WO2014132883A1 - Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component - Google Patents

Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component Download PDF

Info

Publication number
WO2014132883A1
WO2014132883A1 PCT/JP2014/054121 JP2014054121W WO2014132883A1 WO 2014132883 A1 WO2014132883 A1 WO 2014132883A1 JP 2014054121 W JP2014054121 W JP 2014054121W WO 2014132883 A1 WO2014132883 A1 WO 2014132883A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
acid
flame
polyamide
mass
Prior art date
Application number
PCT/JP2014/054121
Other languages
French (fr)
Japanese (ja)
Inventor
誠 玉津島
順一 中尾
貴司 清水
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2014540667A priority Critical patent/JPWO2014132883A1/en
Publication of WO2014132883A1 publication Critical patent/WO2014132883A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the present invention relates to a non-halogen flame-retardant polyamide resin composition suitable for use in a surface-mount type electric / electronic component having excellent flame retardancy, low water absorption, solder heat resistance, and mechanical properties.
  • the polyamide resin as a raw material is not limited to electrical and electronic parts, but has flame retardancy based on the UL-94 standard depending on the location and environment of use.
  • various technical developments for imparting flame retardancy to polyamide resins have been performed so far.
  • a technique for flame-retarding a polyamide resin a combined use of a halogenated organic compound such as brominated polystyrene as a flame retardant and an antimony compound that works as a flame retardant aid is common.
  • this technology can provide excellent flame retardancy, it has problems such as generation of hydrogen halide during combustion and a large amount of smoke generation.
  • non-halogen flame retardant polyamide resins are being actively studied.
  • Patent Document 3 proposes a high flame retardancy to polyamide 66 by using a phosphorus compound containing melamine, melam, and melem, which are triazine compounds, as a structural unit as a flame retardant.
  • Non-halogen flame retardant polyamide resin compositions have been proposed.
  • Patent Document 4 proposes a non-halogen flame-retardant polyamide resin composition that imparts high flame retardancy to polyamide 12 that is a long-chain aliphatic polyamide by using a condensed or non-condensed phosphorus flame retardant. ing.
  • Non-halogen flame retardant resin composition corresponding to a surface mount type electric / electronic component
  • a thermoplastic flame retardant composition composed of 6T polyamide and polyphenylene sulfide is used as a flame retardant.
  • a non-halogen flame retardant thermoplastic resin composition having the above formula is proposed.
  • Patent Document 6 proposes a non-halogen flame retardant polyamide resin composition in which flame resistance is imparted to the polyamide 46 by the combined use of a nitrogen-containing compound and a phosphorus flame retardant.
  • these resin compositions have a high saturated water absorption of 6% or more, and absorb moisture in the atmosphere during transportation and storage of products, causing problems such as product blistering in the surface mounting process. Have.
  • Patent Document 7 proposes a flame retardant polyamide resin composition in which flame retardancy is imparted to polyamide 9T by using red phosphorus and magnesium hydroxide together without using a large amount of metal hydroxide.
  • this polyamide resin exhibits low water absorption and the problem of blistering in the surface mounting process found in 6T polyamide is extremely suppressed, the glass transition temperature of the resin is 130 ° C.
  • the mold temperature In order to complete crystallization, it is necessary to set the mold temperature to a high temperature of 140 ° C. or higher, and there is room for improvement in terms of moldability.
  • non-halogen flame retardant polyamide resins that have been proposed so far do not satisfy all of the mechanical properties, solder heat resistance, low water absorption, moldability, and flame retardancy, and are used with problems. It is the actual situation.
  • the present invention was devised in view of the above-mentioned problems of the prior art, and its purpose is to be used for a surface mount type electric / electronic component excellent in solder heat resistance, flame retardancy, low water absorption, and mechanical properties.
  • Another object of the present invention is to provide a flame retardant polyamide resin composition suitable for the above.
  • the present inventor has intensively studied the composition of polyamide that can impart flame retardancy while satisfying the characteristics as an electric / electronic component and can advantageously perform injection molding and reflow soldering process.
  • the present invention has been completed.
  • a flame-retardant polyamide resin composition for use in a surface-mounted electrical / electronic component wherein (a) a structural unit 55 to 75 mol% obtained from an equimolar salt of hexamethylenediamine and terephthalic acid; (B) a copolymerized polyamide resin (A) comprising 45 to 25 mol% of a structural unit obtained from 11-aminoundecanoic acid or undecane lactam, a flame retardant (B) comprising a metal salt of phosphinic acid, a nitrogen-containing phosphoric acid series Contains at least one reinforcing material (D) selected from the group consisting of a flame retardant (C) composed of a compound, a fibrous reinforcing material and an acicular reinforcing material, and a non-fibrous or non-acicular filling material (E) The total of the flame retardants (B) and (C) is 30 to 80
  • the flame retardant polyamide resin composition according to (1) wherein the polyamide resin composition has an underwater equilibrium water absorption of 3.0% or less.
  • the melting point (Tm) of the polyamide resin composition is 300 to 330 ° C, and the temperature-rising crystallization temperature (Tc1) is 90 to 120 ° C, as described in (1) or (2) Flame retardant polyamide resin composition.
  • the non-fibrous or non-needle filler (E) is talc, and is contained at a ratio of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the copolymerized polyamide resin (A).
  • the flame-retardant polyamide resin composition according to any one of (1) to (3).
  • the copolymerized polyamide resin (A) is (c) a structural unit obtained from an equivalent molar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, or an amino group other than the structural unit of (b).
  • the flame-retardant polyamide resin composition according to any one of (1) to (4), which contains up to 20 mol% of a structural unit obtained from carboxylic acid or lactam.
  • the flame-retardant polyamide resin composition of the present invention uses a specific copolymerized polyamide resin that is excellent in processability such as moldability during injection molding and solder heat resistance in addition to high heat resistance, low water absorption, and flame retardancy. Therefore, it is possible to industrially advantageously manufacture a surface mount type electric / electronic component that highly satisfies all necessary characteristics.
  • the polyamide resin composition of the present invention is intended to be used for surface-mounted electrical and electronic parts.
  • Examples of the surface mount type electric / electronic components include connectors, switches, IC / LED housings, sockets, relays, resistors, capacitors, coil bobbins, etc.
  • the polyamide resin composition of the present invention is all of these electric / electronic components. Can be manufactured by injection molding.
  • the copolymerized polyamide resin (A) is blended to realize excellent moldability in addition to high heat resistance, fluidity and low water absorption, and the component (a) corresponding to polyamide 6T and polyamide 11
  • a conventional 6T polyamide for example, polyamide 6T6I composed of terephthalic acid / isophthalic acid / hexamethylenediamine, polyamide composed of terephthalic acid / adipic acid / terephthalic acid
  • 6T66 polyamide 6T6I66 composed of terephthalic acid / isophthalic acid / adipic acid / hexamethylenediamine
  • polyamide 6T / M-5T composed of terephthalic acid / hexamethylenediamine / 2-methyl-1,5-pentamethylenediamine, terephthalic acid / hexa From methylenediamine / ⁇ -caprolactam
  • the component (a) corresponds to 6T polyamide obtained by co-condensation polymerization of hexamethylenediamine (6) and terephthalic acid (T) in an equimolar amount, and specifically, the following formula (I) It is represented by
  • the component (a) is a main component of the copolymerized polyamide resin (A) and has a role of imparting excellent heat resistance, mechanical properties, slidability and the like to the copolymerized polyamide resin (A).
  • the blending ratio of the component (a) in the copolymerized polyamide resin (A) is 55 to 75 mol%, preferably 60 to 70 mol%, more preferably 62 to 68 mol%.
  • the 6T polyamide that is a crystal component is subject to crystal inhibition by the copolymer component, which may lead to a decrease in moldability and high-temperature characteristics. Since melting
  • the component (b) corresponds to 11 polyamide obtained by polycondensation of 11-aminoundecanoic acid or undecane lactam, and is specifically represented by the following formula (II).
  • the component (b) is for improving water absorption and fluidity, which is a drawback of the component (a).
  • the moldability is adjusted by adjusting the melting point and the temperature rising crystallization temperature of the copolymerized polyamide resin (A). It has the role of improving, the role of reducing the water absorption rate to improve the trouble caused by changes in physical properties and dimensional changes at the time of water absorption, and the role of improving the fluidity at the time of melting by introducing a flexible skeleton.
  • the blending ratio of the component (b) in the copolymerized polyamide resin (A) is 45 to 25 mol%, preferably 40 to 30 mol%, more preferably 38 to 32 mol%.
  • the melting point of the copolymerized polyamide resin (A) is not sufficiently lowered, the moldability may be insufficient, and the water absorption rate of the obtained resin is reduced. The effect is insufficient, and there is a risk of instability of physical properties such as deterioration of mechanical properties upon water absorption.
  • the melting point of the copolymerized polyamide resin (A) is too low, the crystallization speed is slow, the moldability may be adversely affected, and the amount of the component (a) corresponding to 6T polyamide This is not preferable because there is a risk that mechanical properties and heat resistance may be insufficient.
  • the copolymerized polyamide resin (A) is (c) a structural unit obtained from an equivalent molar salt of diamine and dicarboxylic acid other than the structural unit of (a) above, or You may copolymerize the structural unit obtained from aminocarboxylic acid or lactam other than the structural unit of said (b) at maximum 20 mol%.
  • the component (c) has a role to give the copolymer polyamide resin (A) other characteristics that cannot be obtained by 6T polyamide or 11 polyamide, or to further improve the characteristics obtained by 6T polyamide or 11 polyamide. Specific examples include the following copolymerization components.
  • diamine component examples include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6-hexa Methylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1,11 Undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2, 4,4) -aliphatic diamines such as trimethylhexamethylenediamine, piperazine, Cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-amin
  • dicarboxylic acid component the following dicarboxylic acids or acid anhydrides can be used.
  • dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyldicarboxylic acid.
  • 4,4'-diphenyl ether dicarboxylic acid 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid and other aromatic dicarboxylic acids, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 2-Cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexa Dicarboxylic acids, such as aliphatic or alicyclic dicarboxylic acids such as dimer acid. Further, lactams such as ⁇ -caprolactam and 12-lauryl lactam, and
  • component (c) examples include polycaproamide (polyamide 6), polydodecanamide (polyamide 12), polytetramethylene adipamide (polyamide 46), polyhexamethylene adipamide (polyamide 66), polyun Decamethylene adipamide (polyamide 116), polymetaxylylene adipamide (polyamide MXD6), polyparaxylylene adipamide (polyamide PXD6), polytetramethylene sebamide (polyamide 410), polyhexamethylene sebacamide (Polyamide 610), polydecamethylene adipamide (polyamide 106), polydecamethylene sebamide (polyamide 1010), polyhexamethylene dodecamide (polyamide 612), polydecamethylene dodecamide (polyamide 1012), polyhexamethy Isophthalamide (polyamide 6I), polytetramethylene terephthalamide (polyamide 4T), polypentamethylene terephthalamide
  • examples of a preferable component (c) include polyhexamethylene adipamide for imparting high crystallinity to the copolymerized polyamide resin (A), and poly (polyethylene) for imparting further low water absorption.
  • examples include decamethylene terephthalamide and polydodecanamide.
  • the blending ratio of the component (c) in the copolymerized polyamide resin (A) is preferably up to 20 mol%, more preferably 10 to 20 mol%. When the proportion of the component (c) is less than the above lower limit, the effect of the component (c) may not be sufficiently exhibited. When the proportion exceeds the above upper limit, the amount of the essential component (a) or component (b) is small. Therefore, the originally intended effect of the copolymerized polyamide resin (A) may not be sufficiently exhibited, which is not preferable.
  • Examples of the catalyst used for producing the copolymerized polyamide resin (A) include phosphoric acid, phosphorous acid, hypophosphorous acid or a metal salt, ammonium salt and ester thereof.
  • Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony.
  • Examples of the ester include ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, and phenyl ester.
  • alkali compounds such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide, from a viewpoint of melt retention stability improvement.
  • the relative viscosity (RV) of the copolymerized polyamide resin (A) measured at 20 ° C. in 96% concentrated sulfuric acid is 0.4 to 4.0, preferably 1.0 to 3.0, more preferably 1.5. ⁇ 2.5.
  • Examples of a method for setting the relative viscosity of the polyamide within a certain range include a means for adjusting the molecular weight.
  • the copolymerized polyamide resin (A) can adjust the end group amount and the molecular weight of the polyamide by adjusting the molar ratio between the amino group amount and the carboxyl group to carry out polycondensation or adding a terminal blocking agent. it can.
  • timing for adding the end-capping agent examples include starting raw materials, starting polymerization, late polymerization, or finishing polymerization.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but acid anhydrides such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used.
  • end capping agent examples include aliphatic monoacids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
  • Alicyclic monocarboxylic acids such as carboxylic acid and cyclohexanecarboxylic acid, benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, aromatic monocarboxylic acid such as phenylacetic acid, maleic anhydride Acid, phthalic anhydride, acid anhydrides such as hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc.
  • Aliphatic monoamines examples thereof include alicyclic monoamines such as cyclohexylamine and dicyclohexylamine, and aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
  • the acid value and amine value of the copolymerized polyamide resin (A) are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively.
  • the terminal functional group exceeds 200 eq / ton, not only gelation and deterioration are promoted during the melt residence, but also problems such as coloring and hydrolysis are caused even in the use environment.
  • the acid value and / or amine value is preferably 5 to 100 eq / ton in accordance with the reactivity and the reactive group.
  • the copolymerized polyamide resin (A) can be produced by a conventionally known method.
  • hexamethylene diamine, terephthalic acid which is a raw material monomer of the component (a), and 11 a raw material monomer of the component (b).
  • -Aminoundecanoic acid or undecanactactam and if necessary (c) a structural unit obtained from an equimolar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, an aminocarboxylic acid other than the structural unit of (b)
  • it can be easily synthesized by co-condensation of lactam.
  • the order of the copolycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or a part of the raw material monomers may be reacted first, followed by the remaining raw material monomers.
  • the polymerization method is not particularly limited, but from raw material charging to polymer production may proceed in a continuous process, and after producing an oligomer once, the polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified. A method of increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the proportion of each structural unit in the copolymerized polyamide to be synthesized can be controlled.
  • the copolymerized polyamide resin (A) is preferably present in a proportion of 20 to 70% by mass, preferably 25 to 55% by mass in the polyamide resin composition of the present invention.
  • the proportion of the copolymerized polyamide resin (A) is less than the above lower limit, the mechanical strength is lowered, and when it exceeds the upper limit, the blending amount of the flame retardant (B), (C) or the reinforcing material (D) is insufficient. In addition, the desired effect is difficult to obtain.
  • the flame retardant (B) is blended for imparting flame retardancy to the electric / electronic component, and examples thereof include phosphinates and / or diphosphinates and / or polymers thereof. Specific examples include aluminum salts, calcium salts, and zinc salts of methylethylphosphinic acid, aluminum salts, calcium salts, and zinc salts of diethylphosphinic acid, and aluminum salts, calcium salts, and zinc salts of methylpropylphosphinic acid. . In particular, an aluminum salt is preferable from the viewpoint of stability.
  • the flame retardant (C) is a nitrogen-containing phosphoric acid compound, and is combined with the flame retardant (B) in order to impart high flame retardancy to electrical and electronic parts.
  • Specific examples include melamine phosphate, melamine pyrophosphate, melamine polyphosphate, and the like, and these nitrogen-containing phosphate compounds and / or metal salts thereof may be mentioned.
  • the nitrogen-containing phosphate compounds and / or metal salts thereof listed here are examples, and are not limited thereto.
  • the ratio of the total amount of the flame retardants (B) and (C) is 30 to 80 parts by mass, preferably 40 to 70 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A). If the total blending amount of the flame retardants (B) and (C) is less than the above lower limit, the target high flame retardancy cannot be obtained, and if it exceeds the above upper limit, the physical properties are significantly lowered and the fluidity is lowered. There is a risk that the molding processability will decrease.
  • the blending mass ratio (B) / (C) of the flame retardants (B) and (C) is important for coexisting high flame retardancy, mechanical properties, and fluidity.
  • As (B) / (C) Is from 5 to 50, preferably from 5 to 40.
  • the reinforcing material (D) is blended to improve the moldability of the polyamide resin composition and the strength of the molded product, and uses at least one selected from a fibrous reinforcing material and a needle-shaped reinforcing material.
  • a fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber.
  • the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned.
  • glass fibers chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used.
  • a glass fiber having a circular cross section and a non-circular cross section can be used as the cross-sectional shape of the glass fiber.
  • the diameter of the circular cross-section glass fiber is 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity.
  • Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable.
  • the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis.
  • the thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 ⁇ m and the major axis is about 2 to 100 ⁇ m. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm.
  • the ratio of the reinforcing material (D) is 30 to 200 parts by mass, preferably 50 to 160 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
  • the ratio of the reinforcing material (D) is less than the above lower limit, the mechanical strength of the molded product is lowered, and when it exceeds the upper limit, the extrudability and the moldability tend to be lowered.
  • non-fibrous or non-needle filler (E) examples include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc. Glass beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, Magnesium hydroxide, calcium hydroxide, red phosphorus, calcium carbonate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, potassium titanate, Aluminum borate, magnesium sulfate, Zinc, and calcium carbonate. These fillers may be used not only alone but also in combination of several kinds. Among these, talc is preferable because T
  • filler is not essential, but when blended, the optimum amount of filler may be selected, but a maximum of 5 parts by mass is added to 100 parts by mass of copolymerized polyamide resin (A).
  • the content is preferably 0.1 to 5 parts by mass, more preferably 1 to 2 parts by mass.
  • the filler is talc, the amount is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, and further preferably 1 to 2 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
  • the fibrous reinforcing material and the filler are preferably used in combination with a coupling agent at the time of organic treatment or a coupling agent treatment or melt compound.
  • a coupling agent at the time of organic treatment or a coupling agent treatment or melt compound.
  • Any of silane coupling agents, titanate coupling agents, and aluminum coupling agents may be used, and among them, aminosilane coupling agents and epoxysilane coupling agents are particularly preferable.
  • additives of conventional polyamide resin compositions for electric and electronic parts can be used.
  • Additives include stabilizers, impact modifiers, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, polyamide resins different from copolymerized polyamide resins (A), and thermoplastic resins other than polyamides Etc.
  • the possible blending amounts of these components in the polyamide resin composition are as described below, but the total of these components is preferably 30% by mass or less, more preferably 20% by mass or less in the polyamide resin composition. 10 mass% or less is further more preferable, and 5 mass% or less is especially preferable.
  • Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained.
  • organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and
  • alkali metal halide compound examples include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide.
  • examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like.
  • These additives may be used alone or in combination of several kinds.
  • the addition amount of the stabilizer may be an optimal amount, but it is possible to add a maximum of 5 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
  • the polyamide resin composition of the present invention may be polymer blended with a polyamide having a composition different from that of the copolymerized polyamide resin (A).
  • the polyamide having a composition different from that of the copolymerized polyamide of the present invention is not particularly limited, but polycaproamide (polyamide 6), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polytetramethylene adipamide (Polyamide 46), polyhexamethylene adipamide (polyamide 66), polymetaxylylene adipamide (polyamide MXD6), polyparaxylylene adipamide (polyamide PXD6), polytetramethylene sebacamide (polyamide 410), Polyhexamethylene sebamide (polyamide 610), polydecamethylene adipamide (polyamide 106), polydecamethylene sebamide (polyamide 1010), polyhexamethylene dodecamide (polyamide 612), polydecamethylene do
  • polyamide 66, polyamide 6T66, and the like may be blended with polyamide 10T derivative for imparting further low water absorption, etc., in order to increase the crystallization speed and improve the moldability.
  • the addition amount of polyamide having a composition different from that of the copolymerized polyamide resin (A) may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the copolymerized polyamide resin (A). It is.
  • thermoplastic resin other than polyamide having a composition different from that of the copolymerized polyamide resin (A) may be added to the polyamide resin composition of the present invention.
  • Polymers other than polyamide include polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonit
  • thermoplastic resins can be blended in a molten state by melt kneading.
  • the thermoplastic resin may be made into a fiber or particle and dispersed in the polyamide resin composition of the present invention.
  • An optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the copolymerized polyamide resin (A).
  • Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as
  • a reactive group capable of reacting with the polyamide is copolymerized.
  • the reactive group is a group capable of reacting with an amino group, a carboxyl group and a main chain amide group which are terminal groups of the polyamide resin.
  • Specific examples include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group, etc. Among them, an acid anhydride group is most excellent in reactivity.
  • thermoplastic resin having a reactive group that reacts with the polyamide resin is finely dispersed in the polyamide and is finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved [ S, Wu: Polymer 26, 1855 (1985)].
  • the release agent examples include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like.
  • the long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed.
  • the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture.
  • the addition amount of the release material may be selected as an optimum amount, but it is possible to add up to 5 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
  • the polyamide resin composition of the present invention preferably has an underwater equilibrium water absorption of 3.0% or less as measured by the method described in the Examples section below. In order to make the equilibrium water absorption in water within this range, it is important to select the copolymerized polyamide resin (A) described above.
  • the underwater equilibrium water absorption is more preferably 2.5% or less.
  • the lower limit of the equilibrium water absorption rate in water is preferably 0%, but is about 1.5% from the characteristics of the copolymerized polyamide resin (A) used. It is preferable to have.
  • the polyamide resin composition preferably has a melting point (Tm) of 300 to 330 ° C. and a temperature rising crystallization temperature (Tc1) of 90 to 120 ° C.
  • Tm melting point
  • Tc1 temperature rising crystallization temperature
  • the temperature rise crystallization temperature Tc1 is a temperature at which crystallization starts when the temperature is raised from room temperature.
  • the ambient temperature of the resin composition at the time of molding is lower than Tc1, crystallization hardly proceeds.
  • the temperature of the resin composition becomes higher than Tc1, crystallization proceeds easily, and dimensional stability, physical properties, etc. can be sufficiently exhibited. Since the shape of the electric / electronic parts is thin and fine, it is considered that the resin temperature after injection molding almost coincides with the mold temperature. Therefore, if the Tc1 of the resin composition is high, it is necessary to increase the mold temperature accordingly, leading to a decrease in workability.
  • Tc1 exceeds the upper limit, not only the mold temperature required for injection molding of the polyamide resin composition of the present invention becomes high and molding becomes difficult, but also in a short cycle of injection molding.
  • Tc1 is less than the above lower limit, it is necessary to inevitably lower the glass transition temperature as a resin composition. Since Tc1 is generally a temperature higher than the glass transition temperature, when Tc1 is less than 90 ° C., a lower value is required as the glass transition temperature. In that case, the physical properties greatly decrease or the physical properties after water absorption. Problems that cannot be maintained. Since it is necessary to keep Tg relatively high, it is desirable that Tc1 be at least 90 ° C. or higher.
  • the copolymerized polyamide resin (A) since a specific amount of the polyamide 11 component is copolymerized with the polyamide 6T, a resin having an excellent balance of low water absorption and fluidity in addition to a high melting point and moldability can be obtained. In the molding of surface-mounted electrical and electronic parts, in addition to a high melting point of 300 ° C. or higher and low water absorption, thin-walled, high-cycle molding is required. In the hexamethylene terephthalamide / polyhexamethylene adipamide copolymer (polyamide 6T / 66), although the moldability is good, the water absorption is extremely high.
  • polyamide 9T polynonamethylene terephthalamide
  • Tg 125 ° C.
  • Tc1 is inevitably 125 ° C. or higher
  • the mold temperature during molding is 140 ° C. or higher. Therefore, there is a difficulty in moldability.
  • copolymerized polyamide resin (A) a specific amount of polyamide is added to polyamide 6T.
  • Tc1 By copolymerizing 11, in addition to imparting a high melting point, low water absorption and fluidity, Tc1 can be kept low, and the processability of injection molding can be greatly improved.
  • the polyamide resin composition of the present invention can be produced by blending the above-described constituent components by a conventionally known method. For example, each component is added during the polycondensation reaction of the copolymerized polyamide resin (A), the blended polyamide resin (A) and other components are dry blended, or a twin screw type extruder is used. The method of melt-kneading each structural component can be mentioned.
  • the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
  • the measured value described in the Example is measured by the following method.
  • Relative viscosity 0.25 g of polyamide resin was dissolved in 25 ml of 96% sulfuric acid and measured at 20 ° C. using an Ostwald viscometer.
  • the cylinder temperature is set to the melting point of the resin + 20 ° C.
  • the mold temperature is set to 140 ° C.
  • the length is 127 mm
  • the width is 12.6 mm
  • the thickness is 0.8 mm.
  • the test piece for the UL combustion test was injection molded to produce a test piece.
  • the test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours.
  • the specimen was heated in an air reflow furnace (AIS-20-82C manufactured by ATEC) from room temperature to 150 ° C over 60 seconds, preheated, and then heated to 190 ° C at a rate of 0.5 ° C / min.
  • Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which the surface did not swell or deformed was defined as the reflow heat resistant temperature, which was used as an index of solder heat resistance.
  • Reflow heat-resistant temperature is 260 ° C or higher
  • Reflow heat-resistant temperature is less than 260 ° C
  • This example was carried out using a copolymerized polyamide resin (A) synthesized as exemplified below.
  • the mixture was charged into a liter autoclave, pressurized with N 2 from normal pressure to 0.05 MPa, released, and returned to normal pressure. This operation was performed 3 times, N 2 substitution was performed, and then uniform dissolution was performed at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C.
  • the obtained copolymerized polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 16 eq / ton, and a melting point of 314 ° C.
  • Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 1.
  • Example 2 Example 1 except that the amount of 1,6-hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 11.62, and the amount of 11-aminoundecanoic acid was changed to 6.03 kg. Thus, a copolymerized polyamide resin (A) was synthesized. The obtained copolymer polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 28 eq / ton, and a melting point of 328 ° C. Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 2.
  • Example 4 A copolymerized polyamide resin (A) was synthesized in the same manner as in Example 1 except that 7.04 kg of 11-aminoundecanoic acid was changed to 6.41 kg of undecane lactam.
  • the obtained copolymerized polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 13 eq / ton, and a melting point of 315 ° C.
  • Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 4.
  • a copolymerized polyamide resin (A) was synthesized in the same manner as in Synthesis Example 1 except that 5.80 kg of 1,6-hexamethylenediamine, 8.30 kg of terephthalic acid, and 6.70 kg of 11-aminoundecanoic acid were used. .
  • the obtained copolymerized polyamide resin (A) had a relative viscosity of 2.0, a terminal amino group amount of 15 eq / ton, and a melting point of 280 ° C.
  • Table 1 shows the charging ratio of raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 5.
  • Examples 1-8, Comparative Examples 1-5 The components and mass ratios shown in Table 2 were melt-kneaded at a melting point of each polyamide raw material + 20 ° C. using a twin screw extruder STS-35 manufactured by Coperion Co., Ltd., and Examples 1 to 8 and Comparative Examples 1 to 5 A polyamide resin composition was obtained.
  • the raw materials used in the preparation of the polyamide resin composition are as follows.
  • Polyamide raw materials Copolyamide (A) prepared on the basis of Synthesis Examples 1 to 5, PA6T / 6 (Ultramide (R) KR4351 manufactured by BASF), PA66 (GLAMIDE (R) T-662 manufactured by Toyobo Co., Ltd.) Relative viscosity 2 .8 Terminal carboxyl group amount 40 equivalent / ton)
  • Reinforcing material D): Glass fiber (manufactured by Nitto Boseki Co., Ltd., CS-3J-459)
  • Filler E: Talc (M
  • Examples 1 to 8 not only satisfy flame retardancy, low water absorption, and solder heat resistance, but also exhibit mechanical properties that can withstand use as surface mount type electric and electronic parts. I understand.
  • the flame retardant (C) is not included, and sufficient flame retardancy cannot be obtained.
  • the balance of the flame retardant blending amount is poor, and sufficient mechanical properties cannot be obtained because the flame retardant (C) is excessive.
  • the melting point is low, so that the solder heat resistance is poor.
  • Comparative Example 4 flame retardancy and mechanical properties are satisfactory, but low heat absorption is difficult, so solder heat resistance is poor.
  • Comparative Example 5 is inferior in solder heat resistance and low water absorption due to the influence of the resin skeleton.
  • the flame retardant polyamide resin composition of the present invention uses a specific copolymerized polyamide resin excellent in heat resistance, moldability, fluidity and low water absorption, so that the surface has a high level of satisfaction while satisfying the required properties.
  • the mounting type electric / electronic component can be advantageously produced industrially.

