JP5861838B2 - Method for promoting crystallization and method for producing molded product - Google Patents

Method for promoting crystallization and method for producing molded product Download PDF

Info

Publication number
JP5861838B2
JP5861838B2 JP2012521537A JP2012521537A JP5861838B2 JP 5861838 B2 JP5861838 B2 JP 5861838B2 JP 2012521537 A JP2012521537 A JP 2012521537A JP 2012521537 A JP2012521537 A JP 2012521537A JP 5861838 B2 JP5861838 B2 JP 5861838B2
Authority
JP
Japan
Prior art keywords
resin
zinc
acid
mass
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012521537A
Other languages
Japanese (ja)
Other versions
JPWO2011162354A1 (en
Inventor
太田 勇夫
勇夫 太田
大岩本 雅紀
雅紀 大岩本
剛史 諏訪
剛史 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2012521537A priority Critical patent/JP5861838B2/en
Publication of JPWO2011162354A1 publication Critical patent/JPWO2011162354A1/en
Application granted granted Critical
Publication of JP5861838B2 publication Critical patent/JP5861838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/32Cyanuric acid; Isocyanuric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof

Description

本発明は、ポリ乳酸樹脂やポリオレフィン系樹脂等の樹脂用結晶核剤及び樹脂組成物に関する。   The present invention relates to a resin crystal nucleating agent such as polylactic acid resin and polyolefin resin, and a resin composition.

自然環境保護の見地から、自然環境中で生分解可能な脂肪族ポリエスエルに関する研究が勢力的に行なわれている。中でもポリ乳酸樹脂は、融点が160〜180℃と高く透明性に優れるため、容器、フィルム等の包装材料、衣料、繊維材料、電気、電子製品の成形材料として期待されている。   From the viewpoint of protecting the natural environment, research on aliphatic polyester that is biodegradable in the natural environment has been actively conducted. Among them, polylactic acid resin has a high melting point of 160 to 180 ° C. and is excellent in transparency. Therefore, polylactic acid resin is expected as a molding material for packaging materials such as containers and films, clothing, fiber materials, electrical and electronic products.

しかしながら、ポリ乳酸樹脂は、結晶化速度が遅いという問題がある。結晶化速度が遅いと、結晶化度が低くなるため、耐熱性が悪くなる。例えば、ポリ乳酸樹脂を延伸が行われない射出成形等によって成形する場合、成形物は結晶化度が低くなり60℃前後のガラス転移温度を超えると変形しやすくなるという欠点を有している。そこで、結晶化度を上げるために、射出成形時の金型温度を高くし、金型内での冷却時間を長くする方法が試みられているが、この方法では成形時間が長くなるため、生産性に課題を有する。   However, the polylactic acid resin has a problem that the crystallization rate is slow. When the crystallization speed is slow, the crystallinity is lowered, and the heat resistance is deteriorated. For example, when a polylactic acid resin is molded by injection molding or the like in which stretching is not performed, the molded product has a disadvantage that the degree of crystallinity is low and the glass transition temperature of about 60 ° C. is easily deformed. Therefore, in order to increase the crystallinity, an attempt has been made to increase the mold temperature at the time of injection molding and extend the cooling time in the mold. Has a problem with sex.

また、ポリ乳酸樹脂やポリプロピレン樹脂の結晶化速度を高める方法としては、例えば、結晶性高分子である樹脂の一次結晶核となり結晶成長を促進して結晶化速度を高める結晶核剤を添加する方法が知られている。   In addition, as a method for increasing the crystallization speed of polylactic acid resin or polypropylene resin, for example, a method of adding a crystal nucleating agent that becomes a primary crystal nucleus of a resin that is a crystalline polymer and promotes crystal growth to increase the crystallization speed. It has been known.

ポリ乳酸樹脂の結晶核剤としては、特定の粒径以下のタルク及び/又は窒化ホウ素からなる無機粒子(特許文献1参照。)、特定の式で示されるアミド化合物(特許文献2参照。)、特定の式で示されるソルビトール誘導体(特許文献3参照。)、リン酸エステル金属塩及び塩基性無機アルミニウム化合物(特許文献4参照。)、フェニルホスホン酸の金属塩(特許文献5参照。)等が開示されているが、さらに有効な樹脂用結晶核剤の開発が望まれている。また、成形時間を短くするために、結晶化温度を高くすることも望まれている。   As a crystal nucleating agent for polylactic acid resin, inorganic particles composed of talc and / or boron nitride having a specific particle size or less (see Patent Document 1), amide compounds represented by a specific formula (see Patent Document 2), A sorbitol derivative represented by a specific formula (see Patent Document 3), a phosphate metal salt and a basic inorganic aluminum compound (see Patent Document 4), a metal salt of phenylphosphonic acid (see Patent Document 5), and the like. Although disclosed, development of a more effective crystal nucleating agent for resin is desired. It is also desired to increase the crystallization temperature in order to shorten the molding time.

特開平8−3432号公報(特許請求の範囲)JP-A-8-3432 (Claims) 特開平10−87975号公報(特許請求の範囲)JP-A-10-87975 (Claims) 特開平10−158369号公報(特許請求の範囲)JP-A-10-158369 (Claims) 特開2003−192883号公報(特許請求の範囲)JP 2003-192883 A (Claims) 国際公開第2005−97894号パンフレット(特許請求の範囲)International Publication No. 2005-97894 Pamphlet (Claims)

本発明の課題は、上述の従来技術の問題点を解決することにあり、樹脂の結晶化速度及び結晶化温度を高くすることができる新規な樹脂用結晶核剤及び樹脂組成物を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a novel crystal nucleating agent for resin and a resin composition capable of increasing the crystallization speed and crystallization temperature of the resin. It is in.

上記課題を解決する本発明は、結晶性高分子である樹脂のポリ乳酸樹脂又はポリオレフィン系樹脂に塩基性シアヌル酸亜鉛粒子を含有する樹脂用結晶核剤を添加して成形することにより、前記樹脂用結晶核剤を前記樹脂の一次結晶核として結晶化を促進することを特徴とする結晶化促進方法にある。
また、結晶性高分子である樹脂のポリ乳酸樹脂又はポリオレフィン系樹脂に塩基性シアヌル酸亜鉛粒子を含有する樹脂用結晶核剤を添加して成形することにより、前記樹脂の結晶化速度を高めることを特徴とする結晶化促進方法にある
して、前記塩基性シアヌル酸亜鉛粒子が、レーザー回折法により測定した平均粒子径D50が80〜900nmで、比表面積が20〜100m/gであってもよい。
The present invention which solves the above-mentioned problems is obtained by adding a resin crystal nucleating agent containing basic zinc cyanurate particles to a polylactic acid resin or polyolefin resin which is a crystalline polymer, and molding the resin. A crystallization promoting method is characterized in that crystallization is promoted by using a crystal nucleating agent as a primary crystal nucleus of the resin.
In addition, by adding a resin crystal nucleating agent containing basic zinc cyanurate particles to a polylactic acid resin or polyolefin resin , which is a crystalline polymer, to increase the crystallization speed of the resin The crystallization promoting method is characterized by the following .
Their to, said basic cyanuric zinc particles, an average particle diameter D 50 measured by a laser diffraction method at 80~900Nm, specific surface area may be 20 to 100 m 2 / g.

また、前記塩基性シアヌル酸亜鉛粒子が、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸と水とを、水に対してシアヌル酸濃度が0.1〜10.0質量%になるように配合した混合スラリーを、5〜55℃の温度範囲で分散メディアを用いた湿式分散を行うことにより製造されたものであってもよい。   Moreover, the said basic cyanuric-acid particle has at least 1 type selected from a zinc oxide and basic zinc carbonate, cyanuric acid, and water, and cyanuric acid density | concentration is 0.1-10.0 mass% with respect to water. The mixed slurry blended as described above may be manufactured by performing wet dispersion using a dispersion medium in a temperature range of 5 to 55 ° C.

また、前記樹脂用結晶核剤が、フェニルホスホン酸の金属塩を含有していてもよく、前記フェニルホスホン酸の金属塩が、フェニルホスホン酸亜鉛、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸カルシウム、フェニルホスホン酸マグネシウム及びフェニルホスホン酸マンガンから選択される少なくとも1種であることが好ましい。 Further, the resin crystal nucleating agent may contain a metal salt of phenylphosphonic acid, and the metal salt of phenylphosphonic acid is zinc phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate, phenylphosphonic acid. It is preferably at least one selected from potassium acid, calcium phenylphosphonate, magnesium phenylphosphonate and manganese phenylphosphonate.

そして、前記樹脂がポリ乳酸樹脂であり、該ポリ乳酸樹脂100質量部に対して、前記塩基性シアヌル酸亜鉛粒子を0.01〜10.0質量部含有することが好ましい。
また、前記樹脂がポリオレフィン系樹脂であり、該ポリオレフィン系樹脂100質量部に対して、前記塩基性シアヌル酸亜鉛粒子を0.01〜10.0質量部含有することが好ましい。
また、前記ポリオレフィン系樹脂が、ポリプロピレン樹脂及びポリエチレン樹脂から選択される少なくとも一種であってもよい。
さらに、本発明は、上記結晶化促進方法により結晶化を促進し、成形物を得ることを特徴とする成形物の製造方法にある。
And it is preferable that the said resin is a polylactic acid resin and contains the basic cyanuric-acid zinc particle 0.01-10.0 mass parts with respect to 100 mass parts of this polylactic acid resin.
Moreover, it is preferable that the said resin is polyolefin resin and contains 0.01-10.0 mass parts of said basic cyanuric-acid zinc particles with respect to 100 mass parts of this polyolefin resin.
Also, the polyolefin resin may be at least one selected polypropylene resin and polyethylene resins or al.
Furthermore, the present invention resides in a method for producing a molded product characterized in that crystallization is promoted by the crystallization promoting method to obtain a molded product.

本発明によれば、塩基性シアヌル酸亜鉛粒子を用いることにより、新規な樹脂用結晶核剤を提供することができる。そして、この結晶核剤と樹脂とを含有する樹脂組成物は、結晶化速度が高く、且つ、結晶化温度が高いものとなる。したがって、結晶化度が高く、緻密で高剛性であり透明性にも優れた成形物を、短時間で得ることができる。そして、レーザー回折法により測定した平均粒子径D50が80〜900nmで、比表面積が20〜100m/gである塩基性シアヌル酸亜鉛粒子を結晶核剤とすることにより、成形物の透明性をさらに向上させることができる。また、塩基性シアヌル酸亜鉛粒子と共にフェニルホスホン酸の金属塩を含有させることにより、より優れた樹脂用結晶核剤となる。 According to the present invention, a novel crystal nucleating agent for resin can be provided by using basic zinc cyanurate particles. And the resin composition containing this crystal nucleating agent and resin has a high crystallization speed and a high crystallization temperature. Therefore, a molded product having a high degree of crystallinity, a dense and high rigidity, and excellent transparency can be obtained in a short time. Then, by using basic zinc cyanurate particles having an average particle diameter D 50 measured by laser diffraction method of 80 to 900 nm and a specific surface area of 20 to 100 m 2 / g as a crystal nucleating agent, the transparency of the molded product. Can be further improved. Moreover, it becomes the more excellent crystal nucleating agent for resin by containing the metal salt of phenylphosphonic acid with basic zinc cyanurate particle.

合成例1のXRD回折パターンである。3 is an XRD diffraction pattern of Synthesis Example 1. 合成例1のTEM写真である。4 is a TEM photograph of Synthesis Example 1. 合成例3のTEM写真である。10 is a TEM photograph of Synthesis Example 3. 合成例7のTEM写真である。10 is a TEM photograph of Synthesis Example 7. 合成例9のTEM写真である。10 is a TEM photograph of Synthesis Example 9. 合成例11のXRD回折パターンである。10 is an XRD diffraction pattern of Synthesis Example 11. 合成例12のTEM写真である。14 is a TEM photograph of Synthesis Example 12. 合成例19のTEM写真である。14 is a TEM photograph of Synthesis Example 19. 比較例4で用いたフェニルホスホン酸亜鉛のTEM写真である。4 is a TEM photograph of zinc phenylphosphonate used in Comparative Example 4.

本発明の樹脂用結晶核剤は、塩基性シアヌル酸亜鉛粒子を含有するものである。塩基性シアヌル酸亜鉛は、鉄系の金属表面の腐食防止剤として知られている物質であり、従来は樹脂用の結晶核剤として使用されていないものであるが、本発明者らにより、結晶性高分子である樹脂の一次結晶核となり、結晶成長を促進して結晶化速度を高め、また、結晶化温度を高くする機能を有するため、結晶核剤として使用できることが知見されたものである。   The resin crystal nucleating agent of the present invention contains basic zinc cyanurate particles. Basic zinc cyanurate is a substance known as a corrosion inhibitor for iron-based metal surfaces, and is not conventionally used as a crystal nucleating agent for resins. It has been discovered that it can be used as a crystal nucleating agent because it has the function of increasing the crystallization speed by increasing the crystallization speed by increasing the crystallization temperature by becoming the primary crystal nucleus of the resin that is a functional polymer. .

この塩基性シアヌル酸亜鉛粒子を結晶核剤として用いることにより、樹脂の結晶化速度が高くなるため、樹脂の結晶化度が高くなり、樹脂の成形物の耐熱性を向上させることができる。また、結晶化速度が高くなることにより、結晶化に要する時間が短くなるため、短時間で樹脂の成形物を得ることができ生産性が向上する。そして、短時間で結晶化することにより、球晶サイズが小さくなり緻密で高剛性を有し透明性に優れた成形物を得ることができる。また、樹脂の結晶化温度も高くなるため、樹脂を射出成形等の金型で成形する場合に、金型の冷却温度を高くできるので、短時間で樹脂の成形物を得ることができ、生産性が向上する。   By using the basic zinc cyanurate particles as a crystal nucleating agent, the crystallization speed of the resin is increased, so that the crystallization degree of the resin is increased and the heat resistance of the molded product of the resin can be improved. In addition, since the time required for crystallization is shortened by increasing the crystallization speed, a resin molded product can be obtained in a short time, and productivity is improved. Then, by crystallization in a short time, a spherulite size is reduced, and a molded product having high density, high rigidity, and excellent transparency can be obtained. In addition, since the crystallization temperature of the resin also increases, when the resin is molded by a mold such as injection molding, the mold cooling temperature can be increased, so that a resin molded product can be obtained in a short time, and production Improves.

塩基性シアヌル酸亜鉛粒子の大きさに特に制限はないが、例えば、レーザー回折法により測定した平均粒子径D50が80〜900nmで、比表面積が20〜100m/gである微細なシアヌル酸亜鉛粒子を用いることにより、透明性が高い樹脂用結晶核剤とすることができる。 Not particularly limited on the size of the basic cyanuric zinc particles. For example, the average particle diameter D 50 measured by a laser diffraction method 80~900Nm, fine cyanuric acid having a specific surface area of 20 to 100 m 2 / g By using zinc particles, a highly transparent crystal nucleating agent for resin can be obtained.

塩基性シアヌル酸亜鉛粒子は、例えば、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸とを、必要に応じて加熱等して反応させることにより製造することができる。酸化亜鉛、塩基性炭酸亜鉛及びシアヌル酸は安価なため、安価な樹脂用結晶核剤を提供することができる。酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸とを反応させて塩基性シアヌル酸亜鉛を製造する方法に特に限定はないが、例えば、酸化亜鉛とシアヌル酸とを沸騰水中で反応させる製造方法や、酸化亜鉛とシアヌル酸を混合したペーストを50〜250℃に加熱しながらピンディスクミル又はブレードミルで剪断作用を加えることにより製造する方法が挙げられる。   Basic zinc cyanurate particles can be produced, for example, by reacting at least one selected from zinc oxide and basic zinc carbonate with cyanuric acid, if necessary, by heating. Since zinc oxide, basic zinc carbonate, and cyanuric acid are inexpensive, an inexpensive crystal nucleating agent for resin can be provided. Although there is no particular limitation on the method of producing basic zinc cyanurate by reacting at least one selected from zinc oxide and basic zinc carbonate and cyanuric acid, for example, zinc oxide and cyanuric acid in boiling water The manufacturing method to make it react and the method of manufacturing by adding a shearing effect with a pin disk mill or a blade mill, heating the paste which mixed zinc oxide and cyanuric acid at 50-250 degreeC are mentioned.

また、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸と水とを、水に対してシアヌル酸濃度が0.1〜10.0質量%になるように配合した混合スラリーを、5〜55℃の温度範囲で分散メディアを用いた湿式分散を行うことにより、塩基性シアヌル酸亜鉛粒子を製造してもよい。この製造方法によれば、レーザー回折法により測定した平均粒子径D50が80〜900nmで、比表面積が20〜100m/gである微細な塩基性シアヌル酸亜鉛粒子を製造することができる。以下にこの製造方法について、詳述する。 Moreover, the mixed slurry which mix | blended so that the cyanuric acid density | concentration might be 0.1-10.0 mass% with respect to water, at least 1 type chosen from a zinc oxide and basic zinc carbonate, cyanuric acid, and water, Basic zinc cyanurate particles may be produced by wet dispersion using a dispersion medium in a temperature range of 5 to 55 ° C. According to this manufacturing method, the average particle diameter D 50 measured by a laser diffraction method 80~900Nm, can specific surface area to produce a fine basic cyanuric acid zinc particles is 20 to 100 m 2 / g. This manufacturing method will be described in detail below.

具体的には、まず、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを、水に対してシアヌル酸濃度が0.1〜10.0質量%、好ましくは0.1〜5.0質量%になるように配合して混合スラリーを調整する。水に対するシアヌル酸の濃度が10質量%より高いと、スラリー粘度が高くなりペースト状になるため、後段の分散メディアを用いた湿式分散を行う際に分散メディアが動かなくなる。一方、水に対するシアヌル酸濃度が0.1質量%より低いと、生産性が悪く好ましくない。   Specifically, first, at least one selected from zinc oxide and basic zinc carbonate, cyanuric acid, and water, the cyanuric acid concentration with respect to water is 0.1 to 10.0% by mass, preferably It mix | blends so that it may become 0.1-5.0 mass%, and adjusts a mixing slurry. When the concentration of cyanuric acid with respect to water is higher than 10% by mass, the slurry viscosity becomes high and becomes a paste, so that the dispersion medium does not move when performing wet dispersion using the subsequent dispersion medium. On the other hand, when the cyanuric acid concentration with respect to water is lower than 0.1% by mass, the productivity is unfavorable.

