JP2008133382A - Heat-conductive resin composition - Google Patents
Heat-conductive resin composition Download PDFInfo
- Publication number
- JP2008133382A JP2008133382A JP2006321161A JP2006321161A JP2008133382A JP 2008133382 A JP2008133382 A JP 2008133382A JP 2006321161 A JP2006321161 A JP 2006321161A JP 2006321161 A JP2006321161 A JP 2006321161A JP 2008133382 A JP2008133382 A JP 2008133382A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- weight
- resin composition
- heat
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/08—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/016—Additives defined by their aspect ratio
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、成形性及び摩耗特性に優れた絶縁性の熱伝導性樹脂組成物に関するものであり、更に詳しくは、放熱性を要求される各種自動車部品・電気電子部品等に用いられる熱伝導性に優れた液晶性ポリマー組成物に関する。 The present invention relates to an insulating heat conductive resin composition having excellent moldability and wear characteristics. More specifically, the present invention relates to heat conductivity used in various automobile parts, electrical and electronic parts, etc. that require heat dissipation. The present invention relates to an excellent liquid crystalline polymer composition.
異方性溶融相を形成し得る液晶性ポリマーは、熱可塑性樹脂の中でも寸法精度、制振性に優れ、成形時のバリ発生が極めて少ない材料として知られている。従来、このような特徴を活かし、ガラス繊維強化による液晶性ポリマー組成物が各種電気電子部品の材料として多く採用されてきた。しかし、近年、これらの部品が軽薄短小化され、部品等の内部の放熱が問題となってきており、放熱性を付与した材料の要求がでてきている。 A liquid crystalline polymer capable of forming an anisotropic molten phase is known as a material that is excellent in dimensional accuracy and vibration damping properties among thermoplastic resins, and generates very little burrs during molding. Conventionally, taking advantage of such characteristics, liquid crystal polymer compositions reinforced with glass fibers have been widely used as materials for various electric and electronic parts. However, in recent years, these parts have been made lighter, thinner, and smaller, and heat radiation inside the parts has become a problem, and there has been a demand for materials having heat radiation properties.
このような理由から、熱可塑性樹脂に特定粒径のアルミナを添加し、成形性と熱伝導率を向上させる方法が提案されているが(特許文献1)、この方法では成形性は向上するものの、アルミナのモース硬度が高いことから、樹脂との混練時や成形時に押出機、成形機のスクリュー、シリンダーや成形金型が激しく摩耗し、金属が混入する問題があった。 For this reason, a method has been proposed in which alumina having a specific particle size is added to a thermoplastic resin to improve moldability and thermal conductivity (Patent Document 1), but this method improves moldability. Since the Mohs hardness of alumina is high, the extruder, the screw of the molding machine, the cylinder, and the molding die are severely worn during kneading with the resin and molding, and there is a problem that metal is mixed.
一方、液晶性ポリマーに黒鉛を配合し、熱伝導性を付与する方法が提案されているが(特許文献2)、この方法ではフィラーによるスクリュー等の摩耗は起きないものの、熱伝導性と同時に電気伝導性が付与されるため、電気絶縁性が要求されるような分野では使用できないという問題があった。 On the other hand, a method has been proposed in which graphite is mixed with a liquid crystalline polymer to impart thermal conductivity (Patent Document 2). Although this method does not cause wear of a screw or the like by a filler, electric conductivity is simultaneously provided with thermal conductivity. Since conductivity is imparted, there is a problem that it cannot be used in fields where electrical insulation is required.
また、熱可塑性樹脂にアスペクト5以上の熱伝導性フィラーを添加することが提案されているが(特許文献3)、実施例として挙げられているのはPBO(ポリベンザゾール)繊維のみであり、他の繊維状熱伝導性フィラーについては検討されておらず、また繊維状フィラーだけでは熱伝導性を向上させるためにフィラーを大量に添加した際に流動性が著しく低下する問題があった。 Further, although it has been proposed to add a thermal conductive filler having an aspect ratio of 5 or more to a thermoplastic resin (Patent Document 3), only PBO (polybenzazole) fibers are listed as examples. Other fibrous thermal conductive fillers have not been studied, and the fibrous filler alone has a problem that the fluidity is remarkably lowered when a large amount of filler is added to improve thermal conductivity.
その他、熱可塑性樹脂に不定形の酸化チタンを添加し、光反射性、遮光性の向上や、光触媒として用いることが提案されているが(特許文献4、5)、これらには熱伝導性向上についての検討は行われていない。
本発明は、かかる従来技術の欠点を解決し、絶縁性で、成形性及び摩耗特性に優れた熱伝導性の高い材料を提供することを目的とする。 An object of the present invention is to solve the drawbacks of the prior art and to provide a highly heat-conductive material that is insulative and has excellent moldability and wear characteristics.
本発明者等は上記問題点に鑑み、成形性及び摩耗特性に優れた熱伝導性の高い液晶性ポリマー組成物について鋭意探索、検討を行ったところ、液晶性ポリマーに対し、特定の繊維状熱伝導性フィラーと特定の板状・球状・不定形の熱伝導性フィラーを併用配合することが極めて有効であることを見出し、本発明を完成するに至った。 In view of the above-mentioned problems, the present inventors diligently searched for and studied a liquid crystalline polymer composition having excellent moldability and wear characteristics and high thermal conductivity. It has been found that it is extremely effective to combine a conductive filler with a specific plate-like, spherical, and irregular-shaped thermally conductive filler, and the present invention has been completed.
即ち本発明は、
(A) 液晶性ポリマー100重量部に対し、
(B) 熱伝導率3W/m・K以上、アスペクト比10以上の繊維状酸化チタン10〜200重量部、
(C) 熱伝導率2W/m・K以上の板状・球状・不定形の何れか1種以上の熱伝導性フィラー10〜400重量部を添加してなり、
(B) 、(C) 成分の総添加量が(A) 液晶性ポリマー100重量部に対し30〜500重量部であり、熱伝導率0.8W/m・K以上であることを特徴とする絶縁性の熱伝導性樹脂組成物である。
That is, the present invention
(A) For 100 parts by weight of the liquid crystalline polymer,
(B) 10 to 200 parts by weight of fibrous titanium oxide having a thermal conductivity of 3 W / m · K or more and an aspect ratio of 10 or more,
(C) Addition of 10 to 400 parts by weight of one or more kinds of plate-like, spherical and irregular shapes having a thermal conductivity of 2 W / m · K or more,
The total addition amount of the components (B) and (C) is 30 to 500 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A), and the thermal conductivity is 0.8 W / m · K or more. It is an insulating heat conductive resin composition.
以下、本発明を詳細に説明する。本発明で使用する液晶性ポリマー(A) とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。 Hereinafter, the present invention will be described in detail. The liquid crystalline polymer (A) used in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase. The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. When the liquid crystalline polymer applicable to the present invention is inspected between crossed polarizers, the polarized light is normally transmitted even in the molten stationary state, and optically anisotropic.
前記のような液晶性ポリマー(A) としては特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。これらは60℃でペンタフルオロフェノールに濃度0.1重量%で溶解したときに、好ましくは少なくとも約2.0dl/g、さらに好ましくは2.0〜10.0dl/gの対数粘度(I.V.)を有するものが使用される。 The liquid crystalline polymer (A) is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and an aromatic polyester or a polyester partially containing the aromatic polyester amide in the same molecular chain. Is also in that range. They preferably have a logarithmic viscosity (IV) of at least about 2.0 dl / g, more preferably 2.0-10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by weight. .) Are used.
本発明に適用できる液晶性ポリマー(A) としての芳香族ポリエステル又は芳香族ポリエステルアミドとして特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた少なくとも1種以上の化合物を構成成分として有する芳香族ポリエステル、芳香族ポリエステルアミドである。 The aromatic polyester or aromatic polyester amide as the liquid crystalline polymer (A) applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines and aromatic diamines. An aromatic polyester or aromatic polyester amide having the above compound as a constituent component.
より具体的には、
(1)主として芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステルアミドなどが挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
More specifically,
(1) A polyester mainly composed of one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(2) mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof; c) Polyester comprising at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof;
(3) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). A polyesteramide comprising one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof;
(4) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). One or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof; and (d) at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof, and The polyesteramide which consists of, etc. are mentioned. Furthermore, you may use a molecular weight modifier together with said structural component as needed.
本発明に適用できる前記液晶性ポリマー(A) を構成する具体的化合物の好ましい例としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)および下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸および下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p−アミノフェノール、p−フェニレンジアミン等の芳香族アミン類が挙げられる。 Specific examples of the specific compound constituting the liquid crystalline polymer (A) applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6- Aromatic diols such as dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, compounds represented by the following general formula (I) and the following general formula (II); terephthalic acid, isophthal Aromatic dicarboxylic acids such as acids, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and compounds represented by the following general formula (III); aromatics such as p-aminophenol and p-phenylenediamine Examples include amines.
(但し、X :アルキレン(C1〜C4)、アルキリデン、-O- 、-SO-、-SO2- 、-S-、-CO-より選ばれる基、Y :-(CH2)n-(n =1〜4)、-O(CH2)nO-(n =1〜4)より選ばれる基)
本発明が適用される特に好ましい液晶性ポリマー(A) としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸、4,4’−ジヒドロキシビフェニル、テレフタル酸を主構成単位成分とする芳香族ポリエステルである。
(However, X: alkylene (C1 -C4), alkylidene, -O-, -SO -, - SO 2 -, -S -, - CO- than group selected, Y :-( CH 2) n - (n = 1~4), - O (CH 2) n O- (n = 1~4) from the group selected)
Particularly preferred liquid crystalline polymer (A) to which the present invention is applied is a fragrance comprising p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4,4′-dihydroxybiphenyl, terephthalic acid as a main constituent component. A polyester.
次に、本発明で用いる(B) 繊維状酸化チタンであるが、その熱伝導率は重要である。熱伝導率が低いとフィラーを添加した樹脂組成物としての熱伝導率の向上がほとんど望めないため、繊維状酸化チタンの熱伝導率としては3W/m・K以上であり、好ましくは10W/m・K以上である。また、そのアスペクト比も重要であり、小さすぎると樹脂組成物内の熱伝達経路が発達しづらく樹脂組成物の熱伝導率の向上が少ないという問題が発生するため、アスペクト比としては10以上、好ましくは15以上が必要である。繊維状酸化チタンは、上記の条件を満たし、且つ液晶性ポリマーに対し分解等の悪影響を与えず、また導電性を持たず、本発明における(B) 成分の繊維状熱伝導性フィラーとして選択的に用いられる。 Next, (B) fibrous titanium oxide used in the present invention, the thermal conductivity is important. When the thermal conductivity is low, improvement in thermal conductivity as a resin composition to which a filler is added can hardly be expected. Therefore, the thermal conductivity of fibrous titanium oxide is 3 W / m · K or more, preferably 10 W / m. -K or more. In addition, the aspect ratio is also important, and if it is too small, the heat transfer path in the resin composition is difficult to develop, and there is a problem that there is little improvement in the thermal conductivity of the resin composition. Preferably 15 or more is necessary. Fibrous titanium oxide satisfies the above-mentioned conditions, does not give adverse effects such as decomposition on the liquid crystalline polymer, and does not have conductivity, and is selectively used as the fibrous thermal conductive filler of the component (B) in the present invention. Used for.
また、繊維状酸化チタンの添加量であるが、添加量が少なすぎると樹脂組成物内の熱伝達経路が発達しないため、充分な熱伝導率が発揮されず、逆に多すぎると繊維同士の絡み合いが激しくなり、熱伝導率は高くなるものの、成形流動性が著しく低下する問題、混練時に押出機内圧力が上昇し混練性が極めて悪化する問題、樹脂組成物の増粘により繊維が折れ、むしろ熱伝導率が低下する問題等が発生する。そのため、(B) 繊維状酸化チタンの添加量は、(A) 液晶性ポリマー100重量部に対し10〜200重量部であり、好ましくは20〜150重量部、更に好ましくは20〜100重量部、最も好ましくは30〜100重量部である。 Moreover, although it is the addition amount of fibrous titanium oxide, since a heat transfer path in the resin composition does not develop if the addition amount is too small, sufficient thermal conductivity cannot be exhibited, and conversely if too much, Although the entanglement becomes intense and the thermal conductivity increases, the problem that the molding fluidity is remarkably lowered, the problem that the pressure in the extruder rises at the time of kneading and the kneading property is extremely deteriorated, the fiber breaks due to the thickening of the resin composition, Problems such as a decrease in thermal conductivity occur. Therefore, the amount of (B) fibrous titanium oxide added is 10 to 200 parts by weight, preferably 20 to 150 parts by weight, more preferably 20 to 100 parts by weight, based on 100 parts by weight of (A) liquid crystalline polymer. Most preferably, it is 30 to 100 parts by weight.
次に本発明で用いる(C) 板状・球状・不定形の熱伝導性フィラーであるが、板状・球状・不定形の熱伝導性フィラーを添加する理由は、(B) 繊維状酸化チタンだけでは繊維方向の熱伝導は高くなるものの直角方向の熱伝導率の向上が少なくなるため、板状・球状・不定形の二次元以上の方向に広がりを持つフィラーを添加することにより、樹脂組成物として均一な熱伝導性を与えることが可能となることと、繊維状酸化チタンだけを多量に添加すると上記のように著しい流動性の低下を招くことから、成形性に優れ且つ高い熱伝導性を持つ樹脂組成物を得るのが困難であることが挙げられる。そのため、板状・球状・不定形の熱伝導性フィラーの熱伝導率も繊維状酸化チタン同様重要である。熱伝導率が低いと繊維状熱伝導性フィラーで伝えた熱を伝えづらくなり、その部分での熱伝達が律速になってしまう。そのため、板状・球状・不定形の熱伝導性フィラーの熱伝導率としては2W/m・K以上であり、好ましくは3W/m・K以上である。 Next, the (C) plate-like, spherical, and amorphous heat conductive filler used in the present invention is the reason why the plate-like, spherical, and amorphous heat conductive filler is added. (B) Fibrous titanium oxide However, the thermal conductivity in the direction of the fiber is increased by itself, but the improvement in the thermal conductivity in the direction perpendicular to the direction is reduced. Therefore, by adding a filler that spreads in two or more directions of plate, sphere, and amorphous, the resin composition It is possible to give uniform thermal conductivity as a product, and adding only a large amount of fibrous titanium oxide causes a significant decrease in fluidity as described above, so it has excellent moldability and high thermal conductivity. It is difficult to obtain a resin composition having Therefore, the thermal conductivity of the plate-like, spherical, and irregular-shaped thermally conductive fillers is as important as the fibrous titanium oxide. If the thermal conductivity is low, it is difficult to transfer the heat transferred by the fibrous heat conductive filler, and the heat transfer at that portion becomes rate-limiting. Therefore, the thermal conductivity of the plate-like / spherical / indeterminate thermally conductive filler is 2 W / m · K or more, preferably 3 W / m · K or more.
また、板状・球状・不定形の熱伝導性フィラーの添加量であるが、添加量が少なすぎると樹脂組成物内の熱伝達経路が発達しないため、充分な熱伝導率が発揮されず、逆に多すぎると樹脂組成物の増粘により繊維が折れ、むしろ熱伝導率が低下する問題、混練時に押出機内圧力が上昇し混練性が極めて悪化する問題等が発生する。そのため、(C) 板状・球状・不定形の熱伝導性フィラーの添加量は、(A) 液晶性ポリマー100重量部に対し10〜400重量部であり、好ましくは20〜100重量部、更に好ましくは30〜80重量部である。 In addition, it is the amount of plate-like, spherical, and amorphous heat conductive filler added, but if the amount added is too small, the heat transfer path in the resin composition does not develop, so that sufficient heat conductivity is not exhibited, On the other hand, if the amount is too large, the fiber breaks due to the thickening of the resin composition, but rather the problem that the thermal conductivity decreases, the problem that the pressure in the extruder rises during kneading, and the kneadability becomes extremely worse occurs. Therefore, the addition amount of (C) plate-like, spherical, and amorphous heat conductive filler is 10 to 400 parts by weight, preferably 20 to 100 parts by weight, more preferably 100 parts by weight of (A) liquid crystalline polymer. Preferably it is 30-80 weight part.
本発明で使用することのできる (C) 板状・球状・不定形の熱伝導性フィラーは、上記の条件を満たす物質であれば如何なるものでも使用可能である。具体的な物質としては、タルク、無水炭酸マグネシウム、酸化マグネシウム、アルミナ、シリカ、ベリリア、窒化ホウ素、炭化ケイ素、窒化アルミニウム等が挙げられるが、これらの中でもフィラーの硬度、毒性、経済性の点からタルク、無水炭酸マグネシウム、酸化マグネシウムが好ましい。 As the (C) plate-like, spherical, and amorphous heat conductive filler that can be used in the present invention, any material that satisfies the above conditions can be used. Specific materials include talc, anhydrous magnesium carbonate, magnesium oxide, alumina, silica, beryllia, boron nitride, silicon carbide, aluminum nitride, etc. Among these, from the viewpoint of filler hardness, toxicity and economy Talc, anhydrous magnesium carbonate, and magnesium oxide are preferred.
(B) 繊維状酸化チタンと(C) 板状・球状・不定形の熱伝導性フィラーの総添加量は、少なすぎると熱伝導性が向上せず、逆に多すぎると混練時に押出機内圧力が上昇し混練性を極めて悪化させるため、総添加量としては、上記の(B) 、(C) 成分夫々の添加量を満たしつつ、(A) 液晶性ポリマー100重量部に対し30〜500重量部であり、好ましくは50〜250重量部、更に好ましくは50〜200重量部である。 If the total amount of (B) fibrous titanium oxide and (C) plate-like, spherical, and amorphous heat-conducting fillers is too small, the thermal conductivity will not be improved. As the total addition amount satisfies the above addition amount of each of the components (B) and (C), (A) 30 to 500 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer. Parts, preferably 50 to 250 parts by weight, more preferably 50 to 200 parts by weight.
次に、(C) 成分として用いる無水炭酸マグネシウムであるが、一般に炭酸マグネシウムは三水塩として存在し、その結晶水を100℃で放出することが知られている。そのため一般の炭酸マグネシウムを樹脂に混入する際には結晶水の放出により、発泡、樹脂の分解等のトラブルが発生し混練することができない。しかし、本発明で用いる無水炭酸マグネシウムとは三水塩で存在する一般の炭酸マグネシウムを高温・高圧下で処理することにより無水の結晶としたものであり、上記問題がない。このような方法で製造した無水炭酸マグネシウムは、高純度マグネサイトMSL(神島化学工業(株)製)等として一般に入手可能である。 Next, anhydrous magnesium carbonate to be used as the component (C) is generally known. It is known that magnesium carbonate exists as a trihydrate and releases its crystal water at 100 ° C. Therefore, when general magnesium carbonate is mixed in the resin, troubles such as foaming and decomposition of the resin occur due to the release of crystal water, and kneading cannot be performed. However, anhydrous magnesium carbonate used in the present invention is obtained by treating general magnesium carbonate existing as a trihydrate salt under high temperature and high pressure to form anhydrous crystals, and does not have the above-mentioned problems. Anhydrous magnesium carbonate produced by such a method is generally available as high-purity magnesite MSL (manufactured by Kamishima Chemical Co., Ltd.).
次に、(C) 成分として用いる酸化マグネシウムであるが、そのままでの使用も可能であるが、耐湿熱性を向上させるためにリン含有被覆酸化マグネシウムを用いることが好ましい。本発明で用いるリン含有被覆酸化マグネシウムとは、酸化マグネシウムの表面に複酸化物を形成する化合物を存在させた状態で、高温で溶融することにより表面に複酸化物の被覆を行ったものである。具体的な方法としては、複酸化物を形成する化合物を酸化マグネシウム粉末に湿式添加した後、混合攪拌する方法や、酸化マグネシウムの表面に複酸化物を形成する化合物を存在させた状態で、被覆材の融点以上の温度で焼成する方法にて製造することが可能である。 Next, magnesium oxide used as the component (C) can be used as it is, but it is preferable to use phosphorus-containing coated magnesium oxide in order to improve wet heat resistance. The phosphorus-containing coated magnesium oxide used in the present invention is obtained by coating a surface with a double oxide by melting at a high temperature in the presence of a compound that forms a double oxide on the surface of the magnesium oxide. . Specifically, the compound that forms the double oxide is wet-added to the magnesium oxide powder, and then mixed and stirred, or the compound that forms the double oxide is present on the surface of the magnesium oxide. It can be manufactured by a method of firing at a temperature equal to or higher than the melting point of the material.
複酸化物を形成するために使用される化合物は、アルミニウム化合物、鉄化合物、ケイ素化合物及びチタン化合物からなる群から選択される1種以上の化合物であることが好ましい。化合物の形態は限定されないが、硝酸塩、硫酸塩、塩化物、オキシ硝酸塩、オキシ硫酸塩、オキシ塩化物、水酸化物、酸化物等が用いられる。この化合物の具体例としては、ヒュームドシリカ、硝酸アルミニウム、硝酸鉄等を挙げることができる。 The compound used to form the double oxide is preferably one or more compounds selected from the group consisting of aluminum compounds, iron compounds, silicon compounds and titanium compounds. The form of the compound is not limited, but nitrate, sulfate, chloride, oxynitrate, oxysulfate, oxychloride, hydroxide, oxide, etc. are used. Specific examples of this compound include fumed silica, aluminum nitrate, iron nitrate and the like.
リン含有被覆酸化マグネシウムの製造方法は、上記の方法により製造した酸化マグネシウムまたは複酸化物よりなる被覆層を有する酸化マグネシウムに対して、リン化合物による表面処理を行い、その表面にリン酸マグネシウム系化合物による被覆層を形成する。 The method for producing phosphorus-containing coated magnesium oxide is obtained by subjecting magnesium oxide having a coating layer made of magnesium oxide or a double oxide produced by the above method to surface treatment with a phosphorus compound, and a magnesium phosphate compound on the surface thereof. To form a coating layer.
この表面処理に使用するリン化合物としては、リン酸、リン酸塩、酸性リン酸エステル等を挙げることができ、これらは単独で使用しても、2種以上を同時に使用してもよい。リン酸塩としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム等が挙げられ、また、酸性リン酸エステルとしては、イソプロピルアシッドホスフェート、メチルアシッドホスフェート、エチルアシッドホスフェート、プロピルアシッドホスフェート、ブチルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、2−エチルヘキシルアシッドホスフェート、オレイルアシッドホスフェート等が挙げられる。中でも、耐水性に優れた被覆層を容易に形成可能である点からイソプロピルアシッドホスフェートが好ましい。 Examples of the phosphorus compound used for the surface treatment include phosphoric acid, phosphate, and acidic phosphate ester. These may be used alone or in combination of two or more. Examples of the phosphate include sodium phosphate, potassium phosphate, and ammonium phosphate. Examples of the acidic phosphate ester include isopropyl acid phosphate, methyl acid phosphate, ethyl acid phosphate, propyl acid phosphate, and butyl acid phosphate. Lauryl acid phosphate, stearyl acid phosphate, 2-ethylhexyl acid phosphate, oleyl acid phosphate and the like. Among these, isopropyl acid phosphate is preferable because a coating layer having excellent water resistance can be easily formed.
リン含有被覆酸化マグネシウムのリン化合物による表面処理の具体的方法としては、酸化マグネシウムまたは複酸化物よりなる被覆層を有する酸化マグネシウムに所定量のリン化合物を添加し、例えば5〜60分間攪拌後、300℃以上の温度で、0.5〜5時間焼成することにより行う。 As a specific method of the surface treatment with a phosphorus compound of phosphorus-containing coated magnesium oxide, a predetermined amount of phosphorus compound is added to magnesium oxide having a coating layer made of magnesium oxide or a double oxide, for example, after stirring for 5 to 60 minutes, It is performed by baking at a temperature of 300 ° C. or higher for 0.5 to 5 hours.
このような方法にて製造したリン含有被覆酸化マグネシウムは、クールフィラーCF2−100A(タテホ化学工業(株))として一般に入手可能である。 The phosphorus-containing coated magnesium oxide produced by such a method is generally available as Cool Filler CF2-100A (Tateho Chemical Industry Co., Ltd.).
次に本発明では、更に(D) アルコキシシラン化合物を添加することが、耐湿熱性向上の点から好ましい。特に(C) 成分としてリン含有被覆酸化マグネシウムを用いる場合にその効果が顕著である。 Next, in the present invention, it is preferable to further add (D) an alkoxysilane compound from the viewpoint of improving the heat and moisture resistance. The effect is particularly remarkable when phosphorus-containing coated magnesium oxide is used as the component (C).
本発明に用いるアルコキシシラン化合物とは、アミノアルコキシシラン、ビニルアルコキシシラン、エポキシアルコキシシラン、メルカプトアルコキシシラン及びアリルアルコキシシランからなる群より選ばれる少なくとも1種であればよい。 The alkoxysilane compound used in the present invention may be at least one selected from the group consisting of aminoalkoxysilane, vinylalkoxysilane, epoxyalkoxysilane, mercaptoalkoxysilane, and allylalkoxysilane.
アミノアルコキシシランとしては、1分子中にアミノ基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものも有効で、例えばγ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。ビニルアルコキシシランとしては、1分子中にビニル基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものも有効で、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン等が挙げられる。エポキシアルコキシシランとしては、1分子中にエポキシ基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものも有効で、例えばγ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等が挙げられる。メルカプトアルコキシシランとしては、1分子中にメルカプト基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものも有効で、例えばγ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等が挙げられる。アリルアルコキシシランとしては、1分子中にアリル基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものも有効で、例えばγ−ジアリルアミノプロピルトリメトキシシラン、γ−アリルアミノプロピルトリメトキシシラン、γ−アリルチオプロピルトリメトキシシラン等が挙げられる。本発明の目的のためには、上記アルコキシシラン化合物の内、アミノアルコキシシランが最も好ましい。 Any aminoalkoxysilane may be used as long as it is a silane compound having one or more amino groups in one molecule and having two or three alkoxy groups. For example, γ-aminopropyltrimethoxysilane, γ -Aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltri And methoxysilane. Any vinylalkoxysilane can be used as long as it is a silane compound having one or more vinyl groups in one molecule and having two or three alkoxy groups. For example, vinyltrimethoxysilane, vinyltriethoxysilane. Vinyltris (β-methoxyethoxy) silane and the like. As the epoxyalkoxysilane, any silane compound having one or more epoxy groups in one molecule and having two or three alkoxy groups is effective. For example, γ-glycidoxypropyltrimethoxysilane , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like. Any mercaptoalkoxysilane may be used as long as it is a silane compound having one or more mercapto groups in one molecule and having two or three alkoxy groups. For example, γ-mercaptopropyltrimethoxysilane, γ -Mercaptopropyltriethoxysilane and the like. Any arylalkoxysilane is effective as long as it is a silane compound having one or more allyl groups in one molecule and having two or three alkoxy groups, such as γ-diallylaminopropyltrimethoxysilane, Examples include γ-allylaminopropyltrimethoxysilane, γ-allylthiopropyltrimethoxysilane, and the like. For the purpose of the present invention, among the alkoxysilane compounds, aminoalkoxysilane is most preferable.
本発明にてアルコキシシラン化合物の添加量は重要であり、アルコキシシラン化合物が少ないとPCT後の機械物性の低下が著しく、また逆に多すぎると樹脂が増粘し成形性が著しく低下する。そのため、アルコキシシラン化合物の添加量は、(A) 液晶性ポリマー100重量部に対して0.1〜5重量部、好ましくは0.4〜4重量部である。 In the present invention, the addition amount of the alkoxysilane compound is important. If the amount of the alkoxysilane compound is small, the mechanical properties after the PCT are remarkably lowered. On the other hand, if the amount is too large, the resin is thickened and the moldability is remarkably lowered. Therefore, the addition amount of an alkoxysilane compound is 0.1-5 weight part with respect to 100 weight part of (A) liquid crystalline polymer, Preferably it is 0.4-4 weight part.
また、本発明の高熱伝導性樹脂組成物は、本発明の目的範囲内で、機械的強度、耐熱性、寸法安定性(耐変形、そり)、電気的性質等の性能の改良のため、(B) 、(C) 成分以外の無機又は有機充填剤を配合したものでもよく、これには目的に応じて繊維状、粉粒状、板状の充填剤が用いられる。 In addition, the high thermal conductive resin composition of the present invention is within the object range of the present invention in order to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties. B) and inorganic or organic fillers other than the components (C) may be blended, and for this purpose, fibrous, granular or plate-like fillers are used depending on the purpose.
また、一般に熱可塑性樹脂に添加される公知の物質、すなわち難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、潤滑剤、結晶化促進剤、結晶核剤等も要求性能に応じ適宜添加したものも本発明の組成物として使用できる。 In addition, known substances generally added to thermoplastic resins, that is, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and ultraviolet absorbers, lubricants, crystallization accelerators, crystal nucleating agents, etc. Also, those appropriately added according to the required performance can be used as the composition of the present invention.
このようにして得られた本発明の熱伝導性樹脂組成物を用い、射出成形や押出成形、ブロー成形等で得られた成形品は、高い耐湿熱性、耐化学薬品性、寸法安定性、難燃性、優れた放熱性を示す。この利点を活かして熱交換器、放熱板、光ピックアップ等といった内部で発生した熱を外部に放熱する部品に好適に用いることができる。 A molded product obtained by injection molding, extrusion molding, blow molding or the like using the heat conductive resin composition of the present invention thus obtained has high moisture and heat resistance, chemical resistance, dimensional stability, difficulty. Shows flammability and excellent heat dissipation. Taking advantage of this advantage, it can be suitably used for components that radiate internally generated heat, such as heat exchangers, heat sinks, and optical pickups.
また、その他の用途として、例えばLED、センサー、コネクター、ソケット、端子台、プリント基板、モーター部品、ECUケース等の電気・電子部品、照明部品、テレビ部品、炊飯器部品、電子レンジ部品、アイロン部品、複写機関連部品、プリンター関連部品、ファクシミリ関連部品、ヒーター、エアコン用部品等の家庭・事務電気製品部品に用いることができる。 Other applications include, for example, LEDs, sensors, connectors, sockets, terminal blocks, printed circuit boards, motor parts, ECU cases and other electrical / electronic parts, lighting parts, TV parts, rice cooker parts, microwave oven parts, iron parts, etc. It can be used for household and office electrical product parts such as copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts.
次に実施例、比較例で本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性測定の方法は以下の通りである。
(1)熱伝導率
直径30mm、厚さ2mmの円板状成形品を重ねたサンプルを用い、ホットディスク法にて熱伝導率を測定した。
(2)射出成形性
シリンダー温度370℃、射出速度15m/minの条件で、幅5mm、厚さ0.3mmで最大流動距離70mmの棒状成形品を成形し、流動距離を測定し、射出成形性とした。
(3)耐湿熱性
80×10×4mmのISO標準試験片を用い、121℃、湿度100%、2気圧条件下でプレッシャークッカーテストを48時間行い、その試験片についてISO178に準拠して曲げ強さの測定を行い、初期値に対する保持率を求めた。
実施例1〜6、比較例1〜5
液晶性ポリマー、熱伝導性フィラー及びアルコキシシラン化合物を、表1に示す組成にて、二軸押出機((株)日本製鋼所製TEX30α型)を用いて混練しペレットを形成後、射出成形機にて上述の試験片を成形し、各種評価を行った。結果を表1に示す。
Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. In addition, the method of the physical property measurement in an Example is as follows.
(1) Thermal conductivity Thermal conductivity was measured by a hot disk method using a sample in which disk-shaped molded products having a diameter of 30 mm and a thickness of 2 mm were stacked.
(2) Injection moldability Under the conditions of a cylinder temperature of 370 ° C and an injection speed of 15 m / min, a rod-shaped molded product with a width of 5 mm, a thickness of 0.3 mm and a maximum flow distance of 70 mm is molded, and the flow distance is measured. did.
(3) Moist heat resistance
Using an ISO standard test piece of 80 × 10 × 4 mm, a pressure cooker test is performed for 48 hours under the conditions of 121 ° C., 100% humidity and 2 atmospheres, and the bending strength of the test piece is measured according to ISO 178. The retention rate relative to the initial value was determined.
Examples 1-6, Comparative Examples 1-5
A liquid crystal polymer, a thermally conductive filler and an alkoxysilane compound are kneaded with the composition shown in Table 1 using a twin screw extruder (TEX30α type, manufactured by Nippon Steel Co., Ltd.) to form pellets, and then an injection molding machine The above-mentioned test pieces were molded and various evaluations were performed. The results are shown in Table 1.
尚、使用した各成分及びアルコキシシラン化合物添加方法は以下の通りである。
(A) 液晶性ポリマー(LCP)
ポリプラスチックス(株)製S950、熱伝導率0.45W/m・K
(B) 繊維状酸化チタン
針状酸化チタン;石原産業(株)製FTL−300、繊維径0.27μm 、繊維長5.15μm 、熱伝導率20W/m・K
(C) 板状・球状・不定形の熱伝導性フィラー
タルク;松村産業(株)製クラウンタルクPP、板状、平均粒径8μm 、熱伝導率3.2W/m・K
無水炭酸マグネシウム;神島化学工業(株)製高純度マグネサイトMSL(無水炭酸マグネシウム合成品)、不定形、平均粒径8μm 、熱伝導率15W/m・K
リン含有被覆酸化マグネシウム;タテホ化学工業(株)製CF2−100A、球状、平均粒径27μm、最大粒径100μm、熱伝導率35W/m・K
酸化チタン;堺化学工業(株)製TITONE SR−1、不定形、平均粒径0.25μm 、熱伝導率20W/m・K
(D) アミノシラン化合物
3−アミノプロピルトリエトキシシラン
In addition, each component used and the alkoxysilane compound addition method are as follows.
(A) Liquid crystalline polymer (LCP)
S950 manufactured by Polyplastics Co., Ltd., thermal conductivity 0.45 W / m · K
(B) Fibrous titanium oxide Acicular titanium oxide: FTL-300 manufactured by Ishihara Sangyo Co., Ltd., fiber diameter 0.27 μm, fiber length 5.15 μm, thermal conductivity 20 W / m · K
(C) Plate, Spherical, and Amorphous Thermally Conductive Filler Talc; Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd., plate, average particle size 8 μm, thermal conductivity 3.2 W / m · K
Anhydrous magnesium carbonate; high purity magnesite MSL (anhydrous magnesium carbonate synthetic product) manufactured by Kamishima Chemical Industry Co., Ltd., irregular shape, average particle size 8 μm, thermal conductivity 15 W / m · K
Phosphorus-containing coated magnesium oxide; manufactured by Tateho Chemical Co., Ltd. CF2-100A, spherical, average particle size 27 μm, maximum particle size 100 μm, thermal conductivity 35 W / m · K
Titanium oxide; TITON SR-1, manufactured by Sakai Chemical Industry Co., Ltd., irregular shape, average particle size 0.25 μm, thermal conductivity 20 W / m · K
(D) Aminosilane compound 3-Aminopropyltriethoxysilane
Claims (5)
(B) 熱伝導率3W/m・K以上、アスペクト比10以上の繊維状酸化チタン10〜200重量部、
(C) 熱伝導率2W/m・K以上の板状・球状・不定形の何れか1種以上の熱伝導性フィラー10〜400重量部を添加してなり、
(B) 、(C) 成分の総添加量が(A) 液晶性ポリマー100重量部に対し30〜500重量部であり、熱伝導率0.8W/m・K以上であることを特徴とする絶縁性の熱伝導性樹脂組成物。 (A) For 100 parts by weight of the liquid crystalline polymer,
(B) 10 to 200 parts by weight of fibrous titanium oxide having a thermal conductivity of 3 W / m · K or more and an aspect ratio of 10 or more,
(C) Addition of 10 to 400 parts by weight of one or more kinds of plate-like, spherical and irregular shapes having a thermal conductivity of 2 W / m · K or more,
The total addition amount of the components (B) and (C) is 30 to 500 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A), and the thermal conductivity is 0.8 W / m · K or more. Insulating heat conductive resin composition.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006321161A JP5122116B2 (en) | 2006-11-29 | 2006-11-29 | Thermally conductive resin composition |
PCT/JP2007/072875 WO2008066051A1 (en) | 2006-11-29 | 2007-11-20 | Thermally conductive resin composition |
CN2007800437045A CN101547975B (en) | 2006-11-29 | 2007-11-20 | Thermally conductive resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006321161A JP5122116B2 (en) | 2006-11-29 | 2006-11-29 | Thermally conductive resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008133382A true JP2008133382A (en) | 2008-06-12 |
JP5122116B2 JP5122116B2 (en) | 2013-01-16 |
Family
ID=39467839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006321161A Expired - Fee Related JP5122116B2 (en) | 2006-11-29 | 2006-11-29 | Thermally conductive resin composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5122116B2 (en) |
CN (1) | CN101547975B (en) |
WO (1) | WO2008066051A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009069284A1 (en) * | 2007-11-28 | 2009-06-04 | Polyplastics Co., Ltd. | Heat conductive resin composition |
JP2010037474A (en) * | 2008-08-07 | 2010-02-18 | Polyplastics Co | Wholly aromatic polyester and polyester resin composition |
JP4469416B2 (en) * | 2008-08-07 | 2010-05-26 | 積水化学工業株式会社 | Insulating sheet and laminated structure |
WO2011010291A1 (en) | 2009-07-24 | 2011-01-27 | Ticona Llc | Thermally conductive polymer compositions and articles made therefrom |
JP2011052204A (en) * | 2009-08-06 | 2011-03-17 | Kaneka Corp | Highly thermally conductive thermoplastic resin composition for blow molding |
JP2011063790A (en) * | 2009-08-20 | 2011-03-31 | Kaneka Corp | Highly thermally conductive thermoplastic resin |
WO2011040184A1 (en) | 2009-09-30 | 2011-04-07 | ポリプラスチックス株式会社 | Liquid-crystal polymer and molded articles |
JP2011084716A (en) * | 2009-09-18 | 2011-04-28 | Kaneka Corp | Thermoplastic resin composition, and heat-radiation/heat-transferring resin material |
JP2011231160A (en) * | 2010-04-26 | 2011-11-17 | Kaneka Corp | Thermoplastic resin composition having high thermal conductivity |
JP2012031391A (en) * | 2010-06-28 | 2012-02-16 | Toray Ind Inc | Liquid crystalline resin composition, and method for producing the same |
US20130003416A1 (en) * | 2009-07-24 | 2013-01-03 | Yuji Saga | Thermally conductive thermoplastic resin compositions and related applications |
JP2014511922A (en) * | 2011-04-06 | 2014-05-19 | サムスン ファイン ケミカルズ カンパニー リミテッド | Thermally conductive polymer composite material and article containing the same |
KR20140135952A (en) * | 2012-03-15 | 2014-11-27 | 듀폰 도레이 컴파니, 리미티드 | Thermoplastic elastomer resin composition and composite molded body |
JP2015000937A (en) * | 2013-06-14 | 2015-01-05 | スターライト工業株式会社 | Heat-conductive resin composition |
JP2018016753A (en) * | 2016-07-29 | 2018-02-01 | 上野製薬株式会社 | Liquid crystal polymer composition |
JP2018016754A (en) * | 2016-07-29 | 2018-02-01 | 上野製薬株式会社 | Liquid crystal polymer composition |
JP2019203050A (en) * | 2018-05-22 | 2019-11-28 | デンカ株式会社 | Heat insulation material |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2488560A (en) * | 2011-03-01 | 2012-09-05 | Bentley Motors Ltd | Vehicle trim components |
JP6255978B2 (en) * | 2013-12-20 | 2018-01-10 | 東レ株式会社 | Liquid crystalline polyester resin composition and metal composite molded article using the same |
EP2915841A1 (en) * | 2014-03-04 | 2015-09-09 | LANXESS Deutschland GmbH | Polyester compounds |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06194988A (en) * | 1992-12-09 | 1994-07-15 | Ntn Corp | Separating pawl |
JPH06256654A (en) * | 1993-03-03 | 1994-09-13 | Polyplastics Co | Polyarylene sulfide resin composition |
JP2001207054A (en) * | 2000-01-24 | 2001-07-31 | Polyplastics Co | Molded article of liquid crystalline polymer |
JP2003221511A (en) * | 2002-01-30 | 2003-08-08 | Dainippon Ink & Chem Inc | Thermoplastic resin molded article |
JP2006045298A (en) * | 2004-08-03 | 2006-02-16 | Ntn Corp | Liquid crystal polyester composition |
WO2006059666A1 (en) * | 2004-12-01 | 2006-06-08 | Tateho Chemical Industries Co., Ltd. | Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10158527A (en) * | 1996-11-28 | 1998-06-16 | Otsuka Chem Co Ltd | Resin composition for sealing electronic part |
JP3470259B2 (en) * | 1998-12-01 | 2003-11-25 | 大塚化学ホールディングス株式会社 | Powdered flame retardant |
JP2002030223A (en) * | 2000-07-18 | 2002-01-31 | Sekisui Chem Co Ltd | Thermally conductive resin composition |
JP2004175812A (en) * | 2002-11-22 | 2004-06-24 | Toray Ind Inc | Tablet for heat-dissipating member, heat-dissipating member, and method for producing the member |
JP4631272B2 (en) * | 2003-11-14 | 2011-02-16 | 東レ株式会社 | Highly filled resin composition and molded product obtained therefrom |
JP4744911B2 (en) * | 2005-03-31 | 2011-08-10 | ポリプラスチックス株式会社 | High thermal conductive resin composition |
-
2006
- 2006-11-29 JP JP2006321161A patent/JP5122116B2/en not_active Expired - Fee Related
-
2007
- 2007-11-20 CN CN2007800437045A patent/CN101547975B/en not_active Expired - Fee Related
- 2007-11-20 WO PCT/JP2007/072875 patent/WO2008066051A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06194988A (en) * | 1992-12-09 | 1994-07-15 | Ntn Corp | Separating pawl |
JPH06256654A (en) * | 1993-03-03 | 1994-09-13 | Polyplastics Co | Polyarylene sulfide resin composition |
JP2001207054A (en) * | 2000-01-24 | 2001-07-31 | Polyplastics Co | Molded article of liquid crystalline polymer |
JP2003221511A (en) * | 2002-01-30 | 2003-08-08 | Dainippon Ink & Chem Inc | Thermoplastic resin molded article |
JP2006045298A (en) * | 2004-08-03 | 2006-02-16 | Ntn Corp | Liquid crystal polyester composition |
WO2006059666A1 (en) * | 2004-12-01 | 2006-06-08 | Tateho Chemical Industries Co., Ltd. | Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009069284A1 (en) * | 2007-11-28 | 2009-06-04 | Polyplastics Co., Ltd. | Heat conductive resin composition |
JPWO2010016480A1 (en) * | 2008-08-07 | 2012-01-26 | 積水化学工業株式会社 | Insulating sheet and laminated structure |
JP2010037474A (en) * | 2008-08-07 | 2010-02-18 | Polyplastics Co | Wholly aromatic polyester and polyester resin composition |
JP4469416B2 (en) * | 2008-08-07 | 2010-05-26 | 積水化学工業株式会社 | Insulating sheet and laminated structure |
WO2011010291A1 (en) | 2009-07-24 | 2011-01-27 | Ticona Llc | Thermally conductive polymer compositions and articles made therefrom |
US9090751B2 (en) * | 2009-07-24 | 2015-07-28 | Ticona Llc | Thermally conductive thermoplastic resin compositions and related applications |
US20130003416A1 (en) * | 2009-07-24 | 2013-01-03 | Yuji Saga | Thermally conductive thermoplastic resin compositions and related applications |
JP2011052204A (en) * | 2009-08-06 | 2011-03-17 | Kaneka Corp | Highly thermally conductive thermoplastic resin composition for blow molding |
JP2011063790A (en) * | 2009-08-20 | 2011-03-31 | Kaneka Corp | Highly thermally conductive thermoplastic resin |
JP2011084716A (en) * | 2009-09-18 | 2011-04-28 | Kaneka Corp | Thermoplastic resin composition, and heat-radiation/heat-transferring resin material |
WO2011040184A1 (en) | 2009-09-30 | 2011-04-07 | ポリプラスチックス株式会社 | Liquid-crystal polymer and molded articles |
KR20120088718A (en) | 2009-09-30 | 2012-08-08 | 포리프라스틱 가부시키가이샤 | Liquid-crystal polymer and molded articles |
JP2011231160A (en) * | 2010-04-26 | 2011-11-17 | Kaneka Corp | Thermoplastic resin composition having high thermal conductivity |
JP2012031391A (en) * | 2010-06-28 | 2012-02-16 | Toray Ind Inc | Liquid crystalline resin composition, and method for producing the same |
JP2014511922A (en) * | 2011-04-06 | 2014-05-19 | サムスン ファイン ケミカルズ カンパニー リミテッド | Thermally conductive polymer composite material and article containing the same |
KR20140135952A (en) * | 2012-03-15 | 2014-11-27 | 듀폰 도레이 컴파니, 리미티드 | Thermoplastic elastomer resin composition and composite molded body |
KR102053787B1 (en) * | 2012-03-15 | 2019-12-09 | 듀폰 도레이 컴파니, 리미티드 | Thermoplastic elastomer resin composition and composite molded body |
JP2015000937A (en) * | 2013-06-14 | 2015-01-05 | スターライト工業株式会社 | Heat-conductive resin composition |
JP2018016753A (en) * | 2016-07-29 | 2018-02-01 | 上野製薬株式会社 | Liquid crystal polymer composition |
JP2018016754A (en) * | 2016-07-29 | 2018-02-01 | 上野製薬株式会社 | Liquid crystal polymer composition |
JP2019203050A (en) * | 2018-05-22 | 2019-11-28 | デンカ株式会社 | Heat insulation material |
Also Published As
Publication number | Publication date |
---|---|
CN101547975A (en) | 2009-09-30 |
JP5122116B2 (en) | 2013-01-16 |
WO2008066051A1 (en) | 2008-06-05 |
CN101547975B (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5122116B2 (en) | Thermally conductive resin composition | |
JP5297639B2 (en) | Thermally conductive resin composition | |
EP1158027B1 (en) | Liquid crystal polymer composition for connector and connector | |
US11001708B2 (en) | Liquid crystal polyester resin composition and molded article | |
KR100981895B1 (en) | Liquid crystalline polyester resin composition for a connector | |
JP6851979B2 (en) | Liquid crystal polyester composition and molded article | |
TWI761313B (en) | Liquid crystal polyester composition, molded body thereof, and molded body connector | |
JP2001207054A (en) | Molded article of liquid crystalline polymer | |
JP2001106923A (en) | Liquid crystal polymer composition | |
JP6837184B2 (en) | Liquid crystal resin composition | |
TWI836143B (en) | Liquid crystalline resin composition for ball bearing sliding wear-resistant parts and ball bearing sliding wear-resistant parts using the same | |
JP2018168320A (en) | Liquid crystal polyester composition and molded body | |
TW202028365A (en) | Liquid crystalline resin composition and connector including molded article of said liquid crystalline resin composition | |
JP4419529B2 (en) | Resin composition and molded product obtained therefrom | |
JP2006282783A (en) | Highly heat-conductive resin composition | |
JP2004175812A (en) | Tablet for heat-dissipating member, heat-dissipating member, and method for producing the member | |
WO2020070903A1 (en) | Liquid crystal polyester resin | |
WO2020070904A1 (en) | Liquid crystal polyester resin | |
JP2002138187A (en) | Liquid crystalline polyester resin composition | |
JP2005306955A (en) | Method for producing highly heat-conductive resin composition | |
JP2009249536A (en) | Liquid-crystalline resin injection-molding compound and method for producing the same | |
JP3972627B2 (en) | Tablet for melt molding, method for producing the same, and molded product obtained therefrom | |
JP7026842B2 (en) | Liquid crystal resin composition and molded article using it | |
JP4376445B2 (en) | Liquid crystalline polymer composition | |
JP2002194229A (en) | Semi-conductive resin composition and molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |