JPH115907A - Highly heat-conductive resin composition having excellent water resistance - Google Patents

Highly heat-conductive resin composition having excellent water resistance

Info

Publication number
JPH115907A
JPH115907A JP15984297A JP15984297A JPH115907A JP H115907 A JPH115907 A JP H115907A JP 15984297 A JP15984297 A JP 15984297A JP 15984297 A JP15984297 A JP 15984297A JP H115907 A JPH115907 A JP H115907A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
resin
water
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15984297A
Other languages
Japanese (ja)
Other versions
JP3714506B2 (en
Inventor
Manabu Shimoda
学 下田
Takeshi Yasutake
剛 安武
Isao Harada
功 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP15984297A priority Critical patent/JP3714506B2/en
Publication of JPH115907A publication Critical patent/JPH115907A/en
Application granted granted Critical
Publication of JP3714506B2 publication Critical patent/JP3714506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition that has excellent thermal conductivity and water resistance and suffers little from bleeding of its ionic component even under high-temperature and high-humidity conditions, by treating an aluminum nitride powder with a phosphoric acid compound to give a water-resistant aluminum nitride powder, adding a flow improver to this powder, and blending a resin with this mixture. SOLUTION: This composition contains 100 pts.wt. resin, 50-600 pts.wt. water- resistant aluminum nitride powder comprising an aluminum nitride powder having a phosphoric acid compound incorporated therein, and a flow improver. Examples of the resin used include an epoxy resin, a silicone resin, a polyimide resin, and a polyester resin. The water-resistant aluminum nitride powder to be blended with the resin is obtained by treating an aluminum nitride powder with a phosphoric acid compound in the presence of water, adding a dispersant (e.g. an organic solvent) thereto, and blending this mixture and a flow improver comprising an inorganic powder having a lipophilic group on the surface (e.g. silica coated with a silicone).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐水性及び熱伝導
性に優れた樹脂組成物に関する。
TECHNICAL FIELD The present invention relates to a resin composition having excellent water resistance and thermal conductivity.

【0002】[0002]

【従来の技術】半導体デバイス、IC等の半導体素子は
パッケージにより外部より保護されている。半導体素子
の高集積化が進むに従って、半導体素子を使用した回路
からの発熱量も増大している。この発生する熱を外部に
放散・除去を効率良く行うことが重要な技術的課題とな
っている。半導体のパッケージには放熱特性に優れたア
ルミナ等のセラミックが使用されていたが、高価なこと
から、近年安価な高分子材料が広く使用されるようにな
ってきた。
2. Description of the Related Art Semiconductor devices such as semiconductor devices and ICs are protected from the outside by a package. As the degree of integration of semiconductor elements increases, the amount of heat generated from circuits using semiconductor elements also increases. It is an important technical problem to efficiently dissipate and remove the generated heat to the outside. Ceramics such as alumina having excellent heat radiation properties have been used for semiconductor packages, but in recent years, inexpensive polymer materials have been widely used because of their high cost.

【0003】しかしながら、高分子材料は、それ自身の
熱伝導率が極めて低いので、実際には、高分子材料に熱
伝導性を有する無機材料をフィラーとして添加し、熱伝
導性の改善を行っている。
[0003] However, since the polymer material itself has an extremely low thermal conductivity, the polymer material is actually added with an inorganic material having heat conductivity as a filler to improve the heat conductivity. I have.

【0004】熱伝導性の無機材料を添加した高分子材料
の放熱性は、無機材料の熱伝導性と添加量によって決定
される。特に、高分子材料の放熱性には、無機材料の熱
伝導性が大きく影響する。現在、シリカ、アルミナ、窒
化硼素等が使用されているが、これらの無機材料より高
い熱伝導性を有する窒化アルミニウムに移行しつつあ
る。
The heat dissipation of a polymer material to which a thermally conductive inorganic material is added is determined by the thermal conductivity and the amount of the inorganic material added. In particular, the heat conductivity of the polymer material is greatly affected by the thermal conductivity of the inorganic material. At present, silica, alumina, boron nitride, and the like are used, but the use of aluminum nitride having higher thermal conductivity than these inorganic materials is shifting.

【0005】また、窒化アルミニウムは空気中の水分で
加水分解し、水酸化アルミニウムとアンモニアを生成
し、本来の特性である熱伝導性を損なうので、燐酸化合
物で表面を処理し、窒化アルミニウムの加水分解を抑制
する(以下、耐水性と記す)方法が開示されている(特
願平8−286780号公報)。この方法で表面処理を
行った窒化アルミニウムは高い耐水性を示すが、溶出性
のイオン性成分を多く含むため、高温多湿下では封止材
等の樹脂用フィラーとして使用することが困難である。
この様に樹脂用フィラーとして使用する窒化アルミニウ
ムには優れた耐水性を有し、更に溶出性のイオン性成分
が少ないことが求められている。
[0005] Aluminum nitride is hydrolyzed by moisture in the air to produce aluminum hydroxide and ammonia, which impairs the inherent thermal conductivity. Therefore, the surface of the aluminum nitride is treated with a phosphate compound to hydrolyze the aluminum nitride. A method for suppressing decomposition (hereinafter referred to as water resistance) has been disclosed (Japanese Patent Application No. 8-286780). Although aluminum nitride surface-treated by this method has high water resistance, it contains a large amount of leaching ionic components, so that it is difficult to use it as a resin filler such as a sealing material under high temperature and high humidity.
As described above, it is required that aluminum nitride used as a filler for resin has excellent water resistance and further contains a small amount of leaching ionic components.

【0006】また、燐酸化合物で処理をすると、表面状
態が変化し、未処理のものと比べると流動性が著しく低
下してしまう。そのため、樹脂との混練時、窒化アルミ
ニウムが凝集体を形成し樹脂に均一に分散させることが
困難である。例えば、そのため、窒化アルミニウムを樹
脂と混練する際、篩で分級しながら混練することが必要
となり、工程が増えコストアップにつながっている。
[0006] Further, when treated with a phosphoric acid compound, the surface condition changes and the fluidity is significantly reduced as compared with the untreated one. Therefore, at the time of kneading with the resin, it is difficult for aluminum nitride to form an aggregate and to be uniformly dispersed in the resin. For example, therefore, when kneading aluminum nitride with a resin, it is necessary to knead the aluminum nitride while classifying it with a sieve, thereby increasing the number of steps and increasing the cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は耐水性窒化ア
ルミニウム粉末の流動性を向上させ、凝集体を形成する
ことなく、樹脂中に均一に分散することができ、優れた
熱伝導性及び耐水性を有し、更に高温多湿下でもイオン
性成分の溶出が少ない樹脂組成物を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention improves the fluidity of a water-resistant aluminum nitride powder, can be uniformly dispersed in a resin without forming aggregates, and has excellent thermal conductivity and water resistance. It is another object of the present invention to provide a resin composition which has a water-soluble property and less dissolves ionic components even under high temperature and high humidity.

【0008】[0008]

【課題を解決するための手段】本発明者らは鋭意検討を
重ねた結果、窒化アルミニウム粉末を燐酸化合物で処理
し、特定の流動性改良剤を添加することにより樹脂との
混練時、凝集体を形成することなく、樹脂中に均一に分
散し、且つ熱伝導性及び耐水性に優れた樹脂組成物を得
ることを見いだし本発明の完成に至った。
Means for Solving the Problems As a result of intensive studies, the present inventors treated aluminum nitride powder with a phosphoric acid compound, and added a specific fluidity improver to form an aggregate when kneading with a resin. Was found to be uniformly dispersed in the resin without forming the resin composition, and a resin composition having excellent thermal conductivity and water resistance was obtained, thereby completing the present invention.

【0009】すなわち、本発明は樹脂100重量部に対
し、窒化アルミニウム粉末に燐酸化合物を含有する耐水
性窒化アルミニウム粉末50〜600重量部と流動性改
良剤を含有することを特徴とする優れた耐水性を有する
高熱伝導性樹脂組成物に関する。
That is, the present invention provides an excellent water-resistant composition comprising 50 to 600 parts by weight of a water-resistant aluminum nitride powder containing a phosphate compound in an aluminum nitride powder and a fluidity improver, based on 100 parts by weight of a resin. The present invention relates to a highly heat conductive resin composition having a property.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いる樹脂としては、エポキシ樹脂、シリコン
樹脂、シリコンゴム、ポリイミド樹脂、ポリカーボネー
ト樹脂、ポリアミド樹脂、ポリフェニレンオキシド樹
脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂
またはフッ素樹脂等が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Examples of the resin used in the present invention include epoxy resin, silicone resin, silicone rubber, polyimide resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, urethane resin, phenol resin, polyester resin, and fluorine resin.

【0011】本発明で用いる窒化アルミニウム粉末は一
般市販されているものであれば如何なるものでも構わな
い。しかし、通常、下記の製造方法のものが用いられ
る。例えば、有機アルミニウム化合物とアンモニアを反
応させ、加熱する気相法、アルミナと炭素の混合物を窒
素中で加熱するアルミナ還元法、アルミニウムと窒素で
反応させる直接窒化法等があるが、何れの方法で製造し
たものも本発明に使用することができる。この中で、有
機アルミニウム化合物とアンモニアを反応させ、加熱す
る気相法で製造された窒化アルミニウム粉末は樹脂との
混和性がよく、樹脂中に多量に添加でき、高い熱伝導性
を有する樹脂組成物を得ることができるので、特に好ま
しい。
The aluminum nitride powder used in the present invention may be any commercially available aluminum nitride powder. However, usually, the following production method is used. For example, there are a gas phase method in which an organic aluminum compound and ammonia are reacted and heated, an alumina reduction method in which a mixture of alumina and carbon is heated in nitrogen, and a direct nitriding method in which aluminum and nitrogen are reacted with each other. Manufactured products can also be used in the present invention. Among these, aluminum nitride powder produced by a gas phase method in which an organic aluminum compound is reacted with ammonia and heated, has good miscibility with the resin, can be added in a large amount to the resin, and has a high thermal conductivity. It is particularly preferable because a product can be obtained.

【0012】本発明の窒化アルミニウム粉末を燐酸化合
物で処理するとは、窒化アルミニウム粉末と燐酸化合物
を接触させ、窒化アルミニウム粉末に耐水性を付与する
操作である。この操作方法としては、例えば窒化アルミ
ニウム粉末を燐酸化合物溶液中で分散させる方法、燐酸
化合物溶液を窒化アルミニウム粉末にまぶし練り込みペ
ースト状にする方法等が挙げられる。
Treating the aluminum nitride powder of the present invention with a phosphate compound is an operation of bringing the aluminum nitride powder into contact with the phosphate compound to impart water resistance to the aluminum nitride powder. Examples of the operation method include a method in which aluminum nitride powder is dispersed in a phosphoric acid compound solution, a method in which the phosphoric acid compound solution is dusted on aluminum nitride powder and kneaded to form a paste.

【0013】窒化アルミニウム粉末を燐酸化合物で処理
する際に、水の存在下で行うことで、窒化アルミニウム
表面が強制的に加水分解され、リン化合物と反応する活
性点である水酸化アルミニウムが増加する。このことに
より、燐酸化合物との反応が促進され結果として高い耐
水性が得られる。このことは、実験的に確認している。
また、この反応は非常に速いのですぐさま耐水性の層が
形成され、窒化アルミニウム粉末の特徴を失うことはな
い。
When the aluminum nitride powder is treated with a phosphoric acid compound in the presence of water, the surface of the aluminum nitride is forcibly hydrolyzed to increase the amount of aluminum hydroxide, which is an active site reacting with the phosphorus compound. . This promotes the reaction with the phosphoric acid compound, resulting in high water resistance. This has been confirmed experimentally.
In addition, since this reaction is very fast, a water-resistant layer is immediately formed, and the characteristics of the aluminum nitride powder are not lost.

【0014】また、本発明では窒化アルミニウム粉末の
表面に存在する燐酸化合物(燐酸アルミニウム)のP
換算で含有量を特定することによって、窒化アルミ
ニウム粉末に優れた耐水性を付与することができる。
In the present invention, the phosphoric acid compound (aluminum phosphate) existing on the surface of the aluminum nitride powder has a P 2 value.
By identifying the content in O 5 in terms, it is possible to impart excellent water resistance to the aluminum nitride powder.

【0015】燐酸化合物で処理された耐水性窒化アルミ
ニウム粉末は、燐酸化合物をP 換算で0.1〜1
0重量%の範囲で含有するのが好ましく、更に好ましく
は、0.3〜8重量%、最も好ましくは、0.5〜6重
量%の範囲が好適である。耐水性窒化アルミニウム粉末
のP含有量が0.1重量%未満では、所望の耐水
性を得ることができず、また、10重量%を超えると、
所望の耐水性と流動性は得られるが、窒化アルミニウム
の酸素含有量が高くなり窒化アルミニウム粉末本来の特
性である熱伝導性を損なうので好ましくない。また、未
反応の燐酸化合物が多くなるため、溶出性の燐酸化合物
が増加し、溶出性のイオン性成分の増加につながるので
好ましくない。
Water resistant aluminum nitride treated with a phosphate compound
The phosphorous compound is converted to P2O 50.1-1 in conversion
It is preferably contained in the range of 0% by weight, more preferably
Is from 0.3 to 8% by weight, most preferably from 0.5 to 6 weight%.
A range of% by weight is preferred. Water resistant aluminum nitride powder
P2O5If the content is less than 0.1% by weight, the desired water resistance
Properties cannot be obtained, and if it exceeds 10% by weight,
The desired water resistance and fluidity are obtained, but aluminum nitride
Oxygen content of aluminum nitride powder
This is not preferred because the thermal conductivity, which is the property of the polymer, is impaired. Also, not yet
Since phosphate compounds in the reaction increase, phosphate compounds that can be eluted
Increases, leading to an increase in eluting ionic components.
Not preferred.

【0016】本発明でいう燐酸化合物とは、窒化アルミ
ニウム粉末のアルミニウムと反応して燐酸アルミニウム
結合(Al−O−P結合)を形成し、最終的には窒化ア
ルミニウムを燐酸アルミニウムの層で被覆する能力を有
する燐酸化合物を意味し、例えば、オルソ燐酸、メタ燐
酸、ピロ燐酸、ポリ燐酸、ホスホン酸等の無機燐酸化合
物やメチルアシッドホスフェート、エチルアシッドホス
フェート、ブチルアシッドホスフェート、2−エチルヘ
キシルアシッドホスフェート、ラウリルアッシドホスフ
ェート、パルミチルアッシドホスフェート、ステアリル
アシッドホスフェート、オレイルアシッドホスフェー
ト、フェニルアシッドホスフェート、ノニルフェニルア
シッドホスフェート等の酸性燐酸エステル類、ジ−2−
エチルヘキシルピロホスフェート等のピロ燐酸又はポリ
燐酸のモノ若しくはジアルキル、アルケニル又はアリー
ルエステル類、メチレンホスホン酸、アミノメチレンホ
スホン酸等のホスホン酸類及びそのエステル類等の有機
燐酸化合物等がその例として挙げられる。また、2種類
以上の燐酸化合物の混合物でもかまわない。
The phosphoric acid compound referred to in the present invention reacts with aluminum in aluminum nitride powder to form an aluminum phosphate bond (Al-OP bond), and finally coats the aluminum nitride with a layer of aluminum phosphate. It means a phosphoric acid compound having the ability, for example, an inorganic phosphoric acid compound such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphonic acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, 2-ethylhexyl acid phosphate, lauryl Acid phosphates such as acid phosphate, palmityl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, phenyl acid phosphate and nonylphenyl acid phosphate;
Examples thereof include mono- or dialkyl, alkenyl or aryl esters of pyrophosphoric acid or polyphosphoric acid such as ethylhexyl pyrophosphate, phosphonic acids such as methylenephosphonic acid and aminomethylenephosphonic acid, and organic phosphoric compounds such as esters thereof. Also, a mixture of two or more phosphoric acid compounds may be used.

【0017】本発明の樹脂組成物で用いる窒化アルミニ
ウム粉末は、更に優れた耐水性の付与イオン性成分
の溶出の抑制優れた流動性の付与(樹脂への分散性の
向上)を達成することができる窒化アルミニウム粉末の
ことである。つまり、流動性改良剤を含有し、且つ窒化
アルミニウム粉末に燐酸化合物を含有する窒化アルミニ
ウム粉末である。
The aluminum nitride powder used in the resin composition of the present invention can provide more excellent water resistance, can suppress the elution of ionic components, and can provide excellent fluidity (improvement in dispersibility in resin). Aluminum nitride powder. That is, it is an aluminum nitride powder containing a fluidity improver and containing a phosphoric acid compound in the aluminum nitride powder.

【0018】本発明の樹脂組成物に用いる窒化アルミニ
ウム粉末は、窒化アルミニウム粉末に燐酸化合物の処理
に加えて、更に流動性改良剤の混合を行うことで得るこ
とができ、この耐水性窒化アルミニウム粉末を用いて樹
脂組成物を得ることにより本発明の目的を達成すること
ができる。
The aluminum nitride powder used in the resin composition of the present invention can be obtained by treating the aluminum nitride powder with a phosphate compound and further mixing a fluidity improver. The object of the present invention can be achieved by obtaining a resin composition using

【0019】本発明で用いる耐水性窒化アルミニウム粉
末は特願平9−133111号公報に開示された製造方
法で得ることができ、流動性改良剤の混合は、燐酸化合
物処理の後でも、燐酸化合物処理の際に行っても良く、
流動性改良剤が均一に窒化アルミニウム粉末と混合でき
るのであれば流動性改良剤の混合方法は問わない。
The water-resistant aluminum nitride powder used in the present invention can be obtained by the production method disclosed in Japanese Patent Application No. 9-133111. The mixing of the fluidity improver can be carried out even after the phosphate compound treatment. It may be performed at the time of processing,
The mixing method of the fluidity improver is not limited as long as the fluidity improver can be uniformly mixed with the aluminum nitride powder.

【0020】本発明でいう流動性改良剤としては、シリ
カ、アルミナ、チタニア、窒化ほう素及び表面に親油性
基を有する無機粉末等が挙げられる。また、2種類以上
の流動性改良剤の混合物でもかまわない。これらの流動
性改良剤の粒径は1μm以下が好ましい。
The fluidity improver referred to in the present invention includes silica, alumina, titania, boron nitride, and inorganic powder having a lipophilic group on the surface. Further, a mixture of two or more fluidity improvers may be used. The particle size of these fluidity improvers is preferably 1 μm or less.

【0021】本発明の表面に親油性基を有する無機粉末
とは、無機粉末の表面を樹脂、シリコーン、シリコンオ
イルやフッ素化合物等で被覆して、無機粉末の表面を親
油性基で覆われた無機粉末のことを意味する。例えば、
表面に親油性基を有するシリカ(以下、撥水性シリカと
記す)等が挙げられる。
The inorganic powder having a lipophilic group on the surface of the present invention refers to an inorganic powder whose surface is covered with a resin, silicone, silicone oil, a fluorine compound or the like, and the surface of the inorganic powder is covered with a lipophilic group. Means inorganic powder. For example,
Silica having a lipophilic group on its surface (hereinafter referred to as water-repellent silica) and the like can be mentioned.

【0022】特に、流動性改良剤として表面に親油性基
を有する無機粉末を用いた場合、窒化アルミニウム粉末
の流動性が著しく改善され、更に窒化アルミニウム粉末
と表面に親油性基を有する無機粉末を混合することで、
著しく耐水性が向上するとともに、樹脂との馴染みも他
のものより向上するので、樹脂への分散性も著しく向上
する。
In particular, when an inorganic powder having a lipophilic group on the surface is used as the fluidity improver, the fluidity of the aluminum nitride powder is remarkably improved. By mixing
The water resistance is remarkably improved, and the compatibility with the resin is improved as compared with the others, so that the dispersibility in the resin is also significantly improved.

【0023】更に、表面に親油性基を有する無機粉末を
混合する際に分散剤として有機溶剤を用いる方法で混合
を行うと、他の方法と比較すると耐水性の向上及びイオ
ン性成分の溶出抑制の効果が非常に大きい。この様な方
法で得た窒化アルミニウム粉末を使用することで、高温
多湿下で使用しても劣化することがなく、更に信頼性の
高い樹脂組成物を得ることができる。無機粉末表面にど
のような親油性の被覆剤を含有するものでも同様の効果
が得られるが、特に、無機粉末の表面をシリコンオイル
で被覆した無機粉末が有用である。ここで用いる分散剤
としての有機溶媒は水溶性のものならば、何でもよく、
例えばメタノール、エタノール、イソプロパノール、ブ
タノール、テトラヒドフラン(THF)等が挙げられ
る。また、ヘプタン、ヘキサン、ベンゼン、トルエン、
クロロホルム等の非水溶性の有機溶剤を併用してもよ
い。
Further, when the inorganic powder having a lipophilic group on the surface is mixed by a method using an organic solvent as a dispersant, the water resistance is improved and the elution of ionic components is suppressed as compared with other methods. The effect is very large. By using the aluminum nitride powder obtained by such a method, it is possible to obtain a more reliable resin composition without deterioration even when used under high temperature and high humidity. The same effect can be obtained by containing any lipophilic coating agent on the surface of the inorganic powder. In particular, an inorganic powder in which the surface of the inorganic powder is coated with silicone oil is useful. The organic solvent as a dispersant used here may be anything as long as it is water-soluble,
Examples include methanol, ethanol, isopropanol, butanol, tetrahydrofuran (THF) and the like. Also, heptane, hexane, benzene, toluene,
A water-insoluble organic solvent such as chloroform may be used in combination.

【0024】本発明で用いる耐水性窒化アルミニウム粉
末は、窒化アルミニウム粉末に対して流動性改良剤の添
加量が0.1〜10重量%の範囲であることが好まし
く、更に好ましくは0.5〜10重量%の範囲が好適で
ある。流動性改良剤の添加量が0.1重量%未満の場
合、所望の流動性を有する窒化アルミニウム粉末を得る
ことができないので好ましくない。また、その添加量が
10重量%を超えても流動性改良剤の効果は変わらない
ので好ましくない。
In the water-resistant aluminum nitride powder used in the present invention, the flow improver is preferably added in an amount of 0.1 to 10% by weight, more preferably 0.5 to 10% by weight, based on the aluminum nitride powder. A range of 10% by weight is preferred. If the amount of the fluidity improver is less than 0.1% by weight, it is not preferable because an aluminum nitride powder having a desired fluidity cannot be obtained. Further, even if the addition amount exceeds 10% by weight, the effect of the fluidity improver is not changed, which is not preferable.

【0025】燐酸化合物処理の後、流動性改良剤を混合
する方法としては、ヘンシェルミキサー、Vブレンダー
等を用いて、粉体同士を混合する方法とボールミルを用
いて、粉砕混合する方法がある。後者の方法の方が性能
の向上の効果が大きい。
As the method of mixing the fluidity improver after the treatment with the phosphate compound, there are a method of mixing powders using a Henschel mixer, a V blender or the like, and a method of pulverizing and mixing using a ball mill. The latter method has a greater effect of improving performance.

【0026】燐酸化合物処理の際に流動性改良剤を混合
する方法としては、窒化アルミニウム粉末を燐酸化合物
溶液に分散させてスラリーに流動性改良剤を分散させる
方法、窒化アルミニウム粉末を燐酸化合物溶液に練り込
みペースト状に流動性改良剤を練り込む方法や、前もっ
て流動性改良剤を燐酸化合物溶液に分散させた後、窒化
アルミニウム粉末を燐酸化合物で処理する方法等があ
る。また、流動性改良剤を溶媒でスラリー又はペースト
状にしてから混合してもかまわない。
As a method of mixing the fluidity improver during the treatment with the phosphate compound, a method in which aluminum nitride powder is dispersed in a phosphate compound solution and the fluidity improver is dispersed in a slurry, and a method in which the aluminum nitride powder is dispersed in the phosphate compound solution There are a method of kneading the fluidity improver into a kneading paste, a method of dispersing the fluidity improver in a phosphate compound solution in advance, and then treating the aluminum nitride powder with a phosphate compound. Also, the fluidity improver may be mixed in a slurry or paste form with a solvent.

【0027】分散剤を用い表面に親油性基を有する無機
粉末の混合は、燐酸化合物処理の後でも燐酸化合物処理
の際のいつでもよく、均一に混合することができればい
つ行ってもよい。
The mixing of the inorganic powder having a lipophilic group on the surface with the use of a dispersant may be carried out at any time after the treatment with the phosphate compound or at the time of the treatment with the phosphate compound, and may be carried out at any time as long as uniform mixing is possible.

【0028】燐酸化合物処理の後に混合する方法として
は、耐水性窒化アルミニウム粉末又は表面に親油性基を
有する無機粉末をスラリーとして、ミキサーやボールミ
ル等を用いて均一に混合する。
As a method of mixing after the phosphoric acid compound treatment, a water-resistant aluminum nitride powder or an inorganic powder having a lipophilic group on its surface is slurried and uniformly mixed using a mixer or a ball mill.

【0029】燐酸化合物処理の際に混合する方法として
は、予め分散剤で表面に親油性基を有する無機粉末をス
ラリー又はペースト状にして混合する方法と、分散剤が
含まれている燐酸化合物溶液中の表面に親油性基を有す
る無機粉末をそのまま添加し、混合する方法等がある。
前者の方が分散剤の使用量が少量でよく、低コストで製
造できる。特に、オルト燐酸等の無機燐酸水溶液で窒化
アルミニウム粉末を処理し、流動性改良剤として表面に
親油性基を有する無機粉末を用いる場合、均一に混合す
るために分散剤として有機溶媒を用いて流動性改良剤を
スラリー又はペースト状にする必要がある。
As a method of mixing at the time of the treatment with the phosphoric acid compound, a method in which an inorganic powder having a lipophilic group on the surface is previously made into a slurry or paste with a dispersant, and a method in which the phosphoric acid compound solution containing the dispersant is mixed There is a method in which an inorganic powder having a lipophilic group is directly added to the inner surface and mixed.
In the former case, the amount of the dispersant used may be small, and it can be produced at low cost. In particular, when the aluminum nitride powder is treated with an aqueous solution of an inorganic phosphoric acid such as orthophosphoric acid, and an inorganic powder having a lipophilic group on its surface is used as a fluidity improver, the mixture is fluidized using an organic solvent as a dispersant for uniform mixing. It is necessary to make the property improver into a slurry or paste.

【0030】燐酸化合物での処理及び流動性改良剤の混
合を行った窒化アルミニウム粉末のスラリーを濾過し、
過剰の燐酸化合物を取り除くため、水または有機溶媒で
洗浄を行った後、乾燥、粉砕する。この濾過〜乾燥を繰
り返すことにより、より高純度の流動性及び耐水性に優
れ、且つイオン性成分の溶出性の低い窒化アルミニウム
粉末が得られる。また、燐酸化合物で処理した耐水性窒
化アルミニウム粉末をそのままスプレードライを用いて
乾燥する方法、また上記したように濾過してそのケーキ
を乾燥する方法等、いずれの方法でも構わない。
The slurry of the aluminum nitride powder which has been treated with the phosphate compound and mixed with the fluidity improver is filtered,
After washing with water or an organic solvent in order to remove the excess phosphoric acid compound, it is dried and pulverized. By repeating this filtration to drying, an aluminum nitride powder having higher purity and excellent fluidity and water resistance and low elution of ionic components can be obtained. Further, any method may be used, such as a method of drying the water-resistant aluminum nitride powder treated with the phosphate compound as it is by spray drying, or a method of filtering and drying the cake as described above.

【0031】窒化アルミニウムスラリーの濾過は、ヌッ
チェ、遠心濾過機等を使用する。また、濾過を行わずそ
のまま乾燥を行ってもよい。所定量の燐酸化合物及び流
動性改良剤を用いて窒化アルミニウム粉末をペースト状
にして処理を行った場合は、そのまま乾燥し、粉砕する
ことで所望の流動性及び耐水性に優れ、且つイオン性成
分の溶出性の低い耐水性窒化アルミニウム粉末を得るこ
とができる。
For filtering the aluminum nitride slurry, a Nutsche, centrifugal filter or the like is used. Further, the drying may be performed without filtering. When aluminum nitride powder is processed into a paste using a predetermined amount of a phosphoric acid compound and a fluidity improver, it is dried and ground as it is to obtain desired fluidity and water resistance, and ionic components are obtained. Water-resistant aluminum nitride powder having low dissolution property.

【0032】乾燥方法としては、濾過したケーキ、スラ
リーやペーストを80〜300℃で3〜24時間乾燥さ
せる。用いる乾燥機には、熱風乾燥機、蒸気乾燥機等を
用いる。粉砕には、ジェットミル、サンプルミル、ボー
ルミル等を用いる。また、ここでいう粉砕は、二次粒子
を一次粒子にすることであり、被覆表面を破壊するもの
ではない。
As a drying method, the filtered cake, slurry or paste is dried at 80 to 300 ° C. for 3 to 24 hours. A hot air dryer, a steam dryer, or the like is used as a dryer. For the pulverization, a jet mill, a sample mill, a ball mill or the like is used. Further, the pulverization referred to here is to convert the secondary particles into primary particles, and does not destroy the coating surface.

【0033】以上のような方法で得た流動性及び耐水性
に優れ、且つイオン性成分の溶出性の低い耐水性窒化ア
ルミニウム粉末に対し、以下の方法で更にイオン性成分
の溶出を抑制することができる。つまり、イオン性成分
の溶出を抑制する方法としては、150〜600℃で加
熱処理することにより燐酸アルミニウム結合(Al−O
−P)の生成を促進させる方法や洗浄により溶出性のイ
オン性成分の除去をする方法等がある。また、加熱処理
と洗浄を組み合わせることにより効果的にイオン性成分
の溶出を抑制することができる。これらのイオン性成分
の溶出を抑制する方法を用いることにより、更に高純度
の流動性及び耐水性に優れ、且つイオン性成分の溶出性
の低い耐水性窒化アルミニウム粉末が得られる。
With respect to the water-resistant aluminum nitride powder having excellent fluidity and water resistance and low elution of ionic components obtained by the above method, the elution of ionic components is further suppressed by the following method. Can be. In other words, as a method for suppressing the elution of the ionic component, the aluminum phosphate bond (Al-O
-A method for promoting the production of P) and a method for removing leaching ionic components by washing. Further, the elution of the ionic component can be effectively suppressed by combining the heat treatment and the washing. By using the method for suppressing the elution of the ionic component, a water-resistant aluminum nitride powder having higher purity and excellent fluidity and water resistance and lower elution of the ionic component can be obtained.

【0034】以上の方法で得た耐水性窒化アルミニウム
粉末と樹脂を混練することにより、樹脂中に耐水性窒化
アルミニウム粉末が均一に分散した優れた熱伝導性を有
し、且つ高温多湿下でも劣化がなく信頼性の高い樹脂組
成物を得ることができる。
By kneading the water-resistant aluminum nitride powder obtained by the above method and the resin, the water-resistant aluminum nitride powder has excellent thermal conductivity in which the water-resistant aluminum nitride powder is uniformly dispersed in the resin and deteriorates even under high temperature and high humidity. And a highly reliable resin composition can be obtained.

【0035】本発明の樹脂組成物は、樹脂100重量部
に対し耐水性窒化アルミニウム粉末50〜600重量部
の範囲で含有する必要があり、更に好ましくは100〜
400重量部の範囲が好適である。耐水性窒化アルミニ
ウム粉末が50重量部未満では、所望の熱伝導性が得ら
れないので好ましくない。また、600重量部を越える
場合は、所望の熱伝動性は得られるが樹脂物性の低下を
もたらすので好ましくない。
The resin composition of the present invention must be contained in the range of 50 to 600 parts by weight of the water-resistant aluminum nitride powder per 100 parts by weight of the resin, more preferably 100 to 600 parts by weight.
A range of 400 parts by weight is preferred. If the water-resistant aluminum nitride powder is less than 50 parts by weight, the desired thermal conductivity cannot be obtained, which is not preferable. If the amount exceeds 600 parts by weight, the desired thermal conductivity can be obtained, but the physical properties of the resin deteriorate, which is not preferable.

【0036】本発明の熱伝導性樹脂組成物を成形材料と
する場合は、公知の方法を用いることができる。例え
ば、樹脂と耐水性窒化アルミニウム粉末を所定量ミキサ
ー等で均一に混合した後、熱ロールによって混合処理を
行い、次いで冷却固化して適当な大きさに粉砕する方
法、また、樹脂がシリコンゴム等のゴム状物質の場合、
溶媒にシリコンゴム等のゴム状物質を溶解し、耐水性窒
化アルミニウムを所定量加え、得られたスラリーに加硫
剤または触媒を加える方法等が挙げられる。また、本発
明の耐水性窒化アルミニウム粉末は樹脂への分散性が良
いので、高粘度の樹脂についてもニーダー等で混練する
ことで、樹脂中に耐水性窒化アルミニウムを均一に分散
させることができる。
In the case where the heat conductive resin composition of the present invention is used as a molding material, a known method can be used. For example, a method in which a predetermined amount of a resin and water-resistant aluminum nitride powder are uniformly mixed with a mixer or the like, followed by mixing with a hot roll, followed by cooling and solidifying and pulverizing to an appropriate size. For rubbery substances of
A method in which a rubber-like substance such as silicon rubber is dissolved in a solvent, a predetermined amount of water-resistant aluminum nitride is added, and a vulcanizing agent or a catalyst is added to the obtained slurry. Further, since the water-resistant aluminum nitride powder of the present invention has good dispersibility in a resin, the water-resistant aluminum nitride can be evenly dispersed in the resin by kneading a high-viscosity resin with a kneader or the like.

【0037】また、本発明の樹脂組成物にシリカ、アル
ミナ、窒化ほう素、難燃剤等の他の添加剤を加えても良
い。
Further, other additives such as silica, alumina, boron nitride and a flame retardant may be added to the resin composition of the present invention.

【0038】本発明の樹脂組成物は、優れた熱伝導性を
有するので、放熱が必要とされる分野で有用である。例
えば、封止材、パッケージ材、電子部品の接着材、絶縁
保護膜、本発明の樹脂組成物の組成を基本とした積層基
板の成形材料等の用途等である。
Since the resin composition of the present invention has excellent thermal conductivity, it is useful in fields requiring heat radiation. For example, it is used as a sealing material, a package material, an adhesive for electronic components, an insulating protective film, a molding material for a laminated substrate based on the composition of the resin composition of the present invention, and the like.

【0039】[0039]

【実施例】以下、本発明を実施例をもって説明する。な
お、%及び部は特記しない限り重量基準で表す。 窒化アルミニウム粉末の製造例 製造例1 2.4%オルト燐酸水溶液56.8部(オルト燐酸1.
4部、水55.4部)に、予め窒化アルミニウム粉末に
対して2%の撥水性シリカをメタノールでスラリーにし
て加え、オルト燐酸水溶液中に分散させた。次に前記の
オルト燐酸水溶液に窒化アルミニウム粉末(平均粒径1
μm)100部を加え、5Lのニーダーで練り込みペー
スト状とし、30℃で30分間処理を行った。この混合
物を120℃、8時間乾燥し、乾燥後、ジェットミルで
粉砕し、耐水性窒化アルミニウム粉末を得た。
The present invention will be described below with reference to examples. The percentages and parts are expressed on a weight basis unless otherwise specified. Production Example of Aluminum Nitride Powder Production Example 1 56.8 parts of a 2.4% orthophosphoric acid aqueous solution (orthophosphoric acid 1.
(4 parts, water 55.4 parts), 2% of water-repellent silica with respect to the aluminum nitride powder was previously slurried with methanol and dispersed in an orthophosphoric acid aqueous solution. Next, aluminum nitride powder (average particle size: 1) was added to the above-mentioned orthophosphoric acid solution.
μm), and kneaded with a 5 L kneader to form a paste, which was then treated at 30 ° C. for 30 minutes. This mixture was dried at 120 ° C. for 8 hours, and after drying, pulverized by a jet mill to obtain a water-resistant aluminum nitride powder.

【0040】製造例2〜3 撥水性シリカの添加量を5%、10%に変更した以外は
実施例1と同様の方法で窒化アルミニウム粉末を得た。
Production Examples 2 and 3 Aluminum nitride powder was obtained in the same manner as in Example 1 except that the amount of water-repellent silica was changed to 5% and 10%.

【0041】製造例4 2.4%オルト燐酸水溶液を6.8%オルト燐酸水溶液
60.5部(オルト燐酸4.1部、水56.4部)に変
更した以外は、実施例1と同様の方法で耐水性窒化アル
ミニウム粉末を得た。
Production Example 4 Same as Example 1 except that the 2.4% aqueous solution of orthophosphoric acid was changed to 60.5 parts of a 6.8% aqueous solution of orthophosphoric acid (4.1 parts of orthophosphoric acid, 56.4 parts of water). Water-resistant aluminum nitride powder was obtained by the above method.

【0042】製造例5 2.4%オルト燐酸水溶液を15.8%オルト燐酸水溶
液69.7部(オルト燐酸11部、水58.7部)に変
更した以外は、実施例1と同様の方法で耐水性窒化アル
ミニウム粉末を得た。
Production Example 5 A method similar to that of Example 1 except that the 2.4% aqueous solution of orthophosphoric acid was changed to 69.7 parts of an aqueous solution of 15.8% orthophosphoric acid (11 parts of orthophosphoric acid and 58.7 parts of water). Thus, a water-resistant aluminum nitride powder was obtained.

【0043】製造例6〜7 流動性改良剤をアルミナ、窒化ほう素に変更した以外
は、実施例1と同様の方法で耐水性窒化アルミニウム粉
末を得た。
Production Examples 6 and 7 Water-resistant aluminum nitride powder was obtained in the same manner as in Example 1 except that the fluidity improver was changed to alumina and boron nitride.

【0044】製造例8 5Lのニーダーで6.8%オルト燐酸水溶液60.5部
(オルト燐酸4.1部、水56.4部)に窒化アルミニ
ウム粉末(平均粒径1μm)100部を加え、練り込み
ペースト状とし、30℃で30分間処理を行った。この
混合物を120℃、8時間乾燥し、乾燥後、ジェットミ
ルで粉砕し、耐水性窒化アルミニウム粉末を得た。更
に、この耐水性窒化アルミニウム粉末に対して撥水性シ
リカを2%添加し、アルミナ製のボールを容量1Lの磁
製ポットに入れ、120回転で1時間混合粉砕を行い、
耐水性窒化アルミニウム粉末を得た。
Production Example 8 100 parts of aluminum nitride powder (average particle size: 1 μm) was added to 60.5 parts of a 6.8% orthophosphoric acid aqueous solution (4.1 parts of orthophosphoric acid, 56.4 parts of water) using a 5 L kneader. It was made into a kneaded paste and was treated at 30 ° C. for 30 minutes. This mixture was dried at 120 ° C. for 8 hours, and after drying, pulverized by a jet mill to obtain a water-resistant aluminum nitride powder. Furthermore, 2% of water-repellent silica was added to the water-resistant aluminum nitride powder, and a ball made of alumina was put into a porcelain pot having a capacity of 1 L, and mixed and crushed at 120 rotations for 1 hour.
A water-resistant aluminum nitride powder was obtained.

【0045】製造例9 2.4%オルト燐酸水溶液56.8部(オルト燐酸1.
4部、水55.4部)に予め、窒化アルミニウム粉末に
対して2%の撥水性シリカをメタノールでスラリーにし
て加え、オルト燐酸水溶液中に分散させた。次に前記の
オルト燐酸水溶液に窒化アルミニウム粉末(平均粒径1
μm)100部を加え、5Lのニーダーで練り込みペー
スト状とし、30℃で30分間処理を行った。この混合
物を120℃、8時間乾燥し、更に300℃で5時間加
熱処理をした後、ジェットミルで粉砕し、耐水性窒化ア
ルミニウム粉末を得た。
Production Example 9 56.8 parts of a 2.4% aqueous solution of orthophosphoric acid (orthophosphoric acid 1.
(4 parts, water 55.4 parts), 2% of water-repellent silica with respect to the aluminum nitride powder was previously slurried with methanol and dispersed in an orthophosphoric acid aqueous solution. Next, aluminum nitride powder (average particle size: 1) was added to the above-mentioned orthophosphoric acid solution.
μm), and kneaded with a 5 L kneader to form a paste, which was then treated at 30 ° C. for 30 minutes. The mixture was dried at 120 ° C. for 8 hours, heat-treated at 300 ° C. for 5 hours, and then pulverized by a jet mill to obtain a water-resistant aluminum nitride powder.

【0046】製造例10 撥水性シリカの添加量を3%に変更した以外は製造例9
と同様の方法で耐水性窒化アルミニウム粉末を得た。
Production Example 10 Production Example 9 except that the amount of water-repellent silica was changed to 3%.
Water-resistant aluminum nitride powder was obtained in the same manner as described above.

【0047】製造例11〜12 製造例9〜10で得た耐水性窒化アルミニウム粉末を1
00℃の純水で洗浄し、濾過乾燥後、ジェットミルで粉
砕し、耐水性窒化アルミニウム粉末を得た。
Production Examples 11 to 12 The water-resistant aluminum nitride powder obtained in Production Examples 9 to 10 was
After washing with pure water at 00 ° C, filtration and drying, the mixture was pulverized with a jet mill to obtain a water-resistant aluminum nitride powder.

【0048】製造例13 製造例1の撥水性シリカを除いた他は製造例1と同様に
行った。
Production Example 13 The same procedure as in Production Example 1 was carried out except that the water-repellent silica was not used.

【0049】製造例14〜15 製造例4及び5の撥水性シリカを除いた他は製造例4及
び5と同様に行った。
Production Examples 14 and 15 The same procedures as in Production Examples 4 and 5 were carried out except that the water-repellent silica of Production Examples 4 and 5 was omitted.

【0050】実施例1 シリコンゴム100部に対し、製造例1で得られた流動
性を改良した耐水性窒化アルミニウム粉末80部をニー
ダーで15分間混練して、耐水性窒化アルミニウム含有
のシリコンゴム組成物を得た。得られた樹脂組成物を、
150メッシュのストレーナーを通して押し出し成形し
たが、ストレーナーを通らない程の凝集物は認められな
かった。この成形体の熱伝導率をレーザーフラッシュ法
熱定数測定装置を用いて測定した結果、3.5W/mK
であった。ステンレス容器にこの成形体と純水(成形体
/純水=1/8(重量比))を入れて密閉し、120℃
で3日間加熱し、回収された液のpH及び電気伝導率を
測定し、耐水性及びイオン成分の溶出性を評価した。ま
た、試験後の成形体を観察した結果、成形体に特に変化
は認められなかった。
Example 1 To 100 parts of silicon rubber, 80 parts of the water-resistant aluminum nitride powder having improved fluidity obtained in Production Example 1 was kneaded with a kneader for 15 minutes to prepare a silicon rubber composition containing water-resistant aluminum nitride. I got something. The obtained resin composition,
Extrusion was performed through a 150 mesh strainer, but no agglomerates were found that did not pass through the strainer. As a result of measuring the thermal conductivity of this molded body using a laser flash method thermal constant measuring apparatus, 3.5 W / mK was obtained.
Met. This molded product and pure water (molded product / pure water = 1/8 (weight ratio)) are put in a stainless steel container, and the container is sealed.
For 3 days, and the pH and electric conductivity of the recovered liquid were measured to evaluate the water resistance and the elution of ionic components. Further, as a result of observing the molded body after the test, no particular change was observed in the molded body.

【0051】実施例2〜6 製造例1で得られた流動性を改良した耐水性窒化アルミ
ニウム粉末の添加量を100部、200部、300部、
400部、550部に変更した以外は、実施例1と同様
の方法で成形体を得た。実施例1と同様の方法で評価
し、評価結果を表1に示す。
Examples 2 to 6 The addition amount of the water-resistant aluminum nitride powder having improved fluidity obtained in Production Example 1 was 100 parts, 200 parts, 300 parts,
A molded product was obtained in the same manner as in Example 1 except that the amount was changed to 400 parts and 550 parts. Evaluation was performed in the same manner as in Example 1, and the evaluation results are shown in Table 1.

【0052】実施例7〜17 製造例2〜12で得られた耐水性窒化アルミニウム粉末
を用い、添加量を200部に変更した以外は、実施例1
と同様の方法で成形体を得た。実施例1と同様の方法で
評価し、評価結果を表1に示す。
Examples 7 to 17 Example 1 was repeated except that the water-resistant aluminum nitride powder obtained in Production Examples 2 to 12 was used, and the addition amount was changed to 200 parts.
A molded article was obtained in the same manner as described above. Evaluation was performed in the same manner as in Example 1, and the evaluation results are shown in Table 1.

【0053】実施例18 エポキシ樹脂100部に製造例1の耐水性窒化アルミニ
ウム粉末200部をヘンシェルミキサーで混合した。得
られた混合物を加熱プレス機により、180℃で25分
間加熱し、更に、200℃で2時間硬化させ、成形体を
得た。エポキシ樹脂組成物を圧延した結果、樹脂中に凝
集体は認められれなかった。この成形体の熱伝導率をレ
ーザーフラッシュ法熱定数測定装置を用いて測定した結
果、5.6W/mKであった。ステンレス容器にこの成
形体と純水(成形体/純水=1/8(重量比))を入れ
て密閉し、120℃で3日間加熱し、回収された液のp
H及び電気伝導率を測定し、耐水性及びイオン成分の溶
出性を評価した。また、試験後の成形体を観察した結
果、成形体に特に変化は認められなかった。
Example 18 200 parts of the water-resistant aluminum nitride powder of Production Example 1 was mixed with 100 parts of the epoxy resin using a Henschel mixer. The obtained mixture was heated at 180 ° C. for 25 minutes by a heating press, and further cured at 200 ° C. for 2 hours to obtain a molded body. As a result of rolling the epoxy resin composition, no aggregate was observed in the resin. It was 5.6 W / mK as a result of measuring the thermal conductivity of this molded body using a laser flash method thermal constant measuring apparatus. This molded product and pure water (molded product / pure water = 1/8 (weight ratio)) were put in a stainless steel container, sealed, and heated at 120 ° C. for 3 days.
H and electric conductivity were measured to evaluate water resistance and dissolution of ionic components. Further, as a result of observing the molded body after the test, no particular change was observed in the molded body.

【0054】実施例19〜23 製造例1で得られた耐水性窒化アルミニウム粉末の添加
量を80部、100部、300部、400部、550部
に変更した以外は、実施例18と同様の方法で成形体を
得た。実施例1と同様の方法で評価し、評価結果を表1
に示す。
Examples 19 to 23 The same as Example 18 except that the addition amount of the water-resistant aluminum nitride powder obtained in Production Example 1 was changed to 80 parts, 100 parts, 300 parts, 400 parts and 550 parts. A molded article was obtained by the method. Evaluation was performed in the same manner as in Example 1, and the evaluation results were shown in Table 1.
Shown in

【0055】実施例24 ポリアミド樹脂100部に製造例1の耐水性窒化アルミ
ニウム粉末200部をヘンシェルミキサーで混合し、8
0℃で十分乾燥した後、二軸押出機で230℃で混練し
ペレットとした。このペレットを再び80℃で乾燥し、
250℃で射出成形を行い成形体を得た。ポリアミド樹
脂組成物を圧延した結果、樹脂中に凝集体は認められれ
なかった。この成形体の熱伝導率をレーザーフラッシュ
法熱定数測定装置を用いて測定した結果、5.5W/m
Kであった。ステンレス容器にこの成形体と純水(成形
体/純水=1/8(重量比))を入れて密閉し、120
℃で3日間加熱し、回収された液のpH及び電気伝導率
を測定し、耐水性及びイオン成分の溶出性を評価した。
また、試験後の成形体を観察した結果、成形体に特に変
化は認められなかった。
Example 24 200 parts of the water-resistant aluminum nitride powder of Production Example 1 was mixed with 100 parts of a polyamide resin using a Henschel mixer.
After sufficiently drying at 0 ° C, the mixture was kneaded at 230 ° C with a twin-screw extruder to form pellets. The pellet is dried again at 80 ° C.
Injection molding was performed at 250 ° C. to obtain a molded body. As a result of rolling the polyamide resin composition, no aggregate was found in the resin. As a result of measuring the thermal conductivity of the molded body using a laser flash method thermal constant measuring apparatus, 5.5 W / m was obtained.
It was K. A stainless steel container was charged with the molded article and pure water (molded article / pure water = 1/8 (weight ratio)), and sealed,
The solution was heated at a temperature of 3 ° C. for 3 days, and the pH and electric conductivity of the collected solution were measured to evaluate the water resistance and the dissolution of ionic components.
Further, as a result of observing the molded body after the test, no particular change was observed in the molded body.

【0056】比較例1 製造例1で得られたた耐水性窒化アルミニウム粉末の添
加量を30部に変更した以外は実施例1と同様の方法で
成形体を得た。実施例1と同様の方法で評価し、評価結
果を表2に示す。
Comparative Example 1 A molded product was obtained in the same manner as in Example 1 except that the amount of the water-resistant aluminum nitride powder obtained in Production Example 1 was changed to 30 parts. Evaluation was performed in the same manner as in Example 1, and the evaluation results are shown in Table 2.

【0057】比較例2〜4 製造例13〜15で得た耐水性窒化アルミニウム粉末用
いた以外は実施例1と同様の方法で耐水性窒化アルミニ
ウム含有のシリコンゴム組成物を得た。得られた樹脂組
成物を、150メッシュのストレーナーを通して押し出
し成形したが、ストレーナーを通らない程の凝集物が認
められた。凝集物の同定をX線回折法で行ったところ、
窒化アルミニウムであることを確認した。ステンレス容
器にこの成形体と純水(成形体/純水=1/8(重量
比))を入れて密閉し、120℃で3日間加熱し、回収
された液のpH及び電気伝導率を測定し、耐水性及びイ
オン成分の溶出性を評価した。また、試験後の成形体を
観察した結果、成形体に変色や表面がザラザラになると
いった変化が認められ、成形体に劣化が認められる。ま
た、熱伝導率を実施例1と同様の方法で測定し、表2に
示す。
Comparative Examples 2 to 4 Water-resistant aluminum nitride-containing silicon rubber compositions were obtained in the same manner as in Example 1, except that the water-resistant aluminum nitride powders obtained in Production Examples 13 to 15 were used. The resulting resin composition was extruded through a 150-mesh strainer, and aggregates were found that were too small to pass through the strainer. When the aggregates were identified by X-ray diffraction,
It was confirmed to be aluminum nitride. This molded product and pure water (molded product / pure water = 1/8 (weight ratio)) are put in a stainless steel container, sealed, heated at 120 ° C. for 3 days, and the pH and electric conductivity of the recovered liquid are measured. Then, the water resistance and the dissolution property of the ionic component were evaluated. Further, as a result of observing the molded article after the test, changes such as discoloration and a rough surface of the molded article are observed, and deterioration of the molded article is observed. Further, the thermal conductivity was measured in the same manner as in Example 1, and is shown in Table 2.

【0058】比較例5〜7 製造例13〜15で得た窒化アルミニウム粉末用いた以
外は実施例18と同様の方法で成形体を得た。エポキシ
樹脂組成物を圧延した結果、樹脂中に凝集体は認められ
た。凝集物の同定をX線回折法で行ったところ、窒化ア
ルミニウムであることを確認した。ステンレス容器にこ
の成形体と純水(成形体/純水=1/8(重量比))を
入れて密閉し、120℃で3日間加熱し、回収された液
のpH及び電気伝導率を測定し、耐水性及びイオン成分
の溶出性を評価した。また、試験後の成形体を観察した
結果、成形体に変色や表面がザラザラになるといった変
化が認められ、成形体に劣化が認められる。また、熱伝
導率を実施例1と同様の方法で測定し、表2に示す。
Comparative Examples 5 to 7 Except that the aluminum nitride powders obtained in Production Examples 13 to 15 were used, molded articles were obtained in the same manner as in Example 18. As a result of rolling the epoxy resin composition, aggregates were observed in the resin. When the aggregate was identified by an X-ray diffraction method, it was confirmed that the aggregate was aluminum nitride. This molded product and pure water (molded product / pure water = 1/8 (weight ratio)) are put in a stainless steel container, sealed, heated at 120 ° C. for 3 days, and the pH and electric conductivity of the recovered liquid are measured. Then, the water resistance and the dissolution property of the ionic component were evaluated. Further, as a result of observing the molded article after the test, changes such as discoloration and a rough surface of the molded article are observed, and deterioration of the molded article is observed. Further, the thermal conductivity was measured in the same manner as in Example 1, and is shown in Table 2.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 ○:樹脂中に凝集体なし ×:樹脂中に凝集体あり[Table 2] :: No aggregate in resin ×: Aggregate in resin

【0061】[0061]

【発明の効果】本発明の樹脂組成物は、耐水性窒化アル
ミニウム粉末を用いることにより、樹脂中に均一に分散
するので、従来より高品質の熱伝導性樹脂組成物を得る
ことができる。本発明で使用する耐水性窒化アルミニウ
ム粉末は耐水性に優れ、且つイオン性成分の溶出性が低
いので、高温多湿下で使用しても熱伝導性の低下、絶縁
性の破壊や回路の腐食といったことがなく、従来のもの
に比べより信頼性の高い製品が得られる。本発明による
樹脂組成物は、優れた熱伝導性を有するので、放熱が要
求される電子部品の封止材、電子部品の接着材等として
有用である。また、本発明の樹脂組成物の組成を基本と
した積層基板の形成材料としても有用である。
The resin composition of the present invention is uniformly dispersed in the resin by using the water-resistant aluminum nitride powder, so that a higher quality heat conductive resin composition than before can be obtained. The water-resistant aluminum nitride powder used in the present invention has excellent water resistance and low elution of ionic components, so that even when used under high temperature and high humidity, the thermal conductivity is reduced, insulation breakdown and circuit corrosion are caused. And a product with higher reliability than the conventional product can be obtained. Since the resin composition according to the present invention has excellent thermal conductivity, it is useful as a sealing material for electronic components requiring heat dissipation, an adhesive for electronic components, and the like. It is also useful as a material for forming a laminated substrate based on the composition of the resin composition of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 5/521 C08K 5/521 C08L 27/12 C08L 27/12 61/06 61/06 63/00 63/00 67/00 67/00 69/00 69/00 71/12 71/12 75/04 75/04 77/00 77/00 79/04 79/04 83/04 83/04 C09C 1/40 C09C 1/40 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 5/521 C08K 5/521 C08L 27/12 C08L 27/12 61/06 61/06 63/00 63/00 67/00 67 / 00 69/00 69/00 71/12 71/12 75/04 75/04 77/00 77/00 79/04 79/04 83/04 83/04 C09C 1/40 C09C 1/40

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 樹脂100重量部に対し、窒化アルミ
ニウム粉末に燐酸化合物を含有する耐水性窒化アルミニ
ウム粉末50〜600重量部と流動性改良剤を含有する
ことを特徴とする優れた耐水性を有する高熱伝導性樹脂
組成物。
1. Excellent water resistance characterized by containing 50 to 600 parts by weight of a water-resistant aluminum nitride powder containing a phosphoric acid compound in an aluminum nitride powder and a fluidity improver based on 100 parts by weight of a resin. High thermal conductive resin composition.
【請求項2】 樹脂が、エポキシ樹脂、シリコン樹
脂、シリコンゴム、ポリイミド樹脂、ポリカーボネート
樹脂、ポリアミド樹脂、ポリフェニレンオキシド樹脂、
ウレタン樹脂、フェノール樹脂、ポリエステル樹脂また
はフッ素樹脂である請求項1記載の高熱伝導性樹脂組成
物。
2. The resin is an epoxy resin, a silicone resin, a silicone rubber, a polyimide resin, a polycarbonate resin, a polyamide resin, a polyphenylene oxide resin,
The high thermal conductive resin composition according to claim 1, which is a urethane resin, a phenol resin, a polyester resin, or a fluororesin.
【請求項3】 耐水性窒化アルミニウム粉末の燐酸化
合物含有量が、P換算で0.1〜10重量%であ
る請求項1記載の高熱伝導性樹脂組成物。
3. The highly thermally conductive resin composition according to claim 1, wherein the water-resistant aluminum nitride powder has a phosphoric acid compound content of 0.1 to 10% by weight in terms of P 2 O 5 .
【請求項4】 樹脂組成物中に含まれる耐水性窒化ア
ルミニウム粉末が、水の存在下で窒化アルミニウム粉末
を燐酸化合物で処理し、且つ流動性改良剤を混合する請
求項1記載の高熱伝導性樹脂組成物。
4. The high thermal conductivity according to claim 1, wherein the water-resistant aluminum nitride powder contained in the resin composition is obtained by treating the aluminum nitride powder with a phosphate compound in the presence of water and mixing a fluidity improver. Resin composition.
【請求項5】 樹脂組成物中に含まれる耐水性窒化ア
ルミニウム粉末が、水の存在下で窒化アルミニウム粉末
を燐酸化合物で処理し、且つ分散剤を添加し、流動性改
良剤として表面に親油性基を有する無機粉末を混合する
ことにより得られる請求項1記載の高熱伝導性樹脂組成
物。
5. A water-resistant aluminum nitride powder contained in a resin composition, wherein the aluminum nitride powder is treated with a phosphate compound in the presence of water, and a dispersant is added. The highly thermally conductive resin composition according to claim 1, which is obtained by mixing an inorganic powder having a group.
【請求項6】 流動性改良剤が、表面に親油性基を有
する無機粉末である請求項1〜3項のいずれか1項に記
載の高熱伝導性樹脂組成物。
6. The highly thermally conductive resin composition according to claim 1, wherein the fluidity improver is an inorganic powder having a lipophilic group on the surface.
【請求項7】 流動性改良剤が、シリカ、アルミナ、
チタニア、窒化ほう素よりなる群から選ばれる1種以上
である請求項1〜3項のいずれか1項に記載の高熱伝導
性樹脂組成物。
7. The fluidity improver comprises silica, alumina,
The highly thermally conductive resin composition according to any one of claims 1 to 3, wherein the composition is at least one selected from the group consisting of titania and boron nitride.
【請求項8】 流動性改良剤の添加量が、窒化アルミ
ニウム粉末に対して0.1〜10重量%である請求項1
〜3項のいずれか1項に記載の高熱伝導性樹脂組成物。
8. The method according to claim 1, wherein the flow improver is added in an amount of 0.1 to 10% by weight based on the aluminum nitride powder.
4. The highly thermally conductive resin composition according to any one of items 3 to 3.
【請求項9】 窒化アルミニウム粉末が、有機アルミ
ニウム化合物とアンモニアとの反応で得られる請求項1
〜4項のいずれか1項に記載の高熱伝導性樹脂組成物。
9. The method according to claim 1, wherein the aluminum nitride powder is obtained by a reaction between an organic aluminum compound and ammonia.
The high thermal conductive resin composition according to any one of Items 4 to 4.
JP15984297A 1997-06-17 1997-06-17 High thermal conductive resin composition having excellent water resistance Expired - Lifetime JP3714506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15984297A JP3714506B2 (en) 1997-06-17 1997-06-17 High thermal conductive resin composition having excellent water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15984297A JP3714506B2 (en) 1997-06-17 1997-06-17 High thermal conductive resin composition having excellent water resistance

Publications (2)

Publication Number Publication Date
JPH115907A true JPH115907A (en) 1999-01-12
JP3714506B2 JP3714506B2 (en) 2005-11-09

Family

ID=15702437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15984297A Expired - Lifetime JP3714506B2 (en) 1997-06-17 1997-06-17 High thermal conductive resin composition having excellent water resistance

Country Status (1)

Country Link
JP (1) JP3714506B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794435B2 (en) 2000-05-18 2004-09-21 Saint Gobain Ceramics & Plastics, Inc. Agglomerated hexagonal boron nitride powders, method of making, and uses thereof
US6951583B2 (en) 2000-05-01 2005-10-04 Saint-Gobain Ceramics & Plastics, Inc. Highly delaminated hexagonal boron nitride powders, process for making, and uses thereof
US7189774B2 (en) 2000-11-28 2007-03-13 Saint-Gobain Ceramics & Plastics, Inc. Method for making high thermal diffusivity boron nitride powders
US7494635B2 (en) 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
US7662324B2 (en) 2001-04-30 2010-02-16 Saint-Gobain Ceramics & Plastics, Inc Polymer processing aid and method for processing polymers
WO2010084845A1 (en) * 2009-01-20 2010-07-29 ユニチカ株式会社 Resin composition and molded article comprising the same
USRE45803E1 (en) 2001-08-07 2015-11-17 Saint-Gobain Ceramics & Plastics, Inc. High solids HBN slurry, HBN paste, spherical HBN powder, and methods of making and using them
EP2832792A4 (en) * 2012-03-30 2015-11-18 Tokuyama Corp Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate
JP2016169281A (en) * 2015-03-12 2016-09-23 株式会社トクヤマ Composite filler and resin composition containing the same
JP2018021191A (en) * 2011-09-27 2018-02-08 ローディア オペレーションズ Polyamide composition having high thermal conductivity

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951583B2 (en) 2000-05-01 2005-10-04 Saint-Gobain Ceramics & Plastics, Inc. Highly delaminated hexagonal boron nitride powders, process for making, and uses thereof
US6794435B2 (en) 2000-05-18 2004-09-21 Saint Gobain Ceramics & Plastics, Inc. Agglomerated hexagonal boron nitride powders, method of making, and uses thereof
US7189774B2 (en) 2000-11-28 2007-03-13 Saint-Gobain Ceramics & Plastics, Inc. Method for making high thermal diffusivity boron nitride powders
US7662324B2 (en) 2001-04-30 2010-02-16 Saint-Gobain Ceramics & Plastics, Inc Polymer processing aid and method for processing polymers
USRE45803E1 (en) 2001-08-07 2015-11-17 Saint-Gobain Ceramics & Plastics, Inc. High solids HBN slurry, HBN paste, spherical HBN powder, and methods of making and using them
USRE47635E1 (en) 2001-08-07 2019-10-08 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
USRE45923E1 (en) 2001-08-07 2016-03-15 Saint-Gobain Ceramics & Plastics, Inc. High solids HBN slurry, HBN paste, spherical HBN powder, and methods of making and using them
US7494635B2 (en) 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
JP5686605B2 (en) * 2009-01-20 2015-03-18 ユニチカ株式会社 Resin composition and molded body comprising the same
WO2010084845A1 (en) * 2009-01-20 2010-07-29 ユニチカ株式会社 Resin composition and molded article comprising the same
JP2018021191A (en) * 2011-09-27 2018-02-08 ローディア オペレーションズ Polyamide composition having high thermal conductivity
EP2832792A4 (en) * 2012-03-30 2015-11-18 Tokuyama Corp Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate
TWI572635B (en) * 2012-03-30 2017-03-01 德山股份有限公司 Curable resin composition and method for manufacture thereof, high thermal conductivity resin composition, and high thermal conductivity laminate substrate
JP2016169281A (en) * 2015-03-12 2016-09-23 株式会社トクヤマ Composite filler and resin composition containing the same

Also Published As

Publication number Publication date
JP3714506B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
JP6683715B2 (en) Thermally conductive resin composition
US20110046267A1 (en) Alumina powder, process for its production and resin composition employing it
DE60015300T2 (en) RESIN COMPOSITION, FORM AND USE
CN103140436A (en) Aluminum nitride powder and process for manufacturing same
WO2001090242A1 (en) Red phosphorus-base flame retardant for epoxy resins, red phosphorus-base flame retardant compositions therefor, processes for the production of both, epoxy resin compositions for sealing semiconductor devices, sealants and semiconductor devices
JP3714502B2 (en) High thermal conductive resin composition
JPH115907A (en) Highly heat-conductive resin composition having excellent water resistance
JP2001192500A (en) Surface-treated boron nitride for forming high thermal conductive polymer based boron nitride composition having low viscosity and method for forming the same composition
KR100190204B1 (en) Process for producing finely divided particles of ii type ammonium polyphosphate
JP2001115057A (en) Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
CN109679138B (en) Halogen-free flame retardant melamine polyphosphate borate salt and preparation method and application thereof
WO2018036398A1 (en) Halogen-free flame retardant capable of well keeping performance of polypropylene, and applications thereof
JP3032528B1 (en) Sealing resin composition and semiconductor sealing device
JP3853025B2 (en) Aluminum nitride powder and method for producing the same
KR101025681B1 (en) Barium titanate particles attached with polyimide precursor, a method for preparation thereof and a composition of barium titanate particles/polyimide complex prepared by using the same
JP2843244B2 (en) Epoxy resin composition
JPH10152599A (en) Epoxy resin composition
JPH0748500A (en) Epoxy resin composition for sealing of semiconductor
JPH10203809A (en) Aluminum nitride powder improved in fluidity
JP3889206B2 (en) Resin composition for sealing and semiconductor sealing device
JP3295780B2 (en) Poorly soluble ammonium polyphosphate compound, method for producing the same, and resin containing the same
WO2001010958A1 (en) Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP3420901B2 (en) Water resistant aluminum nitride powder
JP2539482B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH09202608A (en) Water-resistant aluminum nitride powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

EXPY Cancellation because of completion of term