WO2013108677A1 - 電力増幅回路 - Google Patents

電力増幅回路 Download PDF

Info

Publication number
WO2013108677A1
WO2013108677A1 PCT/JP2013/050156 JP2013050156W WO2013108677A1 WO 2013108677 A1 WO2013108677 A1 WO 2013108677A1 JP 2013050156 W JP2013050156 W JP 2013050156W WO 2013108677 A1 WO2013108677 A1 WO 2013108677A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power amplifier
frequency
transmission signal
isolator
Prior art date
Application number
PCT/JP2013/050156
Other languages
English (en)
French (fr)
Inventor
齋藤賢志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013108677A1 publication Critical patent/WO2013108677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not

Definitions

  • the present invention relates to a power amplification circuit that amplifies a high-frequency signal, and more particularly, to a multiband power amplification circuit that amplifies a transmission signal having a plurality of frequencies.
  • Patent Document 1 discloses a power amplifier circuit that suppresses the emission of the second harmonic of a transmission signal from a power amplifier in a high frequency band.
  • a plurality of trap circuits for trapping second harmonics are provided in the output matching circuit of the power amplifier.
  • the attenuation band of one trap circuit is set to a frequency band lower than twice the center frequency of the transmission frequency band, and the attenuation band of the other trap circuit is a frequency band higher than twice the center frequency of the transmission frequency band. Is set to
  • the second harmonic cannot be attenuated unless these two types of frequency bands are close to each other.
  • the frequency band of the first transmission signal is the 900 MHz band and the frequency band of the second transmission signal is the 1800 MHz band
  • both the first and second transmission signals are used.
  • Second harmonics cannot be attenuated.
  • the fundamental frequency of the second transmission signal is attenuated when set according to the first transmission signal.
  • the adjacent channel leakage power ratio (ACLR) deteriorates.
  • an object of the present invention is to provide a power amplifier circuit that efficiently amplifies and outputs each transmission signal regardless of the combination of frequencies of a plurality of transmission signals.
  • the present invention relates to a power amplifier circuit including a power amplifier that amplifies a high-frequency signal at a predetermined amplification factor, and a trap circuit that is connected to the output terminal of the power amplifier and attenuates harmonics of the high-frequency signal. It is characterized by having the structure of.
  • the power amplifier is a multi-band power amplifier that can amplify a plurality of high-frequency signals using different frequency bands.
  • the trap circuit includes a series circuit of an inductor and a first capacitor connected between the output terminal of the power amplifier and the ground.
  • the trap circuit includes a trap frequency switching circuit connected in parallel to the first capacitor. This trap frequency switching circuit comprises a series circuit of a second capacitor and a switch element.
  • the switch element in the case of the first high-frequency signal using the first frequency band, the switch element is short-circuited. At this time, the resonance frequency determined by the series circuit of the inductor and the first capacitor is set to the harmonic frequency (for example, second harmonic frequency) of the first high-frequency signal, so that the first high-frequency signal is set. The harmonic frequency is attenuated by this trap circuit. In the case of the second high-frequency signal using the second frequency band, the switch element is opened. At this time, the resonance frequency determined by the series circuit of the inductor and the parallel circuit of the first and second capacitors is set to the harmonic frequency of the second high-frequency signal, so that the harmonic of the second high-frequency signal is set. The frequency is attenuated by this trap circuit.
  • the resonance frequency determined by the series circuit of the inductor and the parallel circuit of the first and second capacitors is set to the harmonic frequency of the second high-frequency signal, so that the harmonic of the second high-frequency signal is set. The frequency is attenuated by this trap circuit.
  • the present invention also relates to a power amplifier circuit comprising: a power amplifier that amplifies a high-frequency signal at a predetermined amplification factor; and a trap circuit that is connected to the output terminal of the power amplifier and attenuates harmonics of the high-frequency signal.
  • the power amplifier is a multi-band power amplifier that can amplify a plurality of high-frequency signals using different frequency bands.
  • the trap circuit includes a series circuit of a first inductor, a second inductor, and a capacitor connected between the output terminal of the power amplifier and the ground, and a switch element connected in parallel to the first inductor.
  • the switch element in the case of the first high-frequency signal using the first frequency band, the switch element is opened. At this time, the resonance frequency determined by the series circuit of the first and second inductors and the capacitor is set to the harmonic frequency (for example, the second harmonic frequency) of the first high-frequency signal. The harmonic frequency of the high frequency signal is attenuated by this trap circuit. In the case of the second high-frequency signal using the second frequency band, the switch element is short-circuited. At this time, the resonance frequency determined by the series circuit of the first inductor, the second inductor, the combined inductor of the switch element, and the capacitor is set to the harmonic frequency of the second high-frequency signal. The harmonic frequency of the high frequency signal is attenuated by this trap circuit.
  • the power amplifier circuit of the present invention preferably has the following configuration.
  • the power amplifier circuit includes a multiband isolator in which a different input terminal is provided for each of a plurality of high-frequency signals with respect to one input terminal, and an individual isolator is connected between the input terminal and the output terminal.
  • the input terminal of the multiband isolator is connected to the output terminal of the power amplifier.
  • the power amplifier circuit of the present invention preferably has the following configuration.
  • the multiband isolator includes an individual isolator for a high frequency band and an individual isolator for a low frequency band.
  • a low-pass filter circuit using an inductor and a capacitor is provided between the input terminal of the multiband isolator and the individual isolator for the low frequency band.
  • This configuration shows a more preferable aspect of the multiband isolator connected to the output terminal of the power amplifier.
  • the low-pass filter configured as described above passes the high-frequency signal on the low frequency side and attenuates the high-frequency signal on the high frequency side, and performs impedance conversion on the high-frequency signal on the low frequency side.
  • stepwise impedance conversion by the low-pass filter and the individual isolator is performed instead of abrupt impedance conversion by only the individual isolator. Therefore, it is possible to transmit a high-frequency signal with lower loss together with the suppression of the second harmonic.
  • the power amplifier circuit of the present invention preferably has the following configuration.
  • the power amplifier circuit includes an input-side switch circuit that switches a plurality of high-frequency signals input to the power amplifier, and an output-side switch circuit that switches and connects a plurality of output terminals of the multiband isolator to a subsequent circuit.
  • the switch element, the input side switch circuit, and the output side switch circuit are controlled by a single switch control signal.
  • each transmission signal can be efficiently amplified and output regardless of the combination of frequencies of a plurality of transmission signals.
