WO2013108059A1 - Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik - Google Patents

Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik Download PDF

Info

Publication number
WO2013108059A1
WO2013108059A1 PCT/IB2012/000081 IB2012000081W WO2013108059A1 WO 2013108059 A1 WO2013108059 A1 WO 2013108059A1 IB 2012000081 W IB2012000081 W IB 2012000081W WO 2013108059 A1 WO2013108059 A1 WO 2013108059A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
blank
helium
mpa
nanotubes
Prior art date
Application number
PCT/IB2012/000081
Other languages
English (en)
French (fr)
Inventor
Alexander POTEMKIN
Original Assignee
Potemkin Alexander
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Potemkin Alexander filed Critical Potemkin Alexander
Priority to PCT/IB2012/000081 priority Critical patent/WO2013108059A1/de
Publication of WO2013108059A1 publication Critical patent/WO2013108059A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas

Definitions

  • the group of proposed inventions relates to the field of technical ceramics and refractories and in particular to the methods of their preparation and the composition of the batch compositions and can be applied with the aid of alkaline earth metals (calcium, magnesium, lithium, etc.) for the production of components, in which the reprocessing of uranium and fission products from uranium dioxide is carried out.
  • alkaline earth metals calcium, magnesium, lithium, etc.
  • a process for producing a composite material consisting in the preparation of a mixture of cubic boron nitride and a metallic aggregate mixed aluminum and magnesium powders in the amount of 5 to 15 wt .-% - and in the subsequent exposure to high pressures and gradually high temperatures to the resulting mixture (see Patent No. 2238240).
  • the proposed method is the closest to a production method for resistant ceramic, which provides the formation of blanks from an ultradispersive powder and sintering followed by cooling, (Patent RU No. 2238240).
  • zirconia is used and additives of metal oxides of the group consisting of yttria, calcia, magnesia and ceria.
  • sintering takes place in a vacuum with isothermal holding in the temperature range of the cubic phase of 2 to 12 hours Zirconia at 1750-1800 ° C, whereby the rate at which the temperature is increased until the sintering temperature is reached is gradually changed: up to 1200 ° C it is 350-500 ° C / h, then until reaching the sintering temperature 300- 320 ° C / h.
  • this material can not be used in the metallurgical treatment of nuclear waste due to the interaction of the uranium-based melt with the material,
  • the technical solution provided by the proposed group of inventions consists in finding a method of manufacturing durable ceramics which allows to produce materials which do not participate in the reactions occurring in the uranium-based melt and which have high heat resistance, refractoriness, Have thermal conductivity and scale resistance.
  • the technical solution achieved by the proposed group of inventions consists in finding a manufacturing process for products of resistant ceramics, which provides for the formation of blanks from an ultradispersive powder and the sintering with subsequent cooling and - according to the invention - the preparatory preparation of the batch the slurry of an ultra-dispersive powder and nanotubes, the shaping of the blanks by dispersion into an elastic film and hydrostatic compression under pressures of 10-100 MPa, in addition drying the blanks at a temperature of 100-300 ° C for 3-5 hours in one Vacuum of 10 "2 - 10 " 3 Torr, sintering under helium pressures of 100 - 1000 MPa at a temperature of 1500 - 2000 ° C for 1 - 3 hours and the cooling under pressure, then the Deposited from the gaseous phase of isotopic borofluoride and isotopic ammonia ( , BF 3 and 14 NH 3 ) of a 2-3 mm thick layer , 0 B 14 N at a temperature of 1800 - 2
  • magnesium oxide MgO and boron nitride ( 10 B 14 N) in the proposed method allows the absorption of the radiation of uranium.
  • the magnesium oxide and the boron nitride are sufficiently difficult to melt materials with a low thermal conductivity and are inert to most of the constituents involved in the uranium dioxide recycling reaction, but weakly interacting with the cryolite-based slag liquefier (CaAlFe), chlorides and iodides ,
  • the sintering of the blank in a pressure chamber (gasostat) under a helium pressure of 100-1000 MPa is the only way in which gaseous components can be introduced into the ceramic structure.
  • the intake of the inert gas occurs at a much higher temperature than the operating temperature, allowing multiple use of the recovered material, since the diffusion coefficient of the gas through magnesium oxide and boron nitride to the surface is small.
  • the technical solution is achieved in the proposed invention by finding a manufacturing process for products made of durable ceramic, which provides for the formation of blanks from an ultradispersiven powder and sintering followed by cooling and - according to the invention - the preparation of the preparation of a slurry of nano-0-SiAlON, nano-yttrium oxide (Y 2 O 3 ) and nanotubes of silicon carbide SiC, the filtration of the resulting mixture and additionally the drying of the blank at a temperature of 100-300 ° C, its sintering at a helium pressure of 100 1000 MPa at a temperature of 1500-2000 ° C. for 1-3 hours and cooling under pressure, whereupon the surface of the blank intended for selective sorption of elements is activated by disproportionation, the composition of the mixture having the following composition
  • dispersive strengthening with nanoparticles which dissolve neither in magnesium oxide nor in boron nitride nor coagulate at high temperatures increases the refractoriness of the material.
  • Deviations from the proposed conditions towards an extension or shortening of individual intervals leads to a deterioration of the physical-mechanical properties, etc.
  • the execution of the drying of the blanks is only possible at a temperature of 100 - 300 ° C for 3-5 hours in a vacuum of 10 "2 - 10 " 3 Torr, because only at a sufficiently high temperature and sufficiently long exposure in vacuo, the Blanks are absolutely dehydrated, the sintering must be done under helium pressures of 100 - 1000 MPa at a temperature of 1500 - 2000 ° C for 1 - 3 hours, the conditions for temperature and pressure are chosen so that there is a sufficient gas uptake.
  • the process of disproportioning z. B. is carried out as follows:
  • the porous blank is activated in a palladium chloride solution, which allows its including the inner pores subsequent coating with cobalt from its acidic nitrogen compounds.
  • the final processing comprises applying the outer layer of 10 B 14 N by precipitation from the gaseous phase of isotopic boron fluoride 10 BF 3 and isotopic ammonia 14 NH 3 at a temperature of 1800 ° C until a layer of 2 mm thickness receives.
  • composition of the mixture is taken from aqueous slurry of 88 vol .-% turbostratic boron nitride 10 B 14 N and 7 vol .-% nanotube crystals of magnesium oxide MgO, mixes them and then dispersed in an enclosure with the shape of the blank , z. B. a crucible made of polyurethane, it compacts under hydrostat under a pressure of 10 MPa, it dries in vacuo at 10 '3 Torr for five hours at 150 ° C and sintered barothermically in the form of a crucible under a helium pressure of 1000 MPa at a Temperature of 2000 ° C for one hour with cooling under pressure.
  • a blank is obtained in which the concentration of helium reaches 5% by volume, no traces of an interaction of the blank with the uranium-based melt at 1500 ° C. were detected, finally the outer layer is precipitated on the blank the gaseous phase of isotopic boron fluoride 10 BF 3 and isotopic ammonia 14 NH 3 is applied at a temperature of 1850 ° C until a layer of 3 mm thickness is obtained.
  • composition of the mixture is taken from aqueous slurry of 87 vol .-% nano-0-SiAlON and 5 vol .-% nano-yttrium oxide and 3 vol .-% nanotube crystals of silicon carbide, they filtered and dried at a Temperature of 150 ° C and sintered under a helium pressure of 1000 MPa, at a temperature of 2000 ° C for one hour.
  • a blank is obtained in which the helium concentration reaches 5% by volume, traces of an interaction of the blank with the uranium-based slag at 1500 ° C. could not be detected.
  • the final processing by disproportionation is carried out by activation in palladium chloride with subsequent deposition of cobalt isotopes from the uranium melt including the inner pores.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

Ein Herstellungsverfahren für Erzeugnisse aus widerstandsfähiger Keramik, das die Formung von Rohlingen aus einem ultradispersiven Pulver und die Sinterung mit anschliessender Abkühlung vorsieht, kennzeichnet sich dadurch aus, dass vorbereitend ein Gemenge hergestellt wird aus dem Schlicker eines ultradispersiven Pulvers und Nanoröhrchen, der Rohling durch Dispersion in eine elastische Form mit hydrostatischer Verdichtung unter Drücken von 10 - 100 MPa geformt wird, zusätzlich getrocknet wird bei einer Temperatur von 100 300 °C 3 - 5 Stunden lang in einem Vakuum von 10-2 - 10-3 Torr, gesintert wird unter Heliumdrücken von 100 - 1000 MPa bei einer Temperatur von 1500— 2000 °C 1 - 3 Stunden lang und unter Druck abgekühlt wird, anschliessend wird durch Abscheidung aus der gasförmigen Phase von 10BF3 und 14NH3 (isotopischem Borfluorid und isotopischem Ammoniak) eine 2 - 3 mm starke Schicht aus 10B14N bei einer Temperatur von 1800— 2500 °C auf die Aussenfläche des gesinterten Rohlings, eines Tiegels z. B., aufgetragen, wobei sich das Gemenge zu 100 Vol.% wie folgt zusammensetzt [Vol.- %]: turbostratisches Bornitrid (10B14N) 88 - 95 Nanoröhrchen aus Magnesiumoxid MgO 2 - 7 Helium He 3 - 5

Description

HERSTELLUNGSVERFAHREN FÜR ERZEUGNIS AUS
WIDERSTANDSFÄHIGER KERAMIK
Betroffenes Gebiet der Technik
Die Gruppe der vorgeschlagenen Erfindungen bezieht sich auf das Gebiet der technischen Keramik und feuerfesten Stoffe und insbesondere auf die Methoden ihrer Herstellung und die Zusammensetzung der Gemengesätze und kann unter Zuhilfenahme von Erdalkalimetallen (Kalzium, Magnesium, Lithium usw.) zur Herstellung von Bauteilen angewendet werden, in denen die Wiederaufbereitung von Uran und Spaltprodukten aus Urandioxid vorgenommen wird.
Bisheriger Stand der Technik
Bekannt ist ein Verfahren zur Herstellung eines Kompositmaterials, bestehend in der Zubereitung eines Gemenges aus kubischem Bornitrid und einem metallischen Zuschlag gemischten Aluminium- und Magnesiumpulvern in der Menge von 5 bis 15 Gew.-% - und in dem anschliessenden Einwirkenlassen hoher Drücke und stufenweise hoher Temperaturen auf das erhaltene Gemisch (s. Patent Nr. 2238240).
Nachteile des bekannten Materials sind die niedrige Feuerfestigkeit, die hohe Kriechdehnung bei Temperaturen über 1300 °C, und daher bedarf dieses Material einer Verfestigung, abgesehen davon kommt es zu Wechselwirkungen zwischen ihm und den Uran-basierten Schmelzen, was eine Verwendung des Materials als Tiegel verbietet.
Dem technischen Prinzip nach kommt dem vorgeschlagenen Verfahren am nächsten ein Herstellungsverfahren für widerstandsfähige Keramik, das die Formung von Rohlingen aus einem ultradispersiven Pulver und Sinterung mit anschliessender Abkühlung vorsieht, (Patent RU Nr. 2238240).
Als ultradispersives Pulver wird Zirkoniumdioxid verwendet und Zusätze von Metalloxiden der Gruppe, bestehend aus Yttriumoxid, Kalziumoxid, Magnesiumoxid und Ceroxid.
Bei dem bekannten Verfahren geschieht das Sintern im Vakuum mit 2- bis 12- stündigem isothermischem Halten im Temperaturbereich der kubischen Phase von Zirkoniumdioxid bei 1750 - 1800 °C, wobei die Geschwindigkeit, mit der bis zum Erreichen der Sintertemperatur die Temperatur gesteigert wird, stufenweise geändert wird: bis 1200 °C beträgt sie 350 - 500 °C/h, danach bis zum Erreichen der Sintertemperatur 300 - 320 °C/h.
Doch besitzt das mit dem bekannten Verfahren gewonnene Material einige Nachteile:
- begrenzter Anwendungsbereich, da dieses Material bei der metallurgischen Bearbeitung von atomaren Abfällen wegen der Wechselwirkungen der Uran-basierten Schmelze mit dem Material nicht eingesetzt werden kann,
- seine geringe Hitzebeständigkeit, Feuerfestigkeit, Wärmeleitfähigkeit, Zunderbeständigkeit, seine geringe spezifische Viskosität, die Aufnahme gasförmiger Spaltprodukte.
Die durch die vorgeschlagene Gruppe von Erfindungen erzielte technische Lösung besteht in der Findung eines Herstellungsverfahren für Erzeugnisse aus widerstandsfähiger Keramik, das es erlaubt, Materialien herzustellen, die sich an den in der Uran-basierten Schmelze ablaufenden Reaktionen nicht beteiligen und eine hohe Hitzebeständigkeit, Feuerfestigkeit, Wärmeleitfähigkeit und Zunderbeständigkeit aufweisen.
Darlegung des Wesens der vorgeschlagenen Gruppe von Erfindungen
