing fillers such as talc and glass fiber, and various functions can be achieved by blending fillers having specific functions. Has been granted.
  • Amorphous thermoplastic resins such as polycarbonate resin and ABS resin, which are excellent in surface appearance and low warpage of molded products, have been used in the casings of portable electronic devices such as PDAs, mobile phones, and personal computers.
  • casings are also required to be thin molded products.
  • talc, glass fiber, and the like have been blended as reinforcing materials in the aforementioned polycarbonate resin and ABS resin.
  • the strength of the casing and the like is improved as the amount of the reinforcing material is increased, but the fluidity of the resin is lowered. For this reason, it is particularly difficult to form a thin and complex product such as a housing.
  • JP62-1331033A has a thermally conductive resin molded product in which a thermoplastic resin is filled with graphite powder
  • JP2001-151905A has a resin heat sink in which polyphenylene sulfide resin is filled with magnesium oxide or aluminum oxide.
  • a highly heat conductive resin composition it is necessary to add a large amount of filler. As a result, there is a problem in that the moldability is remarkably lowered and the use of the resin composition is limited.
  • an object of the present invention is to provide a resin composition excellent in melt fluidity at the time of processing such as injection molding and a molded body comprising the same.
  • the gist of the present invention is as follows.
  • the melt viscosity reducing agent (C) is a polyfunctional allyl compound (C1), and the polyfunctional allyl compound (C1) with respect to 100 parts by mass in total of the thermoplastic resin (A) and the filler (B).
  • the content is 3 to 20 parts by mass.
  • the melt viscosity reducing agent (C) is a dimer acid-based thermoplastic resin (C2), and the dimer acid-based thermoplastic resin (C2) for a total of 100 parts by volume of the thermoplastic resin (A) and the filler (B). ) Content is 10 to 45 parts by volume.
  • the polyfunctional allyl compound (C1) is obtained by reacting the primary amine compound (D) represented by the following formula (i) with the polyfunctional compound (E) having an allyl group and a glycidyl group.
  • the resin composition according to (1) which is an allyl compound.
  • n 1 to 4 and R represents an aromatic or aliphatic 1 to 4 substituted residue.
  • filler (B) is a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m ⁇ K) or more. Resin composition.
  • the thermally conductive filler (B1) is composed of flaky graphite having an average particle diameter of 1 to 300 ⁇ m, graphitized carbon fiber having an average fiber diameter of 1 to 30 ⁇ m and an average fiber length of 1 to 20 mm, and a hexagonal crystal structure.
  • Scaly boron nitride having an average particle size of 1 to 200 ⁇ m, aluminum oxide having an average particle size of 0.5 to 150 ⁇ m, magnesium oxide having an average particle size of 0.5 to 150 ⁇ m, and an average particle size of 0.5 to 150 ⁇ m
  • the resin composition according to (7) or (8) which is at least one selected from magnesium carbonate and zinc oxide having an average particle diameter of 0.5 to 150 ⁇ m.
  • thermoplastic resin (A) is a polyamide resin.
  • melt viscosity reducing agent (C) since it contains a predetermined amount of melt viscosity reducing agent (C), it is possible to provide a resin composition having excellent melt fluidity during processing and a molded product obtained thereby.
  • melt viscosity reducing agent (C) is a polyfunctional allyl compound (C1)
  • the polyfunctional allyl compound (C1) has a large number of allyl groups in one molecule.
  • a resin composition having excellent mechanical properties and excellent melt fluidity during processing, and a molded product comprising the same Obtainable.
  • thermoplastic resin (A) that can be used in the present invention is not particularly limited, but ethylene- ⁇ -olefin copolymers such as polyethylene, polypropylene, and ethylene-propylene copolymers, polymethylpentene, Polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, fluororesin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Polylactic acid, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether (PPE), modified PPE, polyamide, polyimide, polyamideimide, polyether Ruimido, polymethacrylic acid esters of polymethyl methacrylate, poly
  • polyamide resin examples include homopolyamide and copolyamide obtained by polymerization of lactam or aminocarboxylic acid, or polycondensation of diamine and carboxylic acid, and mixtures thereof.
  • polyamide resin examples include polycapramide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycoupleramide / polyhexamethylene adipamide copolymer (nylon 6/66) , Polyundecamide (nylon 11), polycapramide / polyundecamide copolymer (nylon 6/11), polydodecamide (nylon 12), polycoupler / polydodecamide copolymer (nylon 6/12), polyhexamethylene sebamide (nylon 610) , Polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalamide (Niro) 6T), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), polycapramide (n
  • the liquid crystal polymer that can be used in the present invention refers to a melt-processable polymer having a property capable of forming an optically anisotropic melt phase.
  • a liquid crystal polymer has a property that polymer molecular chains take a regular parallel arrangement by receiving a shear stress in a molten state.
  • Such polymer molecules are generally elongated, flat, fairly rigid along the long axis of the molecule, and have a plurality of chain extension bonds that are usually either coaxial or parallel. Examples include wholly aromatic or semi-aromatic polyesters, polyester imides, polyester amides, and mixtures thereof.
  • liquid crystal polymer examples include liquid crystal polyester, liquid crystal polyester amide, liquid crystal polyester carbonate, and liquid crystal polyester elastomer.
  • liquid crystalline polyester is preferable in terms of moldability.
  • liquid crystal polyester examples include a polyester that forms an anisotropic melt phase composed of a structural unit selected from an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic dicarbonyl unit, an ethylenedioxy unit, and the like.
  • the resin composition of the present invention contains a filler (B).
  • a filler (B) used by this invention The thing used for the purpose of improving a mechanical property, a thermal property, etc., electroconductivity, thermal conductivity, magnetism, piezoelectricity, electromagnetic wave absorption As typical examples, those used for the purpose of imparting functions such as flame retardancy and ultraviolet absorption can be given.
  • Examples of the form of the filler (B) include a spherical shape, a powder shape, a fiber shape, a needle shape, a scale shape, a scale shape, a whisker shape, a microcoil shape, and a nanotube shape.
  • the filler (B) include acetylene black, ketjen black, carbon nanotube, carbon nanofiber, metal powder (silver, copper, aluminum, titanium, nickel, tin, iron, stainless steel, etc.), conductive zinc oxide , Tin oxide, indium oxide, various ferrites, magnetic iron oxide, aluminum oxide, magnesium oxide, zinc oxide, magnesium carbonate, silicon carbide, aluminum nitride, boron nitride, silicon nitride, carbon, graphite, barium titanate, zirconate titanate Lead, potassium titanate, zonotlite, mica, talc, montmorillonite, hydrotalcite, calcium carbonate, zinc carbonate, wollastonite, barium sulfate, molybdenum disulfide, ethylene fluoride (for example, Teflon (registered trademark) powder, silica, Glass beads, Las balloon, titanium oxide, aluminum hydroxide, magnesium hydroxide, antimony trioxide, boric acid, zinc borate, ce
  • the volume ratio (A / B) between the thermoplastic resin (A) and the filler (B) [including a heat conductive filler (B1) described later] is 20/80 to 95. / 5 is preferable, 30/70 to 90/10 is more preferable, and 30/70 to 60/40 is particularly preferable.
  • the blending amount of the filler (B) is less than 5% by volume, the effect of blending the filler may not be sufficiently obtained.
  • the blending amount exceeds 80% by volume the fluidity is remarkably lowered during molding. In some cases, the load of the engine becomes too high and the operability is lowered.
  • a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m ⁇ K) or more is used as the filler (B).
  • the heat conductive filler (B1) either a conductive filler or an insulating filler can be used.
  • the thermal conductivity of the heat conductive filler (B1) can be measured using the sintered product.
  • thermally conductive filler (B1) (representing a representative value of thermal conductivity [unit: W / (m ⁇ K)] in parentheses), aluminum oxide (36), magnesium oxide (60 ), Zinc oxide (25), magnesium carbonate (15), silicon carbide (160), aluminum nitride (170), boron nitride (210), silicon nitride (40), carbon (10 to several hundreds), graphite (10 to Hundreds of inorganic fillers, silver (427), copper (398), aluminum (237), titanium (22), nickel (90), tin (68), iron (84), stainless steel (15), etc. Metal-based fillers. These can be used alone or in combination of two or more.
  • the average particle diameter of the heat conductive filler (B1) is preferably 0.5 to 300 ⁇ m, more preferably 1 to 150 ⁇ m, excluding specific particles described later. If the average particle size is less than 0.5 ⁇ m, an agglomerate is likely to occur due to poor dispersion, and a uniform molded product cannot be obtained, resulting in a decrease in mechanical properties and a variation in thermal conductivity. If the average particle size exceeds 300 ⁇ m, it may be difficult to fill the resin in a high concentration or the surface of the molded product may become rough.
  • thermally conductive filler (B1) because of its high thermal conductivity efficiency when blended into the thermoplastic resin (A). It is preferable. In view of economy, it is preferable to use aluminum oxide, magnesium oxide, magnesium carbonate, or zinc oxide.
  • Examples of the form of the graphite filler that can be used in the present invention include a spherical shape, a powder shape, a fiber shape, a needle shape, a scale shape, a whisker shape, a microcoil shape, and a nanotube shape.
  • scaly graphite and graphitized carbon fiber are particularly preferable because they can increase the heat conduction efficiency when blended with the thermoplastic resin (A).
  • the average particle size of the flake graphite is preferably 1 to 300 ⁇ m, and more preferably 5 to 150 ⁇ m. If the average particle size is less than 1 ⁇ m, agglomerates are likely to occur due to poor dispersion, and thus a uniform molded product cannot be obtained, and the mechanical properties may be lowered or the thermal conductivity may be varied. When the average particle size exceeds 300 ⁇ m, it becomes difficult to fill the resin composition at a high concentration, and the surface of the molded product may become rough.
  • the graphitized carbon fiber is preferably pitch-based carbon fiber, which is described in, for example, JP2003-49327A.
  • graphite is obtained by firing at a high temperature of 1000 to 3000 ° C. using mesophase pitch as a raw material.
  • Pitch-based carbon fibers with improved chemical conversion are preferred.
  • the degree of graphitization is not particularly limited, but the thermal conductivity in the length direction increases as the graphite fiber is approached.
  • the thermal conductivity in the length direction of the graphitized carbon fiber is usually 100 W / (m ⁇ K) or more, preferably 500 W / (m ⁇ K) or more.
  • the average fiber diameter of the graphitized carbon fiber is preferably 1 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the average fiber diameter is less than 1 ⁇ m, sufficient thermal conductivity cannot be obtained, and when the average fiber diameter exceeds 30 ⁇ m, moldability and the like may be deteriorated.
  • the average fiber length of the graphitized carbon fiber is preferably 1 to 20 mm, and more preferably 3 to 15 mm. If the average fiber length is less than 1 mm, sufficient thermal conductivity cannot be obtained. The longer the average fiber length, the higher the thermal conductivity, the higher the bending strength and the bending elastic modulus. However, when the average fiber length exceeds 20 mm, the fluidity is greatly lowered, which is not preferable in terms of moldability.
  • Examples of commercially available products of graphitized carbon fiber include the product name “GRANOC” manufactured by Nippon Graphite Fiber Co., Ltd., and the product name “Dialead” manufactured by Mitsubishi Chemical Corporation.
  • Examples of the form of boron nitride that can be used in the present invention include a spherical shape, a powdery shape, a fibrous shape, a needle shape, a scale shape, a whisker shape, a microcoil shape, and a nanotube shape. Since it becomes easy to orient in a surface direction when it is set as a molded body, and as a result, heat conductivity can be raised, it is preferable that it is scaly. By containing boron nitride, thermal conductivity can be improved without reducing the insulating properties of the resin composition.
  • the average particle size of boron nitride is preferably 1 to 200 ⁇ m, and more preferably 5 to 100 ⁇ m.
  • the average particle size is less than 1 ⁇ m, agglomerates are likely to occur due to poor dispersion, and therefore, a uniform molded product cannot be obtained, and mechanical properties may be deteriorated or thermal conductivity may be varied.
  • the average particle diameter exceeds 200 ⁇ m, it becomes difficult to fill the resin composition at a high concentration, and the surface of the molded product may become rough.
  • the crystal system of boron nitride is not particularly limited. Boron nitride having any crystal structure such as hexagonal system, cubic system, and the like is applicable. Of these, boron nitride having a hexagonal crystal structure is preferable because of its high thermal conductivity.
  • Examples of the form of aluminum oxide, magnesium oxide, magnesium carbonate, and zinc oxide that can be used in the present invention include a spherical shape, a fiber shape, a spindle shape, a rod shape, a needle shape, a cylindrical shape, and a columnar shape. Since it can suppress the fall of the fluidity
  • the average particle diameter of aluminum oxide, magnesium oxide, magnesium carbonate, and zinc oxide is preferably 0.5 to 150 ⁇ m, and more preferably 1 to 100 ⁇ m. If the average particle size is less than 0.5 ⁇ m, agglomerates are likely to occur due to poor dispersion, and therefore, a uniform molded product cannot be obtained, and mechanical properties may deteriorate or thermal conductivity may vary. When the average particle diameter exceeds 150 ⁇ m, it becomes difficult to fill the resin composition at a high concentration, and the surface of the molded product may become rough.
  • the filler (B) used in the present invention may be subjected to a surface treatment with a coupling agent in order to improve adhesion to the thermoplastic resin (A).
  • a coupling agent include silane coupling agents and titanium coupling agents such as ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- Aminosilane coupling agents such as ⁇ - (aminoethyl) - ⁇ -aminopropyldimethoxymethylsilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylethoxysilane, ⁇ - (3,4-epoxy Mention may be made of epoxy silane coupling agents such as (cyclohexyl) ethyltrimethoxysilane, and titanium coupling agents such as isopropyl tristearoyl titanate, isoprop
  • the resin composition of the present invention contains a predetermined amount of fluidity improver (C).
  • the fluidity improver (C) used in the present invention is either a polyfunctional allyl compound (C1) or a dimer acid-based thermoplastic resin (C2).
  • the polyfunctional allyl compound (C1) is not particularly limited, but is required to be liquid at the melt processing temperature of the resin composition. Moreover, since the polyfunctional allyl compound (C1) can reduce the melt viscosity of the added resin, it will effectively act as a plasticizer.
  • polyfunctional allyl compound (C1) examples include triallyl isocyanurate, monoglycidyl diallyl isocyanurate, diglycidyl monoallyl isocyanurate, trimethallyl isocyanurate, monoglycidyl dimethallyl isocyanurate, diglycidyl monometa.
  • a polyfunctional allyl compound (C1) in addition to the above compound, a primary amine compound (D) represented by the following formula (i), a polyfunctional compound (E) having an allyl group and a glycidyl group, An allyl compound obtained by the above reaction can be used.
  • n 1 to 4 and R represents an aromatic or aliphatic 1 to 4 substituted residue.
  • a plurality of these amines can be used in combination for the purpose of adjusting various properties.
  • the polyfunctional compound (E) having an allyl group and a glycidyl group to be reacted with the primary amine compound (D) is not particularly limited as long as it is a monomeric compound having both an allyl group and a glycidyl group.
  • Examples of the polyfunctional compound (E) include monoglycidyl diallyl isocyanurate, diglycidyl monoallyl isocyanurate, monoglycidyl dimethallyl isocyanurate, diglycidyl monomethallyl isocyanurate, monoglycidyl diallyl cyanurate, diglycidyl monoary Lucyanurate, monoglycidyl dimethallyl cyanurate, diglycidyl monomethallyl cyanurate, allyl glycidyl amine, diallyl monoglycidyl amine, monoallyl diglycidyl amine, monoglycidyl dimethallyl amine, diglycidyl monomethallyl amine, glycidyl acrylic chlorene Tate, allyl glycidyl adipate, allyl glycidyl carbonate, allyl glycidyl dimethyl ammonium chloride, allyl glycid
  • the polyfunctional compound (E) is preferably a compound having an isocyanurate in the skeleton, and particularly preferably monoglycidyl diallyl isocyanurate.
  • the mixing ratio of the primary amine compound (D) and the polyfunctional compound (E) in the reaction may be such that the glycidyl group is 1 to 2 equivalents relative to 1 equivalent of the primary amine compound (D).
  • the primary amine compound (D) is aliphatic, since the nucleophilicity of the amine is strong, two glycidyl groups can be added to one amine.
  • a glycidyl group reacts in a 4 mol amount with respect to 1 mol of an aliphatic diamine.
  • the primary amine compound (D) is aromatic
  • the nucleophilicity of the amine is relatively weak, and the two glycidyl groups may not be added. That is, for example, it is considered that the glycidyl group reacts in an amount of approximately 2 moles per mole of the aromatic diamine.
  • the method of reacting the primary amine compound (D) and the polyfunctional compound (E) is not particularly limited.
  • the primary amine compound (D) and the polyfunctional compound are reacted.
  • an appropriate reaction solvent may be used as necessary. What is necessary is just to set the heating temperature for making it react normally in the range of 80-200 degreeC.
  • the atmosphere at the time of making it react is not specifically limited, What is necessary is just to react in air
  • the atmosphere may be replaced with an inert gas such as nitrogen gas.
  • reaction product thus obtained has a high boiling point, it is difficult to volatilize during melt processing, and can be used effectively as a crosslinking aid, end-capping agent and the like. Moreover, since it has many allyl groups in 1 molecule, an allyl group and resin can be bridge
  • the addition amount of the polyfunctional allyl compound (C1) is 3 to 20 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin (A) and the filler (B).
  • the amount is preferably 4 to 15 parts by mass.
  • the addition amount is less than 3 parts by mass, sufficient melt fluidity may not be obtained.
  • the amount exceeds 20 parts by mass, the melt viscosity may be too low and pelletization may not be possible at the time of melt-kneading, or the physical properties of the resulting molded product may be significantly reduced.
  • the polyfunctional allyl compound (C1) has a large number of allyl groups in one molecule, according to a known method, it can be used in combination with a crosslinking agent, or in combination with irradiation treatment such as electron beam or ⁇ -ray.
  • the thermoplastic resin (A) can be crosslinked. Among them, it is preferable to crosslink with an electron beam or a ⁇ ray from the viewpoint that it can be processed in a short time after being formed into a desired shape. Since gamma rays are more permeable than electron rays and therefore irradiation is uniform, crosslinking using gamma rays is more preferred.
  • a known electron accelerator or the like can be used for electron beam irradiation, and an irradiation apparatus such as a known cobalt 60 radiation source can be used for ⁇ -ray irradiation.
  • the irradiation dose of the electron beam is preferably 1 to 300 kGy, more preferably 50 to 100 kGy. In the case of ⁇ -ray irradiation, the irradiation dose is preferably 10 to 100 kGy, more preferably 20 to 40 kGy. If the radiation dose exceeds the upper limit, the strength is reduced due to the decomposition of the resin, which is not preferable. Moreover, if less than the said lower limit, since the effect by bridge
  • Irradiation atmosphere can be usually in the presence of air, but irradiation can be performed in a nitrogen atmosphere or in vacuum as desired.
  • the dimer acid-based thermoplastic resin (C2) is a dimer acid that is a dimer of fatty acids such as soybean oil, tung oil, or toll oil, or a derivative that can produce an amide thereof, or an ester thereof. It is a thermoplastic resin obtained by polycondensation of a dicarboxylic acid containing a derivative that can be produced as a main acid component with components such as diamine and glycol.
  • the main component of the dimer acid is a dimer, but may further contain a monomer or a trimer.
  • the dicarboxylic acid containing the dimer acid which is a dimer of a fatty acid, a derivative capable of generating an amide thereof, or a derivative capable of generating an ester thereof may be hydrogenated.
  • the dimer acid-based thermoplastic resin (C2) has a lower melt viscosity than the thermoplastic resin (A), and the addition of the dimer acid-based thermoplastic resin effectively reduces the melt viscosity of the resin.
  • the dimer acid-based thermoplastic resin (C2) is a resin, has a high decomposition temperature, and does not volatilize during melt processing, so that it can be used effectively as a plasticizer. Furthermore, even if this is added, it is effective in that the mechanical strength is hardly lowered and bleeding does not occur.
  • the dimer acid-based thermoplastic resin (C2) is not particularly limited, and examples thereof include polyamide and polyester. Of these, polyamide is preferable from the viewpoint of handleability and economy.
  • the dimer acid-based polyamide is not particularly limited, and examples thereof include a polyamide resin composed of a dicarboxylic acid component containing a dimer acid or a derivative capable of forming an amide thereof and a diamine.
  • Examples include reaction products of dimer acid, which is a dimer of fatty acids such as soybean oil, tung oil, and toll oil, and alkylpolyamines such as ethylenediamine and diethylenetriamine.
  • the dimer acid-based polyester is not particularly limited, and examples thereof include a polyester resin composed of a dicarboxylic acid component containing a dimer acid or a derivative capable of forming an ester thereof and glycol.
  • dimer acid which is a dimer of fatty acids such as soybean oil, tung oil, and toll oil, and a reaction product of a glycol component such as ethylene glycol or 1,4-butanediol with terephthalic acid or isophthalic acid. You can list things.
  • the dimer acid-based polyamide and the dimer acid-based polyester can be used individually or in combination.
  • the amount of the dimer acid-based thermoplastic resin (C2) added is 10 to 45 parts by volume with respect to 100 parts by volume in total of the thermoplastic resin (A) and the filler (B). It is necessary that it is 10 to 25 parts by volume. If the blending amount of the dimer acid-based thermoplastic resin (C2) is less than 10 parts by volume, the effect of blending the dimer acid-based thermoplastic resin (C2) may not be sufficiently obtained. On the other hand, if the blending amount exceeds 45 parts by volume, mechanical properties may be remarkably lowered, or pelletization may not be possible during melt kneading.
  • the resin composition of the present invention has a pigment, a heat stabilizer, an antioxidant, a weathering agent, a flame retardant, a lubricant, a release agent, an antistatic agent, a crystal nucleus material, and a compatibilization as long as the characteristics are not significantly impaired An agent or the like can be added.
  • heat stabilizers and antioxidants include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, and the like.
  • Examples of the flame retardant include hydrated metal compounds (such as aluminum hydroxide and magnesium hydroxide), nitrogen-containing compounds (melamine-based and guanidine-based), phosphorus-based flame retardants, halogen-based flame retardants, and inorganic flame retardants.
  • Examples of the crystal nucleus material include a sorbitol compound, benzoic acid and a metal salt of the compound, a phosphate metal salt, a rosin compound, and the like.
  • Examples of the compatibilizer include ionomer compatibilizers, oxazoline compatibilizers, elastomer compatibilizers, reactive compatibilizers, and copolymer-based compatibilizers. These additives may be used alone or in combination of two or more. The method for mixing these with the resin composition of the present invention is not particularly limited.
  • the resin composition of the present invention comprises a thermoplastic resin (A), a filler (B), a polyfunctional allyl compound (C1) or a dimer acid-based thermoplastic resin (C2), and if necessary.
  • Various additives can be produced by melt-kneading using a general extruder such as a single screw extruder, a twin screw extruder, a roll kneader, or a Brabender. At this time, it is also effective to use a static mixer or a dynamic mixer together. In order to improve the kneading state, it is preferable to use a twin screw extruder.
  • the filler (B) and the polyfunctional allyl compound (C1) or the dimer acid-based thermoplastic resin (C2) are not particularly limited, but in the extruder, from a hopper or using a side feeder. Can be added.
  • the resin composition of the present invention can be formed into a molded body by molding it into a desired shape using a known melt molding technique such as injection molding, compression molding, extrusion molding, transfer molding, or sheet molding. After the resin composition is molded into a desired shape, the resin can be crosslinked by irradiation with radiation as described above.
  • a molded body obtained by molding a resin composition containing a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m ⁇ K) or more include semiconductor elements and resistors.
  • Electrical and electronic parts such as sealing materials for connectors, connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, computer-related parts; VTRs, TVs, irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers Household electrical product parts such as lighting fixtures; Heat dissipation members for releasing heat from electronic components such as heat dissipation sheets, heat sinks and fans; Lighting fixture components such as lamp sockets, lamp reflectors and lamp housings; Compact discs, laser discs Audio product parts such as speakers; optical cable ferrules, mobile phones, fixed phones, fax machines Communication equipment parts such as modems and modems; Copying machines such as separation claws and heater holders, printer-related parts; machine parts such as impellers, fan gear
  • test methods for various physical property values are as follows.
  • MFR melt flow rate
  • Thermal conductivity Thermal conductivity (lambda) calculated
  • ⁇ Cp ⁇ : thermal conductivity (W / (m ⁇ K)) ⁇ : Thermal diffusivity (m 2 / sec) ⁇ : Density (g / m 3 ) Cp: Specific heat (J / g ⁇ K)
  • the thermal diffusivity ⁇ was measured by a laser flash method using a laser flash method thermal constant measuring device TC-7000 (manufactured by ULVAC-RIKO, Inc.) in the resin flow direction of the bending test piece prepared in [2].
  • the density ⁇ was measured using an electronic hydrometer ED-120T (manufactured by Mirage Trading Co.).
  • the specific heat Cp was measured using a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer) under the condition of a heating rate of 10 ° C./min.
  • PA6A polyamide 6 obtained by polymerization of lactam (relative viscosity 2.6, density 1.13 g / cm 3 )
  • PA6B Polyamide 6 obtained by polymerization of lactam (relative viscosity 1.9, density 1.13 cm 3 )
  • PA66 polyamide 66 obtained by polymerization of hexamethylenediamine and adipic acid (relative viscosity 2.8, density 1.14 cm 3 )
  • LCP Liquid crystalline polyester (Rodlan LC-5000 manufactured by Unitika Ltd., density 1.41 g / cm 3 )
  • PA12 Polyamide 12 (Rilsan AMN manufactured by Arkema, relative viscosity 2.3, density 1.01 g / cm 3 )
  • -PP Polypropylene (Nippon Polypro Corporation MA1B, density 0.9 g / cm3)
  • a 5 mg sample was heated from room temperature to 600 ° C. at a temperature increase rate of 20 ° C./min in a nitrogen-substituted atmosphere, and the sample mass change was measured. did.
  • decrease temperature by the TGA measurement of the obtained powder was 375 degreeC.
  • the 5% mass reduction temperature measured by MXDA TGA was 52 ° C.
  • the melting point of the obtained powder was in the range of 55-70 ° C.
  • DAMGIC was adjusted to 1 equivalent with respect to 1 equivalent of MXDA. Otherwise, synthesis was carried out in the same manner as in C11 to obtain a colorless and transparent liquid. The obtained liquid was gradually cooled to room temperature, and the solidified solid was pulverized to obtain a white powder of a polyfunctional allyl compound (C12).
  • the 5% mass reduction temperature of the obtained powder by TGA measurement was 335 ° C.
  • the melting point of the obtained powder was in the range of 50-60 ° C.
  • HMDA Hexamethylenediamine
  • D the primary amine compound
  • synthesis was carried out in the same manner as in C11 to obtain a colorless and transparent liquid.
  • the obtained liquid was gradually cooled to room temperature, and the solid produced at that time was pulverized to obtain a white powder of a polyfunctional allyl compound (C13).
  • the 5% mass reduction temperature of the obtained powder by TGA measurement was 356 ° C.
  • the 5% mass reduction temperature by TGA measurement of HMDA was 76 ° C.
  • the melting point of the obtained powder was in the range of 35 to 45 ° C.
  • MFR melt flow rate
  • Plasticizer-HB p-hydroxybenzoic acid alkyl ester
  • Example 1 30 parts by mass of polyamide 6 resin (PA6A) and 5 parts by mass of polyfunctional allyl compound (C12) are supplied to a main hopper of a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd .: TEM26SS, screw diameter 26 mm) at 260 ° C. And melted. In the middle, 70 parts by mass of glass fiber (GF) was supplied from the side feeder and sufficiently melt-kneaded. And after extruding in the shape of a strand and cooling and solidifying, it cut
  • PET-B twin-screw extruder
  • Example 1 Comparative Example 1 Compared with Example 1, it changed so that polyfunctional allyl compound (C1) might not be added. Other than that obtained the resin composition like Example 1, this was injection-molded, and the moldability was evaluated. The evaluation results are shown in Table 1. During the kneading and injection molding operations, no generation of volatile gases was observed.
  • Examples 2 to 8, Comparative Examples 2 to 7 Compared with Example 1, the thermoplastic resin (A), the filler (B), and the polyfunctional allyl compound (C1) were changed to the types and amounts shown in Table 1, respectively. Other than that was carried out similarly to Example 1, and obtained the resin composition. And this was injection-molded and the moldability was evaluated.
  • the fibrous filler is supplied from the middle by the side feeder, the other fillers are supplied from the main hopper, and triallyl cyanurate (TAIC), which is a liquid, is injected from the middle of the kneader using a pump, and melt-kneaded. Carried out.
  • TAIC triallyl cyanurate
  • Example 9 In the main hopper of the same twin-screw extruder used in Example 1, 41 parts by mass of polyamide 6 resin (PA6B), 59 parts by mass of flaky graphite (GrA) as a thermally conductive filler (B1), 4 parts by mass of monoglycidyl isocyanurate (DAMGIC) was supplied and melt-kneaded at 250 ° C. And after extruding in the shape of a strand and cooling and solidifying, it cut
  • PA6B polyamide 6 resin
  • RhA flaky graphite
  • DAMGIC monoglycidyl isocyanurate
  • the MFR was measured under the conditions of 250 ° C. and a load of 100 kg, and it was 100 g / 10 min.
  • this resin composition was injection-molded by the same injection molding machine used in Example 1 at a cylinder temperature of 260 ° C., a mold temperature of 100 ° C., an injection time of 20 seconds, and a cooling time of 10 seconds. A molded body of was obtained. Note that generation of volatile gas was not observed in the kneading and injection molding operations.
  • thermoplastic resin (A), the thermally conductive filler (B1), the polyfunctional allyl compound (C1), other fillers, and other plasticizers are shown in Table 2, respectively. I changed the amount. Other than that was carried out similarly to Example 1, and obtained the resin composition. The resin composition was injection molded and various physical properties were measured. At that time, the fibrous filler was supplied from the middle by the side feeder, and the other fillers were supplied from the main hopper.
  • Triallyl cyanurate (TAIC) which is a liquid, was injected from the middle of the kneader using a pump to carry out melt kneading.
  • Example 16 a large amount of volatile gas was generated during kneading and injection molding.
  • Example 16 triallyl cyanurate bleeded out on the surface of the obtained molded body.
  • the molded bodies obtained in Examples 10, 12, 14, 16, 17, 19 and Comparative Examples 8, 11, and 14 were irradiated with gamma rays using cobalt 60 as a radiation source at 30 kGy, intensity measurements were then performed, and gamma irradiation was performed. The physical properties before and after were compared.
  • Table 2 summarizes the evaluation results of Examples 9 to 27 and Comparative Examples 8 to 18.
  • Examples 9 to 27 had a large MFR value and excellent moldability because the polyfunctional allyl compound (C1) functions as a plasticizer. In contrast, in Comparative Examples 8 to 13 and Comparative Examples 15 to 17, the polyfunctional allyl compound (C1) as a plasticizer was not blended or was too little. The MFR value was small and inferior in moldability as compared with the examples in which the amount was appropriate and the other conditions were the same.
  • Examples 21 to 26 and Comparative Examples 15 to 17 were blended with a large amount of the filler (B), but Examples 21 to 26 had a predetermined amount of the polyfunctional allyl compound (C1). It was possible to lower the molding temperature as compared with Comparative Examples 15 to 17.
  • Comparative Example 14 when a commercially available plasticizer was blended, the MFR value was high and the moldability was excellent, but the mechanical performance of the molded body was inferior to that of the Example.
  • Comparative Example 18 since the blending amount of the polyfunctional allyl compound (C1) was too large, the melt viscosity was too low, and it was not possible to extrude into a strand shape during melt kneading and solidify by cooling. could not be produced.
  • Example 28 The main hopper of the same twin-screw extruder used in Example 1 was supplied with 35% by volume of polyamide 6 resin (PA6A) and 15% by volume of dimer acid-based thermoplastic resin (C21) and melted at 260 ° C. . In the middle, 50% by volume of glass fiber (GF) was supplied from the side feeder, and after sufficiently melt-kneaded, the melt-kneaded product was extruded into a strand shape and cooled and solidified. Then, it cut
  • PA6A polyamide 6 resin
  • C21 dimer acid-based thermoplastic resin
  • Example 19 (Comparative Example 19) Compared to Example 28, no dimer acid based thermoplastic resin (C2) was added. Otherwise in the same manner as in Example 28, a resin composition was obtained. The obtained resin composition was injection-molded to evaluate moldability. The evaluation results are shown in Table 3. During the kneading and injection molding operations, no generation of volatile gases was observed.
  • Example 29 to 37 Comparative Examples 20 to 26
  • the thermoplastic resin (A), the filler (B), and the dimer acid-based thermoplastic resin (C2) were changed to the types and amounts shown in Table 3, respectively. Otherwise in the same manner as in Example 28, a resin composition was obtained. At that time, the fibrous filler was supplied from the middle by the side feeder, and the other fillers were supplied from the main hopper to carry out melt kneading. The obtained resin composition was injection-molded to evaluate moldability. The evaluation results are summarized in Table 3.
  • Examples 28 to 37 had good moldability because the dimer acid-based thermoplastic resin (C2) was blended.
  • the dimer acid-based thermoplastic resin (C2) was not blended or the blending amount was too small. Therefore, under the same molding conditions as in Examples 28 to 37, the surface of the molded piece was smooth. It was inferior in property, or a molded piece having a predetermined size could not be obtained.
  • Example 38 In the main hopper of the same twin-screw extruder used in Example 1, polyamide 6 resin (PA6A) 50% by volume, scaly graphite (GrA) 40% by volume as the heat conductive filler (B1), 10% by volume of dimer acid-based polyamide (C21) was supplied, and melt kneading was performed at 260 ° C. Then, the melt-kneaded product was extruded into a strand shape, cooled and solidified, and cut into a pellet shape to obtain a resin composition.
  • PA6A polyamide 6 resin
  • GrA scaly graphite
  • C21 dimer acid-based polyamide
  • MFR was measured under the conditions of 270 ° C. and a load of 100 kg, and it was 158 g / 10 min.
  • this resin composition was injection molded at a cylinder temperature of 270 ° C., a mold temperature of 80 ° C., an injection time of 20 seconds, and a cooling time of 10 seconds.
  • a shaped sample was injection molded.
  • Example 39 to 56 Comparative Examples 27 to 40
  • thermoplastic resin (A) the thermally conductive filler (B1), the dimer acid-based thermoplastic resin (C2), other fillers, and other plasticizers are shown in Table 4, respectively. And changed the amount. Otherwise in the same manner as in Example 38, a resin composition was obtained. The resin composition was injection molded and various physical properties were measured. At that time, the fibrous filler was supplied from the middle by the side feeder, and the other fillers were supplied from the main hopper to carry out melt kneading.
  • Table 4 shows the evaluation results of Examples 38 to 46 and Comparative Examples 27 to 34
  • Table 5 shows the evaluation results of Examples 47 to 56 and Comparative Examples 35 to 40.
  • Examples 38 to 56 since the dimer acid-based thermoplastic resin (C2) functioned as a plasticizer, the MFR value was large and the moldability was excellent. On the other hand, in Comparative Examples 27 to 30 and Comparative Examples 32 to 40, since the dimer acid-based thermoplastic resin (C2) was not blended or was too little, the blending amount of the dimer acid-based thermoplastic resin (C2) was changed. The MFR value was small and inferior in moldability as compared with the examples that were appropriate and other conditions were the same.
  • Examples 44 to 46 and Comparative Examples 32 to 34 were blended with a large amount of the filler (B), but Examples 44 to 46 had a predetermined amount of dimer acid-based thermoplastic resin (C2 ), The molding temperature could be lowered as compared with Comparative Examples 32-34.
  • Comparative Example 31 a commercially available plasticizer was blended. In this case, although the MFR value was high and the moldability was excellent, the plasticizer was volatilized at the time of melt kneading, and the mechanical performance of the molded product was inferior to that of the example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a resin composition comprising a thermoplastic resin (A), a filler (B), and a predetermined amount of a melt viscosity reducing agent (C). The melt viscosity reducing agent (C) used in a predetermined amount is either the following (a) or (b): (a) The melt viscosity reducing agent (C) is a polyfunctional allyl compound (C1), and the content of polyfunctional allyl compound (C1) with respect to a total of 100 parts by mass of the thermoplastic resin (A) and filler (B) is 3 to 20 parts by mass, or (b) the melt viscosity reducing agent (C) is a dimer acid-based thermoplastic resin (C2), and the content of the dimer acid-based thermoplastic resin (C2) with respect to a total of 100 parts by volume of the thermoplastic resin (A) and filler (B) is 10 to 45 parts by volume.

