WO2013107343A1 - 用于化学气相沉积工艺的喷淋头 - Google Patents

用于化学气相沉积工艺的喷淋头 Download PDF

Info

Publication number
WO2013107343A1
WO2013107343A1 PCT/CN2013/070518 CN2013070518W WO2013107343A1 WO 2013107343 A1 WO2013107343 A1 WO 2013107343A1 CN 2013070518 W CN2013070518 W CN 2013070518W WO 2013107343 A1 WO2013107343 A1 WO 2013107343A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
surface layer
metal body
temperature
body layer
Prior art date
Application number
PCT/CN2013/070518
Other languages
English (en)
French (fr)
Inventor
梁秉文
陈勇
叶芷飞
Original Assignee
光达光电设备科技(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光达光电设备科技(嘉兴)有限公司 filed Critical 光达光电设备科技(嘉兴)有限公司
Publication of WO2013107343A1 publication Critical patent/WO2013107343A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Definitions

  • This invention relates to the field of chemical vapor deposition (CVD) technology, and more particularly to a showerhead for use in a chemical vapor deposition process.
  • CVD chemical vapor deposition
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • VPE vapor phase epitaxy
  • a sprinkler 11 and a base 12 are formed in the glove box 10 so as to be opposed to each other.
  • a plurality of showerhead through holes may be provided in the shower head 11, and the shower head 11 is used to supply a source gas.
  • a plurality of substrates 121 are usually placed on the susceptor 12, and the material of the substrate 121 is usually sapphire, Si, SiC, GaAs or InP.
  • a heating unit 13 is further formed under the susceptor 12, and the heating unit 13 heats the substrate 121 such that the temperature of the surface of the substrate 121 reaches a temperature required for the chemical vapor deposition process.
  • a cooling unit is generally disposed in the shower head 11, and the substrate 121 is heated in the heating unit 13. At the time, the cooling unit continues to operate such that the temperature of the showerhead 11 is less than 200 degrees Celsius.
  • the source gas enters the reaction region (the position near the surface of the substrate 121) above the susceptor 12 from the shower head through hole of the shower head 11, which is thermally radiated by the heating unit 13.
  • the function has a certain temperature such that the temperature causes a chemical reaction between the source gases to deposit a layer of epitaxial material on the surface of the substrate 121.
  • the quality of the epitaxial material layer formed by the existing chemical vapor deposition process is not high, and the productivity and efficiency of the chemical vapor deposition equipment cannot meet the requirements of the application. Summary of the invention
  • the problem solved by the embodiment of the present invention is to provide a new shower head which improves the quality of the epitaxial material layer formed by the chemical vapor deposition process and also improves the productivity and efficiency of the chemical vapor deposition apparatus.
  • the present invention provides a shower head for performing a chemical vapor deposition process on a substrate, comprising:
  • a metal body layer having a temperature of less than 300 degrees Celsius in performing a chemical deposition process; an outer surface layer on a surface of the metal body layer near a substrate side, the temperature of the outer surface layer in a chemical vapor deposition process Higher than the temperature of the metal body layer.
  • the metal body layer has a cooling medium flow for cooling the metal body layer such that the temperature of the metal body layer is below 300 degrees Celsius.
  • the outer surface layer is provided with a temperature control device for controlling the temperature of the outer surface layer such that the temperature of the outer surface layer near the substrate side ranges from 300 to 800 degrees Celsius.
  • the outer surface layer has a thickness ranging from 10 micrometers to 5 millimeters.
  • the outer surface layer material is a heat resistant material.
  • the outer surface layer is made of graphite, silicon carbide, silicon, boron nitride, carbon fiber, One or a combination of the quartz.
  • the outer surface layer is mechanically bonded to the metal body layer such that the outer surface layer can be removed from the metal body layer.
  • the surface of the outer surface layer near the substrate side is a rough surface.
  • the surface of the outer surface layer near the substrate has a roughness ranging from 200 nm.
  • the present invention has the following advantages:
  • the shower head provided by the present invention comprises a metal body layer and an outer surface layer on a surface of the metal body layer near the substrate side, and the temperature during the chemical vapor deposition process is higher than the temperature of the metal body layer, so that When chemical vapor deposition is performed, the surface of the outer surface layer near the substrate side forms a possibility of falling and the amount of falling off, which reduces the contamination of the epitaxial material layer formed on the substrate, thereby improving the chemical vapor phase.
  • the quality of the deposition process, and the cleaning and maintenance of the sprinkler are reduced, and the productivity and efficiency of the chemical vapor deposition equipment are improved. Since the temperature of the outer surface layer is higher than the temperature of the metal main layer, the sprinkler and the lining are reduced.
  • the temperature difference between the bottoms reduces the eddy current between the shower head and the substrate, and improves the uniformity of the epitaxial material layer formed on the substrate; the outer surface layer can be removed from the metal body layer, so that the outer surface The surface layer can be used as a spare parts.
  • the temperature range between 300 and layer 800 degrees Celsius the temperature range to ensure that the deposited layer structure is formed on the outer surface of the dense layer, not falling, and contribute to improve the uniformity of distribution of the gas, while saving the amount of source gas;
  • the surface of the outer surface layer near the substrate side is a rough surface, so that the deposited layer formed on the surface of the outer surface layer near the substrate side during the chemical vapor deposition process is not It is easy to fall off, thereby further reducing the contamination of the epitaxial material layer formed on the substrate, and improving the quality of the chemical vapor deposition process.
  • FIG. 1 is a schematic structural view of a prior art chemical vapor deposition apparatus
  • Figure 2 is a schematic structural view of a shower head according to a first embodiment of the present invention
  • Figure 3 is a schematic structural view of a shower head according to a second embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a shower head according to a third embodiment of the present invention.
  • Existing sprinklers are typically made of stainless steel, and the temperature of the surface of the sprinkler near the substrate side is typically less than 200 degrees Celsius.
