WO2008066051A1 - Thermally conductive resin composition - Google Patents

Thermally conductive resin composition Download PDF

Info

Publication number
WO2008066051A1
WO2008066051A1 PCT/JP2007/072875 JP2007072875W WO2008066051A1 WO 2008066051 A1 WO2008066051 A1 WO 2008066051A1 JP 2007072875 W JP2007072875 W JP 2007072875W WO 2008066051 A1 WO2008066051 A1 WO 2008066051A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
thermal conductivity
resin composition
liquid crystalline
Prior art date
Application number
PCT/JP2007/072875
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Miyashita
Takashi Usami
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Priority to CN2007800437045A priority Critical patent/CN101547975B/en
Publication of WO2008066051A1 publication Critical patent/WO2008066051A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to an insulating heat conductive resin composition having excellent moldability and wear characteristics. More specifically, the present invention relates to a heat used for various automobile parts, electric and electronic parts and the like that require heat dissipation. The present invention relates to a liquid crystalline polymer composition having excellent conductivity. Background art
  • Liquid crystalline polymers that can form an anisotropic molten phase are known as materials that are superior in dimensional accuracy and vibration damping properties among thermoplastic resins, and that generate very little burrs during molding.
  • liquid crystal polymer compositions reinforced with glass fibers have been widely used as materials for various electric and electronic parts.
  • these components have become lighter, thinner, and shorter, and heat radiation inside the components has become a problem, and there has been a demand for materials that impart heat dissipation.
  • thermoplastic resin Japanese Patent Application Laid-Open No. 2000-061 1994.
  • PBO polybenzazole
  • An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a highly heat-conductive material that is insulating and excellent in moldability and wear characteristics.
  • the present inventors diligently searched for and studied a liquid crystalline polymer composition having excellent moldability and wear characteristics and high thermal conductivity. As a result, specific fibers were obtained for the liquid crystalline polymer.
  • the present invention has been completed by finding that it is extremely effective to combine a sheet-like heat conductive filler with a specific plate-like / spherical / indeterminate heat-conductive filler.
  • the total addition amount of the components (B) and (C) is 30 to 500 parts by weight with respect to 100 parts by weight of the (A) liquid crystalline polymer, and the thermal conductivity is at least 0.8 W / m ⁇ K. Insulating heat conductive resin composition.
  • the above composition has a thermal conductivity of 0.8 W / m ⁇ K or more.
  • the liquid crystalline polymer (A) used in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase.
  • the properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by observing a molten sample placed on a Leitz hot stage at a magnification of 40 times in a nitrogen atmosphere using a Leit Z polarization microscope. .
  • a liquid crystalline polymer applicable to the present invention is examined between crossed polarizers, polarized light is normally transmitted even in a molten stationary state, and optically anisotropic.
  • the liquid crystalline polymer (A) is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and the aromatic polyester or the aromatic polyester amide is contained in the same molecular chain. Partially included polyesters are also in that range. These are preferably at least about 2.0 d 1 / g, more preferably from 2.0 to 10 O dl / g when dissolved in pentafluorophenol at a concentration of 0.1 wt% at 60 ° C. Those having logarithmic viscosity (I.V.) are used.
  • the aromatic polyester or aromatic polyester amide as the liquid crystalline polymer (A) applicable to the present invention is particularly preferably at least selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines and aromatic diamines. Aromatic polyesters and aromatic polyester amides having one or more compounds as constituents.
  • liquid crystalline polymer (A) examples include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, , 6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4, 4'-dihydroxybifenenole, hydroxyquinone, resorcin, compounds represented by the following general formula (I) and the following general formula (II), etc.
  • aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid
  • 6-dihydroxynaphthalene 1,4-dihydroxynaphthalene
  • 4, 4'-dihydroxybifenenole hydroxyquinone
  • resorcin compounds represented by the following general formula (I) and the following general formula (II), etc.
  • Aromatic diols terephthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and aromatic dicarboxylic acids such as compounds represented by the following general formula (III); p-aminophenol And aromatic amines such as p-phenylenediamine.
  • liquid crystalline polymers (A) to which the present invention is applied include aromatic compounds containing p-hydroxybenzoic acid, 6-hydroxy-1-naphthoic acid, 4,4, -dihydroxybiphenyl, and terephthalic acid as main structural unit components.
  • a polyester A polyester.
  • fibrous titanium oxide used in the present invention its thermal conductivity is important. If the thermal conductivity is low, improvement in the thermal conductivity of the resin composition with filler added can hardly be expected. Therefore, the thermal conductivity of fibrous titanium oxide is 3 W / m ⁇ K or more, preferably lOWZm ⁇ K or higher. The aspect ratio is also important.
  • the pect ratio should be 10 or more, preferably 15 or more.
  • Fibrous titanium oxide satisfies the above-mentioned conditions, does not give adverse effects such as decomposition to the liquid crystalline polymer, and has no electrical conductivity.
  • the amount of fibrous titanium oxide added is too small. If the amount added is too small, the heat transfer path in the resin composition will not develop, so that sufficient heat conductivity will not be exhibited. Although the entanglement becomes intense and the thermal conductivity increases, the molding flow There are problems such as a problem that the mobility is remarkably reduced, a problem that the pressure in the extruder rises during kneading and the kneading property is extremely deteriorated, a fiber breaks due to thickening of the resin composition, and a problem that the thermal conductivity is rather lowered.
  • the amount of (B) fibrous titanium oxide added is 10 to 200 parts by weight, preferably 20 to 150 parts by weight, more preferably 20 to 100 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polymer. Most preferably, it is 30 to 100 parts by weight.
  • the (C) plate-like / spherical / indeterminate thermally conductive filler used in the present invention is added.
  • the reason for adding the plate-like / spherical / indeterminate thermally conductive filler is as follows: (B) Fibrous oxidation Titanium alone increases the heat conduction in the fiber direction, but the improvement in the heat conductivity in the perpendicular direction is reduced. Therefore, by adding a filler that spreads in two or more dimensions of plate, spherical, and irregular shapes. It is possible to give uniform thermal conductivity as a resin composition, and adding only a large amount of fibrous titanium oxide causes a significant decrease in fluidity as described above. It is difficult to obtain resin yarns and compositions having high thermal conductivity.
  • the thermal conductivity of a plate-like, spherical, and amorphous heat-conducting filler is as important as that of fibrous titanium oxide.
  • the heat conductivity is low and it becomes difficult to transfer the heat transferred by the fibrous heat conductive filler, and the heat transfer at that portion becomes rate limiting. Therefore, the thermal conductivity of the plate-like / spherical / indeterminate thermal conductive filler is 2 WZm ⁇ K or more, preferably 3 W / m ⁇ K or more.
  • the amount of addition of the plate-shaped 'spherical' amorphous heat conductive filler is too small. However, if the amount added is too small, the heat transfer path in the resin composition will not develop, so that sufficient heat conductivity will not be exhibited. On the other hand, if the amount is too large, the fiber breaks due to the increase in the viscosity of the resin composition, but rather the problem that the thermal conductivity decreases, the problem that the internal pressure of the extruder increases during kneading, and the kneadability deteriorates significantly occurs.
  • the amount of (C) plate-like 'spherical' amorphous heat conductive filler added is 10 to 400 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polymer, preferably 20 to: L00 Parts by weight, more preferably 30 to 80 parts by weight.
  • any material that satisfies the above conditions can be used.
  • Specific substances include talc, anhydrous magnesium carbonate, magnesium oxide, aluminum Mina, silica, beryllia, boron nitride, silicon carbide, and aluminum nitride can be used.
  • talc, magnesium carbonate anhydrous, and magnesium oxide are preferred from the standpoint of filler hardness, toxicity, and economy. .
  • the total addition amount is 30 to 100 parts by weight of 100 parts by weight of the (A) liquid crystalline polymer while satisfying the addition amounts of the components (B) and (C). 500 parts by weight, preferably 50 to 250 parts by weight, more preferably 50 to 200 parts by weight.
  • anhydrous magnesium carbonate used as component (C) Generally, magnesium carbonate exists as a trihydrate, and it is known that its crystal water is released at 100 ° C. For this reason, when general magnesium carbonate is mixed into the resin, problems such as foaming and resin decomposition occur due to the release of crystal water, and kneading cannot be performed.
  • anhydrous magnesium carbonate used in the present invention is obtained by treating a general magnesium carbonate existing as a trihydrate with high temperature and high pressure to form anhydrous crystals, and there is no such problem.
  • Anhydrous magnesium carbonate produced by such a method is generally available as high-purity magnesite M S L (manufactured by Kamijima Chemical Co., Ltd.).
  • magnesium oxide used as the component (C) can be used as it is, but it is preferable to use phosphorus-containing coated magnesium oxide in order to improve the heat and moisture resistance.
  • the phosphorus-containing coated magnesium oxide used in the present invention is the one in which a compound that forms a double oxide is present on the surface of the magnesium oxide and the surface is coated with the double oxide by melting at a high temperature. is there. Specifically, the compound that forms the double oxide is wet-added to the magnesium oxide powder and then mixed and stirred, or the compound that forms the double oxide is present on the surface of the magnesium oxide. It can be produced by firing at a temperature equal to or higher than the melting point of the coating material.
  • the compounds used to form double oxides are aluminum compounds, ironated
  • One or more compounds selected from the group consisting of a compound, a key compound and a titanium compound are preferred.
  • the form of the compound is not limited, but nitrate, sulfate, chloride, oxynitrate, oxysulfate, oxychloride, hydroxide, oxide, etc. are used. Specific examples of this compound include fumed silica, aluminum nitrate, iron nitrate and the like.
  • the method for producing a phosphorus-containing coated magnesium oxide is the following: surface treatment with a phosphorous compound is performed on magnesium oxide having a coating layer made of magnesium oxide or a double oxide produced by the above method, and magnesium phosphate is applied to the surface. A coating layer is formed from the compound.
  • Examples of the phosphorus compound used for this surface treatment include phosphoric acid, phosphate, and acidic phosphate ester. These may be used alone or in combination of two or more. ,.
  • Examples of the phosphate include sodium phosphate, potassium phosphate, and ammonium phosphate
  • examples of the acidic phosphate ester include isopropenoreaside phosphate, methenoreaside phosphate, ethenoreaside phosphate, and propinoreaside phosphate.
  • a predetermined amount of a phosphorus compound is added to magnesium oxide having a coating layer made of magnesium oxide or a double oxide, for example, 5 to 5 After stirring for 60 minutes, firing is performed at a temperature of 300 ° C or higher for 0.5 to 5 hours.
  • Phosphorus-containing coated magnesium oxide produced by such a method is generally available as Cool Filler CF2-1OOA (Tateho Chemical Industry Co., Ltd.).
  • the effect is particularly remarkable when phosphorus-containing coated magnesium oxide is used as component (C).
  • the alkoxysilane compound used in the present invention may be at least one selected from the group consisting of aminoalkoxysilane, vinylalkoxysilane, epoxyalkoxysilane, mercaptoalkoxysilane and arylalkoxysilane.
  • any silane compound having one or more amino groups in one molecule and having two or three alkoxy groups can be used, for example, y-aminopropyl. Trimethoxysilane, aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyljetoxysilane, ⁇ - ( ⁇ -aminoethyl) — ⁇ -aminobutyl pilltrimethoxysilane, ⁇ -phenol ⁇ And monoaminopropyltrimethoxysilane.
  • any silane compound having one or more bur groups in one molecule and having two or three alkoxy groups is effective.
  • Epoxyalkoxysilane is effective as long as it is a silane compound having one or more epoxy groups in one molecule and two or three alkoxy groups, such as ⁇ -glycidoxyprovir. Examples include trimethoxysilane, ⁇ - (3,4-epoxy hexyl) ethyltrimethylsilane, ⁇ -glycidoxy pill triethoxysilane, and the like.
  • any silane compound having one or more mercapto groups in one molecule and having two or three alkoxy groups can be used! /, But any of them can be used.
  • arylalkoxysilane any silane compound having one or more aryl groups in one molecule and having two or three alkoxy groups is effective.
  • one diallylaminopropyl Examples include trimethoxysilane, ⁇ -arylaminopropyltrimethoxysilane, and y-arylthiopropyltrimethoxysilane.
  • the alkoxysilane compounds aminoalkoxysilane is most preferable.
  • the amount of the alkoxysilane compound added is important. If the amount of the alkoxysilane compound is small, the mechanical properties after the PCT are remarkably deteriorated. Therefore, the addition amount of the alkoxysilane compound is 0.1 to 5 parts by weight, preferably 0.4 to 4 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polymer.
  • the high thermal conductive resin composition of the present invention is within the object range of the present invention, in order to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties.
  • B Inorganic or organic fillers other than the components may be blended, and for this purpose, fibrous, granular, or plate-like fillers are used.
  • thermoplastic resins that is, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and UV absorbers, lubricants, crystallization accelerators, crystal nucleating agents can be used as the composition of the present invention.
  • Molded products obtained by injection molding, extrusion molding, blow molding, etc. using the heat conductive resin composition of the present invention thus obtained have high moisture and heat resistance, chemical resistance, dimensions. Shows stability, flame retardancy, and excellent heat dissipation. Taking advantage of this advantage, it can be suitably used for components that radiate internally generated heat, such as heat exchangers, heat sinks, and optical pick-ups.
  • LEDs for example, LEDs, sensors, connectors, sockets, terminal blocks, printed circuit boards, motor parts, ECU cases and other electrical / electronic parts, lighting parts, TV parts, rice cooker parts, microwave oven parts, irons, etc. It can be used for home / office electrical product parts such as parts, copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts.
  • Example 1 LEDs, sensors, connectors, sockets, terminal blocks, printed circuit boards, motor parts, ECU cases and other electrical / electronic parts, lighting parts, TV parts, rice cooker parts, microwave oven parts, irons, etc. It can be used for home / office electrical product parts such as parts, copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts.
  • Thermal conductivity was measured by a hot disk method using a sample in which disk-shaped molded products having a diameter of 30 mra and a thickness of 2 mm were stacked.
  • Liquid crystal polymer, heat conductive filler, and alkoxysilane compound are mixed in the composition shown in Table 1 using a twin screw extruder (TEX30 ⁇ type, manufactured by Nippon Steel) to form pellets, then injected The above-mentioned specimens were molded using a molding machine, and various evaluations were performed. The results are shown in Table 1.
  • each component used and the alkoxysilane compound addition method are as follows.
  • Talc Crown talc PP manufactured by Matsumura Sangyo Co., Ltd., plate shape, average particle size 8 ⁇ , thermal conductivity 3.2W / m ⁇ K
  • Titanium oxide manufactured by Sakai Chemical Industry Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is an insulating material having high thermal conductivity, which is excellent in moldability and abrasion characteristics. Specifically disclosed is an insulating material obtained by adding 10-200 parts by weight of a fibrous titanium oxide (B) having a thermal conductivity of not less than 3 W/m•K and an aspect ratio of not less than 10, and 10-400 parts by weight of one or more plate-like, spherical or amorphous thermally conductive fillers (C) having a thermal conductivity of not less than 2 W/m•K to 100 parts by weight of a liquid crystalline polymer (A) (provided that the total addition amount of the components (B) and (C) is 30-500 parts by weight per 100 parts by weight of the liquid crystalline polymer (A)). The thermal conductivity of the composition is set at not less than 0.8 W/m•K.