  • FIG. 1 is a circuit block diagram of a high-frequency front-end circuit 1 including a power amplifier circuit 10 according to a first embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram of the trap circuit 13 when the switch element 134 is open.
  • FIG. 6 is an equivalent circuit diagram of the trap circuit 13 when the switch element 134 is short-circuited.
  • FIG. 5 is a circuit block diagram of a high-frequency front end circuit 1A including a power amplifier circuit 10A according to a second embodiment of the present invention. It is a circuit block diagram of the high frequency front end circuit 1B including the power amplifier circuit 10B which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a circuit block diagram of a high-frequency front-end circuit 1 including a power amplifier circuit 10 according to the first embodiment of the present invention.
  • a WCDMA850 communication signal or a WCDMA900 communication signal is used as a low-frequency communication signal
  • a WCDMA1800 communication signal or a WCDMA1900 communication signal is used as a high-frequency communication signal.
  • the high-frequency front-end circuit 1 includes a power amplifier circuit 10, a control IC 20, a switch circuit (corresponding to the “input side switch circuit” of the present invention) 30, a duplexer 40H, 40L, a switch circuit (an “output side switch circuit of the present invention). ”).
  • the control IC 20 includes a baseband IC 21 and an RFIC 22. These generate a transmission signal of each frequency, specifically, a transmission signal for the low frequency side communication (first transmission signal) and a transmission signal for the high frequency side communication (second transmission signal). These first transmission signal and second transmission signal correspond to the “high frequency signal” of the present invention. Further, the control IC 20 demodulates the reception signal (first reception signal) for low frequency communication and the reception signal (second reception signal) for high frequency communication output from the duplexers 40H and 40L. The control IC 20 also performs switching control of the switch circuits 30 and 50. Further, the control IC also performs switching control of the switch element 134 provided in the power amplifier circuit 10 described later. Note that the switching control of the switch circuits 30 and 50 and the switch element 134 is better performed by a single switch control signal.
  • the first transmission signal or the second transmission signal output from the RFIC 22 of the control IC 20 is output to the switch circuit 30.
  • the switch circuit 30 outputs either the first transmission signal or the second transmission signal to the power amplifier circuit 10 according to switching control.
  • the power amplifier circuit 10 includes a power amplifier 11, a multiband isolator 12, and a trap circuit 13.
  • the power amplifier 11 is a multiband amplifier circuit that can amplify the first transmission signal and the second transmission signal to a level suitable for wireless communication.
  • the first transmission signal or the second transmission signal is input to the input terminal of the power amplifier 11, amplified, and output from the output terminal of the power amplifier 11 to the input terminal of the multiband isolator 12.
  • the trap circuit 13 is provided to suppress the second harmonic of the first transmission signal from being input to the multiband isolator 12 during transmission of the first transmission signal.
  • the second harmonic of the second transmission signal can be suppressed from being input to the multiband isolator 12.
  • the multiband isolator 12 is a 1-input 2-output isolator and includes an individual isolator 120L corresponding to the first transmission signal and an individual isolator 120H corresponding to the second transmission signal.
  • a single input terminal as the multiband isolator 12 is connected to the input ends of the individual isolators 120L and 120H.
  • the two output terminals of the multiband isolator 12 are connected to the output ends of the individual isolators 120L and 120H, respectively.
  • the multiband isolator 12 outputs the first transmission signal output from the power amplifier 11 to the duplexer 40L via the individual isolator 120L.
  • the multiband isolator 12 outputs the second transmission signal output from the power amplifier 11 to the duplexer 40H via the individual isolator 120H.
  • the first transmission signal is output to the duplexer 40L and the second transmission signal is output to the duplexer 40H, even if no switch element is provided immediately after the power amplifier 11, as shown in the conventional configuration.
  • An output multiband power amplifier circuit 10 can be realized.
  • the duplexer 40L is realized by, for example, a SAW duplexer, and includes a transmission-side SAW filter and a reception-side SAW filter.
  • the transmission-side SAW filter of the duplexer 40L is a filter having the frequency band of the first transmission signal as a pass band and the other frequency band including the frequency band of the first reception signal as an attenuation band.
  • the reception-side SAW filter of the duplexer 40L is a filter that uses the frequency band of the first reception signal as a pass band and uses other frequency bands including the frequency band of the first transmission signal as an attenuation band.
  • the first transmission signal input to the duplexer 40L is output to the switch circuit 50 via the transmission-side SAW filter.
  • the first reception signal from the switch circuit 50 passes through the reception-side SAW filter and is output to the RFIC 22 of the control IC 20.
  • the basic configuration of the duplexer 40H is the same as that of the duplexer 40L except that the passband is different.
  • the second transmission signal input to the duplexer 40H is output to the switch circuit 50 via the transmission-side SAW filter.
  • the second reception signal from the switch circuit 50 passes through the reception-side SAW filter and is output to the RFIC 22 of the control IC 20.
  • the switch circuit 50 includes individual terminals connected to the duplexers 40H and 40L and a common terminal connected to the external antenna ANT, and connects any one of the individual terminals to the common terminal based on the switch control described above. Specifically, when transmitting / receiving low-frequency communication, the individual terminal and the common terminal for low-frequency communication are connected so that the duplexer 40L and the antenna ANT are connected. When performing transmission / reception of high frequency side communication, the individual terminal for high frequency communication and the common terminal are connected so as to connect the duplexer 40H and the antenna ANT.
  • the power amplifier circuit 10 more specifically has the following configuration.
  • the trap circuit 13 is connected between a connection conductor connecting the output terminal of the power amplifier 11 and the input terminal of the multiband isolator 12 and the ground. At this time, the trap circuit 13 is preferably connected in the vicinity of the output end of the power amplifier 11.
  • the trap circuit 13 includes a series circuit of an inductor 131 and a capacitor 132 (corresponding to the “first capacitor” of the present invention). One end of the series circuit is connected to a connection conductor, that is, an output end of the power amplifier 11. The other end of this series circuit is connected to the ground.
  • the capacitor 132 is connected in parallel with a trap frequency switching circuit composed of a series circuit of a capacitor 133 (corresponding to a “second capacitor” of the present invention) and a switch element 134.
  • the trap circuit 13 is an equivalent circuit shown in FIG. FIG. 2 is an equivalent circuit diagram of the trap circuit 13 when the switch element 134 is open.
  • the trap circuit 13 When the switch element 134 is open, the trap circuit 13 is composed only of a series circuit of an inductor 131 and a capacitor 132. At this time, the resonant frequency of the inductance L 131 and the trap circuit 13 which is determined by the capacitance C 132 Metropolitan capacitor 132 of the inductor 131, such that the frequency of the second harmonic of the second transmission signal, the inductance L 131 of the inductor 131 The capacitance C 132 of the capacitor 132 is predetermined.