  • a deposited layer is also formed on the surface of the shower head near the substrate side, but the surface of the shower head near the substrate is made of stainless steel, plus the surface The temperature is very low, causing the texture of the deposited layer formed on the surface to be relatively sparse and loose.
  • the deposited layer formed on the surface of the shower head near the substrate is easily peeled off from the surface. The formation of dust particles causes contamination of the epitaxial material layer grown on the substrate, resulting in impurity defects. Therefore, after each furnace chemical vapor deposition process is completed, a large amount of cleaning and cleaning work is required. Not only does this affect the quality of the chemical vapor deposition process, but it also affects the productivity and efficiency of the chemical vapor deposition equipment.
  • the present invention provides a shower head for performing a chemical vapor deposition process on a substrate, the shower head including a metal body layer and an outer surface on a side of the metal body layer close to the substrate a surface layer, when the chemical vapor deposition process is performed, the temperature of the metal body layer is not exceeded Over 300 degrees Celsius, the temperature of the outer surface layer is greater than the temperature of the metal body layer, by increasing the surface temperature of the outer surface layer near the substrate side, such that the outer surface layer is adjacent to the substrate side
  • the deposited layer formed on the surface becomes denser and less likely to fall off, thereby reducing contamination in the chemical vapor phase epitaxial material layer, improving the quality of the chemical vapor deposition process, and reducing the cleaning and maintenance work on the shower head, thereby improving the chemical vapor deposition apparatus.
  • the gas distribution is more uniform, increasing the uniformity of the epitaxial material layer on the substrate.
  • the shower head includes a metal body layer 100 and an outer surface layer 102, the outer surface
  • the top layer 102 is located on a side of the metal body layer 100 that is adjacent to the substrate.
  • the metal body layer 100 is usually made of a metal.
  • the metal body layer 100 may be made of stainless steel or aluminum.
  • the metal body layer 100 is made of stainless steel.
  • the metal body layer 100 serves as a main body of the shower head, and a cooling medium may flow inside, so that the metal body layer 100 may be cooled to prevent the temperature of the metal body layer 100 from being excessively high.
  • a metal body layer through hole 101 is formed in the metal body layer 100 for allowing the source gas to be uniformly dispersed.
  • the metal layer main body through hole 101 may include a first through hole and a second through hole arranged in a cross, wherein the first through hole is used to flow through the m group gas, and the second through hole is used Flow through the V group gas.
  • the outer surface layer 102 according to the embodiment of the present invention is located on a surface of the metal body layer 100 close to a substrate (not shown) and a susceptor (not shown). As shown in FIG. 2, the outer surface layer 102 is located below the metal body layer 100, the substrate and the pedestal are located below the outer surface layer 102, and a heating unit (not shown) is located below the substrate and the pedestal.
  • the outer surface layer 102 is in direct contact with the surface of the metal body layer 100.
  • the outer surface layer 102 can be bonded to the metal body layer 100 in a variety of ways.
  • the outer surface layer 102 may be bonded to the surface of the metal body layer 100 by bonding, and no cooling unit is disposed in the outer surface layer 102, and the metal body layer 100 is disposed in the metal body layer 100.
  • Cooling unit A cooling medium flows in the cooling unit in the metal body layer 100, and the cooling medium is used to cool the metal body layer 100 such that the temperature of the metal body layer 100 is lower than 300 degrees Celsius, such as the metal.
  • the temperature of the main body 100 can be 250 degrees Celsius, 200 degrees Celsius, 150 degrees Celsius, 100 degrees Celsius and so on.
  • the cooling medium may be cooling water or a cooling gas, and the metal body layer 100 is cooled by uniformly providing a pipe in the metal body layer 100 such that cooling water or cooling gas flows in the metal body layer 100.
  • the outer surface layer 102 may be mechanically bonded to the metal body layer 100.
  • the mechanical mode of the present invention means that the outer surface layer 102 can be connected by one or more sets of bolts and nuts disposed between the outer surface layer 102 and the metal body layer 100, or can be externally A plurality of positioning pins are connected between the surface layer 102 and the metal body layer 100, and a card slot may be connected between the outer surface layer 102 and the metal body layer 100.
  • the above various connection methods should satisfy the outer surface layer. 102 can be removed from the metal body layer 100, and can be directly used when the surface of the metal body layer 100 is stained after a period of use. The clean metal body layer replaces the contaminated metal body layer, which increases the utilization and productivity of the chemical vapor deposition equipment.
  • the material of the outer surface layer 102 should be a heat resistant material.
  • the material of the outer surface layer 102 may be one or more of graphite, silicon carbide, silicon, boron nitride, carbon fiber, carbonaceous film, and quartz.
  • the outer surface layer 102 may be a single layer structure or a multilayer structure in which a plurality of different material layer stacks (bonded integrally or mechanically integrated).
  • the outer surface layer 102 is a single layer structure, and the material thereof is graphite.
  • the outer surface layer 102 is a single layer structure, and the material thereof is graphite and nitrogen.
  • the outer surface layer 102 is a multi-layered structure, which is a graphite layer, a silicon carbide layer, a silicon layer, a boron nitride layer, A stack of three layers of a carbon fiber layer, a carbonaceous film, and a quartz layer, and an integral structure formed by welding.
  • the material and structure of the outer surface layer 102 may be a combination of other materials or other material layers, which are not enumerated here.
  • the outer surface layer 102 has a thickness ranging from 10 micrometers to 5 millimeters.
  • the outer surface layer 102 of the present invention has an outer surface layer through hole 103 therein, and the shape, size, position and layout of the outer surface layer through hole 103 and the metal body layer through hole 101 on the metal body layer 100
  • the shape, size, position, and layout are uniform such that source gas can flow from the metal body layer via 101 through the outer surface layer via 103 to the underlying substrate and pedestal. Since the heating unit heats the substrate and the pedestal while also heating the outer surface layer 102, the metal body layer 100 can maintain a lower temperature (less than 300 degrees Celsius) due to the provision of the cooling unit. In this embodiment, the temperature of the outer surface layer 102 is not lower than the temperature of the shower head 100.
  • the temperature of the outer surface layer 102 ranges from 300 to 800 degrees Celsius, such a temperature range. Not only can the density of the deposited layer formed on the surface of the outer surface layer 102 near the substrate side be increased, the particles falling off from the outer surface layer 102 can be reduced, and the source gas can be reduced while reducing the eddy current problem of the gas. The amount used.
  • a temperature control device may be disposed on the outer surface layer 102,
  • the temperature control device is for detecting the temperature of the outer surface layer 102 in real time, and adjusting and controlling the temperature of the outer surface layer 102 such that the temperature of the outer surface layer 102 is not too high (not more than 1000 degrees Celsius), and The temperature of the outer surface layer 102 is kept uniform during the chemical vapor deposition process.
  • the temperature control device adjusts and controls the temperature of the outer surface layer 102 such that the temperature of the outer surface layer 102 is between 300 and 800 degrees Celsius.
  • the temperature control device includes a plurality of temperature measuring devices (such as thermocouples or infrared thermometers) which may be disposed along one turn of the outer surface layer 102.
  • the temperature control device further includes a signal processing unit, a control unit and a cooling unit, and the temperature data tested by the temperature control device is sent to a signal processing unit, and the signal processing unit processes and analyzes the temperature data to obtain the outer surface layer 102.
  • the temperature distribution, the temperature control device controls the cooling unit to operate according to the temperature distribution on the outer surface layer 102 (for example, the flow rate of the cooling gas or the cooling liquid in the cooling unit can be increased or decreased).
  • the metal body layer 100 has a metal body layer through hole 101 therein
  • the outer surface layer 102 has an outer surface layer through hole 103 therein
  • an interlayer 104 is disposed between the metal body layer 100 and the outer surface layer 102.
  • the interlayer 104 has a cooling medium flow for cooling the metal body layer 100 and the outer surface layer 102 such that the temperature of the metal body layer 100 is lower than 200 degrees Celsius, and the outer surface layer 102
  • the temperature of the surface near one side of the substrate is greater than 300 degrees Celsius and less than 800 degrees Celsius.
  • the interlayer 104 is provided with a mezzanine through hole 105 corresponding to the metal body layer through hole 103 and the outer surface layer through hole so that the source gas can pass.
  • the cooling medium can be water, oil or gas. In this embodiment, the cooling medium is cooling water.
  • a carrier gas passage (not shown) may be disposed in the interlayer 104, and the carrier gas passage is used to pass NH 3 gas as a supplementary gas for the reaction gas.
  • the interlayer 104 is mechanically combined with the metal body layer 100.
  • the diameter of the interlayer 104 is slightly larger than the size of the metal body layer 100, and the outer ring of the metal body layer 100 is screwed.
  • the inner ring of the interlayer 104 is bonded such that the interlayer 104 can be flexibly separated from the metal body layer 100.
  • the interlayer 104 can be connected to the shower head in other manners. For details, refer to the first embodiment, which will not be described in detail herein.
  • the structure of the shower head of the third embodiment of the present invention shown in Fig. 4 is the same as that of the first embodiment.
  • the metal body layer 100 and the outer surface layer 102 are integrated into one body.
  • the shower head is a sleeve type, that is, two kinds of reaction gases required for the chemical vapor deposition process pass through the inner tube 105 and the annular outer tube respectively.
  • a steroid gas flows through the inner tube 105
  • a group V gas flows through the outer annular tube 106.
  • the inner tube 105 flows through the group V gas.
  • the argon gas flows through the annular outer tube 106.
  • the inner tube 105 is located within the annular outer tube 106, and a portion of the metal body layer 106 and the outer surface layer 102 are spaced between the inner tube 105 and the annular outer tube 106. As shown in FIG. 4, the inner tube 105 passes through the metal body layer 100 and the outer surface layer 102, and the inner tube 105 is an annular inner tube located inside the metal body layer 100; A tube 106 passes through the metal body layer 100 and the outer surface layer 102. Ben One skilled in the art can adjust the ratio of the size of the inner tube 105 and the outer tube 106 to the source gas of the chemical vapor deposition process.
  • the shower head provided by the present invention comprises a metal body layer and an outer surface layer on a surface of the metal body layer near the substrate side, and the temperature during the chemical vapor deposition process is higher than the temperature of the metal body layer.
  • the temperature of the outer surface layer is higher than the temperature of the metal body layer, thereby reducing The temperature difference between the shower head and the substrate reduces the eddy current between the shower head and the substrate, and improves the uniformity of the epitaxial material layer formed on the substrate;
  • the outer surface layer can be from the metal body layer Removed, so that the outer surface layer can be used as spare parts, which can be flexibly replaced after a period of use without unnecessary maintenance work;
  • the temperature of the outer surface layer ranges from 300 to 800 degrees Celsius, and the temperature range ensures that the deposited layer formed on the outer surface layer is dense, not easy to fall off, and is advantageous for improving the uniformity of gas distribution, and Save the amount of source gas;
  • the surface of the outer surface layer near the substrate side is a rough surface, so that the deposited layer formed on the surface of the outer surface layer near the substrate side during the chemical vapor deposition process is not It is easy to fall off, thereby further reducing the contamination of the epitaxial material layer formed on the substrate, and improving the quality of the chemical vapor deposition process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供一种用于在衬底上进行化学气相沉积工艺的喷淋头,包括:金属主体层,在进行化学沉积工艺时的温度低于300摄氏度;外表面层,位于所述金属主体层的靠近衬底一侧的表面,所述外表面层在进行化学气相沉积工艺时的温度高于所述金属主体层的温度。本发明提高了化学气相沉积工艺形成的外延材料层的质量,也提高了化学气相沉积设备的产能和效率。

Description

用于化学气相沉积工艺的喷淋头
本申请要求于 2012 年 01 月 21 日提交中国专利局、 申请号为 201210019415.4、 发明名称为 "用于化学气相沉积工艺的喷淋头 "的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化学气相沉积( CVD )技术领域, 特别涉及用于化学气相沉积 工艺的喷淋头。
背景技术
MOCVD( Metal-Organic Chemical Vapor Deposition )是在气相外延生长 (VPE)的基础上发展起来的一种新型气相外延沉积工艺。 它以 III族、 II族元 素的有机化合物和 V、 VI族元素的氢化物等作为晶体生长的源材料, 以热分 解反应方式在基座上进行沉积工艺, 生长各种 III-V族、 II -VI族化合物半导 体以及它们的多元固溶体的薄层单晶材料。 为例, 请参考图 1所示的现有的化学气相沉积设备的结构示意图。
手套箱 10内形成有相对设置的喷淋头 11和基座 12。 所述喷淋头 11内 可以设置多个喷淋头通孔, 所述喷淋头 11用于提供源气体。 所述基座 12上 通常放置多片衬底 121 , 所述衬底 121的材质通常为蓝宝石、 Si、 SiC、 GaAs 或 InP。 所述基座 12的下方还形成有加热单元 13, 所述加热单元 13对所述 衬底 121进行加热, 使得所述衬底 121表面的温度达到化学气相沉积工艺需 要的温度。
所述喷淋头 11内通常设置有冷却单元, 在加热单元 13对衬底 121加热 时, 该冷却单元持续工作, 使得所述喷淋头 11的温度小于 200摄氏度。 在进行 MOCVD工艺时, 源气体自喷淋头 11的喷淋头通孔进入基座 12 上方的反应区域(靠近衬底 121的表面的位置) , 所述衬底 121由于加热单 元 13的热辐射作用而具有一定的温度,从而该温度使得源气体之间进行化学 反应, 从而在衬底 121表面沉积外延材料层。 在实际中发现,现有的化学气相沉积工艺形成的外延材料层的质量不高, 化学气相沉积设备的产能和效率也无法满足应用的要求。 发明内容
本发明实施例解决的问题是提供了一种新的喷淋头, 提高了化学气相沉 积工艺形成的外延材料层的质量,也提高了化学气相沉积设备的产能和效率。
为了解决上述问题, 本发明提供一种用于在衬底上进行化学气相沉积工 艺的喷淋头, 包括:
金属主体层, 在进行化学沉积工艺时的温度低于 300摄氏度; 外表面层, 位于所述金属主体层的靠近衬底一侧的表面, 所述外表面层 在进行化学气相沉积工艺时的温度高于所述金属主体层的温度。
可选地,所述金属主体层中具有冷却介质流动 ,该冷却介质用于对所述 金属主体层进行冷却, 使得所述金属主体层的温度低于 300摄氏度。
可选地, 所述外表面层上设置有温控装置, 用于控制外表面层的温度, 使得所述外表面层的靠近衬底一侧的温度范围为 300~800摄氏度。
可选地, 所述外表面层的厚度范围为 10微米到 5毫米。
可选地, 所述外表面层材料为耐热材质。
可选地, 所述外表面层的材质为石墨、 碳化硅、 硅、 氮化硼、 碳纤维、 石英中的一种或其中的组合。
可选地, 所述外表面层通过机械方式与所述金属主体层结合, 使得所述 外表面层可以从所述金属主体层上移除。
可选地, 所述外表面层的靠近衬底一侧的表面为粗糙表面。
可选地, 所述外表面层的靠近衬底一侧的表面的粗糙度范围为 200纳米
~10(H敖米。
与现有技术相比, 本发明具有以下优点:
本发明提供的喷淋头包括金属主体层和位于所述金属主体层的靠近衬底 一侧的表面的外表面层, 在进行化学气相沉积工艺时的温度高于金属主体层 的温度, 这样在进行化学气相沉积时, 外表面层的靠近衬底一侧的表面形成 落的可能性和脱落的量, 减少了由此产生的对衬底上形成的外延材料层的沾 污, 提高了化学气相沉积工艺的质量, 并减少了对喷淋头的清洗和维护, 提 高了化学气相沉积设备的产能和效率, 由于外表面层的温度高于金属主体层 的温度, 从而减少了喷淋头与衬底之间的温度差, 减轻喷淋头与衬底之间的 涡流, 提高衬底上形成的外延材料层的均匀性; 得外表面层可以从所述金属主体层上移除, 从而该外表面层可以作为常用备 件(spare parts ), 在使用一段时间后, 可以灵活更换, 无需多余的维护工作; 进一步优化地, 所述外表面层的温度范围为 300~800摄氏度之间, 该温 度范围能保证在外表面层上形成的沉积层结构致密、 不易脱落, 并有利于改 善气体分布的均匀度, 同时节省源气体的用量; 进一步优化地, 所述外表面层的靠近衬底一侧的表面为粗糙的表面, 从 而在化学气相沉积工艺过程中在所述外表面层的靠近衬底一侧的表面形成的 的沉积层不容易脱落,从而进一步减少了对衬底上形成的外延材料层的沾污, 提高了化学气相沉积工艺的质量。
附图说明
图 1是现有技术的化学气相沉积设备的结构示意图;
图 2是本发明第一实施例的喷淋头的结构示意图;
图 3是本发明第二实施例的喷淋头的结构示意图;
图 4是本发明第三实施例的喷淋头的结构示意图。
具体实施方式
现有的喷淋头通常是由不锈钢制作的, 并且喷淋头的靠近衬底一侧的表 面的温度通常低于 200摄氏度。 在化学气相沉积工艺的过程中, 喷淋头的靠 近衬底一侧的表面上也会形成沉积层, 但是由于喷淋头的靠近衬底一侧的表 面材质为不锈钢, 再加上该表面的温度很低, 导致在该表面上形成的沉积层 的质地较为稀疏和松散, 在化学气相沉积工艺过程中, 喷淋头的靠近衬底一 侧的表面的形成的沉积层容易从该表面脱落, 形成粉尘颗粒, 对在衬底上生 长的外延材料层造成污染, 产生杂质缺陷。 因此, 在每一炉化学气相沉积工 艺完成后, 都要进行大量的清理、 清洁工作。 这样做不仅会影响化学气相沉 积工艺的质量, 还会影响化学气相沉积设备的产能和效率。
为了解决上述问题, 本发明提供一种用于在衬底上进行化学气相沉积工 艺的喷淋头, 所述喷淋头包括金属主体层和位于所述金属主体层的靠近衬底 一侧的外表面层, 在进行化学气相沉积工艺时, 所述金属主体层的温度不超 过 300摄氏度, 所述外表面层的温度大于所述金属主体层的温度, 通过提高 所述外表面层靠近衬底一侧的表面温度, 使得在所述外表面层的靠近衬底一 侧的表面形成的沉积层变得较为致密, 不易脱落, 因此能够减少在化学气相 外延材料层的污染, 提高化学气相沉积工艺的质量, 减少对喷淋头的清洗维 护工作, 因而提高了化学气相沉积设备的产能和良率, 并且由于提高了外表 面层的温度, 也使得衬底与喷淋头之间的温差减小, 有利于消除衬底和喷淋 头之间的涡流, 使得衬底上的源气体的分布更为均匀, 提高衬底上的外延材 料层的均匀度。
下面结合实施例对本发明的技术方案进行详细的说明。 为了更好地说明 本发明的技术方案, 请参考图 2所示的本发明第一实施例的喷淋头的结构示 所述喷淋头包括金属主体层 100和外表面层 102, 所述外表面层 102位 于所述金属主体层 100的靠近衬底的一侧。 所述金属主体层 100的材质通常 为金属, 比如, 所述金属主体层 100的材质可以为不锈钢, 也可以为铝。 本 实施例中, 所述金属主体层 100的材质为不锈钢。 所述金属主体层 100作为 喷淋头的主体, 其内部可以有冷却介质流动, 这样可以对金属主体层 100进 行冷却, 防止金属主体层 100的温度过高。
所述金属主体层 100内形成有金属主体层通孔 101 , 用于使得源气体均 勾分散通过。 以化学气相沉积工艺为例, 所述金属层主体通孔 101可以包括 交叉排布的第一通孔和第二通孔, 其中第一通孔用于流过 m族气体, 第二通 孔用于流过 V族气体。 本发明实施例所述的外表面层 102位于所述金属主体层 100的靠近衬底 (未图示)和基座(未图示) 的表面。 如在图 2所示, 所述外表面层 102位 于金属主体层 100下方, 衬底和基座位于外表面层 102下方, 加热单元(未 图示)位于衬底和基座下方。
作为一个实施例, 所述外表面层 102与金属主体层 100的表面直接接触
(两者之间没有间隔层、 间隔物等) 。 所述外表面层 102可以通过多种方式 与金属主体层 100结合。 在本发明的一个实施例中, 所述外表面层 102可以 通过粘接方式与金属主体层 100的表面结合, 该外表面层 102中不设置任何 的冷却单元, 而金属主体层 100中设置有冷却单元。 所述金属主体层 100中 的冷却单元中有冷却介质流动, 所述冷却介质用于对所述金属主体层 100进 行冷却, 使得所述金属主体层 100的温度低于 300摄氏度, 比如所述金属主 体曾 100的温度可以为 250摄氏度、 200摄氏度、 150摄氏度、 100摄氏度等 等。 所述冷却接介质可以为冷却水或冷却气体, 通过在金属主体层 100内均 匀地设置管道, 使得冷却水或冷却气体在金属主体层 100内流动, 对金属主 体层 100进行冷却。
在本发明的又一实施例中, 所述外表面层 102可以通过机械方式与所述 金属主体层 100结合。 需要说明的是, 本发明所述的机械方式是指, 所述外 表面层 102可以通过设置在外表面层 102和金属主体层 100之间设置一组或 多组螺栓螺母相连接, 也可以通过外表面层 102与金属主体层 100之间设置 多个定位销相连接, 还可以为外表面层 102与金属主体层 100之间设置卡槽 相连接,但是上述多种连接方式均应满足外表面层 102可以从金属主体层 100 上移除, 在使用一段时间后, 当金属主体层 100表面沾污时, 可以直接采用 洁净的金属主体层替换被沾污的金属主体层, 这样可以提高化学气相沉积设 备的利用率和产能。
所述外表面层 102的材质应为耐热材质。 例如, 所述外表面层 102的材 质可以为石墨、 碳化硅、 硅、 氮化硼、 碳纤维、 碳质薄膜、 石英中的一种或 多种。 所述外表面层 102可以为单层结构, 也可以为多层不同的材料层堆叠 (粘接为一体或机械方式连接为一体) 的多层结构。 作为本发明的一个实施 例, 所述外表面层 102为单层结构, 其材质为石墨; 作为本发明的又一实施 例, 所述外表面层 102为单层结构, 其材质为石墨、 氮化硅和石英中的至少 两种的混合材质;作为本发明的再一实施例,所述外表面层 102为多层结构, 其为石墨层、 碳化硅层、 硅层、 氮化硼层、 碳纤维层、 碳质薄膜、 石英层中 的三层的堆叠, 并且通过焊接形成的一体结构。 当然, 在外表面层 102能够 耐受高温的情况下, 外表面层 102的材质和结构还可以为其他的材质或其他 材质层构成的组合, 在此不——列举。 作为一个实施例, 所述外表面层 102 的厚度范围为 10微米 ~5毫米。
本发明所述的外表面层 102内具有外表面层通孔 103, 所述外表面层通 孔 103的形状、 尺寸、 位置、 布局与所述金属主体层 100上的金属主体层通 孔 101的形状、 尺寸、 位置和布局一致, 以使得源气体能够自金属主体层通 孔 101经过外表面层通孔 103流向下方的衬底和基座。 由于加热单元在对衬 底和基座进行加热的同时, 也对外表面层 102进行加热, 而金属主体层 100 中由于设置了冷却单元其可以保持较低的温度(低于 300摄氏度) , 因此, 本实施例中, 所述外表面层 102的温度不低于喷淋头 100的温度。 作为可选 的实施例, 所述外表面层 102的温度范围为 300~800摄氏度, 这样的温度范 围不仅能够提高在外表面层 102的靠近衬底一侧的表面形成的沉积层的致密 度, 减少从外表面层 102脱落的颗粒, 也能够保证在减小气体的涡流问题的 前提下减少源气体的用量。
作为优选的实施例, 为了防止外表面层 102由于加热单元的加热而温度 过高,提高工艺的均匀度,作为本发明的一个实施例,还可以在外表面层 102 上设置温控装置, 所述温控装置用于实时检测外表面层 102的温度, 并且对 外表面层 102的温度进行调节控制,使得外表面层 102的温度不至于过高(不 超过 1000摄氏度) , 并且, 使得不同批次的化学气相沉积工艺时外表面层 102的温度保持一致。 本实施例中, 所述温控装置对外表面层 102的温度进 行调节控制, 使得所述外表面层 102的温度在 300~800摄氏度之间。
所述温控装置包括多个测温装置 (比如热电偶或红外测温仪) , 该测温 装置可以沿外表面层 102的一圈设置。 该温控装置还包括信号处理单元、 控 制单元和冷却单元, 所述温控装置测试的温度数据发送至信号处理单元, 该 信号处理单元对温度数据进行处理和分析, 获得外表面层 102上的温度的分 布,温控装置根据外表面层 102上的温度的分布,控制冷却单元进行工作(比 如可以加大或减小冷却单元中的冷却气体或冷却液体的流速 ) 。
下面请参考图 3所示的本发明又一实施例的喷淋头的结构示意图。 与第 二实施例相同的结构用相同的标号表示。 作为一个实施例, 金属主体层 100 内具有金属主体层通孔 101 ,外表面层 102内具有外表面层通孔 103,金属主 体层 100与外表面层层 102之间设置了夹层 104, 所述夹层 104中具有冷却 介质流动, 所述冷却介质用于对所述金属主体层 100和外表面层 102进行冷 却, 使得所述金属主体层 100的温度低于 200摄氏度, 所述外表面层 102的 靠近衬底一侧的表面的温度大于 300摄氏度且小于 800摄氏度。所述夹层 104 内设置有与所述金属主体层通孔 103和外表面层通孔对应的夹层通孔 105, 以便源气体能够通过。 所述冷却介质可以为水、 油或气体。 本实施例中, 所 述冷却介质为冷却水。
作为本发明的又一实施例,所述夹层 104内还可以设置载体气体通道(未 图示) , 该载体气体通道用于通入 NH3气体, 作为反应气体的补充气体。
所述夹层 104与所述金属主体层 100以机械方式结合,作为一个实施例, 所述夹层 104的直径略大于金属主体层 100的尺寸, 通过螺丝螺纹的方式, 将金属主体层 100的外圈与夹层 104的内圈结合在一起, 这样所述夹层 104 可以灵活地与金属主体层 100分开。 当然, 所述夹层 104还可以通过其他的 方式与喷淋头相连接, 具体可以参考第一实施例, 在此不作详细说明。
下面请参考图 4所示的本发明第三实施例的喷淋头的结构示意图, 与第 一实施例相同的结构采用相同的标号表示。 金属主体层 100和外表面层 102 结合为一体。以 MOCVD工艺为例,本实施例与前面两个实施例的区别在于, 所述喷淋头为套筒式, 即化学气相沉积工艺所需要的两种反应气体分别通过 内管 105和环形外管 106。 作为一个实施例, 所述内管 105内流过 ΠΙ族气体, 所述环形外管 106内流过 V族气体;作为本发明的又一实施例,所述内管 105 内流过 V族气体, 所述环形外管 106内流过 ΠΙ族气体。 所述内管 105位于所 述环形外管 106之内, 且所述内管 105和环形外管 106之间间隔有部分金属 主体层 106和外表面层 102。 如图 4所示, 所述内管 105穿过所述金属主体 层 100和外表面层 102, 所述内管 105为环形内管, 其位于所述金属主体层 100的内部;所述环形外管 106穿过所述金属主体层 100和外表面层 102。本 领域技术人员可以调整所述内管 105和外管 106的尺寸调整化学气相沉积工 艺的源气体的比例。
综上, 本发明提供的喷淋头包括金属主体层和位于所述金属主体层的靠 近衬底一侧的表面的外表面层, 在进行化学气相沉积工艺时的温度高于金属 主体层的温度, 这样在进行化学气相沉积时, 外表面层的靠近衬底一侧的表 材料脱落的可能性和脱落的沉积层的量, 减少了由此产生的对衬底上形成的 外延材料层的沾污, 提高了化学气相沉积工艺的质量, 并减少了对喷淋头的 清洗和维护, 提高了化学气相沉积设备的产能和效率, 由于外表面层的温度 高于金属主体层的温度, 从而减少了喷淋头与衬底之间的温度差, 减轻喷淋 头与衬底之间的涡流, 提高衬底上形成的外延材料层的均匀性; 得外表面层可以从所述金属主体层上移除, 从而该外表面层可以作为常用备 件(spare parts ) , 在使用一段时间后, 可以灵活更换, 无需多余的维护工作; 进一步优化地, 所述外表面层的温度范围为 300~800摄氏度之间, 该温 度范围能保证在外表面层上形成的沉积层结构致密、 不易脱落, 并有利于改 善气体分布的均匀度, 同时节省源气体的用量;
进一步优化地, 所述外表面层的靠近衬底一侧的表面为粗糙的表面, 从 而在化学气相沉积工艺过程中在所述外表面层的靠近衬底一侧的表面形成的 的沉积层不容易脱落,从而进一步减少了对衬底上形成的外延材料层的沾污, 提高了化学气相沉积工艺的质量。
虽然本发明己以较佳实施例披露如上, 但本发明并非限定于此。 任何本 领域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1. 一种用于化学气相沉积工艺的喷淋头, 其特征在于, 包括:
金属主体层, 在进行化学沉积工艺时的温度低于 300摄氏度;
外表面层, 位于所述金属主体层的靠近衬底一侧的表面, 所述外表面层在 进行化学气相沉积工艺时的温度高于所述金属主体层的温度。
2. 如权利要求 1所述的喷淋头, 其特征在于, 所述金属主体层中具有冷却介 质流动, 该冷却介质用于对所述金属主体层进行冷却, 使得所述金属主体 层的温度低于 200摄氏度。
3. 如权利要求 1所述的喷淋头, 其特征在于, 所述外表面层上设置有温控装 置, 用于控制外表面层的温度, 使得所述外表面层的靠近衬底一侧的温度 范围为 300~800摄氏度。
4. 如权利要求 1 所述的喷淋头, 其特征在于, 所述外表面层的厚度范围为 1(H敖米到 5毫米。
5. 如权利要求 1所述的喷淋头,其特征在于,所述外表面层材料为耐热材质。
6. 如权利要求 5所述的喷淋头, 其特征在于, 所述外表面层的材质为石墨、 碳化硅、 硅、 氮化硼、 碳纤维、 石英中的一种或其中的组合。
7. 如权利要求 1所述的喷淋头, 其特征在于, 所述外表面层通过机械方式与 所述金属主体层结合, 使得所述外表面层可以从所述金属主体层上移除。
8. 如权利要求 1所述的喷淋头, 其特征在于, 所述外表面层的靠近衬底一侧 的表面为粗 ¾表面。
9. 如权利要求 8所述的喷淋头, 其特征在于, 所述外表面层的靠近衬底一侧 的表面的粗糙度范围为 200纳米 ~100微米。
PCT/CN2013/070518 2012-01-21 2013-01-16 用于化学气相沉积工艺的喷淋头 WO2013107343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100194154A CN103074601A (zh) 2012-01-21 2012-01-21 用于化学气相沉积工艺的喷淋头
CN201210019415.4 2012-01-21

Publications (1)

Publication Number Publication Date
WO2013107343A1 true WO2013107343A1 (zh) 2013-07-25

Family

ID=48151293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070518 WO2013107343A1 (zh) 2012-01-21 2013-01-16 用于化学气相沉积工艺的喷淋头

Country Status (3)

Country Link
CN (1) CN103074601A (zh)
TW (1) TW201335419A (zh)
WO (1) WO2013107343A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255392A (zh) * 2013-05-30 2013-08-21 光垒光电科技(上海)有限公司 喷淋头以及气相沉积设备
CN103320865A (zh) * 2013-06-21 2013-09-25 光垒光电科技(上海)有限公司 喷淋头以及气相沉积设备
CN103397308A (zh) * 2013-08-01 2013-11-20 光垒光电科技(上海)有限公司 用于mocvd设备的喷淋头
CN105986243B (zh) * 2015-02-16 2018-07-24 中微半导体设备(上海)有限公司 一种mocvd反应器的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584109A (zh) * 2003-08-06 2005-02-23 爱发科股份有限公司 喷头、薄膜制造装置以及制造方法
WO2007074678A1 (ja) * 2005-12-27 2007-07-05 Tokyo Electron Limited 成膜装置、成膜方法、プリコート層、および、プリコート層の形成方法
US20100316800A1 (en) * 2002-04-16 2010-12-16 Mei Chang Multi-station deposition apparatus and method
CN202450156U (zh) * 2012-01-21 2012-09-26 光达光电设备科技(嘉兴)有限公司 用于化学气相沉积工艺的喷淋头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292092C (zh) * 2004-04-01 2006-12-27 南昌大学 用于金属有机化学气相沉积设备的双层进气喷头
CN1664165A (zh) * 2005-02-02 2005-09-07 南昌大学 用于化合物半导体材料生长的喷头及原料输入方法
CN101914761B (zh) * 2010-08-16 2012-04-25 江苏中晟半导体设备有限公司 用于mocvd反应腔中反应气体输送与均匀分布控制的装置
CN102230165A (zh) * 2011-06-16 2011-11-02 中国科学院苏州纳米技术与纳米仿生研究所 化学气相沉积外延设备用的喷淋头结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100316800A1 (en) * 2002-04-16 2010-12-16 Mei Chang Multi-station deposition apparatus and method
CN1584109A (zh) * 2003-08-06 2005-02-23 爱发科股份有限公司 喷头、薄膜制造装置以及制造方法
WO2007074678A1 (ja) * 2005-12-27 2007-07-05 Tokyo Electron Limited 成膜装置、成膜方法、プリコート層、および、プリコート層の形成方法
CN202450156U (zh) * 2012-01-21 2012-09-26 光达光电设备科技(嘉兴)有限公司 用于化学气相沉积工艺的喷淋头

Also Published As

Publication number Publication date
CN103074601A (zh) 2013-05-01
TW201335419A (zh) 2013-09-01

Similar Documents

Publication Publication Date Title
US9396909B2 (en) Gas dispersion apparatus
JP5698043B2 (ja) 半導体製造装置
JP4945185B2 (ja) 結晶成長方法
JP4534978B2 (ja) 半導体薄膜製造装置
JP6158025B2 (ja) 成膜装置及び成膜方法
WO2010109915A1 (ja) 気相成長装置及び気相成長方法
JP2011216885A (ja) テーパ状水平成長チャンバ
TWI390078B (zh) Iii族氮化物半導體之氣相成長裝置
US20190177851A1 (en) System and method for gas phase deposition
JP2010059520A (ja) 気相成長装置及び気相成長方法
WO2013107343A1 (zh) 用于化学气相沉积工艺的喷淋头
JP6324810B2 (ja) 気相成長装置
WO2013159642A1 (zh) 用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法
JP4058364B2 (ja) 半導体製造装置
TW201108305A (en) Gas phase growing apparatus for group III nitride semiconductor
CN202164350U (zh) 一种金属有机化学气相沉积反应器
CN202450156U (zh) 用于化学气相沉积工艺的喷淋头
TW483053B (en) Chemical vapor deposition apparatus and chemical vapor deposition process
JP2013026358A (ja) シャワープレート及び気相成長装置
TW201824361A (zh) 氣相成長方法
JP2012049316A (ja) 成膜装置および成膜方法
CN202164351U (zh) 一种金属有机化学气相沉积反应器
CN102766851A (zh) 一种金属有机化学气相沉积反应器
JP2013016562A (ja) 気相成長方法
CN102766852A (zh) 一种mocvd反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO TULE 112(1) EPC ( EPO FORM 1205A DATED 15-01-2015 )

122 Ep: pct application non-entry in european phase

Ref document number: 13738705

Country of ref document: EP

Kind code of ref document: A1