Description

熱伝導性樹脂組成物 技術分野 Technical Field of Thermally Conductive Resin Composition
本発明は、 成形性及び摩耗特性に優れた絶縁性の熱伝導性樹脂組成物に関す るものであり、 更に詳しくは、 放熱性を要求される各種自動車部品 ·電気電子 部品等に用いられる熱伝導性に優れた液晶性ポリマー組成物に関する。 背景技術  The present invention relates to an insulating heat conductive resin composition having excellent moldability and wear characteristics. More specifically, the present invention relates to a heat used for various automobile parts, electric and electronic parts and the like that require heat dissipation. The present invention relates to a liquid crystalline polymer composition having excellent conductivity. Background art
異方性溶融相を形成し得る液晶性ポリマーは、 熱可塑性樹脂の中でも寸法精 度、 制振性に優れ、 成形時のバリ発生が極めて少ない材料として知られている。 従来、 このような特徴を活かし、 ガラス繊維強化による液晶性ポリマー組成物 が各種電気電子部品の材料として多く採用されてきた。 しかし、 近年、 これら の部品が軽薄短小化され、 部品等の内部の放熱が問題となってきており、 放熱 性を付与した材料の要求がでてきている。  Liquid crystalline polymers that can form an anisotropic molten phase are known as materials that are superior in dimensional accuracy and vibration damping properties among thermoplastic resins, and that generate very little burrs during molding. In the past, taking advantage of these characteristics, liquid crystal polymer compositions reinforced with glass fibers have been widely used as materials for various electric and electronic parts. However, in recent years, these components have become lighter, thinner, and shorter, and heat radiation inside the components has become a problem, and there has been a demand for materials that impart heat dissipation.
このような理由から、 熱可塑性樹脂に特定粒径のアルミナを添加し、 成形性 と熱伝導率を向上させる方法が提案されているが (特開 2 0 0 2— 1 4 6 1 8 7号公報) 、 この方法では成形性は向上するものの、 アルミナのモース硬度が 高いことから、 樹脂との混練時や成形時に押出機、 成形機のスクリュー、 シリ ンダーや成形金型が激しく摩耗し、 金属が混入する問題があった。  For this reason, a method has been proposed in which alumina having a specific particle diameter is added to a thermoplastic resin to improve moldability and thermal conductivity (Japanese Patent Laid-Open No. 2 0 0 2-1 4 6 1 8 7 Although this method improves moldability, the Mohs hardness of alumina is high, so the extruder, the screw of the molding machine, the cylinder, and the molding die are severely worn during kneading with the resin and during molding. There was a problem of mixing.
一方、 液晶性ポリマーに黒鉛を配合し、 熱伝導性を付与する方法が提案され ているが (特開 2 0 0 6— 2 5 7 1 7 4号公報) 、 この方法ではフイラ一によ るスクリユー等の摩耗は起きないものの、 熱伝導性と同時に電気伝導性が付与 されるため、 電気絶縁性が要求されるような分野では使用できないという問題 があつた。  On the other hand, a method for imparting thermal conductivity by blending graphite in a liquid crystalline polymer has been proposed (Japanese Patent Laid-Open No. 2 0 06-2 5 7 1 7 4). Although there is no wear such as squealing, there is a problem that it cannot be used in fields where electrical insulation is required because electrical conductivity is imparted simultaneously with thermal conductivity.
また、 熱可塑性樹脂にァスぺクト 5以上の熱伝導性フイラ一を添加すること が提案されているが (特開 2 0 0 6 - 1 1 6 8 9 4号公報) 、 実施例として挙 げられているのは P B O (ポリべンザゾール) 繊維のみであり、 他の繊維状熱 伝導性フィラーについては検討されておらず、 また繊維状フィラーだけでは熱 伝導性を向上させるためにフィラーを大量に添加した際に流動性が著しく低下 する問題があった。 In addition, it has been proposed to add a thermal conductive filler having an aspect of 5 or more to a thermoplastic resin (Japanese Patent Application Laid-Open No. 2000-061 1994). Only PBO (polybenzazole) fibers are used, and other fibrous thermal conductive fillers have not been studied, and fibrous fillers alone are used in large quantities to improve thermal conductivity. There was a problem that the fluidity was remarkably lowered when added to.
その他、 熱可塑性樹脂に不定形の酸化チタンを添カ卩し、 光反射性、 遮光性の 向上や、 光触媒として用いることが提案されているが (特開 2 0 0 4— 7 5 7 7 0号公報およぴ特開 2 0 0 3— 2 5 3 1 3 0号公報) 、 これらには熱伝導性 向上についての検討は行われていない。 発明の開示  In addition, it has been proposed that amorphous titanium oxide is added to a thermoplastic resin to improve light reflectivity and light shielding property and to be used as a photocatalyst (Japanese Patent Laid-Open No. 2 0 0 4-7 5 7 7 0 No. 2 and Japanese Laid-Open Patent Publication No. 2 0 3-2 5 3 1 3 0) have not been studied for improving thermal conductivity. Disclosure of the invention
本発明は、 かかる従来技術の欠点を解決し、 絶縁性で、 成形性及び摩耗特性 に優れた熱伝導性の高い材料を提供することを目的とする。  An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a highly heat-conductive material that is insulating and excellent in moldability and wear characteristics.
本発明者等は上記問題点に鑑み、 成形性及び摩耗特性に優れた熱伝導性の高 い液晶性ポリマー組成物について鋭意探索、 検討を行ったところ、 液晶性ポリ マーに対し、 特定の繊維状熱伝導性フイラ一と特定の板状 ·球状 ·不定形の熱 伝導性フィラーを併用配合することが極めて有効であることを見出し、 本発明 を完成するに至った。  In view of the above-mentioned problems, the present inventors diligently searched for and studied a liquid crystalline polymer composition having excellent moldability and wear characteristics and high thermal conductivity. As a result, specific fibers were obtained for the liquid crystalline polymer. The present invention has been completed by finding that it is extremely effective to combine a sheet-like heat conductive filler with a specific plate-like / spherical / indeterminate heat-conductive filler.
即ち本発明は、  That is, the present invention
(A)液晶性ポリマー 100重量部に対し、  (A) For 100 parts by weight of liquid crystalline polymer,
(B)熱伝導率 3 WZm · K以上、 ァスぺクト比 10以上の繊維状酸化チタン 10〜 200重量部、  (B) Thermal conductivity 3 WZm · K or more, 10 to 200 parts by weight of fibrous titanium oxide with an aspect ratio of 10 or more,
(C)熱伝導率 2 WZm · K以上の板状 ·球状 ·不定形の何れか 1種以上の熱伝 導性フイラ一 10〜400重量部を添加してなり、  (C) Thermal conductivity 2 WZm · K or more plate shape · Spherical shape · Indeterminate shape Add one or more heat conductive fillers 10 to 400 parts by weight,
(B)、 (C)成分の総添加量が(A)液晶性ポリマー 100重量部に対し 30〜500重量 部であり、 熱伝導率 0 . 8 W/m · K以上であることを特徴とする絶縁性の熱 伝導性樹脂組成物である。  The total addition amount of the components (B) and (C) is 30 to 500 parts by weight with respect to 100 parts by weight of the (A) liquid crystalline polymer, and the thermal conductivity is at least 0.8 W / m · K. Insulating heat conductive resin composition.
上記組成物の熱伝導率は 0 . 8 W/m · K以上とする。 発明の詳細な説明 The above composition has a thermal conductivity of 0.8 W / m · K or more. Detailed Description of the Invention
以下、 本発明を詳細に説明する。 本発明で使用する液晶性ポリマー (A)とは、 光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。 異方 性溶融相の性質は、 直交偏光子を利用した慣用の偏光検査法により確認するこ とが出来る。 より具体的には、 異方性溶融相の確認は、 L e i t Z偏光顕微鏡 を使用し、 L e i t zホットステージに載せた溶融試料を窒素雰囲気下で 4 0 倍の倍率で観察することにより実施できる。 本発明に適用できる液晶性ポリマ 一は直交偏光子の間で検查したときに、 たとえ溶融静止状態であっても偏光は 通常透過し、 光学的に異方性を示す。 Hereinafter, the present invention will be described in detail. The liquid crystalline polymer (A) used in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase. The properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by observing a molten sample placed on a Leitz hot stage at a magnification of 40 times in a nitrogen atmosphere using a Leit Z polarization microscope. . When a liquid crystalline polymer applicable to the present invention is examined between crossed polarizers, polarized light is normally transmitted even in a molten stationary state, and optically anisotropic.
前記のような液晶性ポリマー (A)としては特に限定されなレ、が、 芳香族ポリ エステル又は芳香族ポリエステルアミドであることが好ましく、 芳香族ポリエ ステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエス テルもその範囲にある。 これらは 6 0 °Cでペンタフルオロフェノールに濃度 0 . 1重量%で溶 したときに、 好ましくは少なくとも約 2 . 0 d 1 / g、 さらに 好ましくは 2 . 0 ~ 1 0 . O d l / gの対数粘度 ( I . V. ) を有するものが 使用される。  The liquid crystalline polymer (A) is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and the aromatic polyester or the aromatic polyester amide is contained in the same molecular chain. Partially included polyesters are also in that range. These are preferably at least about 2.0 d 1 / g, more preferably from 2.0 to 10 O dl / g when dissolved in pentafluorophenol at a concentration of 0.1 wt% at 60 ° C. Those having logarithmic viscosity (I.V.) are used.
本発明に適用できる液晶性ポリマー (A)としての芳香族ポリエステル又は芳 香族ポリエステルアミ ドとして特に好ましくは、 芳香族ヒドロキシカルボン酸、 芳香族ヒドロキシァミン、 芳香族ジァミンの群から選ばれた少なくとも 1種以 上の化合物を構成成分として有する芳香族ポリエステル、 芳香族ポリエステル アミドである。  The aromatic polyester or aromatic polyester amide as the liquid crystalline polymer (A) applicable to the present invention is particularly preferably at least selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines and aromatic diamines. Aromatic polyesters and aromatic polyester amides having one or more compounds as constituents.
より具体的には、  More specifically,
( 1 ) 主として芳香族ヒドロキシカルボン酸およびその誘導体の 1種又は 2種 以上からなるポリエステル;  (1) A polyester mainly composed of one or more aromatic hydroxycarboxylic acids and derivatives thereof;
( 2 ) 主として (a ) 芳香族ヒドロキシカルボン酸およびその誘導体の 1種又 は 2種以上と、 (b ) 芳香族ジカルボン酸、 脂環族ジカルボン酸おょぴその誘 導体の 1種又は 2種以上と、 (c ) 芳香族ジオール、 脂環族ジオール、 脂肪族 ジオールおよびその誘導体の少なくとも 1種又は 2種以上、 とからなるポリェ ステル; (2) Primarily (a) One or more aromatic hydroxycarboxylic acids and their derivatives, and (b) One or two derivatives of aromatic dicarboxylic acids and alicyclic dicarboxylic acids. And (c) a polyester comprising at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof. Stealth;
( 3 ) 主として (a ) 芳香族ヒ ドロキシカルボン酸おょぴその誘導体の 1種又 は 2種以上と、 (b ) 芳香族ヒ ドロキシァミン、 芳香族ジァミンおよびその誘 導体の 1種又は 2種以上と、 (c ) 芳香族ジカルボン酸、 脂環族ジカルボン酸 およびその誘導体の 1種又は 2種以上、 とからなるポリエステルアミ ド; (3) Mainly (a) one or more aromatic hydroxycarboxylic acid derivatives and (b) one or two aromatic hydroxyamines, aromatic diamines and their derivatives. And (c) a polyester amide comprising one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof;
( 4 ) 主として (a ) 芳香族ヒ ドロキシカルボン酸およびその誘導体の 1種又 は 2種以上と、 (b ) 芳香族ヒ ドロキシァミン、 芳香族ジァミンおよびその誘 導体の 1種又は 2種以上と、 (c ) 芳香族ジカルボン酸、 脂環族ジカルボン酸 およびその誘導体の 1種又は 2種以上と、 (d ) 芳香族ジオール、 脂環族ジォ ール、 脂肪族ジオールおよびその誘導体の少なくとも 1種又は 2種以上、 とか らなるポリエステルアミ ドなどが挙げられる。 さらに上記の構成成分に必要に 応じ分子量調整剤を併用してもよい。 (4) Mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof. (C) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof, and (d) at least one of aromatic diols, alicyclic diols, aliphatic diols and derivatives thereof. Examples thereof include polyester amides composed of two or more species. Furthermore, you may use a molecular weight modifier together with said structural component as needed.
本発明に適用できる前記液晶性ポリマー (A)を構成する具体的化合物の好ま しい例としては、 p—ヒドロキシ安息香酸、 6—ヒドロキシ一 2—ナフトェ酸 等の芳香族ヒ ドロキシカルボン酸、 2, 6—ジヒドロキシナフタレン、 1 , 4 ージヒ ドロキシナフタレン、 4, 4 ' —ジヒ ドロキシビフエ二ノレ、 ハイ ドロキ ノン、 レゾルシン、 下記一般式 (I ) および下記一般式 (II) で表される化合 物等の芳香族ジオール;テレフタル酸、 イソフタル酸、 4, 4 ' ージフエニル ジカルボン酸、 2, 6—ナフタレンジカルボン酸および下記一般式 (III) で 表される化合物等の芳香族ジカルボン酸; p—ァミノフエノール、 p—フエ二 レンジァミン等の芳香族ァミン類が挙げられる。 Preferable examples of specific compounds constituting the liquid crystalline polymer (A) applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, , 6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4, 4'-dihydroxybifenenole, hydroxyquinone, resorcin, compounds represented by the following general formula (I) and the following general formula (II), etc. Aromatic diols; terephthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and aromatic dicarboxylic acids such as compounds represented by the following general formula (III); p-aminophenol And aromatic amines such as p-phenylenediamine.
Figure imgf000006_0001
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0003
Figure imgf000006_0002
Figure imgf000006_0003
(但し、 X : ァノレキレン (C 1〜C 4 ) 、 アルキリデン、 - 0 -、 - SO-、 - S02-、 _s -、 -CO -より選ばれる基、 Y : - (CH2) n- (n= 1〜4 )、 - 0 (CH2) n0- (n= l〜4 ) よ り選ばれる基) (However, X: Anorekiren (C 1 through C 4), alkylidene, - 0 -, - SO-, - S0 2 -, _s -, -CO - from group selected, Y: - (CH 2) n - ( n = 1 to 4),-0 (CH 2 ) n 0- (group selected from n = l to 4))
本発明が適用される特に好ましい液晶性ポリマー (A)としては、 p—ヒドロ キシ安息香酸、 6—ヒドロキシ一2—ナフトェ酸、 4, 4, ージヒドロキシビ フエニル、 テレフタル酸を主構成単位成分とする芳香族ポリエステルである。 次に、 本発明で用いる(B)繊維状酸化チタンであるが、 その熱伝導率は重要 である。 熱伝導率が低いとフイラ一を添加した樹脂組成物としての熱伝導率の 向上がほとんど望めないため、 繊維状酸化チタンの熱伝導率としては 3 W/ m · K以上であり、 好ましくは lOWZm · K以上である。 また、 そのァスぺク ト比も重要であり、 小さすぎると樹脂組成物内の熱伝達経路が発達しづらく樹 脂組成物の熱伝導率の向上が少ないという問題が発生するため、 ァスぺクト比 としては 10以上、 好ましくは 15以上が必要である。 繊維状酸化チタンは、 上 記の条件を満たし、 且つ液晶性ポリマーに対し分解等の悪影響を与えず、 また 導電性を持たず、 本発明における(B)成分の繊維状熱伝導性フイラ一として選 択的に用いられる。  Particularly preferred liquid crystalline polymers (A) to which the present invention is applied include aromatic compounds containing p-hydroxybenzoic acid, 6-hydroxy-1-naphthoic acid, 4,4, -dihydroxybiphenyl, and terephthalic acid as main structural unit components. A polyester. Next, (B) fibrous titanium oxide used in the present invention, its thermal conductivity is important. If the thermal conductivity is low, improvement in the thermal conductivity of the resin composition with filler added can hardly be expected. Therefore, the thermal conductivity of fibrous titanium oxide is 3 W / m · K or more, preferably lOWZm · K or higher. The aspect ratio is also important. If the ratio is too small, it is difficult to develop the heat transfer path in the resin composition, and there is a problem that the heat conductivity of the resin composition is not improved. The pect ratio should be 10 or more, preferably 15 or more. Fibrous titanium oxide satisfies the above-mentioned conditions, does not give adverse effects such as decomposition to the liquid crystalline polymer, and has no electrical conductivity. As a fibrous thermal conductive filter of the component (B) in the present invention, Used selectively.
また、 繊維状酸化チタンの添加量であるが、 添加量が少なすぎると樹脂組成 物内の熱伝達経路が発達しないため、 充分な熱伝導率が発揮されず、 逆に多す ぎると繊維同士の絡み合いが激しくなり、 熱伝導率は高くなるものの、 成形流 動性が著しく低下する問題、 混練時に押出機内圧力が上昇し混練性が極めて悪 化する問題、 樹脂組成物の増粘により繊維が折れ、 むしろ熱伝導率が低下する 問題等が発生する。 そのため、 (B)繊維状酸化チタンの添加量は、 (A)液晶性ポ リマー 100重量部に対し 10〜200重量部であり、 好ましくは 20〜150重量部、 更に好ましくは 20〜100重量部、 最も好ましくは 30〜100重量部である。 In addition, the amount of fibrous titanium oxide added is too small. If the amount added is too small, the heat transfer path in the resin composition will not develop, so that sufficient heat conductivity will not be exhibited. Although the entanglement becomes intense and the thermal conductivity increases, the molding flow There are problems such as a problem that the mobility is remarkably reduced, a problem that the pressure in the extruder rises during kneading and the kneading property is extremely deteriorated, a fiber breaks due to thickening of the resin composition, and a problem that the thermal conductivity is rather lowered. Therefore, the amount of (B) fibrous titanium oxide added is 10 to 200 parts by weight, preferably 20 to 150 parts by weight, more preferably 20 to 100 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polymer. Most preferably, it is 30 to 100 parts by weight.
次に本発明で用いる(C)板状 ·球状 ·不定形の熱伝導性フィラーであるが、 板状 ·球状 ·不定形の熱伝導性フイラ一を添加する理由は、 (B)繊維状酸化チ タンだけでは繊維方向の熱伝導は高くなるものの直角方向の熱伝導率の向上が 少なくなるため、 板状 ·球状 ·不定形の二次元以上の方向に広がりを持つフィ ラーを添加することにより、 樹脂組成物として均一な熱伝導性を与えることが 可能となることと、 繊維状酸化チタンだけを多量に添加すると上記のように著 しい流動性の低下を招くことから、 成形性に優れ且つ高い熱伝導性を持つ樹脂 糸且成物を得るのが困難であることが挙げられる。 そのため、 板状 ·球状 ·不定 形の熱伝導性フイラ一の熱伝導率も繊維状酸化チタン同様重要である。 熱伝導 率が低レヽと繊維状熱伝導性フィラーで伝えた熱を伝えづらくなり、 その部分で の熱伝達が律速になってしまう。 そのため、 板状 ·球状 ·不定形の熱伝導性フ ィラーの熱伝導率としては 2 WZm · K以上であり、 好ましくは 3 W/m · K 以上である。  Next, the (C) plate-like / spherical / indeterminate thermally conductive filler used in the present invention is added. The reason for adding the plate-like / spherical / indeterminate thermally conductive filler is as follows: (B) Fibrous oxidation Titanium alone increases the heat conduction in the fiber direction, but the improvement in the heat conductivity in the perpendicular direction is reduced. Therefore, by adding a filler that spreads in two or more dimensions of plate, spherical, and irregular shapes. It is possible to give uniform thermal conductivity as a resin composition, and adding only a large amount of fibrous titanium oxide causes a significant decrease in fluidity as described above. It is difficult to obtain resin yarns and compositions having high thermal conductivity. For this reason, the thermal conductivity of a plate-like, spherical, and amorphous heat-conducting filler is as important as that of fibrous titanium oxide. The heat conductivity is low and it becomes difficult to transfer the heat transferred by the fibrous heat conductive filler, and the heat transfer at that portion becomes rate limiting. Therefore, the thermal conductivity of the plate-like / spherical / indeterminate thermal conductive filler is 2 WZm · K or more, preferably 3 W / m · K or more.
また、 板状 '球状'不定形の熱伝導性フイラ一の添加量であるが、 添加量が 少なすぎると樹脂組成物内の熱伝達経路が発達しないため、 充分な熱伝導率が 発揮されず、 逆に多すぎると樹脂組成物の増粘により繊維が折れ、 むしろ熱伝 導率が低下する問題、 混練時に押出機内圧力が上昇し混練性が極めて悪化する 問題等が発生する。 そのため、 (C)板状 '球状'不定形の熱伝導性フイラ一の 添加量は、 (A)液晶性ポリマー 100重量部に対し 10〜400重量部であり、 好まし くは 20〜: L00重量部、 更に好ましくは 30〜80重量部である。  In addition, the amount of addition of the plate-shaped 'spherical' amorphous heat conductive filler is too small. However, if the amount added is too small, the heat transfer path in the resin composition will not develop, so that sufficient heat conductivity will not be exhibited. On the other hand, if the amount is too large, the fiber breaks due to the increase in the viscosity of the resin composition, but rather the problem that the thermal conductivity decreases, the problem that the internal pressure of the extruder increases during kneading, and the kneadability deteriorates significantly occurs. Therefore, the amount of (C) plate-like 'spherical' amorphous heat conductive filler added is 10 to 400 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polymer, preferably 20 to: L00 Parts by weight, more preferably 30 to 80 parts by weight.
本発明で使用することのできる(C)板状 ·球状 ·不定形の熱伝導性フィラー は、 上記の条件を満たす物質であれば如何なるものでも使用可能である。 具体 的な物質としては、 タルク、 無水炭酸マグネシウム、 酸化マグネシウム、 アル ミナ、 シリカ、 ベリリア、 窒化ホウ素、 炭化ケィ素、 窒化アルミニウム等が拳 げられるが、 これらの中でもフイラ一の硬度、 毒性、 経済性の点からタルク、 無水炭酸マグネシゥム、 酸化マグネシゥムが好ましレ、。 As the (C) plate-like / spherical / indeterminate thermally conductive filler that can be used in the present invention, any material that satisfies the above conditions can be used. Specific substances include talc, anhydrous magnesium carbonate, magnesium oxide, aluminum Mina, silica, beryllia, boron nitride, silicon carbide, and aluminum nitride can be used. Among these, talc, magnesium carbonate anhydrous, and magnesium oxide are preferred from the standpoint of filler hardness, toxicity, and economy. .
(B)繊維状酸化チタンと(C)板状 ·球状 ·不定形の熱伝導性フイラ一の総添加 量は、 少なすぎると熱伝導性が向上せず、 逆に多すぎると混練時に押出機内圧 力が上昇し混練性を極めて悪化させるため、 総添加量としては、 上記の(B)、 (C)成分夫々の添加量を満たしつつ、 (A)液晶性ポリマー 100重量部に対し 30〜 500重量部であり、 好ましくは 50〜250重量部、 更に好ましくは 50〜200重量 部である。  If the total amount of (B) fibrous titanium oxide and (C) plate-like, spherical, and amorphous heat-conducting fillers is too small, the thermal conductivity will not improve. Since the internal pressure increases and the kneadability is extremely deteriorated, the total addition amount is 30 to 100 parts by weight of 100 parts by weight of the (A) liquid crystalline polymer while satisfying the addition amounts of the components (B) and (C). 500 parts by weight, preferably 50 to 250 parts by weight, more preferably 50 to 200 parts by weight.
次に、 (C)成分として用いる無水炭酸マグネシウムであるが、 一般に炭酸マ グネシゥムは三水塩として存在し、 その結晶水を 1 0 0 °Cで放出することが知 られている。 そのため一般の炭酸マグネシゥムを樹脂に混入する際には結晶水 の放出により、 発泡、 樹脂の分解等のトラブルが発生し混練することができな い。 しかし、 本発明で用いる無水炭酸マグネシウムとは三水塩で存在する一般 の炭酸マグネシゥムを高温 ·高圧下で処理することにより無水の結晶としたも のであり、 上記問題がない。 このような方法で製造した無水炭酸マグネシゥム は、 高純度マグネサイト M S L (神島化学工業 (株) 製) 等として一般に入手 可能である。  Next, anhydrous magnesium carbonate used as component (C). Generally, magnesium carbonate exists as a trihydrate, and it is known that its crystal water is released at 100 ° C. For this reason, when general magnesium carbonate is mixed into the resin, problems such as foaming and resin decomposition occur due to the release of crystal water, and kneading cannot be performed. However, anhydrous magnesium carbonate used in the present invention is obtained by treating a general magnesium carbonate existing as a trihydrate with high temperature and high pressure to form anhydrous crystals, and there is no such problem. Anhydrous magnesium carbonate produced by such a method is generally available as high-purity magnesite M S L (manufactured by Kamijima Chemical Co., Ltd.).
次に、 (C)成分として用いる酸化マグネシウムであるが、 そのままでの使用 も可能であるが、 耐湿熱性を向上させるためにリン含有被覆酸化マグネシウム を用いることが好ましい。 本発明で用いるリン含有被覆酸化マグネシウムとは、 酸化マグネシゥムの表面に複酸化物を形成する化合物を存在させた状態で、 高 温で溶融することにより表面に複酸化物の被覆を行つたものである。 具体的な 方法としては、 複酸化物を形成する化合物を酸化マグネシウム粉末に湿式添カロ した後、 混合攪拌する方法や、 酸化マグネシウムの表面に複酸化物を形成する 化合物を存在させた状態で、 被覆材の融点以上の温度で焼成する方法にて製造 することが可能である。  Next, magnesium oxide used as the component (C) can be used as it is, but it is preferable to use phosphorus-containing coated magnesium oxide in order to improve the heat and moisture resistance. The phosphorus-containing coated magnesium oxide used in the present invention is the one in which a compound that forms a double oxide is present on the surface of the magnesium oxide and the surface is coated with the double oxide by melting at a high temperature. is there. Specifically, the compound that forms the double oxide is wet-added to the magnesium oxide powder and then mixed and stirred, or the compound that forms the double oxide is present on the surface of the magnesium oxide. It can be produced by firing at a temperature equal to or higher than the melting point of the coating material.
複酸化物を形成するために使用される化合物は、 アルミニウム化合物、 鉄化 合物、 ケィ素化合物及びチタン化合物からなる群から選択される 1種以上の化 合物であることが好ましい。 化合物の形態は限定されないが、 硝酸塩、 硫酸塩、 塩化物、 ォキシ硝酸塩、 ォキシ硫酸塩、 ォキシ塩化物、 水酸化物、 酸化物等が 用いられる。 この化合物の具体例としては、 ヒュームドシリカ、 硝酸アルミ二 ゥム、 硝酸鉄等を挙げることができる。 The compounds used to form double oxides are aluminum compounds, ironated One or more compounds selected from the group consisting of a compound, a key compound and a titanium compound are preferred. The form of the compound is not limited, but nitrate, sulfate, chloride, oxynitrate, oxysulfate, oxychloride, hydroxide, oxide, etc. are used. Specific examples of this compound include fumed silica, aluminum nitrate, iron nitrate and the like.
リン含有被覆酸化マグネシウムの製造方法は、 上記の方法により製造した酸 化マグネシゥムまたは複酸化物よりなる被覆層を有する酸化マグネシゥムに対 して、 リン化合物による表面処理を行い、 その表面にリン酸マグネシウム系化 合物による被覆層を形成する。  The method for producing a phosphorus-containing coated magnesium oxide is the following: surface treatment with a phosphorous compound is performed on magnesium oxide having a coating layer made of magnesium oxide or a double oxide produced by the above method, and magnesium phosphate is applied to the surface. A coating layer is formed from the compound.
この表面処理に使用するリン化合物としては、 リン酸、 リン酸塩、 酸性リン 酸エステル等を挙げることができ、 これらは単独で使用しても、 2種以上を同 時に使用してもよレ、。 リン酸塩としては、 リン酸ナトリウム、 リン酸カリウム、 リン酸アンモ-ゥム等が挙げられ、 また、 酸性リン酸エステルとしては、 イソ プロピノレアシッ ドホスフェート、 メチノレアシッ ドホスフェート、 ェチノレアシッ ドホスフェート、 プロピノレアシッ ドホスフェート、 ブチルァシッ ドホスフエー ト、 ラウリルアシッドホスフェート、 ステアリルァシッドホスフエート、 2— ェチノレへキシノレアシッドホスフエート、 ォレイノレアシッド、ホスフエ一ト等が挙 げられる。 中でも、 耐水性に優れた被覆層を容易に形成可能である点からイソ プロピルアシッ ドホスフェートが好ましい。  Examples of the phosphorus compound used for this surface treatment include phosphoric acid, phosphate, and acidic phosphate ester. These may be used alone or in combination of two or more. ,. Examples of the phosphate include sodium phosphate, potassium phosphate, and ammonium phosphate, and examples of the acidic phosphate ester include isopropenoreaside phosphate, methenoreaside phosphate, ethenoreaside phosphate, and propinoreaside phosphate. Butyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, 2-ethylenohexanoyl acid phosphate, oleino rare acid, phosphate and the like. Of these, isopropyl acid phosphate is preferred because a coating layer having excellent water resistance can be easily formed.
リン含有被覆酸化マグネシゥムのリン化合物による表面処理の具体的方法と しては、 酸化マグネシゥムまたは複酸化物よりなる被覆層を有する酸化マグネ シゥムに所定量のリン化合物を添カ卩し、 例えば 5〜60分間攪拌後、 300°C以上 の温度で、 0. 5〜 5時間焼成することにより行う。  As a specific method for the surface treatment of a phosphorus-containing coated magnesium oxide with a phosphorus compound, a predetermined amount of a phosphorus compound is added to magnesium oxide having a coating layer made of magnesium oxide or a double oxide, for example, 5 to 5 After stirring for 60 minutes, firing is performed at a temperature of 300 ° C or higher for 0.5 to 5 hours.
このような方法にて製造したリン含有被覆酸化マグネシゥムは、 クールフィ ラー C F 2— 1 0 0 A (タテホ化学工業 (株) ) として一般に入手可能である。 次に本発明では、 更に (D)アルコキシシラン化合物を添加することが、 耐湿 熱性向上の点から好ましい。 特に (C)成分としてリン含有被覆酸化マグネシゥ ムを用いる場合にその効果が顕著である。 本発明に用いるアルコキシシラン化合物とは、 アミノアルコキシシラン、 ビ ニルアルコキシシラン、 エポキシアルコキシシラン、 メルカプトアルコキシシ ラン及びァリルアルコキシシランからなる群より選ばれる少なくとも 1種であ ればよい。 Phosphorus-containing coated magnesium oxide produced by such a method is generally available as Cool Filler CF2-1OOA (Tateho Chemical Industry Co., Ltd.). Next, in the present invention, it is preferable to further add (D) an alkoxysilane compound from the viewpoint of improving heat resistance. The effect is particularly remarkable when phosphorus-containing coated magnesium oxide is used as component (C). The alkoxysilane compound used in the present invention may be at least one selected from the group consisting of aminoalkoxysilane, vinylalkoxysilane, epoxyalkoxysilane, mercaptoalkoxysilane and arylalkoxysilane.
アミノアルコキシシランとしては、 1分子中にアミノ基を 1個以上有し、 ァ ルコキシ基を 2個あるいは 3個有するシラン化合物であればレ、ずれのものも有 効で、 例えば yーァミノプロピルトリメ トキシシラン、 ーァミノプロピルト リェトキシシラン、 γ—ァミノプロピルメチルジメ トキシシラン、 γ—アミノ プロピルメチルジェトキシシラン、 Ν - ( β—アミノエチル) —γ—アミノブ 口ピルトリメ トキシシラン、 Ν—フエ二ルー γ一アミノプロピルトリメ トキシ シラン等が挙げられる。 ビニルアルコキシシランとしては、 1分子中にビュル 基を 1個以上有し、 アルコキシ基を 2個あるいは 3個有するシラン化合物であ ればいずれのものも有効で、 例えばビュルトリメ トキシシラン、 ビニルトリエ トキシシラン、 ビニルトリス ( β —メ トキシェトキシ) シラン等が挙げられる。 エポキシアルコキシシランとしては、 1分子中にエポキシ基を 1個以上有し、 アルコキシ基を 2個あるいは 3個有するシラン化合物であればレ、ずれのものも 有効で、 例えば γ—グリシドキシプロビルトリメ トキシシラン、 β― ( 3 , 4 —エポキシシク口へキシル) ェチルトリメ トキシシラン、 γ—グリシドキシプ 口ピルトリエトキシシラン等が挙げられる。 メルカプトアルコキシシランとし ては、 1分子中にメルカプト基を 1個以上有し、 アルコキシ基を 2個あるいは 3個有するシラン化合物であれば!/、ずれのものも有効で、 例えば γ—メルカプ トプロビルトリメ トキシシラン、 7一メルカプトプロピルトリエトキシシラン 等が挙げられる。 ァリルアルコキシシランとしては、 1分子中にァリル基を 1 個以上有し、 アルコキシ基を 2個あるいは 3個有するシラン化合物であればい ずれのものも有効で、 例えば 一ジァリルァミノプロビルトリメ トキシシラン、 γ—ァリルァミノプロピルトリメ トキシシラン、 y—ァリルチオプロピルトリ メ トキシシラン等が挙げられる。 本発明の目的のためには、 上記アルコキシシ ラン化合物の内、 アミノアルコキシシランが最も好ましい。 本発明にてアルコキシシラン化合物の添加量は重要であり、 アルコキシシラ ン化合物が少ないと P C T後の機械物性の低下が著しく、 また逆に多すぎると 樹脂が増粘し成形性が著しく低下する。 そのため、 アルコキシシラン化合物の 添加量は、 (A)液晶性ポリマー 100重量部に対して 0. 1〜 5重量部、 好ましくは 0. 4〜 4重量部である。 As an aminoalkoxysilane, any silane compound having one or more amino groups in one molecule and having two or three alkoxy groups can be used, for example, y-aminopropyl. Trimethoxysilane, aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyljetoxysilane, Ν- (β-aminoethyl) —γ-aminobutyl pilltrimethoxysilane, Ν-phenol γ And monoaminopropyltrimethoxysilane. As the vinylalkoxysilane, any silane compound having one or more bur groups in one molecule and having two or three alkoxy groups is effective. For example, burtrimethoxysilane, vinyltriethoxysilane, vinyltris ( β-methoxyxoxy) silane and the like. Epoxyalkoxysilane is effective as long as it is a silane compound having one or more epoxy groups in one molecule and two or three alkoxy groups, such as γ-glycidoxyprovir. Examples include trimethoxysilane, β- (3,4-epoxy hexyl) ethyltrimethylsilane, γ-glycidoxy pill triethoxysilane, and the like. As the mercaptoalkoxysilane, any silane compound having one or more mercapto groups in one molecule and having two or three alkoxy groups can be used! /, But any of them can be used. For example, γ-mercaptopropyl trimethoxysilane 7-mercaptopropyltriethoxysilane and the like. As the arylalkoxysilane, any silane compound having one or more aryl groups in one molecule and having two or three alkoxy groups is effective. For example, one diallylaminopropyl Examples include trimethoxysilane, γ-arylaminopropyltrimethoxysilane, and y-arylthiopropyltrimethoxysilane. For the purpose of the present invention, among the alkoxysilane compounds, aminoalkoxysilane is most preferable. In the present invention, the amount of the alkoxysilane compound added is important. If the amount of the alkoxysilane compound is small, the mechanical properties after the PCT are remarkably deteriorated. Therefore, the addition amount of the alkoxysilane compound is 0.1 to 5 parts by weight, preferably 0.4 to 4 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polymer.
また、 本発明の高熱伝導性樹脂組成物は、 本発明の目的範囲内で、 機械的強 度、 耐熱性、 寸法安定性 (耐変形、 そり) 、 電気的性質等の性能の改良のため、 (B)、 (C)成分以外の無機又は有機充填剤を配合したものでもよく、 これには目 的に応じて繊維状、 粉粒状、 板状の充填剤が用いられる。  In addition, the high thermal conductive resin composition of the present invention is within the object range of the present invention, in order to improve performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties. (B), (C) Inorganic or organic fillers other than the components may be blended, and for this purpose, fibrous, granular, or plate-like fillers are used.
また、 一般に熱可塑性樹脂に添加される公知の物質、 すなわち難燃剤、 染料 や顔料等の着色剤、 酸化防止剤や紫外線吸収剤等の安定剤、 潤滑剤、 結晶化促 進剤、 結晶核剤等も要求性能に応じ適宜添加したものも本発明の組成物として 使用できる。  In addition, known substances generally added to thermoplastic resins, that is, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and UV absorbers, lubricants, crystallization accelerators, crystal nucleating agents Can be used as the composition of the present invention.
このようにして得られた本発明の熱伝導性樹脂組成物を用い、 射出成形や押 出成形、 ブロー成形等で得られた成形品は、 高い耐湿熱性、 耐ィヒ学薬品性、 寸 法安定性、 難燃性、 優れた放熱性を示す。 この利点を活かして熱交換器、 放熱 板、 光ピックアツプ等といった内部で発生した熱を外部に放熱する部品に好適 に用いることができる。  Molded products obtained by injection molding, extrusion molding, blow molding, etc. using the heat conductive resin composition of the present invention thus obtained have high moisture and heat resistance, chemical resistance, dimensions. Shows stability, flame retardancy, and excellent heat dissipation. Taking advantage of this advantage, it can be suitably used for components that radiate internally generated heat, such as heat exchangers, heat sinks, and optical pick-ups.
また、 その他の用途として、 例えば L E D、 センサー、 コネクター、 ソケッ ト、 端子台、 プリント基板、 モーター部品、 E C Uケース等の電気 ·電子部品、 照明部品、 テレビ部品、 炊飯器部品、 電子レンジ部品、 アイロン部品、 複写機 関連部品、 プリンター関連部品、 ファクシミリ関連部品、 ヒーター、 エアコン 用部品等の家庭 ·事務電気製品部品に用いることができる。 実施例  Other applications include, for example, LEDs, sensors, connectors, sockets, terminal blocks, printed circuit boards, motor parts, ECU cases and other electrical / electronic parts, lighting parts, TV parts, rice cooker parts, microwave oven parts, irons, etc. It can be used for home / office electrical product parts such as parts, copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts. Example
次に実施例、 比較例で本発明を具体的に説明するが、 本発明はこれらに限定 されるものではない。 尚、 実施例中の物性測定の方法は以下の通りである。  EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. In addition, the method of the physical-property measurement in an Example is as follows.
( 1 ) 熱伝導率 直径 30mra、 厚さ 2mmの円板状成形品を重ねたサンプルを用い、 ホットディ スク法にて熱伝導率を測定した。 (1) Thermal conductivity Thermal conductivity was measured by a hot disk method using a sample in which disk-shaped molded products having a diameter of 30 mra and a thickness of 2 mm were stacked.
(2) 射出成形性  (2) Injection moldability
シリンダー温度 370°C、 射出速度 15m/minの条件で、 幅 5mm、 厚さ 0.3mmで 最大流動距離 70mmの棒状成形品を成形し、 流動距離を測定し、 射出成形性と した。  Under the conditions of a cylinder temperature of 370 ° C and an injection speed of 15 m / min, a rod-shaped molded product with a width of 5 mm, a thickness of 0.3 mm and a maximum flow distance of 70 mm was molded, and the flow distance was measured to determine the injection moldability.
(3) 耐湿熱性  (3) Moisture and heat resistance
80X10X 4膽の I S〇標準試験片を用い、 121°C、 湿度 100%、 2気圧条件 下でプレッシャータッカーテストを 48時間行い、 その試験片について I SO 1 78に準拠して曲げ強さの測定を行い、 初期値に対する保持率を求めた。 実施例 1〜6、 比較例 1〜5  Using 80x10x 4mm IS standard test piece, perform pressure tacker test for 48 hours under the condition of 121 ° C, humidity 100%, 2 atm, and measure the bending strength according to I SO 1 78 The retention rate relative to the initial value was obtained. Examples 1-6, Comparative Examples 1-5
液晶性ポリマー、 熱伝導性フィラー及びアルコキシシラン化合物を、 表 1に 示す組成にて、 二軸押出機 ( (株) 日本製鋼所製 TEX30 α型) を用いて混 練しペレットを形成後、 射出成形機にて上述の試験片を成形し、 各種評価を行 つた。 結果を表 1に示す。  Liquid crystal polymer, heat conductive filler, and alkoxysilane compound are mixed in the composition shown in Table 1 using a twin screw extruder (TEX30 α type, manufactured by Nippon Steel) to form pellets, then injected The above-mentioned specimens were molded using a molding machine, and various evaluations were performed. The results are shown in Table 1.
尚、 使用した各成分及びアルコキシシラン化合物添加方法は以下の通りであ る。  In addition, each component used and the alkoxysilane compound addition method are as follows.
(Α)液晶性ポリマー (LCP)  (Ii) Liquid crystalline polymer (LCP)
ポリプラスチックス (株) 製 S 950、 熱伝導率 0.45W/m · K  Polyplastics Co., Ltd. S 950, thermal conductivity 0.45W / m
(B)繊維状酸化チタン  (B) Fibrous titanium oxide
針状酸化チタン;石原産業 (株) 製 F T L _ 300、 繊維径 0.27 m、 繊維 長 5.15μ m、 熱伝導率 20W/m · K  Acicular titanium oxide; manufactured by Ishihara Sangyo Co., Ltd. F T L _ 300, fiber diameter 0.27 m, fiber length 5.15 μm, thermal conductivity 20 W / m · K
(C)板状 ·球状 ·不定形の熱伝導性フイラ一  (C) Plate, Spherical, Amorphous heat conductive filler
タルク ;松村産業 (株) 製クラウンタルク PP、 板状、 平均粒径 8μπι、 熱 伝導率 3.2W/m · K  Talc : Crown talc PP manufactured by Matsumura Sangyo Co., Ltd., plate shape, average particle size 8μπι, thermal conductivity 3.2W / m · K
無水炭酸マグネシウム;神島化学工業 (株) 製高純度マグネサイト MS L (無水炭酸マグネシウム合成品) 、 不定形、 平均粒径 8/ m、 熱伝導率 15WZ m · K リン含有被覆酸化マグネシウム ;タテホ化学工業 (株) 製 CF 2— 1 00A、 球状、 平均粒径 27μπι、 最大粒径 ΙΟΟμπκ 熱伝導率 35WZm · Κ Anhydrous magnesium carbonate; high purity magnesite MS L (anhydrous magnesium carbonate synthetic product) manufactured by Kamishima Chemical Industry Co., Ltd., irregular shape, average particle size 8 / m, thermal conductivity 15WZ m · K Phosphorus-containing coated magnesium oxide; manufactured by Tateho Chemical Co., Ltd. CF2-100A, spherical, average particle size 27μπι, maximum particle size ΙΟΟμπκ Thermal conductivity 35WZm · Κ
酸化チタン;堺化学工業 (株) 製 T I T ONE SR—1、 不定形、 平均粒 径 0.25 μ m、 熱伝導率 20W/m · K  Titanium oxide; manufactured by Sakai Chemical Industry Co., Ltd. T I T ONE SR—1, amorphous, average particle size 0.25 μm, thermal conductivity 20W / m · K
(D)アミノシラン化合物 (D) Aminosilane compound
3—ァミノプロビルトリエトキシシラン 3-Aminoprovir triethoxysilane
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0002
*1;混練時の樹脂圧増加による混練不可で、評価不能。  * 1; Cannot be kneaded due to increased resin pressure during kneading, and cannot be evaluated.

Claims

請求の範囲 The scope of the claims
1 . (A)液晶性ポリマー 100重量部に対し、 1. (A) 100 parts by weight of liquid crystalline polymer
(B)熱伝導率 3 WZm · K以上、 ァスぺクト比 10以上の繊維状酸化チタン 10〜 200重量部、  (B) Thermal conductivity 3 WZm · K or more, 10 to 200 parts by weight of fibrous titanium oxide with an aspect ratio of 10 or more,
(C)熱伝導率 2 W/m · K以上の板状 ·球状 ·不定形の何れか 1種以上の熱伝 導性フイラ一 10〜400重量部を添加してなり、  (C) Thermal conductivity 2 W / m · K or more plate shape · Spherical shape · Indeterminate shape Add one or more heat conductive fillers 10 to 400 parts by weight,
(B)、 (C)成分の総添加量が(A)液晶性ポリマー 100重量部に対し 30〜500重量 部であり、 熱伝導率 0 . 8 W/m · K以上であることを特徴とする絶縁性の熱 伝導性樹脂組成物。  The total addition amount of the components (B) and (C) is 30 to 500 parts by weight with respect to 100 parts by weight of the (A) liquid crystalline polymer, and the thermal conductivity is at least 0.8 W / m · K. An insulating thermal conductive resin composition.
2 . (B)成分の添カ卩量が 20〜100重量部、 (C)成分の添加量が 20〜: L00重量部 であり、 (B)、 (C)成分の総添加量が 50〜200重量部である請求項 1記載の絶縁 性の熱伝導性樹脂組成物。  2. Additive amount of component (B) is 20 to 100 parts by weight, (C) component is added 20 to L00 parts by weight, and (B) and (C) component is added in total 50 to The insulating heat conductive resin composition according to claim 1, wherein the amount is 200 parts by weight.
3 . (C)板状 ·球状 ·不定形の熱伝導性フィラーが、 タルク、 無水炭酸マグ ネシゥム及び酸化マグネシゥムより選ばれた 1種以上である請求項 1又は 2記 載の絶縁性の熱伝導性樹脂組成物。  3. The insulating heat conduction according to claim 1 or 2, wherein the (C) plate-like / spherical / indeterminate thermally conductive filler is at least one selected from talc, anhydrous magnesium carbonate and magnesium oxide. Resin composition.
4 . 酸化マグネシゥムがリン含有被覆酸化マグネシゥムである請求項 3記載 の絶縁性の熱伝導性樹脂組成物。  4. The insulating heat conductive resin composition according to claim 3, wherein the magnesium oxide is a phosphorus-containing coated magnesium oxide.
5 . 更に、 (D)アルコキシシラン化合物を(A)液晶性ポリマー 100重量部に対 して 0.:!〜 5重量部配合量してなる請求項 4記載の熱伝導性樹脂組成物。  5. The thermal conductive resin composition according to claim 4, further comprising (D) an alkoxysilane compound in an amount of 0.:! To 5 parts by weight based on 100 parts by weight of the (A) liquid crystalline polymer.
PCT/JP2007/072875 2006-11-29 2007-11-20 Thermally conductive resin composition WO2008066051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800437045A CN101547975B (en) 2006-11-29 2007-11-20 Thermally conductive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-321161 2006-11-29
JP2006321161A JP5122116B2 (en) 2006-11-29 2006-11-29 Thermally conductive resin composition

Publications (1)

Publication Number Publication Date
WO2008066051A1 true WO2008066051A1 (en) 2008-06-05

Family

ID=39467839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072875 WO2008066051A1 (en) 2006-11-29 2007-11-20 Thermally conductive resin composition

Country Status (3)

Country Link
JP (1) JP5122116B2 (en)
CN (1) CN101547975B (en)
WO (1) WO2008066051A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469416B2 (en) * 2008-08-07 2010-05-26 積水化学工業株式会社 Insulating sheet and laminated structure
WO2011010290A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive thermoplastic resin compositions and related applications
WO2011010291A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive polymer compositions and articles made therefrom
JP2012031391A (en) * 2010-06-28 2012-02-16 Toray Ind Inc Liquid crystalline resin composition, and method for producing the same
GB2488560A (en) * 2011-03-01 2012-09-05 Bentley Motors Ltd Vehicle trim components
JP2015117351A (en) * 2013-12-20 2015-06-25 東レ株式会社 Liquid crystalline polyester resin composition and metal composite molded article using the same
EP2915841A1 (en) * 2014-03-04 2015-09-09 LANXESS Deutschland GmbH Polyester compounds

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297639B2 (en) * 2007-11-28 2013-09-25 ポリプラスチックス株式会社 Thermally conductive resin composition
JP5155769B2 (en) * 2008-08-07 2013-03-06 ポリプラスチックス株式会社 Totally aromatic polyester and polyester resin composition
JP5684999B2 (en) * 2009-08-06 2015-03-18 株式会社カネカ High thermal conductivity thermoplastic resin composition for blow molding
JP5680873B2 (en) * 2009-08-20 2015-03-04 株式会社カネカ High thermal conductivity thermoplastic resin and thermoplastic resin molding
JP5490604B2 (en) * 2009-09-18 2014-05-14 株式会社カネカ Thermoplastic resin composition and resin material for heat dissipation and heat transfer
EP2471835A4 (en) 2009-09-30 2014-07-23 Polyplastics Co Liquid-crystal polymer and molded articles
JP5525322B2 (en) * 2010-04-26 2014-06-18 株式会社カネカ High thermal conductivity thermoplastic resin composition
KR20120114048A (en) * 2011-04-06 2012-10-16 삼성정밀화학 주식회사 Thermally conductive polymer composite material and article including the same
KR102053787B1 (en) * 2012-03-15 2019-12-09 듀폰 도레이 컴파니, 리미티드 Thermoplastic elastomer resin composition and composite molded body
JP6526939B2 (en) * 2013-06-14 2019-06-05 スターライト工業株式会社 Thermal conductive resin molding
JP6885687B2 (en) * 2016-07-29 2021-06-16 上野製薬株式会社 Liquid crystal polymer composition
JP6844968B2 (en) * 2016-07-29 2021-03-17 上野製薬株式会社 Liquid crystal polymer composition
JP2019203050A (en) * 2018-05-22 2019-11-28 デンカ株式会社 Heat insulation material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158527A (en) * 1996-11-28 1998-06-16 Otsuka Chem Co Ltd Resin composition for sealing electronic part
JP2000160164A (en) * 1998-12-01 2000-06-13 Otsuka Chem Co Ltd Powdery flame-retardant
JP2002030223A (en) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd Thermally conductive resin composition
JP2004175812A (en) * 2002-11-22 2004-06-24 Toray Ind Inc Tablet for heat-dissipating member, heat-dissipating member, and method for producing the member
JP2005146124A (en) * 2003-11-14 2005-06-09 Toray Ind Inc Highly-filled resin composition, and molded article obtained therefrom
WO2006059666A1 (en) * 2004-12-01 2006-06-08 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194988A (en) * 1992-12-09 1994-07-15 Ntn Corp Separating pawl
JP2878921B2 (en) * 1993-03-03 1999-04-05 ポリプラスチックス株式会社 Polyarylene sulfide resin composition
JP2001207054A (en) * 2000-01-24 2001-07-31 Polyplastics Co Molded article of liquid crystalline polymer
JP2003221511A (en) * 2002-01-30 2003-08-08 Dainippon Ink & Chem Inc Thermoplastic resin molded article
JP2006045298A (en) * 2004-08-03 2006-02-16 Ntn Corp Liquid crystal polyester composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158527A (en) * 1996-11-28 1998-06-16 Otsuka Chem Co Ltd Resin composition for sealing electronic part
JP2000160164A (en) * 1998-12-01 2000-06-13 Otsuka Chem Co Ltd Powdery flame-retardant
JP2002030223A (en) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd Thermally conductive resin composition
JP2004175812A (en) * 2002-11-22 2004-06-24 Toray Ind Inc Tablet for heat-dissipating member, heat-dissipating member, and method for producing the member
JP2005146124A (en) * 2003-11-14 2005-06-09 Toray Ind Inc Highly-filled resin composition, and molded article obtained therefrom
WO2006059666A1 (en) * 2004-12-01 2006-06-08 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469416B2 (en) * 2008-08-07 2010-05-26 積水化学工業株式会社 Insulating sheet and laminated structure
JPWO2010016480A1 (en) * 2008-08-07 2012-01-26 積水化学工業株式会社 Insulating sheet and laminated structure
WO2011010290A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive thermoplastic resin compositions and related applications
WO2011010291A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive polymer compositions and articles made therefrom
US20130003416A1 (en) * 2009-07-24 2013-01-03 Yuji Saga Thermally conductive thermoplastic resin compositions and related applications
US9090751B2 (en) * 2009-07-24 2015-07-28 Ticona Llc Thermally conductive thermoplastic resin compositions and related applications
JP2012031391A (en) * 2010-06-28 2012-02-16 Toray Ind Inc Liquid crystalline resin composition, and method for producing the same
GB2488560A (en) * 2011-03-01 2012-09-05 Bentley Motors Ltd Vehicle trim components
JP2015117351A (en) * 2013-12-20 2015-06-25 東レ株式会社 Liquid crystalline polyester resin composition and metal composite molded article using the same
EP2915841A1 (en) * 2014-03-04 2015-09-09 LANXESS Deutschland GmbH Polyester compounds

Also Published As

Publication number Publication date
CN101547975A (en) 2009-09-30
JP2008133382A (en) 2008-06-12
CN101547975B (en) 2012-01-04
JP5122116B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5122116B2 (en) Thermally conductive resin composition
JP5297639B2 (en) Thermally conductive resin composition
JP5767809B2 (en) High thermal conductive resin molding
KR100981895B1 (en) Liquid crystalline polyester resin composition for a connector
EP1158027B1 (en) Liquid crystal polymer composition for connector and connector
EP1359187B1 (en) A flame retardant resin composition
WO2013039103A1 (en) Inorganic filler composite, heat-conductive resin composition, and molded article
WO2009064883A1 (en) Thermally conductive resin compositions
JP2001207054A (en) Molded article of liquid crystalline polymer
TWI836143B (en) Liquid crystalline resin composition for ball bearing sliding wear-resistant parts and ball bearing sliding wear-resistant parts using the same
TW202028365A (en) Liquid crystalline resin composition and connector including molded article of said liquid crystalline resin composition
JP6837184B2 (en) Liquid crystal resin composition
JP4419529B2 (en) Resin composition and molded product obtained therefrom
JP2004175812A (en) Tablet for heat-dissipating member, heat-dissipating member, and method for producing the member
JP5468975B2 (en) High heat conductivity thermoplastic resin heat sink
JP5308187B2 (en) Flame retardant high light resistance and high thermal conductivity thermoplastic resin composition and molded article thereof
WO2014109134A1 (en) Hexagonal boron nitride, and resin molded article having high thermal conductivities which is produced using same
JP2009249536A (en) Liquid-crystalline resin injection-molding compound and method for producing the same
JP2005306955A (en) Method for producing highly heat-conductive resin composition
WO2020230890A1 (en) Liquid crystalline resin composition and molded body using same
JP4376445B2 (en) Liquid crystalline polymer composition
WO2023032574A1 (en) Electromagnetic wave shielding member
KR20230116010A (en) Conductive liquid crystalline resin composition
WO2023136196A1 (en) Liquid crystal polyester composition and molded body
JPH04320450A (en) Polyamide resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043704.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832600

Country of ref document: EP

Kind code of ref document: A1