Die durch die vorgeschlagene Gruppe von Erfindungen erzielte technische Lösung besteht in der Findung eines Herstellungsverfahrens für Erzeugnisse aus widerstandsfähiger Keramik, das die Formung von Rohlingen aus einem ultradispersiven Pulver und die Sinterung mit anschliessender Abkühlung vorsieht sowie - gemäss der Erfindung - die vorbereitende Herstellung des Gemenges aus dem Schlicker eines ultradispersiven Pulvers und Nanoröhrchen, die Formung der Rohlinge durch Dispersion in eine elastische Fonn und hydrostatische Verdichtung unter Drücken von 10 - 100 MPa, zusätzlich das Trocknen der Rohlinge bei einer Temperatur von 100 - 300 °C 3 - 5 Stunden lang in einem Vakuum von 10"2 - 10"3 Torr, das Sintern unter Heliumdrücken von 100 - 1000 MPa bei einer Temperatur von 1500 - 2000 °C 1 - 3 Stunden lang und die Abkühlung unter Druck, anschliessend die Abscheidung aus der gasförmigen Phase von isotopischem Borfluorid und isotopischem Ammoniak (,0BF3 und 14NH3) einer 2 - 3 mm starken Schicht aus ,0B14N bei einer Temperatur von 1800 - 2500 °C, auf die Aussenfläche des gesinterten Rohlings, eines Tiegels z. B., wobei sich das Gemenge wie folgt zusammensetzt [Vol.- %]:
turbostratisches Bornitrid B N - 88 - 95 Vol.-%
Nanoröhrchen aus Magnesiumoxid MgO 2 - 7 Vol.-%
Helium He 3 - 5 Vol.-%
Die Verwendung von Magnesiumoxid MgO und Bornitrid (10B14N) im vorgeschlagenen Verfahren erlaubt die Absorption der Strahlung des Urans.
Das Magnesiumoxid und das Bornitrid sind hinreichend schwer schmelzbare Materialien mit einer niedrigen Wärmeleitfähigkeit und inert gegenüber den meisten Bestandteilen, die an der Reaktion der Wiederaufbereitung des Urandioxids beteiligt sind, jedoch schwach wechselwirkend mit den Schlackeverflüssigem auf Kryolith-Basis (CaAlFe), mit Chloriden und Jodiden.
Das Sintern des Rohlings in einer Dmckkammer (Gasostat) unter einem Heliumdruck von 100 - 1000 MPa ist die einzige Art, wie gasförmige Komponenten in die Keramikstruktur eingebracht werden können.
Bei der vorgeschlagenen Gruppe von Erfindungen kommt es dank der Aufnahme des inerten Gases (Helium) durch das Magnesiumoxid und das Bornitrid in^die Nanoröhrchen und durch das "Ausschwitzen" des Gases an der Oberfläche weder zu einer Verbindung mit der Uranschmelze noch mit der Schlacke.
Die Aufnahme des Inertgases geschieht bei einer viel höheren Temperatur als der Betriebstemperatur, was eine Mehrfachnutzung des gewonnenen Materials erlaubt, da der Diffusionskoeffizient des Gases durch Magnesiumoxid und Bornitrid hindurch an die Oberfläche klein ist.
Um einen Gasverlust über die Aussenfläche des Erzeugnisses, z. B. des Tiegels, zu verhindern, wird er mit einer porenlosen Aussenseite von beträchtlicher Dicke zum Schutz vor der Strahlung der Tiegel schmelze versehen.
Die technische Lösung wird in der vorgeschlagenen Erfindung auch durch Findung eines Herstellungsverfahren für Erzeugnisse aus widerstandsfähiger Keramik erreicht, das die Formung von Rohlingen aus einem ultradispersiven Pulver und die Sinterung mit anschliessender Abkühlung vorsieht sowie - gemäss der Erfindung - die vorbereitende Herstellung des Gemenges aus einem Schlicker von Nano-0-SiAlON, Nano- Yttriumoxid (Y2O3) und Nanoröhrchen aus Siliziumcarbid SiC, die Filtrierung des erhaltenen Gemenges sowie zusätzlich die Trocknung des Rohlings bei einer Temperatur von 100 - 300 °C, seine Sinterung bei einem Heliumdruck von 100 - 1000 MPa bei einer Temperatur von 1500 - 2000 °C 1 - 3 Stunden lang und die Abkühlung unter Druck, worauf die zur selektiven Sorption von Elementen vorgesehene Oberfläche des Rohlings durch Disproportionierung aktiviert wird, wobei die Zusammensetzung des Gemenges folgende Zusammensetzung hat
[Vol.-%]:
Nano-0-SiAlON 87 - 94
Nano- Yttriumoxid Y203 2 - 5
Nanoröhrchen aus Siliziumcarbid SiC 1 - 3
Helium He 3 - 5
Bei der vorgeschlagenen Gruppe von Erfindungen wird durch die dispersive Festigung mit Nanopartikeln, die sich weder in Magnesiumoxid noch Bomitrid lösen und auch nicht bei hohen Temperaturen koagulieren, die Feuerfestigkeit des Materials erhöht.
Der Erhöhung der Schlagfestigkeit und Hitzebeständigkeit hingegen dient die faserförmige Form der dispersiven Teilchen.
Durchgeführte Untersuchungen haben gezeigt, dass nur bei solchen Bedingungen der Rohlingformung, bei Sinterung in der Druckkammer, Aktivierung mit Hilfe von Disproportionierung und Abscheidung aus der gasförmigen Phase das gewünschte technische Ergebnis erzielt werden kann.
Abweichungen von den vorgeschlagenen Bedingungen in Richtung einer Verlängerung oder Verkürzung einzelner Intervalle führt zu einer Verschlechterung der physikalisch-mechanischen Eigenschaften usw.
Die Durchführung der Dispersion in die elastische Form mit hydrostatischer Verdichtung unter einem Druck von 10 - 100 MPa ist nur unter diesen Bedingungen möglich, denn wenn der Druck unter 10 MPa liegt, wird der Rohling sehr feucht und wenig widerstandsfähig sein, liegt der Druck über 100 MPa, wird der Rohling überpresst sein, es kann zur Bildung von Mikrorissen kommen.
Die Durchführung des Trocknens der Rohlinge ist nur möglich bei einer Temperatur von 100 - 300 °C 3 - 5 Stunden lang in einem Vakuum von 10"2 - 10"3 Torr, denn nur bei genügend hoher Temperatur und genügend langer Exposition im Vakuum werden die Rohlinge absolut entwässert, das Sintern muss unter Heliumdrücken von 100 - 1000 MPa bei einer Temperatur von 1500 - 2000 °C 1 - 3 Stunden lang geschehen, die Bedingungen für Temperatur und Druck sind so gewählt, dass es zu einer genügend grossen Gasaufnahme kommt.
Der Vorgang des Disproportionierens z. B. wird wie folgt durchgeführt: Der poröse Rohling wird in einer Palladiumchloridlösung aktiviert, was seine einschliesslich der inneren Poren anschliessende Beschichtung mit Kobalt aus dessen sauren Stickstoffverbindungen ermöglicht.
Bei der Durchführung der Patentrecherchen wurden keine mit dem angemeldeten Verfahren identischen Lösungen zur Gewinnung des Kompositmaterials entdeckt, und somit erfüllt die vorgeschlagene Lösung das Kriterium der Neuheit.
Wir sind der Meinung, dass das Wesentliche der Erfindung nicht klar aus bekannten Lösungen ableitbar ist und somit die vorgeschlagene Erfindung das Kriterium des erfinderischen Niveaus erfüllt.
Wir sind der Meinung, dass die im Antrag gemachten Angaben zur praktischen Herstellung der Erfindung ausreichend sind.
Beste Beispiele der Ausfuhrung der Gruppe von Erfindungen.
1. Als Ausgangsmaterialien für die Zusammensetzung des Gemenges nimmt man wässrigen Schlicker von 95 Vol.-% turbostratischen Bornitrids 10B14N und 2 Vol.-% Nanoröhrchenkristallen aus Magnesiumoxid MgO, vermischt sie und dispergiert sie anschliessend in einer Umhüllung mit der Form des Rohlings, z. B. eines Tiegels aus Polyurethan, verdichtet sie im Hydrostat unter einem Druck von 10 MPa, trocknet sie im Vakuum bei 10"2 Torr drei Stunden lang bei 100 °C und sintert sie barothermisch in Form eines Tiegels unter einem Heliumdruck von 100 MPa bei einer Temperatur von 1500 °C eine Stunde lang mit Abkühlung unter Druck. So erhält man einen Rohling, in dem die Konzentration des Heliums 3 Vol-.% erreicht, es wurden keine Spuren einer Wechselwirkung des Rohlings mit der Uran-basierten Schmelze bei 1500 °C entdeckt, die abschliessende Bearbeitung umfasst das Auftragen der äusseren Schicht aus 10B14N durch Ausscheidung aus der gasförmigen Phase von isotopischem Borfluorid 10BF3 und isotopischem Ammoniak 14NH3 bei einer Temperatur von 1800 °C, bis man eine Schicht von 2 mm Dicke erhält.
2. Als Ausgangsmaterialien für die Zusammensetzung des Gemenges nimmt man wässrigen Schlicker von 88 Vol.-% turbostratischen Bornitrids 10B14N und 7 Vol.-% Nanoröhrchenkristallen aus Magnesiumoxid MgO, vermischt sie und dispergiert sie anschliessend in einer Umhüllung mit der Form des Rohlings, z. B. eines Tiegels aus Polyurethan, verdichtet sie im Hydrostat unter einem Druck von 10 MPa, trocknet sie im Vakuum bei 10'3 Torr fünf Stunden lang bei 150 °C und sintert sie barothermisch in Form eines Tiegels unter einem Heliumdruck von 1000 MPa bei einer Temperatur von 2000 °C eine Stunde lang mit Abkühlung unter Druck. So erhält man einen Rohling, in dem die Konzentration des Heliums 5 Vol-.% erreicht, es wurden keine Spuren einer Wechselwirkung des Rohlings mit der Uran-basierten Schmelze bei 1500 °C entdeckt, abschliessend wird auf den Rohling die äussere Schicht durch Ausscheidung aus der gasförmigen Phase von isotopischem Borfluorid 10BF3 und isotopischem Ammoniak 14NH3 bei einer Temperatur von 1850 °C aufgetragen, bis man eine Schicht von 3 mm Dicke erhält.
3. Als Ausgangsmaterialien für die Zusammensetzung des Gemenges nimmt man wässrigen Schlicker von 94 Vol.-% Nano-9-SiAlON und 2 Vol.-% Nano- Yttriumoxid sowie 1 Vol.-% Nanoröhrchenkristalle aus Siliziumkarbid, filtert sie und trocknet sie bei einer Temperatur von 150 °C und sintert sie unter einem Heliumdruck von 100 MPa bei einer Temperatur von 1500 °C eine Stunde lang. So erhält man einen Rohling, in dem die Heliumkonzentration 3 Vol.-% erreicht, Spuren einer Wechselwirkung des Rohlings mit der Uran-basierten Schlacke bei 1500 °C konnten nicht entdeckt werden. Die abschliessende Bearbeitung durch Disproportionierung wird mit Hilfe von Aktivierung in Palladiumchlorid durchgeführt mit anschliessender Abscheidung von Kobaltisotopen aus der Uranschmelze einschliesslich der inneren Poren.
4. Als Ausgangsmaterialien für die Zusammensetzung des Gemenges nimmt man wässrigen Schlicker von 87 Vol.-% Nano-0-SiAlON und 5 Vol.-% Nano- Yttriumoxid sowie 3 Vol.-% Nanoröhrchenkristalle aus Siliziumkarbid, filtert sie und trocknet sie bei einer Temperatur von 150 °C und sintert sie unter einem Heliumdruck von 1000 MPa, bei einer Temperatur von 2000 °C eine Stunde lang. So erhält man einen Rohling, in dem die Heliumkonzentration 5 Vol.-% erreicht, Spuren einer Wechselwirkung des Rohlings mit der Uran-basierten Schlacke bei 1500 °C konnten nicht entdeckt werden. Die abschliessende Bearbeitung durch Disproportionierung wird mit Hilfe von Aktivierung in Palladiumchlorid durchgeführt mit anschliessender Abscheidung von Kobaltisotopen aus der Uranschmelze einschliesslich der inneren Poren.

Claims

PATENTANSPRÜCHE
1. Herstellungsverfahren für Erzeugnisse aus widerstandsfähiger Keramik, das die Formung von Rohlingen aus einem ultradispersiven Pulver und die Sinterung mit anschliessender Abkühlung vorsieht, dadurch gekennzeichnet, dass vorbereitend ein Gemenge hergestellt wird aus dem Schlicker eines ultradispersiven Pulvers und Nanoröhrchen, der Rohling durch Dispersion in eine elastische Form mit hydrostatischer Verdichtung unter Drücken von 10 - 100 MPa geformt wird, zusätzlich getrocknet wird bei einer Temperatur von 100 300 °C 3 - 5 Stunden lang in einem Vakuum von 10" - 10" 3 Torr, gesintert wird unter Heliumdrücken von 100 - 1000 MPa bei einer Temperatur von 1500 - 2000 °C 1 - 3 Stunden lang und unter Druck abgekühlt wird, anschliessend wird durch Abscheidung aus der gasförmigen Phase von 10BF3 und ,4NH3 (isotopischem Borfluorid und isotopischem Ammoniak) eine 2 - 3 mm starke Schicht aus 10B14N bei einer Temperatur von 1800 - 2500 °C auf die Aussenfläche des gesinterten Rohlings, eines Tiegels z. B., aufgetragen, wobei sich das Gemenge zu 100 Vol.% wie folgt zusammensetzt [Vol.- %]: turbostratisch.es Bornitrid (IOBHN) 88 - 95
Nanoröhrchen aus Magnesiumoxid MgO 2 - 7
Helium He 3 - 5
2. Herstellungsverfahren für Erzeugnisse aus widerstandsfähiger Keramik, das die Formung von Rohlingen aus einem ultradispersiven Pulver und die Sinterung mit anschliessender Abkühlung vorsieht, insbesondere nach Anspruch 1, dadurch gekennzeichnet, dass vorbereitend ein Gemenge aus einem Schlicker von Nano-9- SiAlON, Nano-Yttriumoxid (Y2O3) und Nanoröhrchen aus Siliziumcarbid SiC hergestellt und das erhaltene Gemenge filtriert wird, der Rohling zusätzlich getrocknet und bei einem Heliumdruck von 100 - 1000 MPa und einer Temperatur von 1500 - 2000 °C 1 - 3 Stunden lang getrocknet wird und unter Druck abgekühlt, worauf die zur selektiven Sorption von Elementen vorgesehene Oberfläche des Rohlings durch Disproportionierung aktiviert wird, wobei die Zusammensetzung des Gemenges zu 100 Vol.% folgende Zusammensetzung hat [Vol.-%]
Nano-9-SiAlON
Nano- Yttriumoxid (Y203)
Nanoröhrchen aus Siliziumoxid SiO
Helium He
PCT/IB2012/000081 2012-01-20 2012-01-20 Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik WO2013108059A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2012/000081 WO2013108059A1 (de) 2012-01-20 2012-01-20 Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2012/000081 WO2013108059A1 (de) 2012-01-20 2012-01-20 Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik

Publications (1)

Publication Number Publication Date
WO2013108059A1 true WO2013108059A1 (de) 2013-07-25

Family

ID=45809339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/000081 WO2013108059A1 (de) 2012-01-20 2012-01-20 Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik

Country Status (1)

Country Link
WO (1) WO2013108059A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1521788A (en) * 1976-07-06 1978-08-16 Mo Himiko Tek I Im Di Mendelee Manufacture of articles from hexagonal boron nitride
RU2238240C2 (ru) 2002-12-11 2004-10-20 Институт физики высоких давлений им. Л.Ф.Верещагина РАН Способ получения композиционного материала

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1521788A (en) * 1976-07-06 1978-08-16 Mo Himiko Tek I Im Di Mendelee Manufacture of articles from hexagonal boron nitride
RU2238240C2 (ru) 2002-12-11 2004-10-20 Институт физики высоких давлений им. Л.Ф.Верещагина РАН Способ получения композиционного материала

Similar Documents

Publication Publication Date Title
EP2758356B1 (de) Verfahren zur herstellung leichter, keramischer werkstoffe
CN102153335B (zh) 一种可加工氧化铝陶瓷及其制备方法
EP2094622B1 (de) Verfahren zur herstellung eines gegenstandes zumindest teilweise mit siliziumkarbidgefüge aus einem rohling aus einem kohlenstoffhaltigen material
JP2008511524A (ja) ジルコニアセラミック
EP1899280A1 (de) PORÖSER ß-SIC-HALTIGER KERAMISCHER FORMKÖRPER MIT EINER ALUMINIUMOXIDBESCHICHTUNG UND VERFAHREN ZU DESSEN HERSTELLUNG
DE2548740C2 (de) Verfahren zur Herstellung von Körpern aus Siliziumnitrid
WO2011098319A1 (de) Tiegel für die photovoltaik
EP2975010B1 (de) Zirconiumdioxid, Verwendung von Zirconiumdioxid und Verfahren zur Herstellung eines feuerfesten Erzeugnisses
DE19654182C2 (de) Verfahren zur Herstellung eines keramischen Formkörpers durch Reaktionszonensinterung und Verwendung des Formkörpers
DE102020108196A1 (de) Verfahren zur Herstellung einer keramischen, silikatfreien Feingussform für die Herstellung von Feingussteilen aus höherschmelzenden Metallen und eine keramische, silikatfreie Feingussform für die Herstellung von Feingussteilen aus höherschmelzenden Metallen
WO2013108059A1 (de) Herstellungsverfahren für erzeugnis aus widerstandsfähiger kemamik
WO2019106052A1 (de) Syntheseverfahren zur herstellung eines calciumzirkonathaltigen werkstoffes sowie versatz und grobkeramisches feuerfestes erzeugnis mit einer vorsynthetisierten calciumzirkonathaltigen körnung
CN109266941A (zh) 板状碳化钨-钴合金及其制备方法
EP3383827B9 (de) Korn zur herstellung eines feuerfesten erzeugnisses, verwendung solcher körner, feuerfestes erzeugnis, verfahren zur herstellung eines feuerfesten erzeugnisses sowie ein danach hergestelltes erzeugnis
DE102008037037A1 (de) Verfahren zur Herstellung einer transparenten polykristallinen Keramik
EP2995596B1 (de) Verwendung eines Versatzes zur Herstellung eines feuerfesten keramischen Erzeugnisses
EP1776323B1 (de) Versatz zur erstellung eines feuerfesten keramischen förmkörpers, verfahren zu seiner herstellung sowie seine verwendung als dieselpartikelfilter
DE102013006118B3 (de) Herstellung hochreiner, dichter Siliziumcarbid-Sinterkörper und so erhältliche Sinterkörper
CN111205079A (zh) 一种镧掺杂钇铝石榴石陶瓷及其制备方法
EP3230233B1 (de) Alpha/beta-sialon mit verbesserter sinteraktivität und hoher kantenbeständigkeit
JPH02271919A (ja) 炭化チタン微粉末の製造方法
DE4013025C2 (de) Herstellung von Bornitrid-Formkörpern
JP7302123B2 (ja) 繊維状炭化ホウ素及びその製造方法
EP0810982A1 (de) Verfahren zur herstellung von keramischen, metallischen oder keramometallischen formkörpern sowie schichten
RU2351571C2 (ru) Способ изготовления изделий из композитной высокоглиноземистой нанокерамики

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12707375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12707375

Country of ref document: EP

Kind code of ref document: A1