  • the second harmonic component of the second transmission signal output from the power amplifier 11 is attenuated by the trap circuit 13 and is not input to the multiband isolator 12.
  • the switch element 134 When transmitting the first transmission signal, the switch element 134 is connected so as to be short-circuited by the above-described switch control signal.
  • the trap circuit 13 is an equivalent circuit shown in FIG. FIG. 3 is an equivalent circuit diagram of the trap circuit 13 when the switch element 134 is short-circuited.
  • the trap circuit 13 when the switch element 134 is short-circuited is configured by a series circuit of an inductor 131 and a parallel circuit of capacitors 132 and 133.
  • the resonance frequency of the trap circuit 13 which is determined from the parallel capacitance C p of the inductance L 131 and the capacitor 132, 133 of the inductor 131, the frequency of the second harmonic of the first transmission signal, the capacitance of the capacitor 133 C 133 is predetermined. That is, since the inductance L 131 of the inductor 131 and the capacitance C 132 of the capacitor 132 are determined by the frequency of the second harmonic of the first transmission signal, the parallel capacitance C p is appropriately set by the capacitance C 133 of the capacitor 133. As determined, the capacitance C 133 of the capacitor 133 is set.
  • the second harmonic component of the first transmission signal output from the power amplifier 11 is attenuated by the trap circuit 13 and is not input to the multiband isolator 12.
  • a trap circuit can be configured.
  • the fundamental frequency of the second transmission signal is about twice the fundamental frequency of the first transmission signal as in the premise of the present embodiment
  • the fundamental frequency of the second transmission signal is the first transmission signal. This substantially coincides with the second harmonic frequency.
  • the trap circuit 13 including the trap frequency switching circuit shown in the present embodiment is used, the fundamental wave of the second transmission signal is attenuated when the second transmission signal is transmitted.
  • the second transmission signal 2 is transmitted without attenuation of the fundamental wave of the second transmission signal when the second transmission signal is transmitted. Second harmonic components can be reliably suppressed.
  • the power amplifier circuit 10 can be reduced in size.
  • the capacitance C 133 of the capacitor 133 may be appropriately set according to the stray capacitance.
  • FIG. 4 is a circuit block diagram of a high-frequency front-end circuit 1A including a power amplifier circuit 10A according to the second embodiment of the present invention.
  • the power amplifier circuit 10A of this embodiment is different from the power amplifier circuit 10 shown in the first embodiment in the configuration of the trap circuit 13A, and the other configurations are the same. Therefore, only different parts will be specifically described.
  • the trap circuit 13A includes a series circuit of an inductor (corresponding to a “first inductor” in the present invention) 135, an inductor (corresponding to a “second inductor” in the present invention) 136, and a capacitor 137.
  • connection conductor that is, the output end of the power amplifier 11.
  • the other end of this series circuit is connected to the ground.
  • the switch element 134 is connected in parallel to the inductor 135.
  • the switch element 134 when the first transmission signal is transmitted, the switch element 134 is opened by the above-described switch control signal.
  • the trap circuit 13A is configured by a series circuit of two inductors 135 and 136 and a capacitor 137.
  • the inductor is set so that the resonance frequency of the trap circuit 13A determined by the inductors L 135 and L 136 of the inductors 135 and 136 and the capacitance C 137 of the capacitor 137 becomes the frequency of the second harmonic of the first transmission signal.
  • Inductances L 135 and L 136 of 135 and 136 and a capacitance C 137 of the capacitor 137 are determined in advance.
  • the second harmonic component of the first transmission signal output from the power amplifier 11 is attenuated by the trap circuit 13A and is not input to the multiband isolator 12.
  • the switch element 134 When transmitting the second transmission signal, the switch element 134 is controlled to be short-circuited by the above-described switch control signal.
  • the trap circuit 13 ⁇ / b> A is configured by a parallel circuit of an inductor 135 and a parasitic inductor of the switch element 134, an inductor 136, and a capacitor 137.
  • the resonance frequency of the trap circuit 13A determined by the inductances L 135 and L 136 of the inductors 135 and 136, the inductance of the parasitic inductor of the switch element 134, and the capacitance C 137 of the capacitor 137 is the second order of the second transmission signal.
  • the ratio of the inductances L 135 and L 136 of the inductors 135 and 136 is determined in advance so that the harmonic frequency is obtained.
  • the second harmonic component of the second transmission signal output from the power amplifier 11 is trapped by the trap circuit 13A and is not input to the multiband isolator 12.
  • a trap circuit can be configured.
  • the number of components of the trap circuit can be reduced as compared with the case where the LC resonance circuit is individually provided for each of the first transmission signal and the second transmission signal.
  • power amplifier circuit 10A can be reduced in size.
  • the capacitance C 137 of the capacitor 137 may be set as appropriate according to the stray capacitance.
  • FIG. 5 is a circuit block diagram of a high-frequency front-end circuit 1B including a power amplifier circuit 10B according to the third embodiment of the present invention.
  • the power amplifier circuit 10B of this embodiment is different from the power amplifier circuit 10 shown in the first embodiment in the configuration of the multiband isolator 12B, and the other configurations are the same. Therefore, only different parts will be specifically described.
  • the multiband isolator 12B includes individual isolators 120L and 120H and a low-pass filter (LPF) 121.
  • LPF low-pass filter
  • the low-pass filter (LPF) 121 is connected between the single input terminal of the multiband isolator 12B and the input terminal of the individual isolator 120L on the low frequency side.
  • the LPF 121 includes an inductor 122 connected in series between a single input terminal of the multiband isolator 12B and an input terminal of the individual isolator 120L on the low frequency side, and capacitors 123 and 124 that connect both ends of the inductor L1 to the ground. It consists of a ⁇ -type circuit consisting of
  • the LPF 121 sets the inductance of the inductor 122 and the capacitances of the capacitors 123 and 124 as appropriate, thereby setting the frequency band of the first transmission signal as the pass band and including the frequency band of the second transmission signal. It has the characteristic of attenuating the side. Thus, only the first transmission signal is input to the individual isolator 120L, and the second transmission signal is not input.
  • the LPF 121 also functions as an impedance conversion circuit by appropriately setting the inductance of the inductor 122 and the capacitances of the capacitors 123 and 124. At this time, the LPF 121 is set so that the output side of the power amplifier 11 has a relatively low impedance (about 5 ⁇ ) and the input side of the individual isolator 120L has a relatively high impedance (about 25 ⁇ ).
  • impedance conversion loss can be reduced because impedance conversion is executed in stages for the first transmission signal by a plurality of stages of the LPF 121 and the individual isolator 120L.
  • each above-mentioned embodiment has shown the characteristic structure separately, even if it combines the structure of these each embodiment, the effect similar to each above-mentioned embodiment is realizable.
  • a trap frequency switching circuit including a switch element and a capacitor may be connected in parallel to the capacitor 132.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

電力増幅回路(10)は、パワーアンプ(11)、マルチバンドアイソレータ(12)、トラップ回路(13)を備える。トラップ回路(13)は、電力増幅回路(10)の出力端とグランドとの間に接続されている。トラップ回路(13)は、インダクタ(131)とキャパシタ(132)の直列回路を備える。キャパシタ(132)には、キャパシタ(133)とスイッチ素子(134)との直列回路からなるトラップ周波数切替用回路が、並列接続されている。第1送信信号を出力する場合、スイッチ素子(134)を開放にする。第2送信信号を出力する場合、スイッチ素子(134)を短絡にする。

Description

電力増幅回路
 本発明は、高周波信号を増幅する電力増幅回路、特に、複数周波数の送信信号を増幅するマルチバンドの電力増幅回路に関する。
 従来、通信端末のフロントエンドモジュールとして、高周波信号を増幅する電力増幅回路を備えた高周波モジュールが各種考案されている。
 特許文献1には、高周波数帯域においてパワーアンプから送信信号の2次高調波の放射を抑制する電力増幅回路が開示されている。この電力増幅回路では、パワーアンプの出力整合回路に2次高調波をトラップするトラップ回路を複数設けている。そして、一方のトラップ回路の減衰帯域は送信周波数帯域の中心周波数の2倍よりも低い周波数帯域に設定され、他方のトラップ回路の減衰帯域は送信周波数帯域の中心周波数の2倍よりも高い周波数帯域に設定されている。
特開2007-306299号公報
 しかしながら、従来の電力増幅回路では、異なる周波数帯域を用いる二種類の送信信号を増幅する場合、これら二種類の周波数帯域が近接していなければ、2次高調波を減衰することができない。例えば、第1送信信号の周波数帯域が900MHz帯であり、第2送信信号の周波数帯域が1800MHz帯である場合、特許文献1に示すような従来のトラップ回路では、第1、第2送信信号ともに2次高調波を減衰することはできない。特に、第1送信信号の2次高調波周波数が第2送信信号の基本周波数になるような場合、第1送信信号にあわせて設定すると、第2送信信号の基本周波数が減衰されてしまう。これにより、電力増幅回路としての特性、例えば電力付加率(PAE)等が劣化してしまう。
 また、逆に、トラップ周波数を調整し、複数の送信信号に対して適度に2次高調波を減衰するように設定すると、隣接チャンネル漏洩電力比(ACLR)が劣化してしまう。
 したがって、本発明の目的は、複数の送信信号の周波数の組合せに関係なく、それぞれの送信信号を効率的に増幅して出力する電力増幅回路を提供することにある。
 この発明は、高周波信号を所定増幅率で増幅するパワーアンプと、該パワーアンプ出力端に接続され、高周波信号の高調波を減衰するトラップ回路と、を備えた電力増幅回路に関するものであり、次の構成を備えることを特徴としている。パワーアンプは、それぞれに異なる周波数帯域を利用する複数の高周波信号を増幅可能なマルチバンドパワーアンプである。トラップ回路は、パワーアンプの出力端とグランドとの間に接続されたインダクタと第1のキャパシタとの直列回路を備える。トラップ回路は、第1のキャパシタに並列接続されたトラップ周波数切替用回路を備える。このトラップ周波数切替用回路は、第2のキャパシタとスイッチ素子との直列回路からなる。
 この構成では、第1の周波数帯域を利用する第1の高周波信号の場合、スイッチ素子を短絡にする。この際、インダクタと第1のキャパシタとの直列回路で決定される共振周波数が第1の高周波信号の高調波周波数(例えば2次高調波周波数)に設定されていることで、第1の高周波信号の高調波周波数が、このトラップ回路で減衰される。第2の周波数帯域を利用する第2の高周波信号の場合、スイッチ素子を開放にする。この際、インダクタと第1、第2キャパシタの並列回路との直列回路で決定される共振周波数が第2の高周波信号の高調波周波数に設定されていることで、第2の高周波信号の高調波周波数が、このトラップ回路で減衰される。これにより、それぞれ異なる複数の周波数帯域を利用する高周波信号に対して、それぞれ適切に高調波を減衰することができる。さらに、この構成では、一方の高周波信号に対して(この場合、第2の高周波信号に対して)、パワーアンプの出力端とグランドとの間にスイッチ素子が介在しないため、インピーダンス設計が容易になり、高精度なトラップ回路を実現できる。
 また、この発明は、高周波信号を所定増幅率で増幅するパワーアンプと、該パワーアンプ出力端に接続され、高周波信号の高調波を減衰するトラップ回路と、を備えた電力増幅回路に関するものであり、次の構成を備えることを特徴としている。パワーアンプは、それぞれに異なる周波数帯域を利用する複数の高周波信号を増幅可能なマルチバンドパワーアンプである。トラップ回路は、パワーアンプの出力端とグランドとの間に接続された第1のインダクタ、第2のインダクタ、キャパシタの直列回路と、第1インダクタに並列接続されたスイッチ素子とからなる。
 この構成では、第1の周波数帯域を利用する第1の高周波信号の場合、スイッチ素子を開放にする。この際、第1、第2インダクタとキャパシタとの直列回路で決定される共振周波数が第1の高周波信号の高調波周波数(例えば2次高調波周波数)に設定されていることで、第1の高周波信号の高調波周波数が、このトラップ回路で減衰される。第2の周波数帯域を利用する第2の高周波信号の場合、スイッチ素子を短絡にする。この際、第1インダクタと第2インダクタとスイッチ素子の合成インダクタと、キャパシタとの直列回路で決定される共振周波数が第2の高周波信号の高調波周波数に設定されていることで、第2の高周波信号の高調波周波数が、このトラップ回路で減衰される。これにより、それぞれ異なる複数の周波数帯域を利用する高周波信号に対して、それぞれ適切に高調波を減衰することができる。さらに、この構成では、一方の高周波信号に対して(この場合、第1の高周波信号に対して)、パワーアンプの出力端とグランドとの間にスイッチ素子が介在しないため、インピーダンス設計が容易になり、高精度なトラップ回路を実現できる。
 また、この発明の電力増幅回路は、次の構成であることが好ましい。電力増幅回路は、一つの入力端子に対して複数の高周波信号毎に異なる出力端子を備え、入力端子と出力端子との間にそれぞれ個別アイソレータが接続されたマルチバンドアイソレータを備える。マルチバンドアイソレータの入力端子は、パワーアンプの出力端に接続されている。
 この構成では、パワーアンプの後段にマルチバンドアイソレータが接続される例を示している。これにより、上述の2次高調波の抑圧とともに、複数の高周波信号を個別の経路へ定損失で伝送することができる。したがって、電力増幅回路としての特性(PAE等)が向上する。
 また、この発明の電力増幅回路は、次の構成であることが好ましい。マルチバンドアイソレータは、高周波数帯域用の個別アイソレータと、低周波数帯域用の個別アイソレータとからなる。マルチバンドアイソレータの入力端子と、低周波数帯域用の個別アイソレータとの間に、インダクタとキャパシタとを用いた低域通過フィルタ回路が備えられている。
 この構成では、パワーアンプの出力端に接続されるマルチバンドアイソレータのより好ましい態様を示している。この構成の低域通過フィルタにより、低周波数側の高周波信号の通過および高周波数側の高周波信号の減衰が行われるとともに、低周波数側の高周波信号に対するインピーダンス変換が行われる。これにより、個別アイソレータのみによる急激なインピーダンス変換ではなく、低域通過フィルタと個別アイソレータとによる段階的なインピーダンス変換が行われる。したがって、上述の2次高調波の抑圧とともに、より低損失な高周波信号の伝送が可能となる。
 また、この発明の電力増幅回路は、次の構成であることが好ましい。電力増幅回路は、パワーアンプに入力する複数の高周波信号を切り替える入力側スイッチ回路と、マルチバンドアイソレータの複数の出力端子を後段回路に切り替えて接続する出力側スイッチ回路と、を備える。スイッチ素子、入力側スイッチ回路、および出力側スイッチ回路は単一のスイッチ制御信号で制御されている。
 この構成では、複数のスイッチを連動、同期して切り替えることができる。これにより、スイッチ制御を簡素化できる。また、切り替えタイミングのずれによる損失が抑制でき、さらに低損失な高周波信号の伝送が可能となる。
 この発明によれば、複数の送信信号の周波数の組合せに関係なく、それぞれの送信信号を効率的に増幅して出力できる。
本発明の第1の実施形態に係る電力増幅回路10を含む高周波フロントエンド回路1の回路ブロック図である。 スイッチ素子134が開放時のトラップ回路13の等価回路図である。 スイッチ素子134が短絡時のトラップ回路13の等価回路図である。 本発明の第2の実施形態に係る電力増幅回路10Aを含む高周波フロントエンド回路1Aの回路ブロック図である。 本発明の第3の実施形態に係る電力増幅回路10Bを含む高周波フロントエンド回路1Bの回路ブロック図である。
 本発明の第1の実施形態に係る電力増幅回路について、図を参照して説明する。図1は、本発明の第1の実施形態に係る電力増幅回路10を含む高周波フロントエンド回路1の回路ブロック図である。なお、本実施形態では、低周波数側の通信信号としてWCDMA850の通信信号もしくはWCDMA900の通信信号を用い、高周波数側の通信信号としてWCDMA1800の通信信号もしくはWCDMA1900の通信信号を用いる場合を示す。
 高周波フロントエンド回路1は、電力増幅回路10、コントロールIC20、スイッチ回路(本発明の「入力側スイッチ回路」に相当する。)30、デュプレクサ40H,40L、スイッチ回路(本発明の「出力側スイッチ回路」に相当する。)50を備える。
 コントロールIC20は、ベースバンドIC21およびRFIC22を備える。これらは、各周波数の送信信号、具体的には低周波数側通信の送信信号(第1送信信号)および高周波数側通信の送信信号(第2送信信号)を生成する。これら第1送信信号、第2送信信号が本発明の「高周波信号」に相当する。また、コントロールIC20は、デュプレクサ40H,40Lから出力された低周波数側通信の受信信号(第1受信信号)および高周波数側通信の受信信号(第2受信信号)を復調する。また、コントロールIC20は、スイッチ回路30,50のスイッチング制御も行う。さらに、コントロールICは、後述する電力増幅回路10に備えられたスイッチ素子134のスイッチング制御も行う。なお、スイッチ回路30,50、スイッチ素子134のスイッチング制御は、単一のスイッチ制御信号で実行すると、よりよい。
 コントロールIC20のRFIC22から出力された第1送信信号もしくは第2送信信号は、スイッチ回路30へ出力される。スイッチ回路30は、第1送信信号もしくは第2送信信号のいずれかを、スイッチング制御に応じて電力増幅回路10へ出力する。
 電力増幅回路10は、パワーアンプ11、マルチバンドアイソレータ12、トラップ回路13を備える。パワーアンプ11は、第1送信信号および第2送信信号を、無線通信に適したレベルまで増幅可能なマルチバンド型の増幅回路である。
 第1送信信号もしくは第2送信信号は、パワーアンプ11の入力端に入力され、増幅されて、パワーアンプ11の出力端からマルチバンドアイソレータ12の入力端子へ出力される。この際、具体的な構成は後述するが、トラップ回路13を備えることで、第1送信信号の送信時には第1送信信号の2次高調波がマルチバンドアイソレータ12に入力されることを抑圧し、第2送信信号の送信時には第2送信信号の2次高調波がマルチバンドアイソレータ12に入力されることを抑圧することができる。
 マルチバンドアイソレータ12は、1入力2出力のアイソレータであり、第1送信信号に対応した個別アイソレータ120Lと、第2送信信号に対応した個別アイソレータ120Hとを備える。マルチバンドアイソレータ12としての単一の入力端子は、各個別アイソレータ120L,120Hの入力端に接続している。マルチバンドアイソレータ12の二つの出力端子は、それぞれに個別アイソレータ120L,120Hの出力端に接続している。
 マルチバンドアイソレータ12は、パワーアンプ11から出力された第1送信信号を、個別アイソレータ120Lを介して、デュプレクサ40Lへ出力する。マルチバンドアイソレータ12は、パワーアンプ11から出力された第2送信信号を、個別アイソレータ120Hを介して、デュプレクサ40Hへ出力する。
 このような構成とすることで、従来の構成に示すように、パワーアンプ11の直後にスイッチ素子を備えなくても、第1送信信号をデュプレクサ40Lへ出力し、第2送信信号をデュプレクサ40Hへ出力する、マルチバンドの電力増幅回路10を実現することができる。そして、上述の構成を用いることで、スイッチ素子を必要としないので、当該スイッチ素子による損失が生じず、各送信信号のいずれに対しても低損失なマルチバンドの電力増幅回路10を実現することができる。
 デュプレクサ40Lは、例えばSAWデュプレクサによって実現され、送信側SAWフィルタと受信側SAWフィルタとから構成される。デュプレクサ40Lの送信側SAWフィルタは、第1送信信号の周波数帯域を通過帯域とし、第1受信信号の周波数帯域を含む他の周波数帯域を減衰帯域とするフィルタである。デュプレクサ40Lの受信側SAWフィルタは、第1受信信号の周波数帯域を通過帯域とし、第1送信信号の周波数帯域を含む他の周波数帯域を減衰帯域とするフィルタである。