また、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸との割合は特に限定されないが、モル比で、酸化亜鉛及び塩基性炭酸亜鉛の酸化亜鉛換算量の合計/シアヌル酸が1.0〜5.0であることが好ましく、さらに好ましくは2.0〜3.0である。酸化亜鉛換算量の合計/シアヌル酸が5.0より高い場合や1.0より低い場合は、反応に寄与しなかった酸化亜鉛、塩基性炭酸亜鉛やシアヌル酸が多量に残存する傾向があるためである。   The ratio of at least one selected from zinc oxide and basic zinc carbonate and cyanuric acid is not particularly limited, but the molar ratio is the sum of zinc oxide and basic zinc carbonate in terms of zinc oxide / cyanuric acid is 1 It is preferable that it is 0.0-5.0, More preferably, it is 2.0-3.0. When the total amount of zinc oxide equivalent / cyanuric acid is higher than 5.0 or lower than 1.0, a large amount of zinc oxide, basic zinc carbonate and cyanuric acid which did not contribute to the reaction tends to remain. It is.

次に、得られた混合スラリーを、5〜55℃の温度範囲で分散メディアを用いて湿式分散を行うことにより、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸とを反応させて、塩基性シアヌル酸亜鉛粒子を製造する。   Next, the obtained mixed slurry is subjected to wet dispersion using a dispersion medium in a temperature range of 5 to 55 ° C., thereby reacting at least one selected from zinc oxide and basic zinc carbonate with cyanuric acid. To produce basic zinc cyanurate particles.

湿式分散は、分散メディアを用いて行う。分散メディアを用いた湿式分散を行うことにより、分散メディアが衝突することにより生じる機械的エネルギーによって、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸とを、メカノケミカル反応させることができる。メカノケミカル反応とは、分散メディアの衝突によって、酸化亜鉛、塩基性炭酸亜鉛やシアヌル酸に多方面から機械的エネルギーを与えて化学反応させることをいう。   Wet dispersion is performed using a dispersion medium. By performing wet dispersion using a dispersion medium, mechanochemical reaction between cyanuric acid and at least one selected from zinc oxide and basic zinc carbonate can be performed by mechanical energy generated by collision of the dispersion medium. it can. The mechanochemical reaction is a chemical reaction in which mechanical energy is applied from various directions to zinc oxide, basic zinc carbonate, and cyanuric acid by collision of dispersion media.

分散メディアとしては、例えば、安定化ジルコニア製ビーズ、石英ガラス製ビーズ、ソーダライムガラス製ビーズ、アルミナビーズや、これらの混合物が挙げられる。分散メディア同士が衝突して分散メディアが破砕することにより生じる汚染を考慮すると、分散メディアとして、安定化ジルコニア製ビーズを用いることが好ましい。そして、分散メディアの大きさは、例えば直径0.1〜10mm、好ましくは直径0.5〜2.0mmである。分散メディアの直径が0.1mm未満であると、粉砕メディア同士の衝突エネルギーが小さく、メカノケミカル反応性が弱くなる傾向がある。また、分散メディアの直径が10mmより大きいと、分散メディア同士の衝突エネルギーが大きすぎて分散メディアが破砕して汚染が多くなるため、好ましくない。   Examples of the dispersion medium include stabilized zirconia beads, quartz glass beads, soda lime glass beads, alumina beads, and mixtures thereof. In consideration of the contamination caused by the dispersion media colliding with each other and the dispersion media being crushed, it is preferable to use stabilized zirconia beads as the dispersion media. And the magnitude | size of a dispersion medium is 0.1-10 mm in diameter, for example, Preferably it is 0.5-2.0 mm in diameter. When the diameter of the dispersion medium is less than 0.1 mm, the collision energy between the pulverization media is small, and the mechanochemical reactivity tends to be weak. Further, if the diameter of the dispersion medium is larger than 10 mm, the collision energy between the dispersion media is too large, and the dispersion medium is crushed to increase contamination, which is not preferable.

分散メディアを用いた湿式分散を行う装置は、分散メディアを投入した容器に混合スラリーを添加した後、撹拌して分散メディアを酸化亜鉛、塩基性炭酸亜鉛やシアヌル酸に衝突させることにより、酸化亜鉛や塩基性炭酸亜鉛とシアヌル酸とをメカノケミカル反応させることができるものであれば、特に限定されないが、例えば、サンドグラインダー、横型ビーズミル、アトライタ、パールミル(アシザワファインテック(株)製)等が挙げられる。なお、分散メディアの撹拌のための装置の回転数や反応時間等は、所望の粒子径等に合わせて適宜調整すればよい。   An apparatus for performing wet dispersion using a dispersion medium is a method in which a mixed slurry is added to a container charged with a dispersion medium, and then stirred to cause the dispersion medium to collide with zinc oxide, basic zinc carbonate or cyanuric acid. And basic zinc carbonate and cyanuric acid are not particularly limited as long as they can be mechanochemically reacted. Examples include sand grinders, horizontal bead mills, attritors, and pearl mills (manufactured by Ashizawa Finetech Co., Ltd.). It is done. In addition, what is necessary is just to adjust suitably the rotation speed of the apparatus for stirring a dispersion medium, reaction time, etc. according to a desired particle diameter.

また、湿式分散は、5〜55℃で行う必要があり、好ましくは5〜45℃である。55℃よりも高い温度で湿式分散を行うと、シアヌル酸が水に溶解し、この溶解したシアヌル酸は酸化亜鉛や塩基性炭酸亜鉛と素早く反応して粒成長が促進されるためか、後述する合成例に示すように、製造される塩基性シアヌル酸亜鉛は、粒径の大きいものになる。そして、45℃以下の低温で湿式分散を行うことにより特に粒子が小さいものとなり、例えば、レーザー回折法により測定した平均粒子径D50が500nm以下の微粒子を製造することができる。なお、このように低温で製造することができるため、樹脂等熱に弱い装置を用いて製造することができる。 Moreover, it is necessary to perform wet dispersion at 5-55 degreeC, Preferably it is 5-45 degreeC. If wet dispersion is performed at a temperature higher than 55 ° C., cyanuric acid dissolves in water, and this dissolved cyanuric acid reacts quickly with zinc oxide or basic zinc carbonate to promote grain growth. As shown in the synthesis examples, the basic zinc cyanurate produced has a large particle size. Then, by performing wet dispersion at a low temperature of 45 ° C. or less, the particles become particularly small. For example, fine particles having an average particle diameter D 50 measured by a laser diffraction method of 500 nm or less can be produced. In addition, since it can manufacture at such low temperature, it can manufacture using an apparatus weak to heat, such as resin.

ここで、上記のように分散メディアを用いた湿式分散ではなく、ピンディスクミル又はブレードミルで剪断作用を加える方法では、剪断する部材が、酸化亜鉛、塩基性炭酸亜鉛やシアヌル酸に対して一方向のみにしか衝突せずメカノケミカル反応が生じないためか、粒子径が小さい塩基性シアヌル酸亜鉛粒子を得ることはできない。   Here, in the method of applying a shearing action with a pin disc mill or a blade mill instead of the wet dispersion using a dispersion medium as described above, the shearing member is one of the zinc oxide, basic zinc carbonate and cyanuric acid. It is impossible to obtain basic zinc cyanurate particles having a small particle size, either because they collide only in the direction and no mechanochemical reaction occurs.

このように、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸と水とを、水に対してシアヌル酸濃度が0.1〜10.0質量%になるように配合した混合スラリーを、5〜55℃の温度範囲で分散メディアを用いた湿式分散を行う製造方法により得られる塩基性シアヌル酸亜鉛微粒子は、レーザー回折法により測定した平均粒子径D50が80〜900nm、好ましくは100〜500nmで、比表面積が20〜100m/g、好ましくは30〜80m/gである。すなわち、粒子径が小さく、比表面積が大きいものである。なお、このようなシアヌル酸亜鉛微粒子と比較して粒子径が大きい塩基性シアヌル酸亜鉛を、カウンタージェットミル等の粉砕機で粉砕しても、レーザー回折法により測定した平均粒子径D50が80〜900nmと微細なものとすることはできない。 Thus, the mixed slurry which mix | blended at least 1 type selected from a zinc oxide and basic zinc carbonate, cyanuric acid, and water so that the cyanuric acid density | concentration might be 0.1-10.0 mass% with respect to water. The basic cyanuric acid zinc fine particles obtained by a production method in which wet dispersion using a dispersion medium is performed in a temperature range of 5 to 55 ° C. has an average particle diameter D 50 measured by a laser diffraction method of 80 to 900 nm, preferably The specific surface area is 100 to 500 nm and the specific surface area is 20 to 100 m 2 / g, preferably 30 to 80 m 2 / g. That is, the particle diameter is small and the specific surface area is large. Even when basic zinc cyanurate having a particle size larger than that of such cyanuric acid zinc fine particles is pulverized by a pulverizer such as a counter jet mill, the average particle size D 50 measured by the laser diffraction method is 80. It cannot be as fine as ˜900 nm.

また、上記製造方法で得られる塩基性シアヌル酸亜鉛微粒子は、球状ではなく、後述する合成例に示すように、針状や板状のもの、すなわち細長い微粒子とすることができる。このような塩基性シアヌル酸亜鉛微粒子は、例えば、透過電子顕微鏡観察による一次粒子径は、長軸が100〜800nm、短軸が10〜60nmである。   Further, the basic zinc cyanurate fine particles obtained by the above production method are not spherical but can be needle-shaped or plate-shaped, that is, elongated fine particles, as shown in the synthesis examples described later. For such basic zinc cyanurate fine particles, for example, the primary particle diameter by observation with a transmission electron microscope has a major axis of 100 to 800 nm and a minor axis of 10 to 60 nm.

なお、得られた塩基性シアヌル酸亜鉛微粒子を含有する塩基性シアヌル酸亜鉛スラリーのまま樹脂用結晶核剤として使用してもよく、また、このスラリーを乾燥させて粉末状としたものを樹脂用結晶核剤としてもよい。   In addition, the basic zinc cyanurate slurry containing the basic zinc cyanurate fine particles obtained may be used as a crystal nucleating agent for resin, and the slurry is dried to form a powder. It may be a crystal nucleating agent.

また、本発明の樹脂用結晶核剤は、塩基性シアヌル酸亜鉛粒子と共にフェニルホスホン酸の金属塩を含有していてもよい。フェニルホスホン酸の金属塩を含有することにより、塩基性シアヌル酸亜鉛粒子のみからなる樹脂用結晶核剤よりも、樹脂の結晶化速度及び結晶化温度をさらに高くすることができる。   Moreover, the crystal nucleating agent for resin of the present invention may contain a metal salt of phenylphosphonic acid together with the basic zinc cyanurate particles. By containing a metal salt of phenylphosphonic acid, the crystallization rate and the crystallization temperature of the resin can be further increased as compared with the crystal nucleating agent for resin consisting only of basic zinc cyanurate particles.

ここで、フェニルホスホン酸の金属塩は、樹脂用結晶核剤であるが、コストが高いという問題がある。本発明においては、フェニルホスホン酸の金属塩よりもコストが低い塩基性シアヌル酸亜鉛粒子と共にフェニルホスホン酸の金属塩を用いることにより、樹脂の結晶化速度及び結晶化温度を高くするという効果と、低コスト化という効果を両立させることができる。   Here, the metal salt of phenylphosphonic acid is a crystal nucleating agent for resin, but has a problem of high cost. In the present invention, by using the metal salt of phenylphosphonic acid together with the basic cyanuric acid zinc particles having a lower cost than the metal salt of phenylphosphonic acid, the effect of increasing the crystallization speed and crystallization temperature of the resin, The effect of cost reduction can be achieved at the same time.

フェニルホスホン酸の金属塩としては、フェニルホスホン酸亜鉛、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸カルシウム、フェニルホスホン酸マグネシウム、フェニルホスホン酸マンガン等が挙げられる。   Examples of the metal salt of phenylphosphonic acid include zinc phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate, potassium phenylphosphonate, calcium phenylphosphonate, magnesium phenylphosphonate, manganese phenylphosphonate, and the like.

塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤の各成分の含有割合は特に限定されず、例えば、シアヌル酸として20〜40質量%、フェニルホスホン酸として10〜30質量%とすればよい。結晶核剤組成物のシアヌル酸成分を20質量%未満にすると、塩基性シアヌル酸亜鉛含有量が少なくなり、フェニルホスホン酸亜鉛含有量が高くなるが、フェニルホスホン酸は高価な上に、これ以上フェニルホスホン酸濃度を高くしても結晶核剤性能は向上しない。逆に、結晶核剤組成物のシアヌル酸成分濃度を40質量%より多くすると、塩基性シアヌル酸亜鉛の含有量が多くなり、フェニルホスホン酸亜鉛の含有量が少なくなり過ぎるため、結晶核剤性能が低下し、好ましくない。なお、シアヌル酸は、分子式C3333で表され、CHN元素分析で測定される窒素量から定量することができる。フェニルホスホン酸は、分子式C673Pで表され、蛍光X線分析で測定されるリン量よって定量することができる。 The content ratio of each component of the resin crystal nucleating agent containing the basic zinc cyanurate particles and the metal salt of phenylphosphonic acid is not particularly limited. For example, 20 to 40% by mass as cyanuric acid and 10 to 10 as phenylphosphonic acid. What is necessary is just to set it as 30 mass%. When the cyanuric acid component of the crystal nucleating agent composition is less than 20% by mass, the basic zinc cyanurate content decreases and the phenyl phenylphosphonate content increases, but the phenylphosphonic acid is expensive and more Even if the phenylphosphonic acid concentration is increased, the performance of the crystal nucleating agent is not improved. Conversely, when the cyanuric acid component concentration of the crystal nucleating agent composition is more than 40% by mass, the content of basic zinc cyanurate increases and the content of zinc phenylphosphonate decreases too much. Is not preferable. Cyanuric acid is represented by the molecular formula C 3 N 3 O 3 H 3 and can be quantified from the amount of nitrogen measured by CHN elemental analysis. Phenylphosphonic acid is represented by the molecular formula C 6 H 7 O 3 P and can be quantified by the amount of phosphorus measured by fluorescent X-ray analysis.

また、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤が含有する亜鉛とフェニルホスホン酸亜鉛との比である亜鉛/フェニルホスホン酸亜鉛が質量比は、1より大きく4未満であることが好ましい。1以下にして高価なフェニルホスホン酸濃度を高くしても結晶核剤性能は向上せず、また、4以上では、結晶核剤性能が低下する傾向があるためである。   Moreover, the zinc / phenylphosphonate zinc, which is the ratio of zinc and zinc phenylphosphonate contained in the resin crystal nucleating agent containing the basic zinc cyanurate particles and the metal salt of phenylphosphonic acid, has a mass ratio of 1 It is preferably less than 4. This is because even if the concentration of expensive phenylphosphonic acid is increased to 1 or less, the performance of the crystal nucleating agent is not improved, and when it is 4 or more, the performance of the crystal nucleating agent tends to decrease.

なお、樹脂用結晶核剤は、水酸化マグネシウム、酸化マグネシウム等を含有していてもよい。   The crystal nucleating agent for resin may contain magnesium hydroxide, magnesium oxide or the like.

このような本発明の塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤の製造方法は特に限定されず、例えば、塩基性シアヌル酸亜鉛粒子とフェニルホスホン酸の金属塩とを、ミキサー等で混合することにより製造することができる。   The method for producing the crystal nucleating agent for resin containing the basic zinc cyanurate particles of the present invention and the metal salt of phenylphosphonic acid is not particularly limited. For example, the basic zinc cyanuric acid particles and the metal of phenylphosphonic acid It can manufacture by mixing a salt with a mixer etc.

また、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤は、原料としてのフェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム等のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸とを、必要に応じて加熱等して反応させることにより製造することもできる。   Moreover, the crystal nucleating agent for resin containing the basic zinc cyanurate particles and the metal salt of phenylphosphonic acid is phenyl phenylphosphonate such as magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate, potassium phenylphosphonate. It can also be produced by reacting an aqueous solution of a metal salt of phosphonic acid, at least one selected from zinc oxide and basic zinc carbonate, and cyanuric acid, if necessary, by heating.

また、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤は、原料としてのフェニルホスホン酸マグネシウム、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム等のフェニルホスホン酸の金属塩の水溶液と、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを、この水に対してシアヌル酸濃度が0.1〜10.0質量%になるように配合した混合スラリーを、例えば5〜55℃の温度範囲で、ディスパー型攪拌羽根や、分散メディアを用いた湿式分散で強攪拌分散させて各原料を反応させることにより製造することもできる。この製造方法によって得られたスラリーを110℃で乾燥することより、微細な塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛、及び、原料である上記フェニルホスホン酸の金属塩を構成する金属の水酸化物(例えば水酸化マグネシウム等)を含有する樹脂用結晶核剤を製造することができる。この樹脂用結晶核剤は、比表面積が15〜100m/g、好ましくは、20〜100m/gである。以下にこの製造方法について、詳述する。 Moreover, the crystal nucleating agent for resin containing the basic zinc cyanurate particles and the metal salt of phenylphosphonic acid is phenyl phenylphosphonate such as magnesium phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate, potassium phenylphosphonate. An aqueous solution of a metal salt of phosphonic acid, at least one selected from zinc oxide and basic zinc carbonate, cyanuric acid, and water, the cyanuric acid concentration is 0.1 to 10.0% by mass with respect to this water It is also possible to produce a mixed slurry blended so as to be, for example, in a temperature range of 5 to 55 ° C. by vigorously stirring and dispersing with a disperser type stirring blade or a wet dispersion using a dispersion medium and reacting each raw material. it can. By drying the slurry obtained by this production method at 110 ° C., fine basic cyanuric acid zinc, zinc phenylphosphonic acid, and metal hydroxide constituting the metal salt of the above-mentioned phenylphosphonic acid as a raw material A crystal nucleating agent for resin containing (for example, magnesium hydroxide) can be produced. The crystal nucleating agent for resin has a specific surface area of 15 to 100 m 2 / g, preferably 20 to 100 m 2 / g. This manufacturing method will be described in detail below.