Abstract

A flame-retardant polyamide resin composition that has a high solder heat resistance, a high flame retardancy, a low water absorbency and excellent mechanical properties and is appropriately usable in a surface mount type electric/electronic component, said flame-retardant polyamide resin composition comprising: copolymerized polyamide resin (A) that comprises 55-75 mol% of structural unit (a) obtained from hexamethylenediamine and terephthalic acid and 45-25 mol% of structural unit (b) comprising 11-aminoundecanoic acid or undecane lactam; flame retardant (B) that comprises a phosphinic acid metal salt; flame retardant (C) that comprises a nitrogen-containing phosphoric acid-based compound; reinforcing agent (D) that is selected from a fibrous reinforcing agent and a needle-type reinforcing agent; and non-fibrous or non-needle-type filler (E), wherein, per 100 parts by mass of copolymerized polyamide resin (A), flame retardants (B) and (C) are contained in a total amount of 30-80 parts by mass, reinforcing agent (D) is contained in an amount of 30-200 parts by mass, and filler (E) is contained in an amount of 0-5 parts by mass, and the ratio by mass of flame retardant (B)/flame retardant (C) is 5-50.

Description

表面実装型電気電子部品に使用する難燃性ポリアミド樹脂組成物Flame retardant polyamide resin composition for use in surface mount electrical and electronic parts
 本発明は、難燃性、低吸水性、ハンダ耐熱性、力学物性に優れる表面実装型電気電子部品に使用するのに好適なノンハロゲン系難燃ポリアミド樹脂組成物に関する。 The present invention relates to a non-halogen flame-retardant polyamide resin composition suitable for use in a surface-mount type electric / electronic component having excellent flame retardancy, low water absorption, solder heat resistance, and mechanical properties.
 近年、電気電子部品の実装においては、製品サイズの小型化に伴う部品の小型化、実装の高密度化、工程の簡略化や低コスト化により表面実装方式(フロー方式、リフロー方式)が急速に浸透している。表面実装方式では、工程雰囲気温度が半田溶融温度以上(240~260℃)となることから、使用される樹脂にも必然的に上記雰囲気温度での耐熱性が求められる。また、表面実装工程においては樹脂の吸水に由来する実装部品のふくれ、変形が問題となることもあり、使用される樹脂には低吸水性が求められる。これらの特性を満足する樹脂としては6T系ポリアミドや9Tポリアミドがあり、特許文献1や特許文献2などでこれらの芳香族系ポリアミドが表面実装型電気電子部品に使用できることが示されている。 In recent years, in the mounting of electrical and electronic components, surface mounting methods (flow method, reflow method) have rapidly increased due to the miniaturization of components accompanying the reduction in product size, higher mounting density, simplification of processes, and lower costs. Penetrating. In the surface mounting method, since the process atmosphere temperature is equal to or higher than the solder melting temperature (240 to 260 ° C.), the resin to be used is inevitably required to have heat resistance at the above atmospheric temperature. Further, in the surface mounting process, the swelling and deformation of the mounting component due to the water absorption of the resin may be a problem, and the resin used is required to have low water absorption. As resins satisfying these characteristics, there are 6T polyamide and 9T polyamide, and Patent Document 1 and Patent Document 2 show that these aromatic polyamides can be used for surface mount type electric and electronic parts.
 一方で、電気電子部品に限らず、使用される箇所、環境によっては原料となるポリアミド樹脂は、UL-94規格に基づいた難燃性を持つことが望ましいとされる。このような必要性に応じて、ポリアミド樹脂に難燃性を付与する種々の技術開発がこれまでに行われてきた。ポリアミド樹脂を難燃化する技術としては、難燃剤である臭素化ポリスチレンなどのハロゲン化有機化合物と、難燃助剤として働くアンチモン化合物との併用が一般的である。しかし、この技術は優れた難燃性を付与できる一方で、燃焼時のハロゲン化水素の発生や多量の発煙といった問題点を有している。さらに一部のハロゲン系難燃剤を使用したプラスチック製品の使用が規制されつつあることからも、ノンハロゲン系難燃ポリアミド樹脂の検討が積極的になされている。 On the other hand, it is desirable that the polyamide resin as a raw material is not limited to electrical and electronic parts, but has flame retardancy based on the UL-94 standard depending on the location and environment of use. In response to such a need, various technical developments for imparting flame retardancy to polyamide resins have been performed so far. As a technique for flame-retarding a polyamide resin, a combined use of a halogenated organic compound such as brominated polystyrene as a flame retardant and an antimony compound that works as a flame retardant aid is common. However, while this technology can provide excellent flame retardancy, it has problems such as generation of hydrogen halide during combustion and a large amount of smoke generation. Furthermore, since the use of plastic products using some halogenated flame retardants is being regulated, non-halogen flame retardant polyamide resins are being actively studied.
 ノンハロゲン系難燃技術としては、金属水酸化物やリン系化合物を難燃剤として使用するものが一般的であるが、前者は十分な難燃性を得るには多量の添加が必要であり、その結果、力学特性が著しく低下する問題を有している。 As non-halogen flame retardant technologies, those using metal hydroxides or phosphorus compounds as flame retardants are common, but the former requires a large amount of addition to obtain sufficient flame retardancy, As a result, there is a problem that the mechanical properties are remarkably deteriorated.
 一方で、後者においては、例えば、特許文献3ではトリアジン系化合物であるメラミン、メラム、メレムを構成単位として含んだリン系化合物を難燃剤として用いることで、ポリアミド66に高い難燃性を付与したノンハロゲン系難燃ポリアミド樹脂組成物が提案されている。また、特許文献4では縮合型、非縮合型リン系難燃剤を使用することで、長鎖脂肪族ポリアミドであるポリアミド12に高い難燃性を付与したノンハロゲン系難燃ポリアミド樹脂組成物が提案されている。しかし、これらの難燃ポリアミド樹脂組成物は、その融点がハンダ溶融温度近傍かそれ以下であることから、表面実装型電気電子部品には対応できない。また、難燃技術に関しても難燃剤自体の耐熱性の問題から、6T系ポリアミドに代表されるような表面実装型電気電子部品に対応したポリアミド樹脂にも有効なわけではなく、ノンハロゲン系難燃ポリアミド樹脂の検討には改善の余地がある。 On the other hand, in the latter, for example, in Patent Document 3, a high flame retardancy is imparted to polyamide 66 by using a phosphorus compound containing melamine, melam, and melem, which are triazine compounds, as a structural unit as a flame retardant. Non-halogen flame retardant polyamide resin compositions have been proposed. Patent Document 4 proposes a non-halogen flame-retardant polyamide resin composition that imparts high flame retardancy to polyamide 12 that is a long-chain aliphatic polyamide by using a condensed or non-condensed phosphorus flame retardant. ing. However, these flame retardant polyamide resin compositions have a melting point near or below the solder melting temperature, and therefore cannot be applied to surface mount type electric / electronic components. In addition, regarding the flame retardant technology, due to the heat resistance problem of the flame retardant itself, it is not effective for polyamide resins corresponding to surface mount type electric and electronic parts typified by 6T polyamide. There is room for improvement in the study of resins.
 表面実装型電気電子部品に対応したノンハロゲン系難燃樹脂組成物としては、例えば、特許文献5では、リン系難燃剤を用いて6T系ポリアミドとポリフェニレンスルフィドからなる熱可塑性樹脂組成物に難燃性を付与した、ノンハロゲン系難燃熱可塑性樹脂組成物を提案している。また、特許文献6では、窒素含有化合物とリン系難燃剤との併用により、ポリアミド46に難燃性を付与したノンハロゲン系難燃ポリアミド樹脂組成物を提案している。しかし、これらの樹脂組成物は飽和吸水性が6%以上と高く、製品の輸送時や保管時に大気中の水分を吸水してしまうため、表面実装工程において製品のふくれなどの不具合を引き起こす問題を有している。 As a non-halogen flame retardant resin composition corresponding to a surface mount type electric / electronic component, for example, in Patent Document 5, a thermoplastic flame retardant composition composed of 6T polyamide and polyphenylene sulfide is used as a flame retardant. A non-halogen flame retardant thermoplastic resin composition having the above formula is proposed. Patent Document 6 proposes a non-halogen flame retardant polyamide resin composition in which flame resistance is imparted to the polyamide 46 by the combined use of a nitrogen-containing compound and a phosphorus flame retardant. However, these resin compositions have a high saturated water absorption of 6% or more, and absorb moisture in the atmosphere during transportation and storage of products, causing problems such as product blistering in the surface mounting process. Have.
 さらに、特許文献7では、赤リンと水酸化マグネシウムの併用により、多量の金属水酸化物を使用することなくポリアミド9Tに難燃性を付与した難燃性ポリアミド樹脂組成物が提案されている。このポリアミド樹脂は低吸水性を示し、6T系ポリアミドなどで見られる表面実装工程でのふくれの問題は極めて抑えられているものの、樹脂のガラス転移温度が130℃であることから、成形時に十分に結晶化を完了させるためには、金型温度を140℃以上の高温に設定する必要があり、成形性の面で改善の余地がある。 Furthermore, Patent Document 7 proposes a flame retardant polyamide resin composition in which flame retardancy is imparted to polyamide 9T by using red phosphorus and magnesium hydroxide together without using a large amount of metal hydroxide. Although this polyamide resin exhibits low water absorption and the problem of blistering in the surface mounting process found in 6T polyamide is extremely suppressed, the glass transition temperature of the resin is 130 ° C. In order to complete crystallization, it is necessary to set the mold temperature to a high temperature of 140 ° C. or higher, and there is room for improvement in terms of moldability.
 以上のように、これまでに提案されているノンハロゲン系難燃ポリアミド樹脂では力学特性、ハンダ耐熱性、低吸水性、成形性、難燃性をすべて満足するものではなく、問題を抱えながらも使用しているのが実情である。 As described above, the non-halogen flame retardant polyamide resins that have been proposed so far do not satisfy all of the mechanical properties, solder heat resistance, low water absorption, moldability, and flame retardancy, and are used with problems. It is the actual situation.
特開平3-88846号公報Japanese Patent Laid-Open No. 3-88846 特許3474246号公報Japanese Patent No. 3474246 特開2004-43647号公報JP 2004-43647 A 特開平11-302656公報JP-A-11-302656 国際公開WO2010/073595号パンフレットInternational Publication WO2010 / 073595 Pamphlet 特許4454146号公報Japanese Patent No. 4454146 特開2000-230118号公報JP 2000-230118 A
 本発明は、上記の従来技術の問題点に鑑み創案されたものであり、その目的は、ハンダ耐熱性、難燃性、低吸水性、力学物性に優れる表面実装型電気電子部品に使用するのに好適な難燃性ポリアミド樹脂組成物を提供することにある。 The present invention was devised in view of the above-mentioned problems of the prior art, and its purpose is to be used for a surface mount type electric / electronic component excellent in solder heat resistance, flame retardancy, low water absorption, and mechanical properties. Another object of the present invention is to provide a flame retardant polyamide resin composition suitable for the above.
 本発明者は、上記目的を達成するために、電気電子部品としての特性を満たしながら難燃性を付与し、射出成形やリフローハンダ工程を有利に行うことができるポリアミドの組成を鋭意検討した結果、本発明の完成に至った。 In order to achieve the above-mentioned object, the present inventor has intensively studied the composition of polyamide that can impart flame retardancy while satisfying the characteristics as an electric / electronic component and can advantageously perform injection molding and reflow soldering process. The present invention has been completed.
 即ち、本発明は、以下の(1)~(4)の構成を有するものである。
(1)表面実装型電気電子部品に使用する難燃性ポリアミド樹脂組成物であって、(a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位55~75モル%と、(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位45~25モル%とからなる共重合ポリアミド樹脂(A)、ホスフィン酸の金属塩からなる難燃剤(B)、含窒素リン酸系化合物からなる難燃剤(C)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(D)、及び非繊維状又は非針状充填材(E)を含有し、共重合ポリアミド樹脂(A)100質量部に対して難燃剤(B)と(C)の合計が30~80質量部、強化材(D)が30~200質量部、及び充填材(E)が0~5質量部の割合で含有され、かつ難燃剤の質量割合(B)/(C)が5~50であることを特徴とする難燃性ポリアミド樹脂組成物。
(2)ポリアミド樹脂組成物の水中平衡吸水率が3.0%以下である(1)に記載の難燃性ポリアミド樹脂組成物。
(3)ポリアミド樹脂組成物の融点(Tm)が300~330℃であり、昇温結晶化温度(Tc1)が90~120℃であることを特徴とする(1)又は(2)に記載の難燃性ポリアミド樹脂組成物。
(4)非繊維状又は非針状充填材(E)がタルクであり、共重合ポリアミド樹脂(A)100質量部に対してタルク0.1~5質量部の割合で含有することを特徴とする(1)~(3)のいずれかに記載の難燃性ポリアミド樹脂組成物。
(5)共重合ポリアミド樹脂(A)が、(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大20モル%まで含有することを特徴とする(1)~(4)のいずれかに記載の難燃性ポリアミド樹脂組成物。
That is, the present invention has the following configurations (1) to (4).
(1) A flame-retardant polyamide resin composition for use in a surface-mounted electrical / electronic component, wherein (a) a structural unit 55 to 75 mol% obtained from an equimolar salt of hexamethylenediamine and terephthalic acid; (B) a copolymerized polyamide resin (A) comprising 45 to 25 mol% of a structural unit obtained from 11-aminoundecanoic acid or undecane lactam, a flame retardant (B) comprising a metal salt of phosphinic acid, a nitrogen-containing phosphoric acid series Contains at least one reinforcing material (D) selected from the group consisting of a flame retardant (C) composed of a compound, a fibrous reinforcing material and an acicular reinforcing material, and a non-fibrous or non-acicular filling material (E) The total of the flame retardants (B) and (C) is 30 to 80 parts by mass, the reinforcing material (D) is 30 to 200 parts by mass, and the filler (E ) Is the proportion of 0-5 parts by mass It contained, and the weight ratio of the flame retardant (B) / (C) is a flame-retardant polyamide resin composition, wherein the 5 to 50.
(2) The flame retardant polyamide resin composition according to (1), wherein the polyamide resin composition has an underwater equilibrium water absorption of 3.0% or less.
(3) The melting point (Tm) of the polyamide resin composition is 300 to 330 ° C, and the temperature-rising crystallization temperature (Tc1) is 90 to 120 ° C, as described in (1) or (2) Flame retardant polyamide resin composition.
(4) The non-fibrous or non-needle filler (E) is talc, and is contained at a ratio of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the copolymerized polyamide resin (A). The flame-retardant polyamide resin composition according to any one of (1) to (3).
(5) The copolymerized polyamide resin (A) is (c) a structural unit obtained from an equivalent molar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, or an amino group other than the structural unit of (b). The flame-retardant polyamide resin composition according to any one of (1) to (4), which contains up to 20 mol% of a structural unit obtained from carboxylic acid or lactam.
 本発明の難燃性ポリアミド樹脂組成物は、高い耐熱性、低い吸水性、難燃性に加えて、射出成形時の成形性やハンダ耐熱性など加工性に優れる特定の共重合ポリアミド樹脂を使用しているので、全ての必要な特性を高度に満足する表面実装型電気電子部品を工業的に有利に製造することができる。 The flame-retardant polyamide resin composition of the present invention uses a specific copolymerized polyamide resin that is excellent in processability such as moldability during injection molding and solder heat resistance in addition to high heat resistance, low water absorption, and flame retardancy. Therefore, it is possible to industrially advantageously manufacture a surface mount type electric / electronic component that highly satisfies all necessary characteristics.
 本発明のポリアミド樹脂組成物は、表面実装型電気電子部品に使用することを意図するものである。表面実装型電気電子部品には、コネクター、スイッチ、ICやLEDのハウジング、ソケット、リレー、抵抗器、コンデンサー、コイルボビンなどが挙げられるが、本発明のポリアミド樹脂組成物はこれらの全ての電気電子部品を射出成形により製造することができる。 The polyamide resin composition of the present invention is intended to be used for surface-mounted electrical and electronic parts. Examples of the surface mount type electric / electronic components include connectors, switches, IC / LED housings, sockets, relays, resistors, capacitors, coil bobbins, etc. The polyamide resin composition of the present invention is all of these electric / electronic components. Can be manufactured by injection molding.
 共重合ポリアミド樹脂(A)は、高い耐熱性、流動性、低い吸水性に加えて優れた成形性を実現するために配合されるものであり、ポリアミド6Tに相当する(a)成分とポリアミド11に相当する(b)成分を特定の割合で含有するものであり、従来の6Tポリアミド(例えば、テレフタル酸/イソフタル酸/ヘキサメチレンジアミンからなるポリアミド6T6I、テレフタル酸/アジピン酸/テレフタル酸からなるポリアミド6T66、テレフタル酸/イソフタル酸/アジピン酸/ヘキサメチレンジアミンからなるポリアミド6T6I66、テレフタル酸/ヘキサメチレンジアミン/2-メチル―1、5-ペンタメチレンジアミンからなるポリアミド6T/M-5T、テレフタル酸/ヘキサメチレンジアミン/ε―カプロラクタムからなるポリアミド6T6)の欠点である高吸水性が大幅に改良されているという特徴を有する。さらには、ポリアミド11成分に由来するフレキシブルな長鎖脂肪骨格を有することから、流動性を確保しやすいという特徴も有する。 The copolymerized polyamide resin (A) is blended to realize excellent moldability in addition to high heat resistance, fluidity and low water absorption, and the component (a) corresponding to polyamide 6T and polyamide 11 And a conventional 6T polyamide (for example, polyamide 6T6I composed of terephthalic acid / isophthalic acid / hexamethylenediamine, polyamide composed of terephthalic acid / adipic acid / terephthalic acid) 6T66, polyamide 6T6I66 composed of terephthalic acid / isophthalic acid / adipic acid / hexamethylenediamine, polyamide 6T / M-5T composed of terephthalic acid / hexamethylenediamine / 2-methyl-1,5-pentamethylenediamine, terephthalic acid / hexa From methylenediamine / ε-caprolactam It has the feature that the superabsorbent has been greatly improved, which is a disadvantage of that polyamide 6T6). Furthermore, since it has a flexible long-chain fatty skeleton derived from the polyamide 11 component, it also has a feature that it is easy to ensure fluidity.
 (a)成分は、ヘキサメチレンジアミン(6)とテレフタル酸(T)を等量モルで共縮重合させることにより得られる6Tポリアミドに相当するものであり、具体的には、下記式(I)で表されるものである。 The component (a) corresponds to 6T polyamide obtained by co-condensation polymerization of hexamethylenediamine (6) and terephthalic acid (T) in an equimolar amount, and specifically, the following formula (I) It is represented by
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (a)成分は、共重合ポリアミド樹脂(A)の主成分であり、共重合ポリアミド樹脂(A)に優れた耐熱性、機械的特性、摺動性などを付与する役割を有する。共重合ポリアミド樹脂(A)中の(a)成分の配合割合は、55~75モル%であり、好ましくは60~70モル%、さらに好ましくは62~68モル%である。(a)成分の配合割合が上記下限未満の場合、結晶成分である6Tポリアミドが共重合成分により結晶阻害を受け、成形性や高温特性の低下を招くおそれがあり、一方上記上限を超える場合、融点が高くなりすぎ加工時に分解するおそれがあり、好ましくない。 The component (a) is a main component of the copolymerized polyamide resin (A) and has a role of imparting excellent heat resistance, mechanical properties, slidability and the like to the copolymerized polyamide resin (A). The blending ratio of the component (a) in the copolymerized polyamide resin (A) is 55 to 75 mol%, preferably 60 to 70 mol%, more preferably 62 to 68 mol%. When the blending ratio of the component (a) is less than the above lower limit, the 6T polyamide that is a crystal component is subject to crystal inhibition by the copolymer component, which may lead to a decrease in moldability and high-temperature characteristics. Since melting | fusing point becomes high too much and there exists a possibility of decomposing | disassembling at the time of processing, it is not preferable.
 (b)成分は、11-アミノウンデカン酸又はウンデカンラクタムを重縮合させることにより得られる11ポリアミドに相当するものであり、具体的には、下記式(II)で表されるものである。 The component (b) corresponds to 11 polyamide obtained by polycondensation of 11-aminoundecanoic acid or undecane lactam, and is specifically represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (b)成分は、(a)成分の欠点である、吸水性、流動性を改良するためのものであり、共重合ポリアミド樹脂(A)の融点及び昇温結晶化温度を調整し成形性を向上させる役割、吸水率を低減させて吸水時の物性変化や寸法変化によるトラブルを改善させる役割、およびフレキシブルな骨格を導入することにより溶融時の流動性を改善する役割を有する。共重合ポリアミド樹脂(A)中の(b)成分の配合割合は、45~25モル%であり、好ましくは40~30モル%、更に好ましくは38~32モル%である。(b)成分の配合割合が上記下限未満の場合、共重合ポリアミド樹脂(A)の融点が十分に低下せず、成形性が不足するおそれがあると共に、得られた樹脂の吸水率を低減させる効果が不十分であり、吸水時に機械的特性が低下するなど物性の不安定さを招くおそれがある。上記上限を超える場合、共重合ポリアミド樹脂(A)の融点が低下しすぎて結晶化速度が遅くなり、成形性が逆に悪くなるおそれがあると共に、6Tポリアミドに相当する(a)成分の量が少なくなり、機械的特性や耐熱性が不足するおそれがあり、好ましくない。 The component (b) is for improving water absorption and fluidity, which is a drawback of the component (a). The moldability is adjusted by adjusting the melting point and the temperature rising crystallization temperature of the copolymerized polyamide resin (A). It has the role of improving, the role of reducing the water absorption rate to improve the trouble caused by changes in physical properties and dimensional changes at the time of water absorption, and the role of improving the fluidity at the time of melting by introducing a flexible skeleton. The blending ratio of the component (b) in the copolymerized polyamide resin (A) is 45 to 25 mol%, preferably 40 to 30 mol%, more preferably 38 to 32 mol%. When the blending ratio of the component (b) is less than the above lower limit, the melting point of the copolymerized polyamide resin (A) is not sufficiently lowered, the moldability may be insufficient, and the water absorption rate of the obtained resin is reduced. The effect is insufficient, and there is a risk of instability of physical properties such as deterioration of mechanical properties upon water absorption. When the above upper limit is exceeded, the melting point of the copolymerized polyamide resin (A) is too low, the crystallization speed is slow, the moldability may be adversely affected, and the amount of the component (a) corresponding to 6T polyamide This is not preferable because there is a risk that mechanical properties and heat resistance may be insufficient.
 共重合ポリアミド樹脂(A)は、上記(a)成分及び(b)成分以外に、(c)上記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または上記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大20モル%共重合しても良い。(c)成分は、共重合ポリアミド樹脂(A)に6Tポリアミドや11ポリアミドによっては得られない他の特性を付与したり、6Tポリアミドや11ポリアミドによって得られる特性をさらに改良する役割を有するものであり、具体的には以下のような共重合成分が挙げられる。ジアミン成分としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、5-ベンタメチレンジアミン、2-メチル-1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、2-メチル-1,8-オクタメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン、2,2,4(または2,4,4)-トリメチルヘキサメチレンジアミンのような脂肪族ジアミン、ピペラジン、シクロヘキサンジアミン、ビス(3-メチル-4-アミノヘキシル)メタン、ビス-(4,4′-アミノシクロヘキシル)メタン、イソホロンジアミンのような脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンおよびこれらの水添物等が挙げられる。ジカルボン酸成分としては、以下に示すジカルボン酸、もしくは酸無水物を使用できる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボンル酸、4,4′-ジフェニルジカルボン酸、2,2′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、5-スルホン酸ナトリウムイソフタル酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、1,18-オクタデカン二酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸等が挙げられる。また、ε-カプロラクタム、12-ラウリルラクタムなどのラクタムおよびこれらが開環した構造であるアミノカルボン酸などが挙げられる。 In addition to the components (a) and (b), the copolymerized polyamide resin (A) is (c) a structural unit obtained from an equivalent molar salt of diamine and dicarboxylic acid other than the structural unit of (a) above, or You may copolymerize the structural unit obtained from aminocarboxylic acid or lactam other than the structural unit of said (b) at maximum 20 mol%. The component (c) has a role to give the copolymer polyamide resin (A) other characteristics that cannot be obtained by 6T polyamide or 11 polyamide, or to further improve the characteristics obtained by 6T polyamide or 11 polyamide. Specific examples include the following copolymerization components. Examples of the diamine component include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6-hexa Methylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1,11 Undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2, 4,4) -aliphatic diamines such as trimethylhexamethylenediamine, piperazine, Cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-aminocyclohexyl) methane, cycloaliphatic diamines such as isophoronediamine, metaxylylenediamine, paraxylylenediamine, Examples thereof include aromatic diamines such as paraphenylenediamine and metaphenylenediamine, and hydrogenated products thereof. As the dicarboxylic acid component, the following dicarboxylic acids or acid anhydrides can be used. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyldicarboxylic acid. 4,4'-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid and other aromatic dicarboxylic acids, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, , 2-Cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexa Dicarboxylic acids, such as aliphatic or alicyclic dicarboxylic acids such as dimer acid. Further, lactams such as ε-caprolactam and 12-lauryl lactam, and aminocarboxylic acids having a structure in which they are ring-opened can be used.
 具体的な(c)成分としては、ポリカプロアミド(ポリアミド6)、ポリドデカンアミド(ポリアミド12)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリウンデカメチレンアジパミド(ポリアミド116)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリテトラメチレンテレフタルアミド(ポリアミド4T)、ポリペンタメチレンテレフタルアミド(ポリアミド5T)、ポリ-2-メチルペンタメチレンテレフタルアミド(ポリアミドM-5T)、ポリヘキサメチレンヘキサヒドロテレフタルアミド(ポリアミド6T(H))、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリウンデカメチレンテレフタルアミド(ポリアミド11T)、ポリドデカメチレンテレフタルアミド(ポリアミド12T)、ポリビス(3-メチル-4-アミノヘキシル)メタンテレフタルアミド(ポリアミドPACMT)、ポリビス(3-メチル-4-アミノヘキシル)メタンイソフタルアミド(ポリアミドPACMI)、ポリビス(3-メチル-4-アミノヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(3-メチル-4-アミノヘキシル)メタンテトラデカミド(ポリアミドPACM14)などが挙げられる。これらは、1成分単独もしくは多成分を組み合わせて共重合しても良い。また、ランダム共重合、ブロック共重合、グラフト共重合等いずれの共重合手法を用いても良い。 Specific examples of the component (c) include polycaproamide (polyamide 6), polydodecanamide (polyamide 12), polytetramethylene adipamide (polyamide 46), polyhexamethylene adipamide (polyamide 66), polyun Decamethylene adipamide (polyamide 116), polymetaxylylene adipamide (polyamide MXD6), polyparaxylylene adipamide (polyamide PXD6), polytetramethylene sebamide (polyamide 410), polyhexamethylene sebacamide (Polyamide 610), polydecamethylene adipamide (polyamide 106), polydecamethylene sebamide (polyamide 1010), polyhexamethylene dodecamide (polyamide 612), polydecamethylene dodecamide (polyamide 1012), polyhexamethy Isophthalamide (polyamide 6I), polytetramethylene terephthalamide (polyamide 4T), polypentamethylene terephthalamide (polyamide 5T), poly-2-methylpentamethylene terephthalamide (polyamide M-5T), polyhexamethylene hexahydroterephthalate Amides (Polyamide 6T (H)), Polynonamethylene terephthalamide (Polyamide 9T), Polydecamethylene terephthalamide (Polyamide 10T), Polyundecamethylene terephthalamide (Polyamide 11T), Polydodecamethylene terephthalamide (Polyamide 12T), Polybis (3-methyl-4-aminohexyl) methane terephthalamide (polyamide PACMT), polybis (3-methyl-4-aminohexyl) methane isophthalamide ( Polyamide PACMI), polybis (3-methyl-4-amino-hexyl) methane dodecamide (polyamide PACM12), and the like polybis (3-methyl-4-amino-hexyl) methane tetradecanoyl bromide (polyamide PACM14). These may be copolymerized alone or in combination of multiple components. Any copolymerization technique such as random copolymerization, block copolymerization, and graft copolymerization may be used.
 前記構成単位の中でも、好ましい(c)成分の例としては、共重合ポリアミド樹脂(A)に高結晶性を付与するためのポリヘキサメチレンアジパミドや、さらなる低吸水性を付与するためのポリデカメチレンテレフタルアミド、ポリドデカンアミドなどが挙げられる。共重合ポリアミド樹脂(A)中の(c)成分の配合割合は、最大20モル%までであることが好ましく、さらに好ましくは10~20モル%である。(c)成分の割合が上記下限未満の場合、(c)成分による効果が十分発揮されないおそれがあり、上記上限を超える場合、必須成分である(a)成分や(b)成分の量が少なくなり、共重合ポリアミド樹脂(A)の本来意図される効果が十分発揮されないおそれがあり、好ましくない。 Among the structural units, examples of a preferable component (c) include polyhexamethylene adipamide for imparting high crystallinity to the copolymerized polyamide resin (A), and poly (polyethylene) for imparting further low water absorption. Examples include decamethylene terephthalamide and polydodecanamide. The blending ratio of the component (c) in the copolymerized polyamide resin (A) is preferably up to 20 mol%, more preferably 10 to 20 mol%. When the proportion of the component (c) is less than the above lower limit, the effect of the component (c) may not be sufficiently exhibited. When the proportion exceeds the above upper limit, the amount of the essential component (a) or component (b) is small. Therefore, the originally intended effect of the copolymerized polyamide resin (A) may not be sufficiently exhibited, which is not preferable.
 共重合ポリアミド樹脂(A)を製造するに際に使用する触媒としては、リン酸、亜リン酸、次亜リン酸もしくはその金属塩やアンモニウム塩、エステルが挙げられる。金属塩の金属種としては、具体的には、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモンなどが挙げられる。エステルとしては、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどが挙げられる。また、溶融滞留安定性向上の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等のアルカリ化合物を添加することが好ましい。 Examples of the catalyst used for producing the copolymerized polyamide resin (A) include phosphoric acid, phosphorous acid, hypophosphorous acid or a metal salt, ammonium salt and ester thereof. Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony. Examples of the ester include ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, and phenyl ester. Moreover, it is preferable to add alkali compounds, such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide, from a viewpoint of melt retention stability improvement.
 共重合ポリアミド樹脂(A)の96%濃硫酸中20℃で測定した相対粘度(RV)は0.4~4.0であり、好ましくは1.0~3.0、より好ましくは1.5~2.5である。ポリアミドの相対粘度を一定範囲とする方法としては、分子量を調整する手段が挙げられる。 The relative viscosity (RV) of the copolymerized polyamide resin (A) measured at 20 ° C. in 96% concentrated sulfuric acid is 0.4 to 4.0, preferably 1.0 to 3.0, more preferably 1.5. ~ 2.5. Examples of a method for setting the relative viscosity of the polyamide within a certain range include a means for adjusting the molecular weight.
 共重合ポリアミド樹脂(A)は、アミノ基量とカルボキシル基とのモル比を調整して重縮合する方法や末端封止剤を添加する方法によって、ポリアミドの末端基量および分子量を調整することができる。アミノ基量とカルボキシル基とのモル比を一定比率で重縮合する場合には、使用する全ジアミンと全ジカルボン酸のモル比をジアミン/ジカルボン酸=1.00/1.05から1.10/1.00の範囲に調整することが好ましい。 The copolymerized polyamide resin (A) can adjust the end group amount and the molecular weight of the polyamide by adjusting the molar ratio between the amino group amount and the carboxyl group to carry out polycondensation or adding a terminal blocking agent. it can. When polycondensation is performed at a constant ratio of the molar ratio of the amino group and the carboxyl group, the molar ratio of all diamines to all dicarboxylic acids used is diamine / dicarboxylic acid = 1.00 / 1.05 to 1.10 / It is preferable to adjust to the range of 1.00.
 末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合後期、または重合終了時が挙げられる。末端封止剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、モノカルボン酸またはモノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを使用することができる。末端封止剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、無水マレイン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン等が挙げられる。 Examples of the timing for adding the end-capping agent include starting raw materials, starting polymerization, late polymerization, or finishing polymerization. The end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but acid anhydrides such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used. Examples of the end capping agent include aliphatic monoacids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Alicyclic monocarboxylic acids such as carboxylic acid and cyclohexanecarboxylic acid, benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, aromatic monocarboxylic acid such as phenylacetic acid, maleic anhydride Acid, phthalic anhydride, acid anhydrides such as hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc. Aliphatic monoamines, Examples thereof include alicyclic monoamines such as cyclohexylamine and dicyclohexylamine, and aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
 共重合ポリアミド樹脂(A)の酸価およびアミン価としては、それぞれ0~200eq/トン、0~100eq/tonであることが好ましい。末端官能基が200eq/tonを超えると、溶融滞留時にゲル化や劣化が促進されるだけでなく、使用環境下においても、着色や加水分解等の問題を引き起こす。一方、ガラス繊維やマレイン酸変性ポリオレフィンなどの反応性化合物をコンパウンドする際は、反応性および反応基に合わせ、酸価および/又はアミン価を5~100eq/tonとすることが好ましい。 The acid value and amine value of the copolymerized polyamide resin (A) are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively. When the terminal functional group exceeds 200 eq / ton, not only gelation and deterioration are promoted during the melt residence, but also problems such as coloring and hydrolysis are caused even in the use environment. On the other hand, when a reactive compound such as glass fiber or maleic acid-modified polyolefin is compounded, the acid value and / or amine value is preferably 5 to 100 eq / ton in accordance with the reactivity and the reactive group.
 共重合ポリアミド樹脂(A)は、従来公知の方法で製造することができるが、例えば、(a)成分の原料モノマーであるヘキサメチレンジアミン、テレフタル酸、及び(b)成分の原料モノマーである11-アミノウンデカン酸又はウンデカンラクタム、並びに必要により(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムを共縮合反応させることによって容易に合成することができる。共縮重合反応の順序は特に限定されず、全ての原料モノマーを一度に反応させてもよいし、一部の原料モノマーを先に反応させ、続いて残りの原料モノマーを反応させてもよい。また、重合方法は特に限定されないが、原料仕込からポリマー作製までを連続的な工程で進めても良いし、一度オリゴマーを作製した後、別工程で押出し機などにより重合を進める、もしくはオリゴマーを固相重合により高分子量化するなどの方法を用いても良い。原料モノマーの仕込み比率を調整することにより、合成される共重合ポリアミド中の各構成単位の割合を制御することができる。 The copolymerized polyamide resin (A) can be produced by a conventionally known method. For example, hexamethylene diamine, terephthalic acid, which is a raw material monomer of the component (a), and 11 a raw material monomer of the component (b). -Aminoundecanoic acid or undecanactactam, and if necessary (c) a structural unit obtained from an equimolar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, an aminocarboxylic acid other than the structural unit of (b) Alternatively, it can be easily synthesized by co-condensation of lactam. The order of the copolycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or a part of the raw material monomers may be reacted first, followed by the remaining raw material monomers. The polymerization method is not particularly limited, but from raw material charging to polymer production may proceed in a continuous process, and after producing an oligomer once, the polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified. A method of increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the proportion of each structural unit in the copolymerized polyamide to be synthesized can be controlled.
 共重合ポリアミド樹脂(A)は、本発明のポリアミド樹脂組成物において20~70質量%、好ましくは25~55質量%の割合で存在することが好ましい。共重合ポリアミド樹脂(A)の割合が上記下限未満であると、機械的強度が低くなり、上記上限を超えると、難燃剤(B)、(C)や強化材(D)の配合量が不足し、所望の効果が得られにくくなる。 The copolymerized polyamide resin (A) is preferably present in a proportion of 20 to 70% by mass, preferably 25 to 55% by mass in the polyamide resin composition of the present invention. When the proportion of the copolymerized polyamide resin (A) is less than the above lower limit, the mechanical strength is lowered, and when it exceeds the upper limit, the blending amount of the flame retardant (B), (C) or the reinforcing material (D) is insufficient. In addition, the desired effect is difficult to obtain.
 難燃剤(B)は電気電子部品に難燃性を付与するために配合されるものであり、例えば、ホスフィン酸塩及び/またはジホスフィン酸塩及び/またはこれらのポリマーが挙げられる。具体的にはメチルエチルホスフィン酸のアルミニウム塩、カルシウム塩、亜鉛塩など、ジエチルホスフィン酸のアルミニウム塩、カルシウム塩、亜鉛塩など、メチルプロピルホスフィン酸のアルミニウム塩、カルシウム塩、亜鉛塩などが挙げられる。特に、安定性の観点からアルミニウム塩が好ましい。 The flame retardant (B) is blended for imparting flame retardancy to the electric / electronic component, and examples thereof include phosphinates and / or diphosphinates and / or polymers thereof. Specific examples include aluminum salts, calcium salts, and zinc salts of methylethylphosphinic acid, aluminum salts, calcium salts, and zinc salts of diethylphosphinic acid, and aluminum salts, calcium salts, and zinc salts of methylpropylphosphinic acid. . In particular, an aluminum salt is preferable from the viewpoint of stability.
 難燃剤(C)は含窒素リン酸系化合物であり、難燃剤(B)と組み合わせることにより、電気電子部品に高度な難燃性を付与するために配合するものである。具体的にはメラミンホスフェート、メラミンピロホスフェート、メラミンポリホスフェート等があり、これらの含窒素リン酸系化合物および/又はその金属塩が挙げられる。ここに挙げた含窒素リン酸化合物および/又はその金属塩は例示であり、それらに限定されるものではない。 The flame retardant (C) is a nitrogen-containing phosphoric acid compound, and is combined with the flame retardant (B) in order to impart high flame retardancy to electrical and electronic parts. Specific examples include melamine phosphate, melamine pyrophosphate, melamine polyphosphate, and the like, and these nitrogen-containing phosphate compounds and / or metal salts thereof may be mentioned. The nitrogen-containing phosphate compounds and / or metal salts thereof listed here are examples, and are not limited thereto.
 難燃剤(B)及び(C)の合計配合量の割合は、共重合ポリアミド樹脂(A)100質量部に対して30~80質量部、好ましくは40~70質量部である。難燃剤(B)及び(C)の合計配合量が上記下限未満であると、目標とする高度な難燃性が得られず、上記上限を超えると、物性の大幅な低下や流動性が低下するなど成形加工性が低下するおそれがある。 The ratio of the total amount of the flame retardants (B) and (C) is 30 to 80 parts by mass, preferably 40 to 70 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A). If the total blending amount of the flame retardants (B) and (C) is less than the above lower limit, the target high flame retardancy cannot be obtained, and if it exceeds the above upper limit, the physical properties are significantly lowered and the fluidity is lowered. There is a risk that the molding processability will decrease.
 難燃剤(B)及び(C)の配合質量比(B)/(C)は、高度な難燃性と力学物性、流動性を共存させるのに重要であり、(B)/(C)としては5~50、好ましくは5~40である。 The blending mass ratio (B) / (C) of the flame retardants (B) and (C) is important for coexisting high flame retardancy, mechanical properties, and fluidity. As (B) / (C) Is from 5 to 50, preferably from 5 to 40.
 強化材(D)は、ポリアミド樹脂組成物の成形性と成形品の強度を向上するために配合されるものであり、繊維状強化材及び針状強化材から選択される少なくとも1種を使用する。繊維状強化材としては、例えばガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維などが挙げられ、針状強化材としては、例えばチタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイトなどが挙げられる。ガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面ガラス繊維の直径は20μm以下、好ましくは15μm以下、さらに好ましくは10μm以下である。また、物性面や流動性より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。 The reinforcing material (D) is blended to improve the moldability of the polyamide resin composition and the strength of the molded product, and uses at least one selected from a fibrous reinforcing material and a needle-shaped reinforcing material. . Examples of the fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber. Examples of the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned. As glass fibers, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. The diameter of the circular cross-section glass fiber is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. Further, a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity. Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable. Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis. The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 μm and the major axis is about 2 to 100 μm. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm.
 強化材(D)の割合は、共重合ポリアミド樹脂(A)100質量部に対して30~200質量部、好ましくは50~160質量部である。強化材(D)の割合が上記下限未満であると、成形品の機械的強度が低下し、上記上限を超えると、押出性や成形加工性が低下する傾向がある。 The ratio of the reinforcing material (D) is 30 to 200 parts by mass, preferably 50 to 160 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A). When the ratio of the reinforcing material (D) is less than the above lower limit, the mechanical strength of the molded product is lowered, and when it exceeds the upper limit, the extrudability and the moldability tend to be lowered.
 非繊維状又は非針状充填材(E)としては、目的別には強化用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラー、熱黄変抑制用フィラーなどが挙げられ、具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、グラファイト、カーボンナノチューブ、フラーレン、酸化インジウム、酸化錫、酸化鉄、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、赤燐、炭酸カルシウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、硫酸バリウム、および針状ではないワラストナイト、チタン酸カリウム、ホウ酸アルミニウム、硫酸マグネシウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。これらの中では、タルクがTc1を低下させ成形性が向上することから好ましい。 Examples of the non-fibrous or non-needle filler (E) include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc. Glass beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, Magnesium hydroxide, calcium hydroxide, red phosphorus, calcium carbonate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, potassium titanate, Aluminum borate, magnesium sulfate, Zinc, and calcium carbonate. These fillers may be used not only alone but also in combination of several kinds. Among these, talc is preferable because Tc1 is lowered and moldability is improved.
 充填材の添加は必須ではないが、配合する場合、充填材の添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大5質量部を添加することが可能であるが、樹脂組成物の機械的強度の観点から、0.1~5質量部が好ましく、より好ましくは1~2質量部である。充填材がタルクの場合、共重合ポリアミド樹脂(A)100質量部に対して0.1~5質量部が好ましく、0.5~3質量部がより好ましく、1~2質量部がさらに好ましい。
 また、繊維状強化材、充填材はポリアミド樹脂との親和性を向上させるため、有機処理やカップリング剤処理したもの、または溶融コンパウンド時にカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。
The addition of filler is not essential, but when blended, the optimum amount of filler may be selected, but a maximum of 5 parts by mass is added to 100 parts by mass of copolymerized polyamide resin (A). However, from the viewpoint of the mechanical strength of the resin composition, the content is preferably 0.1 to 5 parts by mass, more preferably 1 to 2 parts by mass. When the filler is talc, the amount is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, and further preferably 1 to 2 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
In addition, in order to improve the affinity with the polyamide resin, the fibrous reinforcing material and the filler are preferably used in combination with a coupling agent at the time of organic treatment or a coupling agent treatment or melt compound. Any of silane coupling agents, titanate coupling agents, and aluminum coupling agents may be used, and among them, aminosilane coupling agents and epoxysilane coupling agents are particularly preferable.
 本発明のポリアミド樹脂組成物には、従来の電気電子部品用ポリアミド樹脂組成物の各種添加剤を使用することができる。添加剤としては、安定剤、衝撃改良材、離型剤、摺動性改良材、着色剤、可塑剤、結晶核剤、共重合ポリアミド樹脂(A)とは異なるポリアミド、ポリアミド以外の熱可塑性樹脂などが挙げられる。これら成分のポリアミド樹脂組成物中の可能な配合量は、下記に説明する通りであるが、これら成分の合計は、ポリアミド樹脂組成物中、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。 In the polyamide resin composition of the present invention, various additives of conventional polyamide resin compositions for electric and electronic parts can be used. Additives include stabilizers, impact modifiers, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, polyamide resins different from copolymerized polyamide resins (A), and thermoplastic resins other than polyamides Etc. The possible blending amounts of these components in the polyamide resin composition are as described below, but the total of these components is preferably 30% by mass or less, more preferably 20% by mass or less in the polyamide resin composition. 10 mass% or less is further more preferable, and 5 mass% or less is especially preferable.
 安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。安定剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained. Examples of the alkali metal halide compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide. Examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used alone or in combination of several kinds. The addition amount of the stabilizer may be an optimal amount, but it is possible to add a maximum of 5 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
 また、本発明のポリアミド樹脂組成物には、共重合ポリアミド樹脂(A)とは異なる組成のポリアミドをポリマーブレンドしても良い。本発明の共重合ポリアミドと異なる組成のポリアミドとしては、特に制限は無いが、ポリカプロアミド(ポリアミド6)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリテトラメチレンテレフタルアミド(ポリアミド4T)、ポリペンタメチレンテレフタルアミド(ポリアミド5T)、ポリ-2-メチルペンタメチレンテレフタルアミド(ポリアミドM-5T)、ポリヘキサメチレンヘキサヒドロテレフタルアミド(ポリアミド6T(H))、ポリ2-メチル-オクタメチレンテレフタルアミド、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリウンデカメチレンテレフタルアミド(ポリアミド11T)、ポリドデカメチレンテレフタルアミド(ポリアミド12T)、ポリビス(3-メチル-4-アミノヘキシル)メタンテレフタルアミド(ポリアミドPACMT)、ポリビス(3-メチル-4-アミノヘキシル)メタンイソフタルアミド(ポリアミドPACMI)、ポリビス(3-メチル-4-アミノヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(3-メチル-4-アミノヘキシル)メタンテトラデカミド(ポリアミドPACM14)、ポリアルキルエーテル共重合ポリアミドなどの単体、もしくはこれらの共重合ポリアミドを単独または二種以上を使用しても良い。これらの中でも、結晶速度を向上させ成形性を向上させるために、ポリアミド66やポリアミド6T66などを、さらなる低吸水性を付与するためのポリアミド10T誘導体などをブレンドしても良い。共重合ポリアミド樹脂(A)とは異なる組成のポリアミドの添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 The polyamide resin composition of the present invention may be polymer blended with a polyamide having a composition different from that of the copolymerized polyamide resin (A). The polyamide having a composition different from that of the copolymerized polyamide of the present invention is not particularly limited, but polycaproamide (polyamide 6), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polytetramethylene adipamide (Polyamide 46), polyhexamethylene adipamide (polyamide 66), polymetaxylylene adipamide (polyamide MXD6), polyparaxylylene adipamide (polyamide PXD6), polytetramethylene sebacamide (polyamide 410), Polyhexamethylene sebamide (polyamide 610), polydecamethylene adipamide (polyamide 106), polydecamethylene sebamide (polyamide 1010), polyhexamethylene dodecamide (polyamide 612), polydecamethylene dodecamide (polyamide) Amide 1012), polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polytetramethylene terephthalamide (polyamide 4T), polypentamethylene terephthalamide (polyamide 5T), poly-2-methylpenta Methylene terephthalamide (polyamide M-5T), polyhexamethylene hexahydroterephthalamide (polyamide 6T (H)), poly-2-methyl-octamethylene terephthalamide, polynonamethylene terephthalamide (polyamide 9T), polydecamethylene terephthalamide (Polyamide 10T), polyundecamethylene terephthalamide (polyamide 11T), polydodecamethylene terephthalamide (polyamide 12T), polybis (3-methyl) 4-aminohexyl) methane terephthalamide (polyamide PACMT), polybis (3-methyl-4-aminohexyl) methane isophthalamide (polyamide PACMI), polybis (3-methyl-4-aminohexyl) methane dodecamide (polyamide PACM12) Polybis (3-methyl-4-aminohexyl) methane tetradecamide (polyamide PACM14), a polyalkyl ether copolymerized polyamide or the like, or these copolymerized polyamides may be used alone or in combination. Of these, polyamide 66, polyamide 6T66, and the like may be blended with polyamide 10T derivative for imparting further low water absorption, etc., in order to increase the crystallization speed and improve the moldability. The addition amount of polyamide having a composition different from that of the copolymerized polyamide resin (A) may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the copolymerized polyamide resin (A). It is.
 本発明のポリアミド樹脂組成物には、共重合ポリアミド樹脂(A)とは異なる組成のポリアミド以外の熱可塑性樹脂を添加しても良い。ポリアミド以外のポリマーとしては、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)が挙げられる。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明のポリアミド樹脂組成物に分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大50質量部を添加することが可能である。 A thermoplastic resin other than polyamide having a composition different from that of the copolymerized polyamide resin (A) may be added to the polyamide resin composition of the present invention. Polymers other than polyamide include polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonitrile - styrene copolymer (AS), acrylonitrile - butadiene - styrene copolymer (ABS) and the like. These thermoplastic resins can be blended in a molten state by melt kneading. However, the thermoplastic resin may be made into a fiber or particle and dispersed in the polyamide resin composition of the present invention. An optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by mass can be added to 100 parts by mass of the copolymerized polyamide resin (A).
 衝撃改良剤としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ポリアミドエラストマー、ウレタンエラストマー、アクリルエラストマー、シリコンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。衝撃改良剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大30質量部を添加することが可能である。 Impact modifiers include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as a soft segment, a polyamide elastomer, urethane elastomer, acrylic elastomer, silicone rubber, fluorinated rubber, and the like polymer particles having a core-shell structure constituted from two different polymers. An optimum amount of the impact modifier may be selected, but a maximum of 30 parts by mass can be added to 100 parts by mass of the copolymerized polyamide resin (A).
 本発明のポリアミド樹脂組成物に対して、共重合ポリアミド樹脂(A)以外の熱可塑性樹脂および耐衝撃改良材を添加する場合にはポリアミドと反応可能な反応性基が共重合されていることが好ましく、反応性基としてはポリアミド樹脂の末端基であるアミノ基、カルボキシル基及び主鎖アミド基と反応しうる基である。具体的にはカルボン酸基、酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が例示されるが、それらの中でも酸無水物基が最も反応性に優れている。このようにポリアミド樹脂と反応する反応性基を有する熱可塑性樹脂はポリアミド中に微分散し、微分散するがゆえに粒子間の距離が短くなり耐衝撃性が大幅に改良されるという報告もある〔S,Wu:Polymer 26,1855(1985)〕。 When a thermoplastic resin other than the copolymerized polyamide resin (A) and an impact resistance improving material are added to the polyamide resin composition of the present invention, a reactive group capable of reacting with the polyamide is copolymerized. Preferably, the reactive group is a group capable of reacting with an amino group, a carboxyl group and a main chain amide group which are terminal groups of the polyamide resin. Specific examples include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group, etc. Among them, an acid anhydride group is most excellent in reactivity. There is also a report that the thermoplastic resin having a reactive group that reacts with the polyamide resin is finely dispersed in the polyamide and is finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved [ S, Wu: Polymer 26, 1855 (1985)].
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸などが挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミドなどが挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型材の添加量は最適な量を選択すれば良いが、共重合ポリアミド樹脂(A)100質量部に対して最大5質量部を添加することが可能である。 Examples of the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture. The addition amount of the release material may be selected as an optimum amount, but it is possible to add up to 5 parts by mass with respect to 100 parts by mass of the copolymerized polyamide resin (A).
 本発明のポリアミド樹脂組成物は、下記実施例の項で説明する方法で測定した水中平衡吸水率が3.0%以下であることが好ましい。水中平衡吸水率をこの範囲とするためには、上記で説明した共重合ポリアミド樹脂(A)を選択することが重要である。水中平衡吸水率は、2.5%以下が、より好ましい。水中平衡吸水率の下限は、0%であることが好ましいが、用いる共重合ポリアミド樹脂(A)の特性から1.5%程度である。
を有することが好ましい。
The polyamide resin composition of the present invention preferably has an underwater equilibrium water absorption of 3.0% or less as measured by the method described in the Examples section below. In order to make the equilibrium water absorption in water within this range, it is important to select the copolymerized polyamide resin (A) described above. The underwater equilibrium water absorption is more preferably 2.5% or less. The lower limit of the equilibrium water absorption rate in water is preferably 0%, but is about 1.5% from the characteristics of the copolymerized polyamide resin (A) used.
It is preferable to have.
 ポリアミド樹脂組成物は、300~330℃の融点(Tm)、及び90~120℃の昇温結晶化温度(Tc1)を有することが好ましい。融点が上記上限を超える場合、本発明のポリアミド樹脂組成物を射出成形する際に必要となる加工温度が極めて高くなるため、加工時に分解し、目的の物性や外観が得られない場合がある。逆に、Tmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になる場合があり、さらには、ハンダ耐熱性の低下を招く恐れがある。昇温結晶化温度Tc1とは、室温より昇温させた際に結晶化し始める温度であり、成形時の樹脂組成物の雰囲気温度がTc1より低いと、結晶化は進行しづらい。一方、樹脂組成物の温度がTc1より大きくなると、容易に結晶化が進行し、寸法安定性や物性などを十分に発揮することができる。電気電子部品はその形状が薄肉微細であることから、射出成形後の樹脂温度は金型温度とほぼ一致すると考えられる。したがって、樹脂組成物のTc1が高いとそれに合わせて金型温度を上げる必要があり、加工性の低下を招く。Tc1が上記上限を超える場合、本発明のポリアミド樹脂組成物を射出成形する際に必要とされる金型温度が高くなり成形が困難になるだけでなく、射出成形の短いサイクルの中では十分に結晶化が進まない場合があり、離型不足等の成形難を引き起こしたり、十分に結晶化が終了していないため、製品強度不足の問題が発生し、信頼性に欠ける。逆に、Tc1が上記下限未満の場合、樹脂組成として必然的にガラス転移温度を低下させる必要が出てくる。Tc1は一般的にガラス転移温度以上の温度となるため、Tc1を90℃未満にする場合、ガラス転移温度としてはさらに低い値が求められるが、その場合、物性の大きな低下や、吸水後の物性が維持できないなどの問題が発生する。Tgを比較的高く保つ必要があることから、Tc1としては少なくとも90℃以上にすることが望ましい。 The polyamide resin composition preferably has a melting point (Tm) of 300 to 330 ° C. and a temperature rising crystallization temperature (Tc1) of 90 to 120 ° C. When the melting point exceeds the above upper limit, the processing temperature required for injection molding of the polyamide resin composition of the present invention becomes extremely high, so that it may be decomposed during processing and the desired physical properties and appearance may not be obtained. On the other hand, when Tm is less than the above lower limit, the crystallization rate is slow, and in some cases, molding may be difficult, and further, solder heat resistance may be reduced. The temperature rise crystallization temperature Tc1 is a temperature at which crystallization starts when the temperature is raised from room temperature. If the ambient temperature of the resin composition at the time of molding is lower than Tc1, crystallization hardly proceeds. On the other hand, when the temperature of the resin composition becomes higher than Tc1, crystallization proceeds easily, and dimensional stability, physical properties, etc. can be sufficiently exhibited. Since the shape of the electric / electronic parts is thin and fine, it is considered that the resin temperature after injection molding almost coincides with the mold temperature. Therefore, if the Tc1 of the resin composition is high, it is necessary to increase the mold temperature accordingly, leading to a decrease in workability. When Tc1 exceeds the upper limit, not only the mold temperature required for injection molding of the polyamide resin composition of the present invention becomes high and molding becomes difficult, but also in a short cycle of injection molding. In some cases, crystallization does not proceed, causing molding difficulties such as insufficient mold release, or insufficient crystallization, resulting in insufficient product strength and lack of reliability. Conversely, when Tc1 is less than the above lower limit, it is necessary to inevitably lower the glass transition temperature as a resin composition. Since Tc1 is generally a temperature higher than the glass transition temperature, when Tc1 is less than 90 ° C., a lower value is required as the glass transition temperature. In that case, the physical properties greatly decrease or the physical properties after water absorption. Problems that cannot be maintained. Since it is necessary to keep Tg relatively high, it is desirable that Tc1 be at least 90 ° C. or higher.
 共重合ポリアミド樹脂(A)では、ポリアミド6Tに特定量のポリアミド11成分を共重合しているので、高融点や成形性に加え、低吸水性や流動性のバランスに優れた樹脂が得られる。表面実装型電気電子部品の成形においては、300℃以上の高融点、低吸水であることに加え、薄肉、ハイサイクルな成型が求められている。ヘキサメチレンテレフタルアミド/ポリヘキサメチレンアジパミド共重合体(ポリアミド6T/66)においては、成形性は良好であるものの、吸水率が極めて高い。したがって、表面実装などで行われるリフローはんだ処理において、成型品にブリスターが発生するなど問題となっている。一方、ポリノナメチレンテレフタルアミド(ポリアミド9T)においては、低吸水であるが、Tgが125℃であるためTc1は必然的に125℃以上となり、成型時の金型温度が140℃以上必要となるため、成型加工性に難がある。たとえ低温金型で成型しようとした場合でも、流動性の不足や、後工程や使用時の結晶化進行による二次収縮や変形が問題となる。上記のような背景より、300℃以上の高融点および低吸水、易成形性、高流動性を有する樹脂が求められており、共重合ポリアミド樹脂(A)においては、ポリアミド6Tに特定量のポリアミド11を共重合することにより、高融点、低吸水や流動性の付与に加え、Tc1が低く抑えられ、射出成形やの加工性を大幅に改善できる。 In the copolymerized polyamide resin (A), since a specific amount of the polyamide 11 component is copolymerized with the polyamide 6T, a resin having an excellent balance of low water absorption and fluidity in addition to a high melting point and moldability can be obtained. In the molding of surface-mounted electrical and electronic parts, in addition to a high melting point of 300 ° C. or higher and low water absorption, thin-walled, high-cycle molding is required. In the hexamethylene terephthalamide / polyhexamethylene adipamide copolymer (polyamide 6T / 66), although the moldability is good, the water absorption is extremely high. Therefore, in the reflow soldering process performed by surface mounting or the like, there is a problem that blisters are generated in a molded product. On the other hand, polynonamethylene terephthalamide (polyamide 9T) has low water absorption, but since Tg is 125 ° C., Tc1 is inevitably 125 ° C. or higher, and the mold temperature during molding is 140 ° C. or higher. Therefore, there is a difficulty in moldability. Even when trying to mold with a low-temperature mold, problems such as insufficient fluidity and secondary shrinkage and deformation due to crystallization during post-processing and use. From the background as described above, a resin having a high melting point of 300 ° C. or higher, low water absorption, easy moldability, and high fluidity is required. In the copolymerized polyamide resin (A), a specific amount of polyamide is added to polyamide 6T. By copolymerizing 11, in addition to imparting a high melting point, low water absorption and fluidity, Tc1 can be kept low, and the processability of injection molding can be greatly improved.