 デュプレクサ40Lに入力された第1送信信号は、送信側SAWフィルタを介してスイッチ回路50へ出力される。スイッチ回路50からの第1受信信号は、受信側SAWフィルタを通過して、コントロールIC20のRFIC22へ出力される。
 デュプレクサ40Hも、通過帯域が異なるだけで、基本構成はデュプレクサ40Lと同じである。デュプレクサ40Hに入力された第2送信信号は、送信側SAWフィルタを介してスイッチ回路50へ出力される。スイッチ回路50からの第2受信信号は、受信側SAWフィルタを通過して、コントロールIC20のRFIC22へ出力される。
 スイッチ回路50は、デュプレクサ40H,40Lに接続する個別端子と、外部のアンテナANTに接続する共通端子とを備え、上述のスイッチ制御に基づいて、個別端子のいずれかを共通端子へ接続する。具体的には、低周波数側通信の送受信を行う場合には、デュプレクサ40LとアンテナANTを接続するように、低周波数通信用の個別端子と共通端子を接続する。高周波数側通信の送受信を行う場合には、デュプレクサ40HとアンテナANTを接続するように、高周波数通信用の個別端子と共通端子を接続する。
 以上のような回路構成の高周波フロントエンド回路1において、電力増幅回路10は、より具体的には次の構成を備える。
 トラップ回路13は、パワーアンプ11の出力端とマルチバンドアイソレータ12の入力端子とを接続する接続導体とグランドとの間に接続されている。なお、この際、トラップ回路13は、パワーアンプ11の出力端近傍に接続されているとよりよい。
 トラップ回路13は、インダクタ131とキャパシタ132(本発明の「第1のキャパシタ」に相当する。)との直列回路を備える。この直列回路の一方端は、接続導体、すなわちパワーアンプ11の出力端に接続されている。この直列回路の他方端は、グランドに接続されている。
 キャパシタ132には、キャパシタ133(本発明の「第2のキャパシタ」に相当する。)とスイッチ素子134との直列回路からなるトラップ周波数切替用回路が並列接続されている。
 このような構成において、第2送信信号を送信する場合には、上述のスイッチ制御信号により、スイッチ素子134が開放するように接御される。この場合、トラップ回路13は、図2に示す等価回路となる。図2は、スイッチ素子134が開放時のトラップ回路13の等価回路図である。
 スイッチ素子134が開放時のトラップ回路13は、インダクタ131とキャパシタ132との直列回路のみから構成される。この際、インダクタ131のインダクタンスL131とキャパシタ132のキャパシタンスC132とから決まるトラップ回路13の共振周波数が、第2送信信号の2次高調波の周波数となるように、インダクタ131のインダクタンスL131とキャパシタ132のキャパシタンスC132が予め決定されている。
 これにより、パワーアンプ11から出力される第2送信信号の2次高調波成分は、トラップ回路13で減衰され、マルチバンドアイソレータ12には入力されない。
 第1送信信号を送信する場合には、上述のスイッチ制御信号により、スイッチ素子134が短絡するように接御される。この場合、トラップ回路13は、図3に示す等価回路となる。図3は、スイッチ素子134が短絡時のトラップ回路13の等価回路図である。
 スイッチ素子134が短絡時のトラップ回路13は、インダクタ131とキャパシタ132,133の並列回路との直列回路によって構成される。この際、インダクタ131のインダクタンスL131とキャパシタ132,133の並列キャパシタンスCとから決まるトラップ回路13の共振周波数が、第1送信信号の2次高調波の周波数となるように、キャパシタ133のキャパシタンスC133が予め決定されている。すなわち、インダクタ131のインダクタンスL131とキャパシタ132のキャパシタンスC132とは、第1送信信号の2次高調波の周波数によって決定されているので、キャパシタ133のキャパシタンスC133によって並列キャパシタンスCが適切に決定されるように、キャパシタ133のキャパシタンスC133が設定されている。
 これにより、パワーアンプ11から出力される第1送信信号の2次高調波成分は、トラップ回路13で減衰され、マルチバンドアイソレータ12には入力されない。
 このような構成とすることで、第1送信信号の送信時には第1送信信号の2次高調波成分を抑圧し、第2送信信号の送信時には第2送信信号の2次高調波成分を抑圧するトラップ回路を構成することができる。
 ここで、本実施形態の前提のように、第2送信信号の基本波周波数が第1送信信号の基本波周波数の約2倍である場合、第2送信信号の基本波周波数は第1送信信号の2次高調波周波数と略一致する。このため、本実施形態に示すトラップ周波数切替用回路を備えるトラップ回路13を用いなければ、第2送信信号の送信時に、第2送信信号の基本波が減衰してしまう。
 しかしながら、本実施形態に示すトラップ周波数切替用回路を備えるトラップ回路13を用いることで、第2送信信号の送信時に、第2送信信号の基本波が減衰されることなく、第2送信信号の2次高調波成分を確実に抑圧することができる。
 これにより、それぞれに異なる周波数帯域を利用する第1送信信号の送信時と第2送信信号の送信時のいずれの場合であっても、電力増幅回路10の特性(PAE、ACLR等)を向上することができる。
 さらに、本実施形態の構成では、第1送信信号と第2送信信号とのそれぞれに個別にLC共振回路を設けるよりも、トラップ回路の構成要素を減らすことができる。これにより、電力増幅回路10を小型化することができる。
 さらに、本実施形態の構成を用いることで、第2送信信号の送信時には、トラップ回路13内にスイッチ素子が存在しないため、スイッチ素子の浮遊容量等による共振周波数のズレが生じない。これにより、より効果的に2次高調波成分の抑圧を行うことができる。なお、この際、スイッチ素子の第1送信信号に対する浮遊容量が予め実験等で把握できれば、キャパシタ133のキャパシタンスC133を、当該浮遊容量に応じて適宜設定すればよい。
 次に、第2の実施形態に係る電力増幅回路について、図を参照して説明する。図4は本発明の第2の実施形態に係る電力増幅回路10Aを含む高周波フロントエンド回路1Aの回路ブロック図である。
 本実施形態の電力増幅回路10Aは、第1の実施形態に示した電力増幅回路10に対して、トラップ回路13Aの構成が異なるものであり、他の構成は同じである。したがって、異なる箇所のみを具体的に説明する。
 トラップ回路13Aは、インダクタ(本発明の「第1のインダクタ」に相当する。)135、インダクタ(本発明の「第2のインダクタ」に相当する。)136、キャパシタ137の直列回路を備える。
 この直列回路の一方端は、接続導体、すなわちパワーアンプ11の出力端に接続されている。この直列回路の他方端は、グランドに接続されている。
 スイッチ素子134は、インダクタ135に並列接続されている。
 このような構成において、第1送信信号を送信する場合には、上述のスイッチ制御信号により、スイッチ素子134が開放するように接御される。この場合、トラップ回路13Aは、二つのインダクタ135,136とキャパシタ137との直列回路によって構成される。
 この際、インダクタ135,136のインダクタスL135,L136とキャパシタ137のキャパシタンスC137とから決まるトラップ回路13Aの共振周波数が、第1送信信号の2次高調波の周波数となるように、インダクタ135,136のインダクタスL135,L136とキャパシタ137のキャパシタンスC137が予め決定されている。
 これにより、パワーアンプ11から出力される第1送信信号の2次高調波成分は、トラップ回路13Aで減衰され、マルチバンドアイソレータ12には入力されない。
 第2送信信号を送信する場合には、上述のスイッチ制御信号により、スイッチ素子134が短絡するように制御される。この場合、トラップ回路13Aは、インダクタ135とスイッチ素子134の寄生インダクタとの並列インダクタ、インダクタ136、およびキャパシタ137の直列回路によって構成される。
 この際、インダクタ135,136のインダクタンスL135,L136と、スイッチ素子134の寄生インダクタのインダクタンスと、キャパシタ137のキャパシタンスC137とから決まるトラップ回路13Aの共振周波数が、第2送信信号の2次高調波の周波数となるように、インダクタ135,136のインダクタンスL135,L136の比が予め決定されている。すなわち、インダクタ135,136の合成インダクタンスLと、キャパシタ137のキャパシタンスC137とは、第1送信信号の2次高調波の周波数によって決定されているので、スイッチ素子134の寄生インダクタのインダクタンスによって、第2送信信号に対するインダクタ135,136の合成インダクタンスLが適切に設定されるように、スイッチ素子134の寄生インダクタのインダクタンスが決定されている。
 これにより、パワーアンプ11から出力される第2送信信号の2次高調波成分は、トラップ回路13Aでトラップされ、マルチバンドアイソレータ12には入力されない。
 このような構成とすることで、第1送信信号の送信時には第1送信信号の2次高調波成分を抑圧し、第2送信信号の送信時には第2送信信号の2次高調波成分を抑圧するトラップ回路を構成することができる。
 さらに、本実施形態の構成でも、第1送信信号と第2送信信号とのそれぞれに個別にLC共振回路を設けるよりも、トラップ回路の構成要素を減らすことができる。これにより、電力増幅回路10Aを小型化することができる。
 さらに、本実施形態の構成を用いることで、第1送信信号の送信時には、トラップ回路13内にスイッチ素子が存在しないため、スイッチ素子の浮遊容量等による共振周波数のズレが生じない。これにより、より効果的に2次高調波成分の抑圧を行うことができる。なお、この際、スイッチ素子の第2送信信号に対する浮遊容量が予め実験等で把握できれば、キャパシタ137のキャパシタンスC137を、当該浮遊容量に応じて適宜設定すればよい。
 次に、本発明の第3の実施形態に係る電力増幅回路について、図を参照して説明する。図5は、本発明の第3の実施形態に係る電力増幅回路10Bを含む高周波フロントエンド回路1Bの回路ブロック図である。
 本実施形態の電力増幅回路10Bは、第1の実施形態に示した電力増幅回路10に対して、マルチバンドアイソレータ12Bの構成が異なるものであり、他の構成は同じである。したがって、異なる箇所のみを具体的に説明する。
 マルチバンドアイソレータ12Bは、個別アイソレータ120L,120Hと、低域通過フィルタ(LPF)121を備える。
 低域通過フィルタ(LPF)121は、当該マルチバンドアイソレータ12Bの単一の入力端子と低周波数側の個別アイソレータ120Lの入力端との間に接続されている。
 LPF121は、マルチバンドアイソレータ12Bの単一の入力端子と低周波数側の個別アイソレータ120Lの入力端との間に直列接続されたインダクタ122と、当該インダクタL1の両端をグランドに接続するキャパシタ123,124とからなるπ型の回路からなる。
 LPF121は、インダクタ122のインダクタンス、キャパシタ123,124のキャパシタンスを適宜設定することで、第1送信信号の周波数帯域を通過帯域として、第2送信信号の周波数帯域を含む、当該通過帯域の高周波数帯側を減衰する特性を有する。これにより、個別アイソレータ120Lには、第1送信信号のみが入力され、第2送信信号は入力されない。
 また、LPF121は、インダクタ122のインダクタンス、キャパシタ123,124のキャパシタンスを適宜設定することで、インピーダンス変換回路としても機能する。この際、パワーアンプ11の出力側が、相対的に低インピーダンス(約5Ω)になり、個別アイソレータ120Lの入力側が相対的に高インピーダンス(約25Ω)になるように、LPF121を設定する。このような構成とすることで、第1送信信号に対して、LPF121と個別アイソレータ120Lの複数段により、段階的にインピーダンス変換が実行されるので、インピーダンス変換損失を低減することができる。これにより、2次高調波の出力を抑えるとともに、さらに低損失な電力増幅回路10Bおよび高周波フロントエンド回路1Bを実現することができる。すなわち、PAE等の特性が向上した電力増幅回路およびこれを備える高周波フロントエンド回路を実現することができる。
 なお、上述の各実施形態は、個別に特徴的な構成を示しているが、これらの各実施形態の構成を組み合わせても、上述の各実施形態と同様の作用効果を実現することができる。
 また、上述の各実施形態では、二種類の送信信号を増幅する場合を示したが、三種類以上の送信信号を増幅する電力増幅回路にも、上述の構成を適用することができる。この場合、例えば、第1の実施形態の回路構成であれば、キャパシタ132に対して、さらにスイッチ素子とキャパシタとからなるトラップ周波数切替用回路を並列接続すればよい。
1,1A,1B:高周波フロントエンド回路、
10,10A,10B:電力増幅回路、
11:パワーアンプ、
12,12B:マルチバンドアイソレータ、
13,13A:トラップ回路、
20:コントロールIC、
30:スイッチ回路、
40H,40L:デュプレクサ、
50:スイッチ回路、
120L,120H:個別アイソレータ、
121:低域通過フィルタ(LPF)、
122,131,135,136:インダクタ、
123,124,132,133,137:キャパシタ、
134:スイッチ素子