まず、炭酸塩又は金属水酸化物とフェニルホスホン酸とを水に溶解することにより、原料としてのフェニルホスホン酸の金属塩の水溶液を調整する。例えば、炭酸マグネシウム又は水酸化マグネシウムとフェニルホスホン酸とを、マグネシウムとフェニルホスホン酸との比であるマグネシウム/フェニルホスホン酸がモル比で例えば0.3〜0.6の割合になるように、水に溶解することにより調製できる。ここで、マグネシウム/フェニルホスホン酸(モル比)が0.3未満とすると、製造される混合スラリーのpHが7以下になる。そして、このpHが7以下のスラリーを乾燥して得られた樹脂用結晶核剤は、ポリ乳酸樹脂に混練するとポリ乳酸が一部溶解するため結晶化速度が高く且つ結晶化温度が高くするという結晶核剤性能が小さくなり、また、生成するフェニルホスホン酸亜鉛が粗大粒子になりポリ乳酸樹脂の結晶核剤性能が低下する。そして、ポリ乳酸樹脂の溶解部分が非晶質のまま固化するのでその部分が脆くなり機械特性が低下する。また、マグネシウム/フェニルホスホン酸(モル比)が0.6より大きいとフェニルホスホン酸マグネシウム粒子が析出する。したがって、マグネシウム/フェニルホスホン酸(モル比)は、0.3〜0.6の範囲内であることが好ましい。   First, an aqueous solution of a metal salt of phenylphosphonic acid as a raw material is prepared by dissolving carbonate or metal hydroxide and phenylphosphonic acid in water. For example, magnesium carbonate or magnesium hydroxide and phenylphosphonic acid are mixed so that magnesium / phenylphosphonic acid, which is a ratio of magnesium to phenylphosphonic acid, has a molar ratio of, for example, 0.3 to 0.6. It can be prepared by dissolving in Here, if the magnesium / phenylphosphonic acid (molar ratio) is less than 0.3, the pH of the produced mixed slurry is 7 or less. The resin crystal nucleating agent obtained by drying the slurry having a pH of 7 or less is said to have a high crystallization speed and a high crystallization temperature because the polylactic acid partially dissolves when kneaded into the polylactic acid resin. The crystal nucleating agent performance becomes small, and the generated phenylphosphonate zinc becomes coarse particles, and the crystal nucleating agent performance of the polylactic acid resin is lowered. And since the melt | dissolution part of polylactic acid resin solidifies with an amorphous state, the part becomes weak and a mechanical characteristic falls. Further, when the magnesium / phenylphosphonic acid (molar ratio) is larger than 0.6, magnesium phenylphosphonate particles are precipitated. Therefore, the magnesium / phenylphosphonic acid (molar ratio) is preferably in the range of 0.3 to 0.6.

次に、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種と、シアヌル酸と、水とを、この水に対してシアヌル酸濃度が0.1〜10.0質量%、好ましくは1.0〜5.0質量%になるように加え、続いて上記フェニルホスホン酸の金属塩の水溶液を混合する。例えばフェニルホスホン酸の金属塩の水溶液としてフェニルホスホン酸マグネシウムの水溶液を用いる場合は、フェニルホスホン酸マグネシウムの水溶液の濃度が1.0〜3.0質量%になるように配合して混合スラリーを調整することが好ましい。なお、水に対するシアヌル酸の濃度が10質量%より高いと、スラリー粘度が高くなりペースト状になるため、後段のディスパー型攪拌羽根や、分散メディアを用いた湿式分散で強攪拌分散がし難くなる。一方、水に対するシアヌル酸濃度が0.1質量%より低いと、生産性が悪く好ましくない。   Next, at least one selected from zinc oxide and basic zinc carbonate, cyanuric acid, and water, the cyanuric acid concentration is 0.1 to 10.0% by mass, preferably 1.0, based on this water. It is added so that it may become -5.0 mass%, and the aqueous solution of the said metal salt of phenylphosphonic acid is mixed subsequently. For example, when an aqueous solution of phenylphosphonic acid magnesium is used as the aqueous solution of phenylphosphonic acid metal salt, the mixed slurry is prepared by blending so that the concentration of the aqueous solution of phenylphosphonic acid magnesium is 1.0 to 3.0% by mass. It is preferable to do. If the concentration of cyanuric acid with respect to water is higher than 10% by mass, the slurry viscosity becomes high and becomes a paste, so that it is difficult to perform strong stirring and dispersion by wet dispersion using a disperse type stirring blade in the latter stage or a dispersion medium. . On the other hand, when the cyanuric acid concentration with respect to water is lower than 0.1% by mass, the productivity is unfavorable.

また、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸との割合は特に限定されないが、モル比で、酸化亜鉛及び塩基性炭酸亜鉛の酸化亜鉛換算量の合計/シアヌル酸が1.0〜5.0であることが好ましく、さらに好ましくは2.5〜3.0である。酸化亜鉛換算量の合計/シアヌル酸が5.0より高い場合や1.0より低い場合は、反応に寄与しなかった酸化亜鉛、塩基性炭酸亜鉛やシアヌル酸が多量に残存する傾向があるためである。   The ratio of at least one selected from zinc oxide and basic zinc carbonate and cyanuric acid is not particularly limited, but the molar ratio is the sum of zinc oxide and basic zinc carbonate in terms of zinc oxide / cyanuric acid is 1 It is preferable that it is 0.0-5.0, More preferably, it is 2.5-3.0. When the total amount of zinc oxide equivalent / cyanuric acid is higher than 5.0 or lower than 1.0, a large amount of zinc oxide, basic zinc carbonate and cyanuric acid which did not contribute to the reaction tends to remain. It is.

また、フェニルホスホン酸の金属塩に含まれるフェニルホスホン酸の水に対する配合割合は特に限定されないが、フェニルホスホン酸の金属塩に含まれるフェニルホスホン酸の濃度が1.5〜3.0質量%であることが好ましい。3.0質量%より高くてもポリ乳酸樹脂の結晶核剤性能は大きく向上せず、また、1.5質量%より低いとポリ乳酸樹脂の結晶核剤性能が低下するためである。   Further, the blending ratio of phenylphosphonic acid contained in the metal salt of phenylphosphonic acid to water is not particularly limited, but the concentration of phenylphosphonic acid contained in the metal salt of phenylphosphonic acid is 1.5 to 3.0% by mass. Preferably there is. Even if it is higher than 3.0% by mass, the crystal nucleating agent performance of the polylactic acid resin is not greatly improved, and when it is lower than 1.5% by mass, the crystal nucleating agent performance of the polylactic acid resin is lowered.

次に、得られた混合スラリーを、例えば5〜55℃の温度範囲で、ディスパー型攪拌羽根や、分散メディアを用いた湿式分散などで強攪拌分散をする。これにより、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸を反応させて塩基性シアヌル酸亜鉛を生成すると共に、酸化亜鉛または塩基性炭酸亜鉛とフェニルホスホン酸の金属塩とを反応させてフェニルホスホン酸亜鉛を生成する。   Next, the obtained mixed slurry is strongly stirred and dispersed by a disperser type stirring blade, a wet dispersion using a dispersion medium, or the like in a temperature range of 5 to 55 ° C., for example. As a result, at least one selected from zinc oxide and basic zinc carbonate is reacted with cyanuric acid to produce basic zinc cyanurate, and zinc oxide or basic zinc carbonate is reacted with a metal salt of phenylphosphonic acid. To produce zinc phenylphosphonate.

なお、強攪拌分散は、55℃よりも高い温度で湿式分散を行うと、生成する塩基性シアヌル酸亜鉛およびフェニルホスホン酸亜鉛が粗大粒子になり、ポリ乳酸樹脂の結晶核剤性能が低下するため、55℃未満で行なうことが好ましい。また、分散メディアを用いた湿式分散を行なって製造すると、透過電子顕微鏡観察による一次粒子が長軸が100〜1200nm、短軸が10〜100nm、レーザー回折法により測定した平均粒子径D50が80〜900nmである塩基性シアヌル酸亜鉛粒子、長軸及び短軸が50〜800nmのフェニルホスホン酸亜鉛粒子を含有する樹脂用結晶核剤を製造することができる。 In the case of strong stirring dispersion, when wet dispersion is performed at a temperature higher than 55 ° C., the basic zinc cyanurate and zinc phenylphosphonate that are produced become coarse particles, and the crystal nucleating agent performance of the polylactic acid resin is reduced. It is preferable to carry out at less than 55 ° C. Moreover, when it manufactures by performing wet dispersion using a dispersion medium, the primary particle by observation with a transmission electron microscope has a major axis of 100 to 1200 nm, a minor axis of 10 to 100 nm, and an average particle diameter D 50 measured by a laser diffraction method of 80. A crystal nucleating agent for resin containing basic zinc cyanurate particles having a diameter of ˜900 nm and zinc phenylphosphonate particles having a major axis and a minor axis of 50 to 800 nm can be produced.

このようにして得られた塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛や、原料であるフェニルホスホン酸の金属塩を構成する金属の水酸化物(例えば水酸化マグネシウム)を含有する結晶核剤組成物は、これらを含有するスラリーのまま樹脂用結晶核剤として使用してもよく、また、このスラリーを乾燥させて、ピンディスクやジェットミルなどで微粉末状としたものを樹脂用結晶核剤としてもよい。   Crystal nucleating agent composition containing basic cyanuric acid zinc, zinc phenylphosphonic acid thus obtained, and metal hydroxide (for example, magnesium hydroxide) constituting metal salt of phenylphosphonic acid as a raw material May be used as a crystal nucleating agent for resin in the form of a slurry containing these, or as a crystal nucleating agent for resin obtained by drying this slurry and making it into a fine powder with a pin disk or jet mill. Also good.

このような樹脂用結晶核剤の大きさに特に制限はないが、比表面積が20〜100m/gである微細な粒子を用いることにより、透明性が高い樹脂用結晶核剤とすることができる。 Although there is no restriction | limiting in particular in the magnitude | size of such a crystal nucleating agent for resin, It can be set as the crystal nucleating agent for resins with high transparency by using the fine particle whose specific surface area is 20-100 m < 2 > / g. it can.

そして、本発明の樹脂組成物は、上記の樹脂用結晶核剤である塩基性シアヌル酸亜鉛粒子と樹脂とを含有するものや、上記の樹脂用結晶核剤である塩基性シアヌル酸亜鉛粒子とフェニルホスホン酸の金属塩と樹脂とを含有するものである。   And the resin composition of the present invention contains basic zinc cyanurate particles that are the above-mentioned crystal nucleating agent for resin and resin, and basic zinc cyanurate particles that are the above-mentioned crystal nucleating agent for resin, It contains a metal salt of phenylphosphonic acid and a resin.

樹脂としては、例えば、ポリ乳酸や、ポリオレフィン系樹脂が挙げられる。また、2種類以上の樹脂を用いてもよい。ポリ乳酸樹脂としては、乳酸のホモポリマーやコポリマー、またはこれら乳酸のホモポリマーやコポリマーを主体とし他の樹脂を混合したブレンドポリマーが挙げられる。混合する他の樹脂としては、ポリ乳酸以外の生分解性樹脂、汎用合成樹脂、汎用合成エンプラ等が挙げられる。ポリ乳酸樹脂がコポリマーの場合、配列様式はランダムコポリマー、交互コポリマー、ブロックコポリマー、グラフトコポリマーのいずれであってもよい。また、上記ポリ乳酸樹脂を熱、光、放射線等を利用して架橋剤で架橋させたものをポリ乳酸樹脂として使用してもよい。勿論、これらのポリ乳酸樹脂を2種類以上用いてもよい。そして、ポリ乳酸の分子量に特に限定はないが、例えば、数平均分子量は10,000〜500,000程度である。また、ポリ乳酸樹脂の製造方法に特に限定はないが、例えば、ラクチドを開環重合させることや、乳酸のD体、L体、ラセミ体等を直接重縮合させることにより、製造することができる。   Examples of the resin include polylactic acid and polyolefin resin. Two or more kinds of resins may be used. Examples of the polylactic acid resin include homopolymers and copolymers of lactic acid, or blend polymers in which these homopolymers and copolymers of lactic acid are mainly mixed with other resins. Examples of other resins to be mixed include biodegradable resins other than polylactic acid, general-purpose synthetic resins, and general-purpose synthetic engineering plastics. When the polylactic acid resin is a copolymer, the arrangement pattern may be any of random copolymer, alternating copolymer, block copolymer, and graft copolymer. In addition, a polylactic acid resin obtained by crosslinking the polylactic acid resin with a crosslinking agent using heat, light, radiation or the like may be used. Of course, two or more of these polylactic acid resins may be used. The molecular weight of polylactic acid is not particularly limited, but for example, the number average molecular weight is about 10,000 to 500,000. The production method of the polylactic acid resin is not particularly limited, but can be produced, for example, by ring-opening polymerization of lactide, or by directly polycondensing D-form, L-form, racemate, etc. of lactic acid. .

また、ポリオレフィン系樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂等が挙げられる。そして、ポリプロピレン樹脂としては、ポリプロピレン、エチレン−プロピレン共重合体等や、不飽和カルボン酸又はその酸無水物で変性したポリプロピレンが挙げられる。不飽和カルボン酸又はその酸無水物で変性したポリプロピレンとしては、例えば、プロピレン単独重合体や、エチレン−プロピレン共重合体等のポリプロピレンと、アクリル酸、メタアクリル酸、マレイン酸、イタコン酸、フマル酸、無水マレイン酸、無水イタコン酸等の酸又は酸無水物ユニットを有する不飽和カルボン酸又はその酸無水物との共重合体又はグラフト共重合体等が挙げられる。特にプロピレンとアクリル酸又は無水マレイン酸の共重合体又はグラフト共重合体が好ましい。勿論、これらのポリオレフィン系樹脂を2種類以上用いてもよい。そして、ポリオレフィン系樹脂の分子量に特に限定はないが、例えば、数平均分子量は10,000〜500,000程度である。
As the polyolefin resins, polyethylene resins, polypropylene resins, and the like. Examples of the polypropylene resin include polypropylene, ethylene-propylene copolymer, and the like, and polypropylene modified with an unsaturated carboxylic acid or acid anhydride thereof. Examples of polypropylene modified with unsaturated carboxylic acid or acid anhydride thereof include polypropylene such as propylene homopolymer and ethylene-propylene copolymer, acrylic acid, methacrylic acid, maleic acid, itaconic acid, and fumaric acid. And a copolymer or graft copolymer with an unsaturated carboxylic acid having an acid or acid anhydride unit, such as maleic anhydride or itaconic anhydride, or an acid anhydride thereof. Particularly preferred are copolymers or graft copolymers of propylene and acrylic acid or maleic anhydride. Of course, two or more of these polyolefin resins may be used. The molecular weight of the polyolefin resin is not particularly limited. For example, the number average molecular weight is about 10,000 to 500,000.

塩基性シアヌル酸亜鉛粒子と樹脂との配合割合に特に限定はないが、樹脂としてポリ乳酸樹脂を用いる場合は、ポリ乳酸樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子を0.01〜10.0質量部とすることが好ましい。また、樹脂としてポリオレフィン系樹脂を用いる場合も、ポリオレフィン系樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子を0.01〜10.0質量部とすることが好ましい。塩基性シアヌル酸亜鉛粒子の量が樹脂100質量部に対して0.01質量部未満の場合、樹脂の結晶化速度や結晶化温度を高くする効果が顕著でない場合があるためである。また、樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子の量が10.0質量部より多い場合、樹脂組成物の比重が重くなり過ぎるためである。   Although there is no limitation in particular in the compounding ratio of basic cyanuric-acid zinc particle and resin, when using polylactic acid resin as resin, basic cyanuric-acid zinc particle 0.01-100 mass parts of polylactic acid resin. It is preferable to set it as 10.0 mass parts. Moreover, when using polyolefin-type resin as resin, it is preferable to make basic cyanuric-acid zinc particle 0.01-10.0 mass parts with respect to 100 mass parts of polyolefin-type resin. This is because when the amount of basic zinc cyanurate particles is less than 0.01 parts by mass with respect to 100 parts by mass of the resin, the effect of increasing the crystallization speed and crystallization temperature of the resin may not be significant. Moreover, it is because the specific gravity of the resin composition becomes too heavy when the amount of basic cyanuric acid zinc particles is more than 10.0 parts by mass with respect to 100 parts by mass of the resin.

また、同様に、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤を用いる場合も配合割合に特に限定はないが、樹脂としてポリ乳酸樹脂を用いる場合は、ポリ乳酸樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤を0.01〜10.0質量部とすることが好ましい。また、樹脂としてポリオレフィン系樹脂を用いる場合も、ポリオレフィン系樹脂100質量部に対して、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有する樹脂用結晶核剤を0.01〜10.0質量部とすることが好ましい。   Similarly, there is no particular limitation on the blending ratio when using a resin crystal nucleating agent containing basic zinc cyanurate particles and a metal salt of phenylphosphonic acid, but when using a polylactic acid resin as a resin, The resin crystal nucleating agent containing basic zinc cyanurate particles and a metal salt of phenylphosphonic acid is preferably 0.01 to 10.0 parts by mass with respect to 100 parts by mass of the lactic acid resin. Moreover, also when using polyolefin-type resin as resin, the crystal nucleating agent for resin containing the basic zinc cyanurate particle and the metal salt of phenylphosphonic acid with respect to 100 mass parts of polyolefin-type resin is 0.01-10. The content is preferably 0 parts by mass.

本発明の樹脂組成物は、無機充填剤を含有していてもよい。無機充填剤としては、例えば、ガラス繊維、炭素繊維、タルク、マイカ、シリカ、カオリン、クレー、ウオラストナイト、ガラスビーズ、カラスフレーク、チタン酸カリウム、炭酸カルシウム、硫酸マグネシウム、酸化チタン等が挙げられる。これらの無機充填剤の形状は、繊維状、粒状、板状、針状、球状、粉末のいずれでもよい。これらの無機充填剤の配合量は、例えば、樹脂100質量部に対して、300質量部以下とすることができる。   The resin composition of the present invention may contain an inorganic filler. Examples of the inorganic filler include glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, crow flake, potassium titanate, calcium carbonate, magnesium sulfate, titanium oxide and the like. . The shape of these inorganic fillers may be any of fibrous, granular, plate-like, needle-like, spherical, and powder. The compounding quantity of these inorganic fillers can be 300 mass parts or less with respect to 100 mass parts of resin, for example.

また、本発明の樹脂組成物は、難燃剤を含有していてもよい。難燃剤としては、例えば、臭素系や塩素系等のハロゲン系難燃剤、三酸化アンチモン、五酸化アンチモン等のアンチモン系難燃剤、水酸化アルミニウムや水酸化マグネシウム、シリコーン系化合物等の無機系難燃剤、赤リン、リン酸エステル類、ポリリン酸アンモニウム、フォスファゼン等のリン系難燃剤、メラミン、メラム、メレム、メロン、メラミンシアヌレート、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラミン・メラム・メレム複塩、アルキルホスホン酸メラミン、フェニルホスホン酸メラミン、硫酸メラミン、メタンスルホン酸メラム等のメラミン系難燃剤、PTFE等のフッ素樹脂等が挙げられる。これらの難燃剤の配合量は、例えば、樹脂100質量部に対して、200質量部以下とすることができる。   Moreover, the resin composition of the present invention may contain a flame retardant. Examples of the flame retardant include halogen flame retardants such as bromine and chlorine, antimony flame retardants such as antimony trioxide and antimony pentoxide, and inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide and silicone compounds. Phosphorus flame retardants such as red phosphorus, phosphate esters, ammonium polyphosphate, phosphazene, melamine, melam, melem, melon, melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine / melam polyphosphate -Melem double salt, melamine alkylphosphonate, melamine phenylphosphonate, melamine sulfate, melamine methanesulfonate such as melam sulfonate, and fluororesin such as PTFE. The compounding quantity of these flame retardants can be 200 mass parts or less with respect to 100 mass parts of resin, for example.

