JP2012236867A - Method for producing crystal nucleating agent for resin - Google Patents

Method for producing crystal nucleating agent for resin Download PDF

Info

Publication number
JP2012236867A
JP2012236867A JP2011104762A JP2011104762A JP2012236867A JP 2012236867 A JP2012236867 A JP 2012236867A JP 2011104762 A JP2011104762 A JP 2011104762A JP 2011104762 A JP2011104762 A JP 2011104762A JP 2012236867 A JP2012236867 A JP 2012236867A
Authority
JP
Japan
Prior art keywords
resin
zinc
phenylphosphonate
nucleating agent
crystal nucleating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011104762A
Other languages
Japanese (ja)
Inventor
Isao Ota
勇夫 太田
Masaki Oiwamoto
雅紀 大岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2011104762A priority Critical patent/JP2012236867A/en
Publication of JP2012236867A publication Critical patent/JP2012236867A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for readily producing a crystal nucleating agent for a resin, with which crystallization rate and crystallization temperature of the resin are heightened to obtain a highly transparent resin.SOLUTION: Mixed slurry including an aqueous solution of at least one metal salt of phenylphosphonic acid selected from magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate, at least one selected from zinc oxide and zinc bicarbonate, cyanuric acid and water, is dispersed and reacted, thereby the crystal nucleating agent for a resin containing zinc basic cyanurate, zinc phenylphosphonate and a hydroxide of a metal constituting the metal salt of the phenylphosphonic acid is obtained.

Description

本発明は、ポリ乳酸樹脂やポリオレフィン系樹脂等の樹脂用結晶核剤の製造方法に関する。   The present invention relates to a method for producing a crystal nucleating agent for resin such as polylactic acid resin and polyolefin resin.

自然環境保護の見地から、自然環境中で生分解可能な脂肪族ポリエスエルに関する研究が精力的に行なわれている。中でもポリ乳酸樹脂は、融点が160〜180℃と高く透明性に優れるため、容器、フィルム等の包装材料、衣料、繊維材料、電気、電子製品の成形材料として期待されている。   From the standpoint of protecting the natural environment, research on aliphatic polyester that is biodegradable in the natural environment has been energetically conducted. Among them, polylactic acid resin has a high melting point of 160 to 180 ° C. and is excellent in transparency. Therefore, polylactic acid resin is expected as a molding material for packaging materials such as containers and films, clothing, fiber materials, electrical and electronic products.

しかしながら、ポリ乳酸樹脂は、結晶化速度が遅いという問題がある。結晶化速度が遅いと、結晶化度が低くなるため、耐熱性が悪くなる。例えば、ポリ乳酸樹脂を延伸が行われない射出成形等によって成形する場合、成形物は結晶化度が低くなり60℃前後のガラス転移温度を超えると変形しやすくなるという欠点を有している。そこで、結晶化度を上げるために、射出成形時の金型温度を高くし、金型内での冷却時間を長くする方法が試みられているが、この方法では成形時間が長くなるため、生産性に課題を有する。   However, the polylactic acid resin has a problem that the crystallization rate is slow. When the crystallization speed is slow, the crystallinity is lowered, and the heat resistance is deteriorated. For example, when a polylactic acid resin is molded by injection molding or the like in which stretching is not performed, the molded product has a disadvantage that the degree of crystallinity is low and the glass transition temperature of about 60 ° C. is easily deformed. Therefore, in order to increase the crystallinity, an attempt has been made to increase the mold temperature at the time of injection molding and extend the cooling time in the mold. Has a problem with sex.

また、ポリ乳酸樹脂やポリプロピレン樹脂の結晶化速度を高める方法としては、例えば、結晶性高分子である樹脂の一次結晶核となり結晶成長を促進して結晶化速度を高める結晶核剤を添加する方法が知られている。   In addition, as a method for increasing the crystallization speed of polylactic acid resin or polypropylene resin, for example, a method of adding a crystal nucleating agent that becomes a primary crystal nucleus of a resin that is a crystalline polymer and promotes crystal growth to increase the crystallization speed. It has been known.

ポリ乳酸樹脂の結晶核剤としては、特定の粒径以下のタルク及び/又は窒化ホウ素からなる無機粒子(特許文献1参照。)、特定の式で示されるアミド化合物(特許文献2参照。)、特定の式で示されるソルビトール誘導体(特許文献3参照。)、リン酸エステル金属塩及び塩基性無機アルミニウム化合物(特許文献4参照。)、フェニルホスホン酸の金属塩(特許文献5参照。)等が開示されているが、さらに有効な樹脂用結晶核剤の開発が望まれている。また、成形時間を短くするために、結晶化温度を高くすることも望まれている。そして、より透明性に優れていることや、容易に製造できることも望まれる。   As a crystal nucleating agent for polylactic acid resin, inorganic particles composed of talc and / or boron nitride having a specific particle size or less (see Patent Document 1), amide compounds represented by a specific formula (see Patent Document 2), A sorbitol derivative represented by a specific formula (see Patent Document 3), a phosphate metal salt and a basic inorganic aluminum compound (see Patent Document 4), a metal salt of phenylphosphonic acid (see Patent Document 5), and the like. Although disclosed, development of a more effective crystal nucleating agent for resin is desired. It is also desired to increase the crystallization temperature in order to shorten the molding time. And it is desired that it is more excellent in transparency and can be easily manufactured.

特開平8−3432号公報(特許請求の範囲)JP-A-8-3432 (Claims) 特開平10−87975号公報(特許請求の範囲)JP-A-10-87975 (Claims) 特開平10−158369号公報(特許請求の範囲)JP-A-10-158369 (Claims) 特開2003−192883号公報(特許請求の範囲)JP 2003-192883 A (Claims) 国際公開第2005−97894号パンフレット(特許請求の範囲)International Publication No. 2005-97894 Pamphlet (Claims)

本発明の課題は、上述の従来技術の問題点を解決することにあり、樹脂の結晶化速度及び結晶化温度を高くすることができ、透明性が高い樹脂用結晶核剤を、容易に製造できる樹脂用結晶核剤の製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and it is possible to increase the crystallization speed and crystallization temperature of a resin, and to easily produce a crystal nucleating agent for resin with high transparency. Another object of the present invention is to provide a method for producing a resin crystal nucleating agent.

上記課題を解決する本発明の樹脂用結晶核剤の製造方法は、フェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを含有する混合スラリーを、分散させて反応させることにより、塩基性シアヌル酸亜鉛及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤を得ることを特徴とする。   The method for producing a crystal nucleating agent for a resin according to the present invention for solving the above-mentioned problems is provided by at least one metal salt of phenylphosphonic acid selected from magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate. By mixing and reacting a mixed slurry containing at least one selected from zinc oxide and basic zinc carbonate, cyanuric acid, and water, basic zinc cyanate and zinc phenylphosphonate A crystal nucleating agent for resin containing is obtained.

また、上記樹脂用結晶核剤は、比表面積が20〜100m/gであることが好ましい。 In addition, the crystal nucleating agent for resin preferably has a specific surface area of 20 to 100 m 2 / g.

そして、前記分散が、ディスパー型攪拌羽または分散メディアを用いた湿式分散であることが好ましい。   The dispersion is preferably wet dispersion using a disperser type stirring blade or a dispersion medium.

本発明によれば、フェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを含有する混合スラリーを、分散させて反応させることにより、樹脂の結晶化速度及び結晶化温度を高くすることができ、透明性が高い樹脂用結晶核剤を、容易に製造できる。   According to the present invention, an aqueous solution of at least one metal salt of phenylphosphonic acid selected from magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate, and zinc oxide and basic zinc carbonate. By dispersing and reacting a mixed slurry containing at least one selected, cyanuric acid, and water, the crystallization speed and crystallization temperature of the resin can be increased, and the resin has high transparency. Crystal nucleating agents can be easily produced.

合成例1のXRD回折パターンである。3 is an XRD diffraction pattern of Synthesis Example 1. 合成例2のTEM写真である。4 is a TEM photograph of Synthesis Example 2. 合成例8のTEM写真である。10 is a TEM photograph of Synthesis Example 8. 比較例2で用いたフェニルホスホン酸亜鉛のTEM写真である。4 is a TEM photograph of zinc phenylphosphonate used in Comparative Example 2.

本発明の樹脂用結晶核剤の製造方法は、フェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを含有する混合スラリーを、分散させて反応させるものである。これにより、塩基性シアヌル酸亜鉛及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤を得ることができる。   The method for producing a crystal nucleating agent for resin according to the present invention comprises an aqueous solution of at least one metal salt of phenylphosphonic acid selected from magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate, and oxidation. A mixed slurry containing at least one selected from zinc and basic zinc carbonate, cyanuric acid, and water is dispersed and reacted. Thereby, the crystal nucleating agent for resin containing basic zinc cyanurate and zinc phenylphosphonate can be obtained.

詳述すると、まず、例えばマグネシウム、リチウム、ナトリウム及びカリウムから選択される少なくとも一種の金属の炭酸塩又は金属水酸化物とフェニルホスホン酸とを水に溶解することにより、原料であるフェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩の水溶液を調整する。例えば、炭酸マグネシウム又は水酸化マグネシウムとフェニルホスホン酸とを、マグネシウムとフェニルホスホン酸との比であるマグネシウム/フェニルホスホン酸がモル比で例えば0.3〜0.6の割合になるように、水に溶解することにより調製できる。ここで、マグネシウム/フェニルホスホン酸(モル比)が0.3未満とすると、製造される混合スラリーのpHが7以下になる。そして、このpHが7以下のスラリーを乾燥して得られた樹脂用結晶核剤は、ポリ乳酸樹脂に混練するとポリ乳酸が一部溶解するため結晶化速度を高くし且つ結晶化温度を高くするという結晶核剤性能が小さくなり、また、生成するフェニルホスホン酸亜鉛が、マグネシウム/フェニルホスホン酸(モル比)が0.3以上のものと比較して粗大粒子になりポリ乳酸樹脂の結晶核剤性能が低下する。そして、ポリ乳酸樹脂の溶解部分が非晶質のまま固化するのでその部分が脆くなり機械特性が低下する。また、マグネシウム/フェニルホスホン酸(モル比)が0.6より大きいとフェニルホスホン酸マグネシウム粒子が析出する。したがって、マグネシウム/フェニルホスホン酸(モル比)は、0.3〜0.6の範囲内であることが好ましい。   More specifically, first, magnesium phenylphosphonate, which is a raw material, is prepared by dissolving a carbonate or metal hydroxide of at least one metal selected from, for example, magnesium, lithium, sodium and potassium, and phenylphosphonic acid in water. Preparing an aqueous solution of at least one metal salt of phenylphosphonic acid selected from lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate. For example, magnesium carbonate or magnesium hydroxide and phenylphosphonic acid are mixed so that magnesium / phenylphosphonic acid, which is a ratio of magnesium to phenylphosphonic acid, has a molar ratio of, for example, 0.3 to 0.6. It can be prepared by dissolving in Here, if the magnesium / phenylphosphonic acid (molar ratio) is less than 0.3, the pH of the produced mixed slurry is 7 or less. The resin crystal nucleating agent obtained by drying the slurry having a pH of 7 or less increases the crystallization speed and the crystallization temperature because the polylactic acid partially dissolves when kneaded into the polylactic acid resin. The crystal nucleating agent performance of the polylactic acid resin becomes smaller, and the generated zinc phenylphosphonate is coarser than magnesium / phenylphosphonic acid (molar ratio) of 0.3 or more. Performance decreases. And since the melt | dissolution part of polylactic acid resin solidifies with an amorphous state, the part becomes weak and a mechanical characteristic falls. Further, when the magnesium / phenylphosphonic acid (molar ratio) is larger than 0.6, magnesium phenylphosphonate particles are precipitated. Therefore, the magnesium / phenylphosphonic acid (molar ratio) is preferably in the range of 0.3 to 0.6.

次に、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを、この水に対して例えばシアヌル酸濃度が0.1〜10.0質量%、好ましくは1.0〜5.0質量%になるように加え、続いて上記フェニルホスホン酸の金属塩の水溶液を混合する。例えばフェニルホスホン酸の金属塩の水溶液としてフェニルホスホン酸マグネシウムの水溶液を用いる場合は、フェニルホスホン酸マグネシウムの水溶液の濃度が1.0〜3.0質量%になるように配合して混合スラリーを調整することが好ましい。なお、水に対するシアヌル酸の濃度が10質量%より高いと、スラリー粘度が高くなりペースト状になるため、後段のディスパー型攪拌羽根や、分散メディアを用いた湿式分散などで分散がし難くなる。一方、水に対するシアヌル酸濃度が0.1質量%より低いと、生産性が悪く好ましくない。   Next, at least one selected from zinc oxide and basic zinc carbonate, cyanuric acid, and water are used, for example, the cyanuric acid concentration is 0.1 to 10.0% by mass, preferably 1. It is added so that it may become 0-5.0 mass%, and the aqueous solution of the metal salt of the said phenylphosphonic acid is mixed continuously. For example, when an aqueous solution of phenylphosphonic acid magnesium is used as the aqueous solution of phenylphosphonic acid metal salt, the mixed slurry is prepared by blending so that the concentration of the aqueous solution of phenylphosphonic acid magnesium is 1.0 to 3.0% by mass. It is preferable to do. If the concentration of cyanuric acid with respect to water is higher than 10% by mass, the viscosity of the slurry becomes high and a paste is formed, so that it becomes difficult to disperse by a disperse type stirring blade in the latter stage or wet dispersion using a dispersion medium. On the other hand, when the cyanuric acid concentration with respect to water is lower than 0.1% by mass, the productivity is unfavorable.

また、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸との割合は特に限定されないが、モル比で、酸化亜鉛及び塩基性炭酸亜鉛の酸化亜鉛換算量の合計/シアヌル酸が1.0〜5.0であることが好ましく、さらに好ましくは2.5〜3.0である。酸化亜鉛換算量の合計/シアヌル酸が5.0より高い場合や1.0より低い場合は、反応に寄与しなかった酸化亜鉛、塩基性炭酸亜鉛やシアヌル酸が多量に残存する傾向があるためである。   The ratio of at least one selected from zinc oxide and basic zinc carbonate and cyanuric acid is not particularly limited, but the molar ratio is the sum of zinc oxide and basic zinc carbonate in terms of zinc oxide / cyanuric acid is 1 It is preferable that it is 0.0-5.0, More preferably, it is 2.5-3.0. When the total amount of zinc oxide equivalent / cyanuric acid is higher than 5.0 or lower than 1.0, a large amount of zinc oxide, basic zinc carbonate and cyanuric acid which did not contribute to the reaction tends to remain. It is.

また、フェニルホスホン酸の金属塩に含まれるフェニルホスホン酸の水に対する配合割合は特に限定されないが、フェニルホスホン酸の金属塩に含まれるフェニルホスホン酸の濃度が1.5〜3.0質量%であることが好ましい。3.0質量%より高くてもポリ乳酸樹脂の結晶核剤性能は大きく向上せず、また、1.5質量%より低いとポリ乳酸樹脂の結晶核剤性能が低下するためである。   Further, the blending ratio of phenylphosphonic acid contained in the metal salt of phenylphosphonic acid to water is not particularly limited, but the concentration of phenylphosphonic acid contained in the metal salt of phenylphosphonic acid is 1.5 to 3.0% by mass. Preferably there is. Even if it is higher than 3.0% by mass, the crystal nucleating agent performance of the polylactic acid resin is not greatly improved, and when it is lower than 1.5% by mass, the crystal nucleating agent performance of the polylactic acid resin is lowered.

次に、得られた混合スラリーを、例えば5〜60℃、好ましくは5〜55℃の温度範囲で、ディスパー型攪拌羽根や、分散メディアを用いた湿式分散などで分散させる。これにより、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸を反応させて塩基性シアヌル酸亜鉛を生成すると共に、酸化亜鉛または塩基性炭酸亜鉛とフェニルホスホン酸の金属塩とを反応させてフェニルホスホン酸亜鉛を生成する。また、この反応により、原料であるフェニルホスホン酸の金属塩を構成する金属の水酸化物や酸化物も生成する。なお、ディスパー型攪拌羽根や、分散メディアを用いた湿式分散によって混合スラリーを分散させることにより、反応時間を短くすることができるため、分散はディスパー型攪拌羽根や、分散メディアを用いた湿式分散で行なうことが好ましい。   Next, the obtained mixed slurry is dispersed in a temperature range of, for example, 5 to 60 ° C., preferably 5 to 55 ° C., by disperse type stirring blades, wet dispersion using a dispersion medium, or the like. As a result, at least one selected from zinc oxide and basic zinc carbonate is reacted with cyanuric acid to produce basic zinc cyanurate, and zinc oxide or basic zinc carbonate is reacted with a metal salt of phenylphosphonic acid. To produce zinc phenylphosphonate. In addition, this reaction also produces a metal hydroxide or oxide constituting the metal salt of phenylphosphonic acid as a raw material. In addition, since the reaction time can be shortened by dispersing the mixed slurry by wet dispersion using a dispersion type stirring blade or a dispersion medium, the dispersion is performed by a dispersion using a dispersion type stirring blade or a dispersion medium. It is preferable to do so.

分散は、55℃よりも高い温度で湿式分散を行うと、生成する塩基性シアヌル酸亜鉛およびフェニルホスホン酸亜鉛が、55℃以下で湿式分散した場合と比較して粗大粒子になり、ポリ乳酸樹脂の結晶核剤性能が低下するため、55℃未満で行なうことが好ましい。このように低温で製造することができるため、樹脂等熱に弱い装置を用いて製造することができる。また、ディスパー型攪拌羽根や、分散メディアを用いた湿式分散などで分散を行って製造すると、透過電子顕微鏡観察による一次粒子が、長軸が100〜1200nm、短軸が10〜100nm、レーザー回折法により測定した平均粒子径D50が80〜900nmである塩基性シアヌル酸亜鉛粒子、長軸及び短軸が50〜800nmのフェニルホスホン酸亜鉛粒子を含有する樹脂用結晶核剤を製造することができる。 When the wet dispersion is performed at a temperature higher than 55 ° C., the generated basic zinc cyanurate and zinc phenylphosphonate become coarse particles as compared with the case where the wet dispersion is performed at 55 ° C. or less, and the polylactic acid resin Since the performance of the crystal nucleating agent is reduced, it is preferably carried out at less than 55 ° C. Thus, since it can manufacture at low temperature, it can manufacture using an apparatus weak to heat, such as resin. In addition, when dispersion is performed by a dispersion type stirring blade or wet dispersion using a dispersion medium, primary particles obtained by observation with a transmission electron microscope have a major axis of 100 to 1200 nm, a minor axis of 10 to 100 nm, and a laser diffraction method. average particle diameter D 50 measured can be basic cyanuric zinc particles is 80~900Nm, long axis and short axis for producing a resin for crystal nucleating agent containing phenylphosphonic acid zinc particles of 50~800nm by .

ここで、分散メディアを用いた湿式分散とは、分散メディアが衝突することにより生じる機械的エネルギーによって、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、フェニルホスホン酸の金属塩とを、メカノケミカル反応させることである。メカノケミカル反応とは、分散メディアの衝突によって、酸化亜鉛、塩基性炭酸亜鉛、シアヌル酸や、フェニルホスホン酸の金属塩に多方面から機械的エネルギーを与えて化学反応させることをいう。分散メディアとしては、例えば、安定化ジルコニア製ビーズ、石英ガラス製ビーズ、ソーダライムガラス製ビーズ、アルミナビーズや、これらの混合物が挙げられる。分散メディア同士が衝突して分散メディアが破砕することにより生じる汚染を考慮すると、分散メディアとして、安定化ジルコニア製ビーズを用いることが好ましい。そして、分散メディアの大きさは、例えば直径0.1〜10mm、好ましくは直径0.5〜2.0mmである。分散メディアの直径が0.1mm未満であると、粉砕メディア同士の衝突エネルギーが小さく、メカノケミカル反応性が弱くなる傾向がある。また、分散メディアの直径が10mmより大きいと、分散メディア同士の衝突エネルギーが大きすぎて分散メディアが破砕して汚染が多くなるため、好ましくない。分散メディアを用いた湿式分散を行う装置は、例えば、サンドグラインダー、横型ビーズミル、アトライタ、パールミル(アシザワファインテック(株)製)等が挙げられる。なお、分散メディアの撹拌のための装置の回転数や反応時間等は、所望の粒子径等に合わせて適宜調整すればよい。   Here, the wet dispersion using a dispersion medium means at least one selected from zinc oxide and basic zinc carbonate, metal cyanuric acid, and metal of phenylphosphonic acid, depending on mechanical energy generated by collision of the dispersion medium. It is a mechanochemical reaction with salt. The mechanochemical reaction means that a mechanical reaction is applied to zinc oxide, basic zinc carbonate, cyanuric acid, or a metal salt of phenylphosphonic acid by applying mechanical energy from various directions by collision of dispersion media. Examples of the dispersion medium include stabilized zirconia beads, quartz glass beads, soda lime glass beads, alumina beads, and mixtures thereof. In consideration of the contamination caused by the dispersion media colliding with each other and the dispersion media being crushed, it is preferable to use stabilized zirconia beads as the dispersion media. And the magnitude | size of a dispersion medium is 0.1-10 mm in diameter, for example, Preferably it is 0.5-2.0 mm in diameter. When the diameter of the dispersion medium is less than 0.1 mm, the collision energy between the pulverization media is small, and the mechanochemical reactivity tends to be weak. Further, if the diameter of the dispersion medium is larger than 10 mm, the collision energy between the dispersion media is too large, and the dispersion medium is crushed to increase contamination, which is not preferable. Examples of apparatuses that perform wet dispersion using a dispersion medium include a sand grinder, a horizontal bead mill, an attritor, and a pearl mill (manufactured by Ashizawa Finetech Co., Ltd.). In addition, what is necessary is just to adjust suitably the rotation speed of the apparatus for stirring a dispersion medium, reaction time, etc. according to a desired particle diameter.

このようにして得られた塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛や、原料であるフェニルホスホン酸の金属塩を構成する金属の水酸化物(例えば水酸化マグネシウム)を含有する結晶核剤組成物は、これらを含有するスラリーのまま樹脂用結晶核剤として使用してもよく、また、このスラリーを乾燥させて、ピンディスクやジェットミルなどで微粉末状としたものを樹脂用結晶核剤としてもよい。   Crystal nucleating agent composition containing basic cyanuric acid zinc, zinc phenylphosphonic acid thus obtained, and metal hydroxide (for example, magnesium hydroxide) constituting metal salt of phenylphosphonic acid as a raw material May be used as a crystal nucleating agent for resin in the form of a slurry containing these, or as a crystal nucleating agent for resin obtained by drying this slurry and making it into a fine powder with a pin disk or jet mill. Also good.

このように、本発明の製造方法によれば、フェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを含有する混合スラリーを、分散させて反応させるという簡便な操作で、樹脂用結晶核剤を製造することができる。なお、この反応はワンポットで製造することができるため、収率よく製造することができる。   Thus, according to the production method of the present invention, an aqueous solution of at least one metal salt of phenylphosphonic acid selected from magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate, and oxidation The crystal nucleating agent for resin can be produced by a simple operation of dispersing and reacting a mixed slurry containing at least one selected from zinc and basic zinc carbonate, cyanuric acid, and water. In addition, since this reaction can be manufactured in one pot, it can manufacture with a sufficient yield.

また、上記本発明の製造方法によって得られる樹脂用結晶核剤を用いることにより、樹脂の結晶化速度が高くなるため、樹脂の結晶化度が高くなり、樹脂の成形物の耐熱性を向上させることができる。また、結晶化速度が高くなることにより、結晶化に要する時間が短くなるため、短時間で樹脂の成形物を得ることができ生産性が向上する。そして、短時間で結晶化することにより、球晶サイズが小さくなり緻密で高剛性を有し透明性に優れた成形物を得ることができる。また、樹脂の結晶化温度も高くなるため、樹脂を射出成形等の金型で成形する場合に、金型の冷却温度を高くできるので、短時間で樹脂の成形物を得ることができ、生産性が向上する。そして、塩基性シアヌル酸亜鉛と、フェニルホスホン酸亜鉛と、フェニルホスホン酸の金属塩を構成する金属の水酸化物とを単に混合したものよりも、結晶化温度が高く結晶化速度が速い。   Further, by using the resin crystal nucleating agent obtained by the production method of the present invention, the resin crystallization speed is increased, so that the resin crystallinity is increased and the heat resistance of the resin molding is improved. be able to. In addition, since the time required for crystallization is shortened by increasing the crystallization speed, a resin molded product can be obtained in a short time, and productivity is improved. Then, by crystallization in a short time, a spherulite size is reduced, and a molded product having high density, high rigidity, and excellent transparency can be obtained. In addition, since the crystallization temperature of the resin also increases, when the resin is molded by a mold such as injection molding, the mold cooling temperature can be increased, so that a resin molded product can be obtained in a short time, and production Improves. Then, the crystallization temperature is higher and the crystallization speed is higher than that obtained by simply mixing basic zinc cyanurate, zinc phenylphosphonate, and metal hydroxide constituting the metal salt of phenylphosphonic acid.

また、上記本発明の製造方法によって得られる樹脂用結晶核剤は、比表面積が例えば20〜100m/gと比較的大きく微細なため、成形物の透明性をさらに向上させることができる。 Moreover, since the specific surface area of the crystal nucleating agent for resin obtained by the production method of the present invention is relatively large and fine, for example, 20 to 100 m 2 / g, the transparency of the molded product can be further improved.

ここで、本発明の製造方法で得られた樹脂用結晶核剤は、上述したように、塩基性シアヌル酸亜鉛粒子を含有するものである。そして、この塩基性シアヌル酸亜鉛は、鉄系の金属表面の腐食防止剤として知られている物質であり、従来は樹脂用の結晶核剤として使用されていないものであるが、本発明者らにより、結晶性高分子である樹脂の一次結晶核となり、結晶成長を促進して結晶化速度を高め、また、結晶化温度を高くする機能を有するため、結晶核剤として使用できることが知見されたものである。そして、本発明の製造方法で得られた樹脂用結晶核剤は、フェニルホスホン酸亜鉛を含有し、このフェニルホスホン酸亜鉛は、樹脂用結晶核剤として知られている成分であるが、コストが高いという問題がある。本発明においては、フェニルホスホン酸亜鉛よりもコストが低い酸化亜鉛、塩基性炭酸亜鉛や、シアヌル酸を原料とすることにより、樹脂の結晶化速度及び結晶化温度を高くするという効果と、低コスト化という効果を両立させることができる。   Here, the resin crystal nucleating agent obtained by the production method of the present invention contains basic zinc cyanurate particles as described above. And this basic zinc cyanurate is a substance known as a corrosion inhibitor for iron-based metal surfaces and has not been conventionally used as a crystal nucleating agent for resins. It has been found that it can be used as a crystal nucleating agent because it has the function of becoming the primary crystal nucleus of a resin that is a crystalline polymer, promoting crystal growth, increasing the crystallization speed, and increasing the crystallization temperature. Is. The resin crystal nucleating agent obtained by the production method of the present invention contains zinc phenylphosphonate, which is a component known as a resin crystal nucleating agent, but the cost is low. There is a problem that it is expensive. In the present invention, by using zinc oxide, basic zinc carbonate, and cyanuric acid, which are lower in cost than zinc phenylphosphonate, as raw materials, the effect of increasing the crystallization speed and crystallization temperature of the resin, and low cost. It is possible to achieve both of the effects of conversion.

製造される樹脂用結晶核剤が含有する塩基性シアヌル酸亜鉛粒子やフェニルホスホン酸亜鉛の含有割合は特に限定されず、例えば、シアヌル酸として20〜40質量%、フェニルホスホン酸として10〜30質量%とすればよい。結晶核剤組成物のシアヌル酸成分を20質量%未満にすると、塩基性シアヌル酸亜鉛含有量が少なくなり、フェニルホスホン酸亜鉛含有量が高くなるが、フェニルホスホン酸亜鉛の原料、すなわち、フェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩は高価な上に、これ以上フェニルホスホン酸濃度を高くしても結晶核剤性能は向上しない。逆に、結晶核剤組成物のシアヌル酸成分濃度を40質量%より多くすると、塩基性シアヌル酸亜鉛の含有量が多くなり、フェニルホスホン酸亜鉛の含有量が少なくなり過ぎるため、結晶核剤性能が低下し、好ましくない。なお、シアヌル酸は、分子式C3333で表され、CHN元素分析で測定される窒素量から定量することができる。そして、フェニルホスホン酸は、分子式C673Pで表され、蛍光X線分析で測定されるリン量によって定量することができる。 The content ratio of basic cyanuric acid zinc particles and phenylphosphonic acid zinc contained in the produced crystal nucleating agent for resin is not particularly limited. For example, 20-40 mass% as cyanuric acid, 10-30 mass as phenylphosphonic acid. %And it is sufficient. When the cyanuric acid component of the crystal nucleating agent composition is less than 20% by mass, the content of basic zinc cyanurate is decreased and the content of zinc phenylphosphonate is increased. At least one metal salt of phenylphosphonic acid selected from magnesium oxide, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate is expensive, and even if the phenylphosphonic acid concentration is further increased, the crystal nucleating agent Performance does not improve. Conversely, when the cyanuric acid component concentration of the crystal nucleating agent composition is more than 40% by mass, the content of basic zinc cyanurate increases and the content of zinc phenylphosphonate decreases too much. Is not preferable. Cyanuric acid is represented by the molecular formula C 3 N 3 O 3 H 3 and can be quantified from the amount of nitrogen measured by CHN elemental analysis. Phenylphosphonic acid is represented by the molecular formula C 6 H 7 O 3 P and can be quantified by the amount of phosphorus measured by fluorescent X-ray analysis.

また、樹脂用結晶核剤が含有する亜鉛とフェニルホスホン酸亜鉛との比である亜鉛/フェニルホスホン酸亜鉛の質量比は、1より大きく4未満であることが好ましい。質量比を1以下にして高価なフェニルホスホン酸濃度を高くしても結晶核剤性能は向上せず、また、4以上では、結晶核剤性能が低下する傾向があるためである。   Moreover, it is preferable that the mass ratio of zinc / zinc phenylphosphonate, which is the ratio of zinc and zinc phenylphosphonate contained in the resin crystal nucleating agent, is greater than 1 and less than 4. This is because even if the mass ratio is 1 or less and the concentration of the expensive phenylphosphonic acid is increased, the performance of the crystal nucleating agent is not improved, and when it is 4 or more, the performance of the crystal nucleating agent tends to be lowered.

そして、本発明の製造方法で得られた樹脂用結晶核剤は、樹脂と共に用いて樹脂組成物とすることができる。   And the crystal nucleating agent for resin obtained by the manufacturing method of this invention can be used with resin, and can be set as a resin composition.

樹脂としては、例えば、ポリ乳酸や、ポリオレフィン系樹脂が挙げられる。また、2種類以上の樹脂を用いてもよい。ポリ乳酸樹脂としては、乳酸のホモポリマーやコポリマー、またはこれら乳酸のホモポリマーやコポリマーを主体とし他の樹脂を混合したブレンドポリマーが挙げられる。混合する他の樹脂としては、ポリ乳酸以外の生分解性樹脂、汎用合成樹脂、汎用合成エンプラ等が挙げられる。ポリ乳酸樹脂がコポリマーの場合、配列様式はランダムコポリマー、交互コポリマー、ブロックコポリマー、グラフトコポリマーのいずれであってもよい。また、上記ポリ乳酸樹脂を熱、光、放射線等を利用して架橋剤で架橋させたものをポリ乳酸樹脂として使用してもよい。勿論、これらのポリ乳酸樹脂を2種類以上用いてもよい。そして、ポリ乳酸の分子量に特に限定はないが、例えば、数平均分子量は10,000〜500,000程度である。また、ポリ乳酸樹脂の製造方法に特に限定はないが、例えば、ラクチドを開環重合させることや、乳酸のD体、L体、ラセミ体等を直接重縮合させることにより、製造することができる。   Examples of the resin include polylactic acid and polyolefin resin. Two or more kinds of resins may be used. Examples of the polylactic acid resin include homopolymers and copolymers of lactic acid, or blend polymers in which these homopolymers and copolymers of lactic acid are mainly mixed with other resins. Examples of other resins to be mixed include biodegradable resins other than polylactic acid, general-purpose synthetic resins, and general-purpose synthetic engineering plastics. When the polylactic acid resin is a copolymer, the arrangement pattern may be any of random copolymer, alternating copolymer, block copolymer, and graft copolymer. In addition, a polylactic acid resin obtained by crosslinking the polylactic acid resin with a crosslinking agent using heat, light, radiation or the like may be used. Of course, two or more of these polylactic acid resins may be used. The molecular weight of polylactic acid is not particularly limited, but for example, the number average molecular weight is about 10,000 to 500,000. Further, the production method of the polylactic acid resin is not particularly limited. For example, it can be produced by ring-opening polymerization of lactide or by directly polycondensing D-form, L-form, racemate, etc. of lactic acid. .

また、ポリオレフィン系樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂等が挙げられる。そして、ポリプロピレン樹脂としては、ポリプロピレン、エチレン−プロピレン共重合体等や、不飽和カルボン酸又はその酸無水物で変性したポリプロピレンが挙げられる。不飽和カルボン酸又はその酸無水物で変性したポリプロピレンとしては、例えば、プロピレン単独重合体や、エチレン−プロピレン共重合体等のポリプロピレンと、アクリル酸、メタアクリル酸、マレイン酸、イタコン酸、フマル酸、無水マレイン酸、無水イタコン酸等の酸又は酸無水物ユニットを有する不飽和カルボン酸又はその酸無水物との共重合体又はグラフト共重合体等が挙げられる。特にプロピレンとアクリル酸又は無水マレイン酸の共重合体又はグラフト共重合体が好ましい。勿論、これらのポリオレフィン系樹脂を2種類以上用いてもよい。そして、ポリオレフィン系樹脂の分子量に特に限定はないが、例えば、数平均分子量は10,000〜500,000程度である。   Examples of the polyolefin resin include polyethylene resin, polypropylene resin, and polyamide resin. Examples of the polypropylene resin include polypropylene, ethylene-propylene copolymer, and the like, and polypropylene modified with an unsaturated carboxylic acid or acid anhydride thereof. Examples of polypropylene modified with unsaturated carboxylic acid or acid anhydride thereof include polypropylene such as propylene homopolymer and ethylene-propylene copolymer, acrylic acid, methacrylic acid, maleic acid, itaconic acid, and fumaric acid. And a copolymer or graft copolymer with an unsaturated carboxylic acid having an acid or acid anhydride unit, such as maleic anhydride or itaconic anhydride, or an acid anhydride thereof. Particularly preferred are copolymers or graft copolymers of propylene and acrylic acid or maleic anhydride. Of course, two or more of these polyolefin resins may be used. The molecular weight of the polyolefin resin is not particularly limited. For example, the number average molecular weight is about 10,000 to 500,000.

本発明の製造方法で得られ、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤と樹脂との配合割合に特に限定はないが、樹脂としてポリ乳酸樹脂を用いる場合は、ポリ乳酸樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤を0.01〜10.0質量部とすることが好ましい。また、樹脂としてポリオレフィン系樹脂を用いる場合も、ポリオレフィン系樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤を0.01〜10.0質量部とすることが好ましい。   There is no particular limitation on the blending ratio of the resin crystal nucleating agent obtained by the production method of the present invention and containing basic cyanuric acid zinc particles and zinc phenylphosphonate and the resin, but when using a polylactic acid resin as the resin It is preferable that the resin crystal nucleating agent containing basic cyanuric acid zinc particles and zinc phenylphosphonate is 0.01 to 10.0 parts by mass with respect to 100 parts by mass of the polylactic acid resin. Moreover, also when using polyolefin-type resin as resin, 0.01-10.0 mass of crystal nucleating agents for resin containing basic cyanuric-acid zinc particle and zinc phenylphosphonate zinc with respect to 100 mass parts of polyolefin-type resin. Part.

上記樹脂組成物は、無機充填剤を含有していてもよい。無機充填剤としては、例えば、ガラス繊維、炭素繊維、タルク、マイカ、シリカ、カオリン、クレー、ウオラストナイト、ガラスビーズ、カラスフレーク、チタン酸カリウム、炭酸カルシウム、硫酸マグネシウム、酸化チタン等が挙げられる。これらの無機充填剤の形状は、繊維状、粒状、板状、針状、球状、粉末のいずれでもよい。これらの無機充填剤の配合量は、例えば、樹脂100質量部に対して、300質量部以下とすることができる。   The resin composition may contain an inorganic filler. Examples of the inorganic filler include glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, crow flake, potassium titanate, calcium carbonate, magnesium sulfate, titanium oxide and the like. . The shape of these inorganic fillers may be any of fibrous, granular, plate-like, needle-like, spherical, and powder. The compounding quantity of these inorganic fillers can be 300 mass parts or less with respect to 100 mass parts of resin, for example.

また、上記樹脂組成物は、難燃剤を含有していてもよい。難燃剤としては、例えば、臭素系や塩素系等のハロゲン系難燃剤、三酸化アンチモン、五酸化アンチモン等のアンチモン系難燃剤、水酸化アルミニウムや水酸化マグネシウム、シリコーン系化合物等の無機系難燃剤、赤リン、リン酸エステル類、ポリリン酸アンモニウム、フォスファゼン等のリン系難燃剤、メラミン、メラム、メレム、メロン、メラミンシアヌレート、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラミン・メラム・メレム複塩、アルキルホスホン酸メラミン、フェニルホスホン酸メラミン、硫酸メラミン、メタンスルホン酸メラム等のメラミン系難燃剤、PTFE等のフッ素樹脂等が挙げられる。これらの難燃剤の配合量は、例えば、樹脂100質量部に対して、200質量部以下とすることができる。   Moreover, the said resin composition may contain the flame retardant. Examples of the flame retardant include halogen flame retardants such as bromine and chlorine, antimony flame retardants such as antimony trioxide and antimony pentoxide, and inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide and silicone compounds. Phosphorus flame retardants such as red phosphorus, phosphate esters, ammonium polyphosphate, phosphazene, melamine, melam, melem, melon, melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine / melam polyphosphate -Melem double salt, melamine alkylphosphonate, melamine phenylphosphonate, melamine sulfate, melamine methanesulfonate such as melam sulfonate, and fluororesin such as PTFE. The compounding quantity of these flame retardants can be 200 mass parts or less with respect to 100 mass parts of resin, for example.

また、樹脂組成物は、上記成分以外にも、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、衝撃改良剤、帯電防止剤、顔料、着色剤、離型剤、滑剤、可塑剤、相溶化剤、発泡剤、香料、抗菌抗カビ剤、シラン系、チタン系、アルミニウム系等の各種カップリング剤、その他の各種充填剤や、シアヌル酸亜鉛粒子以外の結晶核剤等、一般的な合成樹脂の製造時に、通常使用される各種添加剤を含有していてもよい。   In addition to the above components, the resin composition may include a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antioxidant, an impact modifier, an antistatic agent, a pigment, a colorant, a release agent, a lubricant, and a plasticizer. , Compatibility agents, foaming agents, fragrances, antibacterial and antifungal agents, various coupling agents such as silane, titanium and aluminum, other various fillers, crystal nucleating agents other than zinc cyanurate particles, etc. In the production of such synthetic resins, various commonly used additives may be contained.

本発明の製造方法によって得られた塩基性シアヌル酸亜鉛及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤と、樹脂と、必要に応じて添加する各種添加剤を用いて、樹脂組成物を製造する方法は特に限定されず、公知の結晶核剤を含有する樹脂組成物と同様の方法で製造することができる。例えば本発明の製造方法によって得られた塩基性シアヌル酸亜鉛及びフェニルホスホン酸亜鉛を含有する結晶核剤と、樹脂と、必要に応じ添加する添加剤を各種ミキサーで混合し、単軸あるいは二軸押出機などを用いて例えば150〜220℃程度の温度で混練することにより、樹脂組成物を製造することができる。また、本発明の製造方法で得られた塩基性シアヌル酸亜鉛及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤や必要に応じて添加する添加剤を高濃度で含有するマスターバッチを生成し、これを樹脂に添加する方法も可能である。そして、樹脂の重合段階で、樹脂用結晶核剤を添加する方法でもよい。   A resin composition is produced using a resin crystal nucleating agent containing basic zinc cyanate and zinc phenylphosphonate obtained by the production method of the present invention, a resin, and various additives that are added as necessary. The method to do is not specifically limited, It can manufacture by the method similar to the resin composition containing a well-known crystal nucleating agent. For example, a crystal nucleating agent containing basic zinc cyanurate and zinc phenylphosphonate obtained by the production method of the present invention, a resin, and additives to be added as necessary are mixed with various mixers, and are uniaxial or biaxial. A resin composition can be manufactured by kneading at a temperature of about 150 to 220 ° C. using an extruder or the like. In addition, a master batch containing a high concentration of crystal nucleating agent for resins containing the basic zinc cyanurate and zinc phenylphosphonate obtained by the production method of the present invention and additives to be added as necessary is produced, A method of adding this to the resin is also possible. And the method of adding the crystal nucleating agent for resin in the superposition | polymerization stage of resin may be sufficient.

このような樹脂組成物は、射出成形、ブロー成形、真空成形、圧縮成形等の一般的な成形法により、各種成形物を容易に製造することができる。成形物は、例えば、容器、フィルム等の包装材料、衣料、繊維材料、電気、電子製品等として使用することができる。   With such a resin composition, various molded products can be easily produced by general molding methods such as injection molding, blow molding, vacuum molding, and compression molding. The molded product can be used as, for example, a packaging material such as a container or a film, clothing, a fiber material, an electric product, an electronic product, or the like.

そして、上記樹脂組成物は、結晶核剤である塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸亜鉛亜を含有するため、樹脂の結晶化速度が高い。したがって、樹脂の結晶化度が高くなり、耐熱性が良好な成形物を得ることができる。また、結晶化速度が高くなることにより、結晶化に要する時間が短くなるため、短時間で樹脂の成形物を製造することができる。そして、短時間で結晶化することにより、球晶サイズが小さくなり緻密で高剛性を有し透明性に優れた成形物を得ることができる。また、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有することにより樹脂の結晶化温度も高くなるため、樹脂を射出成形等の金型で成形する場合に、金型の冷却温度を高くできるので、短時間で樹脂の成形物を製造することができる。   And since the said resin composition contains the basic cyanuric-acid zinc particle and phenylphosphonic acid zinc sub, which are crystal nucleating agents, the resin crystallization rate is high. Accordingly, the degree of crystallinity of the resin is increased, and a molded product having good heat resistance can be obtained. Further, since the time required for crystallization is shortened by increasing the crystallization speed, a resin molded product can be produced in a short time. Then, by crystallization in a short time, a spherulite size is reduced, and a molded product having high density, high rigidity, and excellent transparency can be obtained. Also, since the resin crystallization temperature is increased by containing basic zinc cyanurate particles and phenylphosphonic acid metal salt, the cooling temperature of the mold is set when molding the resin with a mold such as injection molding. Since it can be made high, a resin molded product can be produced in a short time.

以下、実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。   Hereinafter, although it further explains in full detail based on an Example and a comparative example, the present invention is not limited at all by this example.

(測定装置)
実施例及び比較例における分析は、以下の装置・条件で行った。
透過型電子顕微鏡観察:JEM−1010型(日本電子(株)製)印加電圧100KV
レーザー回折法粒子径測定:SALD−7000型((株)島津製作所製)、試料1gを純水で200倍希釈し測定
比表面積測定:窒素吸着法表面積測定装置モノソーブ機(ユアサアイオニクス(株)製)
重量分析:試料を磁器製ルツボに約2g入れ精秤後、110℃で乾燥後の質量より固形分を算出
X線粉末回折同定:粉末X線回折装置RINT Ultima型((株)リガク製)
元素分析:全自動元素分析装置CHNS/Oアナライザー2400(パーキン・エルマー社製)
(measuring device)
Analysis in Examples and Comparative Examples was performed with the following apparatus and conditions.
Transmission electron microscope observation: JEM-1010 type (manufactured by JEOL Ltd.) Applied voltage 100 KV
Laser diffraction particle size measurement: SALD-7000 type (manufactured by Shimadzu Corporation), 1 g of sample diluted 200 times with pure water and measurement Specific surface area measurement: Nitrogen adsorption method surface area measuring device monosorb machine (Yuasa Ionics Co., Ltd.) Made)
Gravimetric analysis: About 2 g of sample is put in a porcelain crucible and weighed accurately, then the solid content is calculated from the mass after drying at 110 ° C. X-ray powder diffraction identification: Powder X-ray diffraction apparatus RINT Ultimate type (manufactured by Rigaku Corporation)
Elemental analysis: fully automatic elemental analyzer CHNS / O analyzer 2400 (manufactured by Perkin Elmer)

(合成例1)
2リットルのポリ容器に純水1501g及びフェニルホスホン酸((日産化学工業(株)製)以下「PPA」とも記載する)79.7gを投入し、攪拌しながら炭酸マグネシウム(関東化学製試薬 MgOとして42wt%)19.3gを添加した後、1時間50分攪拌して炭酸マグネシウムを溶解し、モル比でMg/PPA=0.40、pH=2.4、電導度=11.78mS/cmのフェニルホスホン酸マグネシウム水溶液を調製した。新たな2リットルのポリ容器に純水1077gと得られたフェニルホスホン酸マグネシウム水溶液313gを加えた後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根(EYELA製 NZ−1000)で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1483gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌した。これにより、pH7.2、電導度608μS/cm、粘度400mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が28m/gのパウダー(110℃の乾燥粉)を103g得た。このパウダーについてX線粉末回折分析を行ったところ、図1に示すように、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察され、3つの化合物の混合物からなるパウダーであった。このことから、フェニルホスホン酸マグネシウムは、強酸性のフェニルホスホン酸が酸化亜鉛と反応してフェニルホスホン酸亜鉛になり、マグネシウムが水酸化マグネシウムになり、残りの酸化亜鉛とシアヌル酸が反応して塩基性シアヌル酸亜鉛が生成したことが分った。このパウダーは、シアヌル酸として29質量%、亜鉛として43質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。なお、シアヌル酸C3333はCHN元素分析で測定される樹脂用結晶核剤中の窒素量から算出し、フェニルホスホン酸C673Pは蛍光X線分析で測定される樹脂用結晶核剤中のリン量によって算出した。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が均一に分散していた。結果を表1に示す。
(Synthesis Example 1)
1501 g of pure water and 79.7 g of phenylphosphonic acid (hereinafter also referred to as “PPA”) (which is also referred to as “PPA”) are put into a 2 liter plastic container, and magnesium carbonate (reagent MgO manufactured by Kanto Chemical Co., Ltd.) is stirred. 42 wt%) After adding 19.3 g, the mixture was stirred for 1 hour 50 minutes to dissolve the magnesium carbonate, and the molar ratio of Mg / PPA = 0.40, pH = 2.4, and conductivity = 11.78 mS / cm. A magnesium phenylphosphonate aqueous solution was prepared. After adding 1077 g of pure water and 313 g of the obtained magnesium phenylphosphonate aqueous solution to a new 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade (NZEL1000 manufactured by EYELA), and further heated for 40 minutes. Stir vigorously. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time was 38 degreeC, and it stirred strongly with the disper blade | wing for 8 hours, heating with a warm bath so that slurry temperature might maintain 38 degreeC. As a result, 1483 g of white slurry having a pH of 7.2, an electric conductivity of 608 μS / cm, a viscosity of 400 mPa · s, and a solid content of 7.2% by mass when dried at 110 ° C. was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 28 m 2 / g. 103 g of powder (dried powder at 110 ° C.) was obtained. When X-ray powder diffraction analysis was performed on this powder, as shown in FIG. 1, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed, and the powder was composed of a mixture of three compounds. there were. From this, magnesium phenylphosphonate reacts with strongly acidic phenylphosphonic acid to form zinc phenylphosphonate, magnesium becomes magnesium hydroxide, and the remaining zinc oxide reacts with cyanuric acid to form a base. It was found that the characteristic zinc cyanurate was produced. This powder contained 29% by mass as cyanuric acid, 43% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. Cyanuric acid C 3 N 3 O 3 H 3 is calculated from the amount of nitrogen in the crystal nucleating agent for resin measured by CHN elemental analysis, and phenylphosphonic acid C 6 H 7 O 3 P is measured by fluorescent X-ray analysis. The amount of phosphorus in the resin crystal nucleating agent was calculated. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Were uniformly dispersed in 100-500 nm zinc phenylphosphonate and magnesium hydroxide particles. The results are shown in Table 1.

(合成例2)
シアヌル酸粉末(日産化学工業(株)製)を33.1gにした以外は合成例1と同じ操作をして、pH7.2、電導度196μS/cm、粘度500mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が49m/gのパウダーを102g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が均一に分散していた。結果を表1に示す。また、透過型電子顕微鏡観察した写真を図2に示す。
(Synthesis Example 2)
The same operation as in Synthesis Example 1 was conducted except that 33.1 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was used, pH 7.2, conductivity 196 μS / cm, viscosity 500 mPa · s, when dried at 110 ° C. 1483 g of a white slurry having a solid content of 7.2% by mass was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 49 m 2 / g. 102 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Were uniformly dispersed in 100-500 nm zinc phenylphosphonate and magnesium hydroxide particles. The results are shown in Table 1. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例3)
2リットルのポリ容器に合成例1で作成したフェニルホスホン酸マグネシウム水溶液313gと純水1160gを混合した後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)30.3gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1560gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌して、pH8.6、電導度133μS/cm、粘度700mPa・s、110℃乾燥時の固形分が6.6質量%の白色スラリーが1560g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が56m/gのパウダーを100g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として35質量%、亜鉛として40質量%、フェニルホスホン酸として15質量%およびマグネシウムとして1.2質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表1に示す。
(Synthesis Example 3)
In a 2 liter plastic container, 313 g of the phenylphosphonate magnesium aqueous solution prepared in Synthesis Example 1 and 1160 g of pure water were mixed and then immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 30.3 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further stirred vigorously for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added while vigorously stirring with a disper blade, and 1560 g of white slurry was prepared. The slurry temperature at this time is 38 ° C., and the mixture is vigorously stirred with a disperse blade for 8 hours while being heated in a hot tub so as to maintain the slurry temperature at 38 ° C., pH 8.6, conductivity 133 μS / cm, viscosity 700 mPa -1560g of white slurry whose solid content at s and 110 degreeC drying is 6.6 mass% was obtained. The wet cake obtained by Nutsche filtration of the slurry using filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 56 m 2 / g. 100 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 35% by mass as cyanuric acid, 40% by mass as zinc, 15% by mass as phenylphosphonic acid, and 1.2% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 1.

(合成例4)
2リットルのポリ容器に純水997gと合成例1で得られたフェニルホスホン酸マグネシウム水溶液313gを加えた。この混合水溶液にディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)33.1gを投入し、続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1400gを作成した。この時のスラリー温度は26℃で、続けてディスパー羽根で8時間強攪拌した後のスラリー温度は28℃であった。これにより、pH8.0、電導度275μS/cm、粘度1040mPa・s、110℃乾燥時の固形分が7.6質量%の白色スラリーが1400g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が62m/gのパウダーを105g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛とフェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が100〜300nm、短軸が10〜30nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が50〜200nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表1に示す。
(Synthesis Example 4)
To a 2-liter plastic container, 997 g of pure water and 313 g of magnesium phenylphosphonate aqueous solution obtained in Synthesis Example 1 were added. 33.1 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added to this mixed aqueous solution with strong stirring at 3300 rpm with a disperse blade, and then zinc oxide powder (Sakai Chemical Co., Ltd.) with strong stirring with a disper blade. (2 types zinc oxide manufactured) 57.4g was thrown in and 1400g of white slurry was created. The slurry temperature at this time was 26 degreeC, and the slurry temperature after stirring vigorously for 8 hours with the disper blade | wing was 28 degreeC. As a result, 1400 g of a white slurry having a pH of 8.0, an electric conductivity of 275 μS / cm, a viscosity of 1040 mPa · s, and a solid content of 7.6% by mass when dried at 110 ° C. was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 62 m 2 / g. 105 g of powder was obtained. When X-ray powder diffraction analysis was performed on this powder, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 100-300 nm, the short axis is 10-30 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 50 to 200 nm were observed. The results are shown in Table 1.

(合成例5)
スラリー温度を50℃にした以外は合成例2と同じ操作をして、pH7.7、電導度213μS/cm、粘度720mPa・s、110℃乾燥時の固形分が7.6質量%の白色スラリーを1480g得た。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が35m/gのパウダーを102g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜1000nm、短軸が40〜80nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が200〜600nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表1に示す。
(Synthesis Example 5)
A white slurry having the same operation as in Synthesis Example 2 except that the slurry temperature was 50 ° C., pH 7.7, conductivity 213 μS / cm, viscosity 720 mPa · s, and solid content 7.6% by mass when dried at 110 ° C. 1480 g was obtained. The slurry obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 35 m 2 / g. 102 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water, when observing with the transmission electron microscope, the long axis is 200-1000 nm, the short axis is 40-80 nm, the needle-shaped particle | grains of a basic zinc cyanurate, a long axis, and a short axis Granular particles of zinc phenylphosphonate and magnesium hydroxide having a particle diameter of 200 to 600 nm were observed. The results are shown in Table 1.

(合成例6)
スラリー温度を60℃にした以外は合成例2と同じ操作をして、pH7.6、電導度183μS/cm、粘度640mPa・s、110℃乾燥時の固形分が7.6質量%の白色スラリーが1480g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が26m/gのパウダーを102g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が300〜1000nm、短軸が40〜100nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が300〜800nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が均一に分散していた。結果を表1に示す。
(Synthesis Example 6)
A white slurry having the same operation as in Synthesis Example 2 except that the slurry temperature was 60 ° C., pH 7.6, conductivity 183 μS / cm, viscosity 640 mPa · s, and solid content at 110 ° C. when dried at 7.6% by mass. 1480 g was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 26 m 2 / g. 102 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 300-1000 nm, the short axis is 40-100 nm, basic zinc cyanurate acicular particles, the long axis and the short axis Were uniformly dispersed with zinc phenylphosphonate and magnesium hydroxide particles having a particle diameter of 300 to 800 nm. The results are shown in Table 1.

(合成例7)
2リットルのポリ容器に合成例1で作成したフェニルホスホン酸マグネシウム水溶液195gと純水1194gを混合した後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1483gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌して、pH8.1、電導度142μS/cm、粘度540mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が52m/gのパウダーを104g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として33質量%、亜鉛として46質量%、フェニルホスホン酸として10質量%およびマグネシウムとして0.8質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表1に示す。
(Synthesis Example 7)
After mixing 195 g of the phenylphosphonate magnesium aqueous solution prepared in Synthesis Example 1 and 1194 g of pure water in a 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further vigorously stirred for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time is 38 ° C., and it is vigorously stirred with a disperse blade for 8 hours while being heated in a hot tub so as to maintain the slurry temperature at 38 ° C., pH 8.1, conductivity 142 μS / cm, viscosity 540 mPa -1483g of white slurry whose solid content at the time of s and 110 degreeC drying is 7.2 mass% was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 52 m 2 / g. 104 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 33% by mass as cyanuric acid, 46% by mass as zinc, 10% by mass as phenylphosphonic acid, and 0.8% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 1.

(合成例8)
純水24kgと酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)2kgを容積200リットルの混合用タンクに投入し、ディスパー羽根で攪拌混合後、酸化亜鉛換算濃度が7.62質量%のスラリー26kgを調製した。次に有効容積10.66リットルで内壁がウレタン樹脂の横型ビーズミル(アシザワファインテック(株)製 システムゼータLMZ25)にφ1mmの安定化ジルコニア製粉砕ビーズ66kgを仕込んだ。水温が13℃の井戸水をジャケット水にした循環タンクに純水144kgを仕込んだ後、横型ビーズミルのディスクを周速9.5m/秒で回しながら供給速度22.1kg/分で純水を横型ビーズミルに供給して、純水を循環させた。循環開始後にシアヌル酸粉末(日産化学工業(株)製)1.19kgを投入した。シアヌル酸粉末を投入後、循環スラリーの温度が42℃になるように調節した後、酸化亜鉛換算濃度が7.69質量%の酸化亜鉛スラリー24.6kgを5分割して10分かけて添加した。添加後も横型ビーズミルのディスクを周速9.5m/秒で回しながら供給速度22.1kg/分でスラリーを7時間循環し、分散した。またこの間も循環スラリー温度は42℃になるように調節した。これにより、pH7.9、電導度206μS/cm、粘度86mPa・s、塩基性シアヌル酸亜鉛換算濃度1.8質量%の白色スラリーが167kg得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、原料のシアヌル酸及び酸化亜鉛に帰属される回折ピークは観察されず、塩基性シアヌル酸亜鉛の回折ピークが観察された。このパウダーは、シアヌル酸として39質量%および亜鉛として49質量%含有していた。そして、得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が400〜1200nm、短軸が20〜40nmで、レーザー回折法粒子径測定による平均粒子径D50は397nmであり、70℃乾燥後の比表面積Swが54m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。また、透過型電子顕微鏡観察した写真を図3に示す。
(Synthesis Example 8)
24 kg of pure water and 2 kg of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) are put into a mixing tank with a capacity of 200 liters, stirred and mixed with a disper blade, and the zinc oxide equivalent concentration is 7.62% by mass. 26 kg of slurry was prepared. Next, 66 kg of crushed beads made of stabilized zirconia having a diameter of 1 mm was charged into a horizontal bead mill (System Zeta LMZ25, manufactured by Ashizawa Finetech Co., Ltd.) having an effective volume of 10.66 liters and an inner wall of urethane resin. After adding 144 kg of pure water to a circulating tank with well water at 13 ° C as jacket water, the horizontal bead mill supplies pure water at a feed rate of 22.1 kg / min while rotating the disk of the horizontal bead mill at a peripheral speed of 9.5 m / sec. And purified water was circulated. After the start of circulation, 1.19 kg of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. After charging the cyanuric acid powder, the temperature of the circulating slurry was adjusted to 42 ° C., and 24.6 kg of zinc oxide slurry having a zinc oxide equivalent concentration of 7.69% by mass was divided into 5 portions and added over 10 minutes. . After the addition, the slurry was circulated and dispersed for 7 hours at a feed rate of 22.1 kg / min while rotating the disk of a horizontal bead mill at a peripheral speed of 9.5 m / sec. During this time, the circulating slurry temperature was adjusted to 42 ° C. As a result, 167 kg of white slurry having a pH of 7.9, an electrical conductivity of 206 μS / cm, a viscosity of 86 mPa · s, and a basic cyanuric acid zinc equivalent concentration of 1.8% by mass was obtained. When the X-ray powder diffraction analysis was performed on the 110 ° C. dry powder of the obtained white slurry, the diffraction peak attributed to the raw material cyanuric acid and zinc oxide was not observed, but the diffraction peak of basic cyanuric acid zinc was observed. It was. This powder contained 39% by mass as cyanuric acid and 49% by mass as zinc. Then, fine particles contained in the white slurry obtained is the major axis in the transmission electron microscopic observation 400 to 1200 nm, a short axis 20 to 40 nm, average particle size D 50 by laser diffractometry particle size measurement is by 397nm The basic cyanuric acid zinc having a specific surface area Sw after drying at 70 ° C. of 54 m 2 / g was obtained. The results are shown in Table 1. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例9)
2リットルのポリ容器に合成例1で作成したフェニルホスホン酸マグネシウム水溶液156gと純水1233gを混合した後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入、白色スラリー1483gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌して、pH8.4、電導度130μS/cm、粘度550mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が60m/gのパウダーを103g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として34質量%、亜鉛として46質量%、フェニルホスホン酸として8質量%およびマグネシウムとして0.6質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表1に示す。
(Synthesis Example 9)
After mixing 156 g of the magnesium phenylphosphonate aqueous solution prepared in Synthesis Example 1 and 1233 g of pure water in a 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further vigorously stirred for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time is 38 ° C., and the mixture is vigorously stirred with a disperse blade for 8 hours while being heated in a hot tub so as to maintain the slurry temperature at 38 ° C., pH 8.4, conductivity 130 μS / cm, viscosity 550 mPa -1483g of white slurry whose solid content at the time of s and 110 degreeC drying is 7.2 mass% was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 60 m 2 / g. 103 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 34% by mass as cyanuric acid, 46% by mass as zinc, 8% by mass as phenylphosphonic acid, and 0.6% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 1.

(合成例10)
2リットルのポリ容器に純水1384gとフェニルホスホン酸(日産化学工業(株)製)4.7gを加えた後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1483gを作成した。この時のスラリー温度は38℃で、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌した。これにより、pH6.3、電導度151μS/cm、粘度640mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が15m/gのパウダーが98g得られた。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛およびフェニルホスホン酸亜鉛の回折ピークが観察された。このパウダーは、シアヌル酸として34質量%、亜鉛として46質量%およびフェニルホスホン酸として10質量%を含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ長軸が200〜600nm、短軸が20〜40nmの塩基性シアヌル酸亜鉛の針状粒子と、長軸及び短軸が2000〜3000nmのフェニルホスホン酸亜鉛の粗大粒子が観察された。結果を表1に示す。
(Synthesis Example 10)
After adding 1384 g of pure water and 4.7 g of phenylphosphonic acid (manufactured by Nissan Chemical Industries, Ltd.) to a 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further vigorously stirred for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time was 38 degreeC, and it stirred strongly with the disper blade | wing for 8 hours, heating with a hot bath so that slurry temperature might maintain 38 degreeC. As a result, 1483 g of white slurry having a pH of 6.3, an electric conductivity of 151 μS / cm, a viscosity of 640 mPa · s, and a solid content of 7.2% by mass when dried at 110 ° C. was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 15 m 2 / g. 98 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate and zinc phenylphosphonate were observed. This powder contained 34% by weight as cyanuric acid, 46% by weight as zinc and 10% by weight as phenylphosphonic acid. And after disperse | distributing this powder with a pure water, when observing with the transmission electron microscope, the long axis is 200-600 nm, the short axis is 20-40 nm, the basic zinc cyanurate needle-like particles, the long axis and the short axis Coarse particles of zinc phenylphosphonate having a diameter of 2000 to 3000 nm were observed. The results are shown in Table 1.

〔結晶核剤評価−1〕
(実施例1)
合成例1で得られた110℃の乾燥粉(樹脂用結晶核剤)0.55gおよびポリ乳酸樹脂(NW3001D、数平均分子量72,000、融点164℃、ネーチャーワークス製)54.5gを混合した後、170℃に加熱した小型二軸混練押出機(ブランダー社製)に入れ15分間、50rpmで混練して、樹脂組成物を作成した。冷却後、樹脂組成物を取り出し、テフロンシートと真鍮板で挟み、上部185℃、下部185℃に加熱したホットプレス機に入れ、フィルムの厚さが0.4mmになるように0.5kgfで加圧してフィルムを作成した。このフィルム状サンプルを小片に切り取り、200℃/分で200℃まで昇温してそのまま5分間保持し、その後、5℃/分で冷却するDSC測定(セイコー電子(株)製 DSC−200)を行った。冷却時に観測されるポリ乳酸の結晶化に由来する発熱ピークの頂点から結晶化温度Tcを測定した。
[Crystal Nucleating Agent Evaluation-1]
Example 1
The dried powder (crystal nucleating agent for resin) at 110 ° C. obtained in Synthesis Example 1 and 0.55 g of polylactic acid resin (NW3001D, number average molecular weight 72,000, melting point 164 ° C., manufactured by Nature Works) were mixed. Then, it put into the small biaxial kneading extruder (made by a brander company) heated at 170 degreeC, and knead | mixed for 15 minutes at 50 rpm, and created the resin composition. After cooling, the resin composition is taken out, sandwiched between a Teflon sheet and a brass plate, placed in a hot press machine heated to an upper part of 185 ° C. and a lower part of 185 ° C., and added at 0.5 kgf so that the thickness of the film becomes 0.4 mm. Pressed to create a film. The film sample was cut into small pieces, heated to 200 ° C. at 200 ° C./min, held for 5 minutes, and then cooled at 5 ° C./min (DSC-200 manufactured by Seiko Electronics Co., Ltd.). went. The crystallization temperature Tc was measured from the apex of the exothermic peak derived from the crystallization of polylactic acid observed during cooling.

また、このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、100℃/分で110℃まで冷却後、110℃で10分保持するDSC測定(セイコー電子(株)製 DSC−200)を行った。110℃保持時に観測されるポリ乳酸の結晶化に由来する発熱ピークの頂点の時間から結晶化速度を測定した。結果を表2に示す。なお、表2において、樹脂用結晶核剤の濃度を、樹脂100質量部に対する樹脂用結晶核剤の質量部として記載する。   Also, this film sample is cut into small pieces, heated to 100 ° C./min to 200 ° C. and held for 5 minutes, then cooled to 110 ° C. at 100 ° C./min and then held at 110 ° C. for 10 minutes. The measurement (DSC-200 manufactured by Seiko Electronics Co., Ltd.) was performed. The crystallization rate was measured from the time at the top of the exothermic peak derived from the crystallization of polylactic acid observed at 110 ° C. The results are shown in Table 2. In Table 2, the concentration of the resin crystal nucleating agent is described as a part by mass of the resin crystal nucleating agent with respect to 100 parts by mass of the resin.

(実施例2)
合成例1で得られた110℃乾燥粉の代わりに、合成例2で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Example 2)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 1, the same operation as in Example 1 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 2 was used. Tc and crystallization rate were measured. The results are shown in Table 2.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は44%、ヘイズは56であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 44% and the haze was 56.

(実施例3)
合成例1で得られた110℃乾燥粉の代わりに、合成例3で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Example 3)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 1, the same operation as in Example 1 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 3 was used. Tc and crystallization rate were measured. The results are shown in Table 2.

(実施例4)
合成例1で得られた110℃乾燥粉の代わりに、合成例4で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
Example 4
The crystallization temperature of polylactic acid is the same as in Example 1 except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 4 is used instead of the 110 ° C. dry powder obtained in Synthesis Example 1. Tc and crystallization rate were measured. The results are shown in Table 2.

(実施例5)
合成例1で得られた110℃乾燥粉の代わりに、合成例5で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Example 5)
The crystallization temperature of polylactic acid is the same as in Example 1 except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 5 is used instead of the 110 ° C. dry powder obtained in Synthesis Example 1. Tc and crystallization rate were measured. The results are shown in Table 2.

(実施例6)
合成例1で得られた110℃乾燥粉の代わりに、合成例2で得られた110℃乾燥粉を0.11g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Example 6)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 1, the same operation as in Example 1 was carried out except that 0.11 g of the 110 ° C. dry powder obtained in Synthesis Example 2 was used. Tc and crystallization rate were measured. The results are shown in Table 2.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は75%、ヘイズは24であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 75% and haze was 24.

(実施例7)
合成例1で得られた110℃乾燥粉の代わりに、合成例6で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Example 7)
The crystallization temperature of polylactic acid is the same as in Example 1 except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 6 is used instead of the 110 ° C. dry powder obtained in Synthesis Example 1. Tc and crystallization rate were measured. The results are shown in Table 2.

(実施例8)
合成例1で得られた110℃乾燥粉の代わりに、合成例7で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Example 8)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 1, the same operation as in Example 1 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 7 was used. Tc and crystallization rate were measured. The results are shown in Table 2.

(実施例9)
合成例1で得られた110℃乾燥粉の代わりに、合成例9で得られた110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
Example 9
The crystallization temperature of polylactic acid is the same as in Example 1 except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 9 is used instead of the 110 ° C. dry powder obtained in Synthesis Example 1. Tc and crystallization rate were measured. The results are shown in Table 2.

(比較例1)
樹脂用結晶核剤を添加しない以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the resin nucleating agent was not added, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. The results are shown in Table 2.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は87%、ヘイズは14であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 87% and the haze was 14.

(比較例2)
合成例1で得られた110℃乾燥粉の代わりに、フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、上記フェニルホスホン酸亜鉛を透過型電子顕微鏡観察した結果を図4に示す。なお、上記フェニルホスホン酸亜鉛は、比表面積が、12m/gであった。
(Comparative Example 2)
In place of the 110 ° C. dry powder obtained in Synthesis Example 1, 0.55 g of zinc phenylphosphonate (trademark Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) was used. Lactic acid crystallization temperature Tc and crystallization rate were measured. The results are shown in Table 2. Moreover, the result of having observed the said phenyl phosphonate zinc by the transmission electron microscope is shown in FIG. The zinc phenylphosphonate had a specific surface area of 12 m 2 / g.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は30%、ヘイズは70であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 30%, and the haze was 70.

(比較例3)
合成例1で得られた110℃乾燥粉の代わりに、フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)0.11gを用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。なお、上記フェニルホスホン酸亜鉛は、比表面積が12m/gであった。
(Comparative Example 3)
In place of the 110 ° C. dry powder obtained in Synthesis Example 1, 0.11 g of zinc phenylphosphonate (trademark Eco Promote manufactured by Nissan Chemical Industries, Ltd.) was used, and the same procedure as in Example 1 was performed to obtain poly Lactic acid crystallization temperature Tc and crystallization rate were measured. The results are shown in Table 2. The zinc phenylphosphonate had a specific surface area of 12 m 2 / g.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は60%、ヘイズは41であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 60% and the haze was 41.

(比較例4)
合成例1で得られた110℃乾燥粉の代わりに、合成例8で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を0.55g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Comparative Example 4)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 1, the same operation as in Example 1 was performed except that 0.55 g of the basic zinc cyanurate zinc powder obtained in Synthesis Example 8 was used. The crystallization temperature Tc and crystallization rate of polylactic acid were measured. The results are shown in Table 2.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は39%、ヘイズは64であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 39% and the haze was 64.

(比較例5)
合成例1で得られた110℃乾燥粉の代わりに、合成例8で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を0.11g用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。
(Comparative Example 5)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 1, the same procedure as in Example 1 was performed, except that 0.11 g of the basic zinc cyanurate 110 ° C. powder obtained in Synthesis Example 8 was used. The crystallization temperature Tc and crystallization rate of polylactic acid were measured. The results are shown in Table 2.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は67%、ヘイズは29であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 67% and haze was 29.

(比較例6)
合成例1で得られた110℃乾燥粉の代わりに、合成例8で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉7.0gと亜鉛を29質量%およびフェニルホスホン酸を71質量%含有するフェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)3.0gとを家庭用粉体ミキサーで混合し評価用混合粉を作成した。この混合粉0.55gを、合成例1で得られた110℃乾燥粉の代わりに用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。なお、上記フェニルホスホン酸亜鉛は、比表面積が12m/gであった。
(Comparative Example 6)
Instead of 110 ° C. dry powder obtained in Synthesis Example 1, 110 g of basic cyanuric acid zinc powder obtained in Synthesis Example 8 and 29% by mass of zinc and 71% by mass of phenylphosphonic acid are contained. The mixed powder for evaluation was prepared by mixing 3.0 g of zinc phenylphosphonate (trademark Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) with a household powder mixer. The same operation as in Example 1 was performed except that 0.55 g of this mixed powder was used instead of the 110 ° C. dry powder obtained in Synthesis Example 1, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. . The results are shown in Table 2. The zinc phenylphosphonate had a specific surface area of 12 m 2 / g.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER(東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は40%、ヘイズは61であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light with a wavelength of 550 nm was obtained. The light transmittance was 40% and the haze was 61.

(比較例7)
フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)5.0gと合成例8で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉16.9g及び水酸化マグネシウム(関東化学(株)製 試薬)0.4gを家庭用粉体ミキサーで混合してシアヌル酸を29質量%、亜鉛を43質量%およびフェニルホスホン酸を16質量%及びマグネシウムを1.3質量%含有した混合粉を作成した。この混合粉0.55gを、合成例1で得られた110℃乾燥粉の代わりに用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。なお、上記フェニルホスホン酸亜鉛は、比表面積が12m/gであった。
(Comparative Example 7)
5.0 g of zinc phenylphosphonate (trade name Eco Promote manufactured by Nissan Chemical Industries, Ltd.), 16.9 g of 110 ° C. dry powder of basic zinc cyanurate obtained in Synthesis Example 8 and magnesium hydroxide (Kanto Chemical Co., Ltd.) Reagent) 0.4g was mixed with a household powder mixer to make a mixed powder containing 29% by mass of cyanuric acid, 43% by mass of zinc, 16% by mass of phenylphosphonic acid and 1.3% by mass of magnesium. did. The same operation as in Example 1 was performed except that 0.55 g of this mixed powder was used instead of the 110 ° C. dry powder obtained in Synthesis Example 1, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. . The results are shown in Table 2. The zinc phenylphosphonate had a specific surface area of 12 m 2 / g.

(比較例8)
合成例1で得られた110℃乾燥粉の代わりに、合成例10で得られた110℃乾燥粉を用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定したところ、スラリーがpH7以下になり、この樹脂用結晶核剤にポリ乳酸が一部溶解した。
(Comparative Example 8)
In place of the 110 ° C. dry powder obtained in Synthesis Example 1, the same operation as in Example 1 was carried out except that the 110 ° C. dry powder obtained in Synthesis Example 10 was used. When the conversion rate was measured, the slurry became pH 7 or less, and a part of polylactic acid was dissolved in the crystal nucleating agent for resin.

この結果、表2に示すように、本発明の製造方法で製造した樹脂用結晶核剤を用いた実施例1〜9は、樹脂用結晶核剤を添加しなかった比較例1や、塩基性シアヌル酸亜鉛のみを含有する比較例4及び5よりも結晶化温度が顕著に高く、且つ、結晶化速度が顕著に高く、結晶核剤性能が非常に優れていることが確認された。   As a result, as shown in Table 2, Examples 1 to 9 using the resin crystal nucleating agent produced by the production method of the present invention were comparative example 1 in which the resin crystal nucleating agent was not added, or basic. It was confirmed that the crystallization temperature was remarkably higher than those of Comparative Examples 4 and 5 containing only cyanuric acid zinc, the crystallization rate was remarkably high, and the crystal nucleating agent performance was very excellent.

そして、含有成分が同じである実施例1と比較例7とを比較すると、実施例1のほうが結晶化速度及び結晶化温度が高かった。したがって、塩基性シアヌル酸亜鉛とフェニルホスホン酸亜鉛及び水酸化マグネシウムを単純に混合するよりも、実施例1のように原料を反応させて製造したほうが、結晶核剤性能が優れていることがわかった。   And when Example 1 and the comparative example 7 with the same containing component are compared, the direction of crystallization and the crystallization temperature of Example 1 were higher. Therefore, it is found that the crystal nucleating agent performance is superior when the raw materials are reacted as in Example 1 rather than simply mixing basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide. It was.

また、本発明の製造方法で製造した樹脂用結晶核剤である合成例1〜7及び9は、原料としてフェニルホスホン酸の金属塩ではなくフェニルホスホン酸を用いた合成例10や、比較例6及び7で用いたフェニルホスホン酸亜鉛と比べて、比表面積が大きく微細であるため、透明性が高いといえる。   In addition, Synthesis Examples 1 to 7 and 9 which are crystal nucleating agents for resins produced by the production method of the present invention are Synthesis Example 10 and Comparative Example 6 in which phenylphosphonic acid is used as a raw material instead of a metal salt of phenylphosphonic acid. Compared with the zinc phenylphosphonate used in 1 and 7, the specific surface area is large and fine, so it can be said that the transparency is high.

また、実施例1〜9は、高価なフェニルホスホン酸亜鉛のみを含有する比較例2及び3と比較して、ほぼ同程度以上の結晶化温度及び結晶化速度であり、フェニルホスホン酸亜鉛よりもコストが低い酸化亜鉛、塩基性炭酸亜鉛や、シアヌル酸を原料とすることにより、樹脂の結晶化速度及び結晶化温度を高くするという効果と、低コスト化という効果を両立させることができることも確認された。   Moreover, Examples 1-9 are the crystallization temperature and crystallization speed | velocity | rate of about the same grade or more compared with the comparative examples 2 and 3 which contain only expensive zinc zinc phosphonate, compared with zinc phosphonate zinc. It is also confirmed that low-cost zinc oxide, basic zinc carbonate, and cyanuric acid can be used as raw materials to achieve both the effect of increasing the crystallization speed and crystallization temperature of the resin and the cost reduction. It was done.

〔結晶核剤評価−2〕
(実施例10)
合成例1で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉(樹脂用結晶核剤)36mgおよびポリプロピレン樹脂(ノバテックPP MA3、数平均分子量111,000、融点165℃、日本ポリケム(株)製)3.6gを185℃に加熱した混練機(LABO PLASTOMILL 東洋精機(株)製)に入れ5分間、50rpmで混練して樹脂組成物を製造した。冷却後、樹脂組成物を取り出し、テフロンシートと真鍮板で挟み、上部185℃、下部185℃に加熱したホットプレス機に入れ、フィルムの厚さが0.4mmになるように0.5kgfで加圧してフィルムを作成した。このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、5℃/分で冷却するDSC測定(セイコー電子(株)製 DSC−200)を行い、冷却時に観測されるポリプロピレンの結晶化に由来する発熱ピークの頂点から結晶化温度Tcを測定した。その後、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、100℃/分で130℃まで冷却後、130℃で5分保持するDSC測定(セイコー電子(株)製 DSC−200)を行った。130℃保持時に観測されるポリプロピレンの結晶化に由来する発熱ピークの頂点の時間から結晶化速度を測定した。結果を表3に示す。
[Crystal Nucleating Agent Evaluation-2]
(Example 10)
36 mg of basic zinc cyanurate obtained in Synthesis Example 1 (36 ° C. dry powder (crystal nucleating agent for resin)) and polypropylene resin (Novatech PP MA3, number average molecular weight 111,000, melting point 165 ° C., manufactured by Nippon Polychem Co., Ltd.) ) 3.6 g was put into a kneading machine (LABO PLASTOMILL, manufactured by Toyo Seiki Co., Ltd.) heated to 185 ° C. and kneaded at 50 rpm for 5 minutes to produce a resin composition. After cooling, the resin composition is taken out, sandwiched between a Teflon sheet and a brass plate, placed in a hot press machine heated to an upper part of 185 ° C. and a lower part of 185 ° C., and added at 0.5 kgf so that the thickness of the film becomes 0.4 mm. Pressed to create a film. The film sample was cut into small pieces, heated to 100 ° C./200° C., held for 5 minutes, and then cooled at 5 ° C./min (DSC-200 manufactured by Seiko Electronics Co., Ltd.). The crystallization temperature Tc was measured from the apex of the exothermic peak derived from polypropylene crystallization observed during cooling. Then, the temperature was raised to 200 ° C. at 100 ° C./min and held for 5 minutes, and then cooled to 130 ° C. at 100 ° C./min and then held at 130 ° C. for 5 minutes (DSC manufactured by Seiko Electronics Co., Ltd.) -200). The crystallization rate was measured from the time of the peak of the exothermic peak derived from crystallization of polypropylene observed at 130 ° C. The results are shown in Table 3.

(比較例9)
樹脂用結晶核剤を添加しない以外は実施例10と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表3に示す。
(Comparative Example 9)
The same operation as in Example 10 was performed except that the resin nucleating agent was not added, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. The results are shown in Table 3.

(比較例10)
合成例1で得られた110℃乾燥粉の代わりに、フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)を用いた以外は実施例10と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表3に示す。なお、上記フェニルホスホン酸亜鉛は、比表面積が12m/gであった。
(Comparative Example 10)
Crystals of polylactic acid were obtained in the same manner as in Example 10 except that zinc phenylphosphonate (trademark Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) was used instead of the 110 ° C. dry powder obtained in Synthesis Example 1. The crystallization temperature Tc and the crystallization rate were measured. The results are shown in Table 3. The zinc phenylphosphonate had a specific surface area of 12 m 2 / g.

(比較例11)
合成例1で得られた110℃乾燥粉の代わりに、合成例8で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉36mgを用いた以外は実施例10と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表3に示す。
(Comparative Example 11)
In place of the 110 ° C. dry powder obtained in Synthesis Example 1, the same procedure as in Example 10 was performed except that 36 mg of the basic zinc cyanurate zinc powder obtained in Synthesis Example 8 was used. The crystallization temperature Tc and the crystallization rate were measured. The results are shown in Table 3.

表3に示すように、本発明の製造方法で製造した樹脂用結晶核剤を用いた実施例10は、樹脂用結晶核剤を添加しなかった比較例9や塩基性シアヌル酸亜鉛のみを含有する比較例11よりも結晶化温度が顕著に高く、且つ、結晶化速度が顕著に高く、結晶核剤性能が非常に優れていることが確認された。   As shown in Table 3, Example 10 using the resin crystal nucleating agent produced by the production method of the present invention contains only Comparative Example 9 and basic zinc cyanurate that did not add the resin crystal nucleating agent. Thus, it was confirmed that the crystallization temperature was remarkably higher than that of Comparative Example 11, and the crystallization rate was remarkably high, so that the performance of the crystal nucleating agent was extremely excellent.

また、実施例10は、高価なフェニルホスホン酸亜鉛のみを含有する比較例10と比較して、同程度以上の結晶化温度及び結晶化速度であり、フェニルホスホン酸亜鉛よりもコストが低い酸化亜鉛、塩基性炭酸亜鉛や、シアヌル酸を原料とすることにより、ポリプロピレン樹脂においても、樹脂の結晶化速度及び結晶化温度を高くするという効果と、低コスト化という効果を両立させることができることも確認された。   Further, in Example 10, zinc oxide having a crystallization temperature and a crystallization rate equal to or higher than those of Comparative Example 10 containing only expensive zinc phenylphosphonate and lower in cost than zinc phenylphosphonate. It is also confirmed that by using basic zinc carbonate and cyanuric acid as raw materials, both the effect of increasing the crystallization speed and the crystallization temperature of the resin and the effect of reducing the cost can be achieved in polypropylene resin. It was done.

Claims (3)

フェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム及びフェニルホスホン酸カリウムから選択される少なくとも一種のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを含有する混合スラリーを、分散させて反応させることにより、塩基性シアヌル酸亜鉛及びフェニルホスホン酸亜鉛を含有する樹脂用結晶核剤を得ることを特徴とする樹脂用結晶核剤の製造方法。   An aqueous solution of at least one metal salt of phenylphosphonic acid selected from magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate and potassium phenylphosphonate; and at least one selected from zinc oxide and basic zinc carbonate A resin crystal characterized by obtaining a crystal nucleating agent for resin containing basic zinc cyanurate and zinc phenylphosphonate by dispersing and reacting a mixed slurry containing cyanuric acid and water. A method for producing a nucleating agent. 前記樹脂用結晶核剤は、比表面積が20〜100m/gであることを特徴とする請求項1に記載する樹脂用結晶核剤の製造方法。 The method for producing a resin crystal nucleating agent according to claim 1, wherein the crystal nucleating agent for resin has a specific surface area of 20 to 100 m 2 / g. 前記分散が、ディスパー型攪拌羽または分散メディアを用いた湿式分散であることを特徴とする請求項1または2に記載する樹脂用結晶核剤の製造方法。   The method for producing a crystal nucleating agent for a resin according to claim 1 or 2, wherein the dispersion is a wet dispersion using a dispersion type stirring blade or a dispersion medium.
JP2011104762A 2011-05-09 2011-05-09 Method for producing crystal nucleating agent for resin Withdrawn JP2012236867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104762A JP2012236867A (en) 2011-05-09 2011-05-09 Method for producing crystal nucleating agent for resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104762A JP2012236867A (en) 2011-05-09 2011-05-09 Method for producing crystal nucleating agent for resin

Publications (1)

Publication Number Publication Date
JP2012236867A true JP2012236867A (en) 2012-12-06

Family

ID=47460069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104762A Withdrawn JP2012236867A (en) 2011-05-09 2011-05-09 Method for producing crystal nucleating agent for resin

Country Status (1)

Country Link
JP (1) JP2012236867A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106518796A (en) * 2016-09-26 2017-03-22 深圳市志海实业股份有限公司 Method for efficient preparation of novel environment-friendly zinc cyanurate PVC stabilizer under atmospheric pressure
CN106632113A (en) * 2016-09-25 2017-05-10 深圳市志海实业股份有限公司 Production method for zinc cyanurate
WO2019021671A1 (en) 2017-07-24 2019-01-31 株式会社Adeka Composition and flame-retardant resin composition
CN111484650A (en) * 2020-04-27 2020-08-04 包头稀土研究院 Composite nucleating agent and composition for polylactic acid and preparation method of composite nucleating agent
WO2020248381A1 (en) * 2019-06-13 2020-12-17 深圳市志海实业股份有限公司 Method for solid-phase synthesis of cyanuric acid-uracil complex zinc salt
CN113442540A (en) * 2021-06-25 2021-09-28 贵州省材料产业技术研究院 Biodegradable film material and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632113A (en) * 2016-09-25 2017-05-10 深圳市志海实业股份有限公司 Production method for zinc cyanurate
CN106632113B (en) * 2016-09-25 2019-09-10 深圳市志海实业股份有限公司 A kind of production method of cyanuric acid zinc
CN106518796A (en) * 2016-09-26 2017-03-22 深圳市志海实业股份有限公司 Method for efficient preparation of novel environment-friendly zinc cyanurate PVC stabilizer under atmospheric pressure
WO2019021671A1 (en) 2017-07-24 2019-01-31 株式会社Adeka Composition and flame-retardant resin composition
US11345858B2 (en) 2017-07-24 2022-05-31 Adeka Corporation Composition and flame-retardant resin composition
WO2020248381A1 (en) * 2019-06-13 2020-12-17 深圳市志海实业股份有限公司 Method for solid-phase synthesis of cyanuric acid-uracil complex zinc salt
CN111484650A (en) * 2020-04-27 2020-08-04 包头稀土研究院 Composite nucleating agent and composition for polylactic acid and preparation method of composite nucleating agent
CN111484650B (en) * 2020-04-27 2021-09-14 包头稀土研究院 Composite nucleating agent and composition for polylactic acid and preparation method of composite nucleating agent
CN113442540A (en) * 2021-06-25 2021-09-28 贵州省材料产业技术研究院 Biodegradable film material and preparation method and application thereof
CN113442540B (en) * 2021-06-25 2023-05-09 贵州省材料产业技术研究院 Biodegradable film material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101763646B1 (en) Method for producing phosphonic acid metal salt and thermoplastic resin composition containing phosphonic acid metal salt
TWI382056B (en) Polylactic acid resin composition
TWI623494B (en) Resin composition and coating liquid
JP2012236867A (en) Method for producing crystal nucleating agent for resin
JP5874849B2 (en) Basic zinc cyanurate fine particles
JP3906152B2 (en) Apatite reinforced resin composition
JP5861838B2 (en) Method for promoting crystallization and method for producing molded product
JP2008050584A (en) Resin composition and molded product
JP2016023114A (en) Magnesium oxide particles and method for producing the same, thermally conductive filler and heat-conductive resin composition using the same, molded article thereof and high thermal conductive material
WO2000008099A1 (en) Flame-retardant polyamide composite material with high rigidity
WO2012011576A1 (en) Crystalline resin composition
JP6908892B2 (en) Polyamide resin composition containing a metal salt of a phenylphosphonic acid compound
JP5495722B2 (en) Method for producing oriented polylactic acid resin material
JP6842692B2 (en) Aluminum phosphite, and flame-retardant resin composition
US9035100B2 (en) Method for producing phenylphosphonic acid metal salt composition, and crystal nucleating agent therefrom
JPH11349851A (en) Production of coupling agent-treated inorganic particle and its use
JP5477567B2 (en) Polylactic acid resin composition
JP4479888B2 (en) Crystal nucleating agent for polylactic acid resin and method for producing crystallized polylactic acid resin
JP2000273327A (en) Flame retardant composition and flame-retarded resin composition
JP2007056275A (en) Platelet apatite-reinforced resin composition
JP2001064521A (en) Flame-retardant resin composition
JP2007113017A (en) Needle apatite reinforced resin composition
JP2015129069A (en) Magnesium oxide particle, production method of the same, heat-conductive filler, heat-conductive resin composition using the same, molded article of the composition, and high heat-conductive material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805