Claims (4)

  1.  高周波信号を所定増幅率で増幅するパワーアンプと、
     パワーアンプ出力端に接続され、前記高周波信号の高調波を減衰するトラップ回路と、を備えた電力増幅回路であって、
     前記パワーアンプは、それぞれに異なる周波数帯域を利用する複数の高周波信号を増幅可能なマルチバンドパワーアンプであり、
     前記トラップ回路は、
     前記パワーアンプの出力端とグランドとの間に接続されたインダクタと第1のキャパシタとの直列回路と、
     前記第1のキャパシタに並列接続されたトラップ周波数切替用回路と、を備え、
     該トラップ周波数切替用回路は、第2のキャパシタとスイッチ素子との直列回路からなる、電力増幅回路。
  2.  高周波信号を所定増幅率で増幅するパワーアンプと、
     パワーアンプ出力端に接続され、前記高周波信号の高調波を減衰するトラップ回路と、を備えた電力増幅回路であって、
     前記パワーアンプは、それぞれに異なる周波数帯域を利用する複数の高周波信号を増幅可能なマルチバンドパワーアンプであり、
     前記トラップ回路は、
     前記パワーアンプの出力端とグランドとの間に接続された第1のインダクタ、第2のインダクタ、キャパシタの直列回路と、
     前記第1インダクタに並列接続されたスイッチ素子と、からなる電力増幅回路。
  3.  一つの入力端子に対して、前記複数の高周波信号毎に異なる出力端子を備え、前記入力端子と前記出力端子との間にそれぞれ個別アイソレータが接続されたマルチバンドアイソレータを備え、
     該マルチバンドアイソレータの前記入力端子は、前記パワーアンプの出力端に接続されている、請求項1または請求項2に記載の電力増幅回路。
  4.  前記マルチバンドアイソレータは、高周波数帯域用の個別アイソレータと、低周波数帯域用の個別アイソレータとからなり、
     前記マルチバンドアイソレータの入力端子と、前記低周波数帯域用の個別アイソレータとの間に、インダクタとキャパシタとを用いた低域通過フィルタ回路が備えられている、請求項3に記載の電力増幅回路。
PCT/JP2013/050156 2012-01-16 2013-01-09 電力増幅回路 WO2013108677A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012006006 2012-01-16
JP2012-006006 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013108677A1 true WO2013108677A1 (ja) 2013-07-25

Family

ID=48799104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050156 WO2013108677A1 (ja) 2012-01-16 2013-01-09 電力増幅回路

Country Status (1)

Country Link
WO (1) WO2013108677A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057218A1 (en) * 2014-10-09 2016-04-14 Cavendish Kinetics, Inc Power amplifier matching circuit with dvcs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327037A (ja) * 1997-05-22 1998-12-08 Kokusai Electric Co Ltd 無線通信機の整合回路用可変コイル
JP2003504929A (ja) * 1999-07-07 2003-02-04 エリクソン インコーポレイテッド デュアル・バンド、デュアル・モードの電力増幅器
JP2006325163A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 広帯域送受信装置
JP2008113202A (ja) * 2006-10-30 2008-05-15 Ntt Docomo Inc 整合回路、マルチバンド増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327037A (ja) * 1997-05-22 1998-12-08 Kokusai Electric Co Ltd 無線通信機の整合回路用可変コイル
JP2003504929A (ja) * 1999-07-07 2003-02-04 エリクソン インコーポレイテッド デュアル・バンド、デュアル・モードの電力増幅器
JP2006325163A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 広帯域送受信装置
JP2008113202A (ja) * 2006-10-30 2008-05-15 Ntt Docomo Inc 整合回路、マルチバンド増幅器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057218A1 (en) * 2014-10-09 2016-04-14 Cavendish Kinetics, Inc Power amplifier matching circuit with dvcs
US10038415B2 (en) 2014-10-09 2018-07-31 Cavendish Kinetics, Inc. Power amplifier matching circuit with DVCs

Similar Documents

Publication Publication Date Title
US9287847B2 (en) Module
US10128796B2 (en) Power amplification module and front end circuit
US7796953B2 (en) Transmitter, power amplifier and filtering method
JP5293762B2 (ja) 高周波スイッチモジュール
JP6965581B2 (ja) 高周波モジュール及び通信装置
US10476531B2 (en) High-frequency front-end circuit
WO2016117482A1 (ja) 高周波電力増幅モジュールおよび通信装置
US10651821B2 (en) Multiplexer, high-frequency front-end circuit, and communication apparatus
US10277191B2 (en) Composite filter apparatus, high-frequency front end circuit, and communication apparatus
WO2018012275A1 (ja) マルチプレクサ、高周波フロントエンド回路、および、通信端末
US20180198474A1 (en) High-frequency front end circuit and communication apparatus
US20080101263A1 (en) Single-ended to differential duplexer filter
JP6673467B2 (ja) 周波数可変フィルタ、rfフロントエンド回路、および、通信端末
JP6822444B2 (ja) 複合型フィルタ装置、高周波フロントエンド回路および通信装置
US9419582B2 (en) Filter device and duplexer
WO2012102284A1 (ja) 送信モジュール
US10009052B2 (en) UL CA TX-TX tunable cross-isolation method
US9041485B2 (en) High frequency electronic component
WO2013108677A1 (ja) 電力増幅回路
US20220345158A1 (en) Multiplexer and communication device
JP2016096486A (ja) 高周波フロントエンド回路、高周波モジュール
US11043924B2 (en) High frequency module and communication device
JP2018195937A (ja) 高周波フロントエンド回路
JP5487651B2 (ja) 切替回路
WO2012102285A1 (ja) 送信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP