JP5477567B2 - Polylactic acid resin composition - Google Patents

Polylactic acid resin composition Download PDF

Info

Publication number
JP5477567B2
JP5477567B2 JP2009255069A JP2009255069A JP5477567B2 JP 5477567 B2 JP5477567 B2 JP 5477567B2 JP 2009255069 A JP2009255069 A JP 2009255069A JP 2009255069 A JP2009255069 A JP 2009255069A JP 5477567 B2 JP5477567 B2 JP 5477567B2
Authority
JP
Japan
Prior art keywords
polylactic acid
acid resin
resin composition
manganese salt
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009255069A
Other languages
Japanese (ja)
Other versions
JP2011099054A (en
Inventor
剛史 諏訪
寿人 林
雅昭 小澤
容督 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2009255069A priority Critical patent/JP5477567B2/en
Publication of JP2011099054A publication Critical patent/JP2011099054A/en
Application granted granted Critical
Publication of JP5477567B2 publication Critical patent/JP5477567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリ乳酸樹脂組成物に関し、より詳細には、ポリ乳酸樹脂とフェニルホスホン酸マンガン塩とを含有する樹脂組成物に関する。   The present invention relates to a polylactic acid resin composition, and more particularly to a resin composition containing a polylactic acid resin and a phenylphosphonic acid manganese salt.

自然環境保護の見地から、自然環境中で生分解可能な脂肪族ポリエステルに関する研究が精力的に行われている。中でもポリ乳酸樹脂は、融点が160〜180℃と高く、透明性に優れるため、例えば容器、フィルム等の包装材料、衣料、フロアマット、自動車用内装材等の繊維材料、及び電気・電子製品の筺体や部品等の成型材料として期待されている。
しかしながら、ポリ乳酸樹脂は結晶化速度が遅いため、特に延伸が行われない射出成形等によって製造される場合、成形物は結晶化度が低くなりやすく、60℃前後のガラス転移温度を越えると軟化しやすくなるという欠点を有している。結晶化度を上げるために、射出成形時の金型温度を高くし、金型内での冷却時間を長くする方法が試みられているが、この方法では成形サイクルが長くなるために生産性に課題を有する。ポリ乳酸樹脂成形物を高い生産性で製造し、幅広い用途で利用するために、結晶化速度及び結晶化度を高め、成形加工性や耐熱性を改善する試みがなされている。
From the standpoint of protecting the natural environment, research on aliphatic polyester that is biodegradable in the natural environment has been energetically conducted. Among them, polylactic acid resin has a high melting point of 160 to 180 ° C. and is excellent in transparency. Therefore, for example, packaging materials such as containers and films, clothing, floor mats, fiber materials such as automobile interior materials, and electrical / electronic products. Expected to be a molding material for housings and parts.
However, since the polylactic acid resin has a slow crystallization rate, the molded product tends to have a low degree of crystallinity, especially when it is manufactured by injection molding or the like that is not stretched, and softens when the glass transition temperature exceeds about 60 ° C. Has the disadvantage of being easy to do. In order to increase the crystallinity, an attempt has been made to increase the mold temperature at the time of injection molding and to increase the cooling time in the mold. Has a problem. In order to produce polylactic acid resin molded products with high productivity and use them in a wide range of applications, attempts have been made to increase the crystallization speed and the degree of crystallinity, and to improve the moldability and heat resistance.

一般的にポリ乳酸樹脂の結晶化速度を高める方法としては、結晶核剤を添加する方法が知られている。結晶核剤とは、結晶性高分子の一次結晶核となり結晶成長を促進し、結晶サイズを微細化すると共に、結晶化速度を高める働きをする。ポリ乳酸樹脂の結晶核剤としては、特定の粒径以下のタルク又は窒化ホウ素からなる無機粒子(特許文献1)、特定の式で表されるアミド化合物(特許文献2)、特定の式で表されるソルビトール系誘導体(特許文献3)、及び特定の式で表されるリン酸エステル金属塩(特許文献4)などが開示されている。また、特定のホスホン酸化合物金属塩、具体的にはフェニルホスホン酸亜鉛が優れた性能を示すことが開示されている(特許文献5)。   In general, a method of adding a crystal nucleating agent is known as a method for increasing the crystallization speed of a polylactic acid resin. The crystal nucleating agent serves as a primary crystal nucleus of the crystalline polymer, promotes crystal growth, refines the crystal size, and increases the crystallization speed. As a crystal nucleating agent for polylactic acid resin, inorganic particles composed of talc or boron nitride having a specific particle size or less (Patent Document 1), an amide compound represented by a specific formula (Patent Document 2), and a specific formula Sorbitol-based derivatives (Patent Document 3), and phosphoric acid ester metal salts (Patent Document 4) represented by a specific formula are disclosed. Further, it is disclosed that a specific metal salt of a phosphonic acid compound, specifically zinc phenylphosphonate, exhibits excellent performance (Patent Document 5).

特開平8−3432号公報JP-A-8-3432 特開平10−87975号公報Japanese Patent Laid-Open No. 10-87975 特開平10−158369号公報JP-A-10-158369 特開2003−192883号公報JP 2003-192883 A 国際公開2005/097894号パンフレットInternational Publication No. 2005/097894

前述したとおり、ポリ乳酸樹脂の結晶化速度及び結晶化度を高めるために様々な結晶核剤が提案されているが、近年、ポリ乳酸樹脂のより高い成型加工性や耐熱性を実現するために、さらに有効な結晶核剤の開発が望まれている。
従って本発明の目的は、ポリ乳酸樹脂の結晶化を促進するのに好適な結晶核剤とポリ乳酸樹脂とを含む樹脂組成物を提供することを目的とする。
As described above, various crystal nucleating agents have been proposed in order to increase the crystallization speed and degree of crystallization of polylactic acid resin. In recent years, in order to realize higher moldability and heat resistance of polylactic acid resin. Furthermore, development of a more effective crystal nucleating agent is desired.
Accordingly, an object of the present invention is to provide a resin composition comprising a crystal nucleating agent suitable for promoting crystallization of a polylactic acid resin and a polylactic acid resin.

本発明者らは、上記課題を解決するべく鋭意検討を進めた結果、ポリ乳酸樹脂に結晶核剤として特定のホスホン酸化合物のマンガン塩を添加することにより、ポリ乳酸樹脂の結晶化速度を高め、かつ耐熱性、成形加工性に優れたポリ乳酸樹脂組成物が得られることを
見出し、本発明を完成した。
As a result of intensive studies to solve the above problems, the present inventors have increased the crystallization rate of polylactic acid resin by adding a manganese salt of a specific phosphonic acid compound as a crystal nucleating agent to polylactic acid resin. And it discovered that the polylactic acid resin composition excellent in heat resistance and moldability was obtained, and completed this invention.

すなわち、本発明は、第1観点として、ポリ乳酸樹脂と、式(1)で表されるフェニルホスホン酸化合物のマンガン塩とを含有することを特徴とする、ポリ乳酸樹脂組成物に関する。
(式中、R1及びR2は、それぞれ独立して、水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数1乃至10のアルコキシカルボニル基を表す。)
第2観点として、ポリ乳酸樹脂100質量部に対して、前記式(1)で表されるフェニルホスホン酸化合物のマンガン塩を0.01乃至10質量部含有する、第1観点に記載のポリ乳酸樹脂組成物に関する。
第3観点として、式(1)で表されるフェニルホスホン酸化合物のマンガン塩からなる結晶核剤に関する。
(式中、R1及びR2は、それぞれ独立して、水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数1乃至10のアルコキシカルボニル基を表す。)
That is, this invention relates to the polylactic acid resin composition characterized by including the polylactic acid resin and the manganese salt of the phenylphosphonic acid compound represented by Formula (1) as a 1st viewpoint.
(Wherein R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 1 to 10 carbon atoms.)
As a second aspect, the polylactic acid according to the first aspect, containing 0.01 to 10 parts by mass of a manganese salt of the phenylphosphonic acid compound represented by the formula (1) with respect to 100 parts by mass of the polylactic acid resin. The present invention relates to a resin composition.
As a 3rd viewpoint, it is related with the crystal nucleating agent which consists of manganese salt of the phenylphosphonic acid compound represented by Formula (1).
(Wherein R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 1 to 10 carbon atoms.)

本発明のポリ乳酸樹脂組成物は、フェニルホスホン酸のマンガン塩を結晶核剤として用いることにより、ポリ乳酸樹脂の結晶化促進効果が向上されたものとなり、ひいては、耐熱性、成形加工性に優れたポリ乳酸樹脂組成物を提供することができる。   The polylactic acid resin composition of the present invention has improved crystallization accelerating effect of polylactic acid resin by using a phenylphosphonic acid manganese salt as a crystal nucleating agent, and thus has excellent heat resistance and molding processability. A polylactic acid resin composition can be provided.

図1は、合成例1で製造したフェニルホスホン酸マンガン一水和物の薄桃色粉末の走査型顕微鏡(SEM)像を示す図である。1 is a scanning microscope (SEM) image of a light pink powder of manganese phenylphosphonate monohydrate produced in Synthesis Example 1. FIG.

本発明のポリ乳酸樹脂組成物は、特定のフェニルホスホン酸化合物のマンガン塩とポリ乳酸樹脂を含有することを特徴とする。
以下、本発明についてさらに詳しく説明する。
The polylactic acid resin composition of the present invention is characterized by containing a manganese salt of a specific phenylphosphonic acid compound and a polylactic acid resin.
Hereinafter, the present invention will be described in more detail.

本発明において使用するフェニルホスホン酸化合物のマンガン塩に用いるフェニルホスホン酸化合物は、下記一般式(1)で表される化合物である。
The phenylphosphonic acid compound used for the manganese salt of the phenylphosphonic acid compound used in the present invention is a compound represented by the following general formula (1).

上記式(1)で表されるフェニルホスホン酸化合物において、式中のR1及びR2は、水素原子;メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素原子数1乃至10のアルキル基;メトキシカルボニ
ル基、エトキシカルボニル基等の炭素原子数1乃至10のアルコキシカルボニル基である。R1及びR2は同一でも又は相異なっていてもよい。
In the phenylphosphonic acid compound represented by the above formula (1), R 1 and R 2 in the formula are hydrogen atoms; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, an alkyl group having 1 to 10 carbon atoms such as tert-butyl group; an alkoxycarbonyl group having 1 to 10 carbon atoms such as methoxycarbonyl group and ethoxycarbonyl group. R 1 and R 2 may be the same or different.

上記式(1)で表されるフェニルホスホン酸化合物の具体例としては、フェニルホスホン酸、4−メチルフェニルホスホン酸、4−エチルフェニルホスホン酸、4−n−プロピルフェニルホスホン酸、4−イソプロピルフェニルホスホン酸、4−n−ブチルフェニルホスホン酸、4−イソブチルフェニルホスホン酸、4−tert−ブチルフェニルホスホン酸、3,5−ジメトキシカルボニルフェニルホスホン酸、3,5−ジエトキシカルボニルフェニルホスホン酸、2,5−ジメトキシカルボニルフェニルホスホン酸、2,5−ジエトキシカルボニルフェニルホスホン酸等が挙げられる。
これら化合物は市販品をそのまま好適に使用できる。
Specific examples of the phenylphosphonic acid compound represented by the above formula (1) include phenylphosphonic acid, 4-methylphenylphosphonic acid, 4-ethylphenylphosphonic acid, 4-n-propylphenylphosphonic acid, 4-isopropylphenyl. Phosphonic acid, 4-n-butylphenylphosphonic acid, 4-isobutylphenylphosphonic acid, 4-tert-butylphenylphosphonic acid, 3,5-dimethoxycarbonylphenylphosphonic acid, 3,5-diethoxycarbonylphenylphosphonic acid, 2 , 5-dimethoxycarbonylphenylphosphonic acid, 2,5-diethoxycarbonylphenylphosphonic acid and the like.
As these compounds, commercially available products can be preferably used as they are.

本発明で用いられるフェニルホスホン酸化合物のマンガン塩の製造に用いるマンガン化合物としては特に限定されず、硫酸塩、硝酸塩、塩化物、炭酸塩、酢酸塩、或いは酸化物、水酸化物等を使用できる。
上記化合物もまた、市販品をそのまま好適に使用できる。
The manganese compound used for producing the manganese salt of the phenylphosphonic acid compound used in the present invention is not particularly limited, and sulfates, nitrates, chlorides, carbonates, acetates, oxides, hydroxides, and the like can be used. .
Commercially available products can also be suitably used as the above compounds.

フェニルホスホン酸化合物のマンガン塩を製造するには、まず前記フェニルホスホン酸化合物と前記マンガン化合物を、適当な媒体中で混合して反応させる。
ここで用いられる媒体としては特に限定されないが、反応効率の面から原料であるフェニルホスホン酸化合物が可溶であることが好ましい。また、最終的な生成物を回収することを考慮すると、フェニルホスホン酸マンガン塩が難溶である溶媒が好ましい。
このような溶媒としては、例えば水;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類;アセトニトリルなどのニトリル類;テトラヒドロフランなどのエーテル類;メタノール、エタノール、1−プロパノール、2−プロパノールなどのアルコール類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;n−ヘキサン、n−ヘプタンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼンなどのハロゲン化炭化水素類等を挙げることができる。これら溶媒は、1種を単独で使用しても、2種以上を混合して使用してもよい。これらの中でも、取扱いの容易さや経済性を考慮すると水を使用することがより好ましい。
In order to produce a manganese salt of a phenylphosphonic acid compound, the phenylphosphonic acid compound and the manganese compound are first mixed and reacted in a suitable medium.
Although it does not specifically limit as a medium used here, It is preferable that the phenylphosphonic acid compound which is a raw material is soluble from the surface of reaction efficiency. In consideration of recovering the final product, a solvent in which phenylphosphonic acid manganese salt is hardly soluble is preferable.
Examples of such solvents include water; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; nitriles such as acetonitrile; ethers such as tetrahydrofuran; alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; Amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; Sulfoxides such as dimethyl sulfoxide; Aliphatic hydrocarbons such as n-hexane and n-heptane; benzene, Aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, and chlorobenzene. These solvents may be used alone or in combination of two or more. Among these, it is more preferable to use water in consideration of ease of handling and economy.

上記反応において、前記フェニルホスホン酸化合物と前記マンガン化合物の仕込み量は、モル比で、前記フェニルホスホン酸化合物:マンガン化合物=2:1乃至1:100であることが好ましい。   In the above reaction, the amount of the phenylphosphonic acid compound and the manganese compound charged is preferably in the molar ratio of the phenylphosphonic acid compound: manganese compound = 2: 1 to 1: 100.

上記反応の実際の手順としては、例えば原料となる上記マンガン化合物を含む溶液又はスラリーに、前記フェニルホスホン酸化合物の溶液を添加することによって行われる。ここでマンガン化合物を含む溶液若しくはスラリー、又はフェニルホスホン酸化合物の溶液に使用する溶媒としては前出の媒体が挙げられる。このとき、前記溶液又はスラリーを攪拌翼などで攪拌しながら滴下するのが好ましい。
このときの反応温度は、使用する溶媒の凝固点以上沸点以下であれば特に限定されないが、通常0乃至250℃の範囲から適宜選択される。例えば水中での反応であれば、0乃至100℃であり、好ましくは10乃至100℃である。なお、反応温度は生成されるフェニルホスホン酸マンガン塩の大きさに影響を及ぼし得る。すなわち、反応温度が高温になるほど、析出したフェニルホスホン酸マンガン塩の溶解度が高まることで、生成物(フェニルホスホン酸マンガン塩)の再溶解と再結晶化が起こりやすくなり、生成物のサイズが増大しやすい。このため、より粒子径の小さいフェニルホスホン酸マンガン塩を製造する場合には、上記反応の温度は30℃以下に保つことが望ましい。
The actual procedure of the reaction is performed, for example, by adding the phenylphosphonic acid compound solution to a solution or slurry containing the manganese compound as a raw material. Examples of the solvent used in the solution or slurry containing the manganese compound or the solution of the phenylphosphonic acid compound include the above-mentioned medium. At this time, it is preferable to drop the solution or slurry while stirring with a stirring blade or the like.
Although the reaction temperature at this time will not be specifically limited if it is more than the freezing point of a solvent to be used and below a boiling point, Usually, it is suitably selected from the range of 0-250 degreeC. For example, in the case of a reaction in water, the temperature is 0 to 100 ° C, preferably 10 to 100 ° C. The reaction temperature can affect the size of the produced phenylphosphonic acid manganese salt. That is, the higher the reaction temperature, the higher the solubility of the precipitated phenylphosphonic acid manganese salt, so that the product (phenylphosphonic acid manganese salt) is more likely to be redissolved and recrystallized, and the size of the product increases. It's easy to do. For this reason, when manufacturing a phenylphosphonic acid manganese salt with a smaller particle diameter, it is desirable to maintain the temperature of the said reaction at 30 degrees C or less.

また、前記反応を水性媒体中、特に水中で行う場合、反応混合物のpH域が酸性になると、生成されるフェニルホスホン酸マンガン塩の溶解度が高まり、上述の理由により生成物(フェニルホスホン酸マンガン塩)のサイズが増大しやすい。このため、より粒子径の小さいフェニルホスホン酸マンガン塩を製造する場合には、反応混合物に塩基を加え中和してもよい。
上記反応混合物を中和させる塩基としては特に限定されないが、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等を使用することができる。
具体的には例えばこれらの塩基の水溶液を上記式(1)で表されるフェニルホスホン酸化合物の水溶液と混合する、又は反応終了後の反応混合物に添加することによって実施される。
In addition, when the reaction is performed in an aqueous medium, particularly in water, when the pH range of the reaction mixture becomes acidic, the solubility of the resulting phenylphosphonic acid manganese salt increases, and the product (phenylphosphonic acid manganese salt for the above reasons). ) Is likely to increase in size. For this reason, when manufacturing a phenylphosphonic acid manganese salt with a smaller particle diameter, you may neutralize by adding a base to a reaction mixture.
Although it does not specifically limit as a base which neutralizes the said reaction mixture, For example, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate etc. can be used.
Specifically, for example, an aqueous solution of these bases is mixed with an aqueous solution of a phenylphosphonic acid compound represented by the above formula (1) or added to the reaction mixture after completion of the reaction.

上記反応終了後、媒体を濾過もしくは留去した後、必要により溶媒で洗浄し、乾燥することにより、フェニルホスホン酸マンガン塩を得ることができる。なお得られるマンガン塩は未反応のフェニルホスホン酸化合物を含まないことが好ましい。
このときの乾燥温度としては、媒体の種類によって適宜選択でき、また、減圧条件を適用してもよい。
媒体として水を用いた場合、乾燥温度は常圧では100乃至500℃であることが好ましく、より好ましくは120乃至200℃である。100℃より低い温度では媒体(水)を除去しきれず、また500℃より高い温度では、フェニルホスホン酸マンガン塩の分解を誘発する虞がある。
After the completion of the reaction, the medium is filtered or distilled off, and then washed with a solvent as necessary and dried to obtain a phenylphosphonic acid manganese salt. In addition, it is preferable that the manganese salt obtained does not contain an unreacted phenylphosphonic acid compound.
The drying temperature at this time can be appropriately selected depending on the type of medium, and reduced pressure conditions may be applied.
When water is used as the medium, the drying temperature is preferably 100 to 500 ° C at normal pressure, more preferably 120 to 200 ° C. If the temperature is lower than 100 ° C, the medium (water) cannot be completely removed, and if the temperature is higher than 500 ° C, decomposition of the phenylphosphonic acid manganese salt may be induced.

上述の製造方法を経て得られるフェニルホスホン酸マンガン塩は、微小な板状形状を有する。その長軸長は0.05乃至1μmであり、好ましくは0.05乃至0.5μmである。
また、このようにして得られたフェニルホスホン酸マンガン塩は、必要に応じて、ホモミキサー、ヘンシェルミキサー、レーディゲミキサーなどの剪断力を有する混合機や、ボールミル、ピンディスクミル、パルベライザー、イノマイザー、カウンタージェットミルなどの粉砕機を用いて、さらに微小の形状とすることができる。また水、水と混合可能な有機溶媒及びこれらの混合溶液を用いたボールミル、ビーズミル、サンドグラインダー、アトライター、アルティマイザーなどの湿式粉砕機でもさらに微小な形状にすることができる。
The phenylphosphonic acid manganese salt obtained through the above production method has a fine plate shape. The major axis length is 0.05 to 1 μm, preferably 0.05 to 0.5 μm.
In addition, the thus obtained phenylphosphonic acid manganese salt can be mixed with a mixer having shearing force such as a homomixer, a Henschel mixer, a Ladige mixer, a ball mill, a pin disc mill, a pulverizer, an inomizer as required. Further, a finer shape can be obtained by using a pulverizer such as a counter jet mill. Further, a finer shape can be obtained with a wet pulverizer such as water, an organic solvent that can be mixed with water, and a ball mill, a bead mill, a sand grinder, an attritor, or an optimizer using a mixed solution thereof.

なお、上記式(1)で表わされるフェニルホスホン酸のマンガン塩からなる結晶核剤も本発明の対象である。   A crystal nucleating agent comprising a manganese salt of phenylphosphonic acid represented by the above formula (1) is also an object of the present invention.

本発明のポリ乳酸樹脂組成物に含まれるポリ乳酸樹脂は、ポリ乳酸のホモポリマー又はコポリマーを含む。ポリ乳酸樹脂がコポリマーの場合、コポリマーの配列様式はランダムコポリマー、交互コポリマー、ブロックコポリマー、グラフトコポリマーのいずれであっても良い。また、ポリ乳酸のホモポリマー又はコポリマーを主体とした、他樹脂とのブレンドポリマーであっても良い。他樹脂とは、後述するポリ乳酸樹脂以外の生分解性樹脂、汎用の熱可塑性樹脂、汎用の熱可塑性エンジニアリングプラスチックなどが挙げられる。
ポリ乳酸としては特に限定されるものではないが、例えばラクチドを開環重合させたものや、乳酸のD体、L体、ラセミ体などを直接重縮合させたものが挙げられる。ポリ乳酸の数平均分子量は、一般に10,000から500,000程度である。またポリ乳酸樹脂を熱、光、放射線などを利用して架橋剤で架橋させたものも使用できる。
The polylactic acid resin contained in the polylactic acid resin composition of the present invention includes a homopolymer or copolymer of polylactic acid. When the polylactic acid resin is a copolymer, the arrangement pattern of the copolymer may be any of random copolymer, alternating copolymer, block copolymer, and graft copolymer. Further, it may be a blend polymer with other resin mainly composed of polylactic acid homopolymer or copolymer. Examples of the other resin include biodegradable resins other than the polylactic acid resin described later, general-purpose thermoplastic resins, and general-purpose thermoplastic engineering plastics.
The polylactic acid is not particularly limited, and examples thereof include those obtained by ring-opening polymerization of lactide and those obtained by direct polycondensation of D-form, L-form, racemate, etc. of lactic acid. The number average molecular weight of polylactic acid is generally about 10,000 to 500,000. A polylactic acid resin obtained by crosslinking with a crosslinking agent using heat, light, radiation, or the like can also be used.

またポリ乳酸樹脂以外の生分解性樹脂の例としては、ポリ−3−ヒドロキシ酪酸、3−ヒドロキシ酪酸と3−ヒドロキシヘキサン酸の共重合体などのポリヒドロキシアルカン酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネート/アジペ
ート、ポリブチレンサクシネート/カーボネート、ポリエチレンサクシネート、ポリエチレンサクシネート/アジペート、ポリビニルアルコール、ポリグリコール酸、変性でんぷん、酢酸セルロース、キチン、キトサン、リグニンなどが挙げられる。
Examples of biodegradable resins other than polylactic acid resins include poly-3-hydroxybutyric acid, polyhydroxyalkanoic acids such as 3-hydroxybutyric acid and 3-hydroxyhexanoic acid copolymer, polycaprolactone, and polybutylene succinate. , Polybutylene succinate / adipate, polybutylene succinate / carbonate, polyethylene succinate, polyethylene succinate / adipate, polyvinyl alcohol, polyglycolic acid, modified starch, cellulose acetate, chitin, chitosan, lignin and the like.

汎用の熱可塑性樹脂の例としては、ポリエチレン(PE)、ポリエチレンコポリマー、ポリプロピレン(PP)、ポリプロピレンコポリマー、ポリブチレン(PB)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)又はポリ(4−メチル−1−ペンテン)などのポリオレフィン系樹脂、ポリスチレン(PS)、高衝撃性ポリスチレン(HIPS)、アクリロニトリル−スチレン共重合体(AS)又はアクリロニトリル−ブタジエン−スチレン共重合体(ABS)などのポリスチレン系樹脂、塩化ビニル樹脂、ポリウレタン樹脂、フェノール樹脂、エポキシ樹脂、アミノ樹脂、不飽和ポリエステル樹脂などが挙げられる。
汎用のエンジニアリングプラスチックの例としては、ポリアミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート(PET)又はポリブチレンテレフタレート(PBT)などのポリエステル樹脂、ポリアセタール樹脂、ポリスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂などが挙げられる。
Examples of general-purpose thermoplastic resins include polyethylene (PE), polyethylene copolymer, polypropylene (PP), polypropylene copolymer, polybutylene (PB), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer Polyolefin resins such as (EEA) or poly (4-methyl-1-pentene), polystyrene (PS), high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS), or acrylonitrile-butadiene-styrene copolymer Examples thereof include polystyrene resins such as coalescence (ABS), vinyl chloride resins, polyurethane resins, phenol resins, epoxy resins, amino resins, and unsaturated polyester resins.
Examples of general-purpose engineering plastics include polyamide resins, polycarbonate resins, polyphenylene ether resins, modified polyphenylene ether resins, polyester resins such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyacetal resins, polysulfone resins, polyphenylene sulfide resins. And polyimide resin.

上記ポリ乳酸樹脂組成物におけるフェニルホスホン酸マンガン塩の添加量は、ポリ乳酸樹脂100質量部に対して、無水物換算で0.01乃至10質量部であることが好ましい。より好ましくは0.02乃至5質量部、さらに好ましくは0.03乃至2質量部である。前記フェニルホスホン酸マンガン塩の添加量が0.01質量部未満ではポリ乳酸樹脂の結晶化速度を十分に高めることが困難になる。また10質量部を超えても結晶化速度の速いポリ乳酸樹脂が得られるが、それ以上結晶化速度が速くなるわけではない。   The addition amount of the phenylphosphonic acid manganese salt in the polylactic acid resin composition is preferably 0.01 to 10 parts by mass in terms of anhydride with respect to 100 parts by mass of the polylactic acid resin. More preferably, it is 0.02 to 5 parts by mass, and still more preferably 0.03 to 2 parts by mass. If the addition amount of the phenylphosphonic acid manganese salt is less than 0.01 parts by mass, it is difficult to sufficiently increase the crystallization rate of the polylactic acid resin. A polylactic acid resin having a high crystallization rate can be obtained even when the amount exceeds 10 parts by mass, but the crystallization rate is not further increased.

本発明において、ポリ乳酸樹脂にフェニルホスホン酸マンガン塩を配合する方法は特に制限されることなく、公知の方法によって行うことができる。例えばポリ乳酸樹脂とフェニルホスホン酸マンガン塩を各種ミキサーで混合し、単軸あるいはニ軸押出機などを用いて混練すればよい。混練は通常150〜220℃程度の温度で行われる。また、フェニルホスホン酸マンガン塩を高濃度で含有するマスターバッチを生成し、これをポリ乳酸樹脂に添加する方法も可能である。またポリ乳酸樹脂の重合段階で、フェニルホスホン酸マンガン塩を添加することもできる。   In the present invention, the method for blending the phenylphosphonic acid manganese salt into the polylactic acid resin is not particularly limited and can be carried out by a known method. For example, polylactic acid resin and phenylphosphonic acid manganese salt may be mixed with various mixers and kneaded using a single screw or twin screw extruder. Kneading is usually performed at a temperature of about 150 to 220 ° C. Moreover, the method of producing | generating the masterbatch containing phenylphosphonic acid manganese salt by high concentration, and adding this to polylactic acid resin is also possible. In addition, phenylphosphonic acid manganese salt can be added at the polymerization stage of the polylactic acid resin.

本発明のポリ乳酸樹脂組成物は、公知の無機充填剤を使用することができる。例えばガラス繊維、炭素繊維、タルク、マイカ、シリカ、カオリン、クレー、ウオラストナイト、ガラスビーズ、ガラスフレーク、チタン酸カリウム、炭酸カルシウム、硫酸マグネシウム、酸化チタンなどが挙げられる。これらの無機充填剤の形状は、繊維状、粒状、板状、針状、球状、粉末のいずれでもよい。これらの無機充填剤は、ポリ乳酸樹脂100質量部に対して、300質量部以内で使用できる。   A known inorganic filler can be used for the polylactic acid resin composition of the present invention. For example, glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, glass flake, potassium titanate, calcium carbonate, magnesium sulfate, titanium oxide and the like can be mentioned. The shape of these inorganic fillers may be any of fibrous, granular, plate-like, needle-like, spherical, and powder. These inorganic fillers can be used within 300 parts by mass with respect to 100 parts by mass of the polylactic acid resin.

本発明のポリ乳酸樹脂組成物は、公知の難燃剤を使用することができる。例えば臭素系や塩素系などのハロゲン系難燃剤、三酸化アンチモン、五酸化アンチモンなどのアンチモン系難燃剤、水酸化アルミニウムや水酸化マグネシウム、シリコーン系化合物などの無機系難燃剤、赤リン、リン酸エステル類、ポリリン酸アンモニウム、フォスファゼンなどのリン系難燃剤、メラミン、メラム、メレム、メロン、メラミンシアヌレート、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラミン・メラム・メレム複塩、アルキルホスホン酸メラミン、フェニルホスホン酸メラミン、硫酸メラミン、メタンスルホン酸メラムなどのメラミン系難燃剤、PTFEなどのフッ素樹脂などが挙げられる。これらの難燃剤は、ポリ乳酸樹脂100質量部に対して、200質量部以内で使用できる。   A known flame retardant can be used in the polylactic acid resin composition of the present invention. For example, halogen flame retardants such as bromine and chlorine, antimony flame retardants such as antimony trioxide and antimony pentoxide, inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide and silicone compounds, red phosphorus and phosphoric acid Phosphorus flame retardants such as esters, ammonium polyphosphate, phosphazene, melamine, melam, melem, melon, melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine polymelamine melam melem double salt, alkyl Examples include melamine phosphonate, melamine phenylphosphonate, melamine sulfate, and melamine methanesulfonate flame retardant, and fluororesin such as PTFE. These flame retardants can be used within 200 parts by mass with respect to 100 parts by mass of the polylactic acid resin.

また上記の成分以外に、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、衝撃改良剤、帯電防止剤、顔料、着色剤、離型剤、滑剤、可塑剤、相溶化剤、発泡剤、香料、抗菌抗カビ剤、シラン系、チタン系、アルミニウム系等の各種カップリング剤、その他の各種充填剤、その他の結晶核剤など、一般的な合成樹脂の製造時に通常使用される各種添加剤と併用することができる。   In addition to the above components, heat stabilizers, light stabilizers, UV absorbers, antioxidants, impact modifiers, antistatic agents, pigments, colorants, mold release agents, lubricants, plasticizers, compatibilizers, foaming Various commonly used in the production of general synthetic resins, such as agents, fragrances, antibacterial and antifungal agents, various coupling agents such as silane, titanium, and aluminum, other various fillers, and other crystal nucleating agents Can be used in combination with additives.

なお本発明のポリ乳酸樹脂組成物は、一般の射出成形、ブロー成形、真空成形、圧縮成形などの成形方法を適用することができ、これら成形を経て各種の成形品を容易に得ることができる。   The polylactic acid resin composition of the present invention can be applied with molding methods such as general injection molding, blow molding, vacuum molding and compression molding, and various molded products can be easily obtained through these moldings. .

以下、本発明を実施例によりさらに具体的に説明するが、これによって本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by this.

[合成例1]
撹拌機を装備した500mL反応フラスコに、塩化マンガン(II)四水和物[和光純薬工業(株)製 特級]19.8g(0.1mol)及び水248gを加え、撹拌することで塩化マンガン水溶液を調製した。この水溶液に、室温(およそ25℃)で撹拌下、フェニルホスホン酸[日産化学工業(株)製]15.8g(0.1mol)を水90gに溶解させた水溶液、及び5N水酸化ナトリウム水溶液40mL(0.2mol)の混合溶液をおよそ5分間で滴下した。滴下終了後、生成したスラリーを濾過し、結晶を水で十分に洗い流した。得られた湿品を200℃で12時間乾燥することで、薄桃色粉末のフェニルホスホン酸マンガン一水和物22.5gを得た(収率98%)。
得られたフェニルホスホン酸マンガン一水和物のSEM[日本電子(株)製 電界放出型走査電子顕微鏡 JSM−7400F]画像を図1に示す。
[Synthesis Example 1]
To a 500 mL reaction flask equipped with a stirrer, 19.8 g (0.1 mol) of manganese (II) chloride tetrahydrate [special grade manufactured by Wako Pure Chemical Industries, Ltd.] and 248 g of water were added and stirred to prepare manganese chloride. An aqueous solution was prepared. An aqueous solution in which 15.8 g (0.1 mol) of phenylphosphonic acid [manufactured by Nissan Chemical Industries, Ltd.] was dissolved in 90 g of water and 40 mL of 5N aqueous sodium hydroxide solution were stirred in this aqueous solution at room temperature (approximately 25 ° C.). (0.2 mol) of the mixed solution was dropped in about 5 minutes. After completion of the dropwise addition, the produced slurry was filtered, and the crystals were thoroughly washed with water. The obtained wet product was dried at 200 ° C. for 12 hours to obtain 22.5 g of manganese phenylphosphonate monohydrate as a light pink powder (yield 98%).
FIG. 1 shows an SEM image of the obtained manganese phenylphosphonate monohydrate (JEM-7400F, field emission scanning electron microscope manufactured by JEOL Ltd.).

得られたフェニルホスホン酸マンガンのTG−DTA測定[(株)リガク製 ThermoPlus2/TG−DTA8120]を行った。測定は、室温(およそ25℃)から10℃/分で200℃まで昇温し、その後10℃/分で冷却した。その結果、昇温時170乃至200℃で水分子1個分に相当する約8%の重量減が観測され、冷却時およそ130℃から同程度の重量増加が観測された。このことより、乾燥直後のフェニルホスホン酸マンガンは無水物であるが、空気中で室温まで冷却すると速やかに一水和物となることが示唆された。   The obtained manganese phenylphosphonate was subjected to TG-DTA measurement [ThermoPlus2 / TG-DTA8120 manufactured by Rigaku Corporation]. In the measurement, the temperature was raised from room temperature (approximately 25 ° C.) to 200 ° C. at 10 ° C./min, and then cooled at 10 ° C./min. As a result, a weight loss of about 8% corresponding to one water molecule was observed at 170 to 200 ° C. when the temperature was raised, and a similar weight increase was observed from about 130 ° C. during the cooling. From this, it was suggested that manganese phenylphosphonate immediately after drying is an anhydride, but it quickly becomes a monohydrate when cooled to room temperature in air.

[合成例2]
撹拌機を装備した300mL反応フラスコに、酸化マンガン(II)[和光純薬工業(株)製]10.0g(0.14mol)及び水90gを加え、酸化マンガンの水スラリーを調製した。このスラリーに、室温(およそ25℃)で撹拌下、フェニルホスホン酸[日産化学工業(株)製]22.1g(0.14mol)を水125gに溶解させた水溶液をおよそ10分間で滴下した。そのまま5時間撹拌後、スラリーを濾過し、結晶を水で十分に洗い流した。得られた湿品を200℃で12時間乾燥することで、薄桃色粉末のフェニルホスホン酸マンガン一水和物24.4gを得た(収率76%)。
[Synthesis Example 2]
To a 300 mL reaction flask equipped with a stirrer, manganese oxide (II) [manufactured by Wako Pure Chemical Industries, Ltd.] 10.0 g (0.14 mol) and water 90 g were added to prepare an aqueous slurry of manganese oxide. To this slurry, an aqueous solution in which 22.1 g (0.14 mol) of phenylphosphonic acid [manufactured by Nissan Chemical Industries, Ltd.] was dissolved in 125 g of water was added dropwise over about 10 minutes while stirring at room temperature (about 25 ° C.). After stirring for 5 hours as it was, the slurry was filtered, and the crystals were thoroughly washed with water. The obtained wet product was dried at 200 ° C. for 12 hours to obtain 24.4 g of a light pink powder manganese phenylphosphonate monohydrate (yield 76%).

[比較合成例1]
撹拌機を装備した500mL反応フラスコに、塩化亜鉛[和光純薬工業(株)製]13.6g(0.1mol)及び水200gを加え、撹拌することで塩化亜鉛水溶液を調製した。この水溶液に、室温(およそ25℃)で撹拌下、フェニルホスホン酸[日産化学工業(株)製]15.8g(0.1mol)を水90gに溶解させた水溶液、及び5N水酸化ナトリウム水溶液40mL(0.2mol)の混合溶液をおよそ5分間で滴下した。滴下
終了後、生成したスラリーを濾過し、結晶を水で十分に洗い流した。得られた湿品を200℃で12時間乾燥することで、白色粉末のフェニルホスホン酸亜鉛20.8gを得た(収率94%)。
[Comparative Synthesis Example 1]
To a 500 mL reaction flask equipped with a stirrer, 13.6 g (0.1 mol) of zinc chloride [manufactured by Wako Pure Chemical Industries, Ltd.] and 200 g of water were added and stirred to prepare an aqueous zinc chloride solution. An aqueous solution in which 15.8 g (0.1 mol) of phenylphosphonic acid [manufactured by Nissan Chemical Industries, Ltd.] was dissolved in 90 g of water and 40 mL of 5N aqueous sodium hydroxide solution were stirred in this aqueous solution at room temperature (approximately 25 ° C.). (0.2 mol) of the mixed solution was dropped in about 5 minutes. After completion of the dropwise addition, the produced slurry was filtered, and the crystals were thoroughly washed with water. The obtained wet product was dried at 200 ° C. for 12 hours to obtain 20.8 g of white powdered zinc phenylphosphonate (yield 94%).

[比較合成例2]
撹拌機を装備した300mL反応フラスコに、酸化亜鉛[ハクスイテック(株)製 2種]10.0g(0.12mol)及び水90gを加え、酸化亜鉛の水スラリーを調製した。このスラリーに、室温(およそ25℃)で撹拌下、フェニルホスホン酸[日産化学工業(株)製]19.4g(0.12mol)を水110gに溶解させた水溶液をおよそ10分間で滴下した。そのまま5時間撹拌後、スラリーを濾過し、結晶を水で十分に洗い流した。得られた湿品を120℃で12時間乾燥することで、白色粉末のフェニルホスホン酸亜鉛25.5gを得た(収率96%)。
[Comparative Synthesis Example 2]
To a 300 mL reaction flask equipped with a stirrer, 10.0 g (0.12 mol) of zinc oxide [Hakusui Tech Co., Ltd., 2 types] and 90 g of water were added to prepare an aqueous slurry of zinc oxide. To this slurry, an aqueous solution in which 19.4 g (0.12 mol) of phenylphosphonic acid [manufactured by Nissan Chemical Industries, Ltd.] was dissolved in 110 g of water was added dropwise over about 10 minutes with stirring at room temperature (about 25 ° C.). After stirring for 5 hours as it was, the slurry was filtered, and the crystals were thoroughly washed with water. The obtained wet product was dried at 120 ° C. for 12 hours to obtain 25.5 g of white powdered zinc phenylphosphonate (yield 96%).

[実施例1]
ポリ乳酸樹脂[トヨタ自動車(株)製 トヨタエコプラスチック U’z S−09]100質量部を、クロロホルム1,900質量部に溶解させて、5質量%ポリ乳酸樹脂溶液を調製した。この溶液に、結晶核剤として合成例1で得られたフェニルホスホン酸マンガン一水和物1質量部を加えた後、30分間超音波処理[ガスクロ工業(株)(現:ジーエルサイエンス(株))製 大型超音波バス(150W)]し、続けて3時間撹拌、さらに再度30分間超音波処理を施すことで結晶核剤を溶液に分散させた。得られたポリ乳酸樹脂組成物をシャーレ上にキャストし、ホットプレート上50℃で溶媒を除去することで、結晶核剤が分散したポリ乳酸樹脂フィルムを得た。
このサンプルを小片に切り取り、DSC測定[(株)リガク製 ThermoPlus2/DSC8230]を行った。測定は、窒素気流下10℃/分で200℃まで昇温しそのまま5分間保持、その後5℃/分で冷却した。冷却時に観測されるポリ乳酸樹脂の結晶化に由来する発熱ピーク頂点の温度から、結晶化温度Tc、及び発熱量ΔHを測定した。得られた結果を表1に示す。
[Example 1]
100 parts by mass of polylactic acid resin [Toyota Eco Plastics U'z S-09 manufactured by Toyota Motor Corporation] was dissolved in 1,900 parts by mass of chloroform to prepare a 5% by mass polylactic acid resin solution. After adding 1 part by mass of manganese phenylphosphonate monohydrate obtained in Synthesis Example 1 as a crystal nucleating agent to this solution, ultrasonic treatment for 30 minutes [Gascro Industry Co., Ltd. (currently GL Science Co., Ltd.) Large ultrasonic bath (150 W)], followed by stirring for 3 hours, and further subjected to ultrasonic treatment for 30 minutes to disperse the crystal nucleating agent in the solution. The obtained polylactic acid resin composition was cast on a petri dish and the solvent was removed on a hot plate at 50 ° C. to obtain a polylactic acid resin film in which the crystal nucleating agent was dispersed.
This sample was cut into small pieces and subjected to DSC measurement [ThermoPlus2 / DSC8230, manufactured by Rigaku Corporation]. In the measurement, the temperature was raised to 200 ° C. at 10 ° C./min under a nitrogen stream, maintained for 5 minutes, and then cooled at 5 ° C./min. The crystallization temperature Tc and the heat generation amount ΔH were measured from the temperature at the peak of the exothermic peak derived from the crystallization of the polylactic acid resin observed during cooling. The obtained results are shown in Table 1.

[実施例2]
実施例1において、結晶核剤として合成例2で得られたフェニルホスホン酸マンガン一水和物を用いた以外は同様の操作、測定を行った。得られた結果を表1に合わせて示す。[比較例1]
実施例1において、結晶核剤として比較合成例1で得られたフェニルホスホン酸亜鉛を用いた以外は同様の操作、測定を行った。得られた結果を表1に合わせて示す。
[比較例2]
実施例1において、結晶核剤として比較合成例2で得られたフェニルホスホン酸亜鉛を用いた以外は同様の操作、測定を行った。得られた結果を表1に合わせて示す。
[比較例3]
実施例1において、結晶核剤を用いなかったこと以外は同様の操作、測定を行った。得られた結果を表1に合わせて示す。
[Example 2]
In Example 1, the same operation and measurement were performed except that the phenyl phosphonate manganese monohydrate obtained in Synthesis Example 2 was used as the crystal nucleating agent. The obtained results are shown in Table 1. [Comparative Example 1]
In Example 1, the same operation and measurement were performed except that the zinc phenylphosphonate obtained in Comparative Synthesis Example 1 was used as the crystal nucleating agent. The obtained results are shown in Table 1.
[Comparative Example 2]
In Example 1, the same operation and measurement were performed except that the zinc phenylphosphonate obtained in Comparative Synthesis Example 2 was used as the crystal nucleating agent. The obtained results are shown in Table 1.
[Comparative Example 3]
In Example 1, the same operation and measurement were performed except that the crystal nucleating agent was not used. The obtained results are shown in Table 1.

表1に示すように、フェニルホスホン酸マンガン一水和物を用いた実施例1及び実施例2の樹脂組成物は、フェニルホスホン酸亜鉛を用いた比較合成例1及び比較合成例2と比べて高い結晶化温度並びに結晶化発熱量を示すとする結果が得られた。   As shown in Table 1, the resin compositions of Example 1 and Example 2 using manganese phenylphosphonate monohydrate were compared with Comparative Synthesis Example 1 and Comparative Synthesis Example 2 using zinc phenylphosphonate. Results indicating high crystallization temperature and crystallization exotherm were obtained.

Claims (2)

ポリ乳酸樹脂と、式(1)で表されるフェニルホスホン酸化合物のマンガン塩からなる結晶核剤とを含有することを特徴とする、ポリ乳酸樹脂組成物。
(式中、R1及びR2は、それぞれ独立して、水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数1乃至10のアルコキシカルボニル基を表す。)
A polylactic acid resin composition comprising a polylactic acid resin and a crystal nucleating agent comprising a manganese salt of a phenylphosphonic acid compound represented by formula (1).
(Wherein R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 1 to 10 carbon atoms.)
ポリ乳酸樹脂100質量部に対して、前記式(1)で表されるフェニルホスホン酸化合物のマンガン塩からなる結晶核剤を0.01乃至10質量部含有する、請求項1に記載のポリ乳酸樹脂組成物。
The polylactic acid according to claim 1, comprising 0.01 to 10 parts by mass of a crystal nucleating agent comprising a manganese salt of a phenylphosphonic acid compound represented by the formula (1) with respect to 100 parts by mass of the polylactic acid resin. Resin composition.
JP2009255069A 2009-11-06 2009-11-06 Polylactic acid resin composition Active JP5477567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255069A JP5477567B2 (en) 2009-11-06 2009-11-06 Polylactic acid resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255069A JP5477567B2 (en) 2009-11-06 2009-11-06 Polylactic acid resin composition

Publications (2)

Publication Number Publication Date
JP2011099054A JP2011099054A (en) 2011-05-19
JP5477567B2 true JP5477567B2 (en) 2014-04-23

Family

ID=44190508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255069A Active JP5477567B2 (en) 2009-11-06 2009-11-06 Polylactic acid resin composition

Country Status (1)

Country Link
JP (1) JP5477567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910201B2 (en) * 2012-03-15 2016-04-27 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and molded article thereof
CN111205583B (en) * 2020-03-17 2022-12-27 宁波利安科技股份有限公司 Easily degradable environment-friendly plastic and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108249A (en) * 1981-12-21 1983-06-28 Toyobo Co Ltd Block copolymeric poly(ether ester) composition
JP2004197088A (en) * 2002-12-06 2004-07-15 Toyobo Co Ltd Polyester, polyester molding comprising the same, and producing method of them
JP4973848B2 (en) * 2004-03-30 2012-07-11 日産化学工業株式会社 Polylactic acid resin composition
JP5519156B2 (en) * 2009-01-16 2014-06-11 帝人株式会社 Method for producing highly crystalline polyester composition

Also Published As

Publication number Publication date
JP2011099054A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP4973848B2 (en) Polylactic acid resin composition
JP5761519B2 (en) Method for producing phosphonic acid metal salt and thermoplastic resin composition containing phosphonic acid metal salt
JP5958713B2 (en) Poly (3-hydroxyalkanoate) resin composition
JP5846389B2 (en) Crystalline resin composition
JP2010150365A (en) Crystal nucleus agent for polylactic acid resin, and polylactic acid resin composition
US20190055206A1 (en) Polyester resin composition containing amino-triazine derivative
JP5477567B2 (en) Polylactic acid resin composition
JP2009079218A (en) Environment consideration type thermoplastic resin composition and molded article comprising it
JP6908892B2 (en) Polyamide resin composition containing a metal salt of a phenylphosphonic acid compound
US9035100B2 (en) Method for producing phenylphosphonic acid metal salt composition, and crystal nucleating agent therefrom
JP2013018912A (en) Polylactic acid resin composition
JP4479888B2 (en) Crystal nucleating agent for polylactic acid resin and method for producing crystallized polylactic acid resin
JP5854199B2 (en) Polylactic acid resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R151 Written notification of patent or utility model registration

Ref document number: 5477567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350