Description

樹脂組成物およびそれからなる成形体Resin composition and molded body comprising the same
 本発明は、樹脂組成物およびそれからなる成形体に関し、特に成形時の溶融流動性を備えた樹脂組成物およびそれからなる成形体に関する。 The present invention relates to a resin composition and a molded body comprising the same, and more particularly to a resin composition having melt fluidity during molding and a molded body comprising the same.
 成形用の原料として用いられる公知の熱可塑性樹脂として、ポリプロピレン(PP)、ABS、ポリアミド(PA6、PA66など)、ポリエステル(PET、PBTなど)、ポリカーボネート(PC)、液晶ポリエステル(LCP)、ポリフェニレンスルフィド(PPS)等が挙げられる。これらの樹脂は、各種電子機器、電子部品、機械部品などの分野に広く使用されている。これらの熱可塑性樹脂は、タルクやガラス繊維等の強化用充填材が配合されることで強度や耐熱性が改善されたり、また特定の機能を有する充填材が配合されることで種々の機能が付与されたりしている。 Known thermoplastic resins used as raw materials for molding include polypropylene (PP), ABS, polyamide (PA6, PA66, etc.), polyester (PET, PBT, etc.), polycarbonate (PC), liquid crystal polyester (LCP), polyphenylene sulfide. (PPS). These resins are widely used in fields such as various electronic devices, electronic parts, and machine parts. These thermoplastic resins are improved in strength and heat resistance by blending reinforcing fillers such as talc and glass fiber, and various functions can be achieved by blending fillers having specific functions. Has been granted.
 PDA、携帯電話、パソコンなどの携帯電子機器の筐体には、成形品の表面外観や低そり性に優れるポリカーボネート樹脂やABS樹脂等の非晶性熱可塑性樹脂が使用されてきている。近年では、電子機器が小型化、軽量化されることに伴って、筐体も薄肉成形品が求められるようになっている。その目的のために、前述のポリカーボネート樹脂やABS樹脂に、タルクやガラス繊維などが強化材として配合されるようになってきている。しかし、これらの強化樹脂組成物では、その強化材の配合量を多くすることに伴って、筐体等の強度は向上するが、樹脂の流動性が低下する。このため、特に筐体のような薄肉で複雑な形状の製品を成形することが難しい。 Amorphous thermoplastic resins such as polycarbonate resin and ABS resin, which are excellent in surface appearance and low warpage of molded products, have been used in the casings of portable electronic devices such as PDAs, mobile phones, and personal computers. In recent years, as electronic devices have become smaller and lighter, casings are also required to be thin molded products. For that purpose, talc, glass fiber, and the like have been blended as reinforcing materials in the aforementioned polycarbonate resin and ABS resin. However, in these reinforced resin compositions, the strength of the casing and the like is improved as the amount of the reinforcing material is increased, but the fluidity of the resin is lowered. For this reason, it is particularly difficult to form a thin and complex product such as a housing.
 一方、最近の電子機器においては、その高性能化、小型化および軽量化に伴い、各種の電子部品で発生する熱を効果的に外部へ放散させる熱対策が非常に重要な課題になっている。このため、その電子機器の構成材料である樹脂成形材料の放熱性の改良を求める声が大きくなってきている。樹脂成形材料の放熱性を改良するための公知の手段として、熱伝導率の高い充填材料(窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、炭化ケイ素、黒鉛等)を配合する手法が知られている。例えば、JP62-131033Aには、熱可塑性樹脂に黒鉛粉末を充填した熱伝導性樹脂成形品が、JP2001-151905Aには、ポリフェニレンスルフィド樹脂に酸化マグネシウムや酸化アルミニウムを充填した樹脂製放熱板が、それぞれ記載されている。しかしながら、高熱伝導性樹脂組成物を得るためには、充填材を多量に添加する必要がある。すると、そのために成形加工性が著しく低下してしまって、樹脂組成物の用途が限られてしまうという問題がある。 On the other hand, in recent electronic devices, with higher performance, smaller size and lighter weight, heat countermeasures that effectively dissipate heat generated in various electronic components to the outside have become very important issues. . For this reason, there is a growing demand for improvement in heat dissipation of resin molding materials that are constituent materials of electronic devices. As a well-known means to improve the heat dissipation of resin molding materials, fillers with high thermal conductivity (boron nitride, aluminum nitride, silicon nitride, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, graphite, etc.) are included. There is a known technique to do this. For example, JP62-1331033A has a thermally conductive resin molded product in which a thermoplastic resin is filled with graphite powder, and JP2001-151905A has a resin heat sink in which polyphenylene sulfide resin is filled with magnesium oxide or aluminum oxide. Are listed. However, in order to obtain a highly heat conductive resin composition, it is necessary to add a large amount of filler. As a result, there is a problem in that the moldability is remarkably lowered and the use of the resin composition is limited.
 このように充填材が多量に添加された樹脂組成物の加工性を改善する手法として、可塑剤を添加することが知られている。しかし、可塑剤を添加すると、樹脂組成物の強度が著しく低下するうえに、溶融混練時に可塑剤が揮発してしまうという問題がある。可塑剤がブリードアウトするといった問題もある。 It is known to add a plasticizer as a technique for improving the processability of a resin composition to which a large amount of filler is added in this way. However, when a plasticizer is added, there is a problem that the strength of the resin composition is remarkably lowered and the plasticizer volatilizes during melt kneading. There is also a problem that the plasticizer bleeds out.
 そこで、本発明の課題は、射出成形時などの加工時の溶融流動性に優れた樹脂組成物およびそれからなる成形体を提供することにある。 Therefore, an object of the present invention is to provide a resin composition excellent in melt fluidity at the time of processing such as injection molding and a molded body comprising the same.
 本発明の要旨は、下記の通りである。 The gist of the present invention is as follows.
 (1)熱可塑性樹脂(A)と、充填材(B)と、所定量の溶融粘度低下剤(C)とを含み、前記所定量の溶融粘度低下剤(C)は、下記(a)と(b)とのいずれかであることを特徴とする樹脂組成物。 (1) A thermoplastic resin (A), a filler (B), and a predetermined amount of melt viscosity reducing agent (C), wherein the predetermined amount of melt viscosity reducing agent (C) includes: (B) and the resin composition characterized by the above-mentioned.
  (a)溶融粘度低下剤(C)が多官能性アリル化合物(C1)であり、熱可塑性樹脂(A)と充填材(B)との合計100質量部に対する多官能性アリル化合物(C1)の含有量が3~20質量部である。 (A) The melt viscosity reducing agent (C) is a polyfunctional allyl compound (C1), and the polyfunctional allyl compound (C1) with respect to 100 parts by mass in total of the thermoplastic resin (A) and the filler (B). The content is 3 to 20 parts by mass.
  (b)溶融粘度低下剤(C)がダイマー酸ベース熱可塑性樹脂(C2)であり、熱可塑性樹脂(A)と充填材(B)との合計100容量部に対するダイマー酸ベース熱可塑性樹脂(C2)の含有量が10~45容量部である。 (B) The melt viscosity reducing agent (C) is a dimer acid-based thermoplastic resin (C2), and the dimer acid-based thermoplastic resin (C2) for a total of 100 parts by volume of the thermoplastic resin (A) and the filler (B). ) Content is 10 to 45 parts by volume.
 (2)多官能性アリル化合物(C1)が、骨格にイソシアヌレートを有する化合物であることを特徴とする(1)の樹脂組成物。 (2) The resin composition according to (1), wherein the polyfunctional allyl compound (C1) is a compound having isocyanurate in the skeleton.
 (3)多官能性アリル化合物(C1)が、下記式(i)で示される1級アミン化合物(D)と、アリル基及びグリシジル基を有する多官能性化合物(E)との反応によって得られるアリル化合物であることを特徴とする(1)の樹脂組成物。 (3) The polyfunctional allyl compound (C1) is obtained by reacting the primary amine compound (D) represented by the following formula (i) with the polyfunctional compound (E) having an allyl group and a glycidyl group. The resin composition according to (1), which is an allyl compound.
    R-(NH       (i)
 ここで、n=1~4、Rは芳香族系もしくは脂肪族系の1~4置換残基を示す。
R- (NH 2 ) n (i)
Here, n = 1 to 4 and R represents an aromatic or aliphatic 1 to 4 substituted residue.
 (4)アリル基及びグリシジル基を有する多官能性化合物(E)が、骨格にイソシアヌレートを有する化合物であることを特徴とする(3)の樹脂組成物。 (4) The resin composition according to (3), wherein the polyfunctional compound (E) having an allyl group and a glycidyl group is a compound having an isocyanurate in the skeleton.
 (5)骨格にイソシアヌレートを有する化合物が、モノグリシジルジアリルイソシアヌレートであることを特徴とする(2)または(4)の樹脂組成物。 (5) The resin composition according to (2) or (4), wherein the compound having isocyanurate in the skeleton is monoglycidyl diallyl isocyanurate.
 (6)ダイマー酸ベース熱可塑性樹脂(C2)がポリアミド樹脂および/またはポリエステル樹脂であることを特徴とする(1)の樹脂組成物。 (6) The resin composition according to (1), wherein the dimer acid-based thermoplastic resin (C2) is a polyamide resin and / or a polyester resin.
 (7)充填材(B)が、10W/(m・K)以上の熱伝導率を有する熱伝導性充填材(B1)であることを特徴とする(1)から(6)までのいずれかの樹脂組成物。 (7) Any of (1) to (6), wherein the filler (B) is a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m · K) or more. Resin composition.
 (8)熱可塑性樹脂(A)と熱伝導性充填材(B1)との容量比(A/B1)が、20/80~95/5であることを特徴とする(7)の樹脂組成物。 (8) The resin composition according to (7), wherein the volume ratio (A / B1) between the thermoplastic resin (A) and the thermally conductive filler (B1) is 20/80 to 95/5 .
 (9)熱伝導性充填材(B1)が、平均粒径1~300μmの鱗片状黒鉛と、平均繊維径1~30μm、平均繊維長1~20mmの黒鉛化炭素繊維と、六方晶系結晶構造を有する平均粒径1~200μmの鱗片状窒化ホウ素と、平均粒径0.5~150μmの酸化アルミニウムと、平均粒径0.5~150μmの酸化マグネシウムと、平均粒径0.5~150μmの炭酸マグネシウムと、平均粒径0.5~150μmの酸化亜鉛とから選ばれる少なくとも一種であることを特徴とする(7)または(8)の樹脂組成物。 (9) The thermally conductive filler (B1) is composed of flaky graphite having an average particle diameter of 1 to 300 μm, graphitized carbon fiber having an average fiber diameter of 1 to 30 μm and an average fiber length of 1 to 20 mm, and a hexagonal crystal structure. Scaly boron nitride having an average particle size of 1 to 200 μm, aluminum oxide having an average particle size of 0.5 to 150 μm, magnesium oxide having an average particle size of 0.5 to 150 μm, and an average particle size of 0.5 to 150 μm The resin composition according to (7) or (8), which is at least one selected from magnesium carbonate and zinc oxide having an average particle diameter of 0.5 to 150 μm.
 (10)熱可塑性樹脂(A)がポリアミド樹脂であることを特徴とする(1)から(9)までのいずれかの樹脂組成物。 (10) The resin composition according to any one of (1) to (9), wherein the thermoplastic resin (A) is a polyamide resin.
 (11)上記(1)から(10)までのいずれかの樹脂組成物を成形したものであることを特徴とする成形体。 (11) A molded product obtained by molding any of the resin compositions (1) to (10) above.
 (12)上記(1)から(10)までのいずれかの樹脂組成物を成形したうえで放射線を照射したものであることを特徴とする成形体。 (12) A molded article obtained by molding one of the resin compositions (1) to (10) above and then irradiating with radiation.
 本発明によれば、所定量の溶融粘度低下剤(C)を含むものであるため、加工時の溶融流動性に優れた樹脂組成物、およびそれにより得られる成形体を提供することができる。 According to the present invention, since it contains a predetermined amount of melt viscosity reducing agent (C), it is possible to provide a resin composition having excellent melt fluidity during processing and a molded product obtained thereby.
 特に、溶融粘度低下剤(C)が多官能性アリル化合物(C1)である場合には、多官能性アリル化合物(C1)は、1分子中に多数のアリル基を有することから、公知の方法でアリル基と樹脂を架橋させることで成形品の機械的特性を強化することができるため、機械的特性に優れ、かつ加工時の溶融流動性に優れた樹脂組成物、およびそれからなる成形体を得ることができる。 In particular, when the melt viscosity reducing agent (C) is a polyfunctional allyl compound (C1), the polyfunctional allyl compound (C1) has a large number of allyl groups in one molecule. In order to reinforce the mechanical properties of the molded product by crosslinking the allyl group with the resin, a resin composition having excellent mechanical properties and excellent melt fluidity during processing, and a molded product comprising the same Obtainable.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に用いることができる熱可塑性樹脂(A)としては、特に限定されるものではないが、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-α-オレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、フッ素樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテル(PPE)、変性PPE、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリメタクリル酸メチル等のポリメタクリル酸エステル、ポリアクリル酸類、ポリカーボネート、ポリアリレート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー等が挙げられる。なかでも成形性、耐薬品性、経済性の点でポリアミドが好ましく、また、成形性、耐熱性、機械的強度の点で液晶ポリマーも好ましい。 The thermoplastic resin (A) that can be used in the present invention is not particularly limited, but ethylene-α-olefin copolymers such as polyethylene, polypropylene, and ethylene-propylene copolymers, polymethylpentene, Polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, fluororesin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Polylactic acid, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether (PPE), modified PPE, polyamide, polyimide, polyamideimide, polyether Ruimido, polymethacrylic acid esters of polymethyl methacrylate, polyacrylic acids, polycarbonate, polyarylate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether nitrile, polyether ketone, polyketone, liquid crystal polymers, and the like. Of these, polyamide is preferable in terms of moldability, chemical resistance, and economy, and liquid crystal polymer is also preferable in terms of moldability, heat resistance, and mechanical strength.
 本発明に使用することができるポリアミド樹脂としては、ラクタムあるいはアミノカルボン酸の重合、またはジアミンとカルボン酸の重縮合によって得られるホモポリアミドおよびコポリアミド、そしてこれらの混合物が挙げられる。 Examples of the polyamide resin that can be used in the present invention include homopolyamide and copolyamide obtained by polymerization of lactam or aminocarboxylic acid, or polycondensation of diamine and carboxylic acid, and mixtures thereof.
 ポリアミド樹脂の好ましい例として、ポリカプラミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプラミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリウンデカミド(ナイロン11)、ポリカプラミド/ポリウンデカミドコポリマー(ナイロン6/11)、ポリドデカミド(ナイロン12)、ポリカプラミド/ポリドデカミドコポリマー(ナイロン6/12)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリカプラミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリカプラミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリトリメチルヘキサメチレンテレフタルアミド(ナイロンTMDT)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、およびこれらの混合物ないし共重合体等が挙げられる。なかでも、成形性、経済性の点でナイロン6、ナイロン66が好ましい。 Preferred examples of the polyamide resin include polycapramide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycoupleramide / polyhexamethylene adipamide copolymer (nylon 6/66) , Polyundecamide (nylon 11), polycapramide / polyundecamide copolymer (nylon 6/11), polydodecamide (nylon 12), polycoupler / polydodecamide copolymer (nylon 6/12), polyhexamethylene sebamide (nylon 610) , Polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalamide (Niro) 6T), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), polycapramide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polycoupleramide / polyhexamethylene isophthalamide copolymer (nylon 6 / 6I) ), Polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polytrimethylhexamethylene terephthalamide (nylon) TMDT), polybis (4-aminocyclohexyl) methane dodecamide (nylon PACM12), polybis (3-methyl-4-aminocyclohexyl) Tandodekamido (nylon dimethyl PACM12), poly-m-xylylene adipamide (nylon MXD6), polyundecamethylene terephthalamide (nylon 11T), and mixtures thereof or copolymers thereof. Of these, nylon 6 and nylon 66 are preferable in terms of moldability and economy.
 本発明に使用することができる液晶ポリマーとは、光学異方性溶融相を形成可能な性質を有する溶融加工性ポリマーを指す。このような液晶ポリマーは、溶融状態で剪断応力を受けることによりポリマー分子鎖が規則的な平行配列をとる性質を有している。このようなポリマー分子は、一般に細長く、偏平で、分子の長軸に沿ってかなり剛性が高く、普通は同軸または平行のいずれかの関係にある複数の連鎖伸長結合を有している。例えば、全芳香族系若しくは半芳香族系の、ポリエステル、ポリエステルイミド、ポリエステルアミド又はこれらの混合物等が挙げられる。 The liquid crystal polymer that can be used in the present invention refers to a melt-processable polymer having a property capable of forming an optically anisotropic melt phase. Such a liquid crystal polymer has a property that polymer molecular chains take a regular parallel arrangement by receiving a shear stress in a molten state. Such polymer molecules are generally elongated, flat, fairly rigid along the long axis of the molecule, and have a plurality of chain extension bonds that are usually either coaxial or parallel. Examples include wholly aromatic or semi-aromatic polyesters, polyester imides, polyester amides, and mixtures thereof.
 液晶ポリマーの好ましい例として、液晶ポリエステル、液晶ポリエステルアミド、液晶ポリエステルカーボネート、液晶ポリエステルエラストマー等が挙げられる。なかでも、成形性の点で液晶ポリエステルが好ましい。 Preferred examples of the liquid crystal polymer include liquid crystal polyester, liquid crystal polyester amide, liquid crystal polyester carbonate, and liquid crystal polyester elastomer. Among these, liquid crystalline polyester is preferable in terms of moldability.
 液晶ポリエステルとしては、芳香族オキシカルボニル単位、芳香族ジオキシ単位、芳香族ジカルボニル単位、エチレンジオキシ単位などから選ばれた構造単位からなる異方性溶融相を形成するポリエステルを挙げることができる。 Examples of the liquid crystal polyester include a polyester that forms an anisotropic melt phase composed of a structural unit selected from an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic dicarbonyl unit, an ethylenedioxy unit, and the like.
 本発明の樹脂組成物は、充填材(B)を含有する。本発明で用いられる充填材(B)としては、特に限定されないが、機械的性質や熱的性質などを改善する目的で用いられるものや、導電性、熱伝導性、磁性、圧電性、電磁波吸収、難燃性、紫外線吸収等の機能を付与する目的で用いられるもの等を、代表例として挙げることができる。充填材(B)の形態としては、球状、粉状、繊維状、針状、鱗状、鱗片状、ウィスカ状、マイクロコイル状、ナノチューブ状などが挙げられる。 The resin composition of the present invention contains a filler (B). Although it does not specifically limit as a filler (B) used by this invention, The thing used for the purpose of improving a mechanical property, a thermal property, etc., electroconductivity, thermal conductivity, magnetism, piezoelectricity, electromagnetic wave absorption As typical examples, those used for the purpose of imparting functions such as flame retardancy and ultraviolet absorption can be given. Examples of the form of the filler (B) include a spherical shape, a powder shape, a fiber shape, a needle shape, a scale shape, a scale shape, a whisker shape, a microcoil shape, and a nanotube shape.
 充填材(B)の具体例としては、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバー、金属粉(銀、銅、アルミニウム、チタン、ニッケル、錫、鉄、ステンレス等)、導電性酸化亜鉛、酸化スズ、酸化インジウム、各種フェライト、磁性酸化鉄、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、炭酸マグネシウム、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボン、黒鉛、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸カリウム、ゾノトライト、マイカ、タルク、モンモリロナイト、ハイドロタルサイト、炭酸カルシウム、炭酸亜鉛、ワラストナイト、硫酸バリウム、二硫化モリブデン、フッ化エチレン(たとえばテフロン(登録商標))粉、シリカ、ガラスビーズ、ガラスバルーン、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、三酸化アンチモン、ホウ酸、ホウ酸亜鉛、酸化セリウム、酸化カルシウム、シリカゲル、セピオライト、活性炭、ゼオライト、タングステン、酸化ジルコニウム、セルロース微粒子、木粉、おから、モミ殻、ガラス繊維、炭素繊維、黒鉛化炭素繊維、アラミド繊維、金属繊維、ステンレス繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硅素繊維、硼素繊維、チタン酸カリウム繊維、ケナフや麻等の天然繊維等が挙げられる。 Specific examples of the filler (B) include acetylene black, ketjen black, carbon nanotube, carbon nanofiber, metal powder (silver, copper, aluminum, titanium, nickel, tin, iron, stainless steel, etc.), conductive zinc oxide , Tin oxide, indium oxide, various ferrites, magnetic iron oxide, aluminum oxide, magnesium oxide, zinc oxide, magnesium carbonate, silicon carbide, aluminum nitride, boron nitride, silicon nitride, carbon, graphite, barium titanate, zirconate titanate Lead, potassium titanate, zonotlite, mica, talc, montmorillonite, hydrotalcite, calcium carbonate, zinc carbonate, wollastonite, barium sulfate, molybdenum disulfide, ethylene fluoride (for example, Teflon (registered trademark) powder, silica, Glass beads, Las balloon, titanium oxide, aluminum hydroxide, magnesium hydroxide, antimony trioxide, boric acid, zinc borate, cerium oxide, calcium oxide, silica gel, sepiolite, activated carbon, zeolite, tungsten, zirconium oxide, cellulose fine particles, wood flour, Okara, fir shell, glass fiber, carbon fiber, graphitized carbon fiber, aramid fiber, metal fiber, stainless steel fiber, silica fiber, silica / alumina fiber, zirconia fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, kenaf And natural fibers such as hemp.
 本発明の樹脂組成物において、熱可塑性樹脂(A)と充填材(B)[後述する熱伝導性充填材(B1)を含む]との容量比(A/B)は、20/80~95/5であることが好ましく、30/70~90/10であることがより好ましく、30/70~60/40であることが特に好ましい。充填材(B)の配合量が5容量%未満では充填材を配合した効果が十分に得られない場合があり、配合量が80容量%を超えると、流動性が著しく低下するため成形加工時の負荷が高くなりすぎて操業性が低下する場合がある。 In the resin composition of the present invention, the volume ratio (A / B) between the thermoplastic resin (A) and the filler (B) [including a heat conductive filler (B1) described later] is 20/80 to 95. / 5 is preferable, 30/70 to 90/10 is more preferable, and 30/70 to 60/40 is particularly preferable. When the blending amount of the filler (B) is less than 5% by volume, the effect of blending the filler may not be sufficiently obtained. When the blending amount exceeds 80% by volume, the fluidity is remarkably lowered during molding. In some cases, the load of the engine becomes too high and the operability is lowered.
 本発明において、樹脂組成物に熱伝導性を付与するために、充填材(B)として、10W/(m・K)以上の熱伝導率を有する熱伝導性充填材(B1)を使用することができる。熱伝導性充填材(B1)としては、導電性充填材、絶縁性充填材の何れでも用いることが可能である。熱伝導性充填材(B1)の熱伝導率は、その焼結品を用いて測定することができる。熱伝導性充填材(B1)の具体的な例としては(括弧内に熱伝導率の代表値[単位:W/(m・K)]を記す)、酸化アルミニウム(36)、酸化マグネシウム(60)、酸化亜鉛(25)、炭酸マグネシウム(15)、炭化ケイ素(160)、窒化アルミニウム(170)、窒化ホウ素(210)、窒化ケイ素(40)、カーボン(10~数百)、黒鉛(10~数百)等の無機系充填材、銀(427)、銅(398)、アルミニウム(237)、チタン(22)、ニッケル(90)、錫(68)、鉄(84)、ステンレス(15)等の金属系充填材などが挙げられる。これらは、1種で用いることができるほかに、2種以上併用することもできる。 In the present invention, in order to impart thermal conductivity to the resin composition, a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m · K) or more is used as the filler (B). Can do. As the heat conductive filler (B1), either a conductive filler or an insulating filler can be used. The thermal conductivity of the heat conductive filler (B1) can be measured using the sintered product. Specific examples of the thermally conductive filler (B1) (representing a representative value of thermal conductivity [unit: W / (m · K)] in parentheses), aluminum oxide (36), magnesium oxide (60 ), Zinc oxide (25), magnesium carbonate (15), silicon carbide (160), aluminum nitride (170), boron nitride (210), silicon nitride (40), carbon (10 to several hundreds), graphite (10 to Hundreds of inorganic fillers, silver (427), copper (398), aluminum (237), titanium (22), nickel (90), tin (68), iron (84), stainless steel (15), etc. Metal-based fillers. These can be used alone or in combination of two or more.
 熱伝導性充填材(B1)の平均粒径は、後述する特定のものを除いて、0.5~300μmであることが好ましく、1~150μmであることがより好ましい。平均粒径が0.5μm未満では、分散不良により凝集塊が生じやすくなり、均一な成形品が得られず機械的物性が低下したり熱伝導性にバラツキが生じたりするため好ましくない。平均粒径が300μmを超えると、樹脂中に高濃度に充填することが難しくなったり、成形品表面が粗くなったりする場合があるので好ましくない。 The average particle diameter of the heat conductive filler (B1) is preferably 0.5 to 300 μm, more preferably 1 to 150 μm, excluding specific particles described later. If the average particle size is less than 0.5 μm, an agglomerate is likely to occur due to poor dispersion, and a uniform molded product cannot be obtained, resulting in a decrease in mechanical properties and a variation in thermal conductivity. If the average particle size exceeds 300 μm, it may be difficult to fill the resin in a high concentration or the surface of the molded product may become rough.
 上記例示した充填材のうち、本発明においては、熱伝導性充填材(B1)として、熱可塑性樹脂(A)への配合した際の熱伝導効率が高いことから、黒鉛、窒化ホウ素を使用することが好ましい。また、経済性の点では酸化アルミニウム、酸化マグネシウム、炭酸マグネシウム、酸化亜鉛を使用することが好ましい。 Among the fillers exemplified above, in the present invention, graphite and boron nitride are used as the thermally conductive filler (B1) because of its high thermal conductivity efficiency when blended into the thermoplastic resin (A). It is preferable. In view of economy, it is preferable to use aluminum oxide, magnesium oxide, magnesium carbonate, or zinc oxide.
 本発明で用いることができる黒鉛系充填材の形態としては、球状、粉状、繊維状、針状、鱗片状、ウィスカ状、マイクロコイル状、ナノチューブ状などが挙げられる。なかでも、鱗片状黒鉛、黒鉛化炭素繊維が、熱可塑性樹脂(A)に配合した際に熱伝導効率を高くすることができるため、特に好ましい。 Examples of the form of the graphite filler that can be used in the present invention include a spherical shape, a powder shape, a fiber shape, a needle shape, a scale shape, a whisker shape, a microcoil shape, and a nanotube shape. Among these, scaly graphite and graphitized carbon fiber are particularly preferable because they can increase the heat conduction efficiency when blended with the thermoplastic resin (A).
 鱗片状黒鉛の平均粒径は、1~300μmであることが好ましく、5~150μmであることがさらに好ましい。平均粒径が1μm未満では分散不良により凝集塊が生じやすく、このため均一な成形品が得られず、機械的物性が低下したり熱伝導性にバラツキが生じたりすることがある。平均粒径が300μmを超えると、樹脂組成物中に高濃度に充填することが困難になり、また成形品表面が粗くなることがある。 The average particle size of the flake graphite is preferably 1 to 300 μm, and more preferably 5 to 150 μm. If the average particle size is less than 1 μm, agglomerates are likely to occur due to poor dispersion, and thus a uniform molded product cannot be obtained, and the mechanical properties may be lowered or the thermal conductivity may be varied. When the average particle size exceeds 300 μm, it becomes difficult to fill the resin composition at a high concentration, and the surface of the molded product may become rough.
 黒鉛化炭素繊維としてはピッチ系の炭素繊維が好ましく、これは、例えば、JP2003-49327Aに記載されている、なかでも、メソフェーズピッチを原料とし、1000~3000℃の高温で焼成されることで黒鉛化が発達したピッチ系炭素繊維が好ましい。黒鉛化の程度は、特に制限されないが、黒鉛繊維に近づくに従って長さ方向の熱伝導率が増加する。本発明において、黒鉛化炭素繊維の長さ方向の熱伝導率は通常100W/(m・K)以上、好ましくは500W/(m・K)以上である。 The graphitized carbon fiber is preferably pitch-based carbon fiber, which is described in, for example, JP2003-49327A. Among them, graphite is obtained by firing at a high temperature of 1000 to 3000 ° C. using mesophase pitch as a raw material. Pitch-based carbon fibers with improved chemical conversion are preferred. The degree of graphitization is not particularly limited, but the thermal conductivity in the length direction increases as the graphite fiber is approached. In the present invention, the thermal conductivity in the length direction of the graphitized carbon fiber is usually 100 W / (m · K) or more, preferably 500 W / (m · K) or more.
 黒鉛化炭素繊維の平均繊維径は、1~30μmであることが好ましく、5~20μmであることがさらに好ましい。平均繊維径が1μm未満では十分な熱伝導率が得られず、平均繊維径が30μmを超えると成形性などが低下することがある。 The average fiber diameter of the graphitized carbon fiber is preferably 1 to 30 μm, more preferably 5 to 20 μm. When the average fiber diameter is less than 1 μm, sufficient thermal conductivity cannot be obtained, and when the average fiber diameter exceeds 30 μm, moldability and the like may be deteriorated.
 黒鉛化炭素繊維の平均繊維長は、1~20mmであることが好ましく、3~15mmであることがさらに好ましい。平均繊維長が1mm未満では、十分な熱伝導率が得られない。平均繊維長が長いほど、熱伝導率が高くなるだけでなく、曲げ強度や曲げ弾性率も大きくなる。しかし、平均繊維長が20mmを超えると、流動性の低下が大きく、成形性などの点で好ましくない。 The average fiber length of the graphitized carbon fiber is preferably 1 to 20 mm, and more preferably 3 to 15 mm. If the average fiber length is less than 1 mm, sufficient thermal conductivity cannot be obtained. The longer the average fiber length, the higher the thermal conductivity, the higher the bending strength and the bending elastic modulus. However, when the average fiber length exceeds 20 mm, the fluidity is greatly lowered, which is not preferable in terms of moldability.
 黒鉛化炭素繊維の市販品としては、例えば、日本グラファイトファイバー社製の商品名「GRANOC」や、三菱化学産資社製の商品名「ダイヤリード」等が挙げられる。 Examples of commercially available products of graphitized carbon fiber include the product name “GRANOC” manufactured by Nippon Graphite Fiber Co., Ltd., and the product name “Dialead” manufactured by Mitsubishi Chemical Corporation.
 本発明で用いることができる窒化ホウ素の形態としては、球状、粉状、繊維状、針状、鱗片状、ウィスカ状、マイクロコイル状、ナノチューブ状などが挙げられる。成形体としたときに面方向に配向しやすく、その結果、熱伝導率を高めることができることから、鱗片状であることが好ましい。窒化ホウ素を含有することにより、樹脂組成物の絶縁性を低下させずに熱伝導性を向上させることができる。 Examples of the form of boron nitride that can be used in the present invention include a spherical shape, a powdery shape, a fibrous shape, a needle shape, a scale shape, a whisker shape, a microcoil shape, and a nanotube shape. Since it becomes easy to orient in a surface direction when it is set as a molded body, and as a result, heat conductivity can be raised, it is preferable that it is scaly. By containing boron nitride, thermal conductivity can be improved without reducing the insulating properties of the resin composition.
 窒化ホウ素の平均粒径は、1~200μmであることが好ましく、5~100μmであることがさらに好ましい。平均粒径が1μm未満では、分散不良により凝集塊が生じやすくなり、このため均一な成形品が得られず、機械的物性が低下したり熱伝導性にバラツキが生じたりすることがある。平均粒径が200μmを超えると、樹脂組成物中に高濃度に充填することが困難になり、また成形品表面が粗くなることがある。 The average particle size of boron nitride is preferably 1 to 200 μm, and more preferably 5 to 100 μm. When the average particle size is less than 1 μm, agglomerates are likely to occur due to poor dispersion, and therefore, a uniform molded product cannot be obtained, and mechanical properties may be deteriorated or thermal conductivity may be varied. When the average particle diameter exceeds 200 μm, it becomes difficult to fill the resin composition at a high concentration, and the surface of the molded product may become rough.
 窒化ホウ素の結晶系は、特に限定されるものではない。六方晶系、立方晶系、その他いずれの結晶構造の窒化ホウ素であっても適用可能である。なかでも、六方晶系結晶構造を有する窒化ホウ素は、熱伝導率が大きいので好ましい。 The crystal system of boron nitride is not particularly limited. Boron nitride having any crystal structure such as hexagonal system, cubic system, and the like is applicable. Of these, boron nitride having a hexagonal crystal structure is preferable because of its high thermal conductivity.
 本発明で用いることができる酸化アルミニウム、酸化マグネシウム、炭酸マグネシウム、酸化亜鉛の形態としては、球状、繊維状、紡錘状、棒状、針状、筒状、柱状などが挙げられる。熱可塑性樹脂(A)に配合したときに樹脂の流動性の低下を抑えることができることから、球状であることが好ましい。酸化アルミニウム、酸化マグネシウム、炭酸マグネシウムを含有することにより、樹脂組成物の絶縁性を低下させずに熱伝導性を向上させることができる。 Examples of the form of aluminum oxide, magnesium oxide, magnesium carbonate, and zinc oxide that can be used in the present invention include a spherical shape, a fiber shape, a spindle shape, a rod shape, a needle shape, a cylindrical shape, and a columnar shape. Since it can suppress the fall of the fluidity | liquidity of resin when it mix | blends with a thermoplastic resin (A), it is preferable that it is spherical. By containing aluminum oxide, magnesium oxide, and magnesium carbonate, thermal conductivity can be improved without reducing the insulating properties of the resin composition.
 酸化アルミニウム、酸化マグネシウム、炭酸マグネシウム、酸化亜鉛の平均粒径は、0.5~150μmであることが好ましく、1~100μmであることがさらに好ましい。平均粒径が0.5μm未満では分散不良により凝集塊が生じやすくなり、このため均一な成形品が得られず、機械的物性が低下したり熱伝導性にバラツキが生じたりすることがある。平均粒径が150μmを超えると、樹脂組成物中に高濃度に充填することが困難になり、また成形品表面が粗くなることがある。 The average particle diameter of aluminum oxide, magnesium oxide, magnesium carbonate, and zinc oxide is preferably 0.5 to 150 μm, and more preferably 1 to 100 μm. If the average particle size is less than 0.5 μm, agglomerates are likely to occur due to poor dispersion, and therefore, a uniform molded product cannot be obtained, and mechanical properties may deteriorate or thermal conductivity may vary. When the average particle diameter exceeds 150 μm, it becomes difficult to fill the resin composition at a high concentration, and the surface of the molded product may become rough.
 本発明に用いられる充填材(B)は熱可塑性樹脂(A)との密着性を向上させるために、カップリング剤で表面処理を施されたものでもよい。カップリング剤の例としては、シラン系カップリング剤、チタン系カップリング剤等、例えば、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルジメトキシメチルシランなどのアミノシラン系カップリング剤や、γ-グリシドキシプロピルトリメトキシシラン、γ-グリリシドキシプロピルエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン系カップリング剤や、イソプロピルトリステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネートなどのチタン系カップリング剤等を挙げることができる。これらは、単独で使用してもよいし、併用してもよい。 The filler (B) used in the present invention may be subjected to a surface treatment with a coupling agent in order to improve adhesion to the thermoplastic resin (A). Examples of coupling agents include silane coupling agents and titanium coupling agents such as γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N- Aminosilane coupling agents such as β- (aminoethyl) -γ-aminopropyldimethoxymethylsilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylethoxysilane, β- (3,4-epoxy Mention may be made of epoxy silane coupling agents such as (cyclohexyl) ethyltrimethoxysilane, and titanium coupling agents such as isopropyl tristearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, tetraisopropyl bis (dioctyl phosphite) titanate, etc. You can. These may be used alone or in combination.
 本発明の樹脂組成物は、所定量の流動性改良剤(C)を含有する。本発明で用いられる流動性改良剤(C)は、多官能性アリル化合物(C1)とダイマー酸ベース熱可塑性樹脂(C2)とのいずれかである。 The resin composition of the present invention contains a predetermined amount of fluidity improver (C). The fluidity improver (C) used in the present invention is either a polyfunctional allyl compound (C1) or a dimer acid-based thermoplastic resin (C2).
 多官能性アリル化合物(C1)は、特に限定されないが、樹脂組成物の溶融加工温度において液状であることが必要である。また多官能性アリル化合物(C1)は、添加された樹脂の溶融粘度を低下させ得ることから、可塑剤としても有効に作用することになる。 The polyfunctional allyl compound (C1) is not particularly limited, but is required to be liquid at the melt processing temperature of the resin composition. Moreover, since the polyfunctional allyl compound (C1) can reduce the melt viscosity of the added resin, it will effectively act as a plasticizer.
 多官能性アリル化合物(C1)の具体例としては、トリアリルイソシアヌレート、モノグリシジルジアリルイソシアヌレート、ジグリシジルモノアリルイソシアヌレート、トリメタアリルイソシアヌレート、モノグリシジルジメタアリルイソシアヌレート、ジグリシジルモノメタアリルイソシアヌレート、トリアリルシアヌレート、モノグリシジルジアリルシアヌレート、ジグリシジルモノアリルシアヌレート、トリメタアリルシアヌレート、モノグリシジルジメタアリルシアヌレート、ジグリシジルモノメタアリルシアヌレート、アリルグリシジルアミン、ジアリルモノグリシジルアミン、モノアリルジグリシジルアミン、モノグリシジルジメタアリルアミン、ジグリシジルモノメタアリルアミン、グリシジルアクリルクロレンテート、アリルグリシジルアジペート、アリルグリシジルカーボネート、アリルグリシジルジメチルアンモニウムクロリド、アリルグリシジルフマレート、アリルグリシジルイソフタレート、アリルグリシジルマロネート、アリルグリシジルオキサレート、アリルグリシジルフタレート、アリルグリシジルプロピルイソシアヌレート、アリルグリシジルセバセート、アリルグリシジルサクシネート、アリルグリシジルテレフタレート、アリルグリシジルタトレート、グリシジルメチルアリルフタレートなどが挙げられる。これらの化合物のうち、骨格にイソシアヌレートを有する化合物が好ましく、特に、トリアリルイソシアヌレート、モノグリシジルジアリルイソシアヌレートが、取扱い性、経済性の点で好ましい。 Specific examples of the polyfunctional allyl compound (C1) include triallyl isocyanurate, monoglycidyl diallyl isocyanurate, diglycidyl monoallyl isocyanurate, trimethallyl isocyanurate, monoglycidyl dimethallyl isocyanurate, diglycidyl monometa. Allyl isocyanurate, triallyl cyanurate, monoglycidyl diallyl cyanurate, diglycidyl monoallyl cyanurate, trimethallyl cyanurate, monoglycidyl dimethallyl cyanurate, diglycidyl monomethallyl cyanurate, allyl glycidyl amine, diallyl mono Glycidylamine, monoallyldiglycidylamine, monoglycidyldimethallylamine, diglycidylmonomethallylamine, glycidylacrylic chlorate, Allyl glycidyl adipate, allyl glycidyl carbonate, allyl glycidyl dimethyl ammonium chloride, allyl glycidyl fumarate, allyl glycidyl isophthalate, allyl glycidyl malonate, allyl glycidyl oxalate, allyl glycidyl phthalate, allyl glycidyl propyl isocyanurate, allyl glycidyl sebacate, allyl Examples thereof include glycidyl succinate, allyl glycidyl terephthalate, allyl glycidyl tartrate, and glycidyl methyl allyl phthalate. Of these compounds, compounds having an isocyanurate in the skeleton are preferable, and triallyl isocyanurate and monoglycidyl diallyl isocyanurate are particularly preferable from the viewpoints of handleability and economy.
 また、多官能性アリル化合物(C1)として、上記化合物のほかに、下記式(i)で示される1級アミン化合物(D)と、アリル基及びグリシジル基を有する多官能性化合物(E)との反応によって得られるアリル化合物を用いることができる。 Moreover, as a polyfunctional allyl compound (C1), in addition to the above compound, a primary amine compound (D) represented by the following formula (i), a polyfunctional compound (E) having an allyl group and a glycidyl group, An allyl compound obtained by the above reaction can be used.
    R-(NH       (i)
 ここで、n=1~4、Rは芳香族系もしくは脂肪族系の1~4置換残基を示す。
R- (NH 2 ) n (i)
Here, n = 1 to 4 and R represents an aromatic or aliphatic 1 to 4 substituted residue.
