WO2021205938A1 - Flame-retardant polyamide resin composition - Google Patents

Flame-retardant polyamide resin composition Download PDF

Info

Publication number
WO2021205938A1
WO2021205938A1 PCT/JP2021/013483 JP2021013483W WO2021205938A1 WO 2021205938 A1 WO2021205938 A1 WO 2021205938A1 JP 2021013483 W JP2021013483 W JP 2021013483W WO 2021205938 A1 WO2021205938 A1 WO 2021205938A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
flame
resin composition
mass
acid
Prior art date
Application number
PCT/JP2021/013483
Other languages
French (fr)
Japanese (ja)
Inventor
滝人 渋谷
山田 潤
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022514425A priority Critical patent/JPWO2021205938A1/ja
Publication of WO2021205938A1 publication Critical patent/WO2021205938A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention is excellent in mechanical properties such as toughness, tensile strength, tensile elongation, heat resistance, flame retardancy, low water absorption, bleed-out resistance, and fluidity, and while using a halogen group-containing flame retardant.
  • the present invention relates to a flame-retardant polyamide resin composition in which mold corrosion is reduced because the amount of corrosive gas generated during molding is small.
  • Polyamide resin has been widely used in textiles for clothing, industrial materials, engineering plastics, etc., taking advantage of its excellent mechanical properties and ease of melt molding.
  • engineering plastics are not limited to automobile parts and industrial machine parts, but are widely used in various industrial parts, housing parts, electrical and electronic parts, and the like.
  • the polyamide resin used as the raw material has flame retardancy based on the UL-94 standard.
  • various proposals for imparting flame retardancy to the polyamide resin have been made so far.
  • Patent Document 1 describes a combination of a halogenated organic compound such as brominated polystyrene, which is a flame retardant, and antimony trioxide, which acts as a flame retardant aid, as a technique for making a polyamide resin flame-retardant. ..
  • a halogenated organic compound such as brominated polystyrene, which is a flame retardant
  • antimony trioxide which acts as a flame retardant aid
  • Patent Document 2 describes an example in which zinc stannate or the like is used as an alternative to antimony trioxide in a semi-aromatic polyamide.
  • the use of compounds such as zinc and tin as a substitute metal for antimony as a flame retardant aid is progressing, but in order to impart sufficient flame retardancy to the polyamide resin, a large amount of halogen group-containing flame retardant is used. It is necessary to add to.
  • the flame-retardant resin composition based on the semi-aromatic polyamide resin having a high melting point of 280 ° C. or higher has a very high molding processing temperature, the halogen groups contained in the halogen group-containing flame retardant are being molded. Halogen gas is generated due to partial detachment, and this halogen gas causes a problem that the mold is corroded.
  • Patent Document 3 in the halogen-based flame retardant-containing polyamide 4 and 6 resin composition, specific brominated polystyrene polymerized from a dibrominated styrene monomer and hydrotalcites are combined.
  • the mold corrosion has not been sufficiently reduced.
  • the conventionally proposed halogen-based flame-retardant polyamide resin composition cannot achieve both high heat resistance and high flame retardancy and reduction of mold corrosion, and can be used while having problems.
  • the current situation is that there is.
  • the present invention was devised in view of the above-mentioned problems of the prior art, and an object of the present invention is to reduce mold corrosion while having high heat resistance and high flame retardancy suitable for a reflow soldering process. Further, it is an object of the present invention to provide a flame-retardant polyamide resin composition suitable for electrical and electronic parts and housing parts, which is excellent in mechanical properties, bleed-out resistance, low water absorption, and fluidity.
  • the present inventor has found that a conventional polyamide resin composition containing a high melting point semi-aromatic polyamide resin, a halogen group-containing flame retardant, and a conventional flame retardant aid has been used.
  • a specific metal oxide in addition to the flame retardant aid, the amount of the halogen group-containing flame retardant used can at least achieve high flame retardancy, so that the amount of the halogen group-containing flame retardant used can be reduced. It was found that the amount of halogen gas generated during the molding process can be reduced accordingly, and as a result, all the desired physical properties can be achieved at a high level without causing mold corrosion due to the halogen gas.
  • the present invention has been completed.
  • the present invention has been completed based on the above findings, and is composed of the following (1) to (8).
  • (1) At least one selected from the group consisting of semi-aromatic polyamide resin (A), halogen group-containing flame retardant (B), zinc tintate, zinc borate, zinc phosphate, calcium borate, and calcium molybdenate. 20 to 70% by mass, 5 to 15% by mass, and 0.5 of the metal oxide (E) composed of the metal salt-based flame retardant (C), the inorganic reinforcing material (D), and the oxide of bismuth, respectively.
  • a flame-retardant polyamide resin composition containing in the proportions of ⁇ 15% by mass, 20 to 60% by mass, and 0.5 to 5% by mass.
  • the semi-aromatic polyamide resin (A) contains 50 mol% or more of a structural unit obtained from an equal amount molar salt of a diamine having 2 to 12 carbon atoms and terephthalic acid, and an amino having 11 to 18 carbon atoms.
  • the flame-retardant polyamide resin composition according to (1) which is obtained by copolymerizing one or a plurality of carboxylic acids or lactams having 11 to 18 carbon atoms.
  • the semi-aromatic polyamide resin (A) contains 50 to 99 mol% of structural units obtained from (a) an equal amount molar salt of hexamethylenediamine and terephthalic acid, and (b) 11-aminoundecanoic acid or undecane.
  • the bromine content of brominated polystyrene is 62 to 72% by mass, the weight average molecular weight is 4000 to 8000, and the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) is 1.
  • the flame-retardant polyamide resin composition of the present invention has high heat resistance, and by using a specific metal oxide in addition to the conventional flame retardant aid, halogen while maintaining excellent flame retardancy. It is possible to reduce the amount of the group-containing flame retardant used. Therefore, the amount of halogen gas generated from the halogen group-containing flame retardant during the molding process can be reduced, and mold corrosion can be reduced. Furthermore, it has excellent fluidity during molding, can suppress the formation of bleeds on the surface of the molded product in an actual use environment such as high temperature and humidity, and can reduce strength reduction and dimensional change due to water absorption of the polyamide resin. can. Therefore, according to the present invention, it is possible to provide a product that highly satisfies the user needs.
  • the polyamide resin composition of the present invention is suitable for use in an electric / electronic device, an electric / electronic component mounted on an automobile, or a housing of an electric device.
  • the polyamide resin composition of the present invention can be used for forming, for example, connectors, switches, housings for ICs and LEDs, sockets, relays, resistors, capacitors, coil bobbins, various housing parts, etc. by injection molding. ..
  • the polyamide resin composition of the present invention is a group consisting of a semi-aromatic polyamide resin (A), a halogen group-containing flame retardant (B), zinc stannate, zinc borate, zinc phosphate, calcium borate, and calcium molybdenate. At least one metal salt-based flame retardant (C) selected from, an inorganic reinforcing material (D), and at least one metal oxidation selected from the group consisting of oxides of bismuth, aluminum, titanium, and iron.
  • the substance (E) is contained in a proportion of 20 to 70% by mass, 5 to 15% by mass, 0.5 to 15% by mass, 20 to 60% by mass, and 0.5 to 15% by mass, respectively.
  • the polyamide resin composition of the present invention preferably corresponds to surface mounting technology, which is a general manufacturing method in electrical and electronic component applications. Therefore, it is preferable that the melting point measured by the method described in the section of Examples described later is 290 to 350 ° C.
  • the melting point of the polyamide resin composition is the melting peak temperature located on the lowest temperature side among the melting peak temperatures measured by DSC (Differential Scanning Calorimeter) due to the polyamide resin of the polyamide resin composition. Is.
  • the melting point is more preferably 300 ° C. to 340 ° C., and even more preferably 310 to 340 ° C.
  • the processing temperature required for injection molding the polyamide resin composition of the present invention becomes extremely high, so that the polyamide resin composition is thermally decomposed and the desired performance and appearance cannot be obtained. there is a possibility. Further, when the melting point is less than the above lower limit, the heat resistance in the surface mounting process (230 to 280 ° C.) is insufficient, and defects such as product deformation in the process may occur.
  • the polyamide resin composition of the present invention is required to be able to stably maintain its strength and product dimensions even after the product absorbs water in an actual use environment as the electrical and electronic parts are miniaturized and the structure is densified. Therefore, it is preferable that the equilibrium water absorption rate in water measured by the method described in the section of Examples described later satisfies 3.0% or less.
  • the equilibrium water absorption rate in water is more preferably 2.5% or less, and further preferably 2.0% or less. If the water absorption in water exceeds the above upper limit, the strength will decrease and the dimensions will change significantly due to water absorption, and blisters will occur in the reflow soldering process, which may cause problems such as insufficient strength of the product and poor assembly. be.
  • the semi-aromatic polyamide resin (A) has a structural unit composed of a dicarboxylic acid component containing terephthalic acid (TPA) and a diamine component.
  • examples of the semi-aromatic polyamide (A) include 6T-based polyamides (for example, polyamide 6T / 6I composed of terephthalic acid / isophthalic acid / hexamethylenediamine, polyamide 6T / 66 composed of terephthalic acid / adipic acid / hexamethylenediamine, and terephthal.
  • Polyamide 6T / 6I / 66 consisting of acid / isophthalic acid / adipic acid / hexamethylenediamine, polyamide 6T / M-5T consisting of terephthalic acid / hexamethylenediamine / 2-methyl-1,5-pentamethylenediamine, terephthalic acid / Polyamide 6T / 6 consisting of hexamethylenediamine / ⁇ -caprolactam, polyamide 6T / 4T consisting of terephthalic acid / hexamethylenediamine / tetramethylenediamine), 9T-based polyamide (terephthalic acid / 1,9-nonanediamine / 2-methyl-1) , 8-octanediamide), 10T-based polyamide (terephthalic acid / 1,10-decanediamine), 12T-based polyamide (terephthalic acid / 1,12-dodecanediamine), polyamide composed of sebacic acid
  • the semi-aromatic polyamide resin (A) is a constituent unit obtained from an equimolar salt of diamine having 2 to 12 carbon atoms and terephthalic acid from the viewpoint of melting point and equilibrium water absorption in water. It is preferably obtained by copolymerizing one or more of aminocarboxylic acid having 11 to 18 carbon atoms or lactam having 11 to 18 carbon atoms and containing 50 mol% or more.
  • the content of the structural unit obtained from the equimolar salt of diamine having 2 to 12 carbon atoms and terephthalic acid is more preferably 50 to 98 mol%, and the aminocarboxylic acid having 11 to 18 carbon atoms or the carbon number of carbon atoms.
  • the content of one or more of the 11-18 lactams is more preferably 2-50 mol%.
  • an aliphatic diamine having 2 to 12 carbon atoms is preferable.
  • the aliphatic diamine component having 2 to 12 carbon atoms include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, and 2-methyl-1.
  • the melting point of the semi-aromatic polyamide resin (A) is preferably 290 ° C. or higher.
  • a semi-aromatic polyamide composed of a structural unit obtained from an equimolar salt of a diamine having 10 or more carbon atoms and terephthalic acid may have a melting point of 290 ° C. or lower, and therefore has a melting point of 290 ° C. or less.
  • a polyamide resin containing 50 mol% or more of a structural unit obtained from an equimolar salt of 2 to 8 diamines and terephthalic acid and having a melting point of 290 ° C. or higher on the lowest temperature side is a preferable embodiment. If the structural unit obtained from the equimolar salt of diamine having 2 to 8 carbon atoms and terephthalic acid is less than 50 mol%, the crystallinity and mechanical properties may be deteriorated.
  • a semi-aromatic polyamide composed of a structural unit obtained from an equimolar salt of a diamine having 6 to 10 carbon atoms and terephthalic acid, by containing 55 mol% or more of this structural unit, the melting point on the lowest temperature side is located. It is also possible to use a polyamide resin having a temperature of 290 ° C. or higher, which is a preferable embodiment.
  • the content of the structural unit obtained from the equivalent molar salt of diamine having 6 to 10 carbon atoms and terephthalic acid is more preferably 55 to 98 mol%, and among aminocarboxylic acids or lactams having 11 to 18 carbon atoms.
  • the content of one or more of the above is more preferably 2 to 45 mol%. If the structural unit obtained from the equimolar salt of diamine having 6 to 10 carbon atoms and terephthalic acid is less than 55 mol%, the crystallinity and mechanical properties may be deteriorated.
  • the semi-aromatic polyamide resin (A) can be copolymerized with other components at a ratio of 50% mol or less in the constituent unit.
  • copolymerizable diamine components include 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4)-.
  • Alicyclic diamines such as trimethylhexamethylenediamine, piperazine, cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-aminocyclohexyl) methane, isophoronediamine.
  • aromatic diamines such as diamines, metaxylylene diamines, paraxylylene diamines, paraphenylenediamines and metaphenylenediamines, and hydrogenated products thereof.
  • copolymerizable acid components include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and 2,2'-diphenyldicarboxylic acid, 4 , 4'-Diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid and other aromatic dicarboxylic acids, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid, 1 , 11-Undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecandioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic
  • copolymerizable components examples include lactams such as ⁇ -caprolactam, 11-aminoundecanoic acid, undecanelactam, 12-aminododecanoic acid, and 12-lauryllactam, and aminocarboxylic acids having a ring-opened structure thereof. Be done.
  • a particularly preferable copolymerization component is, as described above, one or more of aminocarboxylic acid having 11 to 18 carbon atoms or lactam having 11 to 18 carbon atoms.
  • aminocarboxylic acid having 11 to 18 carbon atoms or a lactam having 11 to 18 carbon atoms By using an aminocarboxylic acid having 11 to 18 carbon atoms or a lactam having 11 to 18 carbon atoms, the melting point and the temperature-increasing crystallization temperature can be adjusted to improve the moldability, and the water absorption rate can be reduced during water absorption. It is possible to improve the trouble caused by the change in physical properties and the change in dimensions, and the fluidity at the time of melting can be improved by introducing a flexible skeleton.
  • the melting point may be less than 290 ° C. depending on the combination, which is not preferable.
  • the semi-aromatic polyamide resin (A) is obtained from (a) 50 to 99 mol% of structural units obtained from the equimolar salts of hexamethylenediamine and terephthalic acid, and (b) 11-aminoundecanoic acid or undecanlactam. It is particularly preferable that the semi-aromatic polyamide resin contains 1 to 50 mol% of the constituent units. At this time, in the semi-aromatic polyamide resin (A), in addition to the constituent unit of (a) and the constituent unit of (b), the constituent unit composed of the above-mentioned copolymerizable component is contained in a proportion of 20 mol% or less. May be. By using the semi-aromatic polyamide (A) composed of such constituents, it is possible to realize excellent moldability in addition to high melting point, low water absorption and high flow rate.
  • the semi-aromatic polyamide resin (A) can be produced by a conventionally known method, and can be easily synthesized, for example, by subjecting a raw material monomer to a polycondensation reaction.
  • the order of the polycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or some raw material monomers may be reacted first, and then the remaining raw material monomers may be reacted.
  • the polymerization method is not particularly limited, but the process from the preparation of the raw material to the production of the polymer may be carried out in a continuous step, the oligomer is once prepared, and then the polymerization is carried out in another step by an extruder or the like, or the oligomer is solidified. A method such as increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the ratio of each structural unit in the synthesized copolymer polyamide can be controlled.
  • Examples of the catalyst used in producing the semi-aromatic polyamide resin (A) include phosphoric acid, phosphorous acid, hypophosphoric acid or its metal salt, ammonium salt, and ester.
  • Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony.
  • Examples of the ester include ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like. Further, from the viewpoint of improving melt retention stability, it is preferable to add an alkaline compound such as sodium hydroxide, potassium hydroxide, or magnesium hydroxide.
  • the relative viscosity (RV) of the semi-aromatic polyamide resin (A) measured at 20 ° C. in 96% concentrated sulfuric acid is preferably 0.4 to 4.0, more preferably 1.0 to 3.0, and further. It is preferably 1.5 to 2.5.
  • a means for adjusting the molecular weight can be mentioned.
  • the acid value and amine value of the semi-aromatic polyamide resin (A) are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively. If the terminal functional group exceeds 200 eq / ton, not only gelation and deterioration are promoted during melt retention, but also problems such as coloring and hydrolysis are caused even in the usage environment. On the other hand, when compounding a reactive compound such as glass fiber or maleic acid-modified polyolefin, the acid value and / or amine value is preferably 5 to 100 eq / ton according to the reactivity and the reactive group.
  • the semi-aromatic polyamide resin (A) adjusts the terminal group weight and molecular weight of the polyamide by a method of polycondensing by adjusting the molar ratio of the amino group amount and the carboxyl group amount and a method of adding a terminal sealant. be able to.
  • the molar ratio of amino group amount and carboxyl group amount is polycondensed at a constant ratio
  • the molar ratio of total diamine to total dicarboxylic acid (diamine / dicarboxylic acid) to be used is 1.00 / 1.10 to 1. It is preferable to adjust to the range of 10 / 1.00.
  • the timing for adding the end-capping agent examples include the time when the raw material is charged, the time when the polymerization starts, the time when the polymerization is delayed, or the time when the polymerization ends.
  • the terminal encapsulant is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at the end of polyamide, but monocarboxylic acid or an acid anhydride such as monoamine or phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used.
  • terminal encapsulant examples include aliphatic products such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid.
  • Alicyclic monocarboxylic acids such as carboxylic acids and cyclohexanecarboxylic acids, benzoic acids, toluic acids, ⁇ -naphthalenecarboxylic acids, ⁇ -naphthalenecarboxylic acids, methylnaphthalenecarboxylic acids, aromatic monocarboxylic acids such as phenylacetic acid, maleine anhydride Acid anhydrides such as acid, phthalic anhydride, hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine and the like.
  • Acid anhydrides such as acid, phthalic anhydride, hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hex
  • Examples thereof include alicyclic monoamines such as aliphatic monoamines, cyclohexylamines and dicyclohexylamines, and aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
  • the semi-aromatic polyamide resin (A) needs to be present in a proportion of 20 to 70% by mass, preferably in a proportion of 25 to 55% by mass, in the entire polyamide resin composition of the present invention. If the proportion of the semi-aromatic polyamide resin (A) is less than the above lower limit, the mechanical strength is lowered, and if it exceeds the above upper limit, the blending amount of other components is insufficient, and it becomes difficult to obtain the desired effect.
  • the halogen group-containing flame retardant (B) is blended to impart flame retardancy to the molded product formed of the polyamide resin of the present invention, and has a mass of 5 to 15 in the entire polyamide resin composition of the present invention. It needs to be present in a proportion of%, preferably present in a proportion of 7 to 13% by mass.
  • the halogen group-containing flame retardant (B) include tetrabromobisphenol A (TBBA), decabromodiphenyl ether (Deca-BDE), tribromofer, hexabromocyclododecane (HBCD), and ethylenebis (tetrabromophthalimide).
  • brominated polystyrene is preferable from the viewpoint of environmental safety and stability during processing. More preferably, only brominated polystyrene is used without using other halogen group-containing flame retardants in combination.
  • the brominated polystyrene has a bromine content of 62 to 72% by mass, a weight average molecular weight of 4000 to 8000, and a molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of 1.05 to It is preferably 1.40. If the weight average molecular weight is lower than the above range, the thermal stability tends to decrease and the amount of corrosive gas generated during processing tends to increase, and if it exceeds the above range, the fluidity during injection molding tends to be inferior.
  • the metal salt-based flame retardant (C) is at least one metal compound selected from the group consisting of zinc nitrate, zinc borate, zinc phosphate, calcium borate, and calcium molybdate, and has a halogen group.
  • the metal salt-based flame retardant aids are conventionally used flame retardant aids and have a role different from that of the metal oxide (E) described later.
  • a metal salt-based flame retardant aid mainly composed of zinc nitrate, zinc borate, and zinc phosphate is preferable from the viewpoint of stability and the effect of the present invention.
  • the blending amount of the metal salt-based flame retardant aid (C) in the polyamide resin composition is 0.5 to 15% by mass, preferably 1.0 to 12% by mass, and more preferably 2.0 to 10% by mass. preferable. If the blending amount of the metal salt-based flame retardant aid (C) is less than the above lower limit, the target high flame retardancy cannot be obtained, and if it exceeds the above upper limit, the physical properties are significantly reduced and continuous compounding is performed. It is not preferable because it may reduce productivity.
  • the inorganic reinforcing material (D) is blended to improve the moldability of the polyamide resin composition and the strength of the molded product, and at least one selected from the fibrous reinforcing material and the needle-shaped reinforcing material is used. It is preferable to do so.
  • the fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, metal fiber and the like
  • the needle-like reinforcing material include potassium titanate whiskers, aluminum borate whiskers, zinc oxide whiskers and carbon dioxide. Calcium whiskers, magnesium sulfate whiskers, wallastnite and the like can be mentioned.
  • As the glass fiber chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used.
  • a glass fiber having a circular cross section and a non-circular cross section can be used as the cross-sectional shape of the glass fiber.
  • the diameter of the circular cross-section glass fiber is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less.
  • a glass fiber having a non-circular cross section is preferable in terms of physical properties and fluidity, but a glass fiber having a circular cross section is preferable in terms of cost.
  • the glass fiber having a non-circular cross section includes those having a substantially elliptical shape, a substantially oval shape, and a substantially cocoon shape in a cross section perpendicular to the length direction of the fiber length, and has a flatness of 1.5 to 8.
  • the flatness is assumed to be a rectangle having the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of this rectangle is the major axis, and the length of the short side is the minor axis.
  • This is the ratio of major axis / minor axis when
  • the thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 ⁇ m and the major axis is about 2 to 100 ⁇ m.
  • the glass fibers are preferably used in the form of chopped strands cut into fiber bundles having a fiber length of about 1 to 20 mm.
  • an organically treated material, a coupling agent treated material, or a coupling agent at the time of melt compounding is a silane type.
  • a coupling agent, a titanate-based coupling agent, and an aluminum-based coupling agent may be used, and among them, an aminosilane coupling agent and an epoxysilane coupling agent are particularly preferable.
  • the blending ratio of the inorganic reinforcing material (D) in the polyamide resin composition needs to be 20 to 60% by mass in order to fully exhibit the mechanical properties.
  • the blending ratio is preferably 23 to 57% by mass, more preferably 25 to 55% by mass. If the blending ratio is less than the above lower limit, the mechanical strength of the molded product is lowered, and if it exceeds the above upper limit, the extrudability and the moldability may be lowered, which is not preferable.
  • the metal oxide (E) is an oxide of bismuth.
  • the metal oxide (E) is combined with the metal salt-based flame retardant (C) in order to promote the decomposition of the halogen group-containing flame retardant in a temperature range different from that of the metal salt-based flame retardant (C).
  • the halogen group-containing flame retardant can be decomposed and the flame retardant gas can be generated accordingly, and an excellent flame retardant effect can be exhibited.
  • the metal oxide (E) is additionally blended, the generation of halogen gas derived from the halogen group-containing flame retardant during the molding process is not promoted.
  • the temperature range in which the metal oxide (E) promotes the decomposition of the halogen group-containing flame retardant is higher than the temperature range in the molding process. Therefore, according to the present invention, by additionally blending the metal oxide (E) in addition to the conventional flame retardant aid, the decomposition of the halogen group-containing flame retardant during combustion is promoted, which is required at the time of combustion.
  • the flame-retardant effect of the halogen group-containing flame retardant can be fully exhibited. As a result, excellent flame retardancy can be maintained even if the amount of the halogen group-containing flame retardant used is reduced.
  • the blending ratio of the metal oxide (E) in the polyamide resin composition needs to be 0.5 to 5% by mass, preferably 0.5 to 4.5% by mass, and 1 to 4%. More preferably, it is by mass%. If this compounding ratio is less than the above lower limit, the target high flame retardancy cannot be obtained, and if it exceeds the above upper limit, the physical properties may be significantly reduced and the continuous productivity at the time of compounding may be lowered. Not preferred.
  • various additives of the conventional polyamide resin composition for electrical and electronic parts can be added to the polyamide resin composition of the present invention.
  • drip inhibitor such as tetrafluoroethylene (PTFE), stabilizer, impact improver, mold release agent, slidability improver, colorant, plasticizer, crystal nucleating agent, semi-aromatic polyamide resin ( Examples thereof include polyamides having a composition different from that of A), thermoplastic resins other than polyamides, and the like.
  • the possible blending amounts of these components in the polyamide resin composition are as described below, but the total of these components is preferably 30% by mass or less, more preferably 20% by mass or less in the polyamide resin composition. It is more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the flame-retardant polyamide resin composition of the present invention can achieve both excellent flame retardancy and reduction of mold corrosion, and can be seen by combining conventional flame retardants. It is possible to suppress the formation of bleeds on the surface of the molded product at a high level under the actual usage environment, and it exhibits fluidity during molding. Furthermore, by using a semi-aromatic polyamide resin (A) characterized by a high melting point and low equilibrium water absorption in water, in addition to high flame retardancy, it has a high melting point and high heat resistance, and its dynamics during water absorption. It is possible to obtain a flame-retardant polyamide resin composition having excellent properties such as suppressing deterioration of properties and dimensional changes, and it is possible to supply a product that highly meets user needs.
  • A semi-aromatic polyamide resin
  • the polyamide resin composition of the present invention can be produced by blending each of the above-mentioned constituent components by a conventionally known method.
  • each component may be added during the polycondensation reaction of the semi-aromatic polyamide resin (A), the semi-aromatic polyamide resin (A) and other components may be dry-blended, or a twin-screw screw type extruder may be used. Examples thereof include a method of melt-kneading each component by using.
  • the polyamide resin composition of the present invention can be molded by conventionally known methods such as extrusion molding, injection molding, and compression molding. Since the polyamide resin composition of the present invention hardly generates halogen gas derived from a halogen group-containing flame retardant during the molding process, the problem of mold corrosion does not occur.
  • the formed molded product is excellent in heat resistance, flame retardancy, and processability, and can be used for various purposes. Specifically, various electrical and electronic parts such as connectors and switches, housing parts, and the like are suitable.
  • Relative Viscosity 0.25 g of the polyamide resin was dissolved in 25 ml of 96% sulfuric acid, and the relative viscosity was measured at 20 ° C. using an Ostwald viscometer.
  • the temperature was raised from room temperature to 20 ° C./min in a nitrogen atmosphere, and measurements were carried out up to the melting point of the resin + 30 ° C. At that time, among the peaks of endothermic heat due to melting obtained, the peak top temperature observed on the lowest temperature side was defined as the melting point (Tm).
  • the cylinder temperature is set to the melting point of the resin + 20 ° C. and the mold temperature is set to 135 ° C., and the length is 127 mm, the width is 12.7 mm, and the thickness is 0.8 mm.
  • An evaluation test piece was prepared by injection molding. Using this test piece, the evaluation was carried out with 10 test pieces in accordance with the UL-94 vertical combustion test. The total burning time of 5 pieces was calculated from the count of the number of drip ignition occurrences and the burning time of the test pieces that did not drip, and evaluated according to the following criteria. ⁇ : No drip ignition occurred, and the total burning time of 5 pieces was 50 seconds or less. X: Drip ignition has occurred, or the total burning time of 5 pieces exceeds 50 seconds.
  • MI melt flow index
  • the solution was continuously supplied by a liquid feed pump, the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour.
  • the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the pressure inside the can at 3 MPa to obtain a low-order condensate.
  • the obtained semi-aromatic polyamide resin (A) had a relative viscosity of 2.02, a melting point of 315 ° C., an acid value of 126 eq / ton, and an amine value of 22 eq / ton.
  • the solution was continuously supplied by a liquid feed pump, the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour.
  • the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the pressure inside the can at 3 MPa to obtain a low-order condensate.
  • the obtained semi-aromatic polyamide resin (A-2) had a relative viscosity of 2.48, a melting point of 315 ° C., an acid value of 98 eq / ton, and an amine value of 34 eq / ton.
  • Comparative Example 1 is an example in which the amount of the halogen group-containing flame retardant (B) blended is increased as compared with Example 1 instead of blending the metal oxide (E), and the flame retardancy is excellent. However, it is inferior in mold corrosion resistance.
  • Comparative Example 2 is an example in which the amount of the halogen group-containing flame retardant (B) is the same as in Example 1 and the metal oxide (E) is not blended, and the mold corrosion resistance is excellent, but the flame retardant. Inferior in sex.
  • Comparative Example 3 is an example in which the amount of the metal oxide (E) blended is too large, and the resin viscosity becomes too small, so that drip behavior occurs during combustion, and the flame retardancy is inferior.
  • Comparative Examples 4 to 8 are examples in which a metal oxide (E) other than the specific metal oxide specified in the present invention is used, and all of them are inferior in flame retardancy. In addition, Comparative Examples 4 and 5 are also inferior in mechanical properties.
  • Comparative Example 9 is an example in which only the halogen group-containing flame retardant (B) and the metal oxide (E) are used in combination without blending the metal salt-based flame retardant (C) which is a conventional flame retardant. , Inferior in flame retardancy.
  • the flame-retardant polyamide resin composition of the present invention has high heat resistance, and by using a specific metal oxide in addition to the conventional flame retardant aid, halogen while maintaining excellent flame retardancy. It is possible to reduce the amount of the group-containing flame retardant used. Therefore, the amount of halogen gas generated from the halogen group-containing flame retardant during the molding process can be reduced, and mold corrosion can be reduced. Furthermore, it has excellent fluidity during molding, can suppress the formation of bleeds on the surface of the molded product in an actual use environment such as high temperature and humidity, and can reduce strength reduction and dimensional change due to water absorption of the polyamide resin. can. Therefore, according to the present invention, it is possible to industrially advantageously produce a molded product that highly satisfies the user's needs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a flame-retardant polyamide resin composition suitable for electrical/electronic parts and housing parts that reduces mold corrosion while having high heat resistance and high flame retardancy suited to a reflow soldering process and also has excellent mechanical properties, bleed-out resistance, low water absorption, and fluidity. A flame-retardant polyamide resin composition characterized by containing a semi-aromatic polyamide resin (A), a halogen group-containing flame retardant (B), at least one metal salt flame retardancy promoter (C) selected from the group consisting of zinc stannate, zinc borate, zinc phosphate, calcium borate, and calcium molybdate, an inorganic reinforcing material (D), and a metal oxide comprising an oxide of bismuth (E) in proportions of 20-70 mass%, 5-15 mass%, 0.5-15 mass%, 20-60 mass%, and 0.5-5 mass%, respectively.

Description

難燃性ポリアミド樹脂組成物Flame-retardant polyamide resin composition
 本発明は、靭性、引張強度、引張伸度などの機械物性、耐熱性、難燃性、低吸水性、耐ブリードアウト性、および流動性に優れるとともに、ハロゲン基含有難燃剤を使用しながらも成形時における腐食ガス発生量が少ないために金型腐食が低減された難燃性ポリアミド樹脂組成物に関する。 The present invention is excellent in mechanical properties such as toughness, tensile strength, tensile elongation, heat resistance, flame retardancy, low water absorption, bleed-out resistance, and fluidity, and while using a halogen group-containing flame retardant. The present invention relates to a flame-retardant polyamide resin composition in which mold corrosion is reduced because the amount of corrosive gas generated during molding is small.
 ポリアミド樹脂は、その優れた力学特性と溶融成形の容易さを活かして、衣料用、産業資材用繊維、エンジニアリングプラスチックなどに広範に使用されてきた。特にエンジニアリングプラスチックとしては、自動車部品や産業機械用部品に限らず、種々の工業部品や筐体部品、電気電子部品など多岐に渡って使用されている。 Polyamide resin has been widely used in textiles for clothing, industrial materials, engineering plastics, etc., taking advantage of its excellent mechanical properties and ease of melt molding. In particular, engineering plastics are not limited to automobile parts and industrial machine parts, but are widely used in various industrial parts, housing parts, electrical and electronic parts, and the like.
 電気電子部品に関して、近年、製品サイズの小型化に伴う部品の小型化、実装の高密度化、工程の簡略化や低コスト化により表面実装方式(フロー方式、リフロー方式)が急速に浸透している。表面実装方式では、工程雰囲気温度が半田溶融温度以上(240~260℃)となることから、使用される樹脂にも必然的に上記雰囲気温度での耐熱性が求められる。また、表面実装工程では、樹脂の吸水に由来する実装部品の膨れ、変形が問題となることもあり、使用される樹脂には低吸水性が求められる。これらの特性を満足する樹脂として、6T系ポリアミドを始めとした芳香族系ポリアミドが表面実装型電気電子部品に使用されている。 With regard to electrical and electronic components, surface mounting methods (flow method, reflow method) have rapidly become widespread in recent years due to the miniaturization of parts, the high density of mounting, the simplification of processes, and the cost reduction associated with the miniaturization of product sizes. There is. In the surface mounting method, since the process atmosphere temperature is equal to or higher than the solder melting temperature (240 to 260 ° C.), the resin used is inevitably required to have heat resistance at the above atmosphere temperature. Further, in the surface mounting process, swelling and deformation of the mounting component due to the water absorption of the resin may become a problem, and the resin used is required to have low water absorption. As a resin that satisfies these characteristics, aromatic polyamides such as 6T-based polyamides are used in surface mount type electrical and electronic components.
 一方で、成形品の使用される箇所、環境によっては、原料となるポリアミド樹脂は、UL-94規格に基づいた難燃性を持つことが望ましい。このような必要性に応じて、ポリアミド樹脂に難燃性を付与するための種々の提案がこれまでになされてきた。 On the other hand, depending on the location where the molded product is used and the environment, it is desirable that the polyamide resin used as the raw material has flame retardancy based on the UL-94 standard. In response to such a need, various proposals for imparting flame retardancy to the polyamide resin have been made so far.
 例えば、特許文献1には、ポリアミド樹脂を難燃化する技術として、難燃剤である臭素化ポリスチレンなどのハロゲン化有機化合物と、難燃助剤として働く三酸化アンチモンとの併用が記載されている。この技術は、優れた難燃性を付与できるが、人体への影響が懸念される重金属のアンチモンを使用するため、プラスチック製品として使用が規制されつつある。また、三酸化アンチモンは、高融点のポリアミドの加工温度において安定性に欠ける問題がある。従って、三酸化アンチモンの代替となる金属塩を用いた難燃性樹脂の検討が積極的になされてきた。実際に、特許文献2では、半芳香族ポリアミドにおいて三酸化アンチモンの代替としてスズ酸亜鉛などを用いる例が記載されている。 For example, Patent Document 1 describes a combination of a halogenated organic compound such as brominated polystyrene, which is a flame retardant, and antimony trioxide, which acts as a flame retardant aid, as a technique for making a polyamide resin flame-retardant. .. Although this technology can impart excellent flame retardancy, its use as a plastic product is being regulated because it uses antimony, a heavy metal that may affect the human body. Further, antimony trioxide has a problem of lacking stability at the processing temperature of high melting point polyamide. Therefore, a flame-retardant resin using a metal salt as an alternative to antimony trioxide has been actively studied. In fact, Patent Document 2 describes an example in which zinc stannate or the like is used as an alternative to antimony trioxide in a semi-aromatic polyamide.
 このように難燃助剤としてのアンチモンの代替金属として、亜鉛、スズ等の化合物の使用が進みつつあるが、ポリアミド樹脂に十分な難燃性を付与するためにはハロゲン基含有難燃剤を多量に添加することが必要である。しかし、280℃以上の高融点の半芳香族ポリアミド樹脂をベースとする難燃性樹脂組成物は、成形加工温度が非常に高いため、ハロゲン基含有難燃剤中に含まれるハロゲン基が成形加工中に一部離脱してハロゲンガスが発生してしまい、このハロゲンガスにより金型が腐食するという問題が発生している。 As described above, the use of compounds such as zinc and tin as a substitute metal for antimony as a flame retardant aid is progressing, but in order to impart sufficient flame retardancy to the polyamide resin, a large amount of halogen group-containing flame retardant is used. It is necessary to add to. However, since the flame-retardant resin composition based on the semi-aromatic polyamide resin having a high melting point of 280 ° C. or higher has a very high molding processing temperature, the halogen groups contained in the halogen group-containing flame retardant are being molded. Halogen gas is generated due to partial detachment, and this halogen gas causes a problem that the mold is corroded.
 上記のような問題を解決するため、特許文献3では、ハロゲン系難燃剤含有ポリアミド4,6樹脂組成物において、二臭素化スチレンモノマーから重合した特定の臭素化ポリスチレンおよびハイドロタルサイト類を組み合わせることを提案しているが、十分な金型腐食の低減に至っていない。 In order to solve the above problems, in Patent Document 3, in the halogen-based flame retardant-containing polyamide 4 and 6 resin composition, specific brominated polystyrene polymerized from a dibrominated styrene monomer and hydrotalcites are combined. However, the mold corrosion has not been sufficiently reduced.
 以上のように、従来提案されているハロゲン系難燃性ポリアミド樹脂組成物は、高い耐熱性及び高い難燃性と金型腐食の低減を両立できておらず、問題を抱えながらも使用しているのが現状である。 As described above, the conventionally proposed halogen-based flame-retardant polyamide resin composition cannot achieve both high heat resistance and high flame retardancy and reduction of mold corrosion, and can be used while having problems. The current situation is that there is.
特開平1-115956公報Japanese Patent Application Laid-Open No. 1-115956 WO2015/056765公報WO2015 / 056765 特開平6-345963公報Japanese Patent Application Laid-Open No. 6-345963
 本発明は、上記の従来技術の問題点に鑑み創案されたものであり、その目的は、リフロー半田工程に適した高い耐熱性及び高い難燃性を有しながらも金型腐食が低減されており、さらに、機械物性、耐ブリードアウト性、低吸水性、流動性にも優れる、電気電子部品や筐体部品に好適な難燃性ポリアミド樹脂組成物を提供することにある。 The present invention was devised in view of the above-mentioned problems of the prior art, and an object of the present invention is to reduce mold corrosion while having high heat resistance and high flame retardancy suitable for a reflow soldering process. Further, it is an object of the present invention to provide a flame-retardant polyamide resin composition suitable for electrical and electronic parts and housing parts, which is excellent in mechanical properties, bleed-out resistance, low water absorption, and fluidity.
 本発明者は、上記目的を達成するために鋭意検討した結果、高融点の半芳香族ポリアミド樹脂と、ハロゲン基含有難燃剤と、従来の難燃助剤を含むポリアミド樹脂組成物において、従来の難燃助剤に加えて特定の金属酸化物を使用することにより、ハロゲン基含有難燃剤の使用量が少なくとも高い難燃性を達成することができるので、ハロゲン基含有難燃剤の使用量を減少させることができ、それに伴って成形加工中のハロゲンガスの発生量を低減させることができ、結果としてハロゲンガスによる金型腐食が生じずに希望の物性を全て高度なレベルで達成できることを見出し、本発明の完成に至った。 As a result of diligent studies to achieve the above object, the present inventor has found that a conventional polyamide resin composition containing a high melting point semi-aromatic polyamide resin, a halogen group-containing flame retardant, and a conventional flame retardant aid has been used. By using a specific metal oxide in addition to the flame retardant aid, the amount of the halogen group-containing flame retardant used can at least achieve high flame retardancy, so that the amount of the halogen group-containing flame retardant used can be reduced. It was found that the amount of halogen gas generated during the molding process can be reduced accordingly, and as a result, all the desired physical properties can be achieved at a high level without causing mold corrosion due to the halogen gas. The present invention has been completed.
 本発明は、上記の知見に基づいて完成されたものであり、以下の(1)~(8)から構成されるものである。
(1)半芳香族ポリアミド樹脂(A)、ハロゲン基含有難燃剤(B)、スズ酸亜鉛、ホウ酸亜鉛、リン酸亜鉛、ホウ酸カルシウム、及びモリブデン酸カルシウムからなる群から選択される少なくとも1種の金属塩系難燃助剤(C)、無機強化材(D)、並びにビスマスの酸化物からなる金属酸化物(E)をそれぞれ20~70質量%、5~15質量%、0.5~15質量%、20~60質量%、及び0.5~5質量%の割合で含有することを特徴とする難燃性ポリアミド樹脂組成物。
(2)半芳香族ポリアミド樹脂(A)が、炭素数2~12のジアミンとテレフタル酸との等量モル塩から得られる構成単位を50モル%以上含み、かつ、炭素数11~18のアミノカルボン酸又は炭素数11~18のラクタムのうちの一種もしくは複数種を共重合してなるものであることを特徴とする(1)に記載の難燃性ポリアミド樹脂組成物。
(3)半芳香族ポリアミド樹脂(A)が、(a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位50~99モル%と、(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位1~50モル%を構成成分とすることを特徴とする(1)又は(2)に記載の難燃性ポリアミド樹脂組成物。
(4)ハロゲン基含有難燃剤(B)が、臭素化ポリスチレンであることを特徴とする(1)~(3)のいずれかに記載の難燃性ポリアミド樹脂組成物。
(5)臭素化ポリスチレンの臭素含有量が62~72質量%であり、重量平均分子量が4000~8000であり、かつ分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))が1.05~1.40であることを特徴とする(1)~(4)のいずれかに記載の難燃性ポリアミド樹脂組成物。
(6)無機強化材(D)が、ガラス繊維であることを特徴とする(1)~(5)のいずれかに記載の難燃性ポリアミド樹脂組成物。
(7)(1)~(6)のいずれかに記載の難燃性ポリアミド樹脂組成物を用いて形成されたことを特徴とする電気電子部品。
(8)(1)~(6)のいずれかに記載の難燃性ポリアミド樹脂組成物を用いて形成されたことを特徴とする筐体部品。
The present invention has been completed based on the above findings, and is composed of the following (1) to (8).
(1) At least one selected from the group consisting of semi-aromatic polyamide resin (A), halogen group-containing flame retardant (B), zinc tintate, zinc borate, zinc phosphate, calcium borate, and calcium molybdenate. 20 to 70% by mass, 5 to 15% by mass, and 0.5 of the metal oxide (E) composed of the metal salt-based flame retardant (C), the inorganic reinforcing material (D), and the oxide of bismuth, respectively. A flame-retardant polyamide resin composition containing in the proportions of ~ 15% by mass, 20 to 60% by mass, and 0.5 to 5% by mass.
(2) The semi-aromatic polyamide resin (A) contains 50 mol% or more of a structural unit obtained from an equal amount molar salt of a diamine having 2 to 12 carbon atoms and terephthalic acid, and an amino having 11 to 18 carbon atoms. The flame-retardant polyamide resin composition according to (1), which is obtained by copolymerizing one or a plurality of carboxylic acids or lactams having 11 to 18 carbon atoms.
(3) The semi-aromatic polyamide resin (A) contains 50 to 99 mol% of structural units obtained from (a) an equal amount molar salt of hexamethylenediamine and terephthalic acid, and (b) 11-aminoundecanoic acid or undecane. The flame-retardant polyamide resin composition according to (1) or (2), wherein the constituent unit is 1 to 50 mol% obtained from lactam.
(4) The flame-retardant polyamide resin composition according to any one of (1) to (3), wherein the halogen group-containing flame retardant (B) is brominated polystyrene.
(5) The bromine content of brominated polystyrene is 62 to 72% by mass, the weight average molecular weight is 4000 to 8000, and the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) is 1. The flame-retardant polystyrene resin composition according to any one of (1) to (4), which is 05 to 1.40.
(6) The flame-retardant polyamide resin composition according to any one of (1) to (5), wherein the inorganic reinforcing material (D) is glass fiber.
(7) An electrical and electronic component formed by using the flame-retardant polyamide resin composition according to any one of (1) to (6).
(8) A housing component formed by using the flame-retardant polyamide resin composition according to any one of (1) to (6).
 本発明の難燃性ポリアミド樹脂組成物は、高い耐熱性を有し、従来の難燃助剤に加えて特定の金属酸化物を使用することで、優れた難燃性を維持しながらもハロゲン基含有難燃剤の使用量を減少させることが可能である。そのため、成形加工時のハロゲン基含有難燃剤由来のハロゲンガスの発生量を低減でき、金型腐食を低減できる。さらに、成形時の流動性に優れ、高温多湿などの実使用環境下において成形品表面のブリード物生成を抑制することができ、ポリアミド樹脂の吸水に起因する強度低下や寸法変化も低減することができる。従って、本発明によれば、ユーザーニーズを高度に満足した製品を提供することができる。 The flame-retardant polyamide resin composition of the present invention has high heat resistance, and by using a specific metal oxide in addition to the conventional flame retardant aid, halogen while maintaining excellent flame retardancy. It is possible to reduce the amount of the group-containing flame retardant used. Therefore, the amount of halogen gas generated from the halogen group-containing flame retardant during the molding process can be reduced, and mold corrosion can be reduced. Furthermore, it has excellent fluidity during molding, can suppress the formation of bleeds on the surface of the molded product in an actual use environment such as high temperature and humidity, and can reduce strength reduction and dimensional change due to water absorption of the polyamide resin. can. Therefore, according to the present invention, it is possible to provide a product that highly satisfies the user needs.
 本発明のポリアミド樹脂組成物は、電気電子機器や自動車に搭載される電気電子部品や電気機器の筐体に使用するのに好適なものである。本発明のポリアミド樹脂組成物は、例えばコネクター、スイッチ、ICやLEDのハウジング、ソケット、リレー、抵抗器、コンデンサー、コイルボビン、各種筐体部品などを射出成形により形成するために使用されることができる。 The polyamide resin composition of the present invention is suitable for use in an electric / electronic device, an electric / electronic component mounted on an automobile, or a housing of an electric device. The polyamide resin composition of the present invention can be used for forming, for example, connectors, switches, housings for ICs and LEDs, sockets, relays, resistors, capacitors, coil bobbins, various housing parts, etc. by injection molding. ..
 本発明のポリアミド樹脂組成物は、半芳香族ポリアミド樹脂(A)、ハロゲン基含有難燃剤(B)、スズ酸亜鉛、ホウ酸亜鉛、リン酸亜鉛、ホウ酸カルシウム、及びモリブデン酸カルシウムからなる群から選択される少なくとも1種の金属塩系難燃助剤(C)、無機強化材(D)、並びにビスマス、アルミニウム、チタン、及び鉄の酸化物からなる群から選択される少なくとも一種の金属酸化物(E)をそれぞれ20~70質量%、5~15質量%、0.5~15質量%、20~60質量%、及び0.5~15質量%の割合で含有するものである。 The polyamide resin composition of the present invention is a group consisting of a semi-aromatic polyamide resin (A), a halogen group-containing flame retardant (B), zinc stannate, zinc borate, zinc phosphate, calcium borate, and calcium molybdenate. At least one metal salt-based flame retardant (C) selected from, an inorganic reinforcing material (D), and at least one metal oxidation selected from the group consisting of oxides of bismuth, aluminum, titanium, and iron. The substance (E) is contained in a proportion of 20 to 70% by mass, 5 to 15% by mass, 0.5 to 15% by mass, 20 to 60% by mass, and 0.5 to 15% by mass, respectively.
 本発明のポリアミド樹脂組成物は、電気電子部品用途において一般的な製造方法である表面実装技術に対応することが好ましい。従って、後述する実施例の項で説明する方法で測定した融点が290~350℃であることが好ましい。ここで、ポリアミド樹脂組成物の融点とは、ポリアミド樹脂組成物のポリアミド樹脂に起因するDSC(示差走査熱量計)で測定された融解ピーク温度のうち、最も低温側に位置する融解ピーク温度のことである。融点は、300℃~340℃であることがより好ましく、310~340℃であることがさらに好ましい。融点が上記上限を超える場合、本発明のポリアミド樹脂組成物を射出成形する際に必要となる加工温度が極めて高くなるため、ポリアミド樹脂組成物が熱分解し、目的の性能や外観が得られなくなる可能性がある。また、融点が上記下限未満の場合、表面実装工程(230~280℃)での耐熱性が不足し、工程での製品変形など不良を発生させる可能性がある。 The polyamide resin composition of the present invention preferably corresponds to surface mounting technology, which is a general manufacturing method in electrical and electronic component applications. Therefore, it is preferable that the melting point measured by the method described in the section of Examples described later is 290 to 350 ° C. Here, the melting point of the polyamide resin composition is the melting peak temperature located on the lowest temperature side among the melting peak temperatures measured by DSC (Differential Scanning Calorimeter) due to the polyamide resin of the polyamide resin composition. Is. The melting point is more preferably 300 ° C. to 340 ° C., and even more preferably 310 to 340 ° C. If the melting point exceeds the above upper limit, the processing temperature required for injection molding the polyamide resin composition of the present invention becomes extremely high, so that the polyamide resin composition is thermally decomposed and the desired performance and appearance cannot be obtained. there is a possibility. Further, when the melting point is less than the above lower limit, the heat resistance in the surface mounting process (230 to 280 ° C.) is insufficient, and defects such as product deformation in the process may occur.
 本発明のポリアミド樹脂組成物は、電気電子部品の小型化や構造緻密化に伴い、実使用環境下において製品が吸水した後も強度や製品寸法を安定的に維持できることが求められる。従って、後述する実施例の項で説明する方法で測定した水中平衡吸水率が3.0%以下を満たすことが好ましい。水中平衡吸水率は、2.5%以下であることがより好ましく、2.0%以下であることがさらに好ましい。水中平衡吸水率が上記上限を超える場合、吸水による強度低下、寸法変化が顕著となり、また、リフロー半田工程でブリスターの発生が起き、製品の強度不足、組立不良などの問題が発生する可能性がある。 The polyamide resin composition of the present invention is required to be able to stably maintain its strength and product dimensions even after the product absorbs water in an actual use environment as the electrical and electronic parts are miniaturized and the structure is densified. Therefore, it is preferable that the equilibrium water absorption rate in water measured by the method described in the section of Examples described later satisfies 3.0% or less. The equilibrium water absorption rate in water is more preferably 2.5% or less, and further preferably 2.0% or less. If the water absorption in water exceeds the above upper limit, the strength will decrease and the dimensions will change significantly due to water absorption, and blisters will occur in the reflow soldering process, which may cause problems such as insufficient strength of the product and poor assembly. be.
 半芳香族ポリアミド樹脂(A)は、テレフタル酸(TPA)を含むジカルボン酸成分とジアミン成分からなる構成単位を有するものである。半芳香族ポリアミド(A)としては、例えば6T系ポリアミド(例えば、テレフタル酸/イソフタル酸/ヘキサメチレンジアミンからなるポリアミド6T/6I、テレフタル酸/アジピン酸/ヘキサメチレンジアミンからなるポリアミド6T/66、テレフタル酸/イソフタル酸/アジピン酸/ヘキサメチレンジアミンからなるポリアミド6T/6I/66、テレフタル酸/ヘキサメチレンジアミン/2-メチル-1、5-ペンタメチレンジアミンからなるポリアミド6T/M-5T、テレフタル酸/ヘキサメチレンジアミン/ε-カプロラクタムからなるポリアミド6T/6、テレフタル酸/ヘキサメチレンジアミン/テトラメチレンジアミンからなるポリアミド6T/4T)、9T系ポリアミド(テレフタル酸/1,9-ノナンジアミン/2-メチル-1,8-オクタンンジアミン)、10T系ポリアミド(テレフタル酸/1,10-デカンジアミン)、12T系ポリアミド(テレフタル酸/1,12-ドデカンジアミン)、セバシン酸/パラキシレンジアミンからなるポリアミドなどが挙げられる。 The semi-aromatic polyamide resin (A) has a structural unit composed of a dicarboxylic acid component containing terephthalic acid (TPA) and a diamine component. Examples of the semi-aromatic polyamide (A) include 6T-based polyamides (for example, polyamide 6T / 6I composed of terephthalic acid / isophthalic acid / hexamethylenediamine, polyamide 6T / 66 composed of terephthalic acid / adipic acid / hexamethylenediamine, and terephthal. Polyamide 6T / 6I / 66 consisting of acid / isophthalic acid / adipic acid / hexamethylenediamine, polyamide 6T / M-5T consisting of terephthalic acid / hexamethylenediamine / 2-methyl-1,5-pentamethylenediamine, terephthalic acid / Polyamide 6T / 6 consisting of hexamethylenediamine / ε-caprolactam, polyamide 6T / 4T consisting of terephthalic acid / hexamethylenediamine / tetramethylenediamine), 9T-based polyamide (terephthalic acid / 1,9-nonanediamine / 2-methyl-1) , 8-octanediamide), 10T-based polyamide (terephthalic acid / 1,10-decanediamine), 12T-based polyamide (terephthalic acid / 1,12-dodecanediamine), polyamide composed of sebacic acid / paraxylene diamine, etc. Be done.
 半芳香族ポリアミド樹脂(A)は、上記の半芳香ポリアミドの中でも、融点と水中平衡吸水率の観点から、炭素数2~12のジアミンとテレフタル酸との等量モル塩から得られる構成単位を50モル%以上含み、かつ、炭素数11~18のアミノカルボン酸又は炭素数11~18のラクタムのうちの一種もしくは複数種を共重合してなるものであることが好ましい。炭素数2~12のジアミンとテレフタル酸との等量モル塩から得られる構成単位の含有量は、50~98モル%であることがより好ましく、炭素数11~18のアミノカルボン酸又は炭素数11~18のラクタムのうちの一種もしくは複数種の含有量は、2~50モル%であることがより好ましい。 Among the above-mentioned semi-aromatic polyamides, the semi-aromatic polyamide resin (A) is a constituent unit obtained from an equimolar salt of diamine having 2 to 12 carbon atoms and terephthalic acid from the viewpoint of melting point and equilibrium water absorption in water. It is preferably obtained by copolymerizing one or more of aminocarboxylic acid having 11 to 18 carbon atoms or lactam having 11 to 18 carbon atoms and containing 50 mol% or more. The content of the structural unit obtained from the equimolar salt of diamine having 2 to 12 carbon atoms and terephthalic acid is more preferably 50 to 98 mol%, and the aminocarboxylic acid having 11 to 18 carbon atoms or the carbon number of carbon atoms. The content of one or more of the 11-18 lactams is more preferably 2-50 mol%.
 半芳香族ポリアミド樹脂(A)を構成する炭素数2~12のジアミン成分としては、炭素数2~12の脂肪族のジアミンが好ましい。かかる炭素数2~12の脂肪族のジアミン成分としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、2-メチル-1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1、9-ノナメチレンジアミン、2-メチル―1,8-オクタメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミンが挙げられ、これらを単独もしくは複数使用することができる。 As the diamine component having 2 to 12 carbon atoms constituting the semi-aromatic polyamide resin (A), an aliphatic diamine having 2 to 12 carbon atoms is preferable. Examples of the aliphatic diamine component having 2 to 12 carbon atoms include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, and 2-methyl-1. , 5-Pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine , 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, and these can be used alone or in combination of two or more.
 半芳香族ポリアミド樹脂(A)の融点は、290℃以上であることが好ましい。この観点から検討すると、炭素数が10以上のジアミンとテレフタル酸との等量モル塩から得られる構成単位からなる半芳香族ポリアミドの場合、290℃以下に融点を有する場合があるため、炭素数2~8のジアミンとテレフタル酸との等量モル塩から得られる構成単位を50モル%以上含み、最も低温側にある融点が290℃以上であるポリアミド樹脂が、好ましい態様である。炭素数2~8のジアミンとテレフタル酸との等量モル塩から得られる構成単位が50モル%未満の場合、結晶性、力学物性が低下することがある。 The melting point of the semi-aromatic polyamide resin (A) is preferably 290 ° C. or higher. From this point of view, a semi-aromatic polyamide composed of a structural unit obtained from an equimolar salt of a diamine having 10 or more carbon atoms and terephthalic acid may have a melting point of 290 ° C. or lower, and therefore has a melting point of 290 ° C. or less. A polyamide resin containing 50 mol% or more of a structural unit obtained from an equimolar salt of 2 to 8 diamines and terephthalic acid and having a melting point of 290 ° C. or higher on the lowest temperature side is a preferable embodiment. If the structural unit obtained from the equimolar salt of diamine having 2 to 8 carbon atoms and terephthalic acid is less than 50 mol%, the crystallinity and mechanical properties may be deteriorated.
 また、炭素数6~10のジアミンとテレフタル酸との等量モル塩から得られる構成単位からなる半芳香族ポリアミドの場合、この構成単位を55モル%以上含むことで、最も低温側にある融点が290℃以上であるポリアミド樹脂とすることも可能であり、好ましい態様である。炭素数6~10のジアミンとテレフタル酸との等量モル塩から得られる構成単位の含有量は55~98モル%であることがより好ましく、炭素数11~18のアミノカルボン酸もしくはラクタムのうちの一種もしくは複数種の含有量は2~45モル%であることがより好ましい。炭素数6~10のジアミンとテレフタル酸との等量モル塩から得られる構成単位が55モル%未満の場合、結晶性、力学物性が低下することがある。 Further, in the case of a semi-aromatic polyamide composed of a structural unit obtained from an equimolar salt of a diamine having 6 to 10 carbon atoms and terephthalic acid, by containing 55 mol% or more of this structural unit, the melting point on the lowest temperature side is located. It is also possible to use a polyamide resin having a temperature of 290 ° C. or higher, which is a preferable embodiment. The content of the structural unit obtained from the equivalent molar salt of diamine having 6 to 10 carbon atoms and terephthalic acid is more preferably 55 to 98 mol%, and among aminocarboxylic acids or lactams having 11 to 18 carbon atoms. The content of one or more of the above is more preferably 2 to 45 mol%. If the structural unit obtained from the equimolar salt of diamine having 6 to 10 carbon atoms and terephthalic acid is less than 55 mol%, the crystallinity and mechanical properties may be deteriorated.
 半芳香族ポリアミド樹脂(A)には、構成単位中50%モル以下の割合で他の成分を共重合することができる。共重合可能なジアミン成分としては、1,13-トリデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン、2,2,4(または2,4,4)-トリメチルヘキサメチレンジアミンのような脂肪族ジアミン、ピペラジン、シクロヘキサンジアミン、ビス(3-メチル-4-アミノヘキシル)メタン、ビス-(4,4’-アミノシクロヘキシル)メタン、イソホロンジアミンのような脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンおよびこれらの水添物等が挙げられる。 The semi-aromatic polyamide resin (A) can be copolymerized with other components at a ratio of 50% mol or less in the constituent unit. Examples of copolymerizable diamine components include 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4)-. Alicyclic diamines such as trimethylhexamethylenediamine, piperazine, cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-aminocyclohexyl) methane, isophoronediamine. Examples thereof include aromatic diamines such as diamines, metaxylylene diamines, paraxylylene diamines, paraphenylenediamines and metaphenylenediamines, and hydrogenated products thereof.
 共重合可能な酸成分としては、イソフタル酸、オルソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-スルホン酸ナトリウムイソフタル酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、1,18-オクタデカン二酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸等が挙げられる。また、共重合可能な成分として、ε-カプロラクタム、11-アミノウンデカン酸、ウンデカンラクタム、12-アミノドデカン酸、12-ラウリルラクタムなどのラクタムおよびこれらが開環した構造であるアミノカルボン酸などが挙げられる。 Examples of copolymerizable acid components include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and 2,2'-diphenyldicarboxylic acid, 4 , 4'-Diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid and other aromatic dicarboxylic acids, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid, 1 , 11-Undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecandioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2 Examples thereof include aliphatic and alicyclic dicarboxylic acids such as -cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid and dimer acid. Examples of copolymerizable components include lactams such as ε-caprolactam, 11-aminoundecanoic acid, undecanelactam, 12-aminododecanoic acid, and 12-lauryllactam, and aminocarboxylic acids having a ring-opened structure thereof. Be done.
 上記成分のなかでも、特に好ましい共重合成分は、上述のように、炭素数11~18のアミノカルボン酸又は炭素数11~18のラクタムのうちの一種もしくは複数種である。炭素数11~18のアミノカルボン酸又は炭素数11~18のラクタムを使用することにより、融点及び昇温結晶化温度を調整し成形性を向上させることができ、吸水率を低減させて吸水時の物性変化や寸法変化によるトラブルを改善させることができ、フレキシブルな骨格を導入することにより溶融時の流動性を改善することができる。 Among the above components, a particularly preferable copolymerization component is, as described above, one or more of aminocarboxylic acid having 11 to 18 carbon atoms or lactam having 11 to 18 carbon atoms. By using an aminocarboxylic acid having 11 to 18 carbon atoms or a lactam having 11 to 18 carbon atoms, the melting point and the temperature-increasing crystallization temperature can be adjusted to improve the moldability, and the water absorption rate can be reduced during water absorption. It is possible to improve the trouble caused by the change in physical properties and the change in dimensions, and the fluidity at the time of melting can be improved by introducing a flexible skeleton.
 共重合成分がジカルボン酸とジアミンから構成される場合、組み合わせ次第では、融点が290℃未満になる場合があるので好ましくない。 When the copolymerization component is composed of a dicarboxylic acid and a diamine, the melting point may be less than 290 ° C. depending on the combination, which is not preferable.
 半芳香族ポリアミド樹脂(A)は、(a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位50~99モル%と、(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位1~50モル%を構成成分とする半芳香族ポリアミド樹脂であることが特に好ましい。この時、半芳香族ポリアミド樹脂(A)は、(a)の構成単位及び(b)の構成単位以外に、上述した共重合可能な成分からなる構成単位を20モル%以下の割合で構成成分としても良い。かかる構成成分からなる半芳香族ポリアミド(A)を使用することにより、高融点、低吸水、高流動に加えて優れた成形性が実現可能である。 The semi-aromatic polyamide resin (A) is obtained from (a) 50 to 99 mol% of structural units obtained from the equimolar salts of hexamethylenediamine and terephthalic acid, and (b) 11-aminoundecanoic acid or undecanlactam. It is particularly preferable that the semi-aromatic polyamide resin contains 1 to 50 mol% of the constituent units. At this time, in the semi-aromatic polyamide resin (A), in addition to the constituent unit of (a) and the constituent unit of (b), the constituent unit composed of the above-mentioned copolymerizable component is contained in a proportion of 20 mol% or less. May be. By using the semi-aromatic polyamide (A) composed of such constituents, it is possible to realize excellent moldability in addition to high melting point, low water absorption and high flow rate.
 半芳香族ポリアミド樹脂(A)は、従来公知の方法で製造することができ、例えば、原料モノマーを重縮合反応させることによって容易に合成することができる。重縮合反応の順序は特に限定されず、全ての原料モノマーを一度に反応させてもよいし、一部の原料モノマーを先に反応させ、続いて残りの原料モノマーを反応させてもよい。また、重合方法は特に限定されないが、原料仕込みからポリマー作製までを連続的な工程で進めても良いし、一度オリゴマーを作製した後、別工程で押出し機などにより重合を進める、もしくはオリゴマーを固相重合により高分子量化するなどの方法を用いても良い。原料モノマーの仕込み比率を調整することにより、合成される共重合ポリアミド中の各構成単位の割合を制御することができる。 The semi-aromatic polyamide resin (A) can be produced by a conventionally known method, and can be easily synthesized, for example, by subjecting a raw material monomer to a polycondensation reaction. The order of the polycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or some raw material monomers may be reacted first, and then the remaining raw material monomers may be reacted. The polymerization method is not particularly limited, but the process from the preparation of the raw material to the production of the polymer may be carried out in a continuous step, the oligomer is once prepared, and then the polymerization is carried out in another step by an extruder or the like, or the oligomer is solidified. A method such as increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the ratio of each structural unit in the synthesized copolymer polyamide can be controlled.
 半芳香族ポリアミド樹脂(A)を製造する際に使用する触媒としては、リン酸、亜リン酸、次亜リン酸もしくはその金属塩やアンモニウム塩、エステルが挙げられる。金属塩の金属種としては、具体的には、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモンなどが挙げられる。エステルとしては、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどが挙げられる。また、溶融滞留安定性向上の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等のアルカリ化合物を添加することが好ましい。 Examples of the catalyst used in producing the semi-aromatic polyamide resin (A) include phosphoric acid, phosphorous acid, hypophosphoric acid or its metal salt, ammonium salt, and ester. Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony. Examples of the ester include ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like. Further, from the viewpoint of improving melt retention stability, it is preferable to add an alkaline compound such as sodium hydroxide, potassium hydroxide, or magnesium hydroxide.
 半芳香族ポリアミド樹脂(A)の96%濃硫酸中20℃で測定した相対粘度(RV)は0.4~4.0であることが好ましく、より好ましくは1.0~3.0、さらに好ましくは1.5~2.5である。ポリアミドの相対粘度を一定範囲とする方法としては、分子量を調整する手段が挙げられる。 The relative viscosity (RV) of the semi-aromatic polyamide resin (A) measured at 20 ° C. in 96% concentrated sulfuric acid is preferably 0.4 to 4.0, more preferably 1.0 to 3.0, and further. It is preferably 1.5 to 2.5. As a method for keeping the relative viscosity of the polyamide within a certain range, a means for adjusting the molecular weight can be mentioned.
 半芳香族ポリアミド樹脂(A)の酸価およびアミン価としては、それぞれ0~200eq/トン、0~100eq/tonであることが好ましい。末端官能基が200eq/tonを超えると、溶融滞留時にゲル化や劣化が促進されるだけでなく、使用環境下においても、着色や加水分解等の問題を引き起こす。一方、ガラス繊維やマレイン酸変性ポリオレフィンなどの反応性化合物をコンパウンドする際は、反応性および反応基に合わせ、酸価および/又はアミン価を5~100eq/tonとすることが好ましい。 The acid value and amine value of the semi-aromatic polyamide resin (A) are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively. If the terminal functional group exceeds 200 eq / ton, not only gelation and deterioration are promoted during melt retention, but also problems such as coloring and hydrolysis are caused even in the usage environment. On the other hand, when compounding a reactive compound such as glass fiber or maleic acid-modified polyolefin, the acid value and / or amine value is preferably 5 to 100 eq / ton according to the reactivity and the reactive group.
 半芳香族ポリアミド樹脂(A)は、アミノ基量とカルボキシル基量とのモル比を調整して重縮合する方法や末端封止剤を添加する方法によって、ポリアミドの末端基量および分子量を調整することができる。アミノ基量とカルボキシル基量とのモル比を一定比率で重縮合する場合には、使用する全ジアミンと全ジカルボン酸のモル比(ジアミン/ジカルボン酸)を1.00/1.10から1.10/1.00の範囲に調整することが好ましい。 The semi-aromatic polyamide resin (A) adjusts the terminal group weight and molecular weight of the polyamide by a method of polycondensing by adjusting the molar ratio of the amino group amount and the carboxyl group amount and a method of adding a terminal sealant. be able to. When the molar ratio of amino group amount and carboxyl group amount is polycondensed at a constant ratio, the molar ratio of total diamine to total dicarboxylic acid (diamine / dicarboxylic acid) to be used is 1.00 / 1.10 to 1. It is preferable to adjust to the range of 10 / 1.00.
 末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合後期、または重合終了時が挙げられる。末端封止剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、モノカルボン酸またはモノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを使用することができる。末端封止剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、無水マレイン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン等が挙げられる。 Examples of the timing for adding the end-capping agent include the time when the raw material is charged, the time when the polymerization starts, the time when the polymerization is delayed, or the time when the polymerization ends. The terminal encapsulant is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at the end of polyamide, but monocarboxylic acid or an acid anhydride such as monoamine or phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used. Examples of the terminal encapsulant include aliphatic products such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid. Alicyclic monocarboxylic acids such as carboxylic acids and cyclohexanecarboxylic acids, benzoic acids, toluic acids, α-naphthalenecarboxylic acids, β-naphthalenecarboxylic acids, methylnaphthalenecarboxylic acids, aromatic monocarboxylic acids such as phenylacetic acid, maleine anhydride Acid anhydrides such as acid, phthalic anhydride, hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine and the like. Examples thereof include alicyclic monoamines such as aliphatic monoamines, cyclohexylamines and dicyclohexylamines, and aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
 半芳香族ポリアミド樹脂(A)は、本発明のポリアミド樹脂組成物全体において20~70質量%の割合で存在することが必要であり、好ましくは25~55質量%の割合で存在する。半芳香族ポリアミド樹脂(A)の割合が上記下限未満であると、機械的強度が低くなり、上記上限を超えると、他の成分の配合量が不足し、所望の効果が得られにくくなる。 The semi-aromatic polyamide resin (A) needs to be present in a proportion of 20 to 70% by mass, preferably in a proportion of 25 to 55% by mass, in the entire polyamide resin composition of the present invention. If the proportion of the semi-aromatic polyamide resin (A) is less than the above lower limit, the mechanical strength is lowered, and if it exceeds the above upper limit, the blending amount of other components is insufficient, and it becomes difficult to obtain the desired effect.
 ハロゲン基含有難燃剤(B)は、本発明のポリアミド樹脂により形成された成形体に難燃性を付与するために配合されるものであり、本発明のポリアミド樹脂組成物全体において5~15質量%の割合で存在することが必要であり、好ましくは7~13質量%の割合で存在する。ハロゲン基含有難燃剤(B)としては、例えば、テトラブロモビスフェノールA(TBBA)、デカブロモジフェニルエーテル(Deca-BDE)、トリブロモフェール、ヘキサブロモシクロドデカン(HBCD)、エチレンビス(テトラブロモフタルイミド)、TBBAカーボネート・オリゴマー、TBBAエポキシ・オリゴマー、臭素化ポリスチレン、ビス(ペンタブロモフェニル)エタン、TBBA-ビス(ジブロモプロピルエーテル)、ヘキサブロモベンゼン(HBB)が挙げられる。特に、環境面での安全性、加工時における安定性の観点から臭素化ポリスチレンが好ましい。さらに好ましくは、他のハロゲン基含有難燃剤を併用せず、臭素化ポリスチレンのみを使用することである。臭素化ポリスチレンは、臭素含有量が62~72質量%であり、重量平均分子量が4000~8000であり、かつ分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))が1.05~1.40であることが好ましい。重量平均分子量が上記範囲より低いと、熱安定性が低下して加工時の腐食ガス発生量が増える傾向があり、上記範囲を越えると、射出成形時の流動性に劣る傾向がある。 The halogen group-containing flame retardant (B) is blended to impart flame retardancy to the molded product formed of the polyamide resin of the present invention, and has a mass of 5 to 15 in the entire polyamide resin composition of the present invention. It needs to be present in a proportion of%, preferably present in a proportion of 7 to 13% by mass. Examples of the halogen group-containing flame retardant (B) include tetrabromobisphenol A (TBBA), decabromodiphenyl ether (Deca-BDE), tribromofer, hexabromocyclododecane (HBCD), and ethylenebis (tetrabromophthalimide). Included are TBBA carbonate oligomers, TBBA epoxy oligomers, brominated polystyrene, bis (pentabromophenyl) ethane, TBBA-bis (dibromopropyl ether), hexabromobenzene (HBB). In particular, brominated polystyrene is preferable from the viewpoint of environmental safety and stability during processing. More preferably, only brominated polystyrene is used without using other halogen group-containing flame retardants in combination. The brominated polystyrene has a bromine content of 62 to 72% by mass, a weight average molecular weight of 4000 to 8000, and a molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of 1.05 to It is preferably 1.40. If the weight average molecular weight is lower than the above range, the thermal stability tends to decrease and the amount of corrosive gas generated during processing tends to increase, and if it exceeds the above range, the fluidity during injection molding tends to be inferior.
 金属塩系難燃助剤(C)は、スズ酸亜鉛、ホウ酸亜鉛、リン酸亜鉛、ホウ酸カルシウム、及びモリブデン酸カルシウムからなる群から選択される少なくとも1種の金属化合物であり、ハロゲン基含有難燃剤(B)と組み合わせることにより、ハロゲン基含有難燃剤(B)の難燃性をより高度に発現するために配合するものである。これらの金属塩系難燃助剤は、従来から使用されている難燃助剤であり、後述の金属酸化物(E)とは異なる役割を有するものである。特にスズ酸亜鉛、ホウ酸亜鉛、リン酸亜鉛を主体とした金属塩系難燃助剤が、安定性及び本発明の効果から好ましい。 The metal salt-based flame retardant (C) is at least one metal compound selected from the group consisting of zinc nitrate, zinc borate, zinc phosphate, calcium borate, and calcium molybdate, and has a halogen group. By combining with the flame retardant (B) contained, it is blended in order to develop the flame retardancy of the flame retardant (B) containing a halogen group to a higher degree. These metal salt-based flame retardant aids are conventionally used flame retardant aids and have a role different from that of the metal oxide (E) described later. In particular, a metal salt-based flame retardant aid mainly composed of zinc nitrate, zinc borate, and zinc phosphate is preferable from the viewpoint of stability and the effect of the present invention.
 ポリアミド樹脂組成物中の金属塩系難燃助剤(C)の配合量は、0.5~15質量%であり、1.0~12質量%が好ましく、2.0~10質量%がより好ましい。金属塩系難燃助剤(C)の配合量が上記下限未満であると、目標とする高度な難燃性が得られず、上記上限を超えると、物性の大幅な低下やコンパウンド時の連続生産性が低下する可能性があり、好ましくない。 The blending amount of the metal salt-based flame retardant aid (C) in the polyamide resin composition is 0.5 to 15% by mass, preferably 1.0 to 12% by mass, and more preferably 2.0 to 10% by mass. preferable. If the blending amount of the metal salt-based flame retardant aid (C) is less than the above lower limit, the target high flame retardancy cannot be obtained, and if it exceeds the above upper limit, the physical properties are significantly reduced and continuous compounding is performed. It is not preferable because it may reduce productivity.
 無機強化材(D)は、ポリアミド樹脂組成物の成形性と成形品の強度を向上するために配合されるものであり、繊維状強化材及び針状強化材から選択される少なくとも1種を使用することが好ましい。繊維状強化材としては、例えばガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維などが挙げられ、針状強化材としては、例えばチタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイトなどが挙げられる。ガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面ガラス繊維の直径は20μm以下が好ましく、より好ましくは15μm以下、さらに好ましくは10μm以下である。また、物性面や流動性より非円形断面のガラス繊維が好ましいが、コスト面では円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。また、繊維状強化材はポリアミド樹脂との親和性を向上させるため、有機処理やカップリング剤処理したもの、または溶融コンパウンド時にカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。 The inorganic reinforcing material (D) is blended to improve the moldability of the polyamide resin composition and the strength of the molded product, and at least one selected from the fibrous reinforcing material and the needle-shaped reinforcing material is used. It is preferable to do so. Examples of the fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, metal fiber and the like, and examples of the needle-like reinforcing material include potassium titanate whiskers, aluminum borate whiskers, zinc oxide whiskers and carbon dioxide. Calcium whiskers, magnesium sulfate whiskers, wallastnite and the like can be mentioned. As the glass fiber, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. The diameter of the circular cross-section glass fiber is preferably 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less. Further, a glass fiber having a non-circular cross section is preferable in terms of physical properties and fluidity, but a glass fiber having a circular cross section is preferable in terms of cost. The glass fiber having a non-circular cross section includes those having a substantially elliptical shape, a substantially oval shape, and a substantially cocoon shape in a cross section perpendicular to the length direction of the fiber length, and has a flatness of 1.5 to 8. Is preferable. Here, the flatness is assumed to be a rectangle having the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of this rectangle is the major axis, and the length of the short side is the minor axis. This is the ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 μm and the major axis is about 2 to 100 μm. Further, the glass fibers are preferably used in the form of chopped strands cut into fiber bundles having a fiber length of about 1 to 20 mm. Further, in order to improve the affinity of the fibrous reinforcing material with the polyamide resin, it is preferable to use an organically treated material, a coupling agent treated material, or a coupling agent at the time of melt compounding, and the coupling agent is a silane type. Any of a coupling agent, a titanate-based coupling agent, and an aluminum-based coupling agent may be used, and among them, an aminosilane coupling agent and an epoxysilane coupling agent are particularly preferable.
 ポリアミド樹脂組成物中の無機強化材(D)の配合割合は、力学特性を十分に発揮させるため、20~60質量%であることが必要である。この配合割合は、23~57質量%が好ましく、25~55質量%がより好ましい。配合割合が上記下限未満であると、成形品の機械的強度が低下し、上記上限を超えると、押出性や成形加工性が低下する可能性があり、好ましくない。 The blending ratio of the inorganic reinforcing material (D) in the polyamide resin composition needs to be 20 to 60% by mass in order to fully exhibit the mechanical properties. The blending ratio is preferably 23 to 57% by mass, more preferably 25 to 55% by mass. If the blending ratio is less than the above lower limit, the mechanical strength of the molded product is lowered, and if it exceeds the above upper limit, the extrudability and the moldability may be lowered, which is not preferable.
 金属酸化物(E)は、ビスマスの酸化物である。金属酸化物(E)は、金属塩系難燃助剤(C)とは異なる温度域においてハロゲン基含有難燃剤の分解を促進させるため、金属塩系難燃助剤(C)とのコンビネーションにより、幅広い燃焼温度域においてハロゲン基含有難燃剤の分解と、それに伴う難燃ガスの発生が可能となり、優れた難燃効果を発現することができる。一方、金属酸化物(E)を追加配合しても、成形加工時のハロゲン基含有難燃剤由来のハロゲンガスの発生は促進されることはない。これは、金属酸化物(E)がハロゲン基含有難燃剤の分解を促進させる温度域は、成形加工の温度域よりも高いからである。従って、本発明によれば、従来の難燃助剤に加えて金属酸化物(E)を追加配合することにより、燃焼時のハロゲン基含有難燃剤の分解を促進させて、燃焼時に要求される難燃ガスの発生を幅広い燃焼温度域において可能にすることにより、ハロゲン基含有難燃剤の難燃効果を十分に発揮させることができる。その結果として、ハロゲン基含有難燃剤の使用量を減少させても優れた難燃性を維持することができる。そして、ハロゲン基含有難燃剤の使用量の減少により、成形加工時の加熱によるハロゲン基含有難燃剤由来の望ましくないハロゲンガスの発生量を低減することができ、金型腐食を効果的に低減することができる。このような作用効果を有する金属酸化物としては、酸化ビスマス以外に様々なものが存在するが、硬度が高い金属酸化物を使用すると、無機強化材を必要以上に折ってしまい、機械物性の観点から適さない。かかる観点から酸化ビスマスは、極めて好適である。 The metal oxide (E) is an oxide of bismuth. The metal oxide (E) is combined with the metal salt-based flame retardant (C) in order to promote the decomposition of the halogen group-containing flame retardant in a temperature range different from that of the metal salt-based flame retardant (C). In a wide combustion temperature range, the halogen group-containing flame retardant can be decomposed and the flame retardant gas can be generated accordingly, and an excellent flame retardant effect can be exhibited. On the other hand, even if the metal oxide (E) is additionally blended, the generation of halogen gas derived from the halogen group-containing flame retardant during the molding process is not promoted. This is because the temperature range in which the metal oxide (E) promotes the decomposition of the halogen group-containing flame retardant is higher than the temperature range in the molding process. Therefore, according to the present invention, by additionally blending the metal oxide (E) in addition to the conventional flame retardant aid, the decomposition of the halogen group-containing flame retardant during combustion is promoted, which is required at the time of combustion. By enabling the generation of flame-retardant gas in a wide combustion temperature range, the flame-retardant effect of the halogen group-containing flame retardant can be fully exhibited. As a result, excellent flame retardancy can be maintained even if the amount of the halogen group-containing flame retardant used is reduced. By reducing the amount of the halogen group-containing flame retardant used, it is possible to reduce the amount of unwanted halogen gas generated from the halogen group-containing flame retardant due to heating during the molding process, effectively reducing mold corrosion. be able to. There are various metal oxides having such an action effect other than bismuth oxide, but if a metal oxide having high hardness is used, the inorganic reinforcing material is broken more than necessary, and from the viewpoint of mechanical properties. Not suitable for. From this point of view, bismuth oxide is extremely suitable.
 ポリアミド樹脂組成物中の金属酸化物(E)の配合割合は、0.5~5質量%であることが必要であり、0.5~4.5質量%であることが好ましく、1~4質量%であることがより好ましい。この配合割合が上記下限未満であると、目標とする高度な難燃性が得られず、上記上限を超えると、物性の大幅な低下やコンパウンド時の連続生産性が低下する可能性があり、好ましくない。 The blending ratio of the metal oxide (E) in the polyamide resin composition needs to be 0.5 to 5% by mass, preferably 0.5 to 4.5% by mass, and 1 to 4%. More preferably, it is by mass%. If this compounding ratio is less than the above lower limit, the target high flame retardancy cannot be obtained, and if it exceeds the above upper limit, the physical properties may be significantly reduced and the continuous productivity at the time of compounding may be lowered. Not preferred.
 本発明のポリアミド樹脂組成物には、上記の(A)~(E)の成分以外に、従来の電気電子部品用ポリアミド樹脂組成物の各種添加剤を配合することができる。添加剤としては、テトラフルオロエチレン(PTFE)などのドリップ防止剤、安定剤、衝撃改良材、離型剤、摺動性改良材、着色剤、可塑剤、結晶核剤、半芳香族ポリアミド樹脂(A)とは異なる組成のポリアミド、ポリアミド以外の熱可塑性樹脂などが挙げられる。これら成分のポリアミド樹脂組成物中の可能な配合量は、下記に説明する通りであるが、これら成分の合計は、ポリアミド樹脂組成物中、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。 In addition to the above components (A) to (E), various additives of the conventional polyamide resin composition for electrical and electronic parts can be added to the polyamide resin composition of the present invention. As additives, drip inhibitor such as tetrafluoroethylene (PTFE), stabilizer, impact improver, mold release agent, slidability improver, colorant, plasticizer, crystal nucleating agent, semi-aromatic polyamide resin ( Examples thereof include polyamides having a composition different from that of A), thermoplastic resins other than polyamides, and the like. The possible blending amounts of these components in the polyamide resin composition are as described below, but the total of these components is preferably 30% by mass or less, more preferably 20% by mass or less in the polyamide resin composition. It is more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
 本発明の難燃性ポリアミド樹脂組成物は、上述のような構成の組成を採用することにより、優れた難燃性と金型腐食の低減を両立できるだけでなく、従来の難燃剤の組み合わせで見られた、実使用環境下における成形品表面のブリード物生成を高いレベルで抑制することが可能であり、かつ成形時には流動性を示す。さらに、高い融点と低い水中平衡吸水率を特徴とする半芳香族ポリアミド樹脂(A)を使用することにより、高度な難燃性に加えて、高融点で高耐熱性であり、吸水時の力学特性低下や寸法変化を抑制するなど優れた特性を持った難燃性ポリアミド樹脂組成物を得ることができ、ユーザーニーズを高度に満たす製品を供給することが可能となる。 By adopting the composition having the above-mentioned structure, the flame-retardant polyamide resin composition of the present invention can achieve both excellent flame retardancy and reduction of mold corrosion, and can be seen by combining conventional flame retardants. It is possible to suppress the formation of bleeds on the surface of the molded product at a high level under the actual usage environment, and it exhibits fluidity during molding. Furthermore, by using a semi-aromatic polyamide resin (A) characterized by a high melting point and low equilibrium water absorption in water, in addition to high flame retardancy, it has a high melting point and high heat resistance, and its dynamics during water absorption. It is possible to obtain a flame-retardant polyamide resin composition having excellent properties such as suppressing deterioration of properties and dimensional changes, and it is possible to supply a product that highly meets user needs.
 本発明のポリアミド樹脂組成物は、上述の各構成成分を従来公知の方法で配合することにより製造されることができる。例えば、半芳香族ポリアミド樹脂(A)の重縮合反応時に各成分を添加したり、半芳香族ポリアミド樹脂(A)とその他の成分をドライブレンドしたり、または、二軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。 The polyamide resin composition of the present invention can be produced by blending each of the above-mentioned constituent components by a conventionally known method. For example, each component may be added during the polycondensation reaction of the semi-aromatic polyamide resin (A), the semi-aromatic polyamide resin (A) and other components may be dry-blended, or a twin-screw screw type extruder may be used. Examples thereof include a method of melt-kneading each component by using.
 本発明のポリアミド樹脂組成物は、押出成形、射出成形、圧縮成形などの従来公知の方法で成形することができる。本発明のポリアミド樹脂組成物は、成形加工時にハロゲン基含有難燃剤由来のハロゲンガスがほとんど発生しないため、金型腐食の問題を生じない。形成された成形体は、耐熱性や難燃性、加工性に優れたものであり、種々の用途に使用することができる。具体的には、コネクターやスイッチなどの各種電気電子部品、筐体部品などが好適である。 The polyamide resin composition of the present invention can be molded by conventionally known methods such as extrusion molding, injection molding, and compression molding. Since the polyamide resin composition of the present invention hardly generates halogen gas derived from a halogen group-containing flame retardant during the molding process, the problem of mold corrosion does not occur. The formed molded product is excellent in heat resistance, flame retardancy, and processability, and can be used for various purposes. Specifically, various electrical and electronic parts such as connectors and switches, housing parts, and the like are suitable.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The measured values described in the examples were measured by the following methods.
(1)相対粘度
 ポリアミド樹脂0.25gを96%硫酸25mlに溶解し、オストワルド粘度計を用いて20℃で相対粘度を測定した。
(1) Relative Viscosity 0.25 g of the polyamide resin was dissolved in 25 ml of 96% sulfuric acid, and the relative viscosity was measured at 20 ° C. using an Ostwald viscometer.
(2)融点(Tm)
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は35℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。得られた成型品の融点(Tm)を測定するために、成型品の一部をアルミニウム製パンに5mg計量し、アルミニウム製蓋で密封状態にして、測定試料を調製した後、示差走査熱量計(SEIKO INSTRUMENTS製 SSC/5200)を用いて、窒素雰囲気で室温から20℃/分で昇温し、樹脂の融点+30℃まで測定を実施した。その際、得られる融解による吸熱のピークのうち、最も低温側に観察されるピークトップ温度を融点(Tm)とした。
(2) Melting point (Tm)
Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 35 ° C, and a test for UL combustion test with a length of 127 mm, a width of 12.6 mm, and a thickness of 0.8 mmt. The piece was injection molded to prepare a test piece. In order to measure the melting point (Tm) of the obtained molded product, a part of the molded product is weighed in an aluminum pan in an amount of 5 mg, sealed with an aluminum lid, a measurement sample is prepared, and then a differential scanning calorimeter is used. Using (SSC / 5200 manufactured by SEIKO INSTRUMENTS), the temperature was raised from room temperature to 20 ° C./min in a nitrogen atmosphere, and measurements were carried out up to the melting point of the resin + 30 ° C. At that time, among the peaks of endothermic heat due to melting obtained, the peak top temperature observed on the lowest temperature side was defined as the melting point (Tm).
(3)水中平衡吸水率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は135℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を140℃の雰囲気下で2時間アニール処理した後、重量を測定し、このときの重量を乾燥時の重量とした。さらに、アニール処理した試験片を80℃熱水中に50時間浸漬させた後、重量を測定し、このときの重量を飽和吸水時の重量とした。上述の方法で測定した飽和吸水時及び乾燥時の重量から、以下の式より水中平衡吸水率を求めた。
 水中平衡吸水率(%)={(飽和吸水時の重量-乾燥時の重量)/乾燥時の重量}×100
(3) Equilibrium water absorption in water Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., the cylinder temperature is set to the melting point of the resin + 20 ° C. and the mold temperature is set to 135 ° C., and a flat plate of 100 mm in length, 100 mm in width and 1 mm in thickness is injected. It was molded to prepare a test piece for evaluation. After annealing this test piece in an atmosphere of 140 ° C. for 2 hours, the weight was measured, and the weight at this time was taken as the weight at the time of drying. Further, the annealed test piece was immersed in hot water at 80 ° C. for 50 hours, and then the weight was measured, and the weight at this time was taken as the weight at the time of saturated water absorption. From the weights at the time of saturated water absorption and drying measured by the above method, the equilibrium water absorption rate in water was obtained from the following formula.
Equilibrium water absorption in water (%) = {(weight during saturated water absorption-weight during drying) / weight during drying} x 100
(4)引張強度
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は135℃に設定し、ISO 527-1、2に準拠し、評価用試験片を作製した。作製した試験片を用いて、ISO 527-1、2に準拠し、引張物性評価を実施し、引張強度を測定した。引張強度を以下の基準にて判定した。
 ○:引張強度≧140MPa
 ×:引張強度<140MPa
(4) Tensile strength Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., the cylinder temperature was set to the melting point of the resin + 20 ° C. and the mold temperature was set to 135 ° C. Was produced. Using the prepared test pieces, tensile physical properties were evaluated and tensile strength was measured in accordance with ISO 527-1 and ISO 527-1. The tensile strength was judged according to the following criteria.
◯: Tensile strength ≧ 140 MPa
X: Tensile strength <140 MPa
(5)引張伸度
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は135℃に設定し、ISO 527-1、2に準拠し、評価用試験片を作製した。作製した試験片を用いて、ISO 527-1、2に準拠し、引張物性評価を実施し、引張伸度を測定した。
(5) Tensile elongation Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., the cylinder temperature was set to the melting point of the resin + 20 ° C. and the mold temperature was set to 135 ° C. Pieces were made. Using the prepared test piece, the tensile physical properties were evaluated and the tensile elongation was measured in accordance with ISO 527-1 and ISO 527-1.
(6)難燃性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は135℃に設定し、縦127mm、横12.7mm、厚み0.8mmの評価用試験片を射出成形により作製した。この試験片を用いて、UL-94垂直燃焼試験に準拠し、試験片本数は10本で評価を実施した。ドリップ着火発生本数のカウント、ならびにドリップしなかった試験片の燃焼時間から5本合計燃焼時間を算出し、以下の判断基準に従って評価した。
 ○:ドリップ着火発生無、かつ5本合計燃焼時間50秒以下。
 ×:ドリップ着火発生有、または5本合計燃焼時間50秒超。
(6) Using a flame-retardant injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., the cylinder temperature is set to the melting point of the resin + 20 ° C. and the mold temperature is set to 135 ° C., and the length is 127 mm, the width is 12.7 mm, and the thickness is 0.8 mm. An evaluation test piece was prepared by injection molding. Using this test piece, the evaluation was carried out with 10 test pieces in accordance with the UL-94 vertical combustion test. The total burning time of 5 pieces was calculated from the count of the number of drip ignition occurrences and the burning time of the test pieces that did not drip, and evaluated according to the following criteria.
◯: No drip ignition occurred, and the total burning time of 5 pieces was 50 seconds or less.
X: Drip ignition has occurred, or the total burning time of 5 pieces exceeds 50 seconds.
(7)金型腐食耐性
 アルミ箔の上にφ900mmの範囲で樹脂ペレット10gを置き、ペレット上部に20mm×50mm×2mm厚みのガラス板を乗せ、その上に10mm×30mm×1mm厚みの銅版を乗せ、φ900mmのガラスシャーレの蓋を被せた。これを330℃のホットプレートの上で15分間熱処理した後、銅板の表面状態を目視観察し、以下の判断基準に従って評価した。
 ○:腐食なし。銅板の変色がなく、堆積物が殆どない状態。
 △:若干腐食あり。銅板が青く変色し、堆積物が少量ある状態。
 ×:腐食あり。銅板が茶色に変色し、堆積物が多量にある状態。
(7) Mold corrosion resistance Place 10 g of resin pellets in the range of φ900 mm on aluminum foil, place a glass plate with a thickness of 20 mm × 50 mm × 2 mm on the pellets, and place a copper plate with a thickness of 10 mm × 30 mm × 1 mm on it. , Φ900 mm covered with a glass petri dish. This was heat-treated on a hot plate at 330 ° C. for 15 minutes, and then the surface condition of the copper plate was visually observed and evaluated according to the following criteria.
◯: No corrosion. There is no discoloration of the copper plate and there is almost no deposit.
Δ: There is some corrosion. The copper plate turns blue and there is a small amount of deposits.
×: Corroded. The copper plate turns brown and there is a large amount of deposits.
(8)MI(メルトフローインデックス)
 ISO1133に準拠し、シリンダー温度330℃、荷重2.16kgに設定し、流動性評価を実施した。
(8) MI (melt flow index)
In accordance with ISO1133, the cylinder temperature was set to 330 ° C. and the load was set to 2.16 kg, and the fluidity evaluation was carried out.
(9)耐ブリードアウト性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は135℃に設定し、縦100×横100×厚み1mmの平板を射出成形し、評価用試験片を作成した。この評価用試験片を80℃85%RH(相対湿度)の雰囲気下に200時間静置した後、試験片表面のブリード物の生成状況を目視にて、以下の判断基準で確認した。
 ○:ブリード物生成なし。
 ×:ブリード物生成あり。
(9) Bleed-out resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 135 ° C, and a flat plate of length 100 x width 100 x thickness 1 mm is injected. It was molded and a test piece for evaluation was prepared. After allowing this evaluation test piece to stand in an atmosphere of 80 ° C. and 85% RH (relative humidity) for 200 hours, the state of bleeding on the surface of the test piece was visually confirmed according to the following criteria.
◯: No bleeding was generated.
×: Bleed product is generated.
半芳香族ポリアミド樹脂(A)の合成
 実施例、比較例で使用する半芳香族ポリアミド樹脂(A)として、以下の二種類の半芳香族ポリアミド樹脂(A-1)、(A-2)を合成した。
Synthesis of Semi-Aromatic Polyamide Resin (A) As the semi-aromatic polyamide resin (A) used in Examples and Comparative Examples, the following two types of semi-aromatic polyamide resins (A-1) and (A-2) are used. Synthesized.
<半芳香族ポリアミド樹脂(A-1)の合成>
 1,6-ヘキサメチレンジアミン7.54kg、テレフタル酸10.79kg、11-アミノウンデカン酸7.04kg、触媒として次亜リン酸ナトリウム9g、末端調整剤として酢酸40gおよびイオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、樹脂温度を335℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、半芳香族ポリアミド樹脂(A-1)を得た。得られた半芳香族ポリアミド樹脂(A)は、相対粘度2.02、融点315℃、酸価126eq/トン、アミン価22eq/トンであった。
<Synthesis of semi-aromatic polyamide resin (A-1)>
50 of 1,6-hexamethylenediamine 7.54 kg, terephthalic acid 10.79 kg, 11-aminoundecanoic acid 7.04 kg, sodium hypophosphate 9 g as a catalyst, acetic acid 40 g as a terminal regulator and ion-exchanged water 17.52 kg. It was charged to a liter autoclave, pressurized with N 2 from atmospheric pressure to 0.05 MPa, was relieved and returned to normal pressure. This operation was performed three times to perform N 2 substitution, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the pressure inside the can at 3 MPa to obtain a low-order condensate. After that, this low-order condensate is directly supplied to a twin-screw extruder (screw diameter 37 mm, L / D = 60) while maintaining the molten state, and the resin temperature is 335 ° C. while draining water from three vents. Polycondensation was carried out under melting to obtain a semi-aromatic polyamide resin (A-1). The obtained semi-aromatic polyamide resin (A) had a relative viscosity of 2.02, a melting point of 315 ° C., an acid value of 126 eq / ton, and an amine value of 22 eq / ton.
<半芳香族ポリアミド樹脂(A-2)の合成>
 1,6-ヘキサメチレンジアミン7.54kg、テレフタル酸10.79kg、11-アミノウンデカン酸7.04kg、触媒として次亜リン酸ナトリウム9g、末端調整剤として酢酸15gおよびイオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、樹脂温度を335℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、半芳香族ポリアミド樹脂(A-2)を得た。得られた半芳香族ポリアミド樹脂(A-2)は、相対粘度2.48、融点315℃、酸価98eq/トン、アミン価34eq/トンであった。
<Synthesis of semi-aromatic polyamide resin (A-2)>
50 of 1,6-hexamethylenediamine 7.54 kg, terephthalic acid 10.79 kg, 11-aminoundecanoic acid 7.04 kg, sodium hypophosphate 9 g as a catalyst, acetic acid 15 g as a terminal regulator and ion-exchanged water 17.52 kg. It was charged to a liter autoclave, pressurized with N 2 from atmospheric pressure to 0.05 MPa, was relieved and returned to normal pressure. This operation was performed three times to perform N 2 substitution, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 240 ° C. by a heating pipe, and heat was applied for 1 hour. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the pressure inside the can at 3 MPa to obtain a low-order condensate. After that, this low-order condensate is directly supplied to a twin-screw extruder (screw diameter 37 mm, L / D = 60) while maintaining the molten state, and the resin temperature is 335 ° C. while draining water from three vents. Polycondensation was carried out under melting to obtain a semi-aromatic polyamide resin (A-2). The obtained semi-aromatic polyamide resin (A-2) had a relative viscosity of 2.48, a melting point of 315 ° C., an acid value of 98 eq / ton, and an amine value of 34 eq / ton.
実施例1~9、比較例1~9
 表1に記載の成分と質量割合(質量部)で、東芝機械社製2軸押出機TEM26SSを用いて下記条件で、各半芳香族ポリアミド樹脂原料の融点+20℃で溶融混練し、実施例1~9、比較例1~9のポリアミド樹脂組成物を得た。各実施例、比較例のポリアミド樹脂組成物を用いて、上述の方法により性能評価を行なった。その結果を、表1に示す。
混練条件:スクリュー回転数200rpm
     吐出量20kg/h
     サイドフィーダーからガラス繊維(GF)投入、その他の原料はメ
     インフィーダー(MF)から投入
Examples 1-9, Comparative Examples 1-9
The components and mass ratios (parts by mass) shown in Table 1 were melt-kneaded at the melting point of each semi-aromatic polyamide resin raw material at a melting point of + 20 ° C. using a twin-screw extruder TEM26SS manufactured by Toshiba Machine Co., Ltd. under the following conditions, and Example 1 -9, Polyamide resin compositions of Comparative Examples 1-9 were obtained. Performance evaluation was performed by the above-mentioned method using the polyamide resin compositions of each Example and Comparative Example. The results are shown in Table 1.
Kneading conditions: Screw rotation speed 200 rpm
Discharge rate 20 kg / h
Glass fiber (GF) is input from the side feeder, and other raw materials are input from the main feeder (MF).
 なお、表1に記載した各成分の詳細は、以下の通りである。
半芳香族ポリアミド樹脂(A)
・半芳香族ポリアミド樹脂(A-1)(PA6T/11(ポリアミド6T/11)、融点:315℃、相対粘度:2.02、酸価126eq/トン、アミン価22eq/トン)
・半芳香族ポリアミド樹脂(A-2)(PA6T/11(ポリアミド6T/11)、融点:315℃、相対粘度:2.48、酸価98eq/トン、アミン価34eq/トン)
ハロゲン基含有難燃剤(B)
・臭素化ポリスチレン(albemarle社製 SAYTEX(登録商標)HP-3010PST、臭素含有量68%、Mw:5100、Mn:4500、Mw/Mn:1.14(ポリスチレン換算))
金属塩系難燃助剤(C)
・スズ酸亜鉛(日本軽金属社製 FLAMTARD S(登録商標))
無機強化材(D)
・ガラス繊維(日本電気ガラス(株)製、T-275H、円形断面)
金属酸化物(E)
・酸化ビスマス(Bi)(和光1級 和光純薬株式会社)
・酸化アルミニウム(Al)(和光1級 和光純薬株式会社)
・酸化チタン(TiO)(和光1級 和光純薬株式会社)
・酸化鉄(Fe)(和光1級 和光純薬株式会社)
・酸化亜鉛(ZnO)(和光1級 和光純薬株式会社)
・酸化スズ(SnO)(和光1級 和光純薬株式会社)
添加剤
・ドリップ防止剤:ポリテトラフルオロエチレン(ダイキン工業社製 ポリフロンMPA(登録商標)FA500H)
・タルク(林化成社製 KCM7500、粒径5.8μm)
・離型剤:モンタン酸エステル(クラリアント社製 LICOLUB(登録商標)WE 40)
・安定剤:3,9-Bis{2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl}-2,4,8,10-tetraoxaspiro[5.5]undecane(ADEKA社製 アデカスタブ(登録商標)AO-80)
The details of each component shown in Table 1 are as follows.
Semi-aromatic polyamide resin (A)
-Semi-aromatic polyamide resin (A-1) (PA6T / 11 (polyamide 6T / 11), melting point: 315 ° C., relative viscosity: 2.02, acid value 126 eq / ton, amine value 22 eq / ton)
-Semi-aromatic polyamide resin (A-2) (PA6T / 11 (polyamide 6T / 11), melting point: 315 ° C., relative viscosity: 2.48, acid value 98 eq / ton, amine value 34 eq / ton)
Halogen group-containing flame retardant (B)
Bromineized polystyrene (SAYTEX® HP-3010PST manufactured by albemarle, bromine content 68%, Mw: 5100, Mn: 4500, Mw / Mn: 1.14 (polystyrene conversion))
Metal salt flame retardant aid (C)
-Zinc tin (FLAMTALD S (registered trademark) manufactured by Nippon Light Metal Co., Ltd.)
Inorganic reinforcing material (D)
-Glass fiber (manufactured by NEC Glass Co., Ltd., T-275H, circular cross section)
Metal oxide (E)
・ Bismuth oxide (Bi 2 O 3 ) (Wako 1st grade Wako Pure Chemical Industries, Ltd.)
・ Aluminum oxide (Al 2 O 3 ) (Wako 1st grade Wako Pure Chemical Industries, Ltd.)
・ Titanium oxide (TiO 2 ) (Wako 1st grade Wako Pure Chemical Industries, Ltd.)
・ Iron oxide (Fe 2 O 3 ) (Wako 1st grade Wako Pure Chemical Industries, Ltd.)
・ Zinc oxide (ZnO) (Wako 1st grade Wako Pure Chemical Industries, Ltd.)
・ Tin oxide (SnO 2 ) (Wako 1st grade Wako Pure Chemical Industries, Ltd.)
Additives / anti-drip agents: Polytetrafluoroethylene (Polyflon MPA (registered trademark) FA500H manufactured by Daikin Industries, Ltd.)
・ Talc (KCM7500 manufactured by Hayashi Kasei Co., Ltd., particle size 5.8 μm)
-Release agent: Montanic acid ester (LICOLUB (registered trademark) WE 40 manufactured by Clariant AG)
Stabilizer: 3,9-Bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) trademark] -1,1-dimethyl} -2,4,8,10-terraoxaspiro [ 5.5] undecane (ADEKA ADEKA STAB (registered trademark) AO-80)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の要件を全て満たす実施例1~9はいずれも、高い耐熱性(融点)及び高い難燃性を有しながら、金型腐食性が低減されている。これに対して、比較例1は、金属酸化物(E)を配合しない代わりにハロゲン基含有難燃剤(B)の配合量を実施例1より増加させた例であり、難燃性には優れるが、金型腐食耐性に劣る。比較例2は、ハロゲン基含有難燃剤(B)の配合量は実施例1と同じままで金属酸化物(E)を配合しなかった例であり、金型腐食耐性には優れるが、難燃性に劣る。比較例3は、金属酸化物(E)の配合量が多すぎる例であり、樹脂粘度が小さくなりすぎるため、燃焼時にドリップ挙動が発生してしまい、難燃性に劣る。比較例4~8は、金属酸化物(E)として、本発明で規定する特定の金属酸化物以外のものを使用した例であり、いずれも難燃性に劣る。それに加えて、比較例4,5は、機械物性にも劣る。比較例9は、従来の難燃助剤である金属塩系難燃助剤(C)を配合せず、ハロゲン基含有難燃剤(B)と金属酸化物(E)のみを併用した例であり、難燃性に劣る。 As is clear from Table 1, all of Examples 1 to 9 satisfying all the requirements of the present invention have high heat resistance (melting point) and high flame retardancy, while the mold corrosiveness is reduced. On the other hand, Comparative Example 1 is an example in which the amount of the halogen group-containing flame retardant (B) blended is increased as compared with Example 1 instead of blending the metal oxide (E), and the flame retardancy is excellent. However, it is inferior in mold corrosion resistance. Comparative Example 2 is an example in which the amount of the halogen group-containing flame retardant (B) is the same as in Example 1 and the metal oxide (E) is not blended, and the mold corrosion resistance is excellent, but the flame retardant. Inferior in sex. Comparative Example 3 is an example in which the amount of the metal oxide (E) blended is too large, and the resin viscosity becomes too small, so that drip behavior occurs during combustion, and the flame retardancy is inferior. Comparative Examples 4 to 8 are examples in which a metal oxide (E) other than the specific metal oxide specified in the present invention is used, and all of them are inferior in flame retardancy. In addition, Comparative Examples 4 and 5 are also inferior in mechanical properties. Comparative Example 9 is an example in which only the halogen group-containing flame retardant (B) and the metal oxide (E) are used in combination without blending the metal salt-based flame retardant (C) which is a conventional flame retardant. , Inferior in flame retardancy.
 本発明の難燃性ポリアミド樹脂組成物は、高い耐熱性を有し、従来の難燃助剤に加えて特定の金属酸化物を使用することで、優れた難燃性を維持しながらもハロゲン基含有難燃剤の使用量を減少させることが可能である。そのため、成形加工時のハロゲン基含有難燃剤由来のハロゲンガスの発生量を低減でき、金型腐食を低減できる。さらに、成形時の流動性に優れ、高温多湿などの実使用環境下において成形品表面のブリード物生成を抑制することができ、ポリアミド樹脂の吸水に起因する強度低下や寸法変化も低減することができる。従って、本発明によれば、ユーザーニーズを高度に満足した成型品を工業的に有利に製造することができる。 The flame-retardant polyamide resin composition of the present invention has high heat resistance, and by using a specific metal oxide in addition to the conventional flame retardant aid, halogen while maintaining excellent flame retardancy. It is possible to reduce the amount of the group-containing flame retardant used. Therefore, the amount of halogen gas generated from the halogen group-containing flame retardant during the molding process can be reduced, and mold corrosion can be reduced. Furthermore, it has excellent fluidity during molding, can suppress the formation of bleeds on the surface of the molded product in an actual use environment such as high temperature and humidity, and can reduce strength reduction and dimensional change due to water absorption of the polyamide resin. can. Therefore, according to the present invention, it is possible to industrially advantageously produce a molded product that highly satisfies the user's needs.

Claims (8)

  1.  半芳香族ポリアミド樹脂(A)、ハロゲン基含有難燃剤(B)、スズ酸亜鉛、ホウ酸亜鉛、リン酸亜鉛、ホウ酸カルシウム、及びモリブデン酸カルシウムからなる群から選択される少なくとも1種の金属塩系難燃助剤(C)、無機強化材(D)、並びにビスマスの酸化物からなる金属酸化物(E)をそれぞれ20~70質量%、5~15質量%、0.5~15質量%、20~60質量%、及び0.5~5質量%の割合で含有することを特徴とする難燃性ポリアミド樹脂組成物。 At least one metal selected from the group consisting of semi-aromatic polyamide resin (A), halogen group-containing flame retardant (B), zinc tintate, zinc borate, zinc phosphate, calcium borate, and calcium molybdenate. 20 to 70% by mass, 5 to 15% by mass, and 0.5 to 15% by mass of the salt-based flame retardant (C), the inorganic reinforcing material (D), and the metal oxide (E) composed of the oxide of bismuth, respectively. A flame-retardant polyamide resin composition containing%, 20 to 60% by mass, and 0.5 to 5% by mass.
  2.  半芳香族ポリアミド樹脂(A)が、炭素数2~12のジアミンとテレフタル酸との等量モル塩から得られる構成単位を50モル%以上含み、かつ、炭素数11~18のアミノカルボン酸又は炭素数11~18のラクタムのうちの一種もしくは複数種を共重合してなるものであることを特徴とする請求項1に記載の難燃性ポリアミド樹脂組成物。 The semi-aromatic polyamide resin (A) contains 50 mol% or more of a structural unit obtained from an equal amount molar salt of a diamine having 2 to 12 carbon atoms and terephthalic acid, and is an aminocarboxylic acid or an aminocarboxylic acid having 11 to 18 carbon atoms. The flame-retardant polyamide resin composition according to claim 1, wherein one or a plurality of lactams having 11 to 18 carbon atoms are copolymerized.
  3.  半芳香族ポリアミド樹脂(A)が、(a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位50~99モル%と、(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位1~50モル%を構成成分とすることを特徴とする請求項1又は2に記載の難燃性ポリアミド樹脂組成物。 The semi-aromatic polyamide resin (A) is obtained from (a) 50 to 99 mol% of structural units obtained from the equimolar salts of hexamethylenediamine and terephthalic acid, and (b) 11-aminoundecanoic acid or undecanlactam. The flame-retardant polyamide resin composition according to claim 1 or 2, wherein the constituent unit is 1 to 50 mol%.
  4.  ハロゲン基含有難燃剤(B)が、臭素化ポリスチレンであることを特徴とする請求項1~3のいずれかに記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin composition according to any one of claims 1 to 3, wherein the halogen group-containing flame retardant (B) is brominated polystyrene.
  5.  臭素化ポリスチレンの臭素含有量が62~72質量%であり、重量平均分子量が4000~8000であり、かつ分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))が1.05~1.40であることを特徴とする請求項1~4のいずれかに記載の難燃性ポリアミド樹脂組成物。 The bromine content of brominated polystyrene is 62 to 72% by mass, the weight average molecular weight is 4000 to 8000, and the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) is 1.05 to 1. The flame-retardant polyamide resin composition according to any one of claims 1 to 4, wherein the composition is .40.
  6.  無機強化材(D)が、ガラス繊維であることを特徴とする請求項1~5のいずれかに記載の難燃性ポリアミド樹脂組成物。 The flame-retardant polyamide resin composition according to any one of claims 1 to 5, wherein the inorganic reinforcing material (D) is glass fiber.
  7.  請求項1~6のいずれかに記載の難燃性ポリアミド樹脂組成物を用いて形成されたことを特徴とする電気電子部品。 An electrical and electronic component formed by using the flame-retardant polyamide resin composition according to any one of claims 1 to 6.
  8.  請求項1~6のいずれかに記載の難燃性ポリアミド樹脂組成物を用いて形成されたことを特徴とする筐体部品。 A housing component formed by using the flame-retardant polyamide resin composition according to any one of claims 1 to 6.
PCT/JP2021/013483 2020-04-08 2021-03-30 Flame-retardant polyamide resin composition WO2021205938A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022514425A JPWO2021205938A1 (en) 2020-04-08 2021-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020069600 2020-04-08
JP2020-069600 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021205938A1 true WO2021205938A1 (en) 2021-10-14

Family

ID=78024008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013483 WO2021205938A1 (en) 2020-04-08 2021-03-30 Flame-retardant polyamide resin composition

Country Status (3)

Country Link
JP (1) JPWO2021205938A1 (en)
TW (1) TW202144496A (en)
WO (1) WO2021205938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656784A (en) * 2022-03-30 2022-06-24 珠海万通特种工程塑料有限公司 Flame-retardant semi-aromatic polyamide composite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843385B1 (en) * 1970-11-28 1973-12-18
JP2006265539A (en) * 2005-02-23 2006-10-05 Polyplastics Co Flame-retardant resin composition
JP2011074361A (en) * 2009-09-01 2011-04-14 Asahi Kasei Chemicals Corp Electric component containing polyamide composition
WO2015056765A1 (en) * 2013-10-18 2015-04-23 ユニチカ株式会社 Semi-aromatic polyamide resin composition, and molded product formed by molding same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843385B1 (en) * 1970-11-28 1973-12-18
JP2006265539A (en) * 2005-02-23 2006-10-05 Polyplastics Co Flame-retardant resin composition
JP2011074361A (en) * 2009-09-01 2011-04-14 Asahi Kasei Chemicals Corp Electric component containing polyamide composition
WO2015056765A1 (en) * 2013-10-18 2015-04-23 ユニチカ株式会社 Semi-aromatic polyamide resin composition, and molded product formed by molding same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656784A (en) * 2022-03-30 2022-06-24 珠海万通特种工程塑料有限公司 Flame-retardant semi-aromatic polyamide composite material and preparation method and application thereof
CN114656784B (en) * 2022-03-30 2023-11-28 珠海万通特种工程塑料有限公司 Flame-retardant semi-aromatic polyamide composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2021205938A1 (en) 2021-10-14
TW202144496A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP5800096B2 (en) Flame retardant polyamide resin composition
US6846868B2 (en) Polyamide composition
KR101530464B1 (en) Copolymer polyamide
KR101910698B1 (en) Thermoplastic resin composition for led reflector plates
JP3986889B2 (en) Polyamide composition
EP1262525A1 (en) Polyamide composition
WO2021193196A1 (en) Polyamide resin composition
KR20100115796A (en) Polyamide, polyamide composition and method for producing polyamide
JP5429966B2 (en) Automotive cooling system parts made of polyamide composition
JPWO2011074536A1 (en) Copolyamide
JP5042263B2 (en) Polyamide composition
JP2011074361A (en) Electric component containing polyamide composition
JPWO2017077901A1 (en) Semi-aromatic polyamide resin and method for producing the same
JP7141016B2 (en) Polyamide composition
WO2021205938A1 (en) Flame-retardant polyamide resin composition
JP2000086759A (en) Polyamide and its composition
JP2011080046A (en) Polyamide composition, molded product and electric part containing polyamide composition
JP2006002113A5 (en)
JP6210217B2 (en) Carbon fiber reinforced polyamide resin composition
JP7517344B2 (en) Inorganic reinforced semi-aromatic polyamide resin composition
WO2014132883A1 (en) Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component
JP2002309083A (en) Polyamide resin composition
JP5461052B2 (en) Polyamide composition
JP2001106906A (en) Polyamide resin composition
JP7514449B2 (en) Carbon fiber reinforced polyamide resin composition and molded article thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21783807

Country of ref document: EP

Kind code of ref document: A1