WO2013159642A1 - 用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法 - Google Patents

用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法 Download PDF

Info

Publication number
WO2013159642A1
WO2013159642A1 PCT/CN2013/073862 CN2013073862W WO2013159642A1 WO 2013159642 A1 WO2013159642 A1 WO 2013159642A1 CN 2013073862 W CN2013073862 W CN 2013073862W WO 2013159642 A1 WO2013159642 A1 WO 2013159642A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
transparent plate
gas
chemical vapor
vapor deposition
Prior art date
Application number
PCT/CN2013/073862
Other languages
English (en)
French (fr)
Inventor
梁秉文
Original Assignee
光达光电设备科技(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光达光电设备科技(嘉兴)有限公司 filed Critical 光达光电设备科技(嘉兴)有限公司
Publication of WO2013159642A1 publication Critical patent/WO2013159642A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Definitions

  • Spray head for chemical vapor deposition process and method for improving process uniformity This application is filed on April 23, 2012, and filed on the Chinese Patent Office.
  • the present invention relates to the field of chemical vapor deposition (CVD) technology, and more particularly to a showerhead for a chemical vapor deposition apparatus and a method of improving the uniformity of a chemical vapor deposition process.
  • CVD chemical vapor deposition
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • VPE gas phase growth
  • MOCVD please refer to the schematic diagram of the structure of the existing chemical vapor deposition process equipment shown in FIG.
  • Oppositely disposed shower heads 11 and graphite discs 12 are formed in the glove box 10.
  • a plurality of through holes may be provided in the shower head 11, and the shower head 11 is used to supply a reaction gas.
  • the graphite disk 12 has a plurality of grooves therein, and a corresponding substrate 121 is disposed in each of the grooves, and the material of the substrate 121 is usually an expensive sapphire.
  • a heating unit 13 is further formed under the graphite disk 12, and the heating unit 13 heats the graphite disk 12, and the graphite disk 12 is heated by heat to heat the bottom 121 by heat radiation and heat conduction.
  • 121 is placed in the graphite disk 12, and the two are in contact, so that the heating of the bottom portion 121 of the graphite disk 12 is mainly heat conduction.
  • the reaction gas enters the reaction region (the position near the surface of the substrate 121) above the graphite disk 12 from the through hole of the shower head 11, the substrate 121 Due to the heat conduction heating of the heating unit 13, there is a certain temperature, so that the temperature causes a chemical reaction between the reaction gases, thereby depositing an epitaxial material layer on the surface of the substrate 121.
  • the substrate 121 was taken out of the glove box 10 and the properties of the epitaxial material layer were tested.
  • the problem solved by the embodiment of the present invention is to provide a shower head for a chemical vapor deposition process and a method for improving the uniformity of the chemical vapor deposition process, and a window is provided in the shower head to be controllable.
  • a shower head for a chemical vapor deposition process for supplying a reaction gas to a substrate, the shower head having a port, The port has a window transparent plate corresponding thereto, and the window transparent plate serves as an observation channel or a test channel, and the chemical vapor deposition process is monitored through the window transparent plate, and the window transparent plate and the port are connected
  • a purge gas is used to prevent chemical reaction or physical deposition of the reaction gas on the window transparent plate.
  • the purge gas is nitrogen, hydrogen or a mixture of the two.
  • the shower head further has a through hole, and a reactive gas is also passed between the window transparent plate and the port, so that the composition of the reaction gas at the port, the flow density, and the through hole The composition of the reaction gas and the flow density are uniform.
  • the shower head is applied to an MOCVD process, and the reaction gas is ammonia.
  • the area of the port is 1 to 20 times the area of the through hole.
  • the window transparent plate is used to pass an optical signal of the in-situ testing device, and the parameter used for testing by the in-situ testing device includes a growth rate, a thickness, a roughness, a group of the epitaxial material layer on the substrate.
  • the parameter used for testing by the in-situ testing device includes a growth rate, a thickness, a roughness, a group of the epitaxial material layer on the substrate.
  • the present invention also provides a method for improving the uniformity of a chemical vapor deposition process.
  • the chemical vapor deposition process is performed by using a shower head having a port and a through hole, and the port has a window transparent plate corresponding thereto, and the window transparent plate serves as an observation channel or a test channel, and performs a chemical vapor phase.
  • a purge gas and a reactive gas are introduced between the transparent plate of the window and the port, and the composition and flow density of the reaction gas at the port are consistent with the composition and flow density of the reaction gas at the through hole. .
  • the shower head is applied to an MOCVD process, and the purge gas is nitrogen gas, hydrogen gas or a mixture of the two, and the reaction gas is ammonia gas.
  • the window transparent plate is used to pass an optical signal of the in-situ testing device, and the parameter used for testing by the in-situ testing device includes a growth rate, a thickness, a roughness, a group of the epitaxial material layer on the substrate.
  • the parameter used for testing by the in-situ testing device includes a growth rate, a thickness, a roughness, a group of the epitaxial material layer on the substrate.
  • the flow rates of the reaction gas and the purge gas are adjustable.
  • the present invention has the following advantages:
  • the invention provides a window transparent plate on the shower head, and the window transparent plate serves as an observation channel or a test channel, so that a person skilled in the art can monitor the chemical vapor deposition process through the window transparent plate, in order to prevent the reaction gas from passing through the port. And a chemical reaction or physical deposition occurs on the transparent plate of the window.
  • the invention introduces a purge gas between the port and the transparent plate of the window to prevent the optical transmittance of the transparent plate of the window from decreasing, thereby ensuring the accuracy of observation or testing;
  • a reactive gas is also introduced between the port and the window transparent plate, so that the gas atmosphere at the fracture during the chemical vapor deposition process, the composition of the reaction gas at the port, the flow density, and the The composition of the reaction gas at the through hole, the flow rate of the composition of the epitaxial material layer, the thickness and the uniformity of the properties.
  • FIG. 1 is a schematic structural view of a prior art MOCVD apparatus
  • FIG. 2 is a schematic plan view showing a structure of a shower head according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional structural view of FIG. 2 taken along line AA.
  • the substrate under the shower head cannot be used.
  • the warpage of the substrate surface, the thickness of the epitaxial material layer formed on the surface of the substrate, the composition, and the uniformity of the hook can be obtained.
  • the inventors of the present invention provide a shower head for a chemical vapor deposition process for supplying a reaction gas to a substrate, the shower head having a port, and the port having a corresponding arrangement a window transparent plate, the window transparent plate is used as an observation channel or a test channel, and a chemical vapor deposition process is monitored through the window transparent plate, and a purge gas is passed between the window transparent plate and the port, and the purge gas is It is used to prevent chemical reaction or physical deposition of the reaction gas on the transparent plate of the window.
  • a shower head of a chemical vapor deposition apparatus according to an embodiment of the present invention shown in Fig. 2 is incorporated.
  • This embodiment is described by taking only the shower head of the MOCVD apparatus as an example, and the structure thereof will be described.
  • the shower head of the present invention can also be applied to other chemical vapor deposition apparatuses which require the use of a shower head.
  • a plurality of through holes 101 and a port 102 are formed on the shower head 100.
  • One side of the shower head 100 faces a graphite disk (not shown) and a substrate, and the other of the shower heads 100 The side is connected to a reaction gas line for introducing a reaction gas.
  • the shape, size and arrangement of the through holes 101 are the same as those of the prior art and will not be described in detail herein.
  • FIG. 3 is a cross-sectional structural view of FIG. 2 along AA.
  • the port 102 includes a port opening formed in the shower head 100 and a port extension toward the side of the shower head 100 away from the graphite disk 200. Referring to Figure 3 in conjunction with Figure 2, the port opening extends through the showerhead 100, which is parallel to the through hole 101.
  • the port extension is used to support and secure the window transparent plate 103.
  • the port extension portion may be integrated with the shower head 100, that is, processed by integral molding, such that the manufacturing process of the tubular shower head 100; as another embodiment of the present invention
  • the port extension portion may also be separately formed from the shower head 100 and then connected together by screws or the like.
  • the material of the port extension portion may be the same as or different from that of the shower head 100. In this embodiment, the material of the port extension portion is the same as the material of the shower head 100.
  • the port extension is connected to the window transparent plate 103.
  • the port extension is connected to the port extension by an annular flange 109.
  • the signal can pass through the window transparent plate 103.
  • the material of the transparent plate 103 should be a transparent heat-resistant material.
  • the material of the transparent plate 103 can be sapphire, quartz or the like.
  • the window transparent plate 103 can serve as an observation or test channel.
  • the window transparent plate 103 serves as an observation channel, and a person skilled in the art can use the window transparent plate 103 as an observation channel, and monitor the chemical vapor deposition process through the window transparent plate 103 to observe the graphite disk. Warpage deformation of a substrate (not shown) placed on 200, and the like.
  • the window transparent plate 103 further has a corresponding top cover. When the cover is required to be viewed, the top cover is opened, and a person skilled in the art can observe the substrate through the window transparent plate 103. The top cover can be closed when no observation is required.
  • the window transparent plate 103 serves as a test channel, and the chemical vapor deposition process is monitored by the window transparent plate 103.
  • the window transparent plate 103 can be used as a channel for testing signals. Testing one or more of the growth rate, thickness, roughness, uniformity, composition, warpage, reflectance, and temperature of the epitaxial material layer formed on the substrate.
  • the test signal can be an optical signal.
  • the area of the port 102 (the area of the port described in the present invention refers to the area of the port opening of the port in the shower head) should not be too large, so as not to affect the entire spray.
  • the area of the port 102 should be 1 to 20 times the area of the through hole 101.
  • the area of the port 102 may be 3 times, 5 times, 10 times or even 20 times the area of the through hole 101.
  • the position of the port 102, the size, the number, and the distribution of the through holes 101 are not limited to those shown in this embodiment, and may be specifically selected and set as needed in practice.
  • the reaction gas from the through hole 101 may diffuse into the port 102 and be deposited on the window transparent plate 103 after physical deposition or chemical reaction on the window transparent plate 103.
  • the optical transmittance of the window transparent plate 103 is lowered, thus affecting the accuracy of observation or testing.
  • a purge gas is introduced between the ports 102 for preventing the reaction gas between the shower head 100 and the graphite disk 200 from entering the port 102.
  • the purge gas can be nitrogen, hydrogen or a mixture of the two.
  • Line 1092 flows to the port extension of port 102 and flows through the port extension to the port opening of showerhead 100.
  • a gas flow/pressure detecting unit and a corresponding gas flow control unit may be disposed on the first conduit 1081 and the second conduit 1082 for flow of the purge gas to the port 102.
  • the gas flow/pressure sensing unit can be a mass flow controller (MFC) and/or a pressure controller (PC).
  • MFC mass flow controller
  • PC pressure controller
  • a single source of nitrogen or hydrogen gas may be provided, and the port 102 may be supplied with nitrogen or hydrogen through the gas line.
  • the material of the purge gas is different from the material of the reaction gas in the through hole 101, which causes the shower head 100 to face the graphite disk.
  • the distribution of the reaction gas at the port 102 and the via 101 on one side of the 200 is not uniform, which may cause uneven concentration distribution on the graphite disk 200, eventually resulting in an epitaxial material layer formed on the substrate placed on the graphite disk 200.
  • the uneven thickness will also result in uneven composition of the epitaxial material layer and will not meet the requirements of the application.
  • the inventors propose to additionally introduce a reaction gas into the port 102 to compensate for the problem of uneven concentration of the reaction gas at the port 102.
  • a reaction gas for example, in the MOCVD process for forming metal nitrides, a mixture of ammonia gas and MO source is generally required as a reaction gas, and the content of ammonia gas is usually much larger than the content of the MO source (the molar ratio of ammonia gas to MO source is more than 1000:1). ), the gas environment of the chemical reaction above the graphite disk 200 is greatly affected. Therefore, the present invention additionally introduces ammonia gas into the port 102 to compensate for the problem of uneven distribution of ammonia in the port 102.
  • ammonia gas flows from third gas source 1083 through third conduit 1093 to port 102.
  • a gas flow/pressure detecting unit and a corresponding gas flow control unit may be disposed on the third line 1093 for controlling the flow rate and composition of the reaction gas flowing to the port 102.
  • the gas flow/pressure sensing unit can be a mass flow controller (MFC) and/or a pressure controller (PC). Since the ammonia gas is additionally introduced into the port 102, the reaction gas at the port 102 is replenished, so that the gas distribution of the entire shower head is more uniform, so that the composition and flow density of the reaction gas at the port are The composition and flow density of the reaction gas at the through holes are the same.
  • the window transparent plate 103 is used for the optical test signal of the in-situ test device 107, and the optical signal is irradiated to the surface of the substrate placed on the graphite disk 200 through the window transparent plate 103 and the port, on the surface of the substrate.
  • the characteristic parameters of the epitaxial material layer were tested.
  • the present invention provides a window transparent plate on the shower head, and the window transparent plate serves as an observation channel or a test channel, so that a person skilled in the art can monitor the chemical vapor deposition process through the window transparent plate, in order to prevent the reaction.
  • the gas passes through the port and chemically reacts or physically deposits on the transparent plate of the window.
  • the present invention introduces a purge gas between the port and the transparent plate of the window to prevent the optical transmittance of the transparent plate of the window from decreasing, thereby ensuring accurate observation or testing.
  • a reactive gas is also introduced between the port and the window transparent plate, so that the gas atmosphere at the fracture during the chemical vapor deposition process, the composition of the reaction gas at the port, the flow density, and the The composition of the reaction gas at the through hole, the flow rate of the composition of the epitaxial material layer, the thickness and the uniformity of the properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

提供一种用于化学气相沉积工艺的喷淋头和改善化学气相沉积工艺的均匀性的方法,所述喷淋头用于向衬底提供反应气体,所述喷淋头具有端口,所述端口具有与之对应设置的窗口透明板,所述窗口透明板作为观察通道或测试通道,通过所述窗口透明板对化学气相沉积工艺进行监控,所述窗口透明板与端口之间通有吹扫气体,所述吹扫气体用于防止反应气体在窗口透明板上发生化学反应或物理沉积。该方法使得本领域技术人员能够在化学气相沉积工艺过程中对喷淋头下方的衬底的情况进行实时监控。

Description

用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法 本申请要求于 2012年 4 月 23 日提交中国专利局、 申请号为
201210121860.1、 发明名称为 "用于化学气相沉积工艺的喷淋头和改 善工艺均匀性的方法 "的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。
技术领域
本发明涉及化学气相沉积( CVD )技术领域, 特别涉及用于化学 气相沉积设备的喷淋头和改善化学气相沉积工艺均匀性的方法。
背景技术
MOCVD( Metal-Organic Chemical Vapor Deposition )是在气相夕卜 延生长 (VPE)的基础上发展起来的一种化学气相外延沉积工艺。 它以 III族、 II族元素的有机化合物和 、 VI族元素的氢化物等作为晶体生 长的源材料, 以热分解反应方式在至于石墨盘的衬底上进行沉积工 艺, 生长各种 m-v族、 π -νι族化合物半导体以及它们的多元固溶体 的薄层单晶材料。
MOCVD为例,请参考图 1所示的现有的化学气相沉积工艺设备的结 构示意图。
手套箱 10内形成有相对设置的喷淋头 11和石墨盘 12。 所述喷 淋头 11内可以设置多个通孔, 所述喷淋头 11用于提供反应气体。 所 述石墨盘 12 内具有多个凹槽, 每个凹槽内对应放置一片衬底 121 , 所述衬底 121的材质通常为价格昂贵的蓝宝石。 所述石墨盘 12的下 方还形成有加热单元 13 , 所述加热单元 13对石墨盘 12进行加热, 石墨盘 12受热升温, 能够以热辐射和热传导方式对^"底 121进行加 热。 由于衬底 121放置在石墨盘 12中, 两者接触, 因此石墨盘 12对 ^"底 121的加热以热传导为主。
在进行 MOCVD工艺时, 反应气体自喷淋头 11的通孔进入石墨 盘 12上方的反应区域(靠近衬底 121的表面的位置), 所述衬底 121 由于加热单元 13的热传导加热而具有一定的温度, 从而该温度使得 反应气体之间进行化学反应, 从而在衬底 121 的表面沉积外延材料 层。 在 MOCVD工艺结束后, 将衬底 121从手套箱 10中取出, 对外 延材料层的特性进行测试。
在实际中发现, 在化学气相沉积工艺过程中, 无法对喷淋头下方 的衬底的情况进行实时监控。
发明内容
本发明实施例解决的问题是提供了化学气相沉积工艺的喷淋头 和改善化学气相沉积工艺均匀性的方法, 在喷淋头中设置窗口, 能够 控。 ' ' 、 -'、 、 、' 、 〉 ' 为了解决上述问题,本发明提供一种用于化学气相沉积工艺的喷 淋头, 用于向衬底提供反应气体, 所述喷淋头具有端口, 所述端口具 有与之对应设置的窗口透明板,所述窗口透明板作为观察通道或测试 通道, 通过所述窗口透明板对化学气相沉积工艺进行监控, 所述窗口 透明板与端口之间通有吹扫气体 ,所述吹扫气体用于防止反应气体在 窗口透明板上发生化学反应或物理沉积。
可选地, 所述吹扫气体为氮气、 氢气或两者的混合。
可选地, 所述喷淋头上还具有通孔, 所述窗口透明板与端口之间 还通有反应气体, 使得所述端口处的反应气体的组分、 流量密度与所 述通孔处的反应气体的组分、 流量密度一致。
可选地, 所述喷淋头应用于 MOCVD 工艺, 所述反应气体为氨 可选地, 所述端口的面积为所述通孔面积的 1~20倍。
可选地, 所述窗口透明板用于使得原位测试装置的光学信号通 过,所述原位测试装置用于测试的参数包括衬底上的外延材料层的生 长速率、 厚度、 粗糙度、 组分、 温度、 反射率、 翘曲度中的一个或多 个。
相应地,本发明还提供一种改善化学气相沉积工艺的均匀性的方 法, 所述化学气相沉积工艺利用具有端口、 通孔的喷淋头进行, 且所 述端口具有与之对应设置的窗口透明板,所述窗口透明板作为观察通 道或测试通道, 在进行化学气相沉积工艺时, 在所述窗口透明板和端 口之间通入吹扫气体和反应气体, 所述端口处的反应气体的组分、 流 量密度与通孔处的反应气体的组分、 流量密度一致。
可选地, 所述喷淋头应用于 MOCVD 工艺, 所述吹扫气体为氮 气、 氢气或者两者的混合, 所述反应气体为氨气。
可选地, 所述窗口透明板用于使得原位测试装置的光学信号通 过,所述原位测试装置用于测试的参数包括衬底上的外延材料层的生 长速率、 厚度、 粗糙度、 组分、 温度、 反射率、 翘曲度中的一个或多 个。
可选地, 所述反应气体和吹扫气体的流量可调节。
与现有技术相比, 本发明具有以下优点:
本发明在喷淋头上设置窗口透明板,所述窗口透明板作为观察通 道或测试通道,这样本领域技术人员可以通过所述窗口透明板对化学 气相沉积工艺进行监控,为了防止反应气体经过端口并且在窗口透明 板上发生化学反应或物理沉积,本发明在端口与窗口透明板之间通入 吹扫气体, 防止窗口透明板的光学透过率下降,从而保证观察或测试 的准确度;
进一步优化地, 所述端口与窗口透明板之间还通入了反应气体, 从而使得在进行化学气相沉积工艺时断口处的气体环境,所述端口处 的反应气体的组分、 流量密度与所述通孔处的反应气体的组分、 流量 了外延材料层的组分、 厚度和性能的均匀性。
附图说明
图 1是现有技术的 MOCVD装置的结构示意图;
图 2是本发明一个实施例的喷淋头的俯视结构示意图; 图 3是图 2沿 AA线的剖面结构示意图。
具体实施方式
现有的化学气相沉积工艺过程中,无法对喷淋头下方的衬底的情 况进行实时监控, 也就无法获得衬底表面的翘曲变形的情况、衬底表 面形成的外延材料层的厚度、 组分、 均勾性等情况。
为了解决上述问题,本发明的发明人提供一种用于化学气相沉积 工艺的喷淋头, 用于向衬底提供反应气体, 所述喷淋头具有端口, 所 述端口具有与之对应设置的窗口透明板,所述窗口透明板作为观察通 道或测试通道, 通过所述窗口透明板对化学气相沉积工艺进行监控 , 所述窗口透明板与端口之间通有吹扫气体,所述吹扫气体用于防止反 应气体在窗口透明板上发生化学反应或物理沉积。
下面结合实施例对本发明的技术方案进行详细的说明。为了更好 地说明本发明的技术方案,请结合图 2所示的本发明一个实施例的化 学气相沉积设备的喷淋头。 本实施例仅以 MOCVD设备的喷淋头为 例, 对其结构进行说明, 在实际中, 本发明的喷淋头还可以应用于其 他的需要利用喷淋头的化学气相沉积设备。
如图 2所示, 喷淋头 100上形成有多个通孔 101以及端口 102, 喷淋头 100的一侧朝向石墨盘(未图示)和衬底, 所述喷淋头 100的 另一侧与反应气体管路相连接, 所述通孔 101用于通入反应气体。 所 述通孔 101形状、尺寸和排布与现有技术相同,在此不作详细的说明。
请结合图 3所示, 图 3为图 2沿 AA的剖面结构示意图, 端口 102包括形成在喷淋头 100内的端口开口以及向喷淋头 100的远离石 墨盘 200—侧的端口延伸部。 参考图 3并结合图 2, 端口开口贯穿喷 淋头 100, 所述端口开口与通孔 101平行。 所述端口延伸部用于支撑 和固定窗口透明板 103。 作为一个实施例, 所述端口延伸部可以与 喷淋头 100结合为一体, 即采用一体化成型的方式加工而成, 这样筒 化喷淋头 100的制作流程; 作为本发明的又一实施例, 所述端口延伸 部还可以与喷淋头 100分别制作, 然后利用螺丝螺母等连接在一起。 所述端口延伸部的材质可以与喷淋头 100相同或不同, 本实施例中, 所述端口延伸部的材质与喷淋头 100的材质相同。
所述端口延伸部与窗口透明板 103相连接, 作为一个实施例, 所 述端口延伸部通过环形法兰 109与端口延伸部相连接。为了保证光学 信号能够通过窗口透明板 103, 窗口透明板 103的材质应为透明耐热 材质, 比如所述窗口透明板 103的材质可以为蓝宝石、 石英等。 所述 窗口透明板 103可以作为观察或测试通道。
作为本发明的一个实施例, 所述窗口透明板 103作为观察通道, 本领域技术人员可以通过该窗口透明板 103作为观察通道,通过该窗 口透明板 103对化学气相沉积工艺进行监控,观察石墨盘 200上放置 的衬底(未图示)的翘曲变形等情况。 作为可选的实施例, 所述窗口 透明板 103还具有与之相对应的顶盖, 在需要观察的时候, 该顶盖打 开, 本领域技术人员可以透过窗口透明板 103对衬底进行观察, 在不 需要观察的时候, 顶盖可以关闭。
作为本发明的又一实施例, 所述窗口透明板 103作为测试通道, 通过所述窗口透明板 103对化学气相沉积工艺进行监控,本领域技术 人员可以将利用该窗口透明板作为测试信号的通道,对衬底上形成的 外延材料层的生长速率、 厚度、 粗糙度、 均匀度、 组分、 翘曲度、 反 射率和温度等参数中的一个或多个进行测试。所述测试信号可以为光 学信号。
由于在喷淋头 100中设置端口 102, 所述端口 102的面积(本发 明中所述的端口的面积是指端口的位于喷淋头内的端口开口的面积) 不宜过大, 以免影响整个喷淋头的气流分布。 作为一个实施例, 所述 端口 102的面积应为通孔 101的面积的 1~20倍, 例如所述端口 102 的面积可以为通孔 101的面积的 3倍、 5倍、 10倍甚至 20倍, 本领 域技术人员可以根据实际需要进行具体的选择和设置。 所述端口 102 的位置、 通孔 101的大小、 数目和分布不限于本实施例所示, 在实际 中可以根据需要进行具体的选择和设置。
由于在喷淋头上设置了端口 102, 来自通孔 101的反应气体可能 会扩散至端口 102内,并且在窗口透明板 103上物理沉积或者发生化 学反应后沉积于窗口透明板 103上,这会造成窗口透明板 103的光学 透过率下降, 因而会影响观察或测试的准确度。
因此, 作为本发明的可选的实施例, 在所述窗口透明板 103与端 口 102之间通入吹扫气体,所述吹扫气体用于防止喷淋头 100与石墨 盘 200之间的反应气体进入端口 102。 所述吹扫气体可以为氮气、 氢 气或两者的混合。
请参考图 3, 氮气自第一气体源 1081经过第一管路 1081流入端 口 102的端口延伸部,并且经过端口延伸部流向喷淋头 100的端口开 口,氢气自第二气体源 1082经过第二管路 1092流向端口 102的端口 延伸部, 并且经过端口延伸部流向喷淋头 100的端口开口。 作为进一 步优化的实施例,所述第一管路 1081和第二管路 1082上还可以设置 气体流量 /压力检测单元和对应的气体流量控制单元, 用于对流向端 口 102 的吹扫气体的流量和组成进行控制。 所述气体流量 /压力检测 单元可以为质量流量控制器(MFC )和 /或压力控制器(PC )。 在实际 中, 根据需要, 为了筒化 MOCVD 的气体系统, 可以仅有设置单一 的氮气或氢气的气体源,通过气体管道,向端口 102提供氮气或氢气。
由于喷淋头 100上设置了端口 102, 且端口 102中通入了吹扫气 体, 吹扫气体的材质与通孔 101中的反应气体的材质不同, 这样会造 成喷淋头 100的朝向石墨盘 200的一侧的端口 102和通孔 101处的反 应气体的分布不均匀,从而可能会造成石墨盘 200上的浓度分布不均 匀,最终导致石墨盘 200上放置的衬底上形成的外延材料层的厚度不 均匀, 也会导致外延材料层的组分不均匀而无法满足应用的要求。
为了解决上述问题, 发明人提出在端口 102 中额外通入反应气 体, 以弥补端口 102处的反应气体的浓度不均匀的问题。 以形成金属 氮化物的 MOCVD工艺为例, 通常需要氨气和 MO源的混合作为反 应气体, 并且氨气的含量通常远远大于 MO源的含量 (氨气与 MO 源的摩尔比大于 1000:1 ) , 对石墨盘 200上方的化学反应的气体环境 影响较大。 因此, 本发明额外在端口 102中通入了氨气, 以弥补端口 102中的氨气的分布不均匀的问题。结合图 3,氨气自第三气体源 1083 经过第三管路 1093流向端口 102。 作为可选的实施例, 所述第三管 路 1093上还可以设置气体流量 /压力检测单元和对应的气体流量控制 单元, 用于对流向端口 102的反应气体的流量和组成进行控制。 所述 气体流量 /压力检测单元可以为质量流量控制器(MFC )和 /或压力控 制器(PC )。 由于在端口 102中额外通入了氨气, 从而对端口 102处 的反应气体进行补充, 使得整个喷淋头的气体分布更加均匀, 使得所 述端口处的反应气体的组分、流量密度与所述通孔处的反应气体的组 分、 流量密度一致。
请继续参考图 3, 所述窗口透明板 103用于原位测试装置 107的 光学测试信号,光学信号经过窗口透明板 103和端口照射到放置于石 墨盘 200上的衬底表面,对衬底表面的外延材料层的特性参数进行测 试。
综上, 本发明在喷淋头上设置窗口透明板, 所述窗口透明板作为 观察通道或测试通道,这样本领域技术人员可以通过所述窗口透明板 对化学气相沉积工艺进行监控,为了防止反应气体经过端口并且在窗 口透明板上发生化学反应或物理沉积,本发明在端口与窗口透明板之 间通入吹扫气体, 防止窗口透明板的光学透过率下降, 从而保证观察 或测试的准确度;
进一步优化地, 所述端口与窗口透明板之间还通入了反应气体, 从而使得在进行化学气相沉积工艺时断口处的气体环境,所述端口处 的反应气体的组分、 流量密度与所述通孔处的反应气体的组分、 流量 了外延材料层的组分、 厚度和性能的均匀性。
虽然本发明己以较佳实施例披露如上, 但本发明并非限定于此。 任何本领域技术人员, 在不脱离本发明的精神和范围内, 均可作各种 更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为 准。

Claims

权 利 要 求
1. 一种用于化学气相沉积工艺的喷淋头, 用于向衬底提供反应气体, 其特征在于, 所述喷淋头具有端口, 所述端口具有与之对应设置 的窗口透明板, 所述窗口透明板作为观察通道或测试通道, 通过 所述窗口透明板对化学气相沉积工艺进行监控, 所述窗口透明板 与端口之间通有吹扫气体, 所述吹扫气体用于防止反应气体在窗 口透明板上发生化学反应或物理沉积。
2. 如权利要求 1所述的喷淋头, 其特征在于, 所述吹扫气体为氮气、 氢气或两者的混合。
3. 如权利要求 1 所述的喷淋头, 其特征在于, 所述喷淋头上还具有 通孔, 所述窗口透明板与端口之间还通有反应气体, 使得所述端 口处的反应气体的组分、 流量密度与所述通孔处的反应气体的组 分、 流量密度一致。
4. 如权利要求 3 所述的喷淋头, 其特征在于, 所述喷淋头应用于 MOCVD工艺, 所述反应气体为氨气。
5. 如权利要求 3所述的喷淋头, 其特征在于, 所述端口的面积为所 述通孔面积的 1~20倍。
6. 如权利要求 1 所述的喷淋头, 其特征在于, 所述窗口透明板用于 使得原位测试装置的光学信号通过, 所述原位测试装置用于测试 的参数包括衬底上的外延材料层的生长速率、 厚度、 粗糙度、 组 分、 温度、 反射率、 翘曲度中的一个或多个。
7. 一种改善化学气相沉积工艺的均勾性的方法, 所述化学气相沉积 工艺利用具有端口、 通孔的喷淋头进行, 且所述端口具有与之对 应设置的窗口透明板, 所述窗口透明板作为观察通道或测试通道, 其特征在于, 在进行化学气相沉积工艺时, 在所述窗口透明板和 端口之间通入吹扫气体和反应气体, 所述端口处的反应气体的组 分、 流量密度与通孔处的反应气体的组分、 流量密度一致。
8. 如权利要求 7所述的改善化学气相沉积工艺的均匀性的方法, 其 特征在于, 所述喷淋头应用于 MOCVD工艺, 所述吹扫气体为氮 气、 氢气或者两者的混合, 所述反应气体为氨气。
9. 如权利要求 7所述的改善化学气相沉积工艺的均匀性的方法, 其 特征在于, 将所述窗口透明板用于使得原位测试装置的光学信号 通过, 所述原位测试装置用于测试的参数包括衬底上的外延材料 层的生长速率、 厚度、 粗糙度、 组分、 温度、 反射率、 翘曲度中 的一个或多个。
10.如权利要求 7所述的改善化学气相沉积工艺的均匀性的方法, 其 特征在于, 所述反应气体和吹扫气体的流量可调节。
PCT/CN2013/073862 2012-04-23 2013-04-08 用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法 WO2013159642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210121860.1 2012-04-23
CN2012101218601A CN103074604A (zh) 2012-04-23 2012-04-23 用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法

Publications (1)

Publication Number Publication Date
WO2013159642A1 true WO2013159642A1 (zh) 2013-10-31

Family

ID=48151296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073862 WO2013159642A1 (zh) 2012-04-23 2013-04-08 用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法

Country Status (3)

Country Link
CN (1) CN103074604A (zh)
TW (1) TW201343962A (zh)
WO (1) WO2013159642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180258521A1 (en) * 2015-09-24 2018-09-13 Sharp Kabushiki Kaisha Vapor deposition source, vapor deposition device, and vapor deposition film producing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334092B (zh) * 2013-06-13 2015-04-22 中国电子科技集团公司第四十八研究所 一种用于金属有机化学气相沉积反应器的管道冷却式气体分布装置
CN105112887B (zh) * 2015-08-28 2017-09-05 沈阳拓荆科技有限公司 一种测试喷淋头气流均匀性的装置及测试方法
CN105420691A (zh) * 2015-11-19 2016-03-23 广州市威时强光电科技发展有限公司 一种mocvd设备喷淋头及其气相反应控制方法
CN108520852B (zh) * 2018-06-04 2023-06-27 长鑫存储技术有限公司 一种等离子蚀刻的喷头异常监测系统及方法
CN112921307B (zh) * 2021-01-20 2021-12-31 华中科技大学 一种用于提升mocvd喷淋均匀性的光学检测装置
CN113322448A (zh) * 2021-05-21 2021-08-31 聚灿光电科技股份有限公司 一种石墨盘

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029743A1 (de) * 2004-09-15 2006-03-23 Schott Ag Verfahren und vorrichtung zum aufbringen einer elektrischen leitfähigen transparenten beschichtung auf ein substrat
CN1861837A (zh) * 2005-05-12 2006-11-15 三星Sdi株式会社 用于沉积多晶硅的cvd装置
US20090266911A1 (en) * 2008-04-24 2009-10-29 Samsung Electro-Mechanics Co., Ltd. Showerhead for chemical vapor deposition and chemical vapor deposition apparatus having the same
CN101974736A (zh) * 2010-11-19 2011-02-16 理想能源设备有限公司 一种化学气相沉积装置及其喷头组件
CN202543326U (zh) * 2012-04-23 2012-11-21 光达光电设备科技(嘉兴)有限公司 用于化学气相沉积工艺的喷淋头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892123B1 (ko) * 2008-12-31 2009-04-09 (주)세미머티리얼즈 폴리 실리콘 증착장치
TWI431149B (zh) * 2009-12-24 2014-03-21 Lig Adp Co Ltd 化學氣相沈積設備及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029743A1 (de) * 2004-09-15 2006-03-23 Schott Ag Verfahren und vorrichtung zum aufbringen einer elektrischen leitfähigen transparenten beschichtung auf ein substrat
CN1861837A (zh) * 2005-05-12 2006-11-15 三星Sdi株式会社 用于沉积多晶硅的cvd装置
US20090266911A1 (en) * 2008-04-24 2009-10-29 Samsung Electro-Mechanics Co., Ltd. Showerhead for chemical vapor deposition and chemical vapor deposition apparatus having the same
CN101974736A (zh) * 2010-11-19 2011-02-16 理想能源设备有限公司 一种化学气相沉积装置及其喷头组件
CN202543326U (zh) * 2012-04-23 2012-11-21 光达光电设备科技(嘉兴)有限公司 用于化学气相沉积工艺的喷淋头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180258521A1 (en) * 2015-09-24 2018-09-13 Sharp Kabushiki Kaisha Vapor deposition source, vapor deposition device, and vapor deposition film producing method
US10760155B2 (en) * 2015-09-24 2020-09-01 Sharp Kabushiki Kaisha Vapor deposition source and vapor deposition device for producing vapor deposition film with high material usage efficiency

Also Published As

Publication number Publication date
CN103074604A (zh) 2013-05-01
TW201343962A (zh) 2013-11-01

Similar Documents

Publication Publication Date Title
WO2013159642A1 (zh) 用于化学气相沉积工艺的喷淋头和改善工艺均匀性的方法
JP6158025B2 (ja) 成膜装置及び成膜方法
KR100688836B1 (ko) 촉매 화학기상증착장치
JP3110990B2 (ja) 酸化アルミニウムを付着させる方法及び関連する装置
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US20110206843A1 (en) Processing methods and apparatus with temperature distribution control
JP6279396B2 (ja) 気相成長方法及び気相成長装置
JP2011501409A (ja) 化学蒸着反応チャンバ
JP2013503464A (ja) Cvd方法およびcvd反応炉
JPH03281780A (ja) Cvd装置
KR101775281B1 (ko) Mocvd 가스 샤워 헤드 전처리방법
KR100580062B1 (ko) 화학기상성장장치 및 막 성장방법
KR20070088184A (ko) 샤워헤드 및 이를 구비한 원자층 증착설비
JP4058364B2 (ja) 半導体製造装置
JP2012175055A (ja) 原子層堆積装置
US20150337442A1 (en) Multi-Wafer Reactor
TW201122150A (en) Chemical vapor deposition apparatus and a control method thereof
WO2013107343A1 (zh) 用于化学气相沉积工艺的喷淋头
JP2010238831A (ja) 気相成長装置及び気相成長方法
JP4377968B2 (ja) Cvd反応器
CN202543326U (zh) 用于化学气相沉积工艺的喷淋头
JP2007335800A (ja) 半導体薄膜の製造方法および製造装置
KR100699815B1 (ko) 두께 균일성을 개선하기 위한 화학기상증착 장비의 샤워헤드
KR101034584B1 (ko) 박막 측정 방법 및 박막 측정 장치
KR20200071390A (ko) 기판처리장치 및 이를 이용한 기판처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782290

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 12.01.2015 )

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13782290

Country of ref document: EP

Kind code of ref document: A1