JP2005247604A - Magnesium hydroxide - Google Patents

Magnesium hydroxide Download PDF

Info

Publication number
JP2005247604A
JP2005247604A JP2004057339A JP2004057339A JP2005247604A JP 2005247604 A JP2005247604 A JP 2005247604A JP 2004057339 A JP2004057339 A JP 2004057339A JP 2004057339 A JP2004057339 A JP 2004057339A JP 2005247604 A JP2005247604 A JP 2005247604A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
magnesium
content
water
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057339A
Other languages
Japanese (ja)
Inventor
Kazuki Takemura
一樹 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004057339A priority Critical patent/JP2005247604A/en
Publication of JP2005247604A publication Critical patent/JP2005247604A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnesium hydroxide which can be formulated with a thermoplastic polymer to impart sufficient flame retardancy thereto without causing a discoloration problem. <P>SOLUTION: The magnesium hydroxide has a calcium content of 1/100 or smaller and a content of a metallic element of group 14 in the periodic table of 0.2/100 to 20/100, the contents being expressed in terms of a numerical ratio of the related atoms to the magnesium atoms, a BET specific surface area of 100 m<SP>2</SP>/g or larger as measured by nitrogen adsorption. This is produced by dissolving a magnesium compound in water and hydrolyzing the compound in the presence of an element of group 14 in the periodic table. A flame-retardant polymer composition prepared by formulating a synthetic polymer with the magnesium hydroxide exhibits sufficient flame retardancy and does not discolor even when heated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水酸化マグネシウムに関し、詳しくは難燃剤として合成高分子などに配合して用いられる水酸化マグネシウムに関する。 The present invention relates to magnesium hydroxide, and more particularly to magnesium hydroxide used as a flame retardant in a synthetic polymer.

水酸化マグネシウムは難燃剤として合成高分子に配合して用いられており、比表面積が大きいほど高い難燃性を付与し得る。このため、高比表面積の水酸化マグネシウムが求められている。高比表面積の水酸化マグネシウムとしては、水中で塩化マグネシウムを消石灰〔Ca(OH)2〕と反応させて得られるものが知られている〔特許文献1:特開昭48−43088号公報〕。 Magnesium hydroxide is blended and used as a flame retardant in a synthetic polymer, and the higher the specific surface area, the higher the flame retardancy. For this reason, magnesium hydroxide having a high specific surface area is required. As magnesium hydroxide having a high specific surface area, one obtained by reacting magnesium chloride with slaked lime [Ca (OH) 2 ] in water is known [Patent Document 1: Japanese Patent Laid-Open No. 48-43088].

特開昭48−43088号公報JP-A-48-43088

しかし、特許文献1に記載の方法で得られた水酸化マグネシウムでは、これを合成高分子に配合した組成物は加熱下に変色し易いという問題があった。 However, the magnesium hydroxide obtained by the method described in Patent Document 1 has a problem that a composition in which this is blended with a synthetic polymer is easily discolored under heating.

そこで本発明者は、合成高分子に配合しても変色を招くことがなく、十分な難燃性を付与し得る水酸化マグネシウムを開発するべく鋭意検討した結果、マグネシウムに対する原子数比で、カルシウム含有量が1/100以下、周期律表第14属の金属元素の含有量が0.2/100〜20/100で、高比表面積の水酸化マグネシウムは、これを合成高分子に配合しても変色させることがなく、また十分な難燃性を与えることを見出し、本発明に至った。 Therefore, the present inventor has intensively studied to develop magnesium hydroxide that does not cause discoloration even when blended with a synthetic polymer and can impart sufficient flame retardancy. Magnesium hydroxide having a high specific surface area with a content of 1/100 or less and a metal element content of Group 14 of the Periodic Table is 0.2 / 100 to 20/100. Has been found to give sufficient flame retardancy, and the present invention has been achieved.

すなわち本発明は、マグネシウムに対する原子数比で、カルシウム含有量が1/100以下、周期律表第14属の金属元素の含有量が0.2/100〜20/100であり、窒素吸着法によるBET比表面積が100m2/g以上である水酸化マグネシウムを提供するものである。 That is, according to the present invention, the atomic ratio to magnesium is such that the calcium content is 1/100 or less and the content of the metal element belonging to Group 14 of the periodic table is 0.2 / 100 to 20/100. Magnesium hydroxide having a BET specific surface area of 100 m 2 / g or more is provided.

本発明の水酸化マグネシウムは、合成高分子に配合することで、十分な難燃性を与え、また加熱下に変色させることもないので、合成高分子に配合して用いられる難燃剤として有用である。 The magnesium hydroxide of the present invention is useful as a flame retardant used in a synthetic polymer because it provides sufficient flame retardancy when blended with a synthetic polymer and does not discolor under heating. is there.

本発明の水酸化マグネシウムは、マグネシウムに対する原子数比でカルシウム含有量が1/100以下、好ましくは0.7/100以下であり、実質的にカルシウムを含まず、その含有量が0/100であってもよい。 The magnesium hydroxide of the present invention has a calcium content of 1/100 or less, preferably 0.7 / 100 or less in terms of the number ratio of magnesium, and substantially does not contain calcium, and its content is 0/100. There may be.

本発明の水酸化マグネシウムは、周期律表第14属の金属元素、例えばケイ素(Si)、スズ(Sn)などを含む。周期律表第14属の金属元素の含有量は、マグネシウムに対する原子数比で、0.2/100〜20/100、好ましくは1/100〜15/100である。含有量が0.2/100未満であると、難燃性が不十分となる傾向にあり、20/100を超えると、これに見合った効果がなく、不経済である。 The magnesium hydroxide of the present invention contains a metal element belonging to Group 14 of the Periodic Table, such as silicon (Si), tin (Sn), and the like. The content of the metal element of Group 14 of the periodic table is 0.2 / 100 to 20/100, preferably 1/100 to 15/100, in terms of the atomic ratio with respect to magnesium. If the content is less than 0.2 / 100, the flame retardancy tends to be insufficient, and if it exceeds 20/100, there is no effect commensurate with this, which is uneconomical.

本発明の水酸化マグネシウムは、窒素吸着法によるBET比表面積が100m2/g以上、好ましくは150m2/g以上、通常は400m2/g以下、好ましくは300m2/g以下である。BET比表面積が100m2/g未満では十分な難燃性を付与できない傾向にある。 The magnesium hydroxide of the present invention has a BET specific surface area of 100 m 2 / g or more, preferably 150 m 2 / g or more, usually 400 m 2 / g or less, preferably 300 m 2 / g or less as measured by a nitrogen adsorption method. When the BET specific surface area is less than 100 m 2 / g, sufficient flame retardancy tends not to be imparted.

本発明の水酸化マグネシウムは、例えばマグネシウム化合物を水中で周期律表第14属の金属元素の存在下に、塩基により加水分解して製造することができる。 The magnesium hydroxide of the present invention can be produced, for example, by hydrolyzing a magnesium compound with water in water in the presence of a metal element belonging to Group 14 of the periodic table.

マグネシウム化合物としては水溶性のものが用いられ、具体的には塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウムなどのマグネシウム無機塩、酢酸マグネシウムなどのマグネシウム有機塩などが挙げられる。水の使用量は、マグネシウム化合物を溶解するに十分な量で、塩基により加水分解させ得る量であればよく、マグネシウム化合物に対して通常は1質量倍〜100質量倍程度、好ましくは1質量倍〜20質量倍程度である。 As the magnesium compound, water-soluble compounds are used, and specific examples include magnesium inorganic salts such as magnesium chloride, magnesium nitrate and magnesium sulfate, and magnesium organic salts such as magnesium acetate. The amount of water used may be an amount sufficient to dissolve the magnesium compound and can be hydrolyzed by the base, and is usually about 1 to 100 times, preferably 1 times the weight of the magnesium compound. It is about 20 mass times.

周期律表第14属の金属元素の存在下に加水分解するには、例えば該金属元素の化合物で水溶性のものを用い、これを水に溶解または分散させておけばよい。かかる化合物としては、例えば珪酸ナトリウム(水ガラス)、珪酸カリウム、珪酸アンモニウム、珪酸などの珪酸化合物をはじめとする無機ケイ素化合物、塩化スズ〔Sn(II)Cl2、Sn(IV)Cl4〕、硫酸スズ〔Sn(II)SO4、Sn(IV)(SO4)2〕、硝酸スズ〔Sn(II)(NO3)2、Sn(IV)(NO3)4〕などのスズ無機塩などのスズ化合物などが挙げられる。周期律表第14属の金属元素の化合物の使用量は通常、マグネシウム化合物に対する第14属の金属元素の原子数比で、0.2/100〜20/100、好ましくは1/100〜15/100である。 In order to hydrolyze in the presence of a metal element belonging to Group 14 of the Periodic Table, for example, a water-soluble compound of the metal element may be used and dissolved or dispersed in water. Examples of such compounds include inorganic silicon compounds such as sodium silicate (water glass), potassium silicate, ammonium silicate, and silicic acid, tin chloride [Sn (II) Cl 2 , Sn (IV) Cl 4 ], Tin inorganic salts such as tin sulfate [Sn (II) SO 4 , Sn (IV) (SO 4 ) 2 ], tin nitrate [Sn (II) (NO 3 ) 2 , Sn (IV) (NO 3 ) 4 ] And tin compounds. The amount of the group 14 metal element compound in the periodic table is usually 0.2 / 100 to 20/100, preferably 1/100 to 15 / in terms of the atomic ratio of the group 14 metal element to the magnesium compound. 100.