 本発明のポリアミド樹脂組成物は、上述の各構成成分を従来公知の方法で配合することにより製造されることができる。例えば、共重合ポリアミド樹脂(A)の重縮合反応時に各成分を添加したり、共重合ポリアミド樹脂(A)とその他の成分をドライブレンドしたり、または、二軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。 The polyamide resin composition of the present invention can be produced by blending the above-described constituent components by a conventionally known method. For example, each component is added during the polycondensation reaction of the copolymerized polyamide resin (A), the blended polyamide resin (A) and other components are dry blended, or a twin screw type extruder is used. The method of melt-kneading each structural component can be mentioned.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)相対粘度
 ポリアミド樹脂0.25gを96%硫酸25mlに溶解し、オストワルド粘度計を用いて20℃で測定した。
(1) Relative viscosity 0.25 g of polyamide resin was dissolved in 25 ml of 96% sulfuric acid and measured at 20 ° C. using an Ostwald viscometer.
(2)末端アミノ基量
 ポリアミド樹脂0.2gをm-クレゾール20mlに溶解させ、0.1mol/l塩酸エタノール溶液で滴定した。指示薬はクレゾールレッドを用いた。樹脂1ton中の当量(eq/ton)として表した。
(2) Amount of terminal amino groups 0.2 g of polyamide resin was dissolved in 20 ml of m-cresol and titrated with a 0.1 mol / l hydrochloric acid ethanol solution. Cresol red was used as the indicator. Expressed as equivalents (eq / ton) in 1 ton of resin.
(3)融点(Tm)及び昇温結晶化温度(Tc1)
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は35℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。得られた成型品の融点(Tm)及び昇温結晶化温度(Tc1)を測定するために、成型品の一部をアルミニウム製パンに5mg計量し、アルミニウム製蓋で密封状態にして、測定試料を調製した後、示差走査熱量計(SEIKO INSTRUMENTS製 SSC/5200)を用いて、窒素雰囲気で室温から20℃/分で昇温し、350℃まで測定を実施した。その際、得られる発熱ピークの内、最も高温のピークのピークトップ温度を昇温結晶化温度(Tc1)とした。さらに昇温し、融解による吸熱のピークトップ温度を融点(Tm)とした。
(3) Melting point (Tm) and temperature rising crystallization temperature (Tc1)
Using a Toshiba Machine injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 35 ° C, the length is 127 mm, the width is 12.6 mm, and the thickness is 0.8 mm. A piece was injection molded to produce a test piece. In order to measure the melting point (Tm) and temperature rising crystallization temperature (Tc1) of the obtained molded product, 5 mg of a part of the molded product was weighed into an aluminum pan, sealed with an aluminum lid, and a measurement sample. Then, using a differential scanning calorimeter (SSC / 5200 manufactured by SEIKO INSTRUMENTS), the temperature was raised from room temperature to 20 ° C./min in a nitrogen atmosphere, and the measurement was carried out to 350 ° C. At that time, the peak top temperature of the highest temperature peak among the exothermic peaks obtained was defined as the temperature raising crystallization temperature (Tc1). The temperature was further raised, and the peak top temperature of endotherm due to melting was defined as the melting point (Tm).
(4)ハンダ耐熱性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。試験片は85℃、85%RH(相対湿度)の雰囲気中に72時間放置した。試験片はエアリフロー炉中(エイテック製 AIS-20-82C)、室温から150℃まで60秒かけて昇温させ予備加熱を行った後、190℃まで0.5℃/分の昇温速度でプレヒートを実施した。その後、100℃/分の速度で所定の設定温度まで昇温し、所定の温度で10秒間保持した後、冷却を行った。設定温度は240℃から5℃おきに増加させ、表面の膨れや変形が発生しなかった最高の設定温度をリフロー耐熱温度とし、ハンダ耐熱性の指標として用いた。
 ○:リフロー耐熱温度が260℃以上
 ×:リフロー耐熱温度が260℃未満
(4) Solder heat resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 140 ° C., the length is 127 mm, the width is 12.6 mm, and the thickness is 0.8 mm. The test piece for the UL combustion test was injection molded to produce a test piece. The test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours. The specimen was heated in an air reflow furnace (AIS-20-82C manufactured by ATEC) from room temperature to 150 ° C over 60 seconds, preheated, and then heated to 190 ° C at a rate of 0.5 ° C / min. Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which the surface did not swell or deformed was defined as the reflow heat resistant temperature, which was used as an index of solder heat resistance.
○: Reflow heat-resistant temperature is 260 ° C or higher ×: Reflow heat-resistant temperature is less than 260 ° C
(6)水中平衡吸水率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を80℃熱水中に50時間浸漬させ、飽和吸水時及び乾燥時の重量から以下の式より飽和吸水率を求めた。
 飽和吸水率(%)={(飽和吸水時の重量-乾燥時の重量)/乾燥時の重量}×100
(6) Underwater equilibrium water absorption rate Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate 100mm long, 100mm wide and 1mm thick is injected. Molded to prepare a test piece for evaluation. This test piece was immersed in hot water at 80 ° C. for 50 hours, and the saturated water absorption was determined from the following equation from the weight at the time of saturated water absorption and drying.
Saturated water absorption (%) = {(weight at saturated water absorption−weight at drying) / weight at drying} × 100
(7)難燃性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦127mm、横12.7mm、厚み1.6mmの評価用試験片を射出成形により作製した。この試験片を用いて、UL-94垂直燃焼試験に準拠して、難燃性評価を実施した。
(7) Flame retardance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 140 ° C., the length is 127 mm, the width is 12.7 mm, and the thickness is 1.6 mm. Test specimens for evaluation were produced by injection molding. Using this test piece, flame retardancy evaluation was performed according to the UL-94 vertical combustion test.
(8)曲げ強度、曲げ弾性率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、JIS K7161に準拠し、評価用試験片を作成し、物性評価を実施した。
(8) Bending strength and flexural modulus Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a test piece for evaluation according to JIS K7161 Was created and physical properties were evaluated.
 本実施例は、以下に例示するように合成された共重合ポリアミド樹脂(A)を使用して行われたものである。 This example was carried out using a copolymerized polyamide resin (A) synthesized as exemplified below.
<合成例1>
 1,6-ヘキサメチレンジアミン7.54kg、テレフタル酸10.79kg、11-アミノウンデカン酸7.04kg、触媒としてジ亜リン酸ナトリウム9g、末端調整剤として酢酸40gおよびイオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、樹脂温度を335℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、共重合ポリアミド樹脂(A)を得た。得られた共重合ポリアミド樹脂(A)は、相対粘度2.1、末端アミノ基量16eq/ton、融点314℃であった。合成例1の共重合ポリアミド樹脂(A)の原料モノマーの仕込み比率を表1に示す。
<Synthesis Example 1>
7.56 kg of 1,6-hexamethylenediamine, 10.79 kg of terephthalic acid, 7.04 kg of 11-aminoundecanoic acid, 9 g of sodium diphosphite, 40 g of acetic acid as a terminal conditioner and 17.52 kg of ion-exchanged water The mixture was charged into a liter autoclave, pressurized with N 2 from normal pressure to 0.05 MPa, released, and returned to normal pressure. This operation was performed 3 times, N 2 substitution was performed, and then uniform dissolution was performed at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C. with a heating pipe, and heated for 1 hour. Thereafter, the reaction mixture was supplied to a pressure reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Thereafter, this low-order condensate is directly supplied to a twin-screw extruder (screw diameter: 37 mm, L / D = 60) while maintaining the molten state, and the resin temperature is 335 ° C. while water is removed from three vents. The polycondensation proceeded under melting to obtain a copolymerized polyamide resin (A). The obtained copolymerized polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 16 eq / ton, and a melting point of 314 ° C. Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 1.
<合成例2>
 1,6-ヘキサメチレンジアミンの量を8.12kgに変更し、テレフタル酸の量を11.62に変更し、11-アミノウンデカン酸の量を6.03kgに変更した以外は実施例1と同様にして、共重合ポリアミド樹脂(A)を合成した。得られた共重合ポリアミド樹脂(A)は、相対粘度2.1、末端アミノ基量28eq/ton、融点328℃であった。合成例2の共重合ポリアミド樹脂(A)の原料モノマーの仕込み比率を表1に示す。
<Synthesis Example 2>
Example 1 except that the amount of 1,6-hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 11.62, and the amount of 11-aminoundecanoic acid was changed to 6.03 kg. Thus, a copolymerized polyamide resin (A) was synthesized. The obtained copolymer polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 28 eq / ton, and a melting point of 328 ° C. Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 2.
<合成例3>
 1,6-ヘキサメチレンジアミンの量を8.12kgに変更し、テレフタル酸の量を9.96kgに変更し、11-アミノウンデカン酸の量を6.03kgに変更し、アジピン酸(テレフタル酸以外のジカルボン酸)1.46kgを仕込んだ以外は実施例1と同様にして、共重合ポリアミド樹脂(A)を合成した。得られた共重合ポリアミド樹脂(A)は、相対粘度2.1、末端アミノ基量35eq/ton、融点310℃であった。合成例3の共重合ポリアミド樹脂(A)の原料モノマーの仕込み比率を表1に示す。
<Synthesis Example 3>
The amount of 1,6-hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 9.96 kg, the amount of 11-aminoundecanoic acid was changed to 6.03 kg, adipic acid (other than terephthalic acid) The copolymerized polyamide resin (A) was synthesized in the same manner as in Example 1 except that 1.46 kg of (dicarboxylic acid) was charged. The obtained copolymerized polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 35 eq / ton, and a melting point of 310 ° C. Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 3.
<合成例4>
 11-アミノウンデカン酸7.04kgをウンデカンラクタム6.41kgに変更した以外は実施例1と同様にして、共重合ポリアミド樹脂(A)を合成した。得られた共重合ポリアミド樹脂(A)は、相対粘度2.1、末端アミノ基量13eq/ton、融点315℃であった。合成例4の共重合ポリアミド樹脂(A)の原料モノマーの仕込み比率を表1に示す。
<Synthesis Example 4>
A copolymerized polyamide resin (A) was synthesized in the same manner as in Example 1 except that 7.04 kg of 11-aminoundecanoic acid was changed to 6.41 kg of undecane lactam. The obtained copolymerized polyamide resin (A) had a relative viscosity of 2.1, a terminal amino group amount of 13 eq / ton, and a melting point of 315 ° C. Table 1 shows the charging ratio of the raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 4.
<合成例5>
 1,6-ヘキサメチレンジアミンを5.80kg、テレフタル酸を8.30kg、11-アミノウンデカン酸6.70kgに変更した以外は合成例1と同様にして、共重合ポリアミド樹脂(A)を合成した。得られた共重合ポリアミド樹脂(A)は、相対粘度2.0、末端アミノ基量15eq/ton、融点280℃であった。合成例5の共重合ポリアミド樹脂(A)の原料モノマーの仕込み比率を表1に示す。
<Synthesis Example 5>
A copolymerized polyamide resin (A) was synthesized in the same manner as in Synthesis Example 1 except that 5.80 kg of 1,6-hexamethylenediamine, 8.30 kg of terephthalic acid, and 6.70 kg of 11-aminoundecanoic acid were used. . The obtained copolymerized polyamide resin (A) had a relative viscosity of 2.0, a terminal amino group amount of 15 eq / ton, and a melting point of 280 ° C. Table 1 shows the charging ratio of raw material monomers of the copolymerized polyamide resin (A) of Synthesis Example 5.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例1~8、比較例1~5
 表2に記載の成分と質量割合で、コペリオン(株)製二軸押出機STS-35を用いて各ポリアミド原料の融点+20℃で溶融混練し、実施例1~8、比較例1~5のポリアミド樹脂組成物を得た。ポリアミド樹脂組成物の作製に当たり使用した原料は以下の通りである。
 ポリアミド原料:合成例1~5に基づいて作製された共重合ポリアミド(A)、PA6T/6(BASF社製 Ultramide(R) KR4351)、PA66(東洋紡社製 GLAMIDE(R) T-662 相対粘度2.8 末端カルボキシル基量40当量/トン)
 難燃剤(B):ジエチルホスフィン酸アルミニウム塩(Clariant Japan社製 EXOLIT(R) OP1230)
 難燃剤(C-1):ポリリン酸メラミン(BASF社製 MELAPUR(R)200/70)
 難燃剤(C-2):ポリリン酸メラミン、メラム、メレム縮合物(日産化学社製 PHOSMEL-200)
 強化材(D):ガラス繊維(日東紡績(株)製、CS-3J-459)
 充填剤(E):タルク(林化成(株)製 ミクロンホワイト5000A)
 離型剤:ステアリン酸マグネシウム
 安定剤:ペンタエリスリチル・テトラキス[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート] (Chiba Speciality Chemicals社製 Irganox1010)
Examples 1-8, Comparative Examples 1-5
The components and mass ratios shown in Table 2 were melt-kneaded at a melting point of each polyamide raw material + 20 ° C. using a twin screw extruder STS-35 manufactured by Coperion Co., Ltd., and Examples 1 to 8 and Comparative Examples 1 to 5 A polyamide resin composition was obtained. The raw materials used in the preparation of the polyamide resin composition are as follows.
Polyamide raw materials: Copolyamide (A) prepared on the basis of Synthesis Examples 1 to 5, PA6T / 6 (Ultramide (R) KR4351 manufactured by BASF), PA66 (GLAMIDE (R) T-662 manufactured by Toyobo Co., Ltd.) Relative viscosity 2 .8 Terminal carboxyl group amount 40 equivalent / ton)
Flame retardant (B): diethylphosphinic acid aluminum salt (EXOLIT (R) OP1230 manufactured by Clariant Japan)
Flame retardant (C-1): Melamine polyphosphate (MELAPUR (R) 200/70 manufactured by BASF)
Flame retardant (C-2): Melamine polyphosphate, melam, melem condensate (PHOSMEL-200 manufactured by Nissan Chemical Co., Ltd.)
Reinforcing material (D): Glass fiber (manufactured by Nitto Boseki Co., Ltd., CS-3J-459)
Filler (E): Talc (Micron White 5000A, Hayashi Kasei Co., Ltd.)
Mold release agent: Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Chiba Specialty Chemicals)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなように、実施例1~8では、難燃性、低吸水性、ハンダ耐熱性を満足するのみならず、表面実装型電気電子部品としての使用に耐え得る力学物性を示すことがわかる。一方で、比較例1では難燃剤(C)を含まず、十分な難燃性が得られない。比較例2では、難燃剤配合量のバランスが悪く、難燃剤(C)が過剰であることにより、十分な力学物性が得られない。比較例3では、難燃性、低吸水性は十分に得られたものの、融点が低いため、ハンダ耐熱性に劣る。比較例4では、難燃性、力学物性は満足するが、低吸水性に難があるため、ハンダ耐熱性に劣る。比較例5では、樹脂骨格の影響により、ハンダ耐熱性、低吸水性において劣る。 As is apparent from Table 2, Examples 1 to 8 not only satisfy flame retardancy, low water absorption, and solder heat resistance, but also exhibit mechanical properties that can withstand use as surface mount type electric and electronic parts. I understand. On the other hand, in Comparative Example 1, the flame retardant (C) is not included, and sufficient flame retardancy cannot be obtained. In Comparative Example 2, the balance of the flame retardant blending amount is poor, and sufficient mechanical properties cannot be obtained because the flame retardant (C) is excessive. In Comparative Example 3, although flame retardancy and low water absorption were sufficiently obtained, the melting point is low, so that the solder heat resistance is poor. In Comparative Example 4, flame retardancy and mechanical properties are satisfactory, but low heat absorption is difficult, so solder heat resistance is poor. Comparative Example 5 is inferior in solder heat resistance and low water absorption due to the influence of the resin skeleton.
 本発明の難燃性ポリアミド樹脂組成物は、耐熱性、成形性、流動性、低吸水性に優れる特定の共重合ポリアミド樹脂を使用しているので、必要な特性を高度に満足しながら、表面実装型電気電子部品を工業的に有利に製造することができる。 The flame retardant polyamide resin composition of the present invention uses a specific copolymerized polyamide resin excellent in heat resistance, moldability, fluidity and low water absorption, so that the surface has a high level of satisfaction while satisfying the required properties. The mounting type electric / electronic component can be advantageously produced industrially.

Claims (5)

  1.  表面実装型電気電子部品に使用する難燃性ポリアミド樹脂組成物であって、(a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位55~75モル%と、(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位45~25モル%とからなる共重合ポリアミド樹脂(A)、ホスフィン酸の金属塩からなる難燃剤(B)、含窒素リン酸系化合物からなる難燃剤(C)、繊維状強化材及び針状強化材からなる群より選択される少なくとも1種の強化材(D)、及び非繊維状又は非針状充填材(E)を含有し、共重合ポリアミド樹脂(A)100質量部に対して難燃剤(B)と(C)の合計が30~80質量部、強化材(D)が30~200質量部、及び充填材(E)が0~5質量部の割合で含有され、かつ難燃剤の質量割合(B)/(C)が5~50であることを特徴とする難燃性ポリアミド樹脂組成物。 A flame-retardant polyamide resin composition for use in surface-mount electric and electronic parts, comprising: (a) 55 to 75 mol% of a structural unit obtained from an equimolar molar salt of hexamethylenediamine and terephthalic acid; and (b) Copolymerized polyamide resin (A) composed of 45 to 25 mol% of structural units obtained from 11-aminoundecanoic acid or undecane lactam, flame retardant (B) composed of metal salt of phosphinic acid, and nitrogen-containing phosphoric acid compound Containing at least one reinforcing material (D) selected from the group consisting of a flame retardant (C), a fibrous reinforcing material and an acicular reinforcing material, and a non-fibrous or non-acicular filling material (E); The total of the flame retardants (B) and (C) is 30 to 80 parts by mass, the reinforcing material (D) is 30 to 200 parts by mass, and the filler (E) is 0 with respect to 100 parts by mass of the polymerized polyamide resin (A). Contains up to 5 parts by weight It is, and the mass ratio of the flame retardant (B) / (C) is a flame-retardant polyamide resin composition, wherein the 5 to 50.
  2.  ポリアミド樹脂組成物の水中平衡吸水率が3.0%以下である請求項1に記載の難燃性ポリアミド樹脂組成物。 The flame retardant polyamide resin composition according to claim 1, wherein the polyamide resin composition has an equilibrium water absorption rate of 3.0% or less.
  3.  ポリアミド樹脂組成物の融点(Tm)が300~330℃であり、昇温結晶化温度(Tc1)が90~120℃であることを特徴とする請求項1又は2に記載の難燃性ポリアミド樹脂組成物。 3. The flame-retardant polyamide resin according to claim 1, wherein the polyamide resin composition has a melting point (Tm) of 300 to 330 ° C. and a temperature-rising crystallization temperature (Tc1) of 90 to 120 ° C. Composition.
  4.  非繊維状又は非針状充填材(E)がタルクであり、共重合ポリアミド樹脂(A)100質量部に対してタルク0.1~5質量部の割合で含有することを特徴とする請求項1~3のいずれかに記載の難燃性ポリアミド樹脂組成物。 The non-fibrous or non-needle filler (E) is talc, and is contained in a proportion of 0.1 to 5 parts by mass of talc with respect to 100 parts by mass of the copolymerized polyamide resin (A). 4. The flame retardant polyamide resin composition according to any one of 1 to 3.
  5.  共重合ポリアミド樹脂(A)が、(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大20モル%まで含有することを特徴とする請求項1~4のいずれかに記載の難燃性ポリアミド樹脂組成物。 The copolymerized polyamide resin (A) is (c) a structural unit obtained from an equivalent molar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, or an aminocarboxylic acid other than the structural unit of (b) or The flame-retardant polyamide resin composition according to any one of claims 1 to 4, which comprises up to 20 mol% of a structural unit obtained from lactam.
PCT/JP2014/054121 2013-02-26 2014-02-21 Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component WO2014132883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540667A JPWO2014132883A1 (en) 2013-02-26 2014-02-21 Flame retardant polyamide resin composition for use in surface mount electrical and electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035407 2013-02-26
JP2013-035407 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132883A1 true WO2014132883A1 (en) 2014-09-04

Family

ID=51428153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054121 WO2014132883A1 (en) 2013-02-26 2014-02-21 Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component

Country Status (2)

Country Link
JP (1) JPWO2014132883A1 (en)
WO (1) WO2014132883A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119045A (en) * 2017-01-24 2018-08-02 マナック株式会社 Flame-retardant polyamide resin composition
WO2021193196A1 (en) * 2020-03-25 2021-09-30 東洋紡株式会社 Polyamide resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107514A1 (en) * 2008-02-29 2009-09-03 株式会社クラレ Method for production of pellet of polyamide composition having reduced metal-corroding property, and method for production of molded article
WO2012026413A1 (en) * 2010-08-27 2012-03-01 東洋紡績株式会社 Polyamide resin composition used for reflective plate for surface mount led
JP2012528904A (en) * 2009-06-05 2012-11-15 エーエムエス−パテント アクチェンゲゼルシャフト Flame retardant semi-aromatic polyamide molding composition
JP2013064032A (en) * 2011-09-15 2013-04-11 Unitika Ltd Polyamide resin composition, and molding thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107514A1 (en) * 2008-02-29 2009-09-03 株式会社クラレ Method for production of pellet of polyamide composition having reduced metal-corroding property, and method for production of molded article
JP2012528904A (en) * 2009-06-05 2012-11-15 エーエムエス−パテント アクチェンゲゼルシャフト Flame retardant semi-aromatic polyamide molding composition
WO2012026413A1 (en) * 2010-08-27 2012-03-01 東洋紡績株式会社 Polyamide resin composition used for reflective plate for surface mount led
JP2013064032A (en) * 2011-09-15 2013-04-11 Unitika Ltd Polyamide resin composition, and molding thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119045A (en) * 2017-01-24 2018-08-02 マナック株式会社 Flame-retardant polyamide resin composition
WO2021193196A1 (en) * 2020-03-25 2021-09-30 東洋紡株式会社 Polyamide resin composition
CN115279833A (en) * 2020-03-25 2022-11-01 东洋纺株式会社 Polyamide resin composition

Also Published As

Publication number Publication date
JPWO2014132883A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5800096B2 (en) Flame retardant polyamide resin composition
KR101530464B1 (en) Copolymer polyamide
WO2011074536A1 (en) Copolyamide
WO2011052464A1 (en) Copolymerized polyamide
JP5964964B2 (en) Polyamide, polyamide composition and molded article
WO2010117708A1 (en) Flame resistant semiaromatic polyamide resin composition and articles therefrom
JP6039945B2 (en) Polyamide resin composition and molded product
WO2012161064A1 (en) Polyamide resin composition for optical components
JP5696959B1 (en) High melting point polyamide resin composition with excellent vibration characteristics upon water absorption
JP5728969B2 (en) Polyamide resin composition for engine cooling water system parts and engine cooling water system parts using the same
WO2021193196A1 (en) Polyamide resin composition
JP2011111576A (en) Copolyamide
WO2014132883A1 (en) Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component
JP5818184B2 (en) High melting point polyamide resin composition with excellent vibration and appearance at the time of water absorption
JP6210217B2 (en) Carbon fiber reinforced polyamide resin composition
JP5669627B2 (en) Polyamide resin composition and molded product
WO2021205938A1 (en) Flame-retardant polyamide resin composition
JP2012102232A (en) Copolyamide
JP2013253196A (en) Polyamide composition, and molded product obtained by molding polyamide composition
EP4067427A1 (en) Polyamide resin composition and molded object thereof
JP6067254B2 (en) Copolyamide
JP5959190B2 (en) Polyamide resin composition and molded product
JP2012136643A (en) Copolyamide
JP2023157584A (en) Polyamide composition and molded product
JP2022097119A (en) Polyamide resin composition for welding, and engine cooling water-related component comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014540667

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756765

Country of ref document: EP

Kind code of ref document: A1