 式(i)で示される1級アミン化合物(D)は、n=2であるジアミン類が好ましい。n=2のジアミン類の具体例としては、エチレジアミン、ヘキサメチレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4´-ジアミノジシクロヘキシルメタン、1,3-ビス(アミノメチル)シクロへキサン、1,4-ビス(アミノメチル)シクロへキサン、4,4´-ジアミノジシクロヘキシルプロパン、ビス(4-アミノシクロヘキシル)スルホン、4,4´-ジアミノジシクロヘキシルエーテル、2,2´-ジメチル-4,4´-ジアミノジシクロヘキサン、2,2´-ビス(トリフルオロメチル)-4,4´-ジアミノジシクロヘキサン、2,2´-ビス(トリクロロメチル)-4,4´-ジアミノジシクロヘキサン、2,2´-ビス(トリブロモメチル)-4,4´-ジアミノジシクロヘキサン、2,2´-ジフルオロ-4,4´-ジアミノジシクロヘキサン、2,2´-ジクロロ-4,4´-ジアミノジシクロヘキサン、2,2´-ジブロモ-4,4´-ジアミノジシクロヘキサン、4,4´-ジアミノジシクロヘキサン、2,2-ビス(4-アミノシクロへキシル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,3-ジアミノビシクロ[2.2.1]ヘプタン、2,5-ジアミノビシクロ[2.2.1]ヘプタン、2,6-ジアミノビシクロ[2.2.1]ヘプタン、2,7-ジアミノビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,3-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、1,2-ビス(アミノメチル)ベンゼン、1,3-ビス(アミノメチル)ベンゼン、1,4-ビス(アミノメチル)ベンゼン、2,2´-ジメチル-4,4´-ジアミノビフェニル、2,2´-ビス(トリフルオロメチル)-4,4´-ジアミノビフェニル、2,2´-ビス(トリクロロメチル)-4,4´-ジアミノビフェニル、2,2´-ビス(トリブロモメチル)-4,4´-ジアミノビフェニル、2,2´-ジフルオロ-4,4´-ジアミノビフェニル、2,2´-ジクロロ-4,4´-ジアミノビフェニル、2,2´-ジブロモ-4,4´-ジアミノビフェニル、4,4´-ジアミノビフェニル、4,4´-ジアミノ-ベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-2-フルオロフェニル)フルオレン、9,9-ビス(4-アミノ-2-ブロモフェニル)フルオレン、9,9-ビス(4-アミノ-2-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、9,9-ビス(4-アミノ-3-ブロモフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-2-トリフルオロメチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-トリフルオロメチルフェニル)フルオレン、ビス(4-アミノフェニル)スルホン、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、4,4´-ジアミノジフェニルエーテル、4,4´-ジアミノジフェニルメタン、4,4´-ジアミノジフェニルプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,4´-ジアミノジフェニルエーテル等が挙げられる。 The primary amine compound (D) represented by the formula (i) is preferably a diamine having n = 2. Specific examples of diamines with n = 2 include ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 1,3-bis (aminomethyl) Cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 4,4'-diaminodicyclohexylpropane, bis (4-aminocyclohexyl) sulfone, 4,4'-diaminodicyclohexyl ether, 2,2'-dimethyl -4,4'-diaminodicyclohexane, 2,2'-bis (trifluoromethyl) -4,4'-diaminodicyclohexane, 2,2'-bis (trichloromethyl) -4,4'-diaminodicyclohexane 2,2′-bis (tribromomethyl) -4,4′-diaminodicyclohexane, 2,2′-difluoro-4,4′-diaminodicyclohexane, 2,2′-dichloro-4,4′-diaminodicyclohexane, 2,2′-dibromo-4,4′-diaminodicyclohexane, 4, 4'-diaminodicyclohexane, 2,2-bis (4-aminocyclohexyl) -1,1,1,3,3,3-hexafluoropropane, 2,3-diaminobicyclo [2.2.1] Heptane, 2,5-diaminobicyclo [2.2.1] heptane, 2,6-diaminobicyclo [2.2.1] heptane, 2,7-diaminobicyclo [2.2.1] heptane, 2,5 -Bis (aminomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) -bicyclo [2.2.1] heptane, 2,3-bis (aminomethyl) -bicyclo [2 2.1] Hepta , Diethylenetriamine, dipropylenetriamine, triethylenetetramine, 1,2-bis (aminomethyl) benzene, 1,3-bis (aminomethyl) benzene, 1,4-bis (aminomethyl) benzene, 2,2'-dimethyl -4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2'-bis (trichloromethyl) -4,4'-diaminobiphenyl, 2, 2'-bis (tribromomethyl) -4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 2,2'-dichloro-4,4'-diaminobiphenyl, 2, 2′-dibromo-4,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, 4,4′-diamino-benzophenone, 9,9-bis (4-amino Phenyl) fluorene, 9,9-bis (4-amino-2-fluorophenyl) fluorene, 9,9-bis (4-amino-2-bromophenyl) fluorene, 9,9-bis (4-amino-2-) Chlorophenyl) fluorene, 9,9-bis (4-amino-3-fluorophenyl) fluorene, 9,9-bis (4-amino-3-bromophenyl) fluorene, 9,9-bis (4-amino-3- Chlorophenyl) fluorene, 9,9-bis (4-amino-2-trifluoromethylphenyl) fluorene, 9,9-bis (4-amino-3-trifluoromethylphenyl) fluorene, bis (4-aminophenyl) sulfone 1,4-diaminobenzene, 1,3-diaminobenzene, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl Examples include methane, 4,4′-diaminodiphenylpropane, 2,2-bis (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 3,4′-diaminodiphenyl ether, and the like. .
 式(i)で示される1級アミン化合物(D)のうち、n=1であるモノアミン類の具体例としては、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、n-プロピルアミン、ジ-n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ジ-n-ブチルアミン、モノアミルアミン、ジアミルアミン、エチルブチルアミン、n-ヘキシルアミン、ジ-n-ヘキシルアミン、シクロヘキシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,3-キシリジン、2,6-キシリジン、3,4-キシリジン、3,5-キシリジン、o-クロロアニリン、m-クロロアニリン、p-クロロアニリン、o-ブロモアニリン、m-ブロモアニリン、p-ブロモアニリン、o-ニトロアニリン、m-ニトロアニリン、p-ニトロアニリン、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アニシジン、m-アニシジン、p-アニシジン、o-フェネジン、m-フェネジン、p-フェネジン、o-アミノベンツアルデヒド、m-アミノベンツアルデヒド、p-アミノベンツアルデヒド、o-アミノベンゾニトリル、m-アミノベンゾニトリル、p-アミノベンゾニトリル、2-アミノビフェニル、3-アミノビフェニル、4-アミノビフェニル、2-アミノフェニルフェニルエーテル、3-アミノフェニルフェニルエーテル、4-アミノフェニルフェニルエーテル、2-アミノベンゾフェノン、3-アミノベンゾフェノン、4-アミノベンゾフェノン、2-アミノフェニルフェニルスルフィド、3-アミノフェニルフェニルスルフィド、4-アミノフェニルフェニルスルフィド、2-アミノフェニルフェニルスルホン、3-アミノフェニルフェニルスルホン、4-アミノフェニルフェニルスルホン、α-ナフチルアミン、β-ナフチルアミン、1-アミノ-2-ナフトール、2-アミノ-1-ナフトール、4-アミノ-1-ナフトール、5-アミノ-1-ナフトール、5-アミノ-2-ナフトール、7-アミノ-2-ナフトール、8-アミノ-1-ナフトール、8-アミノ-2-ナフトール、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン等が挙げられる。 Among the primary amine compounds (D) represented by the formula (i), specific examples of monoamines where n = 1 are methylamine, dimethylamine, ethylamine, diethylamine, n-propylamine, di-n-propyl. Amine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, di-n-butylamine, monoamylamine, diamylamine, ethylbutylamine, n-hexylamine, di-n-hexylamine, cyclohexylamine, Dodecylamine, hexadecylamine, octadecylamine, aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-xylidine, 2,6-xylidine, 3,4-xylidine, 3,5-xylidine, o- Chloroaniline, m-chloroa Phosphorus, p-chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline, o-nitroaniline, m-nitroaniline, p-nitroaniline, o-aminophenol, m-aminophenol, p-amino Phenol, o-anisidine, m-anisidine, p-anisidine, o-phenidine, m-phenidine, p-phenidine, o-aminobenzaldehyde, m-aminobenzaldehyde, p-aminobenzaldehyde, o-aminobenzonitrile, m-aminobenzonitrile, p-aminobenzonitrile, 2-aminobiphenyl, 3-aminobiphenyl, 4-aminobiphenyl, 2-aminophenylphenyl ether, 3-aminophenylphenyl ether, 4-aminophenylphenyl ether, 2- Aminobenzofe 3-aminobenzophenone, 4-aminobenzophenone, 2-aminophenyl phenyl sulfide, 3-aminophenyl phenyl sulfide, 4-aminophenyl phenyl sulfide, 2-aminophenyl phenyl sulfone, 3-aminophenyl phenyl sulfone, 4-amino Phenylphenylsulfone, α-naphthylamine, β-naphthylamine, 1-amino-2-naphthol, 2-amino-1-naphthol, 4-amino-1-naphthol, 5-amino-1-naphthol, 5-amino-2- Examples include naphthol, 7-amino-2-naphthol, 8-amino-1-naphthol, 8-amino-2-naphthol, 1-aminoanthracene, 2-aminoanthracene, and 9-aminoanthracene.
 式(i)で示される1級アミン化合物(D)のうち、n=3の具体例としては、1,3,5-トリアミノベンゼン、トリス(3-アミノフェニル)アミン、トリス(4-アミノフェニル)アミン、トリス(3-アミノフェニル)ベンゼン、トリス(4-アミノフェニル)ベンゼン、1,3,5-トリス(3-アミノフェノキシ)ベンゼン、1,3,5-トリス(4-アミノフェノキシ)ベンゼン、1,3,5-トリス(4-アミノフェノキシ)トリアジン等が挙げられる。 Among the primary amine compounds (D) represented by the formula (i), specific examples of n = 3 include 1,3,5-triaminobenzene, tris (3-aminophenyl) amine, tris (4-amino). Phenyl) amine, tris (3-aminophenyl) benzene, tris (4-aminophenyl) benzene, 1,3,5-tris (3-aminophenoxy) benzene, 1,3,5-tris (4-aminophenoxy) Examples thereof include benzene and 1,3,5-tris (4-aminophenoxy) triazine.
 式(i)で示される1級アミン化合物(D)のうち、n=4であるテトラアミン類の具体例としては、1,2,4,5-テトラアミノベンゼン、3,3´,4,4´-テトラアミノビフェニル、3,3´,4,4´-テトラアミノジフェニルスルホン、3,3´,4,4´-テトラアミノジフェニルスルフィド、2,3,6,7-テトラアミノナフタレン、1,2,5,6-テトラアミノナフタレン等が挙げられる。 Among the primary amine compounds (D) represented by the formula (i), specific examples of tetraamines with n = 4 include 1,2,4,5-tetraaminobenzene, 3,3 ′, 4,4. '-Tetraaminobiphenyl, 3,3', 4,4'-tetraaminodiphenylsulfone, 3,3 ', 4,4'-tetraaminodiphenyl sulfide, 2,3,6,7-tetraaminonaphthalene, 1, Examples include 2,5,6-tetraaminonaphthalene.
 種々の特性を調整する等の目的で、これらの内の複数のアミンを併用することも可能である。 A plurality of these amines can be used in combination for the purpose of adjusting various properties.
 上記1級アミン化合物(D)と反応させるアリル基及びグリシジル基を有する多官能性化合物(E)としては、アリル基とグリシジル基の両方を有するモノマー性化合物であれば特に限定されない。多官能性化合物(E)を例示すると、モノグリシジルジアリルイソシアヌレート、ジグリシジルモノアリルイソシアヌレート、モノグリシジルジメタアリルイソシアヌレート、ジグリシジルモノメタアリルイソシアヌレート、モノグリシジルジアリルシアヌレート、ジグリシジルモノアリルシアヌレート、モノグリシジルジメタアリルシアヌレート、ジグリシジルモノメタアリルシアヌレート、アリルグリシジルアミン、ジアリルモノグリシジルアミン、モノアリルジグリシジルアミン、モノグリシジルジメタアリルアミン、ジグリシジルモノメタアリルアミン、グリシジルアクリルクロレンテート、アリルグリシジルアジペート、アリルグリシジルカーボネート、アリルグリシジルジメチルアンモニウムクロリド、アリルグリシジルフマレート、アリルグリシジルイソフタレート、アリルグリシジルマロネート、アリルグリシジルオキサレート、アリルグリシジルフタレート、アリルグリシジルプロピルイソシアヌレート、アリルグリシジルセバセート、アリルグリシジルサクシネート、アリルグリシジルテレフタレート、アリルグリシジルタトレート、グリシジルメチルアリルフタレートなどが挙げられる。 The polyfunctional compound (E) having an allyl group and a glycidyl group to be reacted with the primary amine compound (D) is not particularly limited as long as it is a monomeric compound having both an allyl group and a glycidyl group. Examples of the polyfunctional compound (E) include monoglycidyl diallyl isocyanurate, diglycidyl monoallyl isocyanurate, monoglycidyl dimethallyl isocyanurate, diglycidyl monomethallyl isocyanurate, monoglycidyl diallyl cyanurate, diglycidyl monoary Lucyanurate, monoglycidyl dimethallyl cyanurate, diglycidyl monomethallyl cyanurate, allyl glycidyl amine, diallyl monoglycidyl amine, monoallyl diglycidyl amine, monoglycidyl dimethallyl amine, diglycidyl monomethallyl amine, glycidyl acrylic chlorene Tate, allyl glycidyl adipate, allyl glycidyl carbonate, allyl glycidyl dimethyl ammonium chloride, allyl glycidyl fumarate Allyl glycidyl isophthalate, allyl glycidyl malonate, allyl glycidyl oxalate, allyl glycidyl phthalate, allyl glycidyl propyl isocyanurate, allyl glycidyl sebacate, allyl glycidyl succinate, allyl glycidyl terephthalate, allyl glycidyl tartrate, glycidyl methyl allyl phthalate Etc.
 これらの化合物のうち、多官能性化合物(E)としては骨格にイソシアヌレートを有する化合物が好ましく、特に、モノグリシジルジアリルイソシアヌレートが好ましい。 Among these compounds, the polyfunctional compound (E) is preferably a compound having an isocyanurate in the skeleton, and particularly preferably monoglycidyl diallyl isocyanurate.
 上記した、1級アミン化合物(D)と、アリル基及びグリシジル基を有する多官能性化合物(E)とを混合し加熱することにより、アミンとグリシジルの熱による付加反応により、1分子中に多数のアリル基を有する化合物が得られる。反応させる際の1級アミン化合物(D)と多官能性化合物(E)の配合比は、1級アミン化合物(D)1当量に対しグリシジル基が1~2当量となるようにすればよい。1級アミン化合物(D)が脂肪族系の場合は、アミンの求核性が強いため、1つのアミンに対して2つのグリシジル基を付加反応させることができる。すなわち、例えば脂肪族ジアミン1モルに対し、グリシジル基は4モル量反応すると考えられる。1級アミン化合物(D)が芳香族系の場合は、アミンの求核性が比較的弱く、2つのグリシジル基を付加反応させることができない場合がある。すなわち、例えば芳香ジアミン1モルに対し、グリシジル基は概略2モル量反応すると考えられる。 By mixing and heating the primary amine compound (D) and the polyfunctional compound (E) having an allyl group and a glycidyl group, a large number of amines and glycidyl are added in one molecule by heat. A compound having an allyl group is obtained. The mixing ratio of the primary amine compound (D) and the polyfunctional compound (E) in the reaction may be such that the glycidyl group is 1 to 2 equivalents relative to 1 equivalent of the primary amine compound (D). In the case where the primary amine compound (D) is aliphatic, since the nucleophilicity of the amine is strong, two glycidyl groups can be added to one amine. That is, for example, it is considered that a glycidyl group reacts in a 4 mol amount with respect to 1 mol of an aliphatic diamine. In the case where the primary amine compound (D) is aromatic, the nucleophilicity of the amine is relatively weak, and the two glycidyl groups may not be added. That is, for example, it is considered that the glycidyl group reacts in an amount of approximately 2 moles per mole of the aromatic diamine.
 1級アミン化合物(D)と多官能性化合物(E)とを反応させる方法は、特に限定されるものではないが、例えば、上述のように、1級アミン化合物(D)と多官能性化合物(E)とを所定量混合し、加熱溶融させることにより、上記反応を簡便に行うことができる。その際、必要に応じて適当な反応溶媒を用いることも可能である。反応させるための加熱温度は、通常80~200℃の範囲で設定すればよい。反応させる際の雰囲気は、特に限定されず、大気中で反応を行えばよい。ただし、酸素による酸化が問題となる場合は、窒素ガスなど不活性ガスで雰囲気を置換すればよい。 The method of reacting the primary amine compound (D) and the polyfunctional compound (E) is not particularly limited. For example, as described above, the primary amine compound (D) and the polyfunctional compound are reacted. By mixing a predetermined amount of (E) and melting by heating, the above reaction can be easily performed. At that time, an appropriate reaction solvent may be used as necessary. What is necessary is just to set the heating temperature for making it react normally in the range of 80-200 degreeC. The atmosphere at the time of making it react is not specifically limited, What is necessary is just to react in air | atmosphere. However, when oxidation by oxygen becomes a problem, the atmosphere may be replaced with an inert gas such as nitrogen gas.
 このようにして得られた反応生成物は、沸点が高いため、溶融加工する際に揮発しにくく、架橋助剤、末端封鎖剤などとしても有効に使用できる。また、1分子中に多数のアリル基を有することから、公知の方法でアリル基と樹脂とを架橋させることができて、効率良く樹脂を強化することができる。 Since the reaction product thus obtained has a high boiling point, it is difficult to volatilize during melt processing, and can be used effectively as a crosslinking aid, end-capping agent and the like. Moreover, since it has many allyl groups in 1 molecule, an allyl group and resin can be bridge | crosslinked by a well-known method, and resin can be strengthened efficiently.
 本発明の樹脂組成物において、多官能性アリル化合物(C1)の添加量は、熱可塑性樹脂(A)と充填材(B)との合計100質量部に対して、3~20質量部であることが必要であり、好ましくは4~15質量部である。添加量が3質量部未満の場合は十分な溶融流動性が得られない場合がある。反対に20質量部を超える場合は、溶融粘度が低下しすぎて溶融混練時にペレット化ができなくなる場合があったり、得られる成形体の物性が大幅に低下する場合があったりする。 In the resin composition of the present invention, the addition amount of the polyfunctional allyl compound (C1) is 3 to 20 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin (A) and the filler (B). The amount is preferably 4 to 15 parts by mass. When the addition amount is less than 3 parts by mass, sufficient melt fluidity may not be obtained. On the other hand, when the amount exceeds 20 parts by mass, the melt viscosity may be too low and pelletization may not be possible at the time of melt-kneading, or the physical properties of the resulting molded product may be significantly reduced.
 多官能性アリル化合物(C1)は、1分子中に多数のアリル基を有することから、公知の方法に従い、架橋剤との併用、または、電子線やγ線などの放射線照射処理との併用により、熱可塑性樹脂(A)を架橋させることができる。中でも、所望の形に成形した後に短時間で処理ができるという点から、電子線やγ線により架橋することが好ましい。γ線は電子線に比べて透過性が強いために照射が均一となるので、γ線を用いた架橋がより好ましい。電子線照射には公知の電子加速器等が使用でき、γ線の照射には、公知のコバルト60線源等による照射装置を用いることができる。電子線の照射線量は1~300kGyが好ましく、50~100kGyがより好ましい。γ線照射の場合は、照射線量は10~100kGyが好ましく、20~40kGyがより好ましい。放射線の照射線量が上記上限値を超えると、樹脂の分解によって強度が低下してしまうため好ましくない。また、上記下限値未満では、架橋による効果が発揮されないため好ましくない。照射雰囲気は通常空気存在下で差し支えないが、所望により窒素雰囲気下や真空中で照射を行うことができる。 Since the polyfunctional allyl compound (C1) has a large number of allyl groups in one molecule, according to a known method, it can be used in combination with a crosslinking agent, or in combination with irradiation treatment such as electron beam or γ-ray. The thermoplastic resin (A) can be crosslinked. Among them, it is preferable to crosslink with an electron beam or a γ ray from the viewpoint that it can be processed in a short time after being formed into a desired shape. Since gamma rays are more permeable than electron rays and therefore irradiation is uniform, crosslinking using gamma rays is more preferred. A known electron accelerator or the like can be used for electron beam irradiation, and an irradiation apparatus such as a known cobalt 60 radiation source can be used for γ-ray irradiation. The irradiation dose of the electron beam is preferably 1 to 300 kGy, more preferably 50 to 100 kGy. In the case of γ-ray irradiation, the irradiation dose is preferably 10 to 100 kGy, more preferably 20 to 40 kGy. If the radiation dose exceeds the upper limit, the strength is reduced due to the decomposition of the resin, which is not preferable. Moreover, if less than the said lower limit, since the effect by bridge | crosslinking is not exhibited, it is unpreferable. Irradiation atmosphere can be usually in the presence of air, but irradiation can be performed in a nitrogen atmosphere or in vacuum as desired.
 ダイマー酸ベース熱可塑性樹脂(C2)について説明する。本発明において、ダイマー酸ベース熱可塑性樹脂(C2)とは、大豆油、桐油、ト-ル油等の脂肪酸の二量体であるダイマー酸、またはそのアミドを生成可能な誘導体、もしくはそのエステルを生成可能な誘導体を含むジカルボン酸を主な酸成分として、これと、ジアミン、グリコール等の成分とを重縮合して得られる熱可塑性樹脂である。ダイマー酸の主成分は二量体であるが、その他に単量体や三量体などを含んでいてもよい。また、脂肪酸の二量体であるダイマー酸、またはそのアミドを生成可能な誘導体、もしくはそのエステルを生成可能な誘導体を含むジカルボン酸は、水素添加されたものでもよい。 The dimer acid-based thermoplastic resin (C2) will be described. In the present invention, the dimer acid-based thermoplastic resin (C2) is a dimer acid that is a dimer of fatty acids such as soybean oil, tung oil, or toll oil, or a derivative that can produce an amide thereof, or an ester thereof. It is a thermoplastic resin obtained by polycondensation of a dicarboxylic acid containing a derivative that can be produced as a main acid component with components such as diamine and glycol. The main component of the dimer acid is a dimer, but may further contain a monomer or a trimer. Moreover, the dicarboxylic acid containing the dimer acid which is a dimer of a fatty acid, a derivative capable of generating an amide thereof, or a derivative capable of generating an ester thereof may be hydrogenated.
 ダイマー酸ベース熱可塑性樹脂(C2)は、熱可塑性樹脂(A)に比べて溶融粘度が低く、これが添加されることで樹脂の溶融粘度を低下させることができることから、可塑剤として有効に作用する。しかも、ダイマー酸ベース熱可塑性樹脂(C2)は、樹脂であり分解温度が高く、溶融加工する際に揮発しないため、可塑剤として有効に使用できる。さらに、これが添加されても機械的強度の低下が少なく、さらにブリードアウトをしないという点で有効である。 The dimer acid-based thermoplastic resin (C2) has a lower melt viscosity than the thermoplastic resin (A), and the addition of the dimer acid-based thermoplastic resin effectively reduces the melt viscosity of the resin. . In addition, the dimer acid-based thermoplastic resin (C2) is a resin, has a high decomposition temperature, and does not volatilize during melt processing, so that it can be used effectively as a plasticizer. Furthermore, even if this is added, it is effective in that the mechanical strength is hardly lowered and bleeding does not occur.
 ダイマー酸ベース熱可塑性樹脂(C2)としては、特に限定されないが、ポリアミド、ポリエステルなどが挙げられる。なかでも、取扱い性、経済性の点でポリアミドが好ましい。 The dimer acid-based thermoplastic resin (C2) is not particularly limited, and examples thereof include polyamide and polyester. Of these, polyamide is preferable from the viewpoint of handleability and economy.
 ダイマー酸ベースポリアミドとしては、特に限定されるものではないが、ダイマー酸またはそのアミド生成可能な誘導体を含むジカルボン酸成分と、ジアミンとからなるポリアミド樹脂などが挙げられる。例えば大豆油、桐油、ト-ル油等の脂肪酸の二量体であるダイマー酸と、例えばエチレンジアミン、ジエチレントリアミンのようなアルキルポリアミン類などとの反応生成物を挙げることができる。 The dimer acid-based polyamide is not particularly limited, and examples thereof include a polyamide resin composed of a dicarboxylic acid component containing a dimer acid or a derivative capable of forming an amide thereof and a diamine. Examples include reaction products of dimer acid, which is a dimer of fatty acids such as soybean oil, tung oil, and toll oil, and alkylpolyamines such as ethylenediamine and diethylenetriamine.
 ダイマー酸ベースポリエステルとしては、特に限定されるものではないが、ダイマー酸またはそのエステル生成可能な誘導体を含むジカルボン酸成分と、グリコールとからなるポリエステル樹脂などが挙げられる。例えば大豆油、桐油、ト-ル油等の脂肪酸の二量体であるダイマー酸と、例えばエチレングリコールや1,4-ブタンジオールのようなグリコール成分とテレフタル酸、イソフタル酸のなどとの反応生成物を挙げることができる。 The dimer acid-based polyester is not particularly limited, and examples thereof include a polyester resin composed of a dicarboxylic acid component containing a dimer acid or a derivative capable of forming an ester thereof and glycol. For example, dimer acid, which is a dimer of fatty acids such as soybean oil, tung oil, and toll oil, and a reaction product of a glycol component such as ethylene glycol or 1,4-butanediol with terephthalic acid or isophthalic acid. You can list things.
 ダイマー酸ベースポリアミドとダイマー酸ベースポリエステルとは、それぞれ個別に用いることができるし、両者を混合して用いることもできる。 The dimer acid-based polyamide and the dimer acid-based polyester can be used individually or in combination.
 本発明の樹脂組成物において、ダイマー酸ベース熱可塑性樹脂(C2)の添加量は、熱可塑性樹脂(A)と充填材(B)との合計100容量部に対して、10~45容量部であることが必要であり、好ましくは10~25容量部である。ダイマー酸ベース熱可塑性樹脂(C2)の配合量が10容量部未満ではダイマー酸ベース熱可塑性樹脂(C2)を配合した効果が十分に得られない場合がある。反対に配合量が45容量部を超えると、機械的物性が著しく低下したり、溶融混練時にペレット化できなくなったりする場合がある。 In the resin composition of the present invention, the amount of the dimer acid-based thermoplastic resin (C2) added is 10 to 45 parts by volume with respect to 100 parts by volume in total of the thermoplastic resin (A) and the filler (B). It is necessary that it is 10 to 25 parts by volume. If the blending amount of the dimer acid-based thermoplastic resin (C2) is less than 10 parts by volume, the effect of blending the dimer acid-based thermoplastic resin (C2) may not be sufficiently obtained. On the other hand, if the blending amount exceeds 45 parts by volume, mechanical properties may be remarkably lowered, or pelletization may not be possible during melt kneading.
 本発明の樹脂組成物には、その特性を大きく損なわない限りにおいて、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、滑剤、離型剤、帯電防止剤、結晶核材、相溶化剤等を添加することができる。熱安定剤や酸化防止剤としては、たとえばヒンダードフェノール類、リン化合物、ヒンダードアミン、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物等が挙げられる。難燃剤としては、水和金属化合物(水酸化アルミニウム、水酸化マグネシウム等)、窒素含有化合物(メラミン系、グアニジン系)、リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤等が挙げられる。結晶核材としては、ソルビトール化合物、安息香酸およびその化合物の金属塩、燐酸エステル金属塩、ロジン化合物等が挙げられる。相溶化剤としては、アイオノマー系相溶化剤、オキサゾリン系相溶化剤、エラストマー系相溶化剤、反応性相溶化剤、共重合体系相溶化剤等が挙げられる。これらの添加剤は、1種を用いるか、または2種以上併用することができる。本発明の樹脂組成物にこれらを混合する方法は、特に限定されない。 The resin composition of the present invention has a pigment, a heat stabilizer, an antioxidant, a weathering agent, a flame retardant, a lubricant, a release agent, an antistatic agent, a crystal nucleus material, and a compatibilization as long as the characteristics are not significantly impaired An agent or the like can be added. Examples of heat stabilizers and antioxidants include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, and the like. Examples of the flame retardant include hydrated metal compounds (such as aluminum hydroxide and magnesium hydroxide), nitrogen-containing compounds (melamine-based and guanidine-based), phosphorus-based flame retardants, halogen-based flame retardants, and inorganic flame retardants. Examples of the crystal nucleus material include a sorbitol compound, benzoic acid and a metal salt of the compound, a phosphate metal salt, a rosin compound, and the like. Examples of the compatibilizer include ionomer compatibilizers, oxazoline compatibilizers, elastomer compatibilizers, reactive compatibilizers, and copolymer-based compatibilizers. These additives may be used alone or in combination of two or more. The method for mixing these with the resin composition of the present invention is not particularly limited.
 本発明の樹脂組成物は、熱可塑性樹脂(A)と、充填材(B)と、多官能性アリル化合物(C1)またはダイマー酸ベース熱可塑性樹脂(C2)とを、さらには必要に応じて各種添加物を、一般的な押出機、例えば一軸押出機、二軸押出機、ロール混錬機、ブラベンダー等を用いて溶融混練することにより、製造することができる。このとき、スタティックミキサーやダイナミックミキサーを併用することも効果的である。混練状態をよくするためには、二軸押出機を使用することが好ましい。充填材(B)と、多官能性アリル化合物(C1)またはダイマー酸ベース熱可塑性樹脂(C2)とは、特に限定されるものではないが、押出機において、ホッパーから、あるいは、サイドフィーダーを用いて、添加することができる。 The resin composition of the present invention comprises a thermoplastic resin (A), a filler (B), a polyfunctional allyl compound (C1) or a dimer acid-based thermoplastic resin (C2), and if necessary. Various additives can be produced by melt-kneading using a general extruder such as a single screw extruder, a twin screw extruder, a roll kneader, or a Brabender. At this time, it is also effective to use a static mixer or a dynamic mixer together. In order to improve the kneading state, it is preferable to use a twin screw extruder. The filler (B) and the polyfunctional allyl compound (C1) or the dimer acid-based thermoplastic resin (C2) are not particularly limited, but in the extruder, from a hopper or using a side feeder. Can be added.
 本発明の樹脂組成物は、射出成形、圧縮成形、押出し成形、トランスファー成形、シート成形などの公知の溶融成形手法を用いて、所望の形状に成形することで成形体とすることができる。樹脂組成物を所望の形状に成形したうえで、上述のように放射線を照射することで樹脂を架橋させることができる。 The resin composition of the present invention can be formed into a molded body by molding it into a desired shape using a known melt molding technique such as injection molding, compression molding, extrusion molding, transfer molding, or sheet molding. After the resin composition is molded into a desired shape, the resin can be crosslinked by irradiation with radiation as described above.
 本発明において、10W/(m・K)以上の熱伝導率を有する熱伝導性充填材(B1)を配合した樹脂組成物を成形して得られる成形体の具体例としては、半導体素子や抵抗などのための封止材料、コネクター、ソケット、リレー部品、コイルボビン、光ピックアップ、発振子、コンピュータ関連部品等の電気・電子部品;VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器、照明器具等の家庭電気製品部品;放熱シート、ヒートシンク、ファンなどの電子部品からの熱を外部に逃すための放熱部材;ランプソケット、ランプリフレクター、ランプハウジングなど照明器具部品;コンパクトディスク、レーザーディスク、スピーカー等の音響製品部品;光ケーブル用フェルール、携帯電話機、固定電話機、ファクシミリ、モデム等の通信機器部品;分離爪、ヒータホルダー等の複写機、印刷機関連部品;インペラー、ファン歯車、ギヤ、軸受け、モーター部品及びケース等の機械部品;自動車用機構部品、エンジン部品、エンジンルーム内部品、電装部品、内装部品等の自動車部品;マイクロ波調理用鍋、耐熱食器等の調理用器具;航空機、宇宙機、宇宙機器用部品;センサー類部品等が挙げられる。 In the present invention, specific examples of a molded body obtained by molding a resin composition containing a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m · K) or more include semiconductor elements and resistors. Electrical and electronic parts such as sealing materials for connectors, connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, computer-related parts; VTRs, TVs, irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers Household electrical product parts such as lighting fixtures; Heat dissipation members for releasing heat from electronic components such as heat dissipation sheets, heat sinks and fans; Lighting fixture components such as lamp sockets, lamp reflectors and lamp housings; Compact discs, laser discs Audio product parts such as speakers; optical cable ferrules, mobile phones, fixed phones, fax machines Communication equipment parts such as modems and modems; Copying machines such as separation claws and heater holders, printer-related parts; machine parts such as impellers, fan gears, gears, bearings, motor parts and cases; mechanism parts for automobiles, engine parts, Automotive parts such as engine compartment parts, electrical parts, interior parts, etc .; cooking utensils such as microwave cooking pans and heat-resistant dishes; aircraft, spacecraft, space equipment parts; sensor parts and the like.
 以下、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to only these examples.
 以下の実施例および比較例において、各種物性値の試験方法は、次のとおりである。 In the following examples and comparative examples, the test methods for various physical property values are as follows.
 [1]MFR(メルトフローレート):
 熱可塑性樹脂組成物のペレットについて、降下式フローテスター(東洋精機製作所社製)を用い、所定荷重、所定温度でのMFR値を測定した。このときのオリフィスは、直径1mm×長さ10mmのものを使用した。
[1] MFR (melt flow rate):
The pellets of the thermoplastic resin composition were measured for MFR values at a predetermined load and a predetermined temperature using a descending flow tester (manufactured by Toyo Seiki Seisakusho). At this time, an orifice having a diameter of 1 mm and a length of 10 mm was used.
 [2]曲げ強度、曲げ弾性率:
 ASTM規格D-790に記載の方法に準じて測定した。
[2] Flexural strength, flexural modulus:
The measurement was performed according to the method described in ASTM standard D-790.
 [3]衝撃強度:
 ASTM規格D-256に記載の方法に準じて、ノッチ付試験片を用いてアイゾッド衝撃強度を測定した。
[3] Impact strength:
According to the method described in ASTM standard D-256, Izod impact strength was measured using a notched specimen.
 [4]熱伝導率:
 熱伝導率λは、熱拡散率α、密度ρ、比熱Cpを下記方法により求め、その積として次式で算出した。
[4] Thermal conductivity:
Thermal conductivity (lambda) calculated | required thermal diffusivity (alpha), density (rho), and specific heat Cp by the following method, and computed it with the following Formula as the product.
   λ=αρCp
      λ:熱伝導率(W/(m・K))
      α:熱拡散率(m/sec)
      ρ:密度(g/m
     Cp:比熱(J/g・K)
 熱拡散率αは、[2]で作製した曲げ試験片の樹脂流れ方向について、レーザーフラッシュ法熱定数測定装置TC-7000(アルバック理工社製)を用い、レーザーフラッシュ法にて測定した。密度ρは、電子比重計ED-120T(ミラージュ貿易社製)を用いて測定した。比熱Cpは、示差走査熱量計DSC―7(パーキンエルマー社製)を用い、昇温速度10℃/分の条件で測定した。
λ = αρCp
λ: thermal conductivity (W / (m · K))
α: Thermal diffusivity (m 2 / sec)
ρ: Density (g / m 3 )
Cp: Specific heat (J / g · K)
The thermal diffusivity α was measured by a laser flash method using a laser flash method thermal constant measuring device TC-7000 (manufactured by ULVAC-RIKO, Inc.) in the resin flow direction of the bending test piece prepared in [2]. The density ρ was measured using an electronic hydrometer ED-120T (manufactured by Mirage Trading Co.). The specific heat Cp was measured using a differential scanning calorimeter DSC-7 (manufactured by Perkin Elmer) under the condition of a heating rate of 10 ° C./min.
 [5]成形性
 供試樹脂組成物を十分に乾燥した後、射出成形機(東芝機械社製:EC-100型)を用い、幅13mm、長さ130mm、厚さ0.8mmの短冊状試料を射出成形した。得られた成形片の状態について、下記に示す基準で3段階の評価を行った。
[5] Moldability After sufficiently drying the test resin composition, a strip-shaped sample having a width of 13 mm, a length of 130 mm, and a thickness of 0.8 mm using an injection molding machine (Toshiba Machine Co., Ltd .: EC-100 type). Was injection molded. The state of the obtained molded piece was evaluated in three stages according to the following criteria.
   良好:外観上問題なく、所定のサイズに成形できていた
   やや劣る:所定のサイズに成形はできているが、成形片表面の平滑性が悪かった
   不良:流動性が悪く、所定のサイズに成形できなかった
 実施例と比較例で用いた原料を以下に示す。
Good: There was no problem in appearance and it could be molded to the specified size. Slightly inferior: Molded to the specified size, but the smoothness of the surface of the molded piece was bad. The raw materials used in Examples and Comparative Examples that could not be performed are shown below.
 (1)熱可塑性樹脂(A)
 ・PA6A:ラクタムの重合によって得られたポリアミド6(相対粘度2.6、密度1.13g/cm
 ・PA6B:ラクタムの重合によって得られたポリアミド6(相対粘度1.9、密度1.13cm
 ・PA66:ヘキサメチレンジアミンとアジピン酸の重合によって得られたポリアミド66(相対粘度2.8、密度1.14cm
 ・LCP:液晶ポリエステル(ユニチカ社製 ロッドランLC-5000、密度1.41g/cm
 ・PA12:ポリアミド12(アルケマ社製 リルサンAMN、相対粘度2.3、密度1.01g/cm
 ・PP:ポリプロピレン(日本ポリプロ社製 MA1B、密度0.9g/cm3)
 ・PLA:ポリ乳酸(NatureWorks社製、重量平均分子量(MW)=190,000、密度1.25g/cm
 (2)充填材(B)
 ・GrA:鱗片状黒鉛(日本黒鉛工業社製、平均粒径40μm、熱伝導率100W/(m・K)、密度2.25g/cm
 ・GrB:鱗片状黒鉛(日本黒鉛工業社製、平均粒径130μm、熱伝導率100W/(m・K)、密度2.25g/cm
 ・GrCF:黒鉛化炭素繊維(日本グラファイトファイバー社製、平均繊維径9μm、平均繊維長3mm、密度2.2g/cm
 ・BN:六方晶系鱗片状窒化ホウ素(電気化学工業社製、平均粒径15μm、密度2.26g/cm
 ・ALOA:酸化アルミニウム(電気化学工業社製、平均粒径10μm、熱伝導率38W/m・K、密度3.97g/cm) 
 ・ALOB:酸化アルミニウム(電気化学工業社製、平均粒径50μm、熱伝導率38W/(m・K)、密度3.97g/cm
 ・TC:タルク(日本タルク社製 K-1、平均粒径8μm、密度2.7g/cm
  ・MgO:酸化マグネシウム(神島化学社製、平均粒径5μm、熱伝導率50W/(m・K)、密度3.58g/cm
 ・MgCO:炭酸マグネシウム(神島化学社製、平均粒径10μm、熱伝導率15W/(m・K)、密度3.05g/cm
 ・ZnO:酸化亜鉛(堺化学工業社製、平均粒径10μm、熱伝導率25W/(m・K)、密度 5.78g/cm
 ・AF:コポリパラフェニレン-3,4′-オキシジフェニレンテレフタルアミド繊維(帝人テクノプロダクツ社製、平均繊維径12μm、平均繊維長3mm、密度1.39g/cm
 ・GF:ガラス繊維(オーウェンスコーニング社製、平均繊維径10μm、平均繊維長3mm、密度2.50g/cm
 (3)多官能性アリル化合物(C1)
 ・TAIC:トリアリルイソシアヌレート(日本化成社製 TAIC、液体、沸点150℃)
 ・DAMGIC:モノグリシジルジアリルイソシアヌレート(四国化成社製 DA-MGIC、固体、融点40℃、TGA測定による5%重量減少温度178℃)
 ・C11
 1級アミン化合物(D)として1,3-ビス(アミノメチル)ベンゼン(MXDA)を用い、多官能性化合物(E)としてモノグリシジルイソシアヌレート(DAMGIC)を用い、MXDA1当量に対し、DAMGICが2当量になるよう秤り採り、これらを丸底フラスコに加え、攪拌しながら80℃で30分間加熱した。さらに180℃で30分間加熱して、無色透明な液状物を得た。得られた液状物を室温まで徐冷し、そのときに生成した固形物を粉砕して、多官能性アリル化合物(C11)の白色粉末を得た。
(1) Thermoplastic resin (A)
PA6A: polyamide 6 obtained by polymerization of lactam (relative viscosity 2.6, density 1.13 g / cm 3 )
PA6B: Polyamide 6 obtained by polymerization of lactam (relative viscosity 1.9, density 1.13 cm 3 )
PA66: polyamide 66 obtained by polymerization of hexamethylenediamine and adipic acid (relative viscosity 2.8, density 1.14 cm 3 )
LCP: Liquid crystalline polyester (Rodlan LC-5000 manufactured by Unitika Ltd., density 1.41 g / cm 3 )
PA12: Polyamide 12 (Rilsan AMN manufactured by Arkema, relative viscosity 2.3, density 1.01 g / cm 3 )
-PP: Polypropylene (Nippon Polypro Corporation MA1B, density 0.9 g / cm3)
PLA: Polylactic acid (manufactured by NatureWorks, weight average molecular weight (MW) = 190,000, density 1.25 g / cm 3 )
(2) Filler (B)
GrA: scaly graphite (manufactured by Nippon Graphite Industries Co., Ltd., average particle size 40 μm, thermal conductivity 100 W / (m · K), density 2.25 g / cm 3 )
GrB: scaly graphite (manufactured by Nippon Graphite Industry Co., Ltd., average particle size 130 μm, thermal conductivity 100 W / (m · K), density 2.25 g / cm 3 )
GrCF: graphitized carbon fiber (manufactured by Nippon Graphite Fiber, average fiber diameter 9 μm, average fiber length 3 mm, density 2.2 g / cm 3 )
BN: hexagonal scaly boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 15 μm, density 2.26 g / cm 3 )
ALOA: aluminum oxide (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 10 μm, thermal conductivity 38 W / m · K, density 3.97 g / cm 3 )
ALOB: aluminum oxide (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 50 μm, thermal conductivity 38 W / (m · K), density 3.97 g / cm 3 )
TC: Talc (K-1 manufactured by Nippon Talc Co., Ltd., average particle diameter 8 μm, density 2.7 g / cm 3 )
MgO: Magnesium oxide (manufactured by Kamishima Chemical Co., Ltd., average particle size 5 μm, thermal conductivity 50 W / (m · K), density 3.58 g / cm 3 )
MgCO: Magnesium carbonate (manufactured by Kamishima Chemical Co., Ltd., average particle size 10 μm, thermal conductivity 15 W / (m · K), density 3.05 g / cm 3 )
ZnO: Zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., average particle size 10 μm, thermal conductivity 25 W / (m · K), density 5.78 g / cm 3 )
AF: Copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber (manufactured by Teijin Techno Products, average fiber diameter 12 μm, average fiber length 3 mm, density 1.39 g / cm 3 )
GF: Glass fiber (Owens Corning, average fiber diameter 10 μm, average fiber length 3 mm, density 2.50 g / cm 3 )
(3) Polyfunctional allyl compound (C1)
・ TAIC: triallyl isocyanurate (TAIC, Nippon Kasei Co., Ltd., liquid, boiling point 150 ° C.)
DAMGIC: monoglycidyl diallyl isocyanurate (DA-MGIC, solid, melting point 40 ° C., 5% weight loss temperature 178 ° C. measured by TGA measurement)
・ C11
1,3-bis (aminomethyl) benzene (MXDA) is used as the primary amine compound (D), monoglycidyl isocyanurate (DAMGIC) is used as the multifunctional compound (E), and 2 DAMGICs per 1 equivalent of MXDA. They were weighed to an equivalent weight, added to a round bottom flask, and heated at 80 ° C. for 30 minutes with stirring. Furthermore, it heated at 180 degreeC for 30 minute (s), and the colorless and transparent liquid material was obtained. The obtained liquid was gradually cooled to room temperature, and the solid produced at that time was pulverized to obtain a white powder of a polyfunctional allyl compound (C11).
 TGA装置(Perkin-Elmer社製 TGA-7)を用いて、5mgの試料を窒素置換雰囲気中で昇温速度20℃/分の速度で室温から600℃まで昇温させ、試料の質量変化を測定した。得られた粉末のTGA測定による5%質量減少温度は375℃であった。MXDAのTGA測定による5%質量減少温度は52℃であった。得られた粉末の融解点は55~70℃の範囲にあった。 Using a TGA device (Perkin-Elmer TGA-7), a 5 mg sample was heated from room temperature to 600 ° C. at a temperature increase rate of 20 ° C./min in a nitrogen-substituted atmosphere, and the sample mass change was measured. did. The 5% mass reduction | decrease temperature by the TGA measurement of the obtained powder was 375 degreeC. The 5% mass reduction temperature measured by MXDA TGA was 52 ° C. The melting point of the obtained powder was in the range of 55-70 ° C.
 ・C12:
 MXDA1当量に対し、DAMGICが1当量になるようにした。それ以外はC11の場合と同様にして合成を行い、無色透明な液状物を得た。得られた液状物を室温まで徐冷し、固化した固形物を粉砕して、多官能性アリル化合物(C12)の白色粉末を得た。
・ C12:
DAMGIC was adjusted to 1 equivalent with respect to 1 equivalent of MXDA. Otherwise, synthesis was carried out in the same manner as in C11 to obtain a colorless and transparent liquid. The obtained liquid was gradually cooled to room temperature, and the solidified solid was pulverized to obtain a white powder of a polyfunctional allyl compound (C12).
 得られた粉末のTGA測定による5%質量減少温度は335℃であった。得られた粉末の融解点は50~60℃の範囲にあった。 The 5% mass reduction temperature of the obtained powder by TGA measurement was 335 ° C. The melting point of the obtained powder was in the range of 50-60 ° C.
 ・C13:
 1級アミン化合物(D)としてヘキサメチレンジアミン(HMDA)を用いた。それ以外はC11の場合と同様にして合成を行い、無色透明な液状物を得た。得られた液状物を室温まで徐冷し、そのときに生成した固形物を粉砕して、多官能性アリル化合物(C13)の白色粉末を得た。
・ C13:
Hexamethylenediamine (HMDA) was used as the primary amine compound (D). Otherwise, synthesis was carried out in the same manner as in C11 to obtain a colorless and transparent liquid. The obtained liquid was gradually cooled to room temperature, and the solid produced at that time was pulverized to obtain a white powder of a polyfunctional allyl compound (C13).
 得られた粉末のTGA測定による5%質量減少温度は356℃であった。HMDAのTGA測定による5%質量減少温度は76℃であった。得られた粉末の融解点は35~45℃の範囲にあった。 The 5% mass reduction temperature of the obtained powder by TGA measurement was 356 ° C. The 5% mass reduction temperature by TGA measurement of HMDA was 76 ° C. The melting point of the obtained powder was in the range of 35 to 45 ° C.
 (4)ダイマー酸ベース熱可塑性樹脂(C2)
 ・製造例1(C21)
 ダイマー酸(築野食品工業社製、水素添加なし)/1,3-ビス(アミノメチル)ベンゼン=46.5/53.5(モル比)の割合の原料を反応槽に仕込み、240℃で2時間反応させた。反応終了後に払い出し、切断して、ダイマー酸ベースポリアミド樹脂ペレットを得た。得られたペレットの230℃、21.18Nでのメルトフローレート(MFR)は、1800g/minであった。
(4) Dimer acid based thermoplastic resin (C2)
・ Production Example 1 (C21)
Dimer acid (manufactured by Tsukino Food Industry Co., Ltd., without hydrogenation) / 1,3-bis (aminomethyl) benzene = 46.5 / 53.5 (molar ratio) was charged into the reaction vessel at 240 ° C. The reaction was performed for 2 hours. After completion of the reaction, it was discharged and cut to obtain dimer acid-based polyamide resin pellets. The resulting pellet had a melt flow rate (MFR) at 230 ° C. and 21.18 N of 1800 g / min.
 ・製造例2(C22)
 ダイマー酸(築野食品工業社製、水素添加なし)/65.3%ヘキサメチレンジアミン水溶液/カプロラクタム=10.3/7.3/82.4(モル比)の割合の原料を反応槽に仕込み、250℃で2時間反応させた。反応終了後に払い出し、切断してダイマー酸ベースポリアミド樹脂ペレットを得た。得られたペレットの230℃、21.18Nでのメルトフローレート(MFR)は、1300g/minであった。
・ Production Example 2 (C22)
Dimer acid (manufactured by Tsukino Food Industry Co., Ltd., without hydrogenation) /65.3% hexamethylenediamine aqueous solution / caprolactam = 10.3 / 7.3 / 82.4 (molar ratio) were charged into the reaction vessel. And reacted at 250 ° C. for 2 hours. After completion of the reaction, it was discharged and cut to obtain dimer acid-based polyamide resin pellets. The resulting pellet had a melt flow rate (MFR) at 230 ° C. and 21.18 N of 1300 g / min.
 ・製造例3(C23)
 ダイマー酸(築野食品工業社製、水素添加なし)/テレフタル酸/1,4ブタンジオール=13.2/26.8/60(モル比)の割合の原料を反応槽に仕込み、240℃にてエステル化反応を行い、次いで定法により、チタン触媒を添加し240℃にて3時間重縮合反応を行った。反応終了後に払い出し、切断して、ダイマー酸ベースポリエステル樹脂を得た。得られたペレットの200℃、21.18Nでのメルトフローレート(MFR)は、800g/minであった。
・ Production Example 3 (C23)
Dimer acid (manufactured by Tsukino Food Industry Co., Ltd., without hydrogenation) / terephthalic acid / 1,4 butanediol = 13.2 / 26.8 / 60 (molar ratio) was charged into the reaction vessel and brought to 240 ° C. Then, an esterification reaction was carried out, and then a titanium catalyst was added by a conventional method, and a polycondensation reaction was carried out at 240 ° C. for 3 hours. After completion of the reaction, it was discharged and cut to obtain a dimer acid-based polyester resin. The resulting pellet had a melt flow rate (MFR) at 200 ° C. and 21.18 N of 800 g / min.
 (5)可塑剤
 ・HB:p-ヒドロキシ安息香酸アルキルエステル(花王社製 エキセパールHD-PB、液体、TGA測定による5%質量減少温度285℃)
 (実施例1)
 二軸押出機(東芝機械社製:TEM26SS、スクリュ径26mm)の主ホッパーに、ポリアミド6樹脂(PA6A)30質量部と、多官能性アリル化合物(C12)5質量部とを供給し、260℃で溶融した。途中、サイドフィーダーよりガラス繊維(GF)70質量部を供給し、十分に溶融混練した。そしてストランド状に押出して冷却固化した後、ペレット状に切断して、樹脂組成物を得た。
(5) Plasticizer-HB: p-hydroxybenzoic acid alkyl ester (Exepar HD-PB, liquid, Kao company, 5% mass reduction temperature 285 ° C. measured by TGA measurement)
Example 1
30 parts by mass of polyamide 6 resin (PA6A) and 5 parts by mass of polyfunctional allyl compound (C12) are supplied to a main hopper of a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd .: TEM26SS, screw diameter 26 mm) at 260 ° C. And melted. In the middle, 70 parts by mass of glass fiber (GF) was supplied from the side feeder and sufficiently melt-kneaded. And after extruding in the shape of a strand and cooling and solidifying, it cut | disconnected to the shape of a pellet, and obtained the resin composition.
 この樹脂組成物を十分に乾燥した後、射出成形機(東芝機械社製:EC-100型)を用い、シリンダ温度270℃、金型温度100℃、射出時間20秒、冷却時間10秒の条件で、上述の短冊状試料を射出成形した。 After sufficiently drying this resin composition, using an injection molding machine (manufactured by Toshiba Machine Co., Ltd .: EC-100 type), conditions of cylinder temperature 270 ° C., mold temperature 100 ° C., injection time 20 seconds, cooling time 10 seconds Then, the above-described strip-shaped sample was injection molded.
 その評価結果を表1に示す。混練および射出成形操作の際に、揮発ガスの発生は観測されなかった。 The evaluation results are shown in Table 1. No volatile gas evolution was observed during the kneading and injection molding operations.
 (比較例1)
 実施例1に比べて、多官能性アリル化合物(C1)を添加しないように変更した。それ以外は実施例1と同様にして樹脂組成物を得て、これを射出成形して成形性の評価を行った。その評価結果を表1に示す。混練および射出成形操作の際において、揮発ガスの発生は観測されなかった。
(Comparative Example 1)
Compared with Example 1, it changed so that polyfunctional allyl compound (C1) might not be added. Other than that obtained the resin composition like Example 1, this was injection-molded, and the moldability was evaluated. The evaluation results are shown in Table 1. During the kneading and injection molding operations, no generation of volatile gases was observed.
 (実施例2~8、比較例2~7)
 実施例1と比べて、熱可塑性樹脂(A)、充填材(B)、多官能性アリル化合物(C1)をそれぞれ表1に示す種類と量に変えた。それ以外は実施例1と同様にして、樹脂組成物を得た。かつ、これを射出成形して成形性の評価を行った。繊維状充填剤はサイドフィーダーにより途中から供給し、それ以外の充填材は主ホッパーより供給し、液体であるトリアリルシアヌレート(TAIC)は混練機途中からポンプを用いて注入して、溶融混練を実施した。
(Examples 2 to 8, Comparative Examples 2 to 7)
Compared with Example 1, the thermoplastic resin (A), the filler (B), and the polyfunctional allyl compound (C1) were changed to the types and amounts shown in Table 1, respectively. Other than that was carried out similarly to Example 1, and obtained the resin composition. And this was injection-molded and the moldability was evaluated. The fibrous filler is supplied from the middle by the side feeder, the other fillers are supplied from the main hopper, and triallyl cyanurate (TAIC), which is a liquid, is injected from the middle of the kneader using a pump, and melt-kneaded. Carried out.
 その評価結果をまとめて表1に示す。なお、実施例4および6については、混練および射出成形操作において揮発ガスが大量に発生し、得られた成形体の表面にはトリアリルシアヌレートがブリードアウトしていた。 The evaluation results are summarized in Table 1. In Examples 4 and 6, a large amount of volatile gas was generated during the kneading and injection molding operations, and triallyl cyanurate bleeded out on the surface of the obtained molded body.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~8においては多官能性アリル化合物(C1)が可塑剤として機能しているために成形性が良好であるのに対し、比較例1~7においては可塑剤が配合されていなかったか、または配合量が過少であったため、同じ成形温度ではきれいな成形片が得られなかった。 As is clear from Table 1, in Examples 1-8, the polyfunctional allyl compound (C1) functions as a plasticizer and thus has good moldability, whereas in Comparative Examples 1-7, Since the plasticizer was not blended or the blending amount was too small, a clean molded piece could not be obtained at the same molding temperature.
 (実施例9)
 実施例1で用いたのと同じ二軸押出機の主ホッパーに、ポリアミド6樹脂(PA6B)41質量部と、熱伝導性充填材(B1)としての鱗片状黒鉛(GrA)59質量部と、モノグリシジルイソシアヌレート(DAMGIC)4質量部とを供給し、250℃で溶融混練した。そしてストランド状に押出して冷却固化した後、ペレット状に切断して、樹脂組成物を得た。
Example 9
In the main hopper of the same twin-screw extruder used in Example 1, 41 parts by mass of polyamide 6 resin (PA6B), 59 parts by mass of flaky graphite (GrA) as a thermally conductive filler (B1), 4 parts by mass of monoglycidyl isocyanurate (DAMGIC) was supplied and melt-kneaded at 250 ° C. And after extruding in the shape of a strand and cooling and solidifying, it cut | disconnected to the pellet form and obtained the resin composition.
 得られた樹脂組成物を十分に乾燥した後、250℃、荷重100kgの条件でMFRを測定したところ、100g/10minであった。 After sufficiently drying the obtained resin composition, the MFR was measured under the conditions of 250 ° C. and a load of 100 kg, and it was 100 g / 10 min.
 次にこの樹脂組成物を、実施例1で用いたのと同じ射出成形機にて、シリンダ温度260℃、金型温度100℃、射出時間20秒、冷却時間10秒で射出成形し、評価用の成形体を得た。なお、混練および射出成形操作において揮発ガスの発生は観測されなかった。 Next, this resin composition was injection-molded by the same injection molding machine used in Example 1 at a cylinder temperature of 260 ° C., a mold temperature of 100 ° C., an injection time of 20 seconds, and a cooling time of 10 seconds. A molded body of was obtained. Note that generation of volatile gas was not observed in the kneading and injection molding operations.
 その評価結果を表2に示す。 The evaluation results are shown in Table 2.
 (実施例10~27、比較例8~18)
 実施例9と比べて、熱可塑性樹脂(A)、熱伝導性充填材(B1)、多官能性アリル化合物(C1)、その他の充填材、その他の可塑剤を、それぞれ表2に示す種類と量に変えた。それ以外は実施例1と同様にして、樹脂組成物を得た。この樹脂組成物を射出成形して、各種物性を測定した。その際に、繊維状充填剤はサイドフィーダーにより途中から供給し、それ以外の充填材は主ホッパーより供給した。液体であるトリアリルシアヌレート(TAIC)は混練機途中からポンプを用いて注入して、溶融混練を実施した。
(Examples 10 to 27, Comparative Examples 8 to 18)
Compared to Example 9, the thermoplastic resin (A), the thermally conductive filler (B1), the polyfunctional allyl compound (C1), other fillers, and other plasticizers are shown in Table 2, respectively. I changed the amount. Other than that was carried out similarly to Example 1, and obtained the resin composition. The resin composition was injection molded and various physical properties were measured. At that time, the fibrous filler was supplied from the middle by the side feeder, and the other fillers were supplied from the main hopper. Triallyl cyanurate (TAIC), which is a liquid, was injected from the middle of the kneader using a pump to carry out melt kneading.
 実施例16および21については、混練時および射出成形時において、揮発ガスが大量に発生した。実施例16については、得られた成形体の表面にトリアリルシアヌレートがブリードアウトしていた。 In Examples 16 and 21, a large amount of volatile gas was generated during kneading and injection molding. In Example 16, triallyl cyanurate bleeded out on the surface of the obtained molded body.
 実施例10、12、14、16、17、19、比較例8、11、14で得られた成形体に、コバルト60を線源としたガンマ線を30kGy照射した後、強度測定を行い、ガンマ線照射前後の物性比較を行った。 The molded bodies obtained in Examples 10, 12, 14, 16, 17, 19 and Comparative Examples 8, 11, and 14 were irradiated with gamma rays using cobalt 60 as a radiation source at 30 kGy, intensity measurements were then performed, and gamma irradiation was performed. The physical properties before and after were compared.
 実施例9~27、比較例8~18の評価結果を、まとめて表2に示す。 Table 2 summarizes the evaluation results of Examples 9 to 27 and Comparative Examples 8 to 18.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例9~27は、多官能性アリル化合物(C1)が可塑剤として機能しているためにMFR値が大きく成形性に優れていた。これに対し、比較例8~13および比較例15~17は、可塑剤としての多官能性アリル化合物(C1)が配合されていないかあるいは少な過ぎたため、多官能性アリル化合物(C1)の配合量を適正としかつ他の条件を同様とした各実施例に比べてMFR値が小さく、成形性に劣っていた。 Examples 9 to 27 had a large MFR value and excellent moldability because the polyfunctional allyl compound (C1) functions as a plasticizer. In contrast, in Comparative Examples 8 to 13 and Comparative Examples 15 to 17, the polyfunctional allyl compound (C1) as a plasticizer was not blended or was too little. The MFR value was small and inferior in moldability as compared with the examples in which the amount was appropriate and the other conditions were the same.
 特に、実施例21~26および比較例15~17は、充填材(B)が大量に配合されたものであったが、実施例21~26は、所定量の多官能性アリル化合物(C1)を配合することで、比較例15~17に比べて成形温度を低くすることが可能であった。比較例14は、市販の可塑剤を配合したものであったところ、MFR値は高く成形性に優れているものの、実施例のものに比べて成形体の機械的性能が劣っていた。比較例18は、多官能性アリル化合物(C1)の配合量が多すぎたため、溶融粘度が低すぎて、溶融混練時にストランド状に押出して冷却固化することができず、射出成形用のペレットを作製できなかった。 In particular, Examples 21 to 26 and Comparative Examples 15 to 17 were blended with a large amount of the filler (B), but Examples 21 to 26 had a predetermined amount of the polyfunctional allyl compound (C1). It was possible to lower the molding temperature as compared with Comparative Examples 15 to 17. In Comparative Example 14, when a commercially available plasticizer was blended, the MFR value was high and the moldability was excellent, but the mechanical performance of the molded body was inferior to that of the Example. In Comparative Example 18, since the blending amount of the polyfunctional allyl compound (C1) was too large, the melt viscosity was too low, and it was not possible to extrude into a strand shape during melt kneading and solidify by cooling. Could not be produced.
 実施例10、12、14、16、17、19は、多官能性アリル化合物(C1)が配合されていたため、ガンマ線照射によってポリアミド樹脂が架橋されて、曲げ強度が向上した。一方、比較例8、11、14は、多官能性アリル化合物が配合されていなかったため、ガンマ線照射による強度の向上は見られなかった。 In Examples 10, 12, 14, 16, 17, and 19, since the polyfunctional allyl compound (C1) was blended, the polyamide resin was cross-linked by gamma irradiation, and the bending strength was improved. On the other hand, in Comparative Examples 8, 11, and 14, no polyfunctional allyl compound was blended, and thus no improvement in strength due to gamma irradiation was observed.
 (実施例28)
 実施例1で用いたのと同じ二軸押出機の主ホッパーに、ポリアミド6樹脂(PA6A)35容量%とダイマー酸ベース熱可塑性樹脂(C21)15容量%とを供給し、260℃で溶融した。途中、サイドフィーダーよりガラス繊維(GF)50容量%を供給し、十分に溶融混練したうえで溶融混練物をストランド状に押出して冷却固化した。その後、ペレット状に切断して樹脂組成物を得た。
(Example 28)
The main hopper of the same twin-screw extruder used in Example 1 was supplied with 35% by volume of polyamide 6 resin (PA6A) and 15% by volume of dimer acid-based thermoplastic resin (C21) and melted at 260 ° C. . In the middle, 50% by volume of glass fiber (GF) was supplied from the side feeder, and after sufficiently melt-kneaded, the melt-kneaded product was extruded into a strand shape and cooled and solidified. Then, it cut | disconnected to the pellet form and obtained the resin composition.
 この樹脂組成物を十分に乾燥した後、実施例1で用いたのと同じ射出成形機を用い、実施例1と同じ条件で、上述の短冊状試料を射出成形した。 After sufficiently drying this resin composition, the above strip-shaped sample was injection molded under the same conditions as in Example 1 using the same injection molding machine as used in Example 1.
 その評価結果を表3に示す。混練および射出成形操作の際に、揮発ガスの発生は観測されなかった。 The evaluation results are shown in Table 3. No volatile gas evolution was observed during the kneading and injection molding operations.
 (比較例19)
 実施例28と比べて、ダイマー酸ベース熱可塑性樹脂(C2)を添加しなかった。それ以外は実施例28と同様にして、樹脂組成物を得た。得られた樹脂組成物を射出成形して、成形性の評価を行った。その評価結果を表3に示す。混練および射出成形操作の際において、揮発ガスの発生は観測されなかった。
(Comparative Example 19)
Compared to Example 28, no dimer acid based thermoplastic resin (C2) was added. Otherwise in the same manner as in Example 28, a resin composition was obtained. The obtained resin composition was injection-molded to evaluate moldability. The evaluation results are shown in Table 3. During the kneading and injection molding operations, no generation of volatile gases was observed.
 (実施例29~37、比較例20~26)
 実施例28と比べて、熱可塑性樹脂(A)、充填材(B)、ダイマー酸ベース熱可塑性樹脂(C2)を、それぞれ表3に示す種類と量に変えた。それ以外は実施例28と同様にして、樹脂組成物を得た。その際に、繊維状充填剤はサイドフィーダーにより途中から供給し、それ以外の充填材は主ホッパーより供給して、溶融混練を実施した。得られた樹脂組成物を射出成形して、成形性の評価を行った。評価結果をまとめて表3に示す。
(Examples 29 to 37, Comparative Examples 20 to 26)
Compared with Example 28, the thermoplastic resin (A), the filler (B), and the dimer acid-based thermoplastic resin (C2) were changed to the types and amounts shown in Table 3, respectively. Otherwise in the same manner as in Example 28, a resin composition was obtained. At that time, the fibrous filler was supplied from the middle by the side feeder, and the other fillers were supplied from the main hopper to carry out melt kneading. The obtained resin composition was injection-molded to evaluate moldability. The evaluation results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例28~37は、ダイマー酸ベース熱可塑性樹脂(C2)が配合されていたために、成形性が良好であった。これに対し比較例19~26は、ダイマー酸ベース熱可塑性樹脂(C2)が配合されていないか、あるいは配合量が少なすぎたため、実施例28~37と同じ成形条件では、成形片表面の平滑性に劣るか、または所定のサイズの成形片が得られないものであった。 As is clear from Table 3, Examples 28 to 37 had good moldability because the dimer acid-based thermoplastic resin (C2) was blended. On the other hand, in Comparative Examples 19 to 26, the dimer acid-based thermoplastic resin (C2) was not blended or the blending amount was too small. Therefore, under the same molding conditions as in Examples 28 to 37, the surface of the molded piece was smooth. It was inferior in property, or a molded piece having a predetermined size could not be obtained.
 (実施例38)
 実施例1で用いたのと同じ二軸押出機の主ホッパーに、ポリアミド6樹脂(PA6A)50容量%と、熱伝導性充填材(B1)としての鱗片状黒鉛(GrA)40容量%と、ダイマー酸ベースポリアミド(C21)10容量%とを供給し、260℃で溶融混練を行った。そして、溶融混練物をストランド状に押出して冷却固化し、これをペレット状に切断して、樹脂組成物を得た。
(Example 38)
In the main hopper of the same twin-screw extruder used in Example 1, polyamide 6 resin (PA6A) 50% by volume, scaly graphite (GrA) 40% by volume as the heat conductive filler (B1), 10% by volume of dimer acid-based polyamide (C21) was supplied, and melt kneading was performed at 260 ° C. Then, the melt-kneaded product was extruded into a strand shape, cooled and solidified, and cut into a pellet shape to obtain a resin composition.
 得られた樹脂組成物を十分に乾燥した後、270℃、荷重100kgの条件でMFRを測定したところ、158g/10minであった。 After sufficiently drying the obtained resin composition, MFR was measured under the conditions of 270 ° C. and a load of 100 kg, and it was 158 g / 10 min.
 この樹脂組成物を、実施例1で用いたのと同じ射出成形機を用いて、シリンダ温度270℃、金型温度80℃、射出時間20秒、冷却時間10秒で射出成形し、上述の短冊状試料を射出成形した。 Using the same injection molding machine as used in Example 1, this resin composition was injection molded at a cylinder temperature of 270 ° C., a mold temperature of 80 ° C., an injection time of 20 seconds, and a cooling time of 10 seconds. A shaped sample was injection molded.
 その評価結果を表4に示す。混練および射出成形操作において揮発ガスの発生は観測されなかった。 The evaluation results are shown in Table 4. No generation of volatile gases was observed during the kneading and injection molding operations.
 (実施例39~56、比較例27~40)
 実施例38と比べて、熱可塑性樹脂(A)、熱伝導性充填材(B1)、ダイマー酸ベース熱可塑性樹脂(C2)、その他の充填材、その他の可塑剤を、それぞれ表4に示す種類と量に変えた。それ以外は実施例38と同様にして、樹脂組成物を得た。この樹脂組成物を射出成形して、各種物性を測定した。その際に、繊維状充填剤はサイドフィーダーにより途中から供給し、それ以外の充填材は主ホッパーより供給して、溶融混練を実施した。
(Examples 39 to 56, Comparative Examples 27 to 40)
Compared with Example 38, the thermoplastic resin (A), the thermally conductive filler (B1), the dimer acid-based thermoplastic resin (C2), other fillers, and other plasticizers are shown in Table 4, respectively. And changed the amount. Otherwise in the same manner as in Example 38, a resin composition was obtained. The resin composition was injection molded and various physical properties were measured. At that time, the fibrous filler was supplied from the middle by the side feeder, and the other fillers were supplied from the main hopper to carry out melt kneading.
 実施例38~46、比較例27~34の評価結果を表4に、実施例47~56、比較例35~40の評価結果を表5に示す。 Table 4 shows the evaluation results of Examples 38 to 46 and Comparative Examples 27 to 34, and Table 5 shows the evaluation results of Examples 47 to 56 and Comparative Examples 35 to 40.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例38~56は、ダイマー酸ベース熱可塑性樹脂(C2)が可塑剤として機能していたため、MFR値が大きく、成形性に優れていた。これに対し、比較例27~30および比較例32~40は、ダイマー酸ベース熱可塑性樹脂(C2)が配合されていないかあるいは少なすぎたため、ダイマー酸ベース熱可塑性樹脂(C2)の配合量を適正としかつ他の条件を同様とした各実施例に比べてMFR値が小さく、成形性に劣っていた。特に、実施例44~46および比較例32~34は、充填材(B)が大量に配合されたものであったが、実施例44~46は、所定量のダイマー酸ベース熱可塑性樹脂(C2)を配合することで、比較例32~34に比べて成形温度を低くすることが可能であった。比較例31は、市販の可塑剤を配合したものであった。この場合は、MFR値は高く成形性に優れているものの、溶融混練時に可塑剤が揮発し、また実施例のものに比べて成形体の機械的性能が劣っていた。 In Examples 38 to 56, since the dimer acid-based thermoplastic resin (C2) functioned as a plasticizer, the MFR value was large and the moldability was excellent. On the other hand, in Comparative Examples 27 to 30 and Comparative Examples 32 to 40, since the dimer acid-based thermoplastic resin (C2) was not blended or was too little, the blending amount of the dimer acid-based thermoplastic resin (C2) was changed. The MFR value was small and inferior in moldability as compared with the examples that were appropriate and other conditions were the same. In particular, Examples 44 to 46 and Comparative Examples 32 to 34 were blended with a large amount of the filler (B), but Examples 44 to 46 had a predetermined amount of dimer acid-based thermoplastic resin (C2 ), The molding temperature could be lowered as compared with Comparative Examples 32-34. In Comparative Example 31, a commercially available plasticizer was blended. In this case, although the MFR value was high and the moldability was excellent, the plasticizer was volatilized at the time of melt kneading, and the mechanical performance of the molded product was inferior to that of the example.

Claims (12)

  1.  熱可塑性樹脂(A)と、充填材(B)と、所定量の溶融粘度低下剤(C)とを含み、前記所定量の溶融粘度低下剤(C)は、下記(a)と(b)とのいずれかであることを特徴とする樹脂組成物。
      (a)溶融粘度低下剤(C)が多官能性アリル化合物(C1)であり、熱可塑性樹脂(A)と充填材(B)との合計100質量部に対する多官能性アリル化合物(C1)の含有量が3~20質量部である。
      (b)溶融粘度低下剤(C)がダイマー酸ベース熱可塑性樹脂(C2)であり、熱可塑性樹脂(A)と充填材(B)との合計100容量部に対するダイマー酸ベース熱可塑性樹脂(C2)の含有量が10~45容量部である。
    The thermoplastic resin (A), the filler (B), and a predetermined amount of the melt viscosity reducing agent (C), the predetermined amount of the melt viscosity reducing agent (C) are the following (a) and (b) And a resin composition characterized by that.
    (A) The melt viscosity reducing agent (C) is a polyfunctional allyl compound (C1), and the polyfunctional allyl compound (C1) with respect to 100 parts by mass in total of the thermoplastic resin (A) and the filler (B). The content is 3 to 20 parts by mass.
    (B) The melt viscosity reducing agent (C) is a dimer acid-based thermoplastic resin (C2), and the dimer acid-based thermoplastic resin (C2) for a total of 100 parts by volume of the thermoplastic resin (A) and the filler (B). ) Content is 10 to 45 parts by volume.
  2.  多官能性アリル化合物(C1)が、骨格にイソシアヌレートを有する化合物であることを特徴とする請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the polyfunctional allyl compound (C1) is a compound having isocyanurate in the skeleton.
  3.  多官能性アリル化合物(C1)が、下記式(i)で示される1級アミン化合物(D)と、アリル基及びグリシジル基を有する多官能性化合物(E)との反応によって得られるアリル化合物であることを特徴とする請求項1記載の樹脂組成物。
        R-(NH       (i)
    ここで、n=1~4、Rは芳香族系もしくは脂肪族系の1~4置換残基を示す。
    The polyfunctional allyl compound (C1) is an allyl compound obtained by reacting a primary amine compound (D) represented by the following formula (i) with a polyfunctional compound (E) having an allyl group and a glycidyl group. The resin composition according to claim 1, wherein the resin composition is present.
    R- (NH 2 ) n (i)
    Here, n = 1 to 4 and R represents an aromatic or aliphatic 1 to 4 substituted residue.
  4.  アリル基及びグリシジル基を有する多官能性化合物(E)が、骨格にイソシアヌレートを有する化合物であることを特徴とする請求項3記載の樹脂組成物。 The resin composition according to claim 3, wherein the polyfunctional compound (E) having an allyl group and a glycidyl group is a compound having an isocyanurate in a skeleton.
  5.  骨格にイソシアヌレートを有する化合物が、モノグリシジルジアリルイソシアヌレートであることを特徴とする請求項2または4記載の樹脂組成物。 5. The resin composition according to claim 2, wherein the compound having isocyanurate in the skeleton is monoglycidyl diallyl isocyanurate.
  6.  ダイマー酸ベース熱可塑性樹脂(C2)がポリアミド樹脂および/またはポリエステル樹脂であることを特徴とする請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the dimer acid-based thermoplastic resin (C2) is a polyamide resin and / or a polyester resin.
  7.  充填材(B)が、10W/(m・K)以上の熱伝導率を有する熱伝導性充填材(B1)であることを特徴とする請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the filler (B) is a thermally conductive filler (B1) having a thermal conductivity of 10 W / (m · K) or more.
  8.  熱可塑性樹脂(A)と熱伝導性充填材(B1)との容量比(A/B1)が、20/80~95/5であることを特徴とする請求項7記載の樹脂組成物。 The resin composition according to claim 7, wherein the volume ratio (A / B1) of the thermoplastic resin (A) and the thermally conductive filler (B1) is 20/80 to 95/5.
  9.  熱伝導性充填材(B1)が、平均粒径1~300μmの鱗片状黒鉛と、平均繊維径1~30μm、平均繊維長1~20mmの黒鉛化炭素繊維と、六方晶系結晶構造を有する平均粒径1~200μmの鱗片状窒化ホウ素と、平均粒径0.5~150μmの酸化アルミニウムと、平均粒径0.5~150μmの酸化マグネシウムと、平均粒径0.5~150μmの炭酸マグネシウムと、平均粒径0.5~150μmの酸化亜鉛とから選ばれる少なくとも一種であることを特徴とする請求項7記載の樹脂組成物。 The heat conductive filler (B1) has a flake graphite having an average particle diameter of 1 to 300 μm, a graphitized carbon fiber having an average fiber diameter of 1 to 30 μm and an average fiber length of 1 to 20 mm, and an average having a hexagonal crystal structure. Scaly boron nitride having a particle size of 1 to 200 μm, aluminum oxide having an average particle size of 0.5 to 150 μm, magnesium oxide having an average particle size of 0.5 to 150 μm, and magnesium carbonate having an average particle size of 0.5 to 150 μm, 8. The resin composition according to claim 7, wherein the resin composition is at least one selected from zinc oxide having an average particle size of 0.5 to 150 μm.
  10.  熱可塑性樹脂(A)がポリアミド樹脂であることを特徴とする請求項1記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the thermoplastic resin (A) is a polyamide resin.
  11.  請求項1から10までのいずれか1項記載の樹脂組成物を成形したものであることを特徴とする成形体。 A molded article obtained by molding the resin composition according to any one of claims 1 to 10.
  12.  請求項1から10までのいずれか1項記載の樹脂組成物を成形したうえで放射線を照射したものであることを特徴とする成形体。 A molded body, which is formed by molding the resin composition according to any one of claims 1 to 10 and irradiating with radiation.
PCT/JP2010/050516 2009-01-20 2010-01-19 Resin composition and molded article comprising the same WO2010084845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080003109.0A CN102203191B (en) 2009-01-20 2010-01-19 Resin composition and molded article comprising the same
JP2010547480A JP5686605B2 (en) 2009-01-20 2010-01-19 Resin composition and molded body comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009009912 2009-01-20
JP2009-009912 2009-01-20
JP2009-248342 2009-10-29
JP2009248342 2009-10-29

Publications (1)

Publication Number Publication Date
WO2010084845A1 true WO2010084845A1 (en) 2010-07-29

Family

ID=42355899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050516 WO2010084845A1 (en) 2009-01-20 2010-01-19 Resin composition and molded article comprising the same

Country Status (4)

Country Link
JP (1) JP5686605B2 (en)
CN (2) CN102203191B (en)
TW (1) TWI468453B (en)
WO (1) WO2010084845A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205044A (en) * 2013-03-27 2013-07-17 江苏金聚合金材料有限公司 Silane grafted polyethylene thermally conductive composite material and preparation method and application thereof
EP2623562A1 (en) * 2010-09-30 2013-08-07 Ube Industries, Ltd. Polyamide resin composition and molded article comprising same
JP2013159624A (en) * 2012-02-01 2013-08-19 Unitika Ltd Resin composition and molded article comprising the same
JP2014001335A (en) * 2012-06-20 2014-01-09 Toyobo Co Ltd Heat-conductive resin composition
JP2015000937A (en) * 2013-06-14 2015-01-05 スターライト工業株式会社 Heat-conductive resin composition
JP2015021040A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Method for manufacturing semiconductor light emission device, method for manufacturing molding, electron beam-curable resin composition, resin frame for reflector, and reflector
JP2015023099A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector
WO2015098508A1 (en) * 2013-12-26 2015-07-02 ユニチカ株式会社 Flame-retardant polyamide resin composition and molded article comprising same
WO2015129100A1 (en) * 2014-02-25 2015-09-03 住友電気工業株式会社 Transparent polyamide resin composition, transparent polyamide resin crosslinked molded article
CN105385013A (en) * 2015-12-04 2016-03-09 太仓陶氏电气有限公司 Nonmetal radiator
WO2016139826A1 (en) * 2015-03-02 2016-09-09 大阪ガスケミカル株式会社 Fluidity improver and polyamide resin composition containing same
JP2016210971A (en) * 2015-04-28 2016-12-15 Tdk株式会社 Resin composition, resin sheet, resin cured product and resin substrate
JP2017509762A (en) * 2014-04-01 2017-04-06 ディーエスエム アイピー アセッツ ビー.ブイ. Thermally conductive composition
WO2017188122A1 (en) * 2016-04-27 2017-11-02 花王株式会社 Fan
EP3214146A4 (en) * 2014-10-31 2018-06-06 Kao Corporation Polyamide resin composition for damping material
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
WO2023032780A1 (en) * 2021-09-01 2023-03-09 Ube株式会社 Polyamide resin composition
JP7391440B1 (en) 2023-06-23 2023-12-05 株式会社 サンエース resin composition

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478974B (en) * 2011-12-23 2015-04-01 Chi Mei Corp Resin composite
TWI588194B (en) * 2011-12-23 2017-06-21 奇美實業股份有限公司 Resin composite
KR101457016B1 (en) * 2011-12-30 2014-11-03 제일모직주식회사 Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
CN102661222A (en) * 2012-06-04 2012-09-12 韩金红 External horizontal-type fuel pump oil outlet tray, manufacturing process and impeller matched with oil outlet tray
CN103589149B (en) * 2013-11-20 2016-06-29 湖南映宏新材料股份有限公司 Composite for supporting roller bearing seat and preparation method thereof
CN103937177B (en) * 2014-04-19 2016-03-16 中山市永威新材料有限公司 A kind of high heat conduction modified plastics and preparation method thereof
CN104460903B (en) * 2014-12-03 2018-08-14 吉首大学 Notebook PC radiator
KR102560615B1 (en) * 2015-08-26 2023-07-27 덴카 주식회사 Thermally conductive resin composition
US11352480B2 (en) 2016-03-18 2022-06-07 Ticona Llc Polyaryletherketone composition
KR101736667B1 (en) * 2016-05-16 2017-05-17 주식회사 소룩스 Lighting apparatus having heat dissipation plastic plate for insulation
KR101736668B1 (en) * 2016-05-30 2017-05-17 주식회사 소룩스 LED Lighting Apparatus For Radiation Area
WO2018216836A1 (en) * 2017-05-26 2018-11-29 주식회사 하이씨엔티 Thermally conductive insulation composition and heat sink made therefrom
TWI660991B (en) * 2017-12-28 2019-06-01 邦泰複合材料股份有限公司 Plating high density plastic
CN115103880B (en) * 2020-02-28 2023-05-16 大阪燃气化学有限公司 Resin composition and fluidity improving method
KR102412881B1 (en) * 2022-03-25 2022-06-24 에이펙스인텍 주식회사 Internal Box Assembly for Floor Sign Lamp and Manufacturing Method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912936A (en) * 1982-07-13 1984-01-23 Sumitomo Electric Ind Ltd Crosslinked polyamide resin composition
JPS61130358A (en) * 1984-11-30 1986-06-18 Tounen Sekiyu Kagaku Kk Radiation-resistant polyolefin composition
JPH0517683A (en) * 1991-07-10 1993-01-26 Mitsubishi Kasei Corp Polyamide resin composition
JPH0563116A (en) * 1991-02-12 1993-03-12 Toshiba Corp Resin-sealed semiconductor device
JPH115907A (en) * 1997-06-17 1999-01-12 Mitsui Chem Inc Highly heat-conductive resin composition having excellent water resistance
WO2003029352A1 (en) * 2001-09-27 2003-04-10 Nippon Kagaku Yakin Co., Ltd. Resin composition with high thermal conductivity and process for producing the same
JP2004203948A (en) * 2002-12-24 2004-07-22 Shikoku Chem Corp Polybutylene terephthalate resin composition
JP2005239972A (en) * 2004-02-27 2005-09-08 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition for cross-linking by ionizing radiation
WO2006104092A1 (en) * 2005-03-29 2006-10-05 Toray Industries, Inc. Resin composition, molded article produced from the same, and processes for production of the composition and article
JP2007063359A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Heat-resistant polylactic acid and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717683A (en) * 1993-06-30 1995-01-20 Sanwa Tekki Corp Lifting device of strut for climbing crane
WO2007058152A1 (en) * 2005-11-15 2007-05-24 Toray Industries, Inc. Matte multilayer polyester film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912936A (en) * 1982-07-13 1984-01-23 Sumitomo Electric Ind Ltd Crosslinked polyamide resin composition
JPS61130358A (en) * 1984-11-30 1986-06-18 Tounen Sekiyu Kagaku Kk Radiation-resistant polyolefin composition
JPH0563116A (en) * 1991-02-12 1993-03-12 Toshiba Corp Resin-sealed semiconductor device
JPH0517683A (en) * 1991-07-10 1993-01-26 Mitsubishi Kasei Corp Polyamide resin composition
JPH115907A (en) * 1997-06-17 1999-01-12 Mitsui Chem Inc Highly heat-conductive resin composition having excellent water resistance
WO2003029352A1 (en) * 2001-09-27 2003-04-10 Nippon Kagaku Yakin Co., Ltd. Resin composition with high thermal conductivity and process for producing the same
JP2004203948A (en) * 2002-12-24 2004-07-22 Shikoku Chem Corp Polybutylene terephthalate resin composition
JP2005239972A (en) * 2004-02-27 2005-09-08 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition for cross-linking by ionizing radiation
WO2006104092A1 (en) * 2005-03-29 2006-10-05 Toray Industries, Inc. Resin composition, molded article produced from the same, and processes for production of the composition and article
JP2007063359A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Heat-resistant polylactic acid and method for producing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9177692B2 (en) 2010-09-30 2015-11-03 Ube Industries, Ltd. Polyamide resin composition and molded article comprising the same
EP2623562A1 (en) * 2010-09-30 2013-08-07 Ube Industries, Ltd. Polyamide resin composition and molded article comprising same
US9624416B2 (en) 2010-09-30 2017-04-18 Ube Industries, Ltd. Polyamide resin composition and molded article comprising the same
EP2623562A4 (en) * 2010-09-30 2015-01-21 Ube Industries Polyamide resin composition and molded article comprising same
JP2013159624A (en) * 2012-02-01 2013-08-19 Unitika Ltd Resin composition and molded article comprising the same
JP2014001335A (en) * 2012-06-20 2014-01-09 Toyobo Co Ltd Heat-conductive resin composition
CN103205044A (en) * 2013-03-27 2013-07-17 江苏金聚合金材料有限公司 Silane grafted polyethylene thermally conductive composite material and preparation method and application thereof
JP2015000937A (en) * 2013-06-14 2015-01-05 スターライト工業株式会社 Heat-conductive resin composition
JP2015023099A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector
JP2015021040A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Method for manufacturing semiconductor light emission device, method for manufacturing molding, electron beam-curable resin composition, resin frame for reflector, and reflector
WO2015098508A1 (en) * 2013-12-26 2015-07-02 ユニチカ株式会社 Flame-retardant polyamide resin composition and molded article comprising same
JPWO2015098508A1 (en) * 2013-12-26 2017-03-23 ユニチカ株式会社 Flame retardant polyamide resin composition and molded article comprising the same
WO2015129100A1 (en) * 2014-02-25 2015-09-03 住友電気工業株式会社 Transparent polyamide resin composition, transparent polyamide resin crosslinked molded article
US9562147B2 (en) 2014-02-25 2017-02-07 Sumitomo Electric Industries, Ltd. Transparent polyamide resin composition and crosslinked transparent polyamide resin molded body
JP2017509762A (en) * 2014-04-01 2017-04-06 ディーエスエム アイピー アセッツ ビー.ブイ. Thermally conductive composition
US10465063B2 (en) 2014-10-31 2019-11-05 Kao Corporation Polyamide resin composition for damping material
EP3214146A4 (en) * 2014-10-31 2018-06-06 Kao Corporation Polyamide resin composition for damping material
WO2016139826A1 (en) * 2015-03-02 2016-09-09 大阪ガスケミカル株式会社 Fluidity improver and polyamide resin composition containing same
JP2016210971A (en) * 2015-04-28 2016-12-15 Tdk株式会社 Resin composition, resin sheet, resin cured product and resin substrate
CN105385013A (en) * 2015-12-04 2016-03-09 太仓陶氏电气有限公司 Nonmetal radiator
WO2017188122A1 (en) * 2016-04-27 2017-11-02 花王株式会社 Fan
JP2017201172A (en) * 2016-04-27 2017-11-09 花王株式会社 fan
US10914312B2 (en) 2016-04-27 2021-02-09 Kao Corporation Fan
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
WO2023032780A1 (en) * 2021-09-01 2023-03-09 Ube株式会社 Polyamide resin composition
JP7391440B1 (en) 2023-06-23 2023-12-05 株式会社 サンエース resin composition

Also Published As

Publication number Publication date
JP5686605B2 (en) 2015-03-18
CN103122140B (en) 2015-07-22
TW201035204A (en) 2010-10-01
CN102203191A (en) 2011-09-28
CN102203191B (en) 2014-07-09
CN103122140A (en) 2013-05-29
JPWO2010084845A1 (en) 2012-07-19
TWI468453B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
JP5686605B2 (en) Resin composition and molded body comprising the same
JP2013028661A (en) Resin composition, and molding formed thereof
TWI665258B (en) Polyamide composition and molded product
JP6061863B2 (en) Thermoplastic resin composition and molded article comprising the same
CN1255476C (en) Polyamide composition
JP6710299B2 (en) Thermoplastic resin composition, resin molded product, plated resin molded product manufacturing method, and portable electronic device component manufacturing method
JP5800096B2 (en) Flame retardant polyamide resin composition
JP6039945B2 (en) Polyamide resin composition and molded product
JP2013001802A (en) Heat-conductive resin composition and molded body made of the same
JP2003041117A (en) Polyamide composition
JP7152592B2 (en) Flame-retardant polyamide resin composition
JP2014511922A (en) Thermally conductive polymer composite material and article containing the same
JP2011074361A (en) Electric component containing polyamide composition
JP5618039B2 (en) Thermally conductive resin composition and molded body comprising the same
WO2021193196A1 (en) Polyamide resin composition
JP5908739B2 (en) Resin composition and molded body comprising the same
TW574316B (en) High-melting polyamide composition for electronic applications
JP2010116518A (en) Heat conductive resin composition and molded product formed thereof
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2013221095A (en) Resin composition and molded article comprising the same
JP2014091771A (en) Resin composition and molded product formed from the same
JP2013053188A (en) Polyamide resin composition, and molding thereof
JP2015036415A (en) Resin composition and molded article
WO2021205938A1 (en) Flame-retardant polyamide resin composition
JP2017190407A (en) Polyamide resin composition and molded article comprising the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003109.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547480

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733452

Country of ref document: EP

Kind code of ref document: A1