塩基としては、カルシウムを含まないものが用いられ、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、アンモニアなどを用いることができる。 As the base, those not containing calcium are used. For example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, ammonia and the like can be used.

加水分解は、例えば塩基および周期律表第14属の元素の化合物を予め水に溶解しておき、これにマグネシウム化合物と混合すればよい。マグネシウム化合物は、予め水に溶解した水溶液として混合することが好ましい。また、塩基を予め水に溶解しておき、マグネシウム化合物および周期律表第14属の元素の化合物と混合してもよい。マグネシウム化合物および周期律表第14属の元素の化合物はそれぞれ単独で、あるいは予め混合してから塩基と混合され、予め水に溶解させて水溶液としてから混合することが好ましい。 For the hydrolysis, for example, a base and a compound of an element belonging to Group 14 of the periodic table may be dissolved in water in advance and mixed with a magnesium compound. The magnesium compound is preferably mixed as an aqueous solution previously dissolved in water. Further, a base may be dissolved in water in advance and mixed with a magnesium compound and a compound of an element belonging to Group 14 of the periodic table. It is preferable that the magnesium compound and the compound of the element belonging to Group 14 of the periodic table are each alone or mixed in advance and then mixed with a base, dissolved in water in advance and mixed as an aqueous solution.

加水分解温度は通常0℃〜100℃、好ましくは10℃〜50℃の範囲である。加水分解に要する時間はマグネシウム化合物が加水分解して析出するに十分な時間であればよく、通常は3時間以下であり、混合と同時に終了してもよい。 The hydrolysis temperature is usually in the range of 0 ° C to 100 ° C, preferably 10 ° C to 50 ° C. The time required for the hydrolysis may be a time sufficient for the magnesium compound to hydrolyze and precipitate, and is usually 3 hours or less, and may be completed simultaneously with the mixing.

加水分解後の加水分解混合物から析出物を取り出し、乾燥することで、本発明の水酸化マグネシウムを得ることができる。得られる水酸化マグネシウムは粉末状であり、通常は粉末X線回折で酸化マグネシウムのピークを示す結晶質である。 The magnesium hydroxide of the present invention can be obtained by taking out the precipitate from the hydrolysis mixture after hydrolysis and drying it. The resulting magnesium hydroxide is in the form of a powder and is usually crystalline showing a peak of magnesium oxide by powder X-ray diffraction.

本発明の水酸化マグネシウムは、合成高分子に配合して用いられる難燃化剤として有用である。合成高分子は合成ゴムであってもよい。合成ゴムとしては、例えばスチレン−ブタジエンゴム(SBR)、ネオプレンゴム、イソプレンゴム、ブチルゴム、クロロプレンゴム、ブタジエンゴム、アクリロニトリル・ブタジエンゴム、エチレン・プロピレンゴムなどが挙げられる。 The magnesium hydroxide of the present invention is useful as a flame retardant used by blending with a synthetic polymer. The synthetic polymer may be a synthetic rubber. Examples of the synthetic rubber include styrene-butadiene rubber (SBR), neoprene rubber, isoprene rubber, butyl rubber, chloroprene rubber, butadiene rubber, acrylonitrile / butadiene rubber, and ethylene / propylene rubber.

また合成樹脂であってもよく、加熱により可塑化する熱可塑性合成樹脂であってもよいし、加熱により硬化する熱硬化性合成樹脂であってもよい。熱可塑性合成樹脂としては、例えばポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂、ポリスチレン、アクリロニトリル−スチレン−ブタジエン共重合体樹脂(ABS樹脂)などのスチレン樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリエチレンテレフタレート樹脂(PET)などが挙げられる。熱硬化性合成樹脂としては、例えばエポキシ樹脂、ウレタン樹脂などが挙げられる。 Further, it may be a synthetic resin, a thermoplastic synthetic resin that is plasticized by heating, or a thermosetting synthetic resin that is cured by heating. Examples of the thermoplastic synthetic resin include polyolefin resins such as polyethylene resin and polypropylene resin, styrene resins such as polystyrene and acrylonitrile-styrene-butadiene copolymer resin (ABS resin), ethylene-vinyl acetate copolymer resin, and polyethylene terephthalate resin. (PET). Examples of the thermosetting synthetic resin include an epoxy resin and a urethane resin.

水酸化マグネシウムの配合量は合成高分子の種類、目的とする難燃性の程度などに応じて異なるが、通常は合成高分子100質量部あたり1質量部〜150質量部程度、好ましくは2質量部〜50質量部程度である。1質量部未満では、十分な難燃性を示さない傾向にあり、150質量部を超えてもそれに見合った効果が得られない傾向にある。 The amount of magnesium hydroxide blended varies depending on the type of synthetic polymer and the desired degree of flame retardancy, but is usually about 1 to 150 parts by weight, preferably 2 parts by weight per 100 parts by weight of the synthetic polymer. Part to about 50 parts by mass. If the amount is less than 1 part by mass, sufficient flame retardancy tends not to be exhibited.

本発明の水酸化マグネシウムを合成高分子に配合するには、例えば合成高分子として水に分散されたエマルジョンを用いる場合には、このエマルジョンに本発明の水酸化マグネシウムを加えたのち、酸性とし、塩を加えて合成高分子および水酸化マグネシウムとを析出させればよい。エマルジョンに、本発明の水酸化マグネシウムと共に、例えば加工油、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、補強剤、染料、顔料などの添加剤を加えてもよい。 In order to mix the magnesium hydroxide of the present invention with a synthetic polymer, for example, when using an emulsion dispersed in water as a synthetic polymer, the magnesium hydroxide of the present invention is added to the emulsion, and then the mixture is made acidic. A synthetic polymer and magnesium hydroxide may be precipitated by adding a salt. In addition to the magnesium hydroxide of the present invention, additives such as processing oils, stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, reinforcing agents, dyes and pigments may be added to the emulsion.

酸性とするには、酸を加えればよく、酸としては、例えば硫酸、塩酸、硝酸などの無機酸が用いられる。塩としては、水溶性の塩が用いられ、例えば塩化ナトリウム、塩化カリウム、硝酸カリウム、硝酸ナトリウム、硫酸ナトリウム、硫酸カリウムなどが挙げられ、これらの酸および塩はそれぞれ単独で、または2種以上を組み合わせて用いられる。 In order to make it acidic, an acid may be added. As the acid, for example, an inorganic acid such as sulfuric acid, hydrochloric acid, or nitric acid is used. As the salt, a water-soluble salt is used, and examples thereof include sodium chloride, potassium chloride, potassium nitrate, sodium nitrate, sodium sulfate, and potassium sulfate. These acids and salts are each alone or in combination of two or more. Used.

酸性としたのち塩を加えることで、塩析により、エマルジョン中の合成高分子が水酸化マグネシウムと共に析出する。塩と共に凝集剤を加えてもよい。塩析後の混合物から、析出した析出物を取り出し、必要により水洗し、乾燥することで、合成高分子と水酸化マグネシウムとが混合された粉末状の高分子組成物を得ることができる。この組成物は、難燃性である。この難燃性高分子組成物は通常の方法、例えば熱プレス成形法などの方法で成形してもよい。成形に際しては、必要により架橋剤、加硫促進剤を添加して成形してもよい。 By adding salt after acidification, the synthetic polymer in the emulsion is precipitated together with magnesium hydroxide by salting out. A flocculant may be added together with the salt. A precipitated polymer is taken out from the mixture after salting out, washed with water if necessary, and dried to obtain a powdery polymer composition in which a synthetic polymer and magnesium hydroxide are mixed. This composition is flame retardant. The flame retardant polymer composition may be molded by a usual method such as a hot press molding method. In molding, a crosslinking agent and a vulcanization accelerator may be added as necessary.

合成高分子が熱可塑性である場合には、これを加熱溶融し、混練しながら本発明の水酸化マグネシウムを配合して難燃性高分子組成物を得てもよい。本発明の水酸化マグネシウムと共に、例えば滑剤、老化防止剤、酸化防止剤、紫外線吸収剤、帯電防止剤、補強剤、染料、顔料などの添加剤を添加してもよい。加熱溶融し、混練するには、通常の一軸混練機、二軸混練機などの混練機を用いればよい。 When the synthetic polymer is thermoplastic, it may be melted by heating and mixed with the magnesium hydroxide of the present invention while kneading to obtain a flame retardant polymer composition. In addition to the magnesium hydroxide of the present invention, additives such as a lubricant, an antioxidant, an antioxidant, an ultraviolet absorber, an antistatic agent, a reinforcing agent, a dye, and a pigment may be added. In order to melt by heating and knead, a kneader such as a normal uniaxial kneader or biaxial kneader may be used.

合成高分子が熱硬化性である場合には、熱硬化する前の前駆体と本発明の酸化マグネシウムとを混合し、重合硬化させればよい。本発明の水酸化マグネシウムと共に、例えば滑剤酸化防止剤、染料、顔料などの添加剤を加えてもよい。 When the synthetic polymer is thermosetting, the precursor before thermosetting and the magnesium oxide of the present invention may be mixed and polymerized and cured. In addition to the magnesium hydroxide of the present invention, additives such as lubricant antioxidants, dyes and pigments may be added.

このようにして本発明の水酸化マグネシウムを合成高分子と混合して得られる難燃性高分子組成物は、十分な難燃性を示すと共に、加熱しても変色することがない。 Thus, the flame retardant polymer composition obtained by mixing the magnesium hydroxide of the present invention with a synthetic polymer exhibits sufficient flame retardancy and does not discolor even when heated.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

なお、各実施例で得た水酸化マグネシウムおよび難燃性重合体組成物は以下の方法で評価した。
水酸化マグネシウムのSi、SnおよびCaの含有量は、蛍光X線分析法により、マグネシウムに対する原子数比として求めた。
水酸化マグネシウムのBET比表面積は、窒素吸着法により求めた。
難燃性重合体組成物の変色性は、先ず試験片について式差計〔日本電色工業社製、「Z−300A」〕にてUCS表色系による色座標L、aおよびbを求めて、これをそれぞれL0、a0およびb0とし、次いでこの試験片を60℃のエアバス中に93時間保持して同様にして色座標L、aおよびbを求めて、これをそれぞれL93、a93およびb93とし、式(1)
ΔE={(L0−L932+(a0−a932+(b0−b9321/2 (1)
により色差ΔEを求めて評価した。ΔEが小さいほど、色の変化が少ないことを示す。
難燃性重合体組成物の難燃性は、試験片についてコーンカロリーメータ〔東洋精機社製、「コーンカロリーメータIII」〕にて熱流速35kW/m2の条件下で単位面積あたりの最大発熱速度を求めて評価した。最大発熱速度が小さいほど、難燃性であることを示す。
In addition, the magnesium hydroxide and flame retardant polymer composition obtained in each Example were evaluated by the following methods.
The content of Si, Sn and Ca in magnesium hydroxide was determined as the atomic ratio with respect to magnesium by fluorescent X-ray analysis.
The BET specific surface area of magnesium hydroxide was determined by a nitrogen adsorption method.
The discoloration of the flame retardant polymer composition was determined by first obtaining the color coordinates L, a and b according to the UCS color system with a formula difference meter (“Z-300A” manufactured by Nippon Denshoku Industries Co., Ltd.) for the test piece. , Which are respectively L 0 , a 0 and b 0, and then the test piece is kept in an air bath at 60 ° C. for 93 hours to obtain the color coordinates L, a and b in the same manner, and these are respectively determined as L 93 , a 93 and b 93 and the formula (1)
ΔE = {(L 0 −L 93 ) 2 + (a 0 −a 93 ) 2 + (b 0 −b 93 ) 2 } 1/2 (1)
Thus, the color difference ΔE was obtained and evaluated. A smaller ΔE indicates a smaller color change.
The flame retardancy of the flame retardant polymer composition is the maximum heat generation per unit area under the condition of a heat flow rate of 35 kW / m 2 with a cone calorimeter [Toyo Seiki Co., Ltd., “Cone Calorimeter III”] for the test piece. The speed was determined and evaluated. A smaller maximum heat generation rate indicates flame retardancy.

実施例1
水酸化ナトリウム345gを水3600gに溶解し、水ガラス(JIS 1号)22.5gをさらに溶解させて水溶液を得た。この水溶液を室温(約25℃)で攪拌しながら、塩化マグネシウム6水和物786gを水1500gに溶解させた水溶液を滴下して加えて加水分解させて、析出物を析出させた。滴下完了後もなお10分間攪拌を続けたのち、攪拌を止め、析出物を遠心分離により取り出し、水に分散させた後、再び遠心分離して、気流乾燥機で乾燥させて、粉末を得た。粉末X線回折により、この粉末は水酸化マグネシウムの結晶であることを確認した。この粉末は、原子数比でマグネシウム(Mg)に対するカルシウム(Ca)含有量が0.1/100(検出下限)未満、ケイ素(Si)含有量が5/100、スズ(Sn)含有量が0.1/100(検出下限)未満であり、BET比表面積は172m2/gであった。
Example 1
345 g of sodium hydroxide was dissolved in 3600 g of water, and 22.5 g of water glass (JIS No. 1) was further dissolved to obtain an aqueous solution. While stirring this aqueous solution at room temperature (about 25 ° C.), an aqueous solution in which 786 g of magnesium chloride hexahydrate was dissolved in 1500 g of water was added dropwise to cause hydrolysis to precipitate the precipitate. Stirring was continued for 10 minutes after completion of the dropping, and then the stirring was stopped. The precipitate was removed by centrifugation, dispersed in water, centrifuged again, and dried with an air dryer to obtain a powder. . This powder was confirmed to be magnesium hydroxide crystals by powder X-ray diffraction. This powder has an atomic ratio of calcium (Ca) content to magnesium (Mg) of less than 0.1 / 100 (lower detection limit), silicon (Si) content of 5/100, and tin (Sn) content of 0. It was less than 1/100 (detection lower limit), and the BET specific surface area was 172 m 2 / g.

ポリエチレン樹脂〔住友化学社製、「FS−240」〕100質量部を混練機〔東洋精機社製、「ラボプラストミル」〕にて160℃で溶融し、混練しながら、上記で得た水酸化マグネシウム100質量部を加え、さらに10分間混連して難燃性重合体組成物を得た。この組成物を160℃で10分間プレスして、縦40mm、横40mmで厚さ3mmの板状のポリプロピレン・プレス成形体を得た。このプレス成形体を試験片として変色性を評価したところ、ΔEは4.2であった。 100 parts by mass of a polyethylene resin (manufactured by Sumitomo Chemical Co., Ltd., “FS-240”) was melted at 160 ° C. with a kneader (manufactured by Toyo Seiki Co., Ltd., “Lab Plast Mill”) and kneaded while kneading. 100 parts by mass of magnesium was added, and the mixture was further mixed for 10 minutes to obtain a flame retardant polymer composition. This composition was pressed at 160 ° C. for 10 minutes to obtain a plate-like polypropylene press-molded body having a length of 40 mm, a width of 40 mm and a thickness of 3 mm. When this press-molded body was used as a test piece and the discoloration was evaluated, ΔE was 4.2.

上記で得た水酸化マグネシウム45質量部と加工油〔アロマ油、「JOMO プロセスX」、(株)ジャパンエナジー製〕38質量部を、SBR〔「#HS−1」、住友化学工業(株)製〕100質量部が水310質量部に分散されたエマルジョンに加え、1N硫酸〔1L中にH2SO4を0.5モル含む〕16質量部および25%塩化ナトリウム水溶液〔1kg中にNaOHを250g含む〕200質量部を加えて析出物を析出させた。この析出物を濾過操作により取り出し、水洗後、乾燥して、難燃性重合体組成物を得た。ラボプラストミルにより、この組成物53質量部に加硫促進剤〔「ソクシノールCZ」、住友化学工業(株)製〕0.28質量部、加硫促進剤〔「ソクシノールD」、住友化学工業(株)製〕0.28質量部および加硫剤〔イオウ〕0.39質量部を加え、170℃で20分間熱プレスして、厚さ3mmのSBRプレス成形体を得た。この成形体を長さ100mm×100mmに切断して試験片とし、難燃性を評価したところ、単位面積あたりの最大発熱速度は615kW/m2であった。 45 parts by mass of magnesium hydroxide obtained above and 38 parts by mass of processing oil (aromatic oil, “JOMO Process X”, manufactured by Japan Energy Co., Ltd.), SBR [“# HS-1”, Sumitomo Chemical Co., Ltd. Manufactured) In addition to an emulsion in which 100 parts by mass are dispersed in 310 parts by mass of water, 16 parts by mass of 1N sulfuric acid (containing 0.5 mol of H 2 SO 4 in 1 L) and 25% aqueous sodium chloride solution [NaOH in 1 kg 250 g included] 200 parts by mass were added to precipitate the precipitate. The precipitate was taken out by filtration, washed with water, and dried to obtain a flame retardant polymer composition. Using a lab plast mill, 53 parts by mass of this composition was added to a vulcanization accelerator ["Soccinol CZ", manufactured by Sumitomo Chemical Co., Ltd.] 0.28 parts by mass, a vulcanization accelerator ["Soccinol D", 0.28 parts by mass and 0.39 parts by mass of a vulcanizing agent [sulfur] were added and hot-pressed at 170 ° C. for 20 minutes to obtain a 3 mm thick SBR press molded product. When this molded body was cut into a length of 100 mm × 100 mm to obtain a test piece and the flame retardancy was evaluated, the maximum heat generation rate per unit area was 615 kW / m 2 .

実施例2
水酸化ナトリウム115gを水1200gに溶解し、室温(約25℃)で攪拌しながら、塩化マグネシウム6水和物249gと塩化スズ(II)・2水和物3gを水500gに溶解させた水溶液を滴下して加えて加水分解させて、析出物を析出させた。滴下完了後もなお10分間攪拌を続けたのち、攪拌を止め、析出物を遠心分離により取り出し、水に分散させ、再び遠心分離し、120℃で乾燥させて、粉末を得た。粉末X線回折により、この粉末は水酸化マグネシウムの結晶であることを確認した。この粉末のカルシウム(Ca)含有量は、原子数比でマグネシウム(Mg)に対して0.1/100(検出下限)未満であった。またマグネシウムに対する原子数比で、ケイ素(Si)含有量は01/100(検出下限)未満、スズ(Sn)含有量は5.3/100であった。BET比表面積は118m2/gであった。
Example 2
An aqueous solution prepared by dissolving 115 g of sodium hydroxide in 1200 g of water and dissolving 249 g of magnesium chloride hexahydrate and 3 g of tin (II) chloride dihydrate in 500 g of water while stirring at room temperature (about 25 ° C.). It was added dropwise and hydrolyzed to precipitate the precipitate. Stirring was continued for 10 minutes after completion of dropping, and then stirring was stopped. The precipitate was removed by centrifugation, dispersed in water, centrifuged again, and dried at 120 ° C. to obtain a powder. This powder was confirmed to be magnesium hydroxide crystals by powder X-ray diffraction. The calcium (Ca) content of this powder was less than 0.1 / 100 (lower detection limit) with respect to magnesium (Mg) in atomic ratio. The silicon (Si) content was less than 01/100 (lower detection limit) and the tin (Sn) content was 5.3 / 100 in terms of the atomic ratio relative to magnesium. The BET specific surface area was 118 m 2 / g.

実施例1で得た水酸化マグネシウムに代えて上記で得た水酸化マグネシウムを用いる以外は実施例1と同様に操作して得られるポリプロピレン・プレス成形体は、実施例1で得たポリプロピレン・プレス成形体と同程度の変色性(ΔE)を示す。 The polypropylene press-molded product obtained in the same manner as in Example 1 except that the magnesium hydroxide obtained above was used in place of the magnesium hydroxide obtained in Example 1 was the same as the polypropylene press obtained in Example 1. Discoloration (ΔE) comparable to that of the molded product is exhibited.

また、実施例1で得た水酸化マグネシウムに代えて上記で得た水酸化マグネシウムを用いる以外は実施例1と同様に操作して得られるSBRプレス成形体は、実施例1で得たSBRプレス成形体と同程度の最大発熱速度を示す。 In addition, the SBR press molded body obtained in the same manner as in Example 1 except that the magnesium hydroxide obtained above was used in place of the magnesium hydroxide obtained in Example 1 was the SBR press obtained in Example 1. The maximum heat generation rate is the same as that of the molded body.

比較例1
水酸化カルシウム〔鈴木工業社製、「カルテックLT」〕300gを水2kgに分散させたスラリー状物と、塩化マグネシウム6水和物890gを水8.4kgに溶解させた水溶液とを攪拌下に室温(約25℃)で水1000gに20分かけて滴下して加え、滴下完了後もさらに10分間攪拌を続けた。攪拌後の混合物中の固形分を遠心分離により取り出し、水に分散させ、さらに遠心分離して固形分を取り出した後、120℃で乾燥させて粉末を得た。粉末X線回折により、この粉末は水酸化マグネシウムの結晶であることを確認した。この粉末は、原子数比でマグネシウム(Mg)に対するカルシウム(Ca)含有量が20/100、ケイ素(Si)含有量が0.1/100未満、スズ(Sn)含有量が0.1/100(検出下限)未満であり、BET比表面積は58m2/gであった。
Comparative Example 1
A slurry obtained by dispersing 300 g of calcium hydroxide (manufactured by Suzuki Kogyo Co., Ltd., “Caltech LT”) in 2 kg of water and an aqueous solution in which 890 g of magnesium chloride hexahydrate was dissolved in 8.4 kg of water were stirred at room temperature. At about 25 ° C., it was added dropwise to 1000 g of water over 20 minutes, and stirring was further continued for 10 minutes after completion of the dropwise addition. The solid content in the mixture after stirring was removed by centrifugation, dispersed in water, further centrifuged to remove the solid content, and then dried at 120 ° C. to obtain a powder. This powder was confirmed to be magnesium hydroxide crystals by powder X-ray diffraction. This powder has a calcium (Ca) content of 20/100 with respect to magnesium (Mg) by atomic ratio, a silicon (Si) content of less than 0.1 / 100, and a tin (Sn) content of 0.1 / 100. (Detection lower limit) and the BET specific surface area was 58 m 2 / g.

実施例1で得た水酸化マグネシウムに代えて上記で得た水酸化マグネシウムを用いる以外は実施例1と同様に操作して得られたポリプロピレン・プレス成形体の変色性を評価したところ、ΔEは6.2であった。 When the discoloration property of the polypropylene press-molded article obtained by operating in the same manner as in Example 1 was evaluated except that the magnesium hydroxide obtained above was used instead of the magnesium hydroxide obtained in Example 1, ΔE was 6.2.

比較例2
実施例1で得た水酸化マグネシウムに代えて、市販の水酸化マグネシウム〔協和化学社製、「キスマ5」、原子数比でマグネシウム(Mg)に対するカルシウム(Ca)含有量が0.1/100(検出下限)未満、ケイ素(Si)含有量が0.1/100未満、スズ(Sn)含有量が0.1/100(検出下限)未満であり、BET比表面積は7m2/g〕45質量部を用いた以外は実施例1と同様に操作してSBRプレス成形体を得、難燃性を評価したところ、単位面積あたりの最大発熱速度は898kW/m2であった。
Comparative Example 2
Instead of the magnesium hydroxide obtained in Example 1, commercially available magnesium hydroxide [manufactured by Kyowa Chemical Co., Ltd., “Kisuma 5”, the atomic ratio of calcium (Ca) content to magnesium (Mg) is 0.1 / 100 (Detection lower limit), silicon (Si) content is less than 0.1 / 100, tin (Sn) content is less than 0.1 / 100 (detection lower limit), and BET specific surface area is 7 m 2 / g] 45 The SBR press-molded body was obtained by operating in the same manner as in Example 1 except that the parts by mass were used, and when the flame retardancy was evaluated, the maximum heat generation rate per unit area was 898 kW / m 2 .

Claims (3)

マグネシウムに対する原子数比で、カルシウム含有量が1/100以下、周期律表第14属の金属元素の含有量が0.2/100〜20/100であり、窒素吸着法によるBET比表面積が100m/g以上である水酸化マグネシウム。 The atomic ratio with respect to magnesium, the calcium content is 1/100 or less, the content of the metal element of Group 14 of the periodic table is 0.2 / 100 to 20/100, and the BET specific surface area by the nitrogen adsorption method is 100 m. Magnesium hydroxide which is 2 / g or more. マグネシウム化合物を水に溶解し、周期律表第14属の金属元素の存在下に塩基により加水分解することを特徴とする請求項1に記載の水酸化マグネシウムの製造方法。 The method for producing magnesium hydroxide according to claim 1, wherein the magnesium compound is dissolved in water and hydrolyzed with a base in the presence of a metal element belonging to Group 14 of the periodic table. 請求項1に記載の水酸化マグネシウムが合成高分子に配合されてなる難燃性高分子組成物。 A flame retardant polymer composition comprising the magnesium hydroxide according to claim 1 blended with a synthetic polymer.
JP2004057339A 2004-03-02 2004-03-02 Magnesium hydroxide Pending JP2005247604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057339A JP2005247604A (en) 2004-03-02 2004-03-02 Magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057339A JP2005247604A (en) 2004-03-02 2004-03-02 Magnesium hydroxide

Publications (1)

Publication Number Publication Date
JP2005247604A true JP2005247604A (en) 2005-09-15

Family

ID=35028466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057339A Pending JP2005247604A (en) 2004-03-02 2004-03-02 Magnesium hydroxide

Country Status (1)

Country Link
JP (1) JP2005247604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124318A (en) * 2013-12-26 2015-07-06 東ソー株式会社 Chlorosulfonated polyolefin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124318A (en) * 2013-12-26 2015-07-06 東ソー株式会社 Chlorosulfonated polyolefin composition

Similar Documents

Publication Publication Date Title
CA1258335A (en) Fire-retardant resin composition
JP5839602B2 (en) High aspect ratio magnesium hydroxide
AU2014210226B2 (en) Novel inorganic, halogen-free flameproofing agent on the basis of chemically modified recarbonized red mud
JPS61174270A (en) Rust-inhibiting or discoloration-resistant synthetic resin composition and agent
CN103328583A (en) Flame-retardant resin composition
CA2632674A1 (en) Process for preparing organically modified layered double hydroxide
PT2099714E (en) Calcium carbonate hydroxodialuminates comprising a hexagonal platelet-shaped crystal habit
WO2013151188A1 (en) Resin composition
JP2008050584A (en) Resin composition and molded product
JP2012236867A (en) Method for producing crystal nucleating agent for resin
JP2007270011A (en) Laminar silicate compound and resin composition containing the laminar silicate compound
JP5861838B2 (en) Method for promoting crystallization and method for producing molded product
JP2005247604A (en) Magnesium hydroxide
TWI229088B (en) Prestabilization of halogen-containing polymers
JPS6139986B2 (en)
JPH0341163A (en) Thermoplastic resin composition
JP6498143B2 (en) Recycled thermoplastic resin composition and method for producing the same
JP2001316590A (en) Material for sealing electronic parts, resin composition for sealing electronic parts and moldings thereof
JP2013234112A (en) Plate-like magnesium oxide
JP2000169729A (en) Fire retardant resin composition and its preparation
JP2000063843A (en) Flame retardant composition and flame-retardant resin composition
JP2005139211A (en) Stabilizer composition for chlorine-containing resin and chlorine-containing resin composition
KR20090055896A (en) Surface modified calcium carbonate, method for preparing the same and flame retardant high molecular resin composition including the same
US20170233578A1 (en) Colloidal silica coated magnesium hydroxide
JPH07252379A (en) Crystalline synthetic resin composition