また、樹脂組成物は、上記成分以外にも、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、衝撃改良剤、帯電防止剤、顔料、着色剤、離型剤、滑剤、可塑剤、相溶化剤、発泡剤、香料、抗菌抗カビ剤、シラン系、チタン系、アルミニウム系等の各種カップリング剤、その他の各種充填剤や、シアヌル酸亜鉛粒子以外の結晶核剤等、一般的な合成樹脂の製造時に、通常使用される各種添加剤を含有していてもよい。   In addition to the above components, the resin composition may include a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antioxidant, an impact modifier, an antistatic agent, a pigment, a colorant, a release agent, a lubricant, and a plasticizer. , Compatibility agents, foaming agents, fragrances, antibacterial and antifungal agents, various coupling agents such as silane, titanium and aluminum, other various fillers, crystal nucleating agents other than zinc cyanurate particles, etc. In the production of such synthetic resins, various commonly used additives may be contained.

樹脂と、塩基性シアヌル酸亜鉛、または、塩基性シアヌル酸亜鉛及びフェニルホスホン酸の金属塩と、必要に応じて添加する各種添加剤を用いて、樹脂組成物を製造する方法は特に限定されず、公知の結晶核剤を含有する樹脂組成物と同様の方法で製造することができる。例えば樹脂と、塩基性シアヌル酸亜鉛、または、塩基性シアヌル酸亜鉛及びフェニルホスホン酸の金属塩と、必要に応じ添加する添加剤を各種ミキサーで混合し、単軸あるいは二軸押出機などを用いて例えば150〜220℃程度の温度で混練することにより、樹脂組成物を製造することができる。また、塩基性シアヌル酸亜鉛、または、塩基性シアヌル酸亜鉛及びフェニルホスホン酸の金属塩や必要に応じて添加する添加剤を高濃度で含有するマスターバッチを生成し、これを樹脂に添加する方法も可能である。そして、樹脂の重合段階で、塩基性シアヌル酸亜鉛、または、塩基性シアヌル酸亜鉛及びフェニルホスホン酸の金属塩を添加する方法でもよい。   The method of producing a resin composition using a resin, basic zinc cyanurate, or a metal salt of basic cyanuric acid zinc and phenylphosphonic acid, and various additives added as necessary is not particularly limited. It can be produced by the same method as that for a resin composition containing a known crystal nucleating agent. For example, a resin, basic zinc cyanurate, or a metal salt of basic cyanuric acid zinc and phenylphosphonic acid, and additives to be added as necessary are mixed with various mixers, and a single screw or twin screw extruder is used. For example, the resin composition can be produced by kneading at a temperature of about 150 to 220 ° C. Further, a method for producing a master batch containing a basic zinc cyanurate or a metal salt of basic cyanuric acid zinc and phenylphosphonic acid or an additive to be added if necessary at a high concentration and adding this to a resin Is also possible. And the method of adding the basic cyanuric acid zinc or the metal salt of basic cyanuric acid zinc and phenylphosphonic acid in the superposition | polymerization stage of resin may be sufficient.

このような本発明の樹脂組成物は、射出成形、ブロー成形、真空成形、圧縮成形等の一般的な成形法により、各種成形物を容易に製造することができる。成形物は、例えば、容器、フィルム等の包装材料、衣料、繊維材料、電気、電子製品等として使用することができる。   With such a resin composition of the present invention, various molded products can be easily produced by a general molding method such as injection molding, blow molding, vacuum molding, compression molding or the like. The molded product can be used as, for example, a packaging material such as a container or a film, clothing, a fiber material, an electric product, an electronic product, or the like.

そして、本発明の樹脂組成物は、結晶核剤である塩基性シアヌル酸亜鉛粒子、または、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有するため、樹脂の結晶化速度が高い。したがって、樹脂の結晶化度が高くなり、耐熱性が良好な成形物を得ることができる。また、結晶化速度が高くなることにより、結晶化に要する時間が短くなるため、短時間で樹脂の成形物を製造することができる。そして、短時間で結晶化することにより、球晶サイズが小さくなり緻密で高剛性を有し透明性に優れた成形物を得ることができる。また、塩基性シアヌル酸亜鉛粒子、または、塩基性シアヌル酸亜鉛粒子及びフェニルホスホン酸の金属塩を含有することにより樹脂の結晶化温度も高くなるため、樹脂を射出成形等の金型で成形する場合に、金型の冷却温度を高くできるので、短時間で樹脂の成形物を製造することができる。   And since the resin composition of this invention contains the basic cyanuric-acid zinc particle which is a crystal nucleating agent, or the basic cyanuric-acid zinc particle and the metal salt of phenylphosphonic acid, the crystallization rate of resin is high. Accordingly, the degree of crystallinity of the resin is increased, and a molded product having good heat resistance can be obtained. Further, since the time required for crystallization is shortened by increasing the crystallization speed, a resin molded product can be produced in a short time. Then, by crystallization in a short time, a spherulite size is reduced, and a molded product having high density, high rigidity, and excellent transparency can be obtained. Moreover, since the crystallization temperature of the resin is increased by containing basic zinc cyanurate particles, or the metal salt of basic cyanuric acid zinc particles and phenylphosphonic acid, the resin is molded with a mold such as injection molding. In this case, since the mold cooling temperature can be increased, a resin molding can be produced in a short time.

以下、実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。   Hereinafter, although it further explains in full detail based on an Example and a comparative example, the present invention is not limited at all by this example.

(測定装置)
実施例及び比較例における分析には、以下の装置・条件で行った。
透過型電子顕微鏡観察:JEM−1010型(日本電子(株)製)印加電圧100KV
レーザー回折法粒子径測定:SALD−7000型((株)島津製作所製)、試料1gを純水で200倍希釈し測定
比表面積測定:窒素吸着法表面積測定装置モノソーブ機(ユアサアイオニクス(株)製)
重量分析:試料を磁器製ルツボに約2g入れ精秤後、110℃で乾燥後の質量より固形分を算出
X線粉末回折同定:粉末X線回折装置RINT Ultima型((株)リガク製)
元素分析:全自動元素分析装置CHNS/Oアナライザー2400(パーキン・エルマー社製)
(measuring device)
The analysis in Examples and Comparative Examples was performed with the following apparatus and conditions.
Transmission electron microscope observation: JEM-1010 type (manufactured by JEOL Ltd.) Applied voltage 100 KV
Laser diffraction particle size measurement: SALD-7000 type (manufactured by Shimadzu Corporation), 1 g of sample diluted 200 times with pure water and measurement Specific surface area measurement: Nitrogen adsorption method surface area measuring device monosorb machine (Yuasa Ionics Co., Ltd.) Made)
Gravimetric analysis: About 2 g of sample is put in a porcelain crucible and weighed accurately, then the solid content is calculated from the mass after drying at 110 ° C. X-ray powder diffraction identification: Powder X-ray diffraction apparatus RINT Ultimate type (manufactured by Rigaku Corporation)
Elemental analysis: fully automatic elemental analyzer CHNS / O analyzer 2400 (manufactured by Perkin Elmer)

(合成例1)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水300gを仕込み、サンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを500rpmで回し、シアヌル酸粉末(日産化学工業(株)製)5.9gを投入した。続いてサンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを500rpmで回し、酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)9.3gを投入した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は2.0質量%であった。酸化亜鉛粉末を投入後、12時間サンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを500rpmで回して分散した。この時のスラリー温度は9℃であった。これにより、pH7.1、電導度84μS/cm、110℃乾燥時の固形分が4.8質量%の白色スラリーが310g得られた。得られた白色スラリーの110℃乾燥粉の元素分析を行ったところ、炭素10.37質量%、水素1.35質量%、窒素12.05質量%、酸素28.20質量%であった。また、この110℃乾燥粉を1000℃で熱分解させて酸化亜鉛にした後の質量測定を行って、110℃乾燥粉のZnの有効成分量を求めたところ48.03質量%であった。また110℃乾燥粉についてX線粉末回折分析を行ったところ、図1に示すように、原料のシアヌル酸及び酸化亜鉛に帰属される回折ピークは観察されず、塩基性シアヌル酸亜鉛の回折ピークが観察された。これらの結果より、110℃乾燥粉は、Zn(C(OH)・3HOの塩基性シアヌル酸亜鉛であると決定された。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜200nm、短軸が10〜15nmで、レーザー回折法粒子径測定による平均粒子径D50は103nmであり、70℃乾燥後の比表面積Swが59m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。また、透過型電子顕微鏡観察した写真を図2に示す。
(Synthesis Example 1)
A batch type sand grinder vessel with a volume of 1 liter and an inner wall of urethane resin was charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 300 g of pure water, and the stirring disc was rotated at 500 rpm while cooling the sand grinder vessel with a -5 ° C chiller. 5.9 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. Subsequently, the stirring disk was rotated at 500 rpm while the sand grinder container was cooled with a -5 ° C. chiller, and 9.3 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 2.0% by mass. After charging the zinc oxide powder, the stirring disc was rotated at 500 rpm while dispersing the sand grinder container with a -5 ° C chiller for 12 hours to disperse. The slurry temperature at this time was 9 degreeC. As a result, 310 g of a white slurry having a pH of 7.1, an electrical conductivity of 84 μS / cm, and a solid content of 4.8% by mass when dried at 110 ° C. was obtained. When the elemental analysis of the 110 degreeC dry powder of the obtained white slurry was performed, they were 10.37 mass% carbon, 1.35 mass% hydrogen, 12.05 mass% nitrogen, and 28.20 mass% oxygen. Moreover, mass measurement after thermally decomposing this 110 degreeC dry powder at 1000 degreeC to zinc oxide was performed, and it was 48.03 mass% when the amount of active ingredients of Zn of 110 degreeC dry powder was calculated | required. Further, when X-ray powder diffraction analysis was performed on the dried powder at 110 ° C., as shown in FIG. 1, no diffraction peak attributed to the raw materials cyanuric acid and zinc oxide was observed, and the diffraction peak of basic cyanuric acid zinc was Observed. From these results, the 110 ° C. dry powder was determined to be basic zinc cyanurate of Zn 5 (C 3 N 3 O 3 ) 2 (OH) 3 .3H 2 O. Fine particles contained in the resulting white slurry is transmissive long axis 100~200nm the electron microscopic observation, the minor axis is at 10 to 15 nm, the average particle size D 50 by laser diffractometry particle size measurement is 103 nm, 70 It was basic cyanuric acid zinc having a specific surface area Sw after drying at ° C. of 59 m 2 / g. The results are shown in Table 1. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例2)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水300gを仕込み、サンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを1500rpmで回し、シアヌル酸粉末(日産化学工業(株)製)5.9gを投入した。続いてサンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを1500rpmで回し、酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)9.3gを投入した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は2.0質量%であった。酸化亜鉛粉末を投入後、8時間サンドグラインダー容器を0℃のチラーで冷却しながら撹拌ディスクを1500rpmで回して分散した。この時のスラリー温度は16℃であった。これにより、pH7.1、電導度109μS/cm、110℃乾燥時の固形分が4.8質量%の白色スラリーが311g得られた。また、得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜300nm、短軸が10〜20nmで、レーザー回折法粒子径測定による平均粒子径D50は155nmであり、70℃乾燥後の比表面積Swが49m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。
(Synthesis Example 2)
A batch type sand grinder vessel with a volume of 1 liter and an inner wall of urethane resin was charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 300 g of pure water, and the stirring disc was rotated at 1500 rpm while cooling the sand grinder vessel with a -5 ° C chiller. 5.9 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. Subsequently, the stirring disk was rotated at 1500 rpm while cooling the sand grinder container with a -5 ° C. chiller, and 9.3 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 2.0% by mass. After charging the zinc oxide powder, the stirring disc was rotated at 1500 rpm while dispersing the sand grinder container with a 0 ° C. chiller for 8 hours to disperse. The slurry temperature at this time was 16 degreeC. As a result, 311 g of a white slurry having a pH of 7.1, an electric conductivity of 109 μS / cm, and a solid content of 4.8% by mass when dried at 110 ° C. was obtained. Moreover, when the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The fine particles contained in the obtained white slurry have a major axis of 100 to 300 nm and a minor axis of 10 to 20 nm in observation with a transmission electron microscope, an average particle diameter D 50 by laser diffraction particle diameter measurement is 155 nm, and 70 It was a basic zinc cyanurate having a specific surface area Sw after drying at 49 ° C. of 49 m 2 / g. The results are shown in Table 1.

(合成例3)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水300gを仕込み、サンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを2000rpmで回し、シアヌル酸粉末(日産化学工業(株)製)5.9gを投入した。続いてサンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを2000rpmで回し、酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)9.3gを投入した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は2.0質量%であった。酸化亜鉛粉末を投入後、8時間サンドグラインダー容器を−5℃のチラーで冷却しながら撹拌ディスクを2000rpmで回して分散した。この時のスラリー温度は23℃であった。これにより、pH7.0、電導度120μS/cm、110℃乾燥時の固形分が4.8質量%の白色スラリーが305g得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜400nm、短軸が20〜30nmで、レーザー回折法粒子径測定による平均粒子径D50は175nmであり、70℃乾燥後の比表面積Swが32m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。また、透過型電子顕微鏡観察した写真を図3に示す。
(Synthesis Example 3)
A batch sand grinder container with a volume of 1 liter and an inner wall of urethane resin was charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 300 g of pure water, and the stirring disk was rotated at 2000 rpm while cooling the sand grinder container with a -5 ° C chiller. 5.9 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. Subsequently, the stirring disk was rotated at 2000 rpm while cooling the sand grinder container with a -5 ° C. chiller, and 9.3 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 2.0% by mass. After charging the zinc oxide powder, the stirring disc was rotated at 2000 rpm while dispersing the sand grinder container with a -5 ° C chiller for 8 hours to disperse. The slurry temperature at this time was 23 degreeC. As a result, 305 g of a white slurry having a pH of 7.0, an electric conductivity of 120 μS / cm, and a solid content of 4.8% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The resulting fine particles contained in the white slurry, transmission electron long axis in the microscope observation 100 to 400 nm, a short axis 20 to 30 nm, average particle size D 50 by laser diffractometry particle size measurement is 175 nm, 70 It was a basic zinc cyanurate with a specific surface area Sw after drying at 32 ° C. of 32 m 2 / g. The results are shown in Table 1. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例4)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水290gを仕込み、サンドグラインダー容器を20℃の水道水で冷却しながら撹拌ディスクを1500rpmで回し、シアヌル酸粉末(日産化学工業(株)製)9.2gを投入した。続いてサンドグラインダー容器を20℃の水道水で冷却しながら撹拌ディスクを1500rpmで回し、酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)14.5gを投入した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は3.2質量%であった。酸化亜鉛粉末を投入後、10時間サンドグラインダー容器を20℃の水道水で冷却しながら撹拌ディスクを1500rpmで回して分散した。この時のスラリー温度は40℃であった。これにより、pH6.8、電導度148μS/cm、110℃乾燥時の固形分が7.5質量%の白色スラリーが300g得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜300nm、短軸が20〜30nmであり、レーザー回折法粒子径測定による平均粒子径D50が188nm、70℃乾燥後の比表面積Swが26m/gの塩基性シアヌル酸亜鉛であった。
(Synthesis Example 4)
A batch type sand grinder vessel with a volume of 1 liter and urethane resin inside is charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 290 g of pure water, and the stirring disc is rotated at 1500 rpm while cooling the sand grinder vessel with tap water at 20 ° C. 9.2 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. Subsequently, while the sand grinder container was cooled with 20 ° C. tap water, the stirring disk was rotated at 1500 rpm, and 14.5 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 3.2% by mass. After charging the zinc oxide powder, the stirring disc was rotated at 1500 rpm while dispersing the sand grinder container with 20 ° C. tap water for 10 hours. The slurry temperature at this time was 40 degreeC. As a result, 300 g of a white slurry having a pH of 6.8, an electric conductivity of 148 μS / cm, and a solid content of 7.5% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The resulting fine particles contained in the white slurry, transmission electron microscopy major axis at observation 100 to 300 nm, minor axis is 20 to 30 nm, an average particle size D 50 by laser diffractometry particle size measurement 188 nm, 70 ° C. It was a basic zinc cyanurate having a specific surface area Sw after drying of 26 m 2 / g.

(合成例5)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水290gを仕込み、撹拌ディスクを1500rpmで回し、シアヌル酸粉末(日産化学工業(株)製)5.9gを投入した。続いて撹拌ディスクを1500rpmで回し、酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)9.3gを投入した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は2.0質量%であった。酸化亜鉛粉末を投入後、撹拌ディスクを1500rpmで回して5時間分散した。この時のスラリー温度は50℃であった。これにより、pH8.2、電導度176μS/cm、110℃乾燥時の固形分が4.8質量%の白色スラリーが300g得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜200nm、短軸が20〜40nmで、レーザー回折法粒子径測定による平均粒子径D50は623nmであり、70℃乾燥後の比表面積Swが25m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。
(Synthesis Example 5)
A batch sand grinder container with a volume of 1 liter and an inner wall of urethane resin was charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 290 g of pure water, and the stirring disk was rotated at 1500 rpm to obtain cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) 5.9 g was charged. Subsequently, the stirring disk was rotated at 1500 rpm, and 9.3 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 2.0% by mass. After adding zinc oxide powder, the stirring disk was rotated at 1500 rpm and dispersed for 5 hours. The slurry temperature at this time was 50 degreeC. As a result, 300 g of a white slurry having a pH of 8.2, an electric conductivity of 176 μS / cm, and a solid content of 4.8% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The fine particles contained in the obtained white slurry have a major axis of 100 to 200 nm and a minor axis of 20 to 40 nm in transmission electron microscope observation, an average particle diameter D 50 by laser diffraction particle diameter measurement is 623 nm, and 70 This was basic zinc cyanurate having a specific surface area Sw after drying at 25 ° C. of 25 m 2 / g. The results are shown in Table 1.

(合成例6)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水298gを仕込み、サンドグラインダー容器を10℃のチラーで冷却しながら撹拌ディスクを2000rpmで回し、シアヌル酸粉末(日産化学工業(株)製)4.3gを投入した。続いてサンドグラインダー容器を10℃のチラーで冷却しながら撹拌ディスクを1500rpmで回し、塩基性炭酸亜鉛粉末(酸化亜鉛成分74.8質量% 堺化学(株)製)9.0gを投入した。酸化亜鉛換算量/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は1.4質量%であった。酸化亜鉛粉末を投入後、8時間サンドグラインダー容器を10℃のチラーで冷却しながら撹拌ディスクを1500rpmで回して分散した。この時のスラリー温度は30℃であった。これにより、pH6.3、電導度556μS/cm、粘度198mPa・s、110℃乾燥時の固形分が3.5質量%の白色スラリーが310g得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜300nm、短軸が20〜40nmで、レーザー回折法粒子径測定による平均粒子径D50は303nmであり、70℃乾燥後の比表面積Swが30m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。
(Synthesis Example 6)
A batch type sand grinder container having a volume of 1 liter and an inner wall of urethane resin was charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 298 g of pure water, and the stirring disk was rotated at 2000 rpm while cooling the sand grinder container with a 10 ° C. chiller. 4.3 g of cyanuric acid powder (Nissan Chemical Industry Co., Ltd.) was added. Subsequently, while the sand grinder container was cooled with a chiller at 10 ° C., the stirring disk was rotated at 1500 rpm, and 9.0 g of basic zinc carbonate powder (74.8% by mass of zinc oxide component, manufactured by Sakai Chemical Co., Ltd.) was added. The molar ratio of zinc oxide equivalent / cyanuric acid was 2.5, and the cyanuric acid concentration relative to water was 1.4% by mass. After charging the zinc oxide powder, the stirring disc was rotated at 1500 rpm while dispersing the sand grinder container with a chiller at 10 ° C. for 8 hours to disperse. The slurry temperature at this time was 30 degreeC. As a result, 310 g of white slurry having a pH of 6.3, an electrical conductivity of 556 μS / cm, a viscosity of 198 mPa · s, and a solid content of 3.5% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The resulting fine particles contained in the white slurry, transmission electron long axis in the microscope observation 100 to 300 nm, a short axis 20 to 40 nm, average particle size D 50 by laser diffractometry particle size measurement is 303 nm, 70 This was basic zinc cyanurate having a specific surface area Sw after drying at 30 ° C. of 30 m 2 / g. The results are shown in Table 1.

(合成例7)
純水24kgと酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)1.88kgを容積200リットルの混合用タンクに投入し、ディスパーで攪拌混合後、酸化亜鉛換算濃度が7.69質量%のスラリー26kgを調製した。次に有効容積10.66リットルで内壁がウレタン樹脂の横型ビーズミル(アシザワファインテック(株)製 パールミルPM25TEX−H)にφ1mmの安定化ジルコニア製粉砕ビーズ66kgを仕込んだ。チラーを着けた循環タンクに純水144kgを仕込んだ後、パールミルのディスクを周速10m/秒で回し、供給速度5kg/分で純水をパールミルに供給しながら純水を循環させた。循環開始後にシアヌル酸粉末(日産化学工業(株)製)1.19kgを投入した。シアヌル酸粉末を投入後、循環スラリーの温度が32℃になるようにチラーで調節した後、酸化亜鉛換算濃度が7.69質量%の酸化亜鉛スラリー24.5kgを5分割して10分かけて添加した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は0.7質量%であった。酸化亜鉛スラリーの添加後もパールミルのディスクを周速10m/秒で回しながら供給速度5kg/分でスラリーを15時間循環し、分散した。またこの間も循環スラリー温度は32℃になるようにチラーで調節した。これにより、pH6.8、電導度67μS/cm、粘度51mPa・s、110℃乾燥時の固形分が1.8質量%の白色スラリーが166kg得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜600、短軸が25〜50nmで、レーザー回折法粒子径測定による平均粒子径D50は310nmであり、70℃乾燥後の比表面積Swが51m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。また、透過型電子顕微鏡観察した写真を図4に示す。
(Synthesis Example 7)
24 kg of pure water and 1.88 kg of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) are put into a mixing tank with a capacity of 200 liters, and after stirring and mixing with a disper, the zinc oxide equivalent concentration is 7.69% by mass. 26 kg of slurry was prepared. Next, 66 kg of stabilized zirconia crushed beads having a diameter of 1 mm were charged into a horizontal bead mill (pearl mill PM25TEX-H manufactured by Ashizawa Finetech Co., Ltd.) having an effective volume of 10.66 liters and an inner wall of urethane resin. After 144 kg of pure water was charged into a circulation tank equipped with a chiller, the disk of the pearl mill was rotated at a peripheral speed of 10 m / second, and pure water was circulated while supplying pure water to the pearl mill at a supply speed of 5 kg / min. After the start of circulation, 1.19 kg of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. After adding the cyanuric acid powder, after adjusting with a chiller so that the temperature of the circulating slurry is 32 ° C., 24.5 kg of zinc oxide slurry having a zinc oxide equivalent concentration of 7.69% by mass is divided into 5 parts over 10 minutes. Added. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 0.7% by mass. Even after the addition of the zinc oxide slurry, the slurry was circulated and dispersed for 15 hours at a feed rate of 5 kg / min while rotating the disk of the pearl mill at a peripheral speed of 10 m / sec. Also during this time, the circulating slurry temperature was adjusted with a chiller so as to be 32 ° C. As a result, 166 kg of white slurry having a pH of 6.8, an electrical conductivity of 67 μS / cm, a viscosity of 51 mPa · s, and a solid content of 1.8% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The fine particles contained in the obtained white slurry have a major axis of 100 to 600 and a minor axis of 25 to 50 nm in observation with a transmission electron microscope, and an average particle diameter D50 by laser diffraction particle diameter measurement is 310 nm. This was basic zinc cyanurate having a specific surface area Sw after drying at 50 ° C. of 51 m 2 / g. The results are shown in Table 1. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例8)
容積1リットルで内壁がウレタン樹脂のバッチ式サンドグラインダー容器にφ1mmの安定化ジルコニア製粉砕ビーズ1140gと純水290gを仕込み、撹拌ディスクを1500rpmで回し、シアヌル酸粉末(日産化学工業(株)製)5.9gを投入した。続いて撹拌ディスクを1500rpmで回し、酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)11.2gを投入した。酸化亜鉛/シアヌル酸のモル比は3.0、水に対するシアヌル酸濃度は2.0質量%であった。酸化亜鉛粉末を投入後、撹拌ディスクを1500rpmで回して5時間分散した。この時のスラリー温度は23℃であった。これにより、pH7.8、電導度98μS/cm、110℃乾燥時の固形分が5.6質量%の白色スラリーが300g得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜300nm、短軸が15〜20nmで、レーザー回折法粒子径測定による平均粒子径D50は152nmであり、70℃乾燥後の比表面積Swが40m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。
(Synthesis Example 8)
A batch sand grinder container with a volume of 1 liter and an inner wall of urethane resin was charged with 1140 g of stabilized zirconia crushed beads of φ1 mm and 290 g of pure water, and the stirring disk was rotated at 1500 rpm to obtain cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) 5.9 g was charged. Subsequently, the stirring disk was rotated at 1500 rpm, and 11.2 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Co., Ltd.) was charged. The molar ratio of zinc oxide / cyanuric acid was 3.0, and the cyanuric acid concentration relative to water was 2.0% by mass. After adding zinc oxide powder, the stirring disk was rotated at 1500 rpm and dispersed for 5 hours. The slurry temperature at this time was 23 degreeC. As a result, 300 g of a white slurry having a pH of 7.8, an electrical conductivity of 98 μS / cm, and a solid content of 5.6% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The resulting fine particles contained in the white slurry, transmission electron long axis in the microscope observation 100 to 300 nm, a short axis 15-20 nm, the average particle size D 50 by laser diffractometry particle size measurement is 152 nm, 70 This was basic zinc cyanurate with a specific surface area Sw after drying at 40 ° C. of 40 m 2 / g. The results are shown in Table 1.

(合成例9)
純水900gを仕込んだ1リットルのビーカーをマグネットスターラー付のホットプレート上に置き、攪拌子で攪拌しながらシアヌル酸粉末(日産化学工業(株)製)18.9gを投入した。続いて酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)30.0gを投入した後、混合スラリーを攪拌子で攪拌しながらホットプレートで煮沸するまで加熱した。酸化亜鉛/シアヌル酸のモル比は2.5、水に対するシアヌル酸濃度は2.1質量%であった。100℃煮沸下で8時間攪拌した後、pH7.1、電導度46μS/cm、粘度500mPa・s、110℃で乾燥した時の固形分が6.8質量%の白色スラリーが716g得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が2000〜20000nm、短軸が200〜500nmで、レーザー回折法による平均粒子径D50は2620nmであり、70℃乾燥後の比表面積Swが5m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。また、透過型電子顕微鏡観察した写真を図5に示す。
(Synthesis Example 9)
A 1 liter beaker charged with 900 g of pure water was placed on a hot plate equipped with a magnetic stirrer, and 18.9 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while stirring with a stirrer. Subsequently, 30.0 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added, and then the mixed slurry was heated until boiling with a hot plate while stirring with a stirrer. The molar ratio of zinc oxide / cyanuric acid was 2.5, and the concentration of cyanuric acid relative to water was 2.1% by mass. After stirring for 8 hours under boiling at 100 ° C., 716 g of a white slurry having a pH of 7.1, an electric conductivity of 46 μS / cm, a viscosity of 500 mPa · s, and a solid content of 6.8% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The resulting fine particles contained in the white slurry, transmission electron microscopy long axis is observed 2000~20000Nm, minor axis at 200 to 500 nm, the average particle size D 50 by laser diffraction method is 2620nm, 70 ℃ dried Was a basic zinc cyanurate having a specific surface area Sw of 5 m 2 / g. The results are shown in Table 1. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例10)
パールミルを用いるかわりに、有効容積10.66リットルで内壁がウレタン樹脂の横型ビーズミル(アシザワファインテック(株)製 システムゼータLMZ25)を用い、合成例7の原料の比を同じにして同様の操作を行ったところ、pH7.9、電導度206μS/cm、粘度76mPa・s、110℃乾燥時の固形分が1.8質量%の白色スラリーが168kg得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、合成例1と同様の回折パターンであった。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が100〜800nm、短軸が10〜60nmであり、レーザー回折法粒子径測定による平均粒子径D50は397nmであり、70℃乾燥後の比表面積Swが54m/gの塩基性シアヌル酸亜鉛であった。結果を表1に示す。
(Synthesis Example 10)
Instead of using a pearl mill, a horizontal bead mill (System Zeta LMZ25 manufactured by Ashizawa Finetech Co., Ltd.) with an effective volume of 10.66 liters and an inner wall is used, and the same operation is performed with the same ratio of raw materials in Synthesis Example 7. As a result, 168 kg of white slurry having a pH of 7.9, an electric conductivity of 206 μS / cm, a viscosity of 76 mPa · s, and a solid content of 1.8% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about the 110 degreeC dry powder of the obtained white slurry, it was the same diffraction pattern as the synthesis example 1. FIG. The fine particles contained in the obtained white slurry have a major axis of 100 to 800 nm and a minor axis of 10 to 60 nm in transmission electron microscope observation, and an average particle size D 50 by laser diffraction particle size measurement is 397 nm. It was basic cyanuric acid zinc having a specific surface area Sw after drying at 70 ° C. of 54 m 2 / g. The results are shown in Table 1.

(実施例1)
合成例9で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉40mgおよびポリ乳酸樹脂(NW3001D、数平均分子量72,000、融点164℃、ネーチャーワークス製)4.0gを185℃に加熱した混練機(LABO PLASTOMILL 東洋精機(株)製)に入れ5分間、50rpmで混練して樹脂組成物を製造した。冷却後、樹脂組成物を取り出し、テフロン(登録商標)シートと真鍮板で挟み、上部185℃、下部185℃に加熱したホットプレス機に入れ、フィルムの厚さが0.4mmになるように0.5kgfで加圧してフィルムを作成した。このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、5℃/分で冷却するDSC測定(セイコー電子(株)製 DSC−200)を行った。冷却時に観測されるポリ乳酸の結晶化に由来する発熱ピークの頂点から結晶化温度Tcを測定した。
Example 1
Kneading of 40 mg of basic cyanuric acid zinc powder obtained in Synthesis Example 9 and 4.0 g of polylactic acid resin (NW3001D, number average molecular weight 72,000, melting point 164 ° C., manufactured by Nature Works) at 185 ° C. The resin composition was manufactured by putting into a machine (LABO PLASTOMILL made by Toyo Seiki Co., Ltd.) and kneading at 50 rpm for 5 minutes. After cooling, the resin composition is taken out, sandwiched between a Teflon (registered trademark) sheet and a brass plate, and placed in a hot press machine heated to an upper part of 185 ° C. and a lower part of 185 ° C., and 0 mm so that the thickness of the film becomes 0.4 mm. A film was prepared by pressurizing at 5 kgf. The film sample was cut into small pieces, heated to 100 ° C./200° C., held for 5 minutes, and then cooled at 5 ° C./min (DSC-200 manufactured by Seiko Electronics Co., Ltd.). went. The crystallization temperature Tc was measured from the apex of the exothermic peak derived from the crystallization of polylactic acid observed during cooling.

また、このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、200℃/分で130℃まで冷却後、130℃で10分保持するDSC測定(セイコー電子(株)製 DSC−200)を行った。130℃保持時に観測されるポリ乳酸の結晶化に由来する発熱ピークの頂点の時間から結晶化速度を測定した。結果を表2に示す。なお、表2において、核剤濃度を樹脂100質量部に対する塩基性シアヌル酸亜鉛の質量部として記載する。   Further, this film-like sample is cut into small pieces, heated to 100 ° C./min to 200 ° C. and held for 5 minutes, then cooled to 130 ° C. at 200 ° C./min and then held at 130 ° C. for 10 minutes. The measurement (DSC-200 manufactured by Seiko Electronics Co., Ltd.) was performed. The crystallization rate was measured from the time of the peak of the exothermic peak derived from the crystallization of polylactic acid observed at 130 ° C. The results are shown in Table 2. In Table 2, the nucleating agent concentration is described as a mass part of basic cyanuric acid zinc with respect to 100 parts by mass of the resin.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、可視光透過率は24%、ヘイズは70であった。   Moreover, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), the visible light transmittance was determined. Was 24% and haze was 70.

(実施例2)
合成例9で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉の代わりに、合成例7で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は52%、ヘイズは50であった。
(Example 2)
Operation similar to Example 1 except having used the basic cyanuric-acid zinc 110 degreeC dry powder obtained in the synthesis example 7 instead of the basic cyanuric-acid zinc 110 degreeC dry powder obtained in the synthesis example 9. The crystallization temperature Tc and the crystallization rate of polylactic acid were measured. The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 52% and the haze was 50.

(実施例3)
合成例9で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉の代わりに、合成例10で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を用いた以外は実施例1と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は44%、ヘイズは57であった。
(Example 3)
Operation similar to Example 1 except having used the basic cyanuric-acid zinc 110 degreeC dry powder obtained in the synthesis example 10 instead of the basic cyanuric-acid zinc 110 degreeC dry powder obtained in the synthesis example 9. The crystallization temperature Tc and the crystallization rate of polylactic acid were measured. The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 44% and the haze was 57.

(実施例4)
合成例10で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉の使用量を8mgとした以外は実施例3と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は78%、ヘイズは21であった。
Example 4
The crystallization temperature Tc and the crystallization rate of polylactic acid were measured in the same manner as in Example 3 except that the amount of basic cyanuric acid zinc powder obtained in Synthesis Example 10 was 8 mg, except that the amount used was 8 mg. . The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined in the same manner as in Example 1, the visible light transmittance was 78% and the haze was 21.

(実施例5)
合成例10で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉の使用量を80mgとした以外は実施例3と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は22%、ヘイズは80であった。
(Example 5)
The crystallization temperature Tc and the crystallization rate of polylactic acid were measured in the same manner as in Example 3 except that the amount of basic cyanuric acid zinc powder obtained in Synthesis Example 10 was changed to 80 mg. . The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 22% and the haze was 80.

(実施例6)
合成例9で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉36mgおよびポリプロピレン樹脂(ノバテックPP MA3、数平均分子量111,000、融点165℃、日本ポリケム(株)製)3.6gを185℃に加熱した混練機(LABO PLASTOMILL 東洋精機(株)製)に入れ5分間、50rpmで混練して樹脂組成物を製造した。冷却後、樹脂組成物を取り出し、テフロンシートと真鍮板で挟み、上部185℃、下部185℃に加熱したホットプレス機に入れ、フィルムの厚さが0.4mmになるように0.5kgfで加圧してフィルムを作成した。このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、5℃/分で冷却するDSC測定(セイコー電子(株)製 DSC−200)を行い、冷却時に観測されるポリプロピレンの結晶化に由来する発熱ピークの頂点から結晶化温度Tcを測定した。
(Example 6)
110 mg of basic cyanuric acid zinc powder 36 mg obtained in Synthesis Example 9 and polypropylene resin (Novatech PP MA3, number average molecular weight 111,000, melting point 165 ° C., manufactured by Nippon Polychem Co., Ltd.) 3.6 g were 185 ° C. The mixture was placed in a kneader (LABO PLASTOMILL, manufactured by Toyo Seiki Co., Ltd.) and kneaded at 50 rpm for 5 minutes to produce a resin composition. After cooling, the resin composition is taken out, sandwiched between a Teflon sheet and a brass plate, placed in a hot press machine heated to an upper part of 185 ° C. and a lower part of 185 ° C., and added at 0.5 kgf so that the thickness of the film becomes 0.4 mm. Pressed to create a film. The film sample was cut into small pieces, heated to 100 ° C./200° C., held for 5 minutes, and then cooled at 5 ° C./min (DSC-200 manufactured by Seiko Electronics Co., Ltd.). The crystallization temperature Tc was measured from the apex of the exothermic peak derived from polypropylene crystallization observed during cooling.

また、このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、200℃/分で130℃まで冷却後、130℃で10分保持するDSC測定(セイコー電子(株)製 DSC−200)を行った。130℃保持時に観測されるポリプロピレンの結晶化に由来する発熱ピークの頂点の時間から結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は30%、ヘイズは85であった。   Further, this film-like sample is cut into small pieces, heated to 100 ° C./min to 200 ° C. and held for 5 minutes, then cooled to 130 ° C. at 200 ° C./min and then held at 130 ° C. for 10 minutes. The measurement (DSC-200 manufactured by Seiko Electronics Co., Ltd.) was performed. The crystallization rate was measured from the time of the peak of the exothermic peak derived from crystallization of polypropylene observed at 130 ° C. The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 30% and the haze was 85.

(実施例7)
合成例9で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉の代わりに、合成例7で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を用いた以外は実施例6と同様の操作を行ってポリプロピレンの結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は40%、ヘイズは71であった。
(Example 7)
Operation similar to Example 6 except having used the basic cyanuric-acid zinc 110 degreeC dry powder obtained in the synthesis example 7 instead of the basic cyanuric-acid zinc 110 degreeC dry powder obtained in the synthesis example 9. The crystallization temperature Tc and the crystallization rate of polypropylene were measured. The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined in the same manner as in Example 1, the visible light transmittance was 40% and the haze was 71.

(実施例8)
合成例9で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉の代わりに、合成例10で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を用いた以外は実施例6と同様の操作を行ってポリプロピレンの結晶化温度Tc及び結晶化速度を測定した。結果を表2に示す。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は38%、ヘイズは78であった。
(Example 8)
The same operation as in Example 6 except that the basic zinc cyanurate obtained in Synthesis Example 10 was used in place of the basic zinc cyanurate obtained in Synthesis Example 9 at 110 ° C. The crystallization temperature Tc and the crystallization rate of polypropylene were measured. The results are shown in Table 2. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 38% and the haze was 78.

(比較例1)
塩基性シアヌル酸亜鉛をポリ乳酸樹脂に添加しない以外は、実施例1と同様の操作を行った。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は74%、ヘイズは22であった。
(Comparative Example 1)
The same operation as in Example 1 was performed except that basic zinc cyanurate was not added to the polylactic acid resin. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 74% and the haze was 22.

(比較例2)
塩基性シアヌル酸亜鉛をポリプロピレン樹脂に添加しない以外は、実施例6と同様の操作を行った。また、得られたフィルムの可視光透過率及びヘイズを実施例1と同様の方法で求めたところ、可視光透過率は57%、ヘイズは31であった。
(Comparative Example 2)
The same operation as in Example 6 was performed except that basic zinc cyanurate was not added to the polypropylene resin. Moreover, when the visible light transmittance and haze of the obtained film were determined by the same method as in Example 1, the visible light transmittance was 57% and the haze was 31.

この結果、表2に示すように、塩基性シアヌル酸亜鉛を添加することにより、樹脂の結晶化温度及び結晶化速度が高くなり、塩基性シアヌル酸亜鉛が樹脂の結晶核剤として使用できることが分かった。このように、樹脂の結晶化速度が高いため、樹脂の結晶化度が高くなり、耐熱性が良好な成形物を得ることができる。また、結晶化速度が高くなることにより、結晶化に要する時間が短くなるため、短時間で樹脂の成形物を製造することができる。そして、短時間で結晶化することにより、球晶サイズが小さくなり、緻密でガラス繊維等を添加しなくても高い剛性を有し、透明性に優れた成形物を得ることができる。また、樹脂の結晶化温度も高いため、型の冷却温度を高くできるので、短時間で樹脂の成形物を製造することができる。   As a result, as shown in Table 2, it was found that by adding basic zinc cyanurate, the crystallization temperature and crystallization speed of the resin are increased, and basic cyanuric acid zinc can be used as a crystal nucleating agent for the resin. It was. Thus, since the crystallization speed of the resin is high, the degree of crystallization of the resin is high, and a molded product having good heat resistance can be obtained. Further, since the time required for crystallization is shortened by increasing the crystallization speed, a resin molded product can be produced in a short time. And by crystallizing in a short time, the size of the spherulite becomes small, and a molded product having high rigidity and high transparency can be obtained without adding glass fiber or the like. In addition, since the crystallization temperature of the resin is high, the cooling temperature of the mold can be increased, so that a molded product of the resin can be produced in a short time.

また、合成例7や合成例10の塩基性シアヌル酸亜鉛粒子は、合成例9の塩基性シアヌル酸亜鉛粒子よりも顕著に小さい粒子であるため、合成例7の塩基性シアヌル酸亜鉛粒子を用いた実施例2及び実施例7や合成例10の塩基性シアヌル酸亜鉛を用いた実施例3及び実施例8は、合成例9の塩基性シアヌル酸亜鉛粒子を用いた実施例1及び実施例6よりも、可視光透過率が高くヘイズが低く、透明性に優れていた。   Further, the basic zinc cyanurate particles of Synthesis Example 7 and Synthesis Example 10 are particles that are significantly smaller than the basic zinc cyanurate particles of Synthesis Example 9, and therefore the basic zinc cyanurate particles of Synthesis Example 7 are used. Example 3 and Example 8 using the basic zinc cyanurate of Example 2 and Example 7 and Synthesis Example 10 were the same as Example 1 and Example 6 using the basic zinc cyanurate particles of Synthesis Example 9. In contrast, the visible light transmittance was high, the haze was low, and the transparency was excellent.

Figure 0005861838
Figure 0005861838

Figure 0005861838
Figure 0005861838

(合成例11)
2リットルのポリ容器に純水1501g及びフェニルホスホン酸((日産化学工業(株)製) 以下「PPA」とも記載する)79.7gを投入し、攪拌しながら炭酸マグネシウム(関東化学製試薬 MgOとして42wt%)19.3gを添加した後、1時間50分攪拌して炭酸マグネシウムを溶解し、モル比でMg/PPA=0.40、pH=2.4、電導度=11.78mS/cmのフェニルホスホン酸マグネシウム水溶液を調製した。新たな2リットルのポリ容器に純水1077gと得られたフェニルホスホン酸マグネシウム水溶液313gを加えた後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根(EYELA製 NZ−1000)で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1483gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌した。これにより、pH7.2、電導度608μS/cm、粘度400mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が28m/gのパウダー(110℃の乾燥粉)を103g得た。このパウダーについてX線粉末回折分析を行ったところ、図6に示すように、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察され、3つの化合物の混合物からなるパウダーであった。このことから、フェニルホスホン酸マグネシウムは、強酸性のフェニルホスホン酸が酸化亜鉛と反応してフェニルホスホン酸亜鉛になり、マグネシウムが水酸化マグネシウムになり、残りの酸化亜鉛とシアヌル酸が反応して塩基性シアヌル酸亜鉛が生成したことが分った。このパウダーは、シアヌル酸として29質量%、亜鉛として43質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。なお、シアヌル酸C3333はCHN元素分析で測定される樹脂用結晶核剤中の窒素量から算出し、フェニルホスホン酸C673Pは蛍光X線分析で測定される樹脂用結晶核剤中のリン量によって算出した。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が均一に分散していた。結果を表3に示す。
(Synthesis Example 11)
Into a 2-liter plastic container, 1501 g of pure water and 79.7 g of phenylphosphonic acid (manufactured by Nissan Chemical Industries, Ltd.) are also referred to as “PPA” hereinafter, and magnesium carbonate (reagent MgO manufactured by Kanto Chemical Co., Ltd.) with stirring. 42 wt%) After adding 19.3 g, the mixture was stirred for 1 hour 50 minutes to dissolve the magnesium carbonate, and the molar ratio of Mg / PPA = 0.40, pH = 2.4, and conductivity = 11.78 mS / cm. A magnesium phenylphosphonate aqueous solution was prepared. After adding 1077 g of pure water and 313 g of the obtained magnesium phenylphosphonate aqueous solution to a new 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade (NZEL1000 manufactured by EYELA), and further heated for 40 minutes. Stir vigorously. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time was 38 degreeC, and it stirred strongly with the disper blade | wing for 8 hours, heating with a warm bath so that slurry temperature might maintain 38 degreeC. As a result, 1483 g of white slurry having a pH of 7.2, an electric conductivity of 608 μS / cm, a viscosity of 400 mPa · s, and a solid content of 7.2% by mass when dried at 110 ° C. was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 28 m 2 / g. 103 g of powder (dried powder at 110 ° C.) was obtained. When X-ray powder diffraction analysis was performed on this powder, as shown in FIG. 6, the diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed, and the powder was composed of a mixture of three compounds. there were. From this, magnesium phenylphosphonate reacts with strongly acidic phenylphosphonic acid to form zinc phenylphosphonate, magnesium becomes magnesium hydroxide, and the remaining zinc oxide reacts with cyanuric acid to form a base. It was found that the characteristic zinc cyanurate was produced. This powder contained 29% by mass as cyanuric acid, 43% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. Cyanuric acid C 3 N 3 O 3 H 3 is calculated from the amount of nitrogen in the crystal nucleating agent for resin measured by CHN elemental analysis, and phenylphosphonic acid C 6 H 7 O 3 P is measured by fluorescent X-ray analysis. The amount of phosphorus in the resin crystal nucleating agent was calculated. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Were uniformly dispersed in 100-500 nm zinc phenylphosphonate and magnesium hydroxide particles. The results are shown in Table 3.

(合成例12)
シアヌル酸粉末(日産化学工業(株)製)を33.1gにした以外は合成例11と同じ操作をして、pH7.2、電導度196μS/cm、粘度500mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が49m/gのパウダーを102g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が均一に分散していた。結果を表3に示す。また、透過型電子顕微鏡観察した写真を図7に示す。
(Synthesis Example 12)
The same operation as in Synthesis Example 11 was performed except that 33.1 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was used, pH 7.2, conductivity 196 μS / cm, viscosity 500 mPa · s, when dried at 110 ° C. 1483 g of a white slurry having a solid content of 7.2% by mass was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 49 m 2 / g. 102 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Were uniformly dispersed in 100-500 nm zinc phenylphosphonate and magnesium hydroxide particles. The results are shown in Table 3. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例13)
2リットルのポリ容器に合成例11で作成したフェニルホスホン酸マグネシウム水溶液313gと純水1160gを混合した後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)30.3gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1560gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌して、pH8.6、電導度133μS/cm、粘度700mPa・s、110℃乾燥時の固形分が6.6質量%の白色スラリーが1560g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が56m/gのパウダーを100g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として35質量%、亜鉛として40質量%、フェニルホスホン酸として15質量%およびマグネシウムとして1.2質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表3に示す。
(Synthesis Example 13)
After mixing 313 g of the phenylphosphonate magnesium aqueous solution prepared in Synthesis Example 11 and 1160 g of pure water in a 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 30.3 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further stirred vigorously for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) was added while vigorously stirring with a disper blade, and 1560 g of white slurry was prepared. The slurry temperature at this time is 38 ° C., and the mixture is vigorously stirred with a disperse blade for 8 hours while being heated in a hot tub so as to maintain the slurry temperature at 38 ° C., pH 8.6, conductivity 133 μS / cm, viscosity 700 mPa -1560g of white slurry whose solid content at s and 110 degreeC drying is 6.6 mass% was obtained. The wet cake obtained by Nutsche filtration of the slurry using filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 56 m 2 / g. 100 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 35% by mass as cyanuric acid, 40% by mass as zinc, 15% by mass as phenylphosphonic acid, and 1.2% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 3.

(合成例14)
2リットルのポリ容器に純水997gと合成例11で得られたフェニルホスホン酸マグネシウム水溶液313gを加えた。この混合水溶液にディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)33.1gを投入し、続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1400gを作成した。この時のスラリー温度は26℃で、続けてディスパー羽根で8時間強攪拌した後のスラリー温度は28℃であった。これにより、pH8.0、電導度275μS/cm、粘度1040mPa・s、110℃乾燥時の固形分が7.6質量%の白色スラリーが1400g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が62m/gのパウダーを105g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛とフェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が100〜300nm、短軸が10〜30nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が50〜200nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表3に示す。
(Synthesis Example 14)
To a 2-liter plastic container, 997 g of pure water and 313 g of magnesium phenylphosphonate aqueous solution obtained in Synthesis Example 11 were added. 33.1 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added to this mixed aqueous solution with strong stirring at 3300 rpm with a disperse blade, and then zinc oxide powder (Sakai Chemical Co., Ltd.) with strong stirring with a disper blade. (2 types zinc oxide manufactured) 57.4g was thrown in and 1400g of white slurry was created. The slurry temperature at this time was 26 degreeC, and the slurry temperature after stirring vigorously for 8 hours with the disper blade | wing was 28 degreeC. As a result, 1400 g of a white slurry having a pH of 8.0, an electric conductivity of 275 μS / cm, a viscosity of 1040 mPa · s, and a solid content of 7.6% by mass when dried at 110 ° C. was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 62 m 2 / g. 105 g of powder was obtained. When X-ray powder diffraction analysis was performed on this powder, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 100-300 nm, the short axis is 10-30 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 50 to 200 nm were observed. The results are shown in Table 3.

(合成例15)
スラリー温度を50℃にした以外は合成例12と同じ操作をして、pH7.7、電導度213μS/cm、粘度720mPa・s、110℃乾燥時の固形分が7.6質量%の白色スラリーを1480g得た。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が35m/gのパウダーを102g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜1000nm、短軸が40〜80nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が200〜600nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表3に示す。
(Synthesis Example 15)
A white slurry having the same operation as in Synthesis Example 12 except that the slurry temperature was changed to 50 ° C., having a pH of 7.7, an electric conductivity of 213 μS / cm, a viscosity of 720 mPa · s, and a solid content of 7.6% by mass when dried at 110 ° C. 1480 g was obtained. The slurry obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 35 m 2 / g. 102 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water, when observing with the transmission electron microscope, the long axis is 200-1000 nm, the short axis is 40-80 nm, the needle-shaped particle | grains of a basic zinc cyanurate, a long axis, and a short axis Granular particles of zinc phenylphosphonate and magnesium hydroxide having a particle diameter of 200 to 600 nm were observed. The results are shown in Table 3.

(合成例16)
スラリー温度を60℃にした以外は合成例12と同じ操作をして、pH7.6、電導度183μS/cm、粘度640mPa・s、110℃乾燥時の固形分が7.6質量%の白色スラリーが1480g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が26m/gのパウダーを102g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が300〜1000nm、短軸が40〜100nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が300〜800nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が均一に分散していた。結果を表3に示す。
(Synthesis Example 16)
A white slurry having the same operation as in Synthesis Example 12 except that the slurry temperature was changed to 60 ° C., pH 7.6, conductivity 183 μS / cm, viscosity 640 mPa · s, solid content at 110 ° C. when dried at 7.6 mass% 1480 g was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 26 m 2 / g. 102 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 300-1000 nm, the short axis is 40-100 nm, basic zinc cyanurate acicular particles, the long axis and the short axis Were uniformly dispersed with zinc phenylphosphonate and magnesium hydroxide particles having a particle diameter of 300 to 800 nm. The results are shown in Table 3.

(合成例17)
2リットルのポリ容器に合成例11で作成したフェニルホスホン酸マグネシウム水溶液195gと純水1194gを混合した後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)33.1gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1483gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌して、pH8.1、電導度142μS/cm、粘度540mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が52m/gのパウダーを104g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として33質量%、亜鉛として46質量%、フェニルホスホン酸として10質量%およびマグネシウムとして0.8質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表3に示す。
(Synthesis Example 17)
After mixing 195 g of the phenylphosphonate magnesium aqueous solution prepared in Synthesis Example 11 and 1194 g of pure water in a 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 33.1 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further vigorously stirred for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time is 38 ° C., and it is vigorously stirred with a disperse blade for 8 hours while being heated in a hot tub so as to maintain the slurry temperature at 38 ° C., pH 8.1, conductivity 142 μS / cm, viscosity 540 mPa -1483g of white slurry whose solid content at the time of s and 110 degreeC drying is 7.2 mass% was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 52 m 2 / g. 104 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 33% by mass as cyanuric acid, 46% by mass as zinc, 10% by mass as phenylphosphonic acid, and 0.8% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 3.

(合成例18)
容積700リットルのジャケット付きSUS製容器に純水368kgを仕込み、直径300mmのディスパー羽根を取り付けた攪拌機ハイパー(アシザワファインテック(株)製 ハイパー)でディスパー羽根を500rpmで分散しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)20.3kgを投入した。この酸化亜鉛スラリーの温度を49℃まで上げるためジャケット水を加温した。途中の酸化亜鉛スラリーが40℃に到達したところでディスパー羽根の回転数を800rpmに上げて強分散しながら、シアヌル酸粉末(日産化学工業(株)製)11.7kgを3分割して30分おきに投入した。シアヌル酸粉末を投入後、スラリーの温度が49℃になり、この温度で保持するようにジャケット水の温度を調節した。酸化亜鉛/シアヌル酸のモル比は2.75、水に対するシアヌル酸濃度は2.9質量%であった。このスラリーをディスパー羽根の回転数を800rpmのままで9時間強分散した。これにより、pH7.5、電導度29μS/cm、粘度866mPa・s、110℃乾燥時の固形分が8.3質量%の白色スラリーが395kg得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛の回折ピークが観察された。得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が200〜800nm、短軸が20〜50nmで、110℃乾燥後の比表面積Swが35m/gの塩基性シアヌル酸亜鉛であった。
(Synthesis Example 18)
A SUS kg container with a capacity of 700 liters was charged with 368 kg of pure water, and a disperse blade was dispersed at 500 rpm with a stirrer hyper (Ashizawa Finetech Co., Ltd. hyper) equipped with a 300 mm diameter disper blade. 20.3 kg of Chemical Co., Ltd. (2 types of zinc oxide) was added. The jacket water was heated to raise the temperature of the zinc oxide slurry to 49 ° C. When the zinc oxide slurry on the way reaches 40 ° C, the dispersion speed of the disper blade is increased to 800 rpm and strongly dispersed, while 11.7 kg of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) is divided into three parts every 30 minutes. It was thrown into. After the cyanuric acid powder was added, the temperature of the slurry was 49 ° C., and the temperature of the jacket water was adjusted so as to maintain this temperature. The molar ratio of zinc oxide / cyanuric acid was 2.75, and the cyanuric acid concentration relative to water was 2.9% by mass. This slurry was strongly dispersed for 9 hours while maintaining the rotational speed of the disperse blades at 800 rpm. As a result, 395 kg of a white slurry having a pH of 7.5, an electric conductivity of 29 μS / cm, a viscosity of 866 mPa · s, and a solid content of 8.3% by mass when dried at 110 ° C. was obtained. When the X-ray powder diffraction analysis was performed about 110 degreeC dry powder of the obtained white slurry, the diffraction peak of basic zinc cyanurate was observed. The fine particles contained in the obtained white slurry are basic cyanuric acid having a major axis of 200 to 800 nm, a minor axis of 20 to 50 nm and a specific surface area Sw after drying at 110 ° C. of 35 m 2 / g as observed with a transmission electron microscope. It was zinc.

1リットルのポリ瓶に得られた塩基性シアヌル酸亜鉛換算濃度8.3質量%の白色スラリー589gを仕込み、直径30mmのディスパー羽根で3200rpmで強分散しながら合成例11で作成したフェニルホスホン酸マグネシウム水溶液を168g投入した後、更に6時間強分散した。これにより、pH8.5、電導度188μS/cm、粘度840mPa・sのスラリーが得られ、濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が35m/gのパウダーを56g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛とフェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として32質量%、亜鉛として42質量%、フェニルホスホン酸として16質量%およびマグネシウムとして1.3質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表3に示す。 Magnesium phenylphosphonate prepared in Synthesis Example 11 while charging 589 g of a white slurry with a basic zinc cyanurate conversion concentration of 8.3 mass% obtained in a 1 liter plastic bottle and strongly dispersing at 3200 rpm with a 30 mm diameter disper blade After adding 168 g of the aqueous solution, it was further strongly dispersed for 6 hours. As a result, a slurry having a pH of 8.5, an electrical conductivity of 188 μS / cm, and a viscosity of 840 mPa · s was obtained, and the wet cake obtained by Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C. Thereafter, the dried cake was pulverized by a home mixer to obtain 56 g of powder having a specific surface area of 35 m 2 / g. When X-ray powder diffraction analysis was performed on this powder, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 32% by mass as cyanuric acid, 42% by mass as zinc, 16% by mass as phenylphosphonic acid, and 1.3% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 3.

(合成例19)
純水24kgと酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)1.88kgを容積200リットルの混合用タンクに投入し、ディスパー羽根で攪拌混合後、酸化亜鉛換算濃度が7.62質量%のスラリー26kgを調製した。次に有効容積10.66リットルで内壁がウレタン樹脂の横型ビーズミル(アシザワファインテック(株)製 システムゼータLMZ25)にφ1mmの安定化ジルコニア製粉砕ビーズ66kgを仕込んだ。水温が13℃の井戸水をジャケット水にした循環タンクに純水144kgを仕込んだ後、横型ビーズミルのディスクを周速9.5m/秒で回しながら供給速度22.1kg/分で純水を横型ビーズミルに供給して、純水を循環させた。循環開始後にシアヌル酸粉末(日産化学工業(株)製)1.19kgを投入した。シアヌル酸粉末を投入後、循環スラリーの温度が42℃になるように調節した後、酸化亜鉛換算濃度が7.69質量%の酸化亜鉛スラリー24.6kgを5分割して10分かけて添加した。添加後も横型ビーズミルのディスクを周速9.5m/秒で回しながら供給速度22.1kg/分でスラリーを7時間循環し、分散した。またこの間も循環スラリー温度は42℃になるように調節した。これにより、pH7.9、電導度206μS/cm、粘度86mPa・s、塩基性シアヌル酸亜鉛換算濃度1.8質量%の白色スラリーが167kg得られた。得られた白色スラリーの110℃乾燥粉についてX線粉末回折分析を行ったところ、原料のシアヌル酸及び酸化亜鉛に帰属される回折ピークは観察されず、塩基性シアヌル酸亜鉛の回折ピークが観察された。このパウダーは、シアヌル酸として39質量%および亜鉛として49質量%含有していた。そして、得られた白色スラリーに含まれる微粒子は、透過型電子顕微鏡観察では長軸が400〜1200nm、短軸が20〜40nmで、レーザー回折法粒子径測定による平均粒子径D50は397nmであり、70℃乾燥後の比表面積Swが54m/gの塩基性シアヌル酸亜鉛であった。結果を表3に示す。また、透過型電子顕微鏡観察した写真を図8に示す。
(Synthesis Example 19)
24 kg of pure water and 1.88 kg of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Co., Ltd.) are put into a mixing tank with a capacity of 200 liters, stirred and mixed with a disper blade, and the zinc oxide equivalent concentration is 7.62 mass 26 kg of% slurry was prepared. Next, 66 kg of crushed beads made of stabilized zirconia having a diameter of 1 mm was charged into a horizontal bead mill (System Zeta LMZ25, manufactured by Ashizawa Finetech Co., Ltd.) having an effective volume of 10.66 liters and an inner wall of urethane resin. After adding 144 kg of pure water to a circulating tank with well water at 13 ° C as jacket water, the horizontal bead mill supplies pure water at a feed rate of 22.1 kg / min while rotating the disk of the horizontal bead mill at a peripheral speed of 9.5 m / sec. And purified water was circulated. After the start of circulation, 1.19 kg of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added. After charging the cyanuric acid powder, the temperature of the circulating slurry was adjusted to 42 ° C., and 24.6 kg of zinc oxide slurry having a zinc oxide equivalent concentration of 7.69% by mass was divided into 5 portions and added over 10 minutes. . After the addition, the slurry was circulated and dispersed for 7 hours at a feed rate of 22.1 kg / min while rotating the disk of a horizontal bead mill at a peripheral speed of 9.5 m / sec. During this time, the circulating slurry temperature was adjusted to 42 ° C. As a result, 167 kg of white slurry having a pH of 7.9, an electrical conductivity of 206 μS / cm, a viscosity of 86 mPa · s, and a basic cyanuric acid zinc equivalent concentration of 1.8% by mass was obtained. When the X-ray powder diffraction analysis was performed on the 110 ° C. dry powder of the obtained white slurry, the diffraction peak attributed to the raw material cyanuric acid and zinc oxide was not observed, but the diffraction peak of basic cyanuric acid zinc was observed. It was. This powder contained 39% by mass as cyanuric acid and 49% by mass as zinc. Then, fine particles contained in the white slurry obtained is the major axis in the transmission electron microscopic observation 400 to 1200 nm, a short axis 20 to 40 nm, average particle size D 50 by laser diffractometry particle size measurement is by 397nm The basic cyanuric acid zinc having a specific surface area Sw after drying at 70 ° C. of 54 m 2 / g was obtained. The results are shown in Table 3. Moreover, the photograph observed with the transmission electron microscope is shown in FIG.

(合成例20)
2リットルのポリ容器に合成例11で作成したフェニルホスホン酸マグネシウム水溶液156gと純水1233gを混合した後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入、白色スラリー1483gを作成した。この時のスラリー温度は38℃であり、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌して、pH8.4、電導度130μS/cm、粘度550mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が60m/gのパウダーを103g得た。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛、フェニルホスホン酸亜鉛および水酸化マグネシウムの回折ピークが観察された。このパウダーは、シアヌル酸として34質量%、亜鉛として46質量%、フェニルホスホン酸として8質量%およびマグネシウムとして0.6質量%含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ、長軸が200〜800nm、短軸が20〜60nmの塩基性シアヌル酸亜鉛の針状粒子、長軸及び短軸が100〜500nmのフェニルホスホン酸亜鉛および水酸化マグネシウムの粒状粒子が観察された。結果を表3に示す。
(Synthesis Example 20)
After mixing 156 g of the magnesium phenylphosphonate aqueous solution prepared in Synthesis Example 11 and 1233 g of pure water in a 2 liter plastic container, the mixture was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further vigorously stirred for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time is 38 ° C., and the mixture is vigorously stirred with a disperse blade for 8 hours while being heated in a hot tub so as to maintain the slurry temperature at 38 ° C., pH 8.4, conductivity 130 μS / cm, viscosity 550 mPa -1483g of white slurry whose solid content at the time of s and 110 degreeC drying is 7.2 mass% was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 60 m 2 / g. 103 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide were observed. This powder contained 34% by mass as cyanuric acid, 46% by mass as zinc, 8% by mass as phenylphosphonic acid, and 0.6% by mass as magnesium. And after disperse | distributing this powder with a pure water and observing with the transmission electron microscope, the long axis is 200-800 nm, the short axis is 20-60 nm, the needle-like particles of basic cyanuric acid zinc, the long axis and the short axis Particles of zinc phenylphosphonate and magnesium hydroxide having a particle size of 100 to 500 nm were observed. The results are shown in Table 3.

(合成例21)
2リットルのポリ容器に純水1384gとフェニルホスホン酸(日産化学工業(株)製)4.7gを加えた後温浴槽に浸し、混合水溶液が30℃になるまで加温した。混合水溶液が30℃に到達したらディスパー羽根で3300rpmで強攪拌しながらシアヌル酸粉末(日産化学工業(株)製)36.4gを投入し、更に加温しながら40分間強攪拌した。続けてディスパー羽根で強攪拌しながら酸化亜鉛粉末(堺化学(株)製 2種酸化亜鉛)57.4gを投入し、白色スラリー1483gを作成した。この時のスラリー温度は38℃で、スラリー温度が38℃を維持するように温浴槽で加温しながらディスパー羽根で8時間強攪拌した。これにより、pH6.3、電導度151μS/cm、粘度640mPa・s、110℃乾燥時の固形分が7.2質量%の白色スラリーが1483g得られた。このスラリーを濾紙(5C 東洋濾紙(株)製)を使いヌッチェ濾過して得られたウェットケーキを110℃で乾燥した後、乾燥ケーキを家庭用ミキサーで粉砕して比表面積が15m/gのパウダーが98g得られた。このパウダーについてX線粉末回折分析を行ったところ、塩基性シアヌル酸亜鉛およびフェニルホスホン酸亜鉛の回折ピークが観察された。このパウダーは、シアヌル酸として34質量%、亜鉛として46質量%およびフェニルホスホン酸として10質量%を含有していた。そして、このパウダーを純水で分散した後、透過型電子顕微鏡で観察したところ長軸が200〜600nm、短軸が20〜40nmの塩基性シアヌル酸亜鉛の針状粒子と、長軸及び短軸が2000〜3000nmのフェニルホスホン酸亜鉛の粗大粒子が観察された。結果を表3に示す。
(Synthesis Example 21)
After adding 1384 g of pure water and 4.7 g of phenylphosphonic acid (manufactured by Nissan Chemical Industries, Ltd.) to a 2 liter plastic container, it was immersed in a hot tub and heated until the mixed aqueous solution reached 30 ° C. When the mixed aqueous solution reached 30 ° C., 36.4 g of cyanuric acid powder (manufactured by Nissan Chemical Industries, Ltd.) was added while vigorously stirring at 3300 rpm with a disper blade, and further vigorously stirred for 40 minutes while heating. Subsequently, 57.4 g of zinc oxide powder (2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) was added while vigorously stirring with a disper blade, and 1483 g of white slurry was prepared. The slurry temperature at this time was 38 degreeC, and it stirred strongly with the disper blade | wing for 8 hours, heating with a hot bath so that slurry temperature might maintain 38 degreeC. As a result, 1483 g of white slurry having a pH of 6.3, an electric conductivity of 151 μS / cm, a viscosity of 640 mPa · s, and a solid content of 7.2% by mass when dried at 110 ° C. was obtained. A wet cake obtained by subjecting this slurry to Nutsche filtration using a filter paper (5C Toyo Filter Paper Co., Ltd.) was dried at 110 ° C., and then the dried cake was pulverized with a home mixer to have a specific surface area of 15 m 2 / g. 98 g of powder was obtained. When this powder was subjected to X-ray powder diffraction analysis, diffraction peaks of basic zinc cyanurate and zinc phenylphosphonate were observed. This powder contained 34% by weight as cyanuric acid, 46% by weight as zinc and 10% by weight as phenylphosphonic acid. And after disperse | distributing this powder with a pure water, when observing with the transmission electron microscope, the long axis is 200-600 nm, the short axis is 20-40 nm, the basic zinc cyanurate needle-like particles, the long axis and the short axis Coarse particles of zinc phenylphosphonate having a diameter of 2000 to 3000 nm were observed. The results are shown in Table 3.

〔結晶核剤評価−1〕
(実施例9)
合成例11で得られた110℃の乾燥粉(樹脂用結晶核剤)0.55gおよびポリ乳酸樹脂(NW3001D、数平均分子量72,000、融点164℃、ネーチャーワークス製)54.5gを混合した後、170℃に加熱した小型二軸混練押出機(ブランダー社製)に入れ15分間、50rpmで混練して、樹脂組成物を作成した。冷却後、樹脂組成物を取り出し、テフロンシートと真鍮板で挟み、上部185℃、下部185℃に加熱したホットプレス機に入れ、フィルムの厚さが0.4mmになるように0.5kgfで加圧してフィルムを作成した。このフィルム状サンプルを小片に切り取り、200℃/分で200℃まで昇温してそのまま5分間保持し、その後、5℃/分で冷却するDSC測定(セイコー電子(株)製 DSC−200)を行った。冷却時に観測されるポリ乳酸の結晶化に由来する発熱ピークの頂点から結晶化温度Tcを測定した。
[Crystal Nucleating Agent Evaluation-1]
Example 9
The dried powder (crystal nucleating agent for resin) at 110 ° C. obtained in Synthesis Example 11 and 0.55 g of polylactic acid resin (NW3001D, number average molecular weight 72,000, melting point 164 ° C., manufactured by Nature Works) were mixed. Then, it put into the small biaxial kneading extruder (made by a brander company) heated at 170 degreeC, and knead | mixed for 15 minutes at 50 rpm, and created the resin composition. After cooling, the resin composition is taken out, sandwiched between a Teflon sheet and a brass plate, placed in a hot press machine heated to an upper part of 185 ° C. and a lower part of 185 ° C., and added at 0.5 kgf so that the thickness of the film becomes 0.4 mm. Pressed to create a film. The film sample was cut into small pieces, heated to 200 ° C. at 200 ° C./min, held for 5 minutes, and then cooled at 5 ° C./min (DSC-200 manufactured by Seiko Electronics Co., Ltd.). went. The crystallization temperature Tc was measured from the apex of the exothermic peak derived from the crystallization of polylactic acid observed during cooling.

また、このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、100℃/分で110℃まで冷却後、110℃で10分保持するDSC測定(セイコー電子(株)製 DSC−200)を行った。110℃保持時に観測されるポリ乳酸の結晶化に由来する発熱ピークの頂点の時間から結晶化速度を測定した。結果を表4に示す。なお、表4において、樹脂用結晶核剤の濃度を、樹脂100質量部に対する樹脂用結晶核剤の質量部として記載する。   Also, this film sample is cut into small pieces, heated to 100 ° C./min to 200 ° C. and held for 5 minutes, then cooled to 110 ° C. at 100 ° C./min and then held at 110 ° C. for 10 minutes. The measurement (DSC-200 manufactured by Seiko Electronics Co., Ltd.) was performed. The crystallization rate was measured from the time at the top of the exothermic peak derived from the crystallization of polylactic acid observed at 110 ° C. The results are shown in Table 4. In Table 4, the concentration of the resin crystal nucleating agent is described as part by mass of the resin crystal nucleating agent with respect to 100 parts by mass of the resin.

(実施例10)
合成例11で得られた110℃乾燥粉の代わりに、合成例12で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 10)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 12 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は44%、ヘイズは56であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 44% and the haze was 56.

(実施例11)
合成例11で得られた110℃乾燥粉の代わりに、合成例13で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 11)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 13 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例12)
合成例11で得られた110℃乾燥粉の代わりに、合成例14で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 12)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 14 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例13)
合成例11で得られた110℃乾燥粉の代わりに、合成例15で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 13)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 15 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例14)
合成例11で得られた110℃乾燥粉の代わりに、合成例12で得られた110℃乾燥粉を0.11g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 14)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.11 g of the 110 ° C. dry powder obtained in Synthesis Example 12 was used. Tc and crystallization rate were measured. The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は75%、ヘイズは24であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 75% and haze was 24.

(実施例15)
合成例11で得られた110℃乾燥粉の代わりに、合成例16で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 15)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 16 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例16)
合成例11で得られた110℃乾燥粉の代わりに、合成例17で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 16)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 17 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例17)
合成例11で得られた110℃乾燥粉の代わりに、合成例18で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 17)
In place of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 18 was used, and the crystallization temperature of polylactic acid Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例18)
合成例11で得られた110℃乾燥粉の代わりに、合成例19で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉7.0gと亜鉛を29質量%およびフェニルホスホン酸を71質量%含有するフェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)3.0gとを家庭用粉体ミキサーで混合し評価用混合粉を作成した。この混合粉0.55gを、合成例11で得られた110℃乾燥粉の代わりに用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 18)
Instead of 110 ° C. dry powder obtained in Synthesis Example 11, 110 g of basic cyanuric acid zinc powder obtained in Synthesis Example 19 and 29% by mass of zinc and 71% by mass of phenylphosphonic acid are contained. The mixed powder for evaluation was prepared by mixing 3.0 g of zinc phenylphosphonate (trademark Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) with a household powder mixer. The same operation as in Example 9 was performed except that 0.55 g of this mixed powder was used instead of the 110 ° C. dry powder obtained in Synthesis Example 11, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. . The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は40%、ヘイズは61であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 40% and the haze was 61.

(実施例19)
フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)5.0gと合成例19で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉16.9g及び水酸化マグネシウム(関東化学(株)製 試薬)0.4gを家庭用粉体ミキサーで混合してシアヌル酸を29質量%、亜鉛を43質量%およびフェニルホスホン酸を16質量%及びマグネシウムを1.3質量%含有した混合粉を作成した。この混合粉0.55gを、合成例11で得られた110℃乾燥粉の代わりに用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 19)
5.0 g of zinc phenylphosphonate (trade name Eco Promote manufactured by Nissan Chemical Industries, Ltd.) and 16.9 g of 110 ° C. dry powder of basic cyanuric acid zinc obtained in Synthesis Example 19 and magnesium hydroxide (Kanto Chemical Co., Ltd.) Reagent) 0.4g was mixed with a household powder mixer to make a mixed powder containing 29% by mass of cyanuric acid, 43% by mass of zinc, 16% by mass of phenylphosphonic acid and 1.3% by mass of magnesium. did. The same operation as in Example 9 was performed except that 0.55 g of this mixed powder was used instead of the 110 ° C. dry powder obtained in Synthesis Example 11, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. . The results are shown in Table 4.

(実施例20)
合成例11で得られた110℃乾燥粉の代わりに、合成例20で得られた110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Example 20)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was performed except that 0.55 g of the 110 ° C. dry powder obtained in Synthesis Example 20 was used. Tc and crystallization rate were measured. The results are shown in Table 4.

(実施例21)
合成例11で得られた110℃乾燥粉の代わりに、合成例21で得られた110℃乾燥粉を用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定したところ、スラリーがpH7以下になり、この樹脂用結晶核剤にポリ乳酸が一部溶解した。
(Example 21)
In place of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was performed except that the 110 ° C. dry powder obtained in Synthesis Example 21 was used. When the conversion rate was measured, the slurry became pH 7 or less, and a part of polylactic acid was dissolved in the crystal nucleating agent for resin.

(比較例3)
樹脂用結晶核剤を添加しない以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Comparative Example 3)
The same operation as in Example 9 was performed except that the resin nucleating agent was not added, and the crystallization temperature Tc and the crystallization rate of polylactic acid were measured. The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は87%、ヘイズは14であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 87% and the haze was 14.

(比較例4)
合成例11で得られた110℃乾燥粉の代わりに、フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。また、上記フェニルホスホン酸亜鉛を透過型電子顕微鏡観察した結果を図9に示す。なお、上記フェニルホスホン酸亜鉛は、比表面積が、12m/gであった。
(Comparative Example 4)
In place of the dried powder of 110 ° C. obtained in Synthesis Example 11, zinc phenylphosphonate (trademark Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) was used in the same manner as in Example 9 except that 0.55 g was used. Lactic acid crystallization temperature Tc and crystallization rate were measured. The results are shown in Table 4. Moreover, the result of having observed the said zinc phenylphosphonate by the transmission electron microscope is shown in FIG. The zinc phenylphosphonate had a specific surface area of 12 m 2 / g.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は30%、ヘイズは70であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 30%, and the haze was 70.

(比較例5)
合成例11で得られた110℃乾燥粉の代わりに、フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)0.11gを用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Comparative Example 5)
In place of the 110 ° C. dry powder obtained in Synthesis Example 11, zinc phenylphosphonate (trade name Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) 0.11 g was used, and the same procedure as in Example 9 was performed to obtain poly Lactic acid crystallization temperature Tc and crystallization rate were measured. The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は60%、ヘイズは41であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 60% and the haze was 41.

(参考実施例1)
合成例11で得られた110℃乾燥粉の代わりに、合成例19で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を0.55g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Reference Example 1)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.55 g of the basic zinc cyanurate zinc powder obtained in Synthesis Example 19 was used. The crystallization temperature Tc and crystallization rate of polylactic acid were measured. The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は39%、ヘイズは64であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 39% and the haze was 64.

(参考実施例2)
合成例11で得られた110℃乾燥粉の代わりに、合成例19で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉を0.11g用いた以外は実施例9と同様の操作を行ってポリ乳酸の結晶化温度Tc及び結晶化速度を測定した。結果を表4に示す。
(Reference Example 2)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 9 was carried out except that 0.11 g of the basic cyanuric acid zinc 110 ° C. powder obtained in Synthesis Example 19 was used. The crystallization temperature Tc and crystallization rate of polylactic acid were measured. The results are shown in Table 4.

また、得られたフィルムの可視光透過率を色差計(東京電色 TC−1800MK型)で、ヘイズをSPECTRAL HAZE METER (東京電色 TC−H3DPK−MK型)で求めたところ、波長550nmの可視光透過率は67%、ヘイズは29であった。   Further, when the visible light transmittance of the obtained film was determined with a color difference meter (Tokyo Denshoku TC-1800MK type) and the haze was determined with SPECTRAL HAZE METER (Tokyo Denshoku TC-H3DPK-MK type), it was visible at a wavelength of 550 nm. The light transmittance was 67% and haze was 29.

この結果、表4に示すように、実施例9〜21は、樹脂用結晶核剤を添加しなかった比較例3や、塩基性シアヌル酸亜鉛のみを含有する参考実施例1及び2よりも結晶化温度が顕著に高く、且つ、結晶化速度が顕著に高く、結晶核剤性能が非常に優れていることが確認された。   As a result, as shown in Table 4, Examples 9 to 21 were more crystalline than Comparative Example 3 in which the resin crystal nucleating agent was not added and Reference Examples 1 and 2 containing only basic zinc cyanurate. It was confirmed that the crystallization temperature was remarkably high, the crystallization rate was remarkably high, and the crystal nucleating agent performance was very excellent.

また、実施例9〜21は、高価なフェニルホスホン酸亜鉛のみを含有する比較例4及び5と比較して、同程度の結晶化温度及び結晶化速度であり、フェニルホスホン酸の金属塩よりもコストが低い塩基性シアヌル酸亜鉛微粒子と共にフェニルホスホン酸の金属塩を用いることにより、樹脂の結晶化速度及び結晶化温度を高くするという効果と、低コスト化という効果を両立させることができることも確認された。   Moreover, Examples 9-21 are crystallization temperature and crystallization speed comparable as compared with the comparative examples 4 and 5 which contain only expensive zinc phenylphosphonate, and are more than the metal salt of phenylphosphonic acid. It has also been confirmed that by using a metal salt of phenylphosphonic acid together with low-cost basic zinc cyanurate fine particles, it is possible to achieve both the effect of increasing the crystallization speed and crystallization temperature of the resin and the effect of reducing the cost. It was done.

また、含有成分が同じである実施例9と実施例19とを比較すると、実施例1のほうが結晶化速度及び結晶化温度が高かった。したがって、塩基性シアヌル酸亜鉛とフェニルホスホン酸亜鉛及び水酸化マグネシウムを単純に混合するよりも、実施例9のように原料を反応させて製造したほうが、結晶核剤性能が優れていることがわかった。   Further, when Example 9 and Example 19 having the same components were compared, Example 1 had a higher crystallization rate and crystallization temperature. Therefore, it was found that the crystal nucleating agent performance was superior when the raw materials were reacted as in Example 9, rather than simply mixing basic zinc cyanurate, zinc phenylphosphonate and magnesium hydroxide. It was.

〔結晶核剤評価−2〕
(実施例22)
合成例11で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉(樹脂用結晶核剤)36mgおよびポリプロピレン樹脂(ノバテックPP MA3、数平均分子量111,000、融点165℃、日本ポリケム(株)製)3.6gを185℃に加熱した混練機(LABO PLASTOMILL 東洋精機(株)製)に入れ5分間、50rpmで混練して樹脂組成物を製造した。冷却後、樹脂組成物を取り出し、テフロンシートと真鍮板で挟み、上部185℃、下部185℃に加熱したホットプレス機に入れ、フィルムの厚さが0.4mmになるように0.5kgfで加圧してフィルムを作成した。このフィルム状サンプルを小片に切り取り、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、5℃/分で冷却するDSC測定(セイコー電子(株)製 DSC−200)を行い、冷却時に観測されるポリプロピレンの結晶化に由来する発熱ピークの頂点から結晶化温度Tcを測定した。その後、100℃/分で200℃まで昇温してそのまま5分間保持し、その後、100℃/分で130℃まで冷却後、130℃で5分保持するDSC測定(セイコー電子(株)製 DSC−200)を行った。130℃保持時に観測されるポリプロピレンの結晶化に由来する発熱ピークの頂点の時間から結晶化速度を測定した。結果を表5に示す。
[Crystal Nucleating Agent Evaluation-2]
(Example 22)
36 mg of a basic zinc cyanurate obtained in Synthesis Example 11 (36 ° C.) dry powder (crystal nucleating agent for resin) and polypropylene resin (Novatech PP MA3, number average molecular weight 111,000, melting point 165 ° C., manufactured by Nippon Polychem Co., Ltd.) ) 3.6 g was put into a kneading machine (LABO PLASTOMILL, manufactured by Toyo Seiki Co., Ltd.) heated to 185 ° C. and kneaded at 50 rpm for 5 minutes to produce a resin composition. After cooling, the resin composition is taken out, sandwiched between a Teflon sheet and a brass plate, placed in a hot press machine heated to an upper part of 185 ° C. and a lower part of 185 ° C., and added at 0.5 kgf so that the thickness of the film becomes 0.4 mm. Pressed to create a film. The film sample was cut into small pieces, heated to 100 ° C./200° C., held for 5 minutes, and then cooled at 5 ° C./min (DSC-200 manufactured by Seiko Electronics Co., Ltd.). The crystallization temperature Tc was measured from the apex of the exothermic peak derived from polypropylene crystallization observed during cooling. Then, the temperature was raised to 200 ° C. at 100 ° C./min and held for 5 minutes, and then cooled to 130 ° C. at 100 ° C./min and then held at 130 ° C. for 5 minutes (DSC manufactured by Seiko Electronics Co., Ltd.) -200). The crystallization rate was measured from the time of the peak of the exothermic peak derived from crystallization of polypropylene observed at 130 ° C. The results are shown in Table 5.

(比較例6)
樹脂用結晶核剤を添加しない以外は実施例22と同様の操作を行ってポリプロピレンの結晶化温度Tc及び結晶化速度を測定した。結果を表5に示す。
(Comparative Example 6)
The same operation as in Example 22 was performed except that the resin nucleating agent was not added, and the crystallization temperature Tc and the crystallization rate of polypropylene were measured. The results are shown in Table 5.

(比較例7)
合成例11で得られた110℃乾燥粉の代わりに、フェニルホスホン酸亜鉛(商標エコプロモート 日産化学工業(株)製)を用いた以外は実施例22と同様の操作を行ってポリプロピレンの結晶化温度Tc及び結晶化速度を測定した。結果を表5に示す。
(Comparative Example 7)
Crystallization of polypropylene by performing the same operation as in Example 22 except that zinc phenylphosphonate (trade name Eco Promote, manufactured by Nissan Chemical Industries, Ltd.) was used instead of the 110 ° C. dry powder obtained in Synthesis Example 11. The temperature Tc and the crystallization rate were measured. The results are shown in Table 5.

(参考実施例3)
合成例11で得られた110℃乾燥粉の代わりに、合成例19で得られた塩基性シアヌル酸亜鉛の110℃乾燥粉36mgを用いた以外は実施例22と同様の操作を行ってポリプロピレンの結晶化温度Tc及び結晶化速度を測定した。結果を表5に示す。
(Reference Example 3)
Instead of the 110 ° C. dry powder obtained in Synthesis Example 11, the same operation as in Example 22 was carried out except that 36 mg of the basic zinc cyanurate zinc powder obtained in Synthesis Example 19 was used. The crystallization temperature Tc and the crystallization rate were measured. The results are shown in Table 5.

表5に示すように実施例22は、樹脂用結晶核剤を添加しなかった比較例6や塩基性シアヌル酸亜鉛のみを含有する参考実施例3よりも結晶化温度が顕著に高く、且つ、結晶化速度が顕著に高く、結晶核剤性能が非常に優れていることが確認された。   As shown in Table 5, in Example 22, the crystallization temperature was significantly higher than Comparative Example 6 in which no resin nucleating agent was added and Reference Example 3 containing only basic zinc cyanurate, and It was confirmed that the crystallization rate was remarkably high and the crystal nucleating agent performance was very excellent.

また、実施例22は、高価なフェニルホスホン酸亜鉛のみを含有する比較例7と比較して、同程度の結晶化温度及び結晶化速度であり、フェニルホスホン酸の金属塩よりもコストが低い塩基性シアヌル酸亜鉛微粒子と共にフェニルホスホン酸の金属塩を用いることにより、ポリプロピレン樹脂においても、樹脂の結晶化速度及び結晶化温度を高くするという効果と、低コスト化という効果を両立させることができることも確認された。   Further, Example 22 is a base having a crystallization temperature and a crystallization rate comparable to those of Comparative Example 7 containing only expensive zinc zinc phenylphosphonate, and lower in cost than the metal salt of phenylphosphonic acid. By using a metal salt of phenylphosphonic acid together with fine zinc cyanurate particles, it is possible to achieve both the effect of increasing the crystallization speed and the crystallization temperature of the resin and the effect of lowering the cost even in polypropylene resin. confirmed.

Figure 0005861838
Figure 0005861838

Figure 0005861838
Figure 0005861838

Figure 0005861838
Figure 0005861838

Claims (10)

結晶性高分子である樹脂のポリ乳酸樹脂又はポリオレフィン系樹脂に塩基性シアヌル酸亜鉛粒子を含有する樹脂用結晶核剤を添加して成形することにより、前記樹脂用結晶核剤を前記樹脂の一次結晶核として結晶化を促進することを特徴とする結晶化促進方法。   A resin crystal nucleating agent containing basic zinc cyanurate particles is added to a polylactic acid resin or a polyolefin-based resin, which is a crystalline polymer, and molded, thereby forming the resin crystal nucleating agent as a primary resin. A method for promoting crystallization, which comprises promoting crystallization as a crystal nucleus. 結晶性高分子である樹脂のポリ乳酸樹脂又はポリオレフィン系樹脂に塩基性シアヌル酸亜鉛粒子を含有する樹脂用結晶核剤を添加して成形することにより、前記樹脂の結晶化速度を高めることを特徴とする結晶化促進方法。   It is characterized by increasing the crystallization speed of the resin by adding a resin crystal nucleating agent containing basic zinc cyanurate particles to a polylactic acid resin or a polyolefin-based resin, which is a crystalline polymer. A method for promoting crystallization. 前記樹脂がポリ乳酸樹脂であり、該ポリ乳酸樹脂100質量部に対して、前記塩基性シアヌル酸亜鉛粒子が0.01〜10.0質量部となるように前記樹脂用結晶核剤を添加することを特徴とする請求項1又は2に記載する結晶化促進方法。   The resin is a polylactic acid resin, and the crystal nucleating agent for the resin is added so that the basic zinc cyanurate particles are 0.01 to 10.0 parts by mass with respect to 100 parts by mass of the polylactic acid resin. The method for promoting crystallization according to claim 1 or 2, wherein: 前記樹脂がポリオレフィン系樹脂であり、該ポリオレフィン系樹脂100質量部に対して、前記塩基性シアヌル酸亜鉛粒子が0.01〜10.0質量部となるように前記樹脂用結晶核剤を添加することを特徴とする請求項1又は2に記載する結晶化促進方法。   The resin is a polyolefin resin, and the crystal nucleating agent for the resin is added so that the basic cyanuric acid zinc particles are 0.01 to 10.0 parts by mass with respect to 100 parts by mass of the polyolefin resin. The method for promoting crystallization according to claim 1 or 2, wherein: 前記ポリオレフィン系樹脂が、ポリプロピレン樹脂及びポリエチレン樹脂から選択される少なくとも一種であることを特徴とする請求項4に記載する結晶化促進方法。 The polyolefin resin, the crystallization promoting method according to claim 4, characterized in that at least one element selected polypropylene resin and polyethylene resins or al. 前記塩基性シアヌル酸亜鉛粒子が、レーザー回折法により測定した平均粒子径D50が80〜900nmで、比表面積が20〜100m/gであることを特徴とする請求項1〜5の何れか一項に記載する結晶化促進方法。 Said basic cyanuric zinc particles, the average particle diameter D 50 measured by a laser diffraction method 80~900Nm, any one of the preceding claims, characterized in that the specific surface area of 20 to 100 m 2 / g The method for promoting crystallization according to one item. 前記塩基性シアヌル酸亜鉛粒子が、酸化亜鉛及び塩基性炭酸亜鉛から選択される少なくとも一種とシアヌル酸と水とを、水に対してシアヌル酸濃度が0.1〜10.0質量%になるように配合した混合スラリーを、5〜55℃の温度範囲で分散メディアを用いた湿式分散を行うことにより製造されたものであることを特徴とする請求項6に記載する結晶化促進方法。   The basic cyanuric acid zinc particles contain at least one selected from zinc oxide and basic zinc carbonate, cyanuric acid and water so that the cyanuric acid concentration is 0.1 to 10.0% by mass with respect to water. The method for promoting crystallization according to claim 6, wherein the mixed slurry blended in is produced by wet dispersion using a dispersion medium in a temperature range of 5 to 55 ° C. 7. フェニルホスホン酸の金属塩を含有することを特徴とする請求項1〜7のいずれか一項に記載する結晶化促進方法。   The method for promoting crystallization according to claim 1, comprising a metal salt of phenylphosphonic acid. 前記フェニルホスホン酸の金属塩が、フェニルホスホン酸亜鉛、フェニルホスホン酸リチウム、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸カルシウム、フェニルホスホン酸マグネシウム及びフェニルホスホン酸マンガンから選択される少なくとも1種であることを特徴とする請求項8に記載する結晶化促進方法。   The metal salt of phenylphosphonic acid is at least one selected from zinc phenylphosphonate, lithium phenylphosphonate, sodium phenylphosphonate, potassium phenylphosphonate, calcium phenylphosphonate, magnesium phenylphosphonate and manganese phenylphosphonate. The method for promoting crystallization according to claim 8, wherein: 請求項1〜9の何れか一項に記載の結晶化促進方法により結晶化を促進し、成形物を得ることを特徴とする成形物の製造方法。   A method for producing a molded product, wherein the crystallization is promoted by the crystallization promoting method according to any one of claims 1 to 9 to obtain a molded product.
JP2012521537A 2010-06-24 2011-06-23 Method for promoting crystallization and method for producing molded product Expired - Fee Related JP5861838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521537A JP5861838B2 (en) 2010-06-24 2011-06-23 Method for promoting crystallization and method for producing molded product

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010144189 2010-06-24
JP2010144189 2010-06-24
JP2010237850 2010-10-22
JP2010237850 2010-10-22
JP2011084094 2011-04-05
JP2011084094 2011-04-05
JP2012521537A JP5861838B2 (en) 2010-06-24 2011-06-23 Method for promoting crystallization and method for producing molded product
PCT/JP2011/064452 WO2011162354A1 (en) 2010-06-24 2011-06-23 Nucleating agent for resins, and resin composition

Publications (2)

Publication Number Publication Date
JPWO2011162354A1 JPWO2011162354A1 (en) 2013-08-22
JP5861838B2 true JP5861838B2 (en) 2016-02-16

Family

ID=45371520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012521537A Expired - Fee Related JP5861838B2 (en) 2010-06-24 2011-06-23 Method for promoting crystallization and method for producing molded product

Country Status (3)

Country Link
JP (1) JP5861838B2 (en)
TW (1) TWI529175B (en)
WO (1) WO2011162354A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228734B2 (en) * 2013-02-14 2017-11-08 日東電工株式会社 Resin sheet for encapsulating electronic components, resin-encapsulated semiconductor device, and method for producing resin-encapsulated semiconductor device
CN104629354B (en) * 2015-03-10 2017-01-25 浙江佳华精化股份有限公司 Nucleation lubricant for nylon and preparation method of nucleation lubricant
CN106220889B (en) * 2016-08-24 2018-04-13 合肥学院 A kind of phenyl-phosphonic acid zinc nucleator, preparation method, morphological control method and application
CN106632113B (en) * 2016-09-25 2019-09-10 深圳市志海实业股份有限公司 A kind of production method of cyanuric acid zinc

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU440382A1 (en) * 1971-07-22 1974-08-25 Предприятие П/Я М-5927 Composition based on homo or copolymer of vinyl chloride
JPH059383A (en) * 1991-06-29 1993-01-19 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition
WO1993006155A1 (en) * 1991-09-23 1993-04-01 Fr Polymers, Inc. Fire retardant granules for thermoplastic polymers
WO2005097894A1 (en) * 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. Polylactic acid resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU440382A1 (en) * 1971-07-22 1974-08-25 Предприятие П/Я М-5927 Composition based on homo or copolymer of vinyl chloride
JPH059383A (en) * 1991-06-29 1993-01-19 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition
WO1993006155A1 (en) * 1991-09-23 1993-04-01 Fr Polymers, Inc. Fire retardant granules for thermoplastic polymers
WO2005097894A1 (en) * 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. Polylactic acid resin composition

Also Published As

Publication number Publication date
TWI529175B (en) 2016-04-11
WO2011162354A1 (en) 2011-12-29
JPWO2011162354A1 (en) 2013-08-22
TW201219406A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
CN102482303B (en) Method For Producing Metal Phosphonate And Thermoplastic Resin Composition Containing Metal Phosphonate
TWI382056B (en) Polylactic acid resin composition
JP5874849B2 (en) Basic zinc cyanurate fine particles
CN102471082B (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
TWI623494B (en) Resin composition and coating liquid
JP2012236867A (en) Method for producing crystal nucleating agent for resin
CA2533419A1 (en) Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
JP5861838B2 (en) Method for promoting crystallization and method for producing molded product
KR102041284B1 (en) Calcium carbonate filler for resin, and resin composition containing said filler
JP2008050584A (en) Resin composition and molded product
TW201538429A (en) Calcium carbonate filler for resin and resin composition including said filler
JP2016023114A (en) Magnesium oxide particles and method for producing the same, thermally conductive filler and heat-conductive resin composition using the same, molded article thereof and high thermal conductive material
WO2018010764A1 (en) Compounded copolyamide powders
JPH11349851A (en) Production of coupling agent-treated inorganic particle and its use
JPWO2018047841A1 (en) Fine particle composite metal hydroxide, calcined product thereof, method for producing the same, and resin composition therefor
US9035100B2 (en) Method for producing phenylphosphonic acid metal salt composition, and crystal nucleating agent therefrom
JP2017186224A (en) Aluminum phosphite and fire retardant resin composition
JP5477567B2 (en) Polylactic acid resin composition
WO2023026998A1 (en) Liquid crystal polyester pellet composition and injection molded article
JP2005247604A (en) Magnesium hydroxide
WO2016017638A1 (en) Acicular dawsonite grain powder, manufacturing method therefor and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R151 Written notification of patent or utility model registration

Ref document number: 5861838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees