WO2011052464A1 - Copolymerized polyamide - Google Patents

Copolymerized polyamide Download PDF

Info

Publication number
WO2011052464A1
WO2011052464A1 PCT/JP2010/068560 JP2010068560W WO2011052464A1 WO 2011052464 A1 WO2011052464 A1 WO 2011052464A1 JP 2010068560 W JP2010068560 W JP 2010068560W WO 2011052464 A1 WO2011052464 A1 WO 2011052464A1
Authority
WO
WIPO (PCT)
Prior art keywords
nylon
acid
polyamide
copolymerized
copolymerized polyamide
Prior art date
Application number
PCT/JP2010/068560
Other languages
French (fr)
Japanese (ja)
Inventor
順一 中尾
貴司 清水
秀和 吉田
岳 丸山
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2011504274A priority Critical patent/JPWO2011052464A1/en
Publication of WO2011052464A1 publication Critical patent/WO2011052464A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a novel polyamide highly satisfying all three properties of moldability, heat aging resistance and gasoline barrier property in addition to high melting point and low water absorption.
  • 6T nylon synthesized by a co-condensation polymerization reaction of hexamethylenediamine (6) and terephthalic acid (T) has been well known.
  • 6T nylon is a polyamide with a good balance of resin properties such as heat resistance, mechanical properties, chemical resistance, slidability, gas barrier properties and gasoline barrier properties, but 6T nylon that is not copolymerized has a melting point exceeding 360 ° C. Therefore, it has a drawback that it is difficult to polymerize the polymer and to mold the obtained polymer.
  • a copolyamide obtained by copolymerizing 6T nylon with another component in order to impart other characteristics while utilizing the characteristics of 6T nylon is also known.
  • Patent Document 1 discloses that 6I nylon is copolymerized with 6I nylon (nylon synthesized by a co-condensation polymerization reaction of hexamethylenediamine and isophthalic acid), and further 11 nylon (a monomer having 11 carbon atoms such as undecane lactam). (Nylon synthesized by polycondensation reaction) or 12 nylon (nylon synthesized by polycondensation reaction of a monomer having 12 carbon atoms such as lauryl lactam) is disclosed.
  • This copolymerized polyamide has the advantage of being excellent in transparency, but has the disadvantage that the glass transition temperature is 130 ° C. or higher and the moldability is poor.
  • Patent Document 2 discloses a binary copolymer polyamide obtained by copolymerizing 12 nylon with 6T nylon. This copolymerized polyamide has the advantage of being excellent in heat resistance for a short time, impact resistance and sliding properties, but has the disadvantage of being inferior in heat aging resistance and gasoline barrier properties.
  • Patent Document 3 discloses a binary copolymer polyamide obtained by copolymerizing a relatively large amount of 11 nylon or 12 nylon with 6T nylon. This copolymerized polyamide has the advantages of low water absorption and excellent mechanical properties, but has the disadvantage of being inferior in moldability, heat aging resistance and gasoline barrier properties.
  • the present invention was devised in view of the current state of the prior art, and its purpose is to provide three types of moldability, heat aging resistance, and gasoline barrier properties in addition to a high melting point of 300 ° C. or higher and low water absorption.
  • the object is to provide 6T nylon that satisfies all of the properties.
  • the present inventor has intensively studied the types and amounts of components copolymerized with 6T nylon, and as a result, by copolymerizing 11 nylon at a specific ratio, In addition to low water absorption, it has been found that 6T nylon that satisfies all three properties of moldability, heat aging resistance, and gasoline barrier properties can be provided, and the present invention has been completed.
  • the copolymer polyamide is (c) a structural unit obtained from an equimolar salt of diamine and dicarboxylic acid other than the structural unit of (a), or other than the structural unit of (b).
  • the structural unit obtained from the aminocarboxylic acid or lactam is up to 20 mol%
  • the melting point (Tm) of the copolyamide is 300 to 330 ° C.
  • the temperature rising crystallization temperature (Tc1) is 90 to 140 ° C. is there.
  • 11 nylon is copolymerized at a specific ratio with 6T nylon as a main component, and therefore, the high temperature of 300 ° C. or higher is achieved while taking advantage of the properties of 6T nylon such as mechanical properties and slidability. In addition to melting point and low water absorption, moldability, heat aging resistance, and gasoline barrier property can be highly satisfied.
  • the copolymerized polyamide of the present invention contains (a) component corresponding to 6T nylon and (b) component corresponding to 11 nylon in a specific ratio, and has moldability and high water absorption which are disadvantages of 6T nylon. Is not only improved, but also has a feature of high satisfaction in heat aging resistance and gasoline barrier properties.
  • the component (a) corresponds to 6T nylon obtained by co-condensation polymerization of hexamethylenediamine (6) and terephthalic acid (T) in an equimolar amount, and specifically, the following formula (I) It is represented by
  • the component (a) is a main component of the copolymerized polyamide of the present invention, and has a role of imparting excellent heat resistance, mechanical properties, chemical resistance, slidability, gas barrier properties and the like to the copolymerized polyamide.
  • the blending ratio of the component (a) in the copolymerized polyamide is 55 to 75 mol%, preferably 60 to 70 mol%, more preferably 62 to 68 mol%.
  • 6T nylon which is a crystal component, is subject to crystal inhibition by the copolymerization component, which may lead to a decrease in moldability and high temperature characteristics. Since melting
  • the component (b) corresponds to 11 nylon obtained by polycondensation of 11-aminoundecanoic acid or undecane lactam, and is specifically represented by the following formula (II).
  • the component (b) is for improving the drawbacks of the component (a), and lowers the melting point and temperature rising crystallization temperature of the copolymerized polyamide to improve the moldability and reduce the water absorption rate. It has the role of improving troubles caused by changes in physical properties and dimensions during water absorption.
  • the blending ratio of the component (b) in the copolymerized polyamide is 45 to 25 mol%, preferably 40 to 30 mol%, more preferably 38 to 32 mol%. When the blending ratio of the component (b) is less than the above lower limit, the melting point of the copolyamide is not sufficiently lowered, the moldability may be insufficient, and the effect of reducing the water absorption rate of the obtained resin is insufficient.
  • the copolymerized polyamide of the present invention includes (c) a structural unit obtained from an equivalent molar salt of diamine and dicarboxylic acid other than the structural unit of (a) above, in addition to the above components (a) and (b), or the above A structural unit obtained from aminocarboxylic acid or lactam other than the structural unit of (b) may be copolymerized at a maximum of 20 mol%.
  • the component (c) has a role of imparting other characteristics not obtainable with 6T nylon or 11 nylon to the copolymerized polyamide or further improving the characteristics obtained with 6T nylon or 11 nylon. Specifically, the following copolymerization components may be mentioned.
  • the amine component includes 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6 -Hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1 , 11-Undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4) -aliphatic diamines such as trimethylhexamethylenediamine, piperazine Cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-
  • the following polyvalent carboxylic acids or acid anhydrides can be used as the acid component of the polyamide.
  • the polyvalent carboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyl.
  • Aromatic dicarboxylic acids such as dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohex Njikarubon acid, and an aliphatic or alicyclic dicarboxylic acids such as dimer acid.
  • lactams such as ⁇ -caprolactam and 12-lau
  • component (c) examples include polycaproamide (nylon 6), polydodecanamide (nylon 12), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyun Decamethylene adipamide (nylon 116), polymetaxylylene adipamide (nylon MXD6), polyparaxylylene adipamide (nylon PXD6), polytetramethylene sebamide (nylon 410), polyhexamethylene sebacamide (Nylon 610), polydecamethylene adipamide (nylon 106), polydecamethylene sebamide (nylon 1010), polyhexamethylene dodecamide (nylon 612), polydecamethylene dodecamide (nylon 1012), polyhexamethylene Isophthalamide (Nai 6I), polytetramethylene terephthalamide (nylon 4T), polypentamethylene terephthalamide (nylon 5T), poly-2-methylpentamethylene terephthal
  • examples of the preferred component (c) include polyhexamethylene adipamide for imparting high crystallinity to the copolymer polyamide, and polydecamethylene terephthalamide for imparting further low water absorption. And polymetaxylene adipamide for improving gasoline barrier properties.
  • the blending ratio of the component (c) in the copolymerized polyamide is preferably up to 20 mol%, more preferably 10 to 20 mol%. When the proportion of the component (c) is less than the above lower limit, the effect of the component (c) may not be sufficiently exhibited. When the proportion exceeds the above upper limit, the amount of the essential component (a) or component (b) is small. Therefore, the originally intended effect of the copolymerized polyamide of the present invention may not be sufficiently exhibited, which is not preferable.
  • the copolymerized polyamide of the present invention preferably has a melting point (Tm) of 300 to 330 ° C. and a temperature rising crystallization temperature (Tc1) of 90 to 140 ° C.
  • Tm melting point
  • Tc1 temperature rising crystallization temperature
  • Tc1 exceeds the above upper limit, not only the mold temperature required for molding the copolymer polyamide by an injection molding method becomes high and molding becomes difficult, but in a short cycle of injection molding, In some cases, crystallization does not proceed sufficiently, causing molding difficulties such as insufficient mold release, and in subsequent use, crystallization proceeds at high temperatures and deformation due to secondary shrinkage becomes a problem.
  • Tc1 is less than the above lower limit, it is necessary to inevitably lower the glass transition temperature as a resin composition. Since Tc1 is generally a temperature higher than the glass transition temperature, when Tc1 is less than 90 ° C., a low value is required as the glass transition temperature. In that case, there is a large decrease in physical properties or physical properties after water absorption. Problems such as inability to maintain. Since Tg needs to be kept relatively high, Tc1 needs to be at least 90 ° C. or higher.
  • the copolymerized polyamide of the present invention a specific amount of 11 nylon components are copolymerized with 6T nylon, so that not only the properties such as high melting point and low water absorption, but also the balance of moldability, heat aging resistance, and gasoline barrier properties. An excellent resin is obtained.
  • molding electronic parts in addition to a high melting point of 300 ° C. or higher and low water absorption, thin-walled, high-cycle molding is required.
  • PA6T / 66 hexamethylene terephthalamide / polyhexamethylene adipamide copolymer although the moldability is good, the water absorption is very high.
  • polynonamethylene terephthalamide has low water absorption, but Tc1 may be 150 ° C. or higher, and the mold temperature at the time of molding requires 150 ° C. or higher. Even if it can be molded with a low temperature mold, secondary shrinkage due to crystallization during use becomes a problem. From the above background, a resin having a high melting point of 300 ° C. or higher, low water absorption, and easy moldability is required. In the copolymerized polyamide of the present invention, 6T nylon is copolymerized with a specific amount of 11 nylon.
  • 11 nylon has a structure that is easier to form hydrogen bonds than 12 nylon when it takes a zigzag structure and easily forms hydrogen bonds, whereas 12 nylon has difficulty in taking hydrogen bonds and has weak hydrogen bondability. .
  • the improvement of hydrogen bonding property is preferable from the viewpoint of heat aging resistance and gasoline barrier property because it improves the glass transition temperature and the shielding effect of gasoline components. From the above, although 11 nylon component is a copolymer component superior to 12 nylon component and has excellent characteristics, 11 nylon has been copolymerized with 6T nylon and has a melting point of 300 ° C. No specific copolyamide has been reported.
  • Examples of the catalyst used for producing the copolymerized polyamide of the present invention include phosphoric acid, phosphorous acid, hypophosphorous acid or a metal salt, ammonium salt and ester thereof.
  • Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony.
  • As the ester, ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like can be added.
  • the relative viscosity (RV) of the copolymerized polyamide of the present invention measured at 20 ° C. in 96% concentrated sulfuric acid is 0.4 to 4.0, preferably 1.0 to 3.5, more preferably 1.5 to 3.0.
  • Examples of a method for setting the relative viscosity of the polyamide within a certain range include a means for adjusting the molecular weight.
  • the copolymer polyamide of the present invention can adjust the end group amount and molecular weight of the polyamide by a method of polycondensation by adjusting the molar ratio of the amino group amount to the carboxyl group or a method of adding a terminal blocking agent.
  • a method of polycondensation by adjusting the molar ratio of the amino group amount to the carboxyl group or a method of adding a terminal blocking agent.
  • timing for adding the end-capping agent examples include starting raw materials, starting polymerization, late polymerization, or finishing polymerization.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but acid anhydrides such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used.
  • end capping agent examples include aliphatic monoacids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
  • Alicyclic monocarboxylic acids such as carboxylic acid and cyclohexanecarboxylic acid, benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, aromatic monocarboxylic acid such as phenylacetic acid, maleic anhydride Acid, phthalic anhydride, acid anhydrides such as hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc.
  • Aliphatic monoamines examples thereof include alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
  • the acid value and amine value of the copolymerized polyamide of the present invention are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively.
  • the terminal functional group is 200 eq / ton or more, not only gelation and deterioration are promoted during melt residence, but also problems such as coloring and hydrolysis are caused in the use environment.
  • the acid value and / or amine value is preferably 5 to 100 eq / ton in accordance with the reactivity and the reactive group.
  • additives for polyamide can be used for the copolymerized polyamide of the present invention.
  • Additives include fibrous reinforcements / fillers, stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, and copolymerized polyamides of the present invention.
  • fibrous reinforcements / fillers stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, and copolymerized polyamides of the present invention.
  • thermoplastic resins other than polyamide, and the like.
  • the fibrous reinforcing material examples include glass fiber, carbon fiber, metal fiber, ceramic fiber, organic fiber, whisker, etc. Among them, glass fiber is preferable. These fibrous reinforcing materials may be used not only alone but also in combination of several kinds. As the glass fibers used here, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a non-circular cross-section is preferable from the viewpoint of physical properties.
  • Non-circular cross-section glass fibers include those that are substantially elliptical, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8 It is preferable that Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis.
  • the thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 50 ⁇ m and the major axis is about 2 to 100 ⁇ m.
  • glass fibers that are chopped strands cut into fiber bundles and having a fiber length of about 1 to 20 mm can be preferably used.
  • An optimum amount of the fibrous reinforcing material may be selected, but 0 to 250 parts by weight, preferably 20 to 150 parts by weight can be added to 100 parts by weight.
  • fillers reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers and the like are listed according to purpose. Specifically, glass beads, glass flakes, glass balloons, silica, talc , Kaolin, wollastonite, mica, alumina, hydrotalcite, montmorillonite, hydroxyapatite, graphite, carbon nanotube, fullerene, zinc oxide, indium oxide, tin oxide, iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, water Magnesium oxide, red phosphorus, calcium carbonate, potassium titanate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, aluminum borate, barium sulfate, magnesium sulfate, zinc sulfide, iron, aluminum, copper, Etc.
  • fillers may be used not only alone but also in combination of several kinds. Although it does not specifically limit as a shape, Needle shape, spherical shape, plate shape, an indeterminate form, etc. can be used.
  • the optimum amount of filler may be selected, but it is possible to add 250 parts by weight or less, preferably 20 to 150 parts by weight of filler with respect to 100 parts by weight of the copolymer polyamide.
  • the fibrous reinforcing material and the filler are preferably used in combination with a coupling agent-treated or coupling agent.
  • a silane coupling agent is used as the coupling agent. Any of titanate coupling agents and aluminum coupling agents may be used, and among them, aminosilane coupling agents and epoxysilane coupling agents are particularly preferable.
  • Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained.
  • organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and
  • alkali metal halide compound examples include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide.
  • alkali metal halide compound examples include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide.
  • examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like.
  • These additives may be used alone or in combination of several kinds.
  • An optimum amount of the stabilizer may be selected, but 0 to 5 parts by weight can be added to 100 parts by weight of the copolymer polyamide.
  • the copolymerized polyamide of the present invention may be a polymer blend of a polyamide having a composition different from that of the copolymerized polyamide of the present invention.
  • the polyamide having a composition different from that of the copolymerized polyamide of the present invention is not particularly limited, but polycaproamide (nylon 6), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polytetramethylene adipamide (Nylon 46), polyhexamethylene adipamide (nylon 66), polymetaxylylene adipamide (nylon MXD6), polyparaxylylene adipamide (nylon PXD6), polytetramethylene sebacamide (nylon 410), Polyhexamethylene sebamide (nylon 610), polydecamethylene adipamide (nylon 106), polydecamethylene sebamide (nylon 1010), polyhexamethylene dodecamide (nylon 612), polydecamethylene dodecamide (nylon
  • nylon 66, nylon 6T66, or the like may be polymer blended in order to improve the crystallization speed.
  • the addition amount of the polyamide having a composition different from that of the copolymerized polyamide of the present invention may be selected, but 0 to 50 parts by weight can be added to 100 parts by weight of the copolymerized polyamide.
  • the thermoplastic polyamide of the present invention may contain a thermoplastic resin other than polyamide having a composition different from that of the copolymerized polyamide of the present invention.
  • Polymers other than polyamide include polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonit
  • thermoplastic resins can be blended in a molten state by melt kneading.
  • the thermoplastic resin may be made into a fiber or particle and dispersed in the copolymerized polyamide of the present invention.
  • An optimum amount of the thermoplastic resin may be selected, but 0 to 50 parts by weight can be added to 100 parts by weight of the copolyamide.
  • ethylene-propylene rubber EPM
  • ethylene-propylene-diene rubber EPDM
  • ethylene-acrylic acid copolymer ethylene-acrylic acid ester copolymer
  • ethylene-methacrylic acid copolymer ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as
  • a reactive group capable of reacting with the polyamide is copolymerized.
  • the functional group is a group capable of reacting with an amino group, a carboxyl group and a main chain amide group which are terminal groups of the polyamide resin.
  • Specific examples include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group, etc. Among them, an acid anhydride group is most excellent in reactivity.
  • thermoplastic resin having a reactive group that reacts with the polyamide resin is finely dispersed in the polyamide and is finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved [ S, Wu: Polymer 26, 1855 (1985)].
  • a combination of a halogen flame retardant and a flame retardant aid is good.
  • a halogen flame retardant brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride Polymers, brominated epoxy resins, brominated phenoxy resins, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated cross-linked aromatic polymers, etc. are preferred.
  • Antimony compounds such as antimony, antimony pentoxide, and sodium antimonate, and zinc stannate are preferred.
  • Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds.
  • a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable.
  • the nitrogen-containing phosphoric acid compound include melamine, a condensate of melamine such as melam and melon, and a reactive organism of polyphosphoric acid or those.
  • a mixture of At that time, addition of a hydrotalcite-based compound is preferable for preventing metal corrosion of a mold or the like.
  • Other flame retardants and flame retardant aids include zinc borate, zinc sulfide, molybdenum compounds, iron oxide, aluminum hydroxide, magnesium hydroxide, silicone resin, fluororesin, montmorillonite, silica, metal carbonate, etc. It is done.
  • the optimum amount of the flame retardant may be selected, but 0 to 50 parts by weight can be added to 100 parts by weight of the copolymer polyamide.
  • the release agent examples include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like.
  • the long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed.
  • the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture.
  • the addition amount of the release material may be selected as an optimum amount, but 0 to 5 parts by weight can be added to 100 parts by weight of the copolymer polyamide.
  • sliding property improving material examples include high molecular weight polyethylene, acid-modified high molecular weight polyethylene, fluorine resin powder, molybdenum disulfide, silicone resin, silicone oil, zinc, graphite, mineral oil, and the like.
  • the resin slidability improving material can be added in a range not impairing the characteristics of the present invention, for example, 0.05 to 3 parts by weight.
  • the copolymerized polyamide of the present invention can be produced by a conventionally known method.
  • hexamethylene diamine and terephthalic acid which are raw material monomers of component (a), and 11- Aminoundecanoic acid or undecanactactam, and if necessary (c) a structural unit obtained from an equimolar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, an aminocarboxylic acid other than the structural unit of (b) or It can be easily synthesized by co-condensation of lactam.
  • the order of the copolycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or a part of the raw material monomers may be reacted first, followed by the remaining raw material monomers.
  • the polymerization method is not particularly limited, but from raw material charging to polymer production may proceed in a continuous process, and after producing an oligomer once, the polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified. A method of increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the proportion of each structural unit in the copolymerized polyamide to be synthesized can be controlled.
  • the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
  • the measured value described in the Example is measured by the following method.
  • Relative viscosity 0.25 g of polyamide resin was dissolved in 25 ml of 96% sulfuric acid and measured at 20 ° C. using an Ostwald viscometer.
  • the sample was taken out from liquid nitrogen and allowed to stand at room temperature for 30 minutes, and then again heated from room temperature at 20 ° C./minute using a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS) and held at 350 ° C. for 3 minutes. .
  • the peak temperature of the crystallization exotherm at the time of temperature rise was defined as the crystallization temperature at the time of temperature rise (Tc1)
  • Tm melting point
  • the cylinder temperature was set to the melting point of the resin + 20 ° C.
  • the mold a mold for producing a flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used.
  • the mold temperature was set to 140 ° C.
  • molding was performed at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds.
  • the moldability was evaluated as follows. ⁇ : Significant decomposition of the resin is not observed, and a molded product can be obtained without any problem.
  • X Foaming due to decomposition is accompanied at the time of molding, or the releasability is insufficient, and the molded product sticks to the mold or deforms.
  • Heat aging resistance For the heat aging resistance test, a compound obtained by compounding 0.02 part of cupric bromide and 0.15 part of potassium iodide to 100 parts of polyamide and using an injection molding machine for ISO. A dumbbell-shaped test piece based on the above was prepared. The molded product was subjected to a heat aging test for 1000 hours in a 160 ° C. gear oven, and a tensile test was performed according to ISO 527. The quality of heat aging resistance was evaluated according to the following criteria. ⁇ : Retention rate of tensile strength or tensile yield strength after 1000 hours at 160 ° C. is 90% or more ⁇ : Retention rate of tensile strength or tensile yield strength after 1000 hours at 160 ° C. is less than 90%
  • the measurement was performed with a permeation area of 1.133 ⁇ 10 ⁇ 3 m 2 , a test temperature of 60 ° C., and a test time of 240 hours, and the weight change before and after the measurement was measured.
  • a blank experiment for taking into account the water absorption / release characteristics of the sample was performed and corrected to calculate the fuel permeation amount.
  • Gasoline barrier properties were evaluated based on the following criteria. ⁇ : Weight reduction amount is less than 100 mg ⁇ : Weight reduction amount is 100 mg or more
  • Example 1 Hexamethylenediamine 7.54 kg, terephthalic acid 10.79 kg, 11-aminoundecanoic acid 7.04 kg, sodium diphosphite 9 g, terminal regulator 40 g acetic acid and 17.52 kg ion-exchanged water in a 50 liter autoclave
  • the pressure was charged with N 2 from normal pressure to 0.05 MPa, the pressure was released, and the pressure was returned to normal pressure. This operation was performed 3 times, N 2 substitution was performed, and then uniform dissolution was performed at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C. with a heating pipe, and heated for 1 hour.
  • reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate.
  • Polycondensation proceeded under melting to obtain a copolymerized polyamide.
  • Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 2 The amount of hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 11.62 kg, the amount of 11-aminoundecanoic acid was changed to 6.03 kg, and the resin temperature of the twin screw extruder was 335 ° C. Changed to A copolymerized polyamide was synthesized in the same manner as in Example 1 except for these. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 3 In the same manner as in Example 1, except that the amount of hexamethylenediamine was changed to 6.96 kg, the amount of terephthalic acid was changed to 9.96 kg, and the amount of 11-aminoundecanoic acid was changed to 8.04 kg. Polymerized polyamide was synthesized. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 4 The amount of hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 9.96 kg, the amount of 11-aminoundecanoic acid was changed to 6.03 kg, and adipic acid (dicarboxylic acid other than terephthalic acid)
  • a copolymerized polyamide was synthesized in the same manner as in Example 1 except that 1.46 kg was charged. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 5 A copolymerized polyamide was synthesized in the same manner as in Example 1 except that 7.04 kg of 11-aminoundecanoic acid was changed to 6.41 kg of undecane lactam. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 2 In the same manner as in Example 1, except that the amount of hexamethylenediamine was changed to 5.22 kg, the amount of terephthalic acid was changed to 7.47 kg, and the amount of 11-aminoundecanoic acid was changed to 11.06 kg. Polymerized polyamide was synthesized. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 3 A copolymer polyamide was synthesized in the same manner as in Example 1 except that 7.44 kg of 11-aminoundecanoic acid was changed to 7.53 kg of 12-aminododecanoic acid. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
  • Example 4 A copolymerized polyamide was synthesized in the same manner as in Example 1 except that 10.18 kg of hexamethylenediamine and 14.56 kg of terephthalic acid were used without using 11-aminoundecanoic acid.
  • the synthesized polyamide had a decreased fluidity at the polymerization stage, and a polymer could not be obtained.
  • Example 1 is most preferable in consideration of a balance between a high melting point, moldability (a lot of 6T components and Tc1 is preferably 140 ° C. or less), and a low water absorption (a lot of 11 components are better).
  • the copolymerized polyamide of Comparative Example 1 in which the copolymerization amount of 11 nylon was too small had high Tm and Tc1, and was difficult to release.
  • the copolymerized polyamide of Comparative Example 2 with too much copolymerization of nylon has a low Tm, and the crystallization of the 6T component is inhibited by the aminoundecane component and the crystallinity is insufficient. It was inferior. Further, the copolymerized polyamide of Comparative Example 3 in which 12 nylon is copolymerized instead of 11 nylon is inferior in heat aging resistance and gasoline barrier property as compared with the copolymerized polyamide copolymerized with 11 nylon. Since the polyamide of Comparative Example 4 consisting only of 6T nylon had extremely high Tm and Tc1, the fluidity decreased at the polymerization stage, and a polymer could not be obtained.
  • 11 nylon is copolymerized at a specific ratio with 6T nylon as a main component, and therefore, the high-melting point of 300 ° C. or higher, mechanical properties, slidability, etc. are utilized.
  • low water absorption, moldability, heat aging resistance, and gasoline barrier properties can also be highly satisfied, so that it can be suitably used as molding materials and sliding materials for automobiles and electronic parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a nylon-6T that, in addition to having a high melting point of at least 300°C and low water absorption, has each of the following three properties to a high degree: moldability, resistance to heat aging, and gas barrier functionality. The provided nylon-6T is a copolymerized polyamide characterized by comprising: (a) between 55 and 75 mol% of a constituent unit obtained from a molar equivalent salt of hexamethylenediamine and terephthalic acid; and (b) between 25 and 45 mol% of a constituent unit obtained from 11-aminoundecanoic acid or undecanelactam.

Description

共重合ポリアミドCopolyamide
 本発明は、高融点、低吸水性に加えて、成形性、耐熱老化性、及びガソリンバリア性の三つの特性の全てを高度に満足する新規なポリアミドに関する。 The present invention relates to a novel polyamide highly satisfying all three properties of moldability, heat aging resistance and gasoline barrier property in addition to high melting point and low water absorption.
 成形用材料、摺動用材料などに使用されるポリアミドとしては、ヘキサメチレンジアミン(6)とテレフタル酸(T)との共縮重合反応により合成される6Tナイロンが従来から良く知られている。6Tナイロンは、耐熱性、機械的特性、耐薬品性、摺動性、ガスバリア性やガソリンバリア性などの樹脂特性のバランスに優れたポリアミドであるが、共重合されない6Tナイロンは360℃を超える融点を有するため、ポリマーの重合や得られたポリマーの成形が困難であるという欠点を有する。 As a polyamide used for molding materials, sliding materials and the like, 6T nylon synthesized by a co-condensation polymerization reaction of hexamethylenediamine (6) and terephthalic acid (T) has been well known. 6T nylon is a polyamide with a good balance of resin properties such as heat resistance, mechanical properties, chemical resistance, slidability, gas barrier properties and gasoline barrier properties, but 6T nylon that is not copolymerized has a melting point exceeding 360 ° C. Therefore, it has a drawback that it is difficult to polymerize the polymer and to mold the obtained polymer.
 6Tナイロンの成形性を付与するために、これまでカプロラクタムやアジピン酸、イソフタル酸、2-メチル-1,5-ペンタンジアミンを共重合することにより、融点を290℃から330℃に低下させる手段が工業的になされてきた。しかし、カプロラクタムやアジピン酸を共重合した場合は吸水率が高く、吸湿下では物性の大幅な低下を引き起こすことが問題となってきた。一方、イソフタル酸や2-メチル-1,5-ペンタンジアミンを共重合した場合では、高いガラス転移温度を維持したまま、共重合により結晶速度を低下させるため、一般的に行われる射出成形においては、結晶化が十分に進まない場合があり、離型不足等の成形難を引き起こしたり、後の使用において、高温下で結晶化が進行し二次収縮による変形などが問題となっている。 In order to impart the moldability of 6T nylon, there has been a means for reducing the melting point from 290 ° C. to 330 ° C. by copolymerizing caprolactam, adipic acid, isophthalic acid, and 2-methyl-1,5-pentanediamine. It has been made industrially. However, when caprolactam or adipic acid is copolymerized, the water absorption rate is high, and it has been a problem to cause a significant decrease in physical properties under moisture absorption. On the other hand, when isophthalic acid or 2-methyl-1,5-pentanediamine is copolymerized, the crystallization speed is reduced by copolymerization while maintaining a high glass transition temperature. In some cases, crystallization does not proceed sufficiently, causing molding difficulties such as insufficient mold release, and in subsequent use, crystallization proceeds at high temperatures and deformation due to secondary shrinkage is a problem.
 6Tナイロンの特性を活かしつつ他の特性を付与するために、6Tナイロンにさらに別の成分を共重合した共重合ポリアミドも知られている。例えば、特許文献1には、6Tナイロンに6Iナイロン(ヘキサメチレンジアミンとイソフタル酸との共縮重合反応により合成されるナイロン)を共重合し、さらに11ナイロン(ウンデカンラクタムなどの炭素数11のモノマーの重縮合反応により合成されるナイロン)又は12ナイロン(ラウリルラクタムなどの炭素数12のモノマーの重縮合反応により合成されるナイロン)を共重合した三元共重合ポリアミドが開示されている。この共重合ポリアミドは、透明性に優れるという利点を有するが、ガラス転移温度が130℃以上になり、成形性に劣るという欠点を有する。 A copolyamide obtained by copolymerizing 6T nylon with another component in order to impart other characteristics while utilizing the characteristics of 6T nylon is also known. For example, Patent Document 1 discloses that 6I nylon is copolymerized with 6I nylon (nylon synthesized by a co-condensation polymerization reaction of hexamethylenediamine and isophthalic acid), and further 11 nylon (a monomer having 11 carbon atoms such as undecane lactam). (Nylon synthesized by polycondensation reaction) or 12 nylon (nylon synthesized by polycondensation reaction of a monomer having 12 carbon atoms such as lauryl lactam) is disclosed. This copolymerized polyamide has the advantage of being excellent in transparency, but has the disadvantage that the glass transition temperature is 130 ° C. or higher and the moldability is poor.
 また、特許文献2には、6Tナイロンに12ナイロンを共重合した二元共重合ポリアミドが開示されている。この共重合ポリアミドは、短時間の耐熱性、耐衝撃特性、及び摺動特性に優れるという利点を有するが、耐熱老化性及びガソリンバリア性に劣るという欠点を有する。 Patent Document 2 discloses a binary copolymer polyamide obtained by copolymerizing 12 nylon with 6T nylon. This copolymerized polyamide has the advantage of being excellent in heat resistance for a short time, impact resistance and sliding properties, but has the disadvantage of being inferior in heat aging resistance and gasoline barrier properties.
 また、特許文献3には、6Tナイロンに比較的多量の11ナイロン又は12ナイロンを共重合した二元共重合ポリアミドが開示されている。この共重合ポリアミドは、低吸水性でかつ機械的特性に優れるという利点を有するが、成形性や耐熱老化性、ガソリンバリア性に劣るという欠点を有する。 Patent Document 3 discloses a binary copolymer polyamide obtained by copolymerizing a relatively large amount of 11 nylon or 12 nylon with 6T nylon. This copolymerized polyamide has the advantages of low water absorption and excellent mechanical properties, but has the disadvantage of being inferior in moldability, heat aging resistance and gasoline barrier properties.
 このように、従来公知の6T系ナイロンには、高融点、低吸水性を維持しながら、成形性、耐熱老化性、及びガソリンバリア性の三つの特性の全てを高度に満足するものはなかった。 As described above, none of the conventionally known 6T nylons have a high degree of satisfaction with all of the three characteristics of moldability, heat aging resistance, and gasoline barrier properties while maintaining a high melting point and low water absorption. .
特公昭46-24249号公報Japanese Examined Patent Publication No. 46-24249 特開昭62-156130号公報JP 62-156130 A 特開平5-310925号公報JP-A-5-310925
 本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、300℃以上の高融点、低吸水性に加えて、成形性、耐熱老化性、及びガソリンバリア性の三つの特性の全てを高度に満足する6T系ナイロンを提供することにある。 The present invention was devised in view of the current state of the prior art, and its purpose is to provide three types of moldability, heat aging resistance, and gasoline barrier properties in addition to a high melting point of 300 ° C. or higher and low water absorption. The object is to provide 6T nylon that satisfies all of the properties.
 本発明者は、上記目的を達成するために、6Tナイロンに共重合する成分の種類及びその量について鋭意検討した結果、11ナイロンを特定の割合で共重合することによって、300℃以上の融点、低吸水性に加えて、成形性、耐熱老化性、及びガソリンバリア性の三つの特性の全てを高度に満足する6T系ナイロンを提供することができることを見出し、本発明の完成に至った。 In order to achieve the above object, the present inventor has intensively studied the types and amounts of components copolymerized with 6T nylon, and as a result, by copolymerizing 11 nylon at a specific ratio, In addition to low water absorption, it has been found that 6T nylon that satisfies all three properties of moldability, heat aging resistance, and gasoline barrier properties can be provided, and the present invention has been completed.
 即ち、本発明によれば、(a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位55~75モル%、及び(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位45~25モル%からなることを特徴とする共重合ポリアミドが提供される。 That is, according to the present invention, (a) 55 to 75 mol% of a structural unit obtained from an equimolar salt of hexamethylenediamine and terephthalic acid, and (b) a composition obtained from 11-aminoundecanoic acid or undecanactam There is provided a copolyamide characterized by comprising 45 to 25 mol% of units.
 本発明の好ましい態様によれば、共重合ポリアミドが、(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大20モル%まで含有し、共重合ポリアミドの融点(Tm)が300~330℃であり、昇温結晶化温度(Tc1)が90~140℃である。 According to a preferred embodiment of the present invention, the copolymer polyamide is (c) a structural unit obtained from an equimolar salt of diamine and dicarboxylic acid other than the structural unit of (a), or other than the structural unit of (b). The structural unit obtained from the aminocarboxylic acid or lactam is up to 20 mol%, the melting point (Tm) of the copolyamide is 300 to 330 ° C., and the temperature rising crystallization temperature (Tc1) is 90 to 140 ° C. is there.
 本発明の共重合ポリアミドは、主成分の6Tナイロンに11ナイロンが特定の割合で共重合されているので、機械的特性、摺動性などの6Tナイロンの特性を活かしつつ、300℃以上の高融点、低吸水性に加えて、成形性、耐熱老化性、及びガソリンバリア性も高度に満足することができる。 In the copolymerized polyamide of the present invention, 11 nylon is copolymerized at a specific ratio with 6T nylon as a main component, and therefore, the high temperature of 300 ° C. or higher is achieved while taking advantage of the properties of 6T nylon such as mechanical properties and slidability. In addition to melting point and low water absorption, moldability, heat aging resistance, and gasoline barrier property can be highly satisfied.
 以下、本発明の共重合ポリアミドについて詳述する。本発明の共重合ポリアミドは、6Tナイロンに相当する(a)成分と11ナイロンに相当する(b)成分を特定の割合で含有するものであり、6Tナイロンの欠点である成形性、高吸水性が改良されているのみならず、耐熱老化性及びガソリンバリア性も高度に満足するという特徴を有する。 Hereinafter, the copolymerized polyamide of the present invention will be described in detail. The copolymerized polyamide of the present invention contains (a) component corresponding to 6T nylon and (b) component corresponding to 11 nylon in a specific ratio, and has moldability and high water absorption which are disadvantages of 6T nylon. Is not only improved, but also has a feature of high satisfaction in heat aging resistance and gasoline barrier properties.
 (a)成分は、ヘキサメチレンジアミン(6)とテレフタル酸(T)を等量モルで共縮重合させることにより得られる6Tナイロンに相当するものであり、具体的には、下記式(I)で表されるものである。
Figure JPOXMLDOC01-appb-I000001
The component (a) corresponds to 6T nylon obtained by co-condensation polymerization of hexamethylenediamine (6) and terephthalic acid (T) in an equimolar amount, and specifically, the following formula (I) It is represented by
Figure JPOXMLDOC01-appb-I000001
 (a)成分は、本発明の共重合ポリアミドの主成分であり、共重合ポリアミドに優れた耐熱性、機械的特性、耐薬品性、摺動性、ガスバリア性などを付与する役割を有する。共重合ポリアミド中の(a)成分の配合割合は、55~75モル%であり、好ましくは60~70モル%、さらに好ましくは62~68モル%である。(a)成分の配合割合が上記下限未満の場合、結晶成分である6Tナイロンが共重合成分により結晶阻害を受け、成形性や高温特性の低下を招くおそれがあり、一方上記上限を超える場合、融点が高くなりすぎ加工時に分解するおそれがあり、好ましくない。 The component (a) is a main component of the copolymerized polyamide of the present invention, and has a role of imparting excellent heat resistance, mechanical properties, chemical resistance, slidability, gas barrier properties and the like to the copolymerized polyamide. The blending ratio of the component (a) in the copolymerized polyamide is 55 to 75 mol%, preferably 60 to 70 mol%, more preferably 62 to 68 mol%. When the blending ratio of the component (a) is less than the above lower limit, 6T nylon, which is a crystal component, is subject to crystal inhibition by the copolymerization component, which may lead to a decrease in moldability and high temperature characteristics. Since melting | fusing point becomes high too much and there exists a possibility of decomposing | disassembling at the time of a process, it is unpreferable.
 (b)成分は、11-アミノウンデカン酸又はウンデカンラクタムを重縮合させることにより得られる11ナイロンに相当するものであり、具体的には、下記式(II)で表されるものである。
Figure JPOXMLDOC01-appb-I000002
The component (b) corresponds to 11 nylon obtained by polycondensation of 11-aminoundecanoic acid or undecane lactam, and is specifically represented by the following formula (II).
Figure JPOXMLDOC01-appb-I000002
 (b)成分は、(a)成分の欠点を改良するためのものであり、共重合ポリアミドの融点及び昇温結晶化温度を低下させて成形性を向上させる役割、および吸水率を低減させて吸水時の物性変化や寸法変化によるトラブルを改善させる役割を有する。共重合ポリアミド中の(b)成分の配合割合は、45~25モル%であり、好ましくは40~30モル%、更に好ましくは38~32モル%である。(b)成分の配合割合が上記下限未満の場合、共重合ポリアミドの融点が十分に低下せず、成形性が不足するおそれがあると共に、得られた樹脂の吸水率を低減させる効果が不十分であり、吸水時に機械的特性が低下するなど物性の不安定さを招くおそれがある。上記上限を超える場合、共重合ポリアミドの融点が低下しすぎて結晶化速度が遅くなり、成形性が逆に悪くなるおそれがあると共に、6Tナイロンに相当する(a)成分の量が少なくなり、機械的特性や摺動性が不足するおそれがあり、好ましくない。 The component (b) is for improving the drawbacks of the component (a), and lowers the melting point and temperature rising crystallization temperature of the copolymerized polyamide to improve the moldability and reduce the water absorption rate. It has the role of improving troubles caused by changes in physical properties and dimensions during water absorption. The blending ratio of the component (b) in the copolymerized polyamide is 45 to 25 mol%, preferably 40 to 30 mol%, more preferably 38 to 32 mol%. When the blending ratio of the component (b) is less than the above lower limit, the melting point of the copolyamide is not sufficiently lowered, the moldability may be insufficient, and the effect of reducing the water absorption rate of the obtained resin is insufficient. In addition, there is a risk of instability of physical properties such as deterioration of mechanical properties at the time of water absorption. When the above upper limit is exceeded, the melting point of the copolyamide is too low, the crystallization rate is slow, the moldability may be adversely affected, and the amount of the component (a) corresponding to 6T nylon is reduced, Mechanical properties and slidability may be insufficient, which is not preferable.
 本発明の共重合ポリアミドは、上記(a)成分及び(b)成分以外に、(c)上記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または上記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大20モル%共重合しても良い。(c)成分としては、共重合ポリアミドに6Tナイロンや11ナイロンによっては得られない他の特性を付与したり、6Tナイロンや11ナイロンによって得られる特性をさらに改良する役割を有するものであり、具体的には以下のような共重合成分が挙げられる。アミン成分としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、2-メチル-1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、2-メチル-1,8-オクタメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン、2,2,4(または2,4,4)-トリメチルヘキサメチレンジアミンのような脂肪族ジアミン、ピペラジン、シクロヘキサンジアミン、ビス(3-メチル-4-アミノヘキシル)メタン、ビス-(4,4’-アミノシクロヘキシル)メタン、イソホロンジアミンのような脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンおよびこれらの水添物等が挙げられる。ポリアミドの酸成分としては、以下に示す多価カルボン酸、もしくは酸無水物を使用できる。多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボンル酸、4,4’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-スルホン酸ナトリウムイソフタル酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、1,18-オクタデカン二酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸等が挙げられる。また、ε-カプロラクタム、12-ラウリルラクタムなどのラクタムおよびこれらが開環した構造であるアミノカルボン酸などが挙げられる。 The copolymerized polyamide of the present invention includes (c) a structural unit obtained from an equivalent molar salt of diamine and dicarboxylic acid other than the structural unit of (a) above, in addition to the above components (a) and (b), or the above A structural unit obtained from aminocarboxylic acid or lactam other than the structural unit of (b) may be copolymerized at a maximum of 20 mol%. The component (c) has a role of imparting other characteristics not obtainable with 6T nylon or 11 nylon to the copolymerized polyamide or further improving the characteristics obtained with 6T nylon or 11 nylon. Specifically, the following copolymerization components may be mentioned. The amine component includes 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6 -Hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1 , 11-Undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4) -aliphatic diamines such as trimethylhexamethylenediamine, piperazine Cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4'-aminocyclohexyl) methane, cycloaliphatic diamines such as isophoronediamine, metaxylylenediamine, paraxylylenediamine, para Examples thereof include aromatic diamines such as phenylenediamine and metaphenylenediamine, and hydrogenated products thereof. As the acid component of the polyamide, the following polyvalent carboxylic acids or acid anhydrides can be used. Examples of the polyvalent carboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyl. Aromatic dicarboxylic acids such as dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohex Njikarubon acid, and an aliphatic or alicyclic dicarboxylic acids such as dimer acid. Further, lactams such as ε-caprolactam and 12-lauryl lactam, and aminocarboxylic acids having a structure in which they are ring-opened can be used.
 具体的な(c)成分としては、ポリカプロアミド(ナイロン6)、ポリドデカンアミド(ナイロン12)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリパラキシリレンアジパミド(ナイロンPXD6)、ポリテトラメチレンセバカミド(ナイロン410)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリデカメチレンアジパミド(ナイロン106)、ポリデカメチレンセバカミド(ナイロン1010)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンドデカミド(ナイロン1012)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリテトラメチレンテレフタルアミド(ナイロン4T)、ポリペンタメチレンテレフタルアミド(ナイロン5T)、ポリ-2-メチルペンタメチレンテレフタルアミド(ナイロンM-5T)、ポリヘキサメチレンヘキサヒドロテレフタルアミド(ナイロン6T(H))ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリドデカメチレンテレフタルアミド(ナイロン12T)、ポリビス(3-メチル-4-アミノヘキシル)メタンテレフタルアミド(ナイロンPACMT)、ポリビス(3-メチル-4-アミノヘキシル)メタンイソフタルアミド(ナイロンPACMI)、ポリビス(3-メチル-4-アミノヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノヘキシル)メタンテトラデカミド(ナイロンPACM14)などが挙げられる。 Specific examples of the component (c) include polycaproamide (nylon 6), polydodecanamide (nylon 12), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyun Decamethylene adipamide (nylon 116), polymetaxylylene adipamide (nylon MXD6), polyparaxylylene adipamide (nylon PXD6), polytetramethylene sebamide (nylon 410), polyhexamethylene sebacamide (Nylon 610), polydecamethylene adipamide (nylon 106), polydecamethylene sebamide (nylon 1010), polyhexamethylene dodecamide (nylon 612), polydecamethylene dodecamide (nylon 1012), polyhexamethylene Isophthalamide (Nai 6I), polytetramethylene terephthalamide (nylon 4T), polypentamethylene terephthalamide (nylon 5T), poly-2-methylpentamethylene terephthalamide (nylon M-5T), polyhexamethylene hexahydroterephthalamide (nylon 6T) (H)) Polynonamethylene terephthalamide (nylon 9T), polydecamethylene terephthalamide (nylon 10T), polyundecamethylene terephthalamide (nylon 11T), polydodecamethylene terephthalamide (nylon 12T), polybis (3-methyl) -4-aminohexyl) methane terephthalamide (nylon PACMT), polybis (3-methyl-4-aminohexyl) methane isophthalamide (nylon PACMI), polybis (3-methyl-4- Minohekishiru) methane dodecamide (nylon PACM12), polybis (3-methyl-4-amino-hexyl) methane tetra deca (nylon PACM14) and the like.
 前記構成単位の中でも、好ましい(c)成分の例としては、共重合ポリアミドに高結晶性を付与するためのポリヘキサメチレンアジパミドや、さらなる低吸水性を付与するためのポリデカメチレンテレフタルアミド、ガソリンバリア性向上のためのポリメタキシレンアジパミドなどが挙げられる。共重合ポリアミド中の(c)成分の配合割合は、最大20モル%までであることが好ましく、さらに好ましくは10~20モル%である。(c)成分の割合が上記下限未満の場合、(c)成分による効果が十分発揮されないおそれがあり、上記上限を超える場合、必須成分である(a)成分や(b)成分の量が少なくなり、本発明の共重合ポリアミドの本来意図される効果が十分発揮されないおそれがあり、好ましくない。 Among the structural units, examples of the preferred component (c) include polyhexamethylene adipamide for imparting high crystallinity to the copolymer polyamide, and polydecamethylene terephthalamide for imparting further low water absorption. And polymetaxylene adipamide for improving gasoline barrier properties. The blending ratio of the component (c) in the copolymerized polyamide is preferably up to 20 mol%, more preferably 10 to 20 mol%. When the proportion of the component (c) is less than the above lower limit, the effect of the component (c) may not be sufficiently exhibited. When the proportion exceeds the above upper limit, the amount of the essential component (a) or component (b) is small. Therefore, the originally intended effect of the copolymerized polyamide of the present invention may not be sufficiently exhibited, which is not preferable.
 本発明の共重合ポリアミドは、300~330℃の融点(Tm)、及び90~140℃の昇温結晶化温度(Tc1)を有することが好ましい。Tmが上記上限を超える場合、共重合ポリアミドを射出成形法などにより成形する際に必要となる加工温度が極めて高くなるため、加工時に分解し、目的の物性や外観が得られない場合がある。逆に、Tmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になる。また、Tc1が上記上限を超える場合、共重合ポリアミドを射出成形法などにより成形する際に必要とされる金型温度が高くなり成形が困難になるだけでなく、射出成形の短いサイクルの中では十分に結晶化が進まない場合があり、離型不足等の成形難を引き起こしたり、後の使用において、高温下で結晶化が進行し二次収縮による変形などが問題となる。逆に、Tc1が上記下限未満の場合、樹脂組成として必然的にガラス転移温度を低下させる必要が出てくる。Tc1は一般的にガラス転移温度以上の温度となるため、Tc1を90℃未満にする場合、ガラス転移温度としては低い値が求められるが、その場合、物性の大きな低下や、吸水後の物性が維持できないなどの問題が発生する。Tgを比較的高く保つ必要があることから、Tc1としては少なくとも90℃以上にすることが必要である。 The copolymerized polyamide of the present invention preferably has a melting point (Tm) of 300 to 330 ° C. and a temperature rising crystallization temperature (Tc1) of 90 to 140 ° C. When Tm exceeds the above upper limit, the processing temperature required when the copolymerized polyamide is molded by an injection molding method or the like becomes extremely high, so that it may be decomposed during processing and the desired physical properties and appearance may not be obtained. On the other hand, when Tm is less than the above lower limit, the crystallization rate becomes slow, and in both cases, molding becomes difficult. Further, when Tc1 exceeds the above upper limit, not only the mold temperature required for molding the copolymer polyamide by an injection molding method becomes high and molding becomes difficult, but in a short cycle of injection molding, In some cases, crystallization does not proceed sufficiently, causing molding difficulties such as insufficient mold release, and in subsequent use, crystallization proceeds at high temperatures and deformation due to secondary shrinkage becomes a problem. Conversely, when Tc1 is less than the above lower limit, it is necessary to inevitably lower the glass transition temperature as a resin composition. Since Tc1 is generally a temperature higher than the glass transition temperature, when Tc1 is less than 90 ° C., a low value is required as the glass transition temperature. In that case, there is a large decrease in physical properties or physical properties after water absorption. Problems such as inability to maintain. Since Tg needs to be kept relatively high, Tc1 needs to be at least 90 ° C. or higher.
 本発明の共重合ポリアミドでは、6Tナイロンに特定量の11ナイロン成分を共重合しているので、高融点や低吸水性といった特性だけでなく、成形性や耐熱老化性、ガソリンバリア性のバランスに優れた樹脂が得られる。電子部品の成形においては、300℃以上の高融点、低吸水であることに加え、薄肉、ハイサイクルな成型が求められている。ヘキサメチレンテレフタルアミド/ポリヘキサメチレンアジパミド共重合体(PA6T/66)においては、成形性は良好であるものの、吸水率がきわめて高い。したがって、表面実装などで行われるリフローはんだ処理において、成型品にブリスターが発生するなど問題となっている。一方、ポリノナメチレンテレフタルアミドにおいては、低吸水であるが、Tc1が150℃以上となる場合が有り、成型時の金型温度が150℃以上必要となるため、成型加工性に難がある。たとえ低温金型で成型できても使用時の結晶化進行による二次収縮が問題となる。上記のような背景より、300℃以上の高融点および低吸水、易成形性を有する樹脂が求められており、本発明の共重合ポリアミドにおいては、6Tナイロンに特定量の11ナイロンを共重合することにより、高融点、低吸水であるだけでなく、Tc1が低く抑えられ、射出成形の加工性を大幅に改善できる。また、6Tナイロンの自動車部品への展開を考えた場合、成型加工性や低吸水が求められるだけでなく、エンジンルーム内の温度に耐える耐熱老化性や、燃料の揮発を防ぐためにガソリンなどのバリア性が重要となる。これまで6Tナイロンに12ナイロンを共重合した例が報告されているが、12ナイロンは11ナイロンに比べアミド結合量が少なく、アミド結合間の水素結合がガス成分の遮蔽効果を付与することを考えるとガソリンバリア性に不利である。また、11ナイロンはジグザグ構造をとった際に12ナイロンより水素結合をとりやすい構造であり効率的に水素結合を形成しやすいのに対し、12ナイロンは水素結合がとり難く水素結合性は弱くなる。水素結合性向上は、ガラス転移温度の向上やガソリン成分の遮蔽効果を向上させるため、耐熱老化性およびガソリンバリア性の観点で好ましい。以上のことより、11ナイロン成分は12ナイロン成分より優れた共重合成分であり優れた特性を有する樹脂であるにも関わらず、これまでは6Tナイロンに11ナイロンを共重合し、融点300℃を有する具体的な共重合ポリアミドは報告されていない。 In the copolymerized polyamide of the present invention, a specific amount of 11 nylon components are copolymerized with 6T nylon, so that not only the properties such as high melting point and low water absorption, but also the balance of moldability, heat aging resistance, and gasoline barrier properties. An excellent resin is obtained. In molding electronic parts, in addition to a high melting point of 300 ° C. or higher and low water absorption, thin-walled, high-cycle molding is required. In the hexamethylene terephthalamide / polyhexamethylene adipamide copolymer (PA6T / 66), although the moldability is good, the water absorption is very high. Therefore, in the reflow soldering process performed by surface mounting or the like, there is a problem that blisters are generated in a molded product. On the other hand, polynonamethylene terephthalamide has low water absorption, but Tc1 may be 150 ° C. or higher, and the mold temperature at the time of molding requires 150 ° C. or higher. Even if it can be molded with a low temperature mold, secondary shrinkage due to crystallization during use becomes a problem. From the above background, a resin having a high melting point of 300 ° C. or higher, low water absorption, and easy moldability is required. In the copolymerized polyamide of the present invention, 6T nylon is copolymerized with a specific amount of 11 nylon. As a result, not only has a high melting point and low water absorption, Tc1 can be kept low, and the processability of injection molding can be greatly improved. In addition, when considering the expansion of 6T nylon to automobile parts, not only molding processability and low water absorption are required, but also heat aging resistance to the temperature in the engine room and barriers such as gasoline to prevent fuel volatilization. Sex is important. So far, an example of copolymerizing 12 nylon with 6T nylon has been reported, but 12 nylon has a smaller amount of amide bonds than 11 nylon, and it is considered that hydrogen bonds between amide bonds provide a shielding effect on gas components. And it is disadvantageous for the gasoline barrier property. In addition, 11 nylon has a structure that is easier to form hydrogen bonds than 12 nylon when it takes a zigzag structure and easily forms hydrogen bonds, whereas 12 nylon has difficulty in taking hydrogen bonds and has weak hydrogen bondability. . The improvement of hydrogen bonding property is preferable from the viewpoint of heat aging resistance and gasoline barrier property because it improves the glass transition temperature and the shielding effect of gasoline components. From the above, although 11 nylon component is a copolymer component superior to 12 nylon component and has excellent characteristics, 11 nylon has been copolymerized with 6T nylon and has a melting point of 300 ° C. No specific copolyamide has been reported.
 本発明の共重合ポリアミドを製造するに際に使用する触媒としては、リン酸、亜リン酸、次亜リン酸もしくはその金属塩やアンモニウム塩、エステルが挙げられる。金属塩の金属種としては、具体的には、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモンなどが挙げられる。エステルとしては、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどを添加することができる。また、溶融滞留安定性向上の観点から、水酸化ナトリウムを添加することが好ましい。 Examples of the catalyst used for producing the copolymerized polyamide of the present invention include phosphoric acid, phosphorous acid, hypophosphorous acid or a metal salt, ammonium salt and ester thereof. Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony. As the ester, ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like can be added. Moreover, it is preferable to add sodium hydroxide from the viewpoint of improving the melt residence stability.
 本発明の共重合ポリアミドの96%濃硫酸中20℃で測定した相対粘度(RV)は0.4~4.0であり、好ましくは1.0~3.5、より好ましくは1.5~3.0である。ポリアミドの相対粘度を一定範囲とする方法としては、分子量を調整する手段が挙げられる。 The relative viscosity (RV) of the copolymerized polyamide of the present invention measured at 20 ° C. in 96% concentrated sulfuric acid is 0.4 to 4.0, preferably 1.0 to 3.5, more preferably 1.5 to 3.0. Examples of a method for setting the relative viscosity of the polyamide within a certain range include a means for adjusting the molecular weight.
 本発明の共重合ポリアミドは、アミノ基量とカルボキシル基とのモル比を調整して重縮合する方法や末端封止剤を添加する方法によって、ポリアミドの末端基量および分子量を調整することができる。アミノ基量とカルボキシル基とのモル比を一定比率で重縮合する場合には、使用する全ジアミンと全ジカルボン酸のモル比をジアミン/ジカルボン酸=1.00/1.05から1.10/1.00の範囲に調整することが好ましい。 The copolymer polyamide of the present invention can adjust the end group amount and molecular weight of the polyamide by a method of polycondensation by adjusting the molar ratio of the amino group amount to the carboxyl group or a method of adding a terminal blocking agent. . When polycondensation is performed at a constant ratio of the molar ratio of the amino group and the carboxyl group, the molar ratio of all diamines to all dicarboxylic acids used is diamine / dicarboxylic acid = 1.00 / 1.05 to 1.10 / It is preferable to adjust to the range of 1.00.
 末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合後期、または重合終了時が挙げられる。末端封止剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、モノカルボン酸またはモノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを使用することができる。末端封止剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、無水マレイン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン等が挙げられる。 Examples of the timing for adding the end-capping agent include starting raw materials, starting polymerization, late polymerization, or finishing polymerization. The end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but acid anhydrides such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used. Examples of the end capping agent include aliphatic monoacids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Alicyclic monocarboxylic acids such as carboxylic acid and cyclohexanecarboxylic acid, benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, aromatic monocarboxylic acid such as phenylacetic acid, maleic anhydride Acid, phthalic anhydride, acid anhydrides such as hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc. Aliphatic monoamines, Examples thereof include alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.
 本発明の共重合ポリアミドの酸価およびアミン価としては、それぞれ0~200eq/トン、0~100eq/tonであることが好ましい。末端官能基が200eq/ton以上であると、溶融滞留時にゲル化や劣化が促進されるだけでなく、使用環境下においても、着色や加水分解等の問題を引き起こす。一方、ガラスファイバーやマレイン酸変性ポリオレフィンなどの反応性化合物をコンパウンドする際は、反応性および反応基に合わせ、酸価および/又はアミン価を5~100eq/tonとすることが好ましい。 The acid value and amine value of the copolymerized polyamide of the present invention are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively. When the terminal functional group is 200 eq / ton or more, not only gelation and deterioration are promoted during melt residence, but also problems such as coloring and hydrolysis are caused in the use environment. On the other hand, when a reactive compound such as glass fiber or maleic acid-modified polyolefin is compounded, the acid value and / or amine value is preferably 5 to 100 eq / ton in accordance with the reactivity and the reactive group.
 本発明の共重合ポリアミドには、従来のポリアミド用の各種添加剤を使用することができる。添加剤としては、繊維状強化材・充填材、安定剤、衝撃改良材、難燃剤、離型剤、摺動性改良材、着色剤、可塑剤、結晶核剤、本発明の共重合ポリアミドとは異なるポリアミド、ポリアミド以外の熱可塑性樹脂などが挙げられる。 Various conventional additives for polyamide can be used for the copolymerized polyamide of the present invention. Additives include fibrous reinforcements / fillers, stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, and copolymerized polyamides of the present invention. Are different polyamides, thermoplastic resins other than polyamide, and the like.
 繊維状強化材としては、ガラス繊維、カーボン繊維、金属ファイバー、セラミック繊維、有機繊維、ウィスカーなどが挙げられるが、その中でもガラス繊維が好ましい。これら繊維状強化材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。ここで用いられるガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。ガラス繊維の断面形状としては、物性面より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円系、略長円系、略繭形系であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~50μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状ものもが好ましく使用できる。繊維状強化材の添加量は最適な量を選択すれば良いが、100重量部に対して0~250重量部、好ましくは20~150重量部を添加することが可能である。 Examples of the fibrous reinforcing material include glass fiber, carbon fiber, metal fiber, ceramic fiber, organic fiber, whisker, etc. Among them, glass fiber is preferable. These fibrous reinforcing materials may be used not only alone but also in combination of several kinds. As the glass fibers used here, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a non-circular cross-section is preferable from the viewpoint of physical properties. Non-circular cross-section glass fibers include those that are substantially elliptical, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8 It is preferable that Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis. The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 50 μm and the major axis is about 2 to 100 μm. Further, glass fibers that are chopped strands cut into fiber bundles and having a fiber length of about 1 to 20 mm can be preferably used. An optimum amount of the fibrous reinforcing material may be selected, but 0 to 250 parts by weight, preferably 20 to 150 parts by weight can be added to 100 parts by weight.
 充填材(フィラー)としては、目的別には強化用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラーなどが挙げられ、具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、ワラストナイト、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、ヒドロキシアパタイト、グラファイト、カーボンナノチューブ、フラーレン、酸化亜鉛、酸化インジウム、酸化錫、酸化鉄、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、赤燐、炭酸カルシウム、チタン酸カリウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、ホウ酸アルミニウム、硫酸バリウム、硫酸マグネシウム、硫化亜鉛、鉄、アルミ、銅、銀等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。形状としては、特に限定されないが針状、球状、板状、不定形などを使用することが可能である。充填材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して250重量部以下、好ましくは20~150重量部の充填材を添加することが可能である。また、繊維状強化材、充填材はポリアミド樹脂との親和性を向上させるため、カップリング剤処理したもの、またはカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。 As fillers (fillers), reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers and the like are listed according to purpose. Specifically, glass beads, glass flakes, glass balloons, silica, talc , Kaolin, wollastonite, mica, alumina, hydrotalcite, montmorillonite, hydroxyapatite, graphite, carbon nanotube, fullerene, zinc oxide, indium oxide, tin oxide, iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, water Magnesium oxide, red phosphorus, calcium carbonate, potassium titanate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, aluminum borate, barium sulfate, magnesium sulfate, zinc sulfide, iron, aluminum, copper, Etc. The. These fillers may be used not only alone but also in combination of several kinds. Although it does not specifically limit as a shape, Needle shape, spherical shape, plate shape, an indeterminate form, etc. can be used. The optimum amount of filler may be selected, but it is possible to add 250 parts by weight or less, preferably 20 to 150 parts by weight of filler with respect to 100 parts by weight of the copolymer polyamide. Moreover, in order to improve the affinity with the polyamide resin, the fibrous reinforcing material and the filler are preferably used in combination with a coupling agent-treated or coupling agent. As the coupling agent, a silane coupling agent is used. Any of titanate coupling agents and aluminum coupling agents may be used, and among them, aminosilane coupling agents and epoxysilane coupling agents are particularly preferable.
 安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。安定剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して0~5重量部を添加することが可能である。 Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained. Examples of the alkali metal halide compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide. Examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used alone or in combination of several kinds. An optimum amount of the stabilizer may be selected, but 0 to 5 parts by weight can be added to 100 parts by weight of the copolymer polyamide.
 また、本発明の共重合ポリアミドは、本発明の共重合ポリアミドとは異なる組成のポリアミドをポリマーブレンドしても良い。本発明の共重合ポリアミドと異なる組成のポリアミドとしては、特に制限は無いが、ポリカプロアミド(ナイロン6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリパラキシリレンアジパミド(ナイロンPXD6)、ポリテトラメチレンセバカミド(ナイロン410)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリデカメチレンアジパミド(ナイロン106)、ポリデカメチレンセバカミド(ナイロン1010)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンドデカミド(ナイロン1012)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリテトラメチレンテレフタルアミド(ナイロン4T)、ポリペンタメチレンテレフタルアミド(ナイロン5T)、ポリ-2-メチルペンタメチレンテレフタルアミド(ナイロンM-5T)、ポリヘキサメチレンヘキサヒドロテレフタルアミド(ナイロン6T(H))、ポリ2-メチル-オクタメチレンテレフタルアミド、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリドデカメチレンテレフタルアミド(ナイロン12T)、ポリビス(3-メチル-4-アミノヘキシル)メタンテレフタルアミド(ナイロンPACMT)ポリビス(3-メチル-4-アミノヘキシル)メタンイソフタルアミド(ナイロンPACMI)、ポリビス(3-メチル-4-アミノヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノヘキシル)メタンテトラデカミド(ナイロンPACM14)、ポリアルキルエーテル共重合ポリアミドなどの単体、もしくはこれらの共重合ポリアミドを単独または二種以上を使用しても良い。これらの中でも、結晶速度を向上させるために、ナイロン66やナイロン6T66などをポリマーブレンドしても良い。本発明の共重合ポリアミドとは異なる組成のポリアミドの添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して0~50重量部を添加することが可能である。 The copolymerized polyamide of the present invention may be a polymer blend of a polyamide having a composition different from that of the copolymerized polyamide of the present invention. The polyamide having a composition different from that of the copolymerized polyamide of the present invention is not particularly limited, but polycaproamide (nylon 6), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polytetramethylene adipamide (Nylon 46), polyhexamethylene adipamide (nylon 66), polymetaxylylene adipamide (nylon MXD6), polyparaxylylene adipamide (nylon PXD6), polytetramethylene sebacamide (nylon 410), Polyhexamethylene sebamide (nylon 610), polydecamethylene adipamide (nylon 106), polydecamethylene sebamide (nylon 1010), polyhexamethylene dodecamide (nylon 612), polydecamethylene dodecamide (nylon) 1012), Polyhe Samethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polytetramethylene terephthalamide (nylon 4T), polypentamethylene terephthalamide (nylon 5T), poly-2-methylpentamethylene terephthalamide (nylon) M-5T), polyhexamethylene hexahydroterephthalamide (nylon 6T (H)), poly-2-methyl-octamethylene terephthalamide, polynonamethylene terephthalamide (nylon 9T), polydecamethylene terephthalamide (nylon 10T), Polyundecamethylene terephthalamide (Nylon 11T), Polydodecamethylene terephthalamide (Nylon 12T), Polybis (3-methyl-4-aminohexyl) methane terephthalamide ( Iron PACMT) polybis (3-methyl-4-aminohexyl) methane isophthalamide (nylon PACMI), polybis (3-methyl-4-aminohexyl) methane dodecamide (nylon PACM12), polybis (3-methyl-4-amino) Hexyl) methane tetradecamide (nylon PACM14), polyalkyl ether copolymerized polyamide or the like, or these copolymerized polyamides may be used alone or in combination of two or more. Among these, nylon 66, nylon 6T66, or the like may be polymer blended in order to improve the crystallization speed. The addition amount of the polyamide having a composition different from that of the copolymerized polyamide of the present invention may be selected, but 0 to 50 parts by weight can be added to 100 parts by weight of the copolymerized polyamide.
 本発明の共重合ポリアミドには、本発明の共重合ポリアミドとは異なる組成のポリアミド以外の熱可塑性樹脂を添加しても良い。ポリアミド以外のポリマーとしては、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、相溶性が悪い場合は、反応性化合物やブロックポリマー等の相溶化剤を添加するか、ポリアミド以外のポリマーを変性(特に酸変性が好ましい)することが重要である。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明の共重合ポリアミドに分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して0~50重量部を添加することが可能である。 The thermoplastic polyamide of the present invention may contain a thermoplastic resin other than polyamide having a composition different from that of the copolymerized polyamide of the present invention. Polymers other than polyamide include polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonitrile-styrene copolymer (AS), acrylonitrile-butadiene-styrene copolymer (ABS), and if compatibility is poor, add compatibilizers such as reactive compounds and block polymers Alternatively, it is important to modify a polymer other than polyamide (particularly acid modification is preferred). These thermoplastic resins can be blended in a molten state by melt kneading. However, the thermoplastic resin may be made into a fiber or particle and dispersed in the copolymerized polyamide of the present invention. An optimum amount of the thermoplastic resin may be selected, but 0 to 50 parts by weight can be added to 100 parts by weight of the copolyamide.
 衝撃改良材としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ナイロンエラストマー、ウレタンエラストマー、シリコーンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。衝撃改良材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して0~30重量部を添加することが可能である。 As impact modifiers, ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Styrene copolymer (SIS), vinyl polymer resin such as acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate as hard segment, polytetramethylene glycol or polycaprolactone or poly Polyester block copolymer in which the turbo sulfonate diol as a soft segment, a nylon elastomer, urethane elastomer, silicone rubber, fluorinated rubber, and the like polymer particles having a core-shell structure constituted from two different polymers. An optimum amount of the impact modifier may be selected, but 0 to 30 parts by weight can be added to 100 parts by weight of the copolyamide.
 本発明の共重合ポリアミドに対して、本発明におけるポリアミド樹脂以外の熱可塑性樹脂および耐衝撃改良材を添加する場合にはポリアミドと反応可能な反応性基が共重合されていることが好ましく、反応性基としてはポリアミド樹脂の末端基であるアミノ基、カルボキシル基及び主鎖アミド基と反応しうる基である。具体的にはカルボン酸基、酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が例示されるが、それらの中でも酸無水物基が最も反応性に優れている。このようにポリアミド樹脂と反応する反応性基を有する熱可塑性樹脂はポリアミド中に微分散し、微分散するがゆえに粒子間の距離が短くなり耐衝撃性が大幅に改良されるという報告もある〔S,Wu:Polymer 26,1855(1985)〕。 When a thermoplastic resin other than the polyamide resin in the present invention and an impact resistance improving material are added to the copolymerized polyamide of the present invention, it is preferable that a reactive group capable of reacting with the polyamide is copolymerized. The functional group is a group capable of reacting with an amino group, a carboxyl group and a main chain amide group which are terminal groups of the polyamide resin. Specific examples include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group, etc. Among them, an acid anhydride group is most excellent in reactivity. There is also a report that the thermoplastic resin having a reactive group that reacts with the polyamide resin is finely dispersed in the polyamide and is finely dispersed, so that the distance between the particles is shortened and the impact resistance is greatly improved [ S, Wu: Polymer 26, 1855 (1985)].
 難燃剤としては、ハロゲン系難燃剤と難燃助剤の組み合わせが良く、ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン及び臭素化架橋芳香族重合体等が好ましく、難燃助剤としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等のアンチモン化合物や錫酸亜鉛等が好ましい。中でも、熱安定性の面よりジブロムポリスチレンとアンチモン酸ナトリウムおよび/または錫酸亜鉛との組み合わせが好ましい。また、非ハロゲン系難燃剤としては、メラミンシアヌレート、赤リン、ホスフィン酸の金属塩、含窒素リン酸系の化合物が挙げられる。特に、フォスフィン酸金属塩と含窒素リン酸系化合物との組み合わせが好ましく、含窒素リン酸系化合物としては、メラミンまたは、メラム、メロンのようなメラミンの縮合物とポリリン酸の反応性生物またはそれらの混合物を含む。その際、金型等の金属腐食防止として、ハイドロタルサイト系化合物の添加が好ましい。また、その他難燃剤、難燃助剤としては、ホウ酸亜鉛、硫化亜鉛、モリブデン化合物、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、シリコーン樹脂、フッ素樹脂、モンモリロナイト、シリカ、炭酸金属塩等が挙げられる。難燃剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して0~50重量部を添加することが可能である。 As a flame retardant, a combination of a halogen flame retardant and a flame retardant aid is good. As a halogen flame retardant, brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride Polymers, brominated epoxy resins, brominated phenoxy resins, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated cross-linked aromatic polymers, etc. are preferred. Antimony compounds such as antimony, antimony pentoxide, and sodium antimonate, and zinc stannate are preferred. Among these, a combination of dibromopolystyrene and sodium antimonate and / or zinc stannate is preferable from the viewpoint of thermal stability. Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable. Examples of the nitrogen-containing phosphoric acid compound include melamine, a condensate of melamine such as melam and melon, and a reactive organism of polyphosphoric acid or those. A mixture of At that time, addition of a hydrotalcite-based compound is preferable for preventing metal corrosion of a mold or the like. Other flame retardants and flame retardant aids include zinc borate, zinc sulfide, molybdenum compounds, iron oxide, aluminum hydroxide, magnesium hydroxide, silicone resin, fluororesin, montmorillonite, silica, metal carbonate, etc. It is done. The optimum amount of the flame retardant may be selected, but 0 to 50 parts by weight can be added to 100 parts by weight of the copolymer polyamide.
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸などが挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミドなどが挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して0~5重量部を添加することが可能である。 Examples of the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture. The addition amount of the release material may be selected as an optimum amount, but 0 to 5 parts by weight can be added to 100 parts by weight of the copolymer polyamide.
 摺動性改良材としては、高分子量ポリエチレン、酸変性高分子量ポリエチレン、フッ素樹脂粉末、二硫化モリブデン、シリコーン樹脂、シリコーンオイル、亜鉛、グラファイト、鉱物油等が挙げられる。樹脂摺動性改良材は本発明の特性を損なわない範囲、例えば0.05~3重量部の範囲で添加することができる。 Examples of the sliding property improving material include high molecular weight polyethylene, acid-modified high molecular weight polyethylene, fluorine resin powder, molybdenum disulfide, silicone resin, silicone oil, zinc, graphite, mineral oil, and the like. The resin slidability improving material can be added in a range not impairing the characteristics of the present invention, for example, 0.05 to 3 parts by weight.
 本発明の共重合ポリアミドは、従来公知の方法で製造することができるが、例えば、(a)成分の原料モノマーであるヘキサメチレンジアミン、テレフタル酸、及び(b)成分の原料モノマーである11-アミノウンデカン酸又はウンデカンラクタム、並びに必要により(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムを共縮合反応させることによって容易に合成することができる。共縮重合反応の順序は特に限定されず、全ての原料モノマーを一度に反応させてもよいし、一部の原料モノマーを先に反応させ、続いて残りの原料モノマーを反応させてもよい。また、重合方法は特に限定されないが、原料仕込からポリマー作製までを連続的な工程で進めても良いし、一度オリゴマーを作製した後、別工程で押出し機などにより重合を進める、もしくはオリゴマーを固相重合により高分子量化するなどの方法を用いても良い。原料モノマーの仕込み比率を調整することにより、合成される共重合ポリアミド中の各構成単位の割合を制御することができる。 The copolymerized polyamide of the present invention can be produced by a conventionally known method. For example, hexamethylene diamine and terephthalic acid which are raw material monomers of component (a), and 11- Aminoundecanoic acid or undecanactactam, and if necessary (c) a structural unit obtained from an equimolar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, an aminocarboxylic acid other than the structural unit of (b) or It can be easily synthesized by co-condensation of lactam. The order of the copolycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or a part of the raw material monomers may be reacted first, followed by the remaining raw material monomers. The polymerization method is not particularly limited, but from raw material charging to polymer production may proceed in a continuous process, and after producing an oligomer once, the polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified. A method of increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the proportion of each structural unit in the copolymerized polyamide to be synthesized can be controlled.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)相対粘度
 ポリアミド樹脂0.25gを96%硫酸25mlに溶解し、オストワルド粘度計を用いて20℃で測定した。
(1) Relative viscosity 0.25 g of polyamide resin was dissolved in 25 ml of 96% sulfuric acid and measured at 20 ° C. using an Ostwald viscometer.
(2)末端アミノ基量
 ポリアミド樹脂0.2gをm-クレゾール20mlに溶解させ、0.1mol/l塩酸エタノール溶液で滴定した。指示薬はクレゾールレッドを用いた。樹脂1ton中の当量(eq/ton)として表した。
(2) Amount of terminal amino groups 0.2 g of polyamide resin was dissolved in 20 ml of m-cresol and titrated with a 0.1 mol / l hydrochloric acid ethanol solution. Cresol red was used as the indicator. Expressed as equivalents (eq / ton) in 1 ton of resin.
(3)融点(Tm)及び昇温結晶化温度(Tc1)
 105℃で15時間減圧乾燥したポリアミドをアルミニウム製パン(TA Instruments社製、品番900793.901)に10mg計量し、アルミニウム製蓋(TA Instruments社製、品番900794.901)で密封状態にして、測定試料を調製した後、示差走査熱量計DSCQ100(TA INSTRUMENTS製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した後に測定試料パンを取出し、液体窒素に漬け込み、急冷させた。その後、液体窒素からサンプルを取出し、室温で30分間放置した後、再び、示差走査熱量計DSCQ100(TA INSTRUMENTS製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した。その際に、昇温時の結晶化の発熱のピーク温度を昇温時結晶化温度(Tc1)とし、融解による吸熱のピーク温度を融点(Tm)とした。
(3) Melting point (Tm) and temperature rising crystallization temperature (Tc1)
10 mg of the polyamide dried under reduced pressure at 105 ° C. for 15 hours was weighed in an aluminum pan (TA Instruments, product number 900793.901) and sealed with an aluminum lid (TA Instruments, product number 900794.901). After preparing the sample, use a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS) to raise the temperature from room temperature to 20 ° C./min, hold at 350 ° C. for 3 minutes, take out the measurement sample pan, soak in liquid nitrogen, and quench rapidly I let you. Thereafter, the sample was taken out from liquid nitrogen and allowed to stand at room temperature for 30 minutes, and then again heated from room temperature at 20 ° C./minute using a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS) and held at 350 ° C. for 3 minutes. . At that time, the peak temperature of the crystallization exotherm at the time of temperature rise was defined as the crystallization temperature at the time of temperature rise (Tc1), and the endothermic peak temperature due to melting was defined as the melting point (Tm).
(4)成形性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は、樹脂の融点+20℃に設定した。金型は縦100mm、横100mm、厚み1mmtの平板作成用金型を使用した。金型温度は140℃に設定し射出速度50mm/sec、保圧30MPa、射出時間10秒、冷却時間10秒で成型を行い、成形性の良悪は以下のような評価を実施した。
 ○:顕著な樹脂の分解が見られず、かつ問題なく成型品が得られる。
 ×:成形時に分解による発泡が伴うか、もしくは、離型性が不十分であり成型品が金型に貼り付いたり、変形する。
(4) Formability Using an injection molding machine EC-100 manufactured by Toshiba Machine, the cylinder temperature was set to the melting point of the resin + 20 ° C. As the mold, a mold for producing a flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used. The mold temperature was set to 140 ° C., molding was performed at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. The moldability was evaluated as follows.
○: Significant decomposition of the resin is not observed, and a molded product can be obtained without any problem.
X: Foaming due to decomposition is accompanied at the time of molding, or the releasability is insufficient, and the molded product sticks to the mold or deforms.
(5)耐熱老化性
 耐熱老化性試験用には、ポリアミド100部に対し、臭化第二銅0.02部、ヨウ化カリウム0.15部をコンパウンドしたものを用い、射出成形機にてISOに基づくダンベル状テストピースを作製した。成型品は160℃ギアオーブン中で1000時間の熱老化試験を実施し、引張試験はISO527に準じて行った。耐熱老化性の良悪は以下のような基準で評価を行った。
 ○:160℃1000時間後の、引張強度もしくは引張降伏強度の保持率が90%以上
 ×:160℃1000時間後の、引張強度もしくは引張降伏強度の保持率が90%未満
(5) Heat aging resistance For the heat aging resistance test, a compound obtained by compounding 0.02 part of cupric bromide and 0.15 part of potassium iodide to 100 parts of polyamide and using an injection molding machine for ISO. A dumbbell-shaped test piece based on the above was prepared. The molded product was subjected to a heat aging test for 1000 hours in a 160 ° C. gear oven, and a tensile test was performed according to ISO 527. The quality of heat aging resistance was evaluated according to the following criteria.
○: Retention rate of tensile strength or tensile yield strength after 1000 hours at 160 ° C. is 90% or more ×: Retention rate of tensile strength or tensile yield strength after 1000 hours at 160 ° C. is less than 90%
(6)ガソリンバリア性
 ガソリンバリア性の評価には、カップ法による燃料透過性試験を実施した。カップには、イソオクタン/トルエン/エタノールが45/45/10vol%より構成される燃料を4.6g添加した。燃料透過率測定には、本発明のポリアミドをヒートプレスにて100μm厚みのフィルムに作製したものを用いた。得られたフィルムは、先ほどの燃料を添加したカップ上に燃料に接しないように設置した(気相法)。フィルムからの透過以外からは、燃料が揮発しないように気密性を維持した。測定は、透過面積1.133×10-3、試験温度60℃、試験時間240時間を行い、測定前後の重量変化量を測定した。また、試料の吸放水特性を考慮するためのブランク実験を行い、補正して燃料透過量を算出した。ガソリンバリア性の良悪は、以下のような基準で評価を行った。
 ○:重量減少量が100mg未満
 ×:重量減少量が100mg以上
(6) Gasoline barrier property For the evaluation of gasoline barrier property, a fuel permeability test by the cup method was conducted. 4.6 g of fuel composed of 45/45/10 vol% of isooctane / toluene / ethanol was added to the cup. For the fuel permeability measurement, the polyamide of the present invention prepared on a film having a thickness of 100 μm by a heat press was used. The obtained film was placed on the cup to which the fuel was added so as not to contact the fuel (vapor phase method). Airtightness was maintained so that the fuel would not volatilize except from permeation through the film. The measurement was performed with a permeation area of 1.133 × 10 −3 m 2 , a test temperature of 60 ° C., and a test time of 240 hours, and the weight change before and after the measurement was measured. In addition, a blank experiment for taking into account the water absorption / release characteristics of the sample was performed and corrected to calculate the fuel permeation amount. Gasoline barrier properties were evaluated based on the following criteria.
○: Weight reduction amount is less than 100 mg ×: Weight reduction amount is 100 mg or more
(7)飽和吸水率
 飽和吸水率の評価には、縦100mm、横100mm、厚み1mmの平板を作製し、これを80℃熱水中に浸漬させ、以下の式より求めた。
  飽和吸水率(%)=(飽和吸水時の重量-乾燥時重量)/乾燥時重量×100
(7) Saturated water absorption For evaluation of the saturated water absorption, a flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was prepared, immersed in 80 ° C. hot water, and obtained from the following formula.
Saturated water absorption (%) = (weight at saturated water absorption−weight at drying) / weight at drying × 100
<実施例1>
 ヘキサメチレンジアミン7.54kg、テレフタル酸10.79kg、11-アミノウンデカン酸7.04kg、触媒としてジ亜リン酸ナトリウム9g、末端調整剤として酢酸40gおよびイオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、樹脂温度を330℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、共重合ポリアミドを得た。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Example 1>
Hexamethylenediamine 7.54 kg, terephthalic acid 10.79 kg, 11-aminoundecanoic acid 7.04 kg, sodium diphosphite 9 g, terminal regulator 40 g acetic acid and 17.52 kg ion-exchanged water in a 50 liter autoclave The pressure was charged with N 2 from normal pressure to 0.05 MPa, the pressure was released, and the pressure was returned to normal pressure. This operation was performed 3 times, N 2 substitution was performed, and then uniform dissolution was performed at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C. with a heating pipe, and heated for 1 hour. Thereafter, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Thereafter, this low-order condensate is directly supplied to a twin-screw extruder (screw diameter: 37 mm, L / D = 60) while maintaining the molten state, and the resin temperature is 330 ° C. while water is removed from three vents. Polycondensation proceeded under melting to obtain a copolymerized polyamide. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<実施例2>
 ヘキサメチレンジアミンの量を8.12kgに変更し、テレフタル酸の量を11.62kgに変更し、11-アミノウンデカン酸の量を6.03kgに変更し、二軸押出し機の樹脂温度を335℃に変更した。これら以外は実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Example 2>
The amount of hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 11.62 kg, the amount of 11-aminoundecanoic acid was changed to 6.03 kg, and the resin temperature of the twin screw extruder was 335 ° C. Changed to A copolymerized polyamide was synthesized in the same manner as in Example 1 except for these. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<実施例3>
 ヘキサメチレンジアミンの量を6.96kgに変更し、テレフタル酸の量を9.96kgに変更し、11-アミノウンデカン酸の量を8.04kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Example 3>
In the same manner as in Example 1, except that the amount of hexamethylenediamine was changed to 6.96 kg, the amount of terephthalic acid was changed to 9.96 kg, and the amount of 11-aminoundecanoic acid was changed to 8.04 kg. Polymerized polyamide was synthesized. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<実施例4>
 ヘキサメチレンジアミンの量を8.12kgに変更し、テレフタル酸の量を9.96kgに変更し、11-アミノウンデカン酸の量を6.03kgに変更し、アジピン酸(テレフタル酸以外のジカルボン酸)1.46kgを仕込んだ以外は実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Example 4>
The amount of hexamethylenediamine was changed to 8.12 kg, the amount of terephthalic acid was changed to 9.96 kg, the amount of 11-aminoundecanoic acid was changed to 6.03 kg, and adipic acid (dicarboxylic acid other than terephthalic acid) A copolymerized polyamide was synthesized in the same manner as in Example 1 except that 1.46 kg was charged. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<実施例5>
 11-アミノウンデカン酸7.04kgをウンデカンラクタム6.41kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Example 5>
A copolymerized polyamide was synthesized in the same manner as in Example 1 except that 7.04 kg of 11-aminoundecanoic acid was changed to 6.41 kg of undecane lactam. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<比較例1>
 ヘキサメチレンジアミンの量を9.28kgに変更し、テレフタル酸の量を13.28kgに変更し、11-アミノウンデカン酸の量を4.02kgに変更し、二軸押出し機の樹脂温度を350℃に変更した。これら以外は、実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Comparative Example 1>
The amount of hexamethylenediamine was changed to 9.28 kg, the amount of terephthalic acid was changed to 13.28 kg, the amount of 11-aminoundecanoic acid was changed to 4.02 kg, and the resin temperature of the twin screw extruder was 350 ° C. Changed to A copolymerized polyamide was synthesized in the same manner as Example 1 except for these. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<比較例2>
 ヘキサメチレンジアミンの量を5.22kgに変更し、テレフタル酸の量を7.47kgに変更し、11-アミノウンデカン酸の量を11.06kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Comparative Example 2>
In the same manner as in Example 1, except that the amount of hexamethylenediamine was changed to 5.22 kg, the amount of terephthalic acid was changed to 7.47 kg, and the amount of 11-aminoundecanoic acid was changed to 11.06 kg. Polymerized polyamide was synthesized. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<比較例3>
 11-アミノウンデカン酸7.44kgを12-アミノドデカン酸7.53kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。原料モノマーの仕込み比率及び得られた共重合ポリアミドの特性を表1に示す。
<Comparative Example 3>
A copolymer polyamide was synthesized in the same manner as in Example 1 except that 7.44 kg of 11-aminoundecanoic acid was changed to 7.53 kg of 12-aminododecanoic acid. Table 1 shows the charge ratio of raw material monomers and the characteristics of the obtained copolymer polyamide.
<比較例4>
 11-アミノウンデカン酸を使用せずに、ヘキサメチレンジアミン10.18kg及びテレフタル酸14.56kgを使用した以外は実施例1と同様にして、共重合ポリアミドの合成を行った。合成したポリアミドは、重合段階で流動性が低下し、ポリマーを得ることができなかった。
<Comparative Example 4>
A copolymerized polyamide was synthesized in the same manner as in Example 1 except that 10.18 kg of hexamethylenediamine and 14.56 kg of terephthalic acid were used without using 11-aminoundecanoic acid. The synthesized polyamide had a decreased fluidity at the polymerization stage, and a polymer could not be obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、実施例1~5の共重合ポリアミドは、成形性、耐熱老化性、及びガソリンバリア性の三つの特性の全てを高度に満足している。なかでも、高融点、成形性(6T成分が多く、かつTc1が140℃以下が良い)、低吸水率(11成分が多いほうが良い)のバランスを考慮すると実施例1が最も好ましいと言える。一方、11ナイロンの共重合量が少なすぎる比較例1の共重合ポリアミドは、Tm及びTc1が高く、離型が困難であった。11ナイロンの共重合量が多すぎる比較例2の共重合ポリアミドは、Tmが低く、かつアミノウンデカン成分により6T成分の結晶化が阻害され結晶性が不足するために離型が不十分であり成形性に劣っていた。また、11ナイロンの代わりに12ナイロンを共重合させた比較例3の共重合ポリアミドは、11ナイロンを共重合した共重合ポリアミドと比較して耐熱老化性及びガソリンバリア性に劣る。6Tナイロンのみからなる比較例4のポリアミドは、Tm及びTc1が極めて高いために重合段階で流動性が低下し、ポリマーを得ることができなかった。 As is apparent from Table 1, the copolymer polyamides of Examples 1 to 5 highly satisfy all three characteristics of moldability, heat aging resistance, and gasoline barrier properties. Among these, Example 1 is most preferable in consideration of a balance between a high melting point, moldability (a lot of 6T components and Tc1 is preferably 140 ° C. or less), and a low water absorption (a lot of 11 components are better). On the other hand, the copolymerized polyamide of Comparative Example 1 in which the copolymerization amount of 11 nylon was too small had high Tm and Tc1, and was difficult to release. 11 The copolymerized polyamide of Comparative Example 2 with too much copolymerization of nylon has a low Tm, and the crystallization of the 6T component is inhibited by the aminoundecane component and the crystallinity is insufficient. It was inferior. Further, the copolymerized polyamide of Comparative Example 3 in which 12 nylon is copolymerized instead of 11 nylon is inferior in heat aging resistance and gasoline barrier property as compared with the copolymerized polyamide copolymerized with 11 nylon. Since the polyamide of Comparative Example 4 consisting only of 6T nylon had extremely high Tm and Tc1, the fluidity decreased at the polymerization stage, and a polymer could not be obtained.
 本発明の共重合ポリアミドは、主成分の6Tナイロンに11ナイロンが特定の割合で共重合されているので、300℃以上の高融点、機械的特性、摺動性などの6Tナイロンの特性を活かしつつ、低吸水性、成形性、耐熱老化性、及びガソリンバリア性も高度に満足することができるため、自動車や電子部品用の成形材料や摺動用材料として好適に使用することができる。 In the copolymerized polyamide of the present invention, 11 nylon is copolymerized at a specific ratio with 6T nylon as a main component, and therefore, the high-melting point of 300 ° C. or higher, mechanical properties, slidability, etc. are utilized. On the other hand, low water absorption, moldability, heat aging resistance, and gasoline barrier properties can also be highly satisfied, so that it can be suitably used as molding materials and sliding materials for automobiles and electronic parts.

Claims (3)

  1.  (a)ヘキサメチレンジアミンとテレフタル酸との等量モル塩から得られる構成単位55~75モル%、及び(b)11-アミノウンデカン酸又はウンデカンラクタムから得られる構成単位45~25モル%からなることを特徴とする共重合ポリアミド。 (A) Constituting units 55 to 75 mol% obtained from an equimolar molar salt of hexamethylenediamine and terephthalic acid, and (b) 45 to 25 mol% constituent units obtained from 11-aminoundecanoic acid or undecane lactam. Copolyamide characterized by that.
  2.  共重合ポリアミドが、(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大20モル%まで含有することを特徴とする請求項1に記載の共重合ポリアミド。 The copolymerized polyamide is obtained from (c) a structural unit obtained from an equivalent molar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, or an aminocarboxylic acid or lactam other than the structural unit of (b). The copolymerized polyamide according to claim 1, comprising up to 20 mol% of structural units.
  3.  共重合ポリアミドの融点(Tm)が300~330℃であり、昇温結晶化温度(Tc1)が90~140℃であることを特徴とする請求項1又は2に記載の共重合ポリアミド。 The copolymerized polyamide according to claim 1 or 2, wherein the copolymerized polyamide has a melting point (Tm) of 300 to 330 ° C, and a temperature rising crystallization temperature (Tc1) of 90 to 140 ° C.
PCT/JP2010/068560 2009-10-27 2010-10-21 Copolymerized polyamide WO2011052464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504274A JPWO2011052464A1 (en) 2009-10-27 2010-10-21 Copolyamide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-246348 2009-10-27
JP2009246348 2009-10-27

Publications (1)

Publication Number Publication Date
WO2011052464A1 true WO2011052464A1 (en) 2011-05-05

Family

ID=43921887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068560 WO2011052464A1 (en) 2009-10-27 2010-10-21 Copolymerized polyamide

Country Status (3)

Country Link
JP (1) JPWO2011052464A1 (en)
TW (1) TW201122019A (en)
WO (1) WO2011052464A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246420A (en) * 2011-05-30 2012-12-13 Toyobo Co Ltd Polyamide resin composition for sliding member
JP2013049804A (en) * 2011-08-31 2013-03-14 Jtekt Corp Roller and roller device
JP2015124260A (en) * 2013-12-26 2015-07-06 東洋紡株式会社 High melting point polyamide resin composition excellent in oscillation and hot rigidity during water absorption
JP2015124287A (en) * 2013-12-26 2015-07-06 東洋紡株式会社 Carbon fiber reinforced polyamide resin composition
WO2017077901A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Semi-aromatic polyamide resin and method for producing same
JP2018530626A (en) * 2016-09-14 2018-10-18 金発科技股▲ふん▼有限公司 Semi-aromatic copolyamide resin and polyamide molding composition produced therewith
WO2019189145A1 (en) 2018-03-29 2019-10-03 東洋紡株式会社 Semi-aromatic polyamide resin and method for manufacturing same
CN111133038A (en) * 2017-09-25 2020-05-08 东洋纺株式会社 Molded article comprising semi-aromatic polyamide resin composition as component
WO2020122170A1 (en) 2018-12-14 2020-06-18 東洋紡株式会社 Semi-aromatic polyamide resin and method for manufacturing same
CN111635520A (en) * 2020-06-19 2020-09-08 山东东辰瑞森新材料科技有限公司 High-temperature-resistant polyamide material and preparation method thereof
CN115975181B (en) * 2023-01-09 2024-02-13 华润化学材料科技股份有限公司 Ternary polymerization transparent nylon and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930228B (en) 2017-12-18 2022-04-29 财团法人纺织产业综合研究所 Nylon 66 modified fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156130A (en) * 1985-09-18 1987-07-11 Mitsui Petrochem Ind Ltd Polyamide and its use
JPH05310925A (en) * 1991-12-31 1993-11-22 Elf Atochem Sa Novel polyamide and objects obtained therefrom
JPH11181279A (en) * 1997-12-24 1999-07-06 Toray Ind Inc Polyamide resin composition for part for cooling water for engine, and molding product
JPH11269378A (en) * 1998-01-20 1999-10-05 Toray Ind Inc Connector and polyamide resin composition therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156130A (en) * 1985-09-18 1987-07-11 Mitsui Petrochem Ind Ltd Polyamide and its use
JPH05310925A (en) * 1991-12-31 1993-11-22 Elf Atochem Sa Novel polyamide and objects obtained therefrom
JPH11181279A (en) * 1997-12-24 1999-07-06 Toray Ind Inc Polyamide resin composition for part for cooling water for engine, and molding product
JPH11269378A (en) * 1998-01-20 1999-10-05 Toray Ind Inc Connector and polyamide resin composition therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246420A (en) * 2011-05-30 2012-12-13 Toyobo Co Ltd Polyamide resin composition for sliding member
JP2013049804A (en) * 2011-08-31 2013-03-14 Jtekt Corp Roller and roller device
JP2015124260A (en) * 2013-12-26 2015-07-06 東洋紡株式会社 High melting point polyamide resin composition excellent in oscillation and hot rigidity during water absorption
JP2015124287A (en) * 2013-12-26 2015-07-06 東洋紡株式会社 Carbon fiber reinforced polyamide resin composition
WO2017077901A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Semi-aromatic polyamide resin and method for producing same
JP2018530626A (en) * 2016-09-14 2018-10-18 金発科技股▲ふん▼有限公司 Semi-aromatic copolyamide resin and polyamide molding composition produced therewith
CN111133038A (en) * 2017-09-25 2020-05-08 东洋纺株式会社 Molded article comprising semi-aromatic polyamide resin composition as component
JP7279634B2 (en) 2018-03-29 2023-05-23 東洋紡株式会社 Semi-aromatic polyamide resin and method for producing the same
WO2019189145A1 (en) 2018-03-29 2019-10-03 東洋紡株式会社 Semi-aromatic polyamide resin and method for manufacturing same
KR102658406B1 (en) 2018-03-29 2024-04-16 도요보 엠씨 가부시키가이샤 Semi-aromatic polyamide resin and method for producing the same
KR20200139185A (en) * 2018-03-29 2020-12-11 도요보 가부시키가이샤 Semi-aromatic polyamide resin and manufacturing method thereof
JPWO2019189145A1 (en) * 2018-03-29 2021-02-12 東洋紡株式会社 Semi-aromatic polyamide resin and its manufacturing method
WO2020122170A1 (en) 2018-12-14 2020-06-18 東洋紡株式会社 Semi-aromatic polyamide resin and method for manufacturing same
KR20210102280A (en) 2018-12-14 2021-08-19 도요보 가부시키가이샤 Semi-aromatic polyamide resin and manufacturing method thereof
CN111635520A (en) * 2020-06-19 2020-09-08 山东东辰瑞森新材料科技有限公司 High-temperature-resistant polyamide material and preparation method thereof
CN115975181B (en) * 2023-01-09 2024-02-13 华润化学材料科技股份有限公司 Ternary polymerization transparent nylon and preparation method thereof

Also Published As

Publication number Publication date
JPWO2011052464A1 (en) 2013-03-21
TW201122019A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
WO2011052464A1 (en) Copolymerized polyamide
WO2011074536A1 (en) Copolyamide
JP5733871B2 (en) Polyamide composition and molded article
JP5964964B2 (en) Polyamide, polyamide composition and molded article
JP5696959B1 (en) High melting point polyamide resin composition with excellent vibration characteristics upon water absorption
WO2012161064A1 (en) Polyamide resin composition for optical components
JP2011111576A (en) Copolyamide
CN110964316B (en) Polyamide composition, molded article, and semi-aromatic polyamide
JP5728969B2 (en) Polyamide resin composition for engine cooling water system parts and engine cooling water system parts using the same
JP2014231603A (en) Polyamide resin composition and molded product
EP2581400A1 (en) Polyamide and polyamide composition
JP6269044B2 (en) High melting point polyamide resin composition with excellent vibration characteristics and hot rigidity during water absorption
JP6210217B2 (en) Carbon fiber reinforced polyamide resin composition
JP2018188534A (en) Polyamide composition and molded article
JP5818184B2 (en) High melting point polyamide resin composition with excellent vibration and appearance at the time of water absorption
JP6075691B2 (en) Polyamide resin composition with excellent vibration characteristics when absorbing water
JP2012102232A (en) Copolyamide
JP6034074B2 (en) Copolyamide
JP5669623B2 (en) Polyamide resin composition and molded product
JP2019178261A (en) Polyamide composition and molded article
WO2014132883A1 (en) Flame-retardant polyamide resin composition to be used in surface mount type electric/electronic component
JP6067254B2 (en) Copolyamide
JP5959190B2 (en) Polyamide resin composition and molded product
JP2012136643A (en) Copolyamide
JP5972088B2 (en) Polyamide resin composition and molded body

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011504274

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826596

Country of ref document: EP

Kind code of ref document: A1