WO2013107337A1 - 定位方法、定位服务器、终端和基站 - Google Patents

定位方法、定位服务器、终端和基站 Download PDF

Info

Publication number
WO2013107337A1
WO2013107337A1 PCT/CN2013/070501 CN2013070501W WO2013107337A1 WO 2013107337 A1 WO2013107337 A1 WO 2013107337A1 CN 2013070501 W CN2013070501 W CN 2013070501W WO 2013107337 A1 WO2013107337 A1 WO 2013107337A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
cell
information
difference threshold
terminal
Prior art date
Application number
PCT/CN2013/070501
Other languages
English (en)
French (fr)
Inventor
肖登坤
崔杰
李安俭
韩静
贺媛
吴彤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13738696.7A priority Critical patent/EP2797347B1/en
Publication of WO2013107337A1 publication Critical patent/WO2013107337A1/zh
Priority to US14/333,239 priority patent/US9814015B2/en
Priority to US15/705,025 priority patent/US10212688B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0215Interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • Positioning method positioning server, terminal and base station
  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to a positioning method, a positioning server, a terminal, and a base station.
  • Positioning techniques are techniques employed to determine the geographic location of a mobile station. The location information of the mobile station can be obtained directly or indirectly using resources of the wireless communication network.
  • LTE Long Term Evolution
  • Network-assisted GNSS Global Navigation Satellite System
  • OTDOA Observed Time Difference
  • e-CID Enhanced Cell Identification
  • the mobile station positioning algorithm of LTE can generally detect the characteristic parameters of the radio wave propagation signal between the mobile station and the base station (signal field strength, propagation signal arrival time difference, signal arrival direction angle, etc.), and then estimate the mobile terminal according to the relevant positioning algorithm.
  • Geometric location The GNSS positioning method requires the terminal to have a wireless receiver that receives GNSS signals.
  • the specific implementation of the GNSS includes GPS (Global Positioning System) positioning, Galileo positioning, and the like.
  • Downlink positioning and e-CID positioning are both types of network positioning. It mainly relies on the detection of radio resource characteristic parameters inside the mobile communication system, and then estimates the location of the mobile station according to the positioning algorithm, which is a hot spot of current research.
  • the OTDOA positioning uses the mobile station to receive the downlink PRS (Positioning Reference Signal) from multiple base stations and performs timing measurement, and reports the PRS arrival time difference between the base stations, and performs calculation on the network positioning server to obtain the geographical position of the mobile station.
  • PRS Positioning Reference Signal
  • OTDOA is a common positioning technology. The principle is that when there are three or more base stations in the system, The location of the terminal is determined according to the time difference of arrival of the downlink transmission signals of different base stations.
  • the downlink transmission signal may be a reference signal or a synchronization signal.
  • OTDOA positioning is a technology for network-assisted terminal location. After the network-side e-SMLC (Enhanced Serving Mobile Location Centre) specifies the transmission and reception configuration of the positioning reference signal (PRS) for the base station and the mobile station, the base station transmits the PRS in the downlink, and the mobile station receives the information from the multiple.
  • PRS positioning reference signal
  • the PRS arrival time difference between different base stations can be obtained and reported to the e-SMLC.
  • the e-SMLC receives the signal time difference of different base stations through the mobile station, and can be mapped into the distance difference between the mobile station and the different base stations.
  • the e-SMLC can obtain the accurate position of the mobile station.
  • the advantage of OTDOA positioning is that the positioning is accurate and can be used for mobile station positioning in non-line-of-sight networks.
  • the accuracy of OTDOA positioning is highly dependent on the reception of the PRS signal and the estimation of the first path.
  • OTDOA can complete the positioning of terminals in some dense urban areas or indoor scenes; however, due to the need to estimate the time difference of arrival of signals, dense urban and indoor wireless propagation environments will produce multipath generation of signals. The effect, which causes the OTDOA to not truly reflect the linear distance difference between the two base stations from the UE, which increases the positioning error.
  • the interference condition of the downlink PRS greatly affects the accuracy of the positioning. Therefore, the current standard discusses the PRS transmission in the low interference subframe, that is, the RE (Resource Element) of the PRS in the subframe of the PRS.
  • the PRS pattern is shifted in the frequency domain according to the PCI (Physical Cell Identifier) module 6, when the PCI modes 6 of the two cells are equal, the PRS of the two cells exists. Co-channel interference. Therefore, the muting (quiet period) is introduced in the protocol of Rel-9, and the interference is avoided by the separation in the time domain. However, muting wastes the opportunity for the terminal to receive multiple PRS time domain signals, which will affect the accuracy of positioning.
  • PCI Physical Cell Identifier
  • the PRS of the PRS is different after the PRS, the PRS of the two cells are mapped in different REs, but the difference between the SNR (Signal to Noise Ratio) of the PRS of the two cells is too large.
  • SNR Signal to Noise Ratio
  • 40 dB 320Ts 130 RSTD indicates the Reference Signal Time Difference
  • Ts indicates the minimum time unit in the LTE system
  • lTs l/(2048 X 15000) seconds.
  • the embodiments of the present invention provide a positioning method, a positioning server, a terminal, and a base station, which can reduce interference of a positioning reference signal.
  • a positioning method including: notifying a terminal of a difference threshold information, where the difference threshold information is used to indicate a difference threshold of reference signal measurements of two cells in a cell pair; and the receiving terminal according to the difference threshold
  • the cell subset information determined by the information, the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds a difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed a difference threshold;
  • the subset information determines the configuration of the PRS, and notifies the terminal of the configuration of the PRS; the reference signal time difference RSTD measured by the receiving terminal according to the configuration of the PRS, and determines the location of the terminal according to the RSTD.
  • a positioning method including: receiving a difference threshold information notified by a positioning server, where the difference threshold information is used to indicate a difference threshold of reference signal measurement values of two cells in a cell pair;
  • the threshold information determines the cell subset information and sends the cell subset information to the positioning server, where the cell subset information is used to indicate the cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate the reference signal measurement.
  • the cell value of the difference does not exceed the difference threshold; the configuration of the positioning reference signal PRS determined by the positioning server according to the cell subset information; the reference signal time difference RSTD is obtained according to the configuration of the PRS, and the RSTD is sent to the positioning server.
  • a positioning method including: receiving allocation information sent by a positioning server; adjusting a configuration of the positioning reference signal PRS according to the allocation information; feeding back a configuration of the adjusted PRS to the positioning server; and configuring the adjusted PRS according to the configuration
  • the PRS is transmitted to the terminal.
  • a positioning method including: interacting with a terminal to support positioning capability information for performing positioning measurement according to multiple RATs; determining a first RAT with the lightest load among multiple RATs; transmitting allocation information to the base station, and allocating The information is used to indicate that the base station transmits the positioning reference signal PRS to the terminal on the first RAT, and receives the base station.
  • the configuration of the feedback PRS notifying the terminal of the configuration of the PRS; receiving the RSTD measured by the terminal according to the configuration of the PRS, and determining the location of the terminal according to the RSTD.
  • a positioning method including: interacting with a positioning server to support positioning capability information for performing positioning measurement according to multiple RATs, so that the positioning server determines the first RAT with the lightest load among the multiple RATs; receiving the positioning server The configuration of the notified PRS, where the base station transmits the PRS using the first RAT in the configuration of the PRS; the RSTD is measured according to the configuration of the PRS, and the RSTD is sent to the positioning server.
  • a positioning method including: determining a configuration of a PRS of a first cell, a second cell, and a third cell controlled by a base station, where a bandwidth of the base station is divided into a first frequency band, a second frequency band, a third frequency band, and a fourth frequency band, the first cell uses a first frequency band and a second frequency band, the second cell uses a third frequency band and a fourth frequency band, and the third cell uses the second frequency band and the third frequency band, such that the first cell, the second cell, and When any one of the third cells transmits the PRS, the other cells do not transmit the service signal on the frequency band overlapping the one cell; and the PRS is transmitted to the terminal according to the configuration of the PRS on the one cell.
  • a location server in another aspect, includes a transceiver and a processor.
  • the transceiver is configured to notify the terminal of the difference threshold information, where the difference threshold information is used to indicate a difference threshold of the reference signal measurement values of the two cells in the cell pair; the transceiver is configured to receive the cell subset determined by the terminal according to the difference threshold information.
  • Information the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds a difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed a difference threshold;
  • the processor is configured to use the cell subset information according to the cell subset information.
  • the transceiver Determining the configuration of the PRS; the transceiver is configured to notify the terminal of the configuration of the PRS; the transceiver is configured to receive the RSTD measured by the terminal according to the configuration of the PRS; and the processor is configured to determine the location of the terminal according to the RSTD.
  • a terminal including a transceiver, and a processor, where the transceiver is configured to receive a difference threshold information notified by a positioning server, where the difference threshold information is used to indicate a reference signal measurement value of two cells in a cell pair.
  • the processor is configured to determine the cell subset information according to the difference threshold information, where the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds a difference threshold, or the cell subset information is used to indicate a reference signal
  • the transceiver is configured to send the cell subset information to the positioning server, and receive the configuration of the PRS determined by the positioning server according to the subset information of the cell; the processor is configured to measure the RSTD according to the configuration of the PRS.
  • the transceiver is used to send an RSTD to the location server.
  • a base station including a transceiver and a processor, the transceiver is configured to receive allocation information sent by a positioning server, the processor is configured to adjust a configuration of the PRS according to the allocation information, and the transceiver is configured to feed back the adjusted PRS to the positioning server.
  • the transceiver is configured to transmit the PRS to the terminal according to the adjusted configuration of the PRS.
  • a positioning server including a transceiver and a processor, and the transceiver is configured to interact with the terminal
  • the terminal supports positioning capability information for performing positioning measurement according to multiple RATs;
  • the processor is configured to determine a first RAT with the lightest load among the plurality of RATs;
  • the transceiver is configured to send allocation information to the base station, where the allocation information is used to indicate that the base station is on the first RAT Transmitting the PRS to the terminal, and receiving the configuration of the PRS fed back by the base station;
  • the transceiver is configured to notify the terminal of the configuration of the PRS;
  • the transceiver is configured to receive the RSTD measured by the terminal according to the configuration of the PRS; and the processor is configured to determine the location of the terminal according to the RSTD.
  • a terminal including a transceiver and a processor, where the transceiver is configured to interact with a positioning server to support positioning capability information for performing positioning measurement according to multiple RATs, so that the positioning server determines the lightest load among the multiple RATs.
  • the first RAT is configured to receive a configuration of the PRS notified by the positioning server, where the base station uses the first RAT to transmit the PRS, the processor is configured to measure the RSTD according to the configuration of the PRS, and the transceiver is configured to send the RSTD to the positioning server.
  • a base station including a transceiver, and a processor, where the processor is configured to determine a configuration of a PRS of a first cell, a second cell, and a third cell controlled by a base station, where a bandwidth of the base station is divided into a first frequency band, a second frequency band, a third frequency band, and a fourth frequency band, the first frequency band uses the first frequency band and the second frequency band, the second frequency band uses the third frequency band and the fourth frequency band, and the third cell uses the second frequency band and the third frequency band, so that the first frequency band Any one of the first cell, the second cell, and the third cell transmits the PRS when the other cell does not transmit the PDSCH service signal on the frequency band overlapping the two one cells; the transceiver is configured to perform the PRS configuration on one cell.
  • the terminal transmits a PRS.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • FIG. 1 is a flow chart of a positioning method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a positioning method according to another embodiment of the present invention.
  • FIG. 3 is a flow chart of a positioning method according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a positioning process according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a positioning process according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of an example of a CoMP scenario
  • FIG. 7 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a positioning method according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a positioning method according to another embodiment of the present invention.
  • FIG. 12 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a scenario in which an embodiment of the present invention is applicable.
  • Figure 15 is a block diagram of a location server in accordance with one embodiment of the present invention.
  • Figure 16 is a block diagram of a terminal in accordance with one embodiment of the present invention.
  • Figure 17 is a block diagram of a base station according to an embodiment of the present invention.
  • FIG. 18 is a block diagram of a positioning server according to another embodiment of the present invention.
  • Figure 19 is a block diagram of a terminal according to another embodiment of the present invention.
  • FIG 20 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a flow chart of a positioning method in accordance with an embodiment of the present invention.
  • the method of Figure 1 is performed by a location server such as e-SMLC.
  • a difference threshold information where the difference threshold information is used to indicate a difference threshold of reference signal measurements of two cells in a cell pair.
  • the reference signal can be a CRS (Cell-specific reference signal), a PRS, or other suitable reference signal.
  • the measured value may be received power, such as CRS (reference signal receiving power) and PRS received power (PRS received power); the measured value may also be other types of values, such as SNR.
  • the difference threshold information may include at least one of the following: The difference threshold of the RSRP, the difference threshold of the SNR of the CRS of the two cells, the difference threshold of the PRP of the two cells and the first mapping factor, the difference threshold of the SNR of the PRS of the two cells, and the second mapping factor.
  • the above first mapping factor ⁇ represents the RSRP difference value? Mapping factor difference between ⁇ and PRP ⁇ ⁇ ", the second mapping mapping factor factor ⁇ 2 represents a difference between the AS SNR of the SNR difference AS CTS CRS and the PRS.
  • the embodiment of the present invention does not limit the type of the mapping factor.
  • the first mapping factor can be , or ⁇ ⁇ .
  • the positioning server may predetermine the value of the mapping factor, such as determining the mapping factor according to simulation, experiment or other means.
  • the location server can notify the terminal of the difference threshold information in various manners, which is not limited by the embodiment of the present invention.
  • the location server may carry the difference threshold information in the message requesting the terminal to report the capability.
  • the positioning server may carry the difference threshold information in the message requesting the terminal to perform the positioning measurement.
  • the positioning server may carry the difference threshold information in the auxiliary data sent to the terminal for assisting the terminal to perform positioning measurement.
  • the positioning server may send the difference threshold information to the serving base station of the terminal, so that the serving base station sends the difference threshold information to the terminal by using a broadcast or RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed the difference threshold.
  • the location server may receive the cell subset information carried by the terminal in the message of the reporting capability.
  • the location server may receive the cell subset information carried by the terminal in the message requesting the assistance data.
  • the embodiment of the present invention does not limit the form of the subset information of the cell.
  • the cell subset information may include a list of cell pairs, that is, a list of cell identifiers of two cells in the cell pair.
  • the cell subset information may include a list of cell pairs whose reference signal measurements differ by more than the difference threshold, or the cell subset information includes a list of cell pairs whose reference signal measurements do not exceed the difference threshold.
  • the cell subset information may include a list of cells for the currently inspected cell, that is, a list of identifiers of cells that satisfy a certain condition that the reference signal measurement value between the currently inspected cells meets.
  • the cell subset information may include a list of cells whose difference from the reference signal measurement value between the currently inspected cells exceeds the difference threshold, or the cell subset information may include a reference signal measurement value between the currently inspected cell A list of cells whose difference does not exceed the difference threshold.
  • the embodiment of the present invention does not limit the specific form of the "cell identifier" in the above various lists.
  • the cell identifier may be PCI, CGI (Cell Global Identity) or ECGKE-UTRAN Cell Global Identity, E-UTRAN Cell Global Identity, and the like.
  • the cell subset information may further include at least one of: difference information of the reference signal measurement value, a frequency point number of the cell, and a carrier number of the cell.
  • difference information of the reference signal measurement value may be the difference value itself, or may be an index value corresponding to the difference value, which is not limited in the embodiment of the present invention.
  • the cell subset information may also carry the frequency point number or carrier number of the cell to assist the positioning server to more accurately adjust the PRS configuration.
  • the positioning server may determine, according to the indication of the cell subset information, a cell that needs to adjust the PRS configuration, for example, any cell in the cell pair whose reference signal measurement value is greater than the difference threshold or The two cells, or the cell in which the reference cell measurement value between the current cell or the current cell is greater than the difference threshold, sends corresponding allocation information to the base station to instruct the base station to adjust the PRS configuration of the determined cell.
  • the difference between the reference signal measurements is reduced, and the adjusted PRS configuration fed back by the base station is received.
  • the "adjustment" in the embodiment of the present invention includes that the base station performs adjustment according to the indication of the allocation information, partially adjusts according to the indication of the allocation information, or does not perform adjustment (for example, the allocation information may indicate that the base station does not need to adjust the PRS configuration, or The base station may judge that it is not necessary to adjust the PRS configuration according to other conditions.
  • the positioning server may carry the allocation information in the message requesting the base station to report the PRS configuration, or carry the allocation information in the special message before the requesting base station reports the PRS configuration message.
  • the type of information assigned is related to how it is adjusted. For example, if the difference of the reference signal measurement values is reduced by adjusting the PRS power, the positioning server may transmit power allocation information to the base station that needs to adjust the PRS transmission power according to the cell subset information.
  • the power allocation information is used to instruct the base station to adjust the PRS transmission power to reduce the difference between the PRS reception power or the SNR of the two cells in the cell pair.
  • the positioning server then receives from the base station the configuration of the PRS obtained by the base station after adjustment based on the power allocation information. As the difference in PRS received power or SNR between the two cells decreases, the interference between the PRSs also decreases.
  • each The cell has multiple available frequency points (or carriers).
  • the positioning server may send the frequency point allocation information to the base station that needs to adjust the PRS transmission frequency point according to the cell subset information.
  • the frequency allocation information is used to instruct the base station to adjust the PRS transmission frequency point to reduce the difference between the PRS reception power or the SNR of the two cells in the cell pair, so that interference between the PRSs can be reduced or avoided.
  • the positioning server receives, from the base station, a configuration of the PRS obtained by the base station after adjusting based on the frequency allocation information. By changing the transmission frequency of the PRS, the difference between the PRS reception power or the SNR of the two cells can also be reduced, thereby reducing the interference between the PRSs.
  • the positioning server may send node configuration information to the base station according to the subset information of the cell.
  • the node configuration information is used to notify the base station to select an optimal cooperating node (CoMP node) that transmits the PRS that satisfies the PRS received power or SNR difference threshold.
  • the positioning server receives, from the base station, a configuration of the PRS obtained by the base station after the selection based on the node configuration information.
  • the optimal cooperative node uses the maximum PRS transmit power when the PRS receive power or SNR is lower than or equal to the difference threshold, thereby avoiding excessive PRS measurement value difference and avoiding interference between PRS.
  • the PRS received power or SNR difference threshold may be met by adjustment of beamforming of the base station.
  • the positioning server may send beamforming configuration information to the base station according to the subset information of the cell.
  • the beamforming configuration information is used to inform the base station to select a beamformed transmit PRS that satisfies the PRS receive power or SNR difference threshold.
  • the positioning server receives, from the base station, a configuration of the PRS obtained by the base station after selecting based on beamforming configuration information.
  • the shaped antenna can perform spatial separation of the PRS. As long as the angle isolation is satisfied between the main lobes of the two cells, the difference between the PRS receiving power or the SNR can be reduced to avoid interference as much as possible.
  • the positioning server may also not change the PRS configuration of the cell.
  • the positioning server selects a cell that satisfies the PRS received power or the SNR difference threshold from the neighbor list of the serving cell of the terminal according to the cell subset information, and then receives the configuration of the PRS from the base station of the selected cell.
  • the neighbor list may include the current serving cell of the terminal and its neighboring cells. The cell selected in this way can satisfy the PRS receiving power or the SNR difference threshold, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the embodiment of the present invention does not limit the manner in which the terminal is notified of the PRS configuration.
  • the manner in which the PRS configuration is delivered by the auxiliary data can be used in the prior art. Therefore, it will not be repeated.
  • the receiving terminal measures the RSTD according to the configuration of the PRS, and determines the location of the terminal according to the RSTD.
  • the process of measuring the RSTD by the terminal according to the configuration of the PRS and the process of determining the location of the terminal by the positioning server according to the RSTD are not limited.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS being too large, and reducing the interference between the PRSs.
  • FIG. 2 is a flow chart of a positioning method according to another embodiment of the present invention.
  • the method of Fig. 2 is performed by a terminal (e.g., UE) and corresponds to the method of Fig. 1, and thus the duplicated description will be appropriately omitted.
  • a terminal e.g., UE
  • 201 Receive a difference threshold information that is notified by the positioning server, where the difference threshold information is used to indicate a difference threshold of reference signal measurement values of two cells in a cell pair.
  • the reference signal can be a CRS (Cell-specific reference signal), a PRS, or other suitable reference signal.
  • the measured value may be received power, such as CRS (reference signal receiving power) and PRS received power (PRS received power); the measured value may also be other types of values, such as SNR.
  • the difference threshold information may include at least one of the following: a difference threshold of RSRP of two cells, a difference threshold of SNR of CRS of two cells, and a PRP of two cells.
  • the above first mapping factor ⁇ represents the RSRP difference value?
  • PRP difference ⁇ ⁇ "mapping factor between the second mapping factor ⁇ 2 represents the difference between the SNR of SNR difference AS CTS CRS and the PRS AS P" between the mapping factor.
  • the embodiment of the present invention does not limit the type of the mapping factor.
  • the first mapping factor can be , or ⁇ ⁇ .
  • the positioning server may predetermine the value of the mapping factor, such as determining the mapping factor according to simulation, experiment or other means.
  • the terminal may receive the difference threshold information that is notified by the positioning server in various manners, which is not limited in this embodiment of the present invention.
  • the terminal may receive the difference threshold information carried in the message that the positioning server requests the terminal to report the capability.
  • the terminal may receive the difference threshold information carried by the positioning server in the message requesting the terminal to perform the positioning measurement.
  • the terminal may receive the difference threshold information in the auxiliary data sent by the positioning server to the terminal for assisting the terminal to perform positioning measurement.
  • the terminal may receive the difference threshold information sent by the serving base station of the terminal to the terminal by using a broadcast or R C message, where the difference threshold information is received by the serving base station from the positioning server.
  • the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds a difference threshold, or a cell subset information.
  • the cell pair indicating that the difference of the reference signal measurement value does not exceed the difference threshold.
  • the embodiment of the present invention does not limit the manner in which the cell subset information is transmitted.
  • the end The terminal may carry the cell subset information in the message reporting capability to the positioning server.
  • the terminal may carry the cell subset information in a message requesting the assistance data from the positioning server.
  • the embodiment of the present invention does not limit the form of the subset information of the cell.
  • the cell subset information may include a list of cell pairs, that is, a list of cell identifiers of two cells in the cell pair.
  • the cell subset information may include a list of cell pairs whose reference signal measurements differ by more than the difference threshold, or the cell subset information includes a list of cell pairs whose reference signal measurements do not exceed the difference threshold.
  • the cell subset information may include a list of cells for the currently inspected cell, that is, a list of identifiers of cells that satisfy a certain condition that the reference signal measurement value between the currently inspected cells meets.
  • the cell subset information may include a list of cells whose difference from the reference signal measurement value between the currently inspected cells exceeds the difference threshold, or the cell subset information may include a reference signal measurement value between the currently inspected cell A list of cells whose difference does not exceed the difference threshold.
  • the embodiment of the present invention does not limit the specific form of the "cell identifier" in the above various lists.
  • the cell identifier may be PCI, CGI (Cell Global Identity) or ECGKE-UTRAN Cell Global Identity, E-UTRAN Cell Global Identity, and the like.
  • the cell subset information may further include at least one of: difference information of the reference signal measurement value, frequency point information of the cell (such as a frequency point number). Carrier information of the cell (such as carrier number).
  • difference information of the reference signal measurement value may be the difference value itself, or may be an index value corresponding to the difference value, which is not limited by the embodiment of the present invention.
  • the cell subset information may also carry the frequency point number or carrier number of the cell to assist the positioning server to adjust the PRS configuration more accurately.
  • the terminal may receive a configuration of a PRS of a cell that is selected by the positioning server from the neighbor list to satisfy the PRS received power or the SNR difference threshold.
  • the neighbor list may include the current serving cell of the terminal and its neighboring cells.
  • the embodiment of the present invention does not limit the manner in which the PRS configuration is received from the positioning server.
  • the manner in which the PRS configuration is delivered by the auxiliary data can be used in the prior art. Therefore, it will not be repeated.
  • the reference signal time difference RSTD is obtained according to the configuration of the PRS, and the RSTD is sent to the positioning server.
  • the process of measuring the RSTD according to the configuration of the PRS and the process of sending the RSTD to the positioning server are not limited.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS being too large, and reducing the interference between the PRSs.
  • FIG. 3 is a flow chart of a positioning method according to another embodiment of the present invention.
  • the method of Figure 3 is performed by a base station, such as an eNB.
  • the terminal may receive the allocation information carried by the positioning server in the message requesting the base station to report the PRS configuration.
  • the terminal may receive the allocation information carried in the dedicated message of the positioning server before requesting the base station to report the PRS configuration message.
  • the base station may perform any one of the following adjustment operations according to the allocation information: adjusting the PRS transmit power, adjusting the PRS transmit frequency, and selecting the most suitable for transmitting the PRS that meets the PRS receive power or the SNR difference threshold.
  • the optimal cooperative node selects a beamforming that satisfies the PRS receiving power or the SNR difference threshold for transmitting the PRS, and uses the first RAT with the lightest load in the multiple RAT (Radio Access Technique) to transmit the PRS.
  • the adjustment manner of the embodiment of the present invention is not limited to the specific example described above.
  • the embodiment of the present invention does not limit the process of the base station feeding back the configuration of the PRS to the positioning server.
  • the information of the PRS configuration is carried by reporting the OTDOA information response message of the PRS configuration to the positioning server.
  • the PRS is transmitted to the terminal according to the adjusted configuration of the PRS.
  • the embodiment of the present invention does not limit the process in which the base station transmits the PRS to the terminal according to the configuration of the PRS.
  • the same processing in the prior art can be employed, and therefore will not be described again.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the base station performing the method of FIG. 3 is a serving base station of the terminal, the base station may further receive the difference threshold information from the positioning server and forward the difference threshold information to the terminal.
  • the difference threshold information is used to indicate a difference threshold of reference signal measurements of two cells in a cell pair.
  • the base station may receive, from the terminal, the cell subset information determined by the terminal according to the difference threshold information, and forward the cell subset information to the location server.
  • the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds a difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed a difference threshold.
  • the allocation information in the above step 301 is sent by the positioning server according to the cell subset information.
  • the base station in forwarding the difference threshold information, may obtain a location service.
  • the device receives the difference threshold information, and sends the difference threshold information to the terminal by using a broadcast or an RRC message.
  • the base station may transparently transmit the difference threshold information from the positioning server to the terminal.
  • the base station transmits the PRS using the first RAT with the lightest load among the plurality of RATs according to the allocation information of the positioning server, the interference of the service signal to the PRS may also be reduced (hereinafter, the embodiment will be described in detail with reference to FIG. 10 to FIG. 12). ).
  • FIG. 4 is a schematic flow chart of a positioning process in accordance with an embodiment of the present invention.
  • the SNR difference problem is compensated by using PRS power control, and the difference of the reference signal measurement value is reduced by adjusting the PRS power.
  • the positioning server sends the allowed difference threshold information to the terminal.
  • the difference threshold information may include an absolute value of the difference threshold, or may also include a relative mapping factor ⁇ (such as the first mapping factor ⁇ or the second mapping factor ⁇ 2 described above).
  • the mapping factor ⁇ is determined by the network. For example, the network can inform the terminal of this mapping factor.
  • the terminal autonomously estimates which RSRPs are not satisfactory when measuring RSRP.
  • the network can also directly inform the terminal RSRP of the absolute difference threshold to help the terminal to filter.
  • step 401 the following example signaling may be used to send the difference threshold information.
  • the positioning server may send the difference threshold information when performing capability interaction with the terminal:
  • LPP LTE Positioning Protocal, LTE Positioning Protocol
  • OTDOA-RequestCapabilities LPP (LTE Positioning Protocal, LTE Positioning Protocol) cell OTDOA-RequestCapabilities
  • ODOA request capability is a cell that the positioning server sends to the terminal requesting the terminal to report its own capability (see 3GPP TS36.355), and the italic part is added in the embodiment of the present invention.
  • the CRS-PowerDif erenceThreshold is just a naming scheme, which means that the positioning server informs the terminal of the CRS Receive Power (RSRP) difference threshold.
  • RSRP CRS Receive Power
  • CRS-SNRDifferenceThreshold is just a naming scheme, which means that the positioning server informs the terminal of the CRS receiving signal-to-noise ratio (SNR) difference threshold.
  • PRS-PowerDifferenceFactor (PRS; 3 ⁇ 43 ⁇ 4 override) is just a fate, meaning that the positioning server informs the terminal of the CRS received power difference and the PRS received power difference mapping factor (first mapping factor). After the terminal receives the mapping factor, the RSRP measurement result is mapped according to the mapping factor, and the estimated PRS power difference is obtained, and then the PRS-PowerDifferenceThreshold (PRS power difference threshold, indicating the difference threshold of the PRS receiving power) Compare.
  • PRS power difference threshold indicating the difference threshold of the PRS receiving power
  • PRS-SNRDif erenceFactor PRS-SNR SS factor
  • PRS-SNRDif erenceFactor PRS-SNR SS factor
  • the meaning of the 3 ⁇ 4 household ⁇ 3 ⁇ 4 is the mapping factor of the difference between the CRS receiving SNR difference and the PRS receiving SNR difference of the positioning server (the second mapping factor). ).
  • the SNR measurement result of the CRS is mapped according to the mapping factor to obtain the estimated PRS SNR difference, and then the PRS-SNRDifferenceThreshold (PRS-SNR difference threshold, indicating the PRS receiving signal to noise ratio Difference threshold) for comparison.
  • PRS-SNR difference threshold indicating the PRS receiving signal to noise ratio Difference threshold
  • the positioning server may send the difference threshold information when requesting the positioning measurement:
  • the LPP cell OTDOA-RequestLocationlnformation is a cell that the positioning server sends to the terminal requesting the terminal to perform OTDOA positioning measurement (see 3GPP TS36.355), and the italic part is added in the embodiment of the present invention.
  • the CRS-PowerDif erenceThreshold (CRS power difference threshold) is just a naming manner, which means that the positioning server informs the terminal of the difference threshold of the CRS received power.
  • the meaning is that the positioning server informs the terminal of the CRS receiving signal to noise ratio difference threshold.
  • the PRS-PowerDifferenceFactor is only a naming manner, which means that the positioning server informs the terminal of the CRS received power difference and the PRS received power difference mapping factor (first mapping factor). After the terminal receives the mapping factor, the RSRP measurement result is mapped according to the mapping factor, and the estimated PRS power difference is obtained, and then the PRS-PowerDifferenceThreshold (PRS power difference threshold, indicating the difference threshold of the PRS receiving power) Compare. Can also be written as:
  • the PRS-SNRDif erenceFactor (PRS-SNR difference factor) is only a naming manner, and its representative meaning is that the positioning server informs the terminal of the CRS receiving signal-to-noise ratio difference and the PRS receiving signal-to-noise ratio difference mapping factor (second mapping factor). ). After the terminal receives the mapping factor, the SNR measurement result of the CRS is mapped according to the mapping factor to obtain the estimated PRS SNR difference, and then the PRS-SNRDifferenceThreshold (PRS-SNR difference threshold, indicating the PRS receiving signal to noise ratio Difference threshold) for comparison.
  • PRS-SNRDifferenceThreshold PRS-SNR difference threshold, indicating the PRS receiving signal to noise ratio Difference threshold
  • the positioning server may send the difference threshold information when sending the auxiliary data:
  • LPP cell OTDOA-ProvideAssistanceData (OTDOA provides auxiliary data) is the auxiliary data sent by the positioning server to the terminal to help the terminal perform OTDOA positioning measurement (see 3GPP TS36.355), italic
  • the CRS-PowerDiiiferenceThreshold (CRS 3 ⁇ 4 gate) is just a naming scheme, which means that the positioning server informs the terminal of the difference threshold of the CRS received power.
  • CRS-SNRDifferenceThreshold (CRS-SNR difference threshold) is just a naming scheme, which means that the positioning server informs the terminal of the CRS receiving signal to noise ratio difference threshold.
  • the meaning is a mapping factor (first mapping factor) of the CRS received power difference and the PRS received power difference of the positioning server to the terminal.
  • the RSRP measurement result is mapped according to the mapping factor, and the estimated PRS power difference is obtained, and then the PRS-PowerDifferenceThreshold (PRS power difference threshold, indicating the difference threshold of the PRS receiving power) Compare.
  • PRS-PowerDifferenceThreshold PRS power difference threshold, indicating the difference threshold of the PRS receiving power
  • the PRS-SNRDif erenceFactor (PRS-SNR difference factor) is only a naming manner, and its representative meaning is that the positioning server informs the terminal of the CRS receiving signal-to-noise ratio difference and the PRS receiving signal-to-noise ratio difference mapping factor (second mapping factor). ). After the terminal receives the mapping factor, the SNR measurement result of the CRS is mapped according to the mapping factor to obtain the estimated PRS SNR difference, and then the PRS-SNRDifferenceThreshold (PRS-SNR difference threshold, indicating the PRS receiving signal to noise ratio Difference threshold) for comparison.
  • PRS-SNRDifferenceThreshold PRS-SNR difference threshold, indicating the PRS receiving signal to noise ratio Difference threshold
  • the difference threshold information can be passed through LPPa (LTE Positioning Protocol A, LTE Positioning Protocol A)
  • LPPa LTE Positioning Protocol A, LTE Positioning Protocol A
  • the signaling is sent by the positioning server to the base station, and then sent by the base station to the terminal through broadcast or RRC information.
  • LPPa signaling OTDOA Power (or SNR) Difference Information from the positioning server to the base station can be defined.
  • the LPPa signaling is sent by the positioning server to the base station, and notifies the base station of the difference threshold information defined by the network side, such as the power difference threshold (or the SNR difference threshold) of the CRS, or may notify the base station of the PRS defined by the network side.
  • a mapping factor between the power difference threshold (or SNR difference threshold) and the power (or SNR) difference of the CRS and the PRS power (or SNR) difference such as the first mapping factor ⁇ or the second mapping factor 02 described above
  • the following information is used to describe the information carried by the LPPa signaling.
  • CRSPowerDifferenceThreshold is just a naming method.
  • the meaning of the representation is the CRS power difference threshold sent by the positioning server to the base station; its value can be an integer value ( INTEGER).
  • CRSSNRDifferenceThreshold CRS SNR SS Threshold
  • the PRSPowerDiflferenceThreshold is a naming mode.
  • the meaning of the PRSPowerDiflferenceThreshold is the PRS power difference threshold sent by the positioning server to the base station.
  • the value can be an integer value.
  • the PRS-CRSMappingFactor (PRS-CRS mapping factor) is a mapping factor (first mapping factor) of the difference between the PRS and the CRS power, and the present invention does not limit this parameter type.
  • the PRS-CRSSNRMappingFactor PRS-CRS SNR Mapping Factor
  • PRS-CRS SNR Mapping Factor is a mapping factor (second mapping factor) of the SNR difference between the PRS and the CRS, and the present invention does not limit this parameter type.
  • the base station-to-terminal difference threshold information is sent and can be sent through broadcast or RRC information. Similar to the above example, the delivered content can be divided into the receiver CRS power difference, the receiver CRS SNR difference, and the PRS power difference.
  • the mapping factor, as well as the PRS SNR difference and the mapping factor are 3GPP TS36.331 signaling example (the italic part is a new part of the embodiment of the invention):
  • system information block type 1 (SystemlnformationBlockTypel) may be used:
  • the naming manner which is represented by the eNB, informs the terminal of the difference threshold of the CRS received power.
  • CRS-SNRDifferenceThresholdforOTDOA (the CRS SNR difference threshold of OTDOA) is just a naming scheme, which means that the eNB informs the terminal of the CRS reception SNR difference threshold.
  • the eNB informs the terminal of the CRS received power difference value and the PRS received power difference mapping factor (first mapping factor). After the terminal receives the mapping factor, the RSRP measurement result is mapped according to the mapping factor, and the estimated PRS received power difference is obtained, and then the PRS-PowerDifferenceThreshold (PRS power difference threshold, indicating the difference threshold of the PRS received power) ) Compare.
  • PRS-PowerDifferenceThreshold PRS power difference threshold, indicating the difference threshold of the PRS received power
  • the PRS-SNRDififerenceFactor (PRS-SNR 5 picture) is only a life-span.
  • the picture is a mapping factor (second mapping factor) that the eNB informs the terminal of the CRS reception signal-to-noise ratio difference and the PRS reception signal-to-noise ratio difference.
  • the SNR measurement result of the CRS is mapped according to the mapping factor, and the estimated PRS SNR difference is obtained, and then the PRS-SNRDifferenceThreshold (PRS-SNR difference threshold, indicating the PRS receiving signal to noise ratio) Difference threshold) for comparison.
  • the eNB may also send the difference threshold information to each terminal through the RC signaling.
  • the signaling format is not limited in the embodiment of the present invention, and the existing RRC signaling may be used, or the RC signaling may be added.
  • the terminal measures the reference signal, compares the measured neighboring cell with the RSRP or CRS SNR of the local cell, and compares the obtained difference with the difference threshold of the network side notification.
  • This step 402 belongs to the internal implementation process of the terminal, and performs a corresponding comparison operation according to the type of the reference signal measurement value included in the difference threshold information.
  • the terminal may compare the measured RSRP difference with the difference threshold. If the difference threshold information includes a difference threshold of CRS SNR, the terminal may compare the measured CRS SNR difference with the difference threshold.
  • the terminal may map the measurement result of the RSRP difference according to the first mapping factor, obtain the estimated PRP difference, and then compare the PRP difference with The PRP difference threshold is compared.
  • the difference threshold information includes a difference threshold of the PRS SNR and a second mapping factor
  • the terminal may map the measurement result of the CRS SNR difference according to the second mapping factor to obtain the estimated PRS SNR difference, and then the PRS The SNR difference is compared to the PRS SNR difference threshold.
  • the terminal reports the cell subset information to the positioning server, and indicates the cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate the cell pair whose reference signal measurement value does not exceed the difference threshold, to help locate the server.
  • a cell with a large difference in power or SNR of the PRS receiving end is screened out.
  • step 403 There are four main forms of signaling involved in step 403:
  • the difference threshold information sent in step 401 includes a difference threshold of RSRP or CRS SNR, and the cell subset information reported in step 403 indicates that the difference between the RSRP or CRS SNR exceeds the difference threshold. Correct.
  • the difference threshold information sent in step 401 includes a difference threshold of RSRP or CRS SNR.
  • the cell subset information reported in step 403 indicates that the difference between the RSRP or CRS SNR does not exceed the difference threshold. Community pair.
  • the difference threshold information sent in step 401 includes a difference threshold of PRP or PRS SNR and a corresponding mapping factor.
  • the cell subset information reported in step 403 indicates that the difference between PRP or PRS SNR exceeds Cell pair with difference threshold.
  • the difference threshold information sent in step 401 includes a difference threshold of PRP or PRS SNR and a corresponding mapping factor.
  • the cell subset information reported in step 403 indicates that the difference between PRP or PRS SNR is not A cell pair that exceeds the difference threshold.
  • Signaling form 1 is a signaling form 1
  • the network side delivers the CRS received power or the SNR difference threshold, and the content reported by the terminal is the cell pair whose CRS power or CRS SNR exceeds the difference threshold, and examples of LPP signaling are: (1)
  • the terminal may send the cell subset information when performing capability interaction with the positioning server.
  • the LPP cell OTDOA-ProvideCapabilities is a cell that the terminal sends to the positioning server to report its own capabilities (see 3GPP TS 36.355), and the italicized portion is added for the embodiment of the present invention. If the difference is the CRS received power (RSRP),
  • the meaning of the table is a list of cell pairs indicating that the CRS received power difference reported by the terminal to the network side is too large.
  • the length of this list ma X N U m can be determined according to the capabilities of the terminal and the requirements of the network.
  • the CRSPowerDif CellPair (CRS power difference cell pair) is only a naming manner, and its representative meaning is a cell pair indicating that the CRS received power difference reported by the terminal to the network side is too large.
  • the internal structure of its IE (Information Element) is: physCellldAgr is just a naming scheme, which means the PCI of the cell with higher CRS power, because the larger power cell is for the smaller power cell (both When the difference is above a certain threshold, it will cause interference of PRS, so it is also called the interference source cell.
  • cellGloballdAgr is just one The naming mode, which means the CGI of the interference source cell.
  • PhysCellldVic is just a naming scheme, which means the PCI of the cell with a small CRS power, because the cell with a smaller power will receive the PRS interference of the cell with higher power (the difference between the two is above a certain threshold). Therefore, it is also called a victim community.
  • cellGloballdVic is just a naming scheme, which means the CGI of the victim cell.
  • the powerDifference is just a naming manner, which represents the CRS power difference received by the terminal between the two cells (the victim and the interferer cell) involved in the IE of CRSPowerDiffCellPair.
  • y is just a naming method, and its meaning is the reporting range of the power difference.
  • Earfcn is just a naming method, which means E-UTRAN Absolute Radio Frequency Channel Number.
  • This IE can be sent in the same frequency network, but for CA or multi-frequency system, send This IE indicates a frequency point number or carrier number where the received power or SNR difference between two co-frequency cells is too large.
  • the reported powerDifference is a CRS received power (RSRP) difference.
  • the network delivers a mapping factor of the PRS power difference value and the CRS power difference value, and the PRS power difference threshold, the powerDifference may be a CRS receive power (RSRP) difference or a PRS receive power difference. (Done of them according to the agreement).
  • OPTIONAL optionally indicates that it is optional, that is, it can be transmitted IE or not, and is determined by the IE sender.
  • the signaling form of the LPP may be reported as a pair of pairs, or a cell may be taken as an investigation cell, and the difference between the reported cell and the cell is reported. A cell that exceeds the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors, and reports the cell that exceeds the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiver at the current cell.
  • the crsPowerDif CellList is a naming scheme, which is a list of cells indicating that the CRS received power difference reported by the terminal to the network side is too large. The length of this list indicates the number of cells examined.
  • the CRSPowerDiffCell (CRS power difference cell) is only a naming manner, and its representative meaning is the cell information indicating that the CRS received power difference reported by the terminal to the network side is too large.
  • the internal structure of its IE is: physCellldRef is just a naming method, and its meaning is to examine the PCI of the cell.
  • the cellGloballdRef is only a naming method, and its meaning is to examine the CGI of the cell.
  • the failedThresCellList is just a naming scheme, which represents a list of cells that do not satisfy the difference threshold compared to this visited cell.
  • y is just a naming manner, which means the number of cells (cell list length) that do not satisfy the difference threshold compared with the observed cell.
  • FailedThresCell is just a naming scheme, which means the cell information that does not satisfy the difference threshold compared with the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • cellGloballd is just a naming scheme, and its meaning is the CGI of the cell. In this signaling, it is the CGI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • the powerDifference is just a naming manner. The meaning of the powerDifference is the power difference between the cell and the cell that does not satisfy the difference threshold compared with the cell.
  • This value can be negative, and its value is l z.
  • z is just a naming scheme, which means the reporting range of the power difference, which is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • Earfcn is just a naming method, which means E-UTRAN Absolute Radio Frequency Channel Number.
  • This IE can be sent in the same frequency network, but for CA or multi-frequency system, send This IE indicates that the received power or SNR difference between two co-frequency cells is too large. Frequency point number or carrier number.
  • the crsSNRDiffCellPairList (CRS SNR difference cell pair list) is only a naming manner, and its representative meaning is a list of cell pairs whose terminal CRS SNR difference reported by the terminal to the network side is too large.
  • the CRSSNRDiffCellPair (CRS SNR difference cell pair) is only a naming manner, and the meaning of the CRSSNRDiffCellPair is a cell pair indicating that the receiving end CRS SNR value reported by the terminal to the network side is too large.
  • the internal structure of the IE is: physCelUdAgr is only a naming manner, which means the PCI of the cell with a larger CRS SNR at the receiving end, because the cell with larger SNR has a smaller SNR cell (the difference between the two is at a certain threshold)
  • the interference of the PRS is generated, so it is also called the interference source cell.
  • cellGloballdAgr is just a naming scheme, which means the CGI of the interference source cell.
  • PhysCellldVic is just a naming scheme, which means the PCI of the cell with a smaller CRS SNR at the receiving end, because the cell with smaller SNR will receive the PRS of the cell with larger SNR (the difference between the two is above a certain threshold) Interference, therefore also known as the victim community.
  • cellGloballdVic is just a naming scheme, which means the CGI of the victim cell.
  • the snrDifference is only a naming manner, and its representative meaning is the CRS SNR difference between the receivers of the two cells (the victim and the interferer cell) involved in the IE of CRSSNRDiffCellPair.
  • y is just a naming method, and its meaning is the reporting of the SNR difference. It should be noted here: If the network side delivers a CRS SNR difference threshold, then the reported snrDif erence is the CRS receiver SNR difference. If the network delivers a mapping factor of the PRS SNR difference and the CRS SNR difference, and the PRS SNR difference threshold, the snrDifference may be the receiving end SNR difference of the CRS or the receiving end SNR difference of the PRS ( Determine one of them according to the provisions of the agreement).
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a certain cell may be taken as an inspected cell, and reported to the cell.
  • the cell whose difference exceeds the threshold; then the signaling example of its LPP can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors, and reports the cell that exceeds the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiver at the current cell.
  • the CRSSNRDiffCell (CRS SNR difference cell) is only a naming manner, and its representative meaning is the cell information indicating that the CRS SNR difference of the receiving end reported by the terminal to the network side is too large.
  • the internal structure of IE is: physCellldRef is just a naming method. Its meaning means that the PCI cellGloballdRef of the cell is only a naming manner.
  • the meaning of the representation is that the CGI failedThresCellList of the cell is just a naming method.
  • the cell list that does not satisfy the difference threshold is compared to the cell.
  • y is just a naming manner, which means the number of cells (cell list length) that do not satisfy the difference threshold compared with the observed cell.
  • FailedThresCell is just a naming scheme, which means the cell information that does not satisfy the difference threshold compared with the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • cellGloballd is only a naming manner, and its meaning is the CGI of the cell. In this signaling, the CGI sNRDifference of the cell that does not satisfy the difference threshold compared with the considered cell is only a naming manner, and its meaning is The value of the difference in the SNR of the receiving end between the cell and the cell that does not satisfy the difference threshold is considered to be negative.
  • the value of lzz is only a naming manner, and the meaning of the SNR difference is SNR difference.
  • the reporting range which is an index value, so it is from 1 to z (both greater than zero), and mapping to the true value is positive or negative.
  • the terminal can send the cell subset information when requesting the auxiliary information.
  • the LPP cell OTDOA-RequestAssistanceData (0TD0A request assistance data) is a cell that the terminal sends to the location server to request the assistance data (see 3GPP TS 36.355), and the italic portion is added for the embodiment of the present invention. If you are looking at the difference in power, for example:
  • the signaling form of the LPP may be reported as a pair of pairs, or a cell may be taken as an investigation cell, and the difference between the reported cell and the cell is reported. A cell that exceeds the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes an inspection cell, and compares other neighboring cells, and reports the cell that exceeds the difference threshold as a list.
  • the cells in this list are all the difference between the receiving end power and the SNR of the current cell. A cell that exceeds the threshold.
  • the signaling example is as follows: ⁇ Lai ⁇ ⁇ Read Yan Ke!
  • the signaling form of the LPP can be reported as a pair of pairs as described above, or a certain cell can be taken as an investigation cell, and the report is reported. A cell whose cell difference exceeds the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors, and reports the cell that exceeds the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiver at the current cell.
  • the CRS receiving power or the SNR difference threshold is sent by the network side, and the content reported by the terminal is a cell pair whose CRS power or CRS SNR does not exceed the difference threshold, and the LPP signaling example is as follows: (1) The terminal can send the cell subset information when performing capability interaction with the positioning server.
  • the LPP cell OTDOA-ProvideCapabilities is a cell that the terminal sends to the positioning server to report its own capabilities (see 3GPP TS 36.355), and the italicized portion is added in the embodiment of the present invention. If The difference is the difference between the CRS received power (RSRP), as follows:
  • the meaning of the table is a list of cell pairs indicating that the CRS received power difference reported by the terminal to the network side does not exceed the difference threshold.
  • the length of this list ma X N U m can be determined according to the capabilities of the terminal and the requirements of the network.
  • CRSPowerDiffCellPair (CRS power difference cell pair) is a naming mode.
  • the meaning of the CRSPowerDiffCellPair is the cell pair that indicates that the CRS received power difference reported by the terminal to the network side does not exceed the difference threshold.
  • the internal structure of the IE is: physCellldHigher is just a naming mode.
  • the PCI cellGloballdHigher of the cell whose meaning is CRS power is only a naming mode.
  • the CGI physCellldLower of the cell with a higher CRS power is only one.
  • the naming mode which means that the PCI cell GloballdLower of the cell with a small CRS power is only a naming manner, the CGI powerDifference of the cell whose meaning is that the CRS power is small is only a naming manner, and its meaning is
  • CRSPowerDiffCellPair The CRS power difference received by the terminal between the two cells involved in this IE.
  • y is just a naming scheme, and its meaning is the reporting range of the power difference.
  • Earfcn is just a naming method. Its meaning is E-UTRAN Absolute Radio Frequency Channel Number. In the same frequency network, this IE can be sent, but for CA or For a multi-frequency system, the IE indicates that the received power or SNR difference does not exceed the frequency threshold or carrier number of the two intra-frequency cells with the difference threshold.
  • the reported powerDifference is a CRS received power (RSRP) difference. If the network delivers a mapping factor of the PRS power difference value and the CRS power difference value, and the PRS power difference threshold, the powerDifference may be a CRS receive power (RSRP) difference or a PRS receive power difference. (Done of them according to the agreement).
  • RSRP CRS received power
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a cell may be taken as an investigation cell, and the reported cell difference is reported. A cell whose value does not exceed the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes an inspection cell, and compares other neighboring cells, and reports the cell that does not exceed the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiving end of the current cell. A cell whose value does not exceed the threshold.
  • the crsPowerDif CellList (CRS Power Difference Cell List) is only a naming manner, and its representative meaning is a list of cells indicating that the CRS received power difference reported by the terminal to the network side does not exceed the threshold.
  • the length X of this list indicates the number of cells examined.
  • the CRSPowerDiffCell (CRS Power Difference Cell) is a naming mode.
  • the meaning of the CRS PowerDiffCell is the cell information indicating that the CRS received power difference reported by the terminal to the network side does not exceed the threshold.
  • the internal structure of its IE is: physCellldRef is just a naming method, and its meaning is to examine the PCI of the cell.
  • the cellGloballdRef is only a naming method, and its meaning is to examine the CGI of the cell.
  • the passedThresCellList is just a naming scheme, which represents a list of cells that do not exceed the difference threshold compared to this visited cell.
  • y is just a naming method, which means the number of cells (cell list length) that does not exceed the difference threshold compared with the surveyed cell.
  • PassedThresCell is just a naming scheme, which means the cell information that does not exceed the difference threshold compared to the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • cellGloballd is only a naming manner, and its meaning is the CGI of the cell. In this signaling, it is the CGI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • the powerDifference is just a naming manner.
  • the meaning of the powerDifference is the power difference between the cell and the cell that does not exceed the difference threshold compared with the cell under consideration. This value can be exactly negative, and its value is l ⁇ z. z is just a naming scheme, which means the reporting range of the power difference, which is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • Earfcn is just a naming scheme, and its meaning is E-UTRAN Absolute Radio Frequency Channel Number.
  • this IE may not be sent, but for CA or multi-frequency systems, sending this IE indicates that the received power or SNR difference does not exceed the frequency threshold or carrier number of the two intra-frequency cells with the difference threshold.
  • the crsSNRDifflCellPairList (CRS SNR S cell-to-column) is just two lives. The meaning is a list of cell pairs that indicate that the receiver's CRS SNR difference reported by the terminal to the network side does not exceed the difference threshold.
  • the CRSSNRDiffCellPair (CRS SNR difference cell pair) is only a naming manner, and the meaning of the CRSSNRDiffCellPair is a cell pair indicating that the CRS SNR value of the receiving end reported by the terminal to the network side does not exceed the difference threshold.
  • the internal structure of the IE is: physCellldHigher is just a naming manner, which means the PCI of the cell with a large CRS SNR at the receiving end.
  • the cellGloballdHigher is just a naming scheme, which means the CGI of the cell with a large CRS SNR at the receiving end.
  • PhysCellldLower is just a naming scheme, which means the PCI of the cell with a small CRS SNR at the receiving end.
  • the cellGloballdLower is just a naming scheme, which means the CGI of the cell with a small CRS SNR at the receiving end.
  • the snrDifference is just a naming scheme, which means the receiver CRS SNR difference between the two cells involved in the CRSSNRDiffCellPair IE.
  • y is just a naming scheme, and its meaning is the reporting range of the SNR difference.
  • the reported snrDifference is the CRS receiver SNR difference. If the network delivers a mapping factor of the PRS SNR difference and the CRS SNR difference, and the PRS SNR difference threshold, the snrDifference may be the receiving end SNR difference of the CRS or the receiving end SNR difference of the PRS ( Determine one of them according to the provisions of the agreement).
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a cell may be taken as an investigation cell, and reported. Investigate a cell whose cell difference does not exceed the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes an inspection cell, and compares other neighboring cells, and reports the cell that does not exceed the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiving end of the current cell.
  • the signaling example is as follows: m mm pendulum mm m::::::::
  • the length X of this list indicates the number of cells examined.
  • the CRSSNRDiffCell (CRS SNR difference cell) is only a naming manner, and the meaning of the CRSSNRDiffCell is the cell information indicating that the CRS SNR difference of the receiving end reported by the terminal to the network side does not exceed the threshold.
  • the internal structure of its IE is: physCellldRef is just a naming method, which means the PCI of the cell.
  • cellGloballdRef is just a naming scheme, which means the CGI of the cell.
  • the passedThresCellList is just a naming scheme, which represents a list of cells that do not exceed the difference threshold compared to this visited cell.
  • y is only a naming manner, and the meaning it represents is the number of cells (cell list length) that does not exceed the difference threshold compared with the observed cell.
  • PassedThresCell is just a naming scheme, which means the cell information that does not exceed the difference threshold compared with the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • cellGloballd is only a naming manner, and its meaning is the CGI of the cell. In this signaling, it is the CGI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • the sNRDifference is only a naming manner.
  • the meaning of the sNRDifference is the difference in the SNR of the receiving end between the cell and the cell that does not exceed the difference threshold compared with the observed cell. This value can be It is negative, its value is l ⁇ z.
  • z is just a naming scheme, and its meaning is the reporting range of the SNR difference. This is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • the terminal can send the cell subset information when requesting the auxiliary information.
  • the LPP cell OTDOA-RequestAssistanceData (OTDOA Request Auxiliary Data) is a cell that the terminal sends to the location server to request the assistance data (see 3GPP TS 36.355), and the italicized portion is added for the embodiment of the present invention.
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a cell may be taken as an investigation cell, and the reported cell difference is reported. A cell whose value does not exceed the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors with a cell that does not exceed the difference threshold as a list.
  • the cells in this list are all the power or SNR of the receiver at the current cell.
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a cell may be taken as an investigation cell, and reported. Investigate a cell whose cell difference does not exceed the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors with a cell that does not exceed the difference threshold as a list.
  • the cells in this list are all the power or SNR of the receiver at the current cell.
  • the network side delivers a mapping factor of the PRS receiving power or the SNR difference threshold and the PRS power difference value and the CRS power difference value, and the content reported by the terminal is that the receiving end PRS power or the PRS SNR exceeds the difference threshold.
  • Cell pair example of its LPP signaling:
  • the terminal can send the cell subset information when performing capability interaction with the positioning server.
  • the LPP cell OTDOA-ProvideCapabilities is a cell that the terminal sends to the positioning server to report its own capabilities (see 3GPP TS 36.355), and the italic portion is added for the embodiment of the present invention. If the difference is the CRS received power (RSRP), the example is as follows:
  • the meaning is a list of cell pairs indicating that the PRS received power difference reported by the terminal to the network side is too large.
  • the length of this list, maxNum X, determines a value based on the capabilities of the terminal and the requirements of the network.
  • the PRSPowerDif CellPair is a naming mode.
  • the meaning of the PRSPowerDif CellPair is the cell pair indicating that the PRS received power difference reported by the terminal to the network side is too large.
  • the internal structure of the IE is: physCellldAgr is only a naming mode, which means the PCI of the cell with a larger PRS power, because the cell with higher power is the cell with less power (the difference between the two is above a certain threshold) It will generate interference from PRS, so it is also called the interference source cell.
  • cellGloballdAgr is just a naming scheme, which means the CGI of the interference source cell.
  • PhysCellldVic is just a naming scheme, which means the PCI of the cell with the smaller PRS power, because the smaller power cell will receive the PRS interference of the cell with higher power (the difference between the two is above a certain threshold). Therefore, it is also called a victim community.
  • cellGloballdVic is just a naming method, and its meaning is the CGI of the victim cell.
  • the powerDifference is just a naming scheme, which means the PRS power difference between the two cells (the victim and the interferer cell) involved in the ISP in the PRSPowerDiffCellPair.
  • y is just a naming method, and its meaning is the reporting range of the power difference.
  • Earfcn is just a naming scheme, and its meaning is E-UTRAN Absolute Radio Frequency Channel Number.
  • This IE may not be sent in the same-frequency network, but for CA or multi-frequency systems, this IE is sent to indicate the frequency or carrier number of the received power or SNR difference between two co-frequency cells.
  • the reported powerDifference is a CRS received power (RSRP) difference. If the network delivers a mapping factor of the PRS power difference value and the CRS power difference value, and the PRS power difference threshold, the powerDifference may be a CRS receive power (RSRP) difference or a PRS receive power difference. (Done of them according to the agreement).
  • RSRP CRS received power
  • the signaling form of the LPP may be reported as a pair of pairs, or a cell may be taken as an investigation cell, and the difference between the reported cell and the cell is reported.
  • a cell that exceeds the threshold; then the signaling example of its LPP can be as follows: When the terminal reports, it takes an inspection cell, and compares other neighboring cells, and reports the cell that exceeds the difference threshold as a list. The cells in this list are all different from the power or SNR of the receiving end of the current cell.
  • the PRSPowerDif Cell is a naming mode.
  • the meaning of the PRSPowerDif Cell is the cell information indicating that the PRS received power difference reported by the terminal to the network side is too large.
  • the internal structure of IE is: physCellldRef is just a naming method. Its meaning means that the PCI cellGloballdRef of the cell is only a naming manner.
  • the meaning of the representation is that the CGI failedThresCellList of the cell is just a naming method.
  • the cell list that does not satisfy the difference threshold is compared to the cell.
  • y is just a naming manner, which means the number of cells (cell list length) that do not satisfy the difference threshold compared with the observed cell.
  • FailedThresCell is just a naming method, which means that the difference threshold is not satisfied compared with the surveyed cell.
  • Cell information. PhysCellld is only a naming manner, and its meaning is the PCI of the cell. In this signaling, it is the PCI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • cellGloballd is only a naming manner, and its meaning is the CGI of the cell. In this signaling, it is the CGI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • the powerDifference is just a naming manner. The meaning of the powerDifference is the power difference between the cell and the cell that does not satisfy the difference threshold compared with the cell.
  • the value can be negative, and its value is l ⁇ z.
  • z is just a naming method. Its meaning is the reporting range of the power difference. This is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • Earfcn is just a naming scheme, and its meaning is E-UTRAN Absolute Radio Frequency Channel Number.
  • This IE may not be sent in the same-frequency network, but for CA or multi-frequency systems, this IE is sent to indicate the frequency or carrier number of the received power or SNR difference between two co-frequency cells.
  • the meaning of the table is a list of cell pairs whose terminal PRS SNR difference reported by the terminal to the network side is too large.
  • PRSSNRDiffCellPair PRS SNR difference cell pair
  • PRS SNR difference cell pair PRS SNR difference cell pair
  • the internal structure of the IE is: physCelUdAgr is only a naming manner, which means the PCI of the cell with a larger PRS SNR at the receiving end, because the cell with larger SNR has a smaller SNR cell (the difference between the two is at a certain threshold)
  • the interference of the PRS is generated, so it is also called the interference source cell.
  • cellGloballdAgr is just a naming scheme, which means the CGI of the interference source cell.
  • PhysCellldVic is just a naming scheme, which means that the PCI of the cell with a smaller PRS SNR at the receiving end, because the cell with smaller SNR will receive the PRS with a larger SNR (the difference between the two is above a certain threshold) Interference, therefore also known as the victim community.
  • cellGloballdVic is just a naming scheme, which means the CGI of the victim cell.
  • the snrDifference is just a naming manner, which represents the difference in the receiving end PRS SNR between the two cells (the victim and the interferer cell) involved in the PDCCH of PRSSNRDiffCellPair.
  • y is just a naming scheme, and its meaning is the reporting range of the SNR difference.
  • the reported snrDifference is the CRS receiver SNR difference. If the network delivers a mapping factor of the PRS SNR difference and the CRS SNR difference, and the PRS SNR difference threshold, the snrDifference may be the receiving end SNR difference of the CRS or the receiving end SNR difference of the PRS ( Determine one of them according to the provisions of the agreement).
  • the signaling form of the LPP can be reported as a pair of pairs as described above, or a certain cell can be taken as an investigation cell, and the report is reported.
  • the cell whose cell difference exceeds the threshold; then the signaling example of its LPP can be as follows:
  • the terminal When the terminal reports, it takes a cell and compares the other neighbors. The cell that exceeds the difference threshold is reported as a list. The cells in this list are all different from the power or SNR of the receiving cell of the current cell.
  • the signaling examples are as follows:
  • the PRSSNRDiffCell (PRS SNR difference cell) is only a naming manner, and its representative meaning is the cell information indicating that the terminal PRS SNR difference reported by the terminal to the network side is too large.
  • the internal structure of its IE is: physCellldRef is just a naming method, and its meaning is to examine the PCI of the cell.
  • the cellGloballdRef is only a naming method, and its meaning is to examine the CGI of the cell.
  • the failedThresCellList is just a naming scheme, which represents a list of cells that do not satisfy the difference threshold compared to this visited cell.
  • y is just a naming manner, which means the number of cells (cell list length) that do not satisfy the difference threshold compared with the observed cell.
  • FailedThresCell is just a naming scheme, which means the cell information that does not satisfy the difference threshold compared with the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • cellGloballd is just a naming scheme, and its meaning is the CGI of the cell. In this signaling, it is the CGI of the cell that does not satisfy the difference threshold compared with the investigated cell.
  • the sNRDifference is just a naming manner.
  • the meaning of the sNRDifference is the difference in the SNR of the receiving end between the cell and the cell that does not satisfy the difference threshold. This value can be negative, and its value is l z. z is just a naming scheme, and its meaning is the reporting range of the SNR difference, which is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • the terminal can send the cell subset information when requesting the auxiliary information.
  • the LPP cell OTDOA-RequestAssistanceData (0TD0A request assistance data) is a cell that the terminal sends to the positioning server to request the assistance data (see 3GPP TS 36.355), and the italic portion is added for the embodiment of the present invention. If the difference in received power is examined, examples are as follows: : 3 ⁇ 4: 3 ⁇ 43 ⁇ 4: £:: S ⁇ : ⁇ significant manifestation Jiang
  • the signaling form of the LPP may be reported as a pair of pairs, or a cell may be taken as an investigation cell, and the difference between the reported cell and the cell is reported. A cell that exceeds the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors, and reports the cell that exceeds the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiver at the current cell.
  • the signaling form of the LPP can be reported as a pair of pairs as described above, or a certain cell can be taken as an investigation cell, and the report is reported. A cell whose cell difference exceeds the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes an inspection cell, and compares other neighboring cells, and reports the cell that exceeds the difference threshold as a list.
  • the cells in this list are all the difference between the receiving end power and the SNR of the current cell. A cell that exceeds the threshold.
  • the network side delivers a mapping factor of the PRS receiving power or the SNR difference threshold and the PRS power difference value and the CRS power difference value, and the content reported by the terminal is that the receiving end PRS power or the PRS SNR does not exceed the difference.
  • the terminal may send the cell subset information when performing capability interaction with the positioning server.
  • the LPP cell OTDOA-ProvideCapabilities is a cell that the terminal sends to the positioning server to report its own capabilities (see 3GPP TS 36.355), and the italicized portion is added for the embodiment of the present invention. If
  • the meaning is a list of cell pairs indicating that the PRS received power difference reported by the terminal to the network side does not exceed the difference threshold.
  • the PRSPowerDiffCellPair is a naming mode.
  • the meaning of the PRSPowerDiffCellPair is the cell pair that indicates that the PRS received power difference reported by the terminal to the network side does not exceed the difference threshold.
  • the internal structure of the IE is: physCellldHigher is just a naming method, which means the PCI of the cell with a large PRS power.
  • the cellGloballdHigher is just a naming scheme, which means the CGI of the cell with a large PRS power.
  • PhysCellldLower is just a naming scheme, which means the PCI of the cell with a small PRS power.
  • cellGloballdLower is just a naming scheme, which means the CGI of the cell with a small PRS power.
  • the powerDifference is just a naming scheme, which means the PRS power difference received by the terminal between the two cells involved in the PRSPowerDiffCellPair IE.
  • y is just a naming scheme, and its meaning is the reporting range of the power difference.
  • Earfcn is just a naming scheme, and its meaning is E-UTRAN Absolute Radio Frequency Channel Number.
  • this IE may not be sent, but for CA or multi-frequency systems, sending this IE indicates that the received power or SNR difference does not exceed the frequency threshold or carrier number of the two intra-frequency cells with the difference threshold.
  • the reported powerDifference is a CRS received power (RSRP) difference.
  • the powerDifference may be a CRS receive power (RSRP) difference or a PRS receive power difference. (Done of them according to the agreement).
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a cell may be taken as an investigation cell, and the reported cell difference is reported. A cell whose value does not exceed the threshold. Then the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors with a cell that does not exceed the difference threshold as a list.
  • the cells in this list are all the power or SNR of the receiver at the current cell.
  • the length X of this list indicates the number of cells examined.
  • the PRSPowerDif Cell is a naming mode.
  • the meaning of the PRSPowerDif Cell is the cell information indicating that the PRS received power difference reported by the terminal to the network side does not exceed the threshold.
  • the internal structure of its IE is: physCellldRef is just a naming method, and its meaning is to examine the PCI of the cell.
  • the cellGloballdRef is only a naming method, and its meaning is to examine the CGI of the cell.
  • the passedThresCellList is just a naming scheme, which represents a list of cells that do not exceed the difference threshold compared to this visited cell.
  • y is just a naming method, which means the number of cells (cell list length) that does not exceed the difference threshold compared with the surveyed cell.
  • PassedThresCell is just a naming scheme, which means the cell information that does not exceed the difference threshold compared to the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • cellGloballd is only a naming manner, and its meaning is the CGI of the cell. In this signaling, it is the CGI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • the powerDifference is just a naming manner. The meaning of the powerDifference is the power difference between the cell and the cell that does not exceed the difference threshold compared with the cell under consideration.
  • This value can be exactly negative, and its value is l ⁇ z.
  • z is just a naming scheme, which means the reporting range of the power difference, which is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • Earfcn is just a naming method, which means E-UTRAN Absolute Radio Frequency Channel Number (absolute radio frequency channel number), this IE may not be sent in the same frequency network, but for CA or multi-frequency system, sending this IE indicates that the received power or SNR difference does not exceed the difference threshold and two co-frequency The frequency point number or carrier number of the cell.
  • the meaning is a list of cell pairs indicating that the receiver PRS SNR difference reported by the terminal to the network side does not exceed the difference threshold.
  • the PRSSNRDiffCellPair (PRS SNR difference cell pair) is only a naming manner.
  • the meaning of the PRSSNRDiffCellPair is a cell pair indicating that the receiver's PRS SNR value reported by the terminal to the network side does not exceed the difference threshold.
  • the internal structure of the IE is: physCellldHigher is only a naming manner, and the PCI cellGloballdHigher of the cell whose meaning is that the receiving terminal has a large PRS SNR is only a naming manner, and the meaning of the MSC is only a cell with a larger PRS SNR at the receiving end.
  • the CGI physCellldLower is just a naming method.
  • the meaning of the CGI singer is that the PCI cell GloballdLower of the cell with a small PRS SNR is only a naming mode.
  • the CGI snrDifference of the cell whose receiver PRS SNR is small is only a naming method.
  • the meaning of the representation is the receiver PRS SNR difference between the two cells involved in the PDCCH of PRSSNRDiffCellPair.
  • y is just a naming scheme, and its meaning is the reporting range of the SNR difference. It should be noted here: If the network side delivers a CRS SNR difference threshold, then the reported snrDif erence is the CRS receiver SNR difference.
  • the snrDifference may be the receiving end SNR difference of the CRS or the receiving end SNR difference of the PRS ( Determine the basis according to the provisions of the agreement
  • the signaling form of the LPP may be reported as a pair of pairs, or a cell may be taken as an investigation cell, and reported. Investigate a cell whose cell difference does not exceed the threshold.
  • the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors with a cell that does not exceed the difference threshold as a list.
  • the cells in this list are all the power or SNR of the receiver at the current cell.
  • the PRSSNRDiffCell PRS SNR difference cell
  • the internal structure of its IE is: physCellldRef is just a naming method, which means the PCI of the cell. cellGloballdRef is just a naming scheme, which means the CGI of the cell.
  • the passedThresCellList is just a naming scheme, which represents a list of cells that do not exceed the difference threshold compared to this visited cell.
  • y is only a naming manner, and the meaning it represents is the number of cells (cell list length) that does not exceed the difference threshold compared with the observed cell.
  • PassedThresCell is just a naming scheme, which means the cell information that does not exceed the difference threshold compared with the surveyed cell.
  • PhysCellld is just a naming scheme, which means the PCI of the cell. In this signaling, it is the PCI of the cell that does not exceed the difference threshold compared with the investigated cell.
  • cellGloballd is only a naming manner, and its meaning is the CGI of the cell.
  • the sNRDifference is only a naming manner.
  • the meaning of the sNRDifference is the difference in the SNR of the receiving end between the cell and the cell that does not exceed the difference threshold.
  • the value can be negative, and its value is l ⁇ z.
  • z is just a naming scheme, and its meaning is the reporting range of the SNR difference. This is an index value, so it is from 1 to z (both greater than zero), and the mapping to the true value is positive or negative.
  • the terminal can send the cell subset information when requesting the auxiliary information.
  • the LPP cell OTDOA-RequestAssistanceData (0TD0A request assistance data) is a cell that the terminal sends to the location server to request the assistance data (see 3GPP TS 36.355), and the italic portion is added for the embodiment of the present invention. If the difference in received power is examined, examples are as follows:
  • the signaling form of the LPP may be reported as a pair of pairs as described above, or a cell may be taken as an investigation cell, and the reported cell difference is reported. A cell whose value does not exceed the threshold. Then the signaling example of its LPP can be as follows:
  • the terminal When the terminal reports, it takes an inspection cell, and compares other neighboring cells, and reports the cell that does not exceed the difference threshold as a list.
  • the cells in this list are all different from the power or SNR of the receiving end of the current cell. A cell whose value does not exceed the threshold.
  • the signaling form of the LPP may be reported as a pair of pairs, or a cell may be taken as an investigation cell, and reported. Investigate a cell whose cell difference does not exceed the threshold.
  • the LPP signaling example can be as follows:
  • the terminal When the terminal reports, it takes a cell, and then compares other neighbors with a cell that does not exceed the difference threshold as a list.
  • the cells in this list are all the power or SNR of the receiver at the current cell.
  • the positioning server exchanges power allocation information with the base station by using LPPa signaling according to the cell subset information reported by the terminal.
  • the power allocation information is used to instruct the base station to adjust the PRS transmission power to reduce the difference in PRS reception power or SNR of the two cells in the cell pair.
  • the specific implementation of the power allocation information may be various, and the embodiment of the present invention does not limit this.
  • step 404 can be performed in one of two ways (step 404a or step 404b).
  • the positioning server carries the power allocation information in the message requesting the base station to report the PRS configuration.
  • the OTDOA INFORMATION REQUEST message is the signaling specified in TS36.455, and is used by the positioning server to request the base station to report the PRS configuration message.
  • the embodiment of the invention adds work in the message
  • the rate allocation information is exemplified as follows, wherein the italic portion is added for the embodiment of the present invention:
  • OTDOA- Information-Type SEQUENCE ( S I ZE ( 1 . . maxnoOTDOAtypes ) ) OF Protocol IE-Single-Container ⁇ ⁇ OTDOA- Information-Type IEs ⁇ ⁇
  • OTDOA- Information-Type IEs LPPA-PROTOCOL- IES OTDOA- Information-Type IEs LPPA-PROTOCOL- IES :
  • OTDOA- Information-Type- Item :: SEQUENCE ⁇
  • OTDOA- Information-Type- I temExt IEs LPPA-PROTOCOL-EXTENS ION :: ⁇ ⁇
  • PRS-Power-Allocation-Configuration is only a naming manner of power allocation information.
  • the meaning of the representation is the information indicating the PRS power allocation sent by the positioning server to the base station.
  • the content is not limited.
  • the main purpose is to use
  • the base station is configured to adjust the transmit power of the PRS to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and try to ensure that the PRS receive power or SNR difference from the two cells is received by the terminal side.
  • the threshold is required.
  • PRS-Power-Allocation-Configuration is an option. If the positioning server does not send the PRS-Power-Allocation-Configuration to the base station, the base station can follow Its original power allocation method performs PRS power allocation.
  • step 404b may also be used to transmit power allocation information to the base station.
  • Step 404b includes a new dedicated message 404b-1 for the location server and base station and an existing OTDOA INFORMATION REQUEST message 404b-2.
  • the signaling form in step 404b-1 is not limited, and is sent by the positioning server to the base station to notify the base station of the PRS power control information.
  • PRSPowerAllocationConf iguration :: SEQUENCE ⁇
  • PRSPowerAllocationConfiguration is only a naming manner of power allocation information, and its representative meaning is information indicating the PRS power allocation sent by the positioning server to the base station.
  • the content of the content is not limited, and the main purpose is to inform the base station to adjust the transmit power of the PRS, so as to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and ensure that the terminal side receives the received from the two cells.
  • the PRS received power or SNR difference is within the corresponding threshold requirement.
  • Step 404b-2 uses the existing OTDOA information request message without change. If the method of 404b is adopted, step 404b-1 may be performed before step 404b-2, and the positioning server requires some base stations to adjust the transmit power of the PRS through step 404b-1; then the positioning server requests the base station to report its final result through step 404b-2. PRS with interest
  • Step 405 can utilize the existing OTDOA Information esponse message, and therefore will not be described again.
  • the positioning server sends the PRS configuration information to the terminal by using the auxiliary data.
  • the terminal performs PRS detection according to PRS configuration information in the auxiliary data, and estimates RSTD.
  • the terminal reports the RSTD to the positioning server. 409.
  • the positioning server calculates the geographic location of the terminal according to the RSTD reported by the terminal.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • FIG. 5 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • the embodiment of FIG. 5 is applied to a CA scenario, and the difference of the reference signal measurement values is reduced by configuring the PRS transmission frequency point.
  • each cell has multiple available frequency points (carriers), and the terminal also supports reception of multiple frequency points (carriers).
  • Step 501 The positioning server sends the allowed difference threshold information to the terminal.
  • Step 501 can be the same as step 401 of FIG. 4, and therefore will not be described again.
  • Step 502 can be the same as step 402 of FIG. 4, and therefore will not be described again.
  • the terminal reports the cell subset information to the positioning server, and indicates the cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate the cell pair whose reference signal measurement value does not exceed the difference threshold, to help locate the server.
  • a cell with a large difference in power or SNR of the PRS receiving end is screened out.
  • Step 503 can be the same as step 403 of Fig. 4, and therefore will not be described again.
  • the positioning server exchanges frequency allocation information with the base station by using LPPa signaling according to the cell subset information reported by the terminal.
  • the frequency allocation information is used to instruct the base station to adjust the PRS transmission frequency point to reduce the difference between the PRS reception power or the SNR of the two cells in the cell pair.
  • the specific implementation manner of the frequency allocation information may be various, and the embodiment of the present invention does not limit this.
  • step 504 can be performed in one of two ways (step 504a or step 504b).
  • the positioning server carries the frequency point allocation information in the message requesting the base station to report the PRS configuration.
  • the OTDOA INFORMATION REQUEST message is a signaling specified in TS36.455, and is used by the positioning server to request the base station to report the PRS configuration message.
  • the embodiment of the present invention adds frequency allocation information to the message, for example, where the italic portion is added in the embodiment of the present invention:
  • Protocol IEs Protocol IE -Container ⁇ ⁇ OTDOAInformationReques t- IEs OTDOAInformationRequest-IEs LPPA-PROTOCOL-IES ::
  • OTDOA-Inf ormation-Type SEQUENCE (SIZE (1.. maxnoOTDOAtypes ) ) OF ProtocolIE-Single-Container ⁇ ⁇ OTDOA-Inf ormation-TypelEs ⁇ ⁇
  • OTDOA-Information-Type IEs LPPA-PROTOCOL-IES ::
  • OTDOA- Information-Type- I temExt IEs LPPA-PROTOCOL-EXTENSION :: ⁇ ⁇
  • PRS-Carrier-Allocation-Configuration (PRS carrier allocation configuration) is only a naming manner of frequency allocation information.
  • the meaning of the representation is the information about the PRS carrier allocation sent by the positioning server to the base station.
  • the content is not limited.
  • the main purpose is to The base station is configured to adjust the transmission frequency (carrier) of the PRS to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and try to avoid interference between the PRSs of the two cells.
  • PRS-Carrier-Allocation-Configuration is an option. If the positioning server does not send PRS-Carrier-AUocation-Configuration to the base station, the base station can perform PRS transmission according to its original carrier allocation mode.
  • step 504b may also be used to send frequency point allocation information to the base station.
  • Step 504b includes a new dedicated message 504b-1 for the location server and base station and an existing OTDOA INFORMATION REQUEST message 504b-2.
  • the signaling form in step 504b-1 is not limited, and is sent by the positioning server to the base station to inform the base station of the frequency band (carrier) information of the PRS.
  • PRSCarrierAllocationConfiguration (PRS carrier allocation configuration) is only a naming manner of frequency allocation information.
  • the meaning of the representation is the information about the PRS frequency (carrier) allocation sent by the positioning server to the base station.
  • the content is not limited.
  • the main purpose is to use The base station is notified to adjust the transmission frequency (carrier) of the PRS to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and to avoid interference between the PRSs of the two cells.
  • Step 504b-2 uses the existing OTDOA information request message without change. If the method of 504b is adopted, step 504b-1 may be performed before step 504b-2, and the positioning server requires some base stations to adjust the transmission frequency of the PRS through step 504b-1; then the positioning server requests the base station to report itself through step 404b-2. The PRS is matched with the direct.
  • Step 505 The base station feeds back its final PRS configuration to the positioning server.
  • Step 505 can utilize the existing OTDOA Information Response (OTDOAInformationResponse) message, and therefore will not be described again.
  • OTDOA Information Response OTDOA Information Response
  • the positioning server sends the PRS configuration information to the terminal by using the auxiliary data.
  • the terminal performs PRS detection according to PRS configuration information in the auxiliary data, and estimates RSTD.
  • the terminal reports the RSTD to the positioning server.
  • the positioning server calculates the geographic location of the terminal according to the RSTD reported by the terminal.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • FIG. 6 is a schematic diagram of an example of a CoMP scenario.
  • the CoMP nodes (cooperative nodes) of Fig. 6 belong to the same cell ID, and therefore their PRS patterns are the same (obtained according to the same cell ID).
  • the existing scheme generally selects the strongest path among the three CoMP nodes for PRS transmission. For example, if the CoMP node is 0 The signal quality of the terminal is the best, the CoMP node is the first, and the CoMP node 2 is the worst. Then the CoMP node 0 is selected to transmit the PRS for the terminal.
  • the optimal CoMP node is selected according to the existing scheme, the received power or SNR difference between the PRS sent by the neighboring base station and the neighboring base station may be too large, causing interference to the reception of the neighboring area PRS. Therefore, in the embodiment of the present invention, when the node that selects CoMP performs PRS transmission, it is also necessary to consider the received power difference of the PRS, thereby selecting the most suitable CoMP node.
  • the rule for selecting a CoMP node in the embodiment of the present invention is an optimal PRS quality CoMP node under the premise of satisfying the PRS power or the SNR difference threshold.
  • FIG. 7 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • the embodiment of Figure 7 is applied to a CoMP scenario such as that shown in Figure 6, which performs PRS transmission by selecting the optimal cell that satisfies the difference threshold of the reference signal measurements to reduce the difference in reference signal measurements.
  • Step 701 can be the same as step 401 of FIG. 4, and therefore will not be described again.
  • Step 702 can be the same as step 402 of FIG. 4, and therefore will not be described again.
  • the terminal reports the cell subset information to the positioning server, and indicates that the reference signal measurement value exceeds the cell threshold of the difference threshold, or the cell subset information is used to indicate the cell pair whose reference signal measurement value does not exceed the difference threshold, to help locate the server.
  • a cell with a large difference in power or SNR of the PRS receiving end is screened out.
  • Step 703 can be the same as step 403 of Fig. 4, and therefore will not be described again.
  • the positioning server interacts with the corresponding base station by using LPPa signaling according to the cell subset information reported by the terminal, and sends the node configuration information to the base station.
  • the node configuration information is used to notify the base station to select an optimal cooperative node to transmit the PRS that satisfies the PRS reception power or the SNR difference threshold.
  • the specific configuration of the node configuration information may be various, and the embodiment of the present invention does not limit this.
  • step 704 can be performed in one of two ways (step 704a or step 704b).
  • the positioning server carries the node configuration information in the message requesting the base station to report the PRS configuration.
  • the OTDOA INFORMATION REQUEST message is a signaling specified in TS36.455, and is used by the positioning server to request the base station to report the PRS configuration message.
  • the embodiment of the present invention adds node configuration information to the message, for example, where the italic portion is added in the embodiment of the present invention:
  • OTDOA- Information-Type SEQUENCE ( S I ZE ( 1 . . maxnoOTDOAtypes ) ) OF Protocol IE-Single-Container ⁇ ⁇ OTDOA- Inf ormation-Type IEs ⁇ ⁇
  • OTDOA- Information-Type- Item :: SEQUENCE ⁇
  • the PRS-CoMP-Node-Configuration is a naming manner of the node configuration information, and the meaning of the representation is the configuration information of the CoMP node (collaboration node) sent by the positioning server to the base station, and the content form thereof is not limited.
  • the main purpose is to notify the base station to select a suitable CoMP node to transmit the PRS, so as to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and try to avoid interference between the PRSs of the two cells.
  • PRS-CoMP-Node-Configuration is an option. If the positioning server does not send PRS-CoMP-Node-Configuration to the base station, the base station can perform PRS transmission according to its original CoMP node configuration.
  • step 704b may also be used to send node configuration information to the base station.
  • Step 704b includes a new dedicated message 704b-1 for the location server and base station and an existing OTDOA INFORMATION REQUEST message 704b-2.
  • the signaling form in step 704b-1 is not limited, and is sent by the positioning server to the base station to notify the base station to transmit the PRS.
  • Configuration information of the CoMP node is not limited, and is sent by the positioning server to the base station to notify the base station to transmit the PRS.
  • Configuration information of the CoMP node is not limited, and is sent by the positioning server to the base station to notify the base station to transmit the PRS.
  • Configuration information of the CoMP node is not limited, and is sent by the positioning server to the base station to notify the base station to transmit the PRS.
  • Configuration information of the CoMP node Signaling example:
  • the PRSCoMPNodeConfiguration is a naming manner of the node configuration information.
  • the meaning of the PRSCoMPNodeConfiguration is the configuration information of the CoMP node (collaboration node) sent by the positioning server to the base station.
  • the content is not limited.
  • the main purpose is to notify The base station selects a suitable CoMP node to transmit the PRS, so as to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and try to avoid interference between the PRSs of the two cells.
  • Step 704b-2 uses the existing OTDOA information request message without change. If the method of 704b is adopted, step 704b-1 may be performed before step 704b-2, and the positioning server requires some base stations to select an optimal CoMP node for transmitting the PRS through step 704b-1; and then the positioning server requests through step 704b-2. The base station reports its final PRS configuration information.
  • Step 705 can utilize the existing OTDOA Information Response (OTDOAInformationResponse) message, and therefore will not be described again.
  • OTDOA Information Response OTDOA Information Response
  • the positioning server sends the PRS configuration information to the terminal by using the auxiliary data.
  • the terminal performs PRS detection according to PRS configuration information in the auxiliary data, and estimates RSTD.
  • the terminal reports the RSTD to the positioning server.
  • the positioning server calculates a geographic location of the terminal according to the RSTD reported by the terminal.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • FIG. 8 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • the PRS received power or SNR difference threshold is met by adjustment of the beamforming of the base station.
  • PRS can be performed by shaping the antenna Space separation.
  • the network side can configure the direction of the transmitting main lobe of the PRS. As long as the isolation of the main lobe of the two cells is satisfied, the difference between the PRS receiving power or the SNR can be reduced. To try to avoid interference between PRS.
  • the embodiment of the present invention does not limit the type of the shaped antenna, and may be a two-dimensional shaped antenna or a three-dimensional spatial shaping antenna.
  • Step 801 can be the same as step 401 of FIG. 4, and therefore will not be described again.
  • Step 802 can be the same as step 402 of FIG. 4, and therefore will not be described again.
  • the terminal reports the cell subset information to the positioning server, and indicates the cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate the cell pair whose reference signal measurement value does not exceed the difference threshold, to help locate the server.
  • a cell with a large difference in power or SNR of the PRS receiving end is screened out.
  • Step 803 can be the same as step 403 of Fig. 4, and therefore will not be described again.
  • the positioning server interacts with the corresponding base station by using LPPa signaling according to the cell subset information reported by the terminal, and sends beamforming configuration information to the base station.
  • the beamforming configuration information is used to inform the base station to select a beamforming transmit PRS that satisfies the PRS received power or SNR difference threshold.
  • the specific implementation of the beamforming configuration information may be various, and the embodiment of the present invention does not limit this.
  • step 804 can be performed in one of two ways (step 804a or step 804b).
  • the positioning server carries beamforming configuration information in the message requesting the base station to report the PRS configuration.
  • the OTDOA INFORMATION REQUEST message is the signaling specified in TS36.455, and is used by the positioning server to request the base station to report the PRS configuration message.
  • the embodiment of the present invention adds beamforming configuration information to the message, for example, where the italic portion is added in the embodiment of the present invention: __ OTDOA INFORMAT ION REQUEST
  • OTDOA- Information-Type SEQUENCE ( S I ZE ( 1 . . maxnoOTDOAtypes ) ) OF Protocol IE-Single-Container ⁇ OTDOA- Inf ormation-Type lEs ⁇ ⁇
  • OTDOA- Information-Type- I temExt IEs LPPA-PROTOCOL-EXTENS ION :: ⁇ ⁇
  • PRS-Beamforming-Configuration (PRS beamforming configuration) is only a naming manner of beamforming configuration information, which represents the configuration of PRS beamforming that the positioning server sends to the base station (used to configure the PRS beam direction of the base station).
  • the main purpose of the content is to inform the base station to adjust the beamforming mode of the PRS to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and try to avoid the two cells. Interference occurs between PRSs.
  • PRS-Beamforming-Configuration is an option. If the positioning server does not send PRS-Beamforming-Configuration to the base station, the base station can perform PRS transmission according to its original beamforming mode.
  • step 804b may also be used to transmit beamforming configuration information to the base station.
  • Step 804b includes a new dedicated server and base station private message 804b-1 and an existing OTDOA INFORMATION REQUEST message 804b-2.
  • the signaling form in step 804b-1 is not limited, and is sent by the positioning server to the base station, and the base station is notified to transmit the configuration information of the beamforming of the PRS.
  • PRSBeamformingConf iguration SEQUENCE ⁇ Protocol IEs Protocol IE-Container
  • PRSBeamformingConfiguration is only a naming manner of beamforming configuration information, and its representative meaning is a configuration of PRS beamforming that is sent by the positioning server to the base station (for configuring the PRS beam direction of the base station), and its content
  • the main purpose is to notify the base station to adjust the beamforming of the PRS to reduce the difference between the received power or the SNR of the PRS between the two cells in the cell pair, and to avoid interference between the PRSs of the two cells. .
  • Step 804b-2 uses the existing OTDOA information request message without change. If the method of 804b is adopted, step 804b-1 may be performed before step 804b-2, and the positioning server requires some base stations to select beamforming for transmitting the PRS through step 804b-1; then the positioning server requests the base station through step 804b-2. Report its final PRS configuration information.
  • the embodiment of the present invention does not limit the internal signaling expression form of the beamforming configuration information.
  • the main content of the beamforming configuration information may include angle information indicating a beam direction, which may be a horizontal direction, a vertical direction, or an angle information of a horizontal plus vertical direction.
  • the main content of the beamforming configuration information may include a PMI (Precoding Matrix Indicator) of the shaped antenna (multi-antenna system).
  • the PMI mainly indicates the configuration of the precoding matrix of the multi-antenna system, and the beam direction of the entire antenna array can be changed by different configurations of each antenna. Therefore, the positioning server can configure the beam direction of the base station to transmit the PRS whether the direct transmission of the angle information or the delivery of the PMI.
  • Step 805 can utilize the existing OTDOA Information Response (OTDOAInformationResponse) message, and therefore will not be described again.
  • OTDOA Information Response OTDOA Information Response
  • the positioning server sends the PRS configuration information to the terminal by using the auxiliary data.
  • the terminal performs PRS detection according to PRS configuration information in the auxiliary data, and estimates RSTD.
  • the terminal reports the RSTD to the positioning server.
  • the positioning server calculates a geographic location of the terminal according to the RSTD reported by the terminal.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, so as to avoid the measurement value difference of the PRS is too large. Reduced interference between PRS.
  • FIG. 9 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • the location server does not change the PRS configuration of the cell.
  • the positioning server selects a cell that satisfies the PRS receiving power or the SNR difference threshold from the neighbor cell list of the serving cell of the terminal, so as to reduce the difference between the PRS receiving power or the SNR, and avoid interference between the PRSs.
  • Step 901 can be the same as step 401 of FIG. 4, and therefore will not be described again.
  • Step 902 The terminal measures the reference signal, compares the measured neighboring cell with the RSRP or CRS SNR of the local cell, and compares the obtained difference with the difference threshold of the network side notification.
  • Step 902 can be the same as step 402 of FIG. 4, and therefore will not be described again.
  • the terminal reports the cell subset information to the positioning server, and indicates the cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate the cell pair whose reference signal measurement value does not exceed the difference threshold, to help locate the server.
  • a cell with a large difference in power or SNR of the PRS receiving end is screened out.
  • Step 903 can be the same as step 403 of Fig. 4, and therefore will not be described again.
  • the positioning server selects, according to the cell subset information, a cell that meets a PRS receiving power or a SNR difference threshold from a neighboring cell list of the serving cell of the terminal.
  • the neighbor list may include the current serving cell of the terminal and its neighboring cells.
  • the cell selected in this way can satisfy the PRS receiving power or the SNR difference threshold, thereby avoiding the excessive difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the specific manner of selecting a cell is not limited in the embodiment of the present invention. For example, a cell whose geographic location is closest to the serving cell where the terminal is located and meets the difference threshold may be selected.
  • the location service area sends an OTDOA information request to the base station of the cell selected in step 904 (OTDOA).
  • Step 905 can use the existing OTDOA information request message.
  • Step 906 The base station feeds back its final PRS configuration to the positioning server.
  • Step 906 can utilize the existing OTDOA Information Response (OTDOAInformationResponse) message, and therefore will not be described again.
  • OTDOA Information Response OTDOA Information Response
  • the positioning server sends the PRS configuration information to the terminal by using the auxiliary data.
  • the terminal performs PRS detection according to PRS configuration information in the auxiliary data, and estimates RSTD.
  • the terminal reports the RSTD to the positioning server.
  • the positioning server calculates a geographic location of the terminal according to the RSTD reported by the terminal.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, so as to avoid the measurement value difference of the PRS is too large. Reduced interference between PRS.
  • the terminal supports multi-mode (multiple RATs) and supports positioning measurement under multiple RATs
  • the impact of the load of the RAT on the positioning measurement is not considered in the prior art. If the PRS is transmitted under the high-load RAT, the resources corresponding to the high-load RAT are occupied, which affects the service performance and throughput of the high-load RAT, and the service signal transmitted on the high-load RAT may interfere with the PRS.
  • FIG. 10 is a flow chart of a positioning method according to another embodiment of the present invention.
  • the method of Figure 10 is performed by a location server (e.g., e-SMLC).
  • the embodiment of Figure 10 is applied to a scenario in which the terminal supports positioning measurements under multiple RATs.
  • the terminal supports positioning capability information for performing positioning measurement according to multiple RATs.
  • the location server may carry the RAT request information in the message requesting the terminal to report the capability, where the RAT request information is used to request the terminal to report the location capability information.
  • the positioning server receives the positioning capability information carried by the terminal in the reported capability information.
  • the positioning server can interact with a centralized control node (such as a mobility management entity) on the network side, or interact with each base station separately to obtain load information of multiple RATs, thereby determining the first RAT with the lightest load.
  • a centralized control node such as a mobility management entity
  • the embodiment of the present invention does not limit the manner in which the positioning server sends the allocation information to the base station.
  • the location server may carry the allocation information in a message requesting the base station to report the PRS configuration (such as the above OTDOA information request message) or in a dedicated message before requesting the base station to report the PRS configuration message.
  • the manner in which the locating server notifies the terminal of the PRS configuration can utilize the corresponding processing in the prior art, for example, the PRS configuration is delivered through the auxiliary data, and therefore will not be described again.
  • the RSTD measured by the receiving terminal according to the configuration of the PRS, and the location of the terminal is determined according to the RSTD.
  • the process of measuring the RSTD by the terminal according to the configuration of the PRS and the process of determining the location of the terminal according to the RSTD by the positioning server are not limited.
  • the same processing in the prior art can be employed, and therefore will not be described again.
  • the embodiment of the present invention selects the RAT with the lightest load, thereby reducing the interference of the service signal on the PRS.
  • the embodiment of the present invention transmits PRS on the RAT with the lightest load, and can maintain service performance and throughput on a high-load RAT.
  • FIG. 11 is a flow chart of a positioning method according to another embodiment of the present invention.
  • the method of Fig. 11 is executed by a terminal (e.g., UE) and corresponds to the method of Fig. 10, and thus the duplicated description will be appropriately omitted.
  • a terminal e.g., UE
  • the interaction terminal with the positioning server supports positioning capability information for performing positioning measurement according to multiple RATs, so that the positioning server determines the first RAT with the lightest load among the multiple RATs.
  • the terminal may receive the RAT request information that is sent by the positioning server in the message requesting the terminal to report the capability, where the RAT request information is used to request the terminal to report the positioning capability information.
  • the terminal may carry the positioning capability information in the capability information sent to the positioning server.
  • the manner in which the terminal receives the PRS configuration notified by the location server can utilize the corresponding processing in the prior art, for example, the PRS configuration delivered by the auxiliary data is received, and therefore will not be described again.
  • the RSTD is measured according to the configuration of the PRS, and the RSTD is sent to the positioning server.
  • the embodiment of the present invention does not limit the process of measuring the RSTD by the terminal according to the configuration of the PRS and the process of sending the RSTD to the positioning server.
  • the same processing in the prior art can be employed, and therefore will not be described again.
  • the embodiment of the invention selects the RAT with the lightest load, thereby reducing the interference caused by the service signal to the PRS.
  • the embodiment of the present invention transmits PRS on the RAT with the lightest load, and can maintain service performance and throughput on a high load RAT.
  • FIG. 12 is a schematic flow chart of a positioning process according to another embodiment of the present invention.
  • the embodiment of Figure 12 is applied to a scenario in which a terminal supports OTDOA measurements on multiple RATs.
  • the network side can select the RAT with the lightest load to locate the reference signal, so as to avoid interference of the PRS caused by the service signal of the PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the positioning service of the terminal is triggered, and the terminal needs to be located.
  • the entity that triggers the service may be the terminal itself, and may be an MME (Mobility Management Entity), and may be a positioning server (e-SMLC) or a third-party entity on the network side. .
  • MME Mobility Management Entity
  • e-SMLC positioning server
  • the positioning server sends, to the terminal, RAT request information requesting positioning capability information.
  • the RAT request information may be carried by a message that the positioning server requests the terminal to report the capability.
  • LPP cell OTDOA-RequestCapabilities (OTDOA request capability) is sent by the location server to the end
  • the terminal requests the terminal to report the cell of its own capability (see 3GPP TS36.355).
  • the italic part is added in the embodiment of the present invention: ⁇ ⁇ ,) Abandon 3 ⁇ 4 guide: ⁇
  • OTDOA-MultiRATSupport (OTDOA Multi-RAT Support) is only an rw mode of the RAT request information, and its representative meaning is that the positioning server requests the terminal to report the support status information of the multi-RAT positioning.
  • the terminal After receiving the request in step 1202, the terminal feeds back the capability information of the terminal to the positioning server. If the terminal supports multi-mode positioning, the positioning capability information can be notified to the positioning server.
  • the LPP cell OTDOA-ProvideCapabilities is a cell that the terminal sends to the positioning server to report its own capabilities (see 3GPP TS36.355), which can increase the content of the positioning capability information. For example, as follows, the italic portion is added for the embodiment of the present invention.
  • the supported RAT list is only a naming manner of the positioning capability information, and its representative meaning is a RAT list indicating the 0TD0A supported by the terminal.
  • the maxRAT is only a naming manner, and its representative meaning is the number of RATs, which is generally A fixed value, depending on which RATs the 0TD0A is supported, is not limited by the present invention.
  • Each member IE in the SupportedRATList is given an example naming manner, the meaning of which indicates whether it is supported for the corresponding RAT; for example: supportGSM indicates whether GSM is supported. It is a Boolean variable, ' ⁇ is supported, and '0' means not supported.
  • each RAT traffic service area determines the lightest load RAT (the first RAT) 0
  • the method of judging the load size may interact with a centralized control node on the network side, or may interact with each base station to obtain load information.
  • the interaction between the location server and the base station involves the IE of 3GPP TS 36.455, including request 1204-1 and feedback 1204-2.
  • the signaling examples are as follows:
  • the positioning server sends a load status request (LOAD STATUS REQUEST) to the base station to request the base station to feed back the load status of the multiple RATs.
  • LOAD STATUS REQUEST a load status request
  • Protocol IEs Protocol IE -Container - IEs
  • LoadStatusRequest- IEs LPPA-PROTOCOL- IES ::
  • Load-Status -Type SEQUENCE ( S I ZE ( 1 . . maxnoLI types ) ) OF Protocol IE-Single-Container ⁇ ⁇ Load-Status -Type IEs ⁇ ⁇
  • the Load-Status-Item is just a naming scheme, which means the load of the base station on the RAT.
  • the content and form of the IE are not limited in the embodiment of the present invention.
  • the base station when the base station receives the load condition request of the positioning server, it may return a load status response (LOAD STATUS RESPONSE) message to feed back the load status on the multiple RATs.
  • LOAD STATUS RESPONSE load status response
  • LoadStatusResponse- IEs LPPA-PROTOCOL- IES ::
  • the Load Status is just a naming scheme, which means the load of the base station on this RAT.
  • the content and form of the IE are not limited in the embodiment of the present invention.
  • the positioning server determines, according to the load status fed back by the base station, the RAT with the lightest load (ie, the first RAT described above).
  • the positioning server sends allocation information to the base station, to configure the base station to send the positioning signal on the first RAT.
  • the embodiment of the present invention does not limit the signaling form of the allocation information.
  • the allocation information is sent by the positioning server to the base station, informing the base station to transmit the PRS on the first RAT. Signaling example:
  • Protocol IEs Protocol IE -Container ⁇ ⁇ PRSRATConf iguration- IEs ⁇ PRSRATConf iguration- IEs LPPA-PROTOCOL- IES ::
  • PRSRATConfiguration (PRS RAT configuration) is only a naming manner of the allocation information, which means the allocation information sent by the positioning server to the base station, and is used to indicate the RAT configuration of the PRS to the base station, and the content form is not limited, and the main purpose is to use
  • the base station is notified to select a suitable RAT (first RAT) to avoid interference between the PRSs.
  • the locating service area sends an OTDOA INFORMATION REQUEST message to the base station of the cell selected in step 904, to request the base station to report the PRS configuration message.
  • Step 1206 can use an existing OTDOA information request message.
  • step 1205 may also be incorporated into the OTDOA information request message.
  • Step 906 can utilize the existing OTDOA Information Response (OTDOAInformationResponse) message, and therefore will not be described again.
  • OTDOA Information Response OTDOA Information Response
  • the positioning server sends the PRS configuration information to the terminal by using auxiliary data.
  • the terminal performs PRS detection according to PRS configuration information in the auxiliary data, and estimates RSTD.
  • the terminal reports the RSTD to the positioning server.
  • the positioning server calculates the geographic location of the terminal according to the RSTD reported by the terminal.
  • the embodiment of the invention selects the RAT with the lightest load, thereby reducing the interference caused by the service signal to the PRS.
  • the embodiment of the present invention transmits PRS on the RAT with the lightest load, and can maintain service performance and throughput on a high load RAT.
  • Figure 13 is a schematic illustration of a scenario in which embodiments of the present invention may be applied.
  • the base station 131 controls three cells S1, S2 and S3.
  • the lower half of Figure 13 is a schematic diagram of bandwidth division of three cells.
  • the bandwidth of the base station is divided into a first frequency band B1, a second frequency band B2, a third frequency band B3, and a fourth frequency band B4.
  • the first cell SI uses the first frequency band B1 and the second frequency band B2
  • the second cell S2 uses the third frequency band B3 and the fourth frequency band B4
  • the third cell S3 uses the second frequency band B2 and the third frequency band B3.
  • the bandwidth of the base station is 40 MHz and the four frequency bands B1-B4 are equally distributed, the bandwidth of each frequency band is 10 MHz, and each of the cells S1-S3 occupies 20 MHz of them.
  • Cell S1 and cell S3 have 10 MHz bandwidth overlap (second band B2), cell S2 and cell S3 There is a 10MHz bandwidth overlap (third band B3).
  • FIG. 14 is a flow chart of a positioning method according to another embodiment of the present invention.
  • the method of Figure 14 is performed by a base station (e.g., an eNB).
  • the method of Fig. 14 is described in conjunction with the scene of Fig. 13.
  • the embodiment of the present invention does not transmit a service signal in a frequency band overlapping with a cell that transmits a PRS, thereby avoiding interference of the service signal to the PRS.
  • the PRSs of the first cell, the second cell, and the third cell may be simultaneously transmitted. That is, the PRS transmission is performed at the same time. Since the three cells belong to the same base station, the transmission synchronization of the PRS signal can be guaranteed. Because the PRS subframe is a LIS (low interference subframe), the PRS subframes that are simultaneously transmitted by the three cells do not contain the content of any service signal (such as PDSCH), and the interference of the service signals to each other can be avoided.
  • any service signal such as PDSCH
  • the PRS subframe offset (prs-SubframeOffset) cell specified by TS36.355 can be configured to implement PRS simultaneous transmission of three cells. For example, configure the PRS subframe offset in the PRS configuration to 0 or not configure the PRS subframe offset:
  • prs-SubframeOffset 0 or no configuration (default is 0 if not configured)
  • each cell may be separately configured to not transmit traffic signals on overlapping frequency bands, but may transmit PRS or other common signals or other control signals.
  • the third cell S3 does not transmit the service signal on the second frequency band B2.
  • the power allocation and resource allocation of the third cell S3 on the third frequency band B3 and the power allocation and resource allocation of the second cell S2 on the third frequency band B3 and the fourth frequency band B4 are not limited in the embodiment of the present invention.
  • the third cell S3 may transmit a PRS or other common signal or other control signal on the second frequency band B2.
  • the second cell S2 is configured to transmit the PRS
  • the third cell S3 does not transmit the traffic signal on the third frequency band B3.
  • the power allocation and resource allocation of the third cell S3 on the second frequency band B2 and the power allocation and resource allocation of the first cell S1 on the first frequency band B1 and the second frequency band B2 are not limited in the embodiment of the present invention.
  • the third cell S3 may transmit a PRS or other common signal or other control signal on the third frequency band B3.
  • the first cell S1 does not transmit the traffic signal on the second frequency band B2
  • the second cell S2 does not transmit the traffic signal on the third frequency band B3.
  • the power allocation and resource allocation of the first cell S1 on the first frequency band B1 and the power allocation and resource allocation of the second cell S2 in the fourth frequency band B4 are not limited in the embodiment of the present invention.
  • the first cell S1 may transmit a PRS or other common signal or other control signal on the second frequency band B2
  • the second cell S2 may transmit a PRS or other public signal or other control signal on the third frequency band B3.
  • the embodiment of the present invention can avoid the interference of the service signal to the PRS in the scenario of FIG.
  • FIG. 15 is a block diagram of a location server in accordance with one embodiment of the present invention.
  • An example of the location server 150 of Figure 15 is an e-SMLC, which includes a transceiver 151 and a processor 152.
  • the transceiver 151 can notify the terminal of the difference threshold information.
  • the difference threshold information is used to indicate a difference threshold of reference signal measurements of two cells in a cell pair.
  • the transceiver 151 can also receive the cell subset information determined by the terminal according to the difference threshold information.
  • the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed the difference threshold.
  • the processor 152 determines the configuration of the positioning reference signal PRS based on the cell subset information.
  • the transceiver 151 notifies the terminal of the configuration of the PRS.
  • the transceiver 151 receives the RSTD measured by the terminal according to the configuration of the PRS.
  • the processor 152 determines the location of the terminal based on the RSTD.
  • the embodiment of the invention sets the difference threshold of the reference signal measurement value, thereby avoiding the difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the positioning server 150 can implement the steps involved in locating the server in the method of FIG. 1 to FIG. 9. To avoid repetition, details are not described in detail.
  • the difference threshold information may include at least one of: a difference threshold of RSRP of two cells, a difference threshold of SNR of CRS of two cells, and a PRS receiving power of two cells. a difference threshold of the PRP and a first mapping factor, a difference threshold of the SNR of the PRS of the two cells, and a second mapping factor;
  • the first mapping factor represents a mapping factor between the RSRP difference value and the PRP difference value
  • the second mapping factor represents a mapping factor between the difference between the SNR difference of the CRS and the SNR of the PRS.
  • the transceiver 151 may carry the difference threshold information in the message requesting the terminal to report the capability; or, in the message requesting the terminal to perform the positioning measurement, carry the difference threshold information; or, in the terminal
  • the auxiliary data sent to help the terminal perform the positioning measurement carries the difference threshold information; or sends the difference threshold information to the serving base station of the terminal, so that the serving base station sends the difference threshold information to the terminal through the broadcast or the radio resource control message.
  • the transceiver 151 may receive the cell subset information carried by the terminal in the message of the reporting capability; or receive the cell subset information carried by the terminal in the message requesting the auxiliary data.
  • the processor 152 may send, by using the transceiver 151, the power allocation information to the base station that needs to adjust the PRS transmission power according to the cell subset information.
  • the power allocation information is used to instruct the base station to adjust the PRS transmission power to reduce the difference between the PRS reception power or the SNR of the two cells in the cell pair.
  • the transceiver 151 can receive, from the base station, a configuration of the PRS obtained by the base station after adjustment based on the power allocation information.
  • the processor 152 may send the frequency allocation information to the base station that needs to adjust the PRS transmission frequency point by using the transceiver 151 according to the cell subset information.
  • the frequency allocation information is used to instruct the base station to adjust the PRS transmission frequency point to reduce the difference between the PRS reception power or the SNR of the two cells in the cell pair.
  • the transceiver 151 can receive, from the base station, a configuration of the PRS obtained by the base station after adjustment based on the frequency allocation information.
  • the processor 152 may send the node configuration information to the base station through the transceiver 151 according to the cell subset information.
  • the node configuration information is used to notify the base station to select an optimal cooperating node (CoMP node) that transmits the PRS that satisfies the PRS reception power or SNR difference threshold.
  • the transceiver 151 can receive, from the base station, a configuration of the PRS obtained by the base station after selection based on the node configuration information.
  • the processor 152 may select, according to the cell subset information, a cell that meets a PRS received power or a SNR difference threshold from a neighbor list of the serving cell of the terminal.
  • the transceiver 151 can receive the configuration of the PRS from the base station of the selected cell.
  • the processor 152 may send beamforming configuration information to the base station through the transceiver 151 according to the cell subset information.
  • the beamforming configuration information is used to inform the base station to select a beamformed transmit PRS that satisfies the PRS receive power or SNR difference threshold.
  • the transceiver 152 can receive, from the base station, a configuration of the PRS obtained by the base station after selection based on beamforming configuration information.
  • the transceiver 151 may carry the foregoing allocation information (such as power allocation information, in a message requesting the base station to report the PRS configuration or in a dedicated message before requesting the base station to report the PRS configured message. Frequency allocation information, node configuration information, beamforming configuration information, etc.).
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the excessive difference between the measured values of the PRS and reducing the interference between the PRSs.
  • FIG. 16 is a block diagram of a terminal in accordance with one embodiment of the present invention.
  • An example of terminal 160 of FIG. 16 is a UE, including transceiver 161 and processor 162.
  • the transceiver 161 receives the difference threshold information notified by the positioning server.
  • the difference threshold information is used to indicate a difference threshold of reference signal measurements of two cells in a cell pair.
  • the processor 162 determines the cell subset information based on the difference threshold information.
  • the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds a difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed a difference threshold.
  • the transceiver 161 transmits the cell subset information to the positioning server, and receives the configuration of the positioning reference signal PRS determined by the positioning server according to the cell subset information.
  • the processor 162 measures the RSTD based on the configuration of the PRS.
  • the transceiver 161 transmits an RSTD to the positioning server.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the excessive difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the terminal 160 can implement the steps involved in the method in the method of FIG. 1 to FIG. 9. To avoid repetition, it will not be described in detail.
  • the difference threshold information may include at least one of: a difference threshold of RSRP of two cells, a difference threshold of SNR of CRS of two cells, and a PRS receiving power of two cells.
  • the first mapping factor represents a mapping factor between the RSRP difference value and the PRP difference value
  • the second mapping factor represents a mapping factor between the difference between the SNR difference of the CRS and the SNR of the PRS.
  • the transceiver 161 may receive the difference threshold information carried by the positioning server in the message requesting the terminal to report the capability; or receive the difference carried by the positioning server in the message requesting the terminal to perform the positioning measurement.
  • the transceiver 161 may carry the cell subset information in the message reporting the capability to the positioning server; or carry the cell subset information in the message requesting the assistance data from the positioning server.
  • the cell subset information may include a list of cell pairs whose reference signal measurement values exceed a difference threshold, or the difference between the cell subset information and the reference signal measurement value does not exceed a difference.
  • Small threshold The list of the pair, or the subset information of the cell includes a list of cells whose difference from the reference signal measurement value between the currently inspected cells exceeds the difference threshold, or the cell subset information includes reference signal measurement between the currently inspected cell The list of cells whose difference does not exceed the difference threshold.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the excessive difference between the measured values of the PRS and reducing the interference between the PRSs.
  • FIG. 17 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • An example of a base station 170 of FIG. 17 is an eNB, including a transceiver 171 and a processor 172.
  • the transceiver 171 receives the allocation information transmitted by the positioning server.
  • the processor 172 adjusts the configuration of the PRS based on the allocation information.
  • the transceiver 171 feeds back the configuration of the adjusted PRS to the positioning server.
  • the transceiver 171 transmits the PRS to the terminal in accordance with the adjusted configuration of the PRS.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the excessive difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the base station 170 of Figure 17 can implement the various steps involved in the base station in the method of Figures 1 - 12, and will not be described in detail to avoid redundancy.
  • the transceiver 171 may also receive the difference threshold information from the positioning server and forward the difference threshold information to the terminal.
  • the difference threshold information is used to indicate a difference threshold of reference signal measurements of two cells in a cell pair.
  • the transceiver 171 can also receive, from the terminal, the cell subset information determined by the terminal according to the difference threshold information and forward the cell subset information to the location server.
  • the cell subset information is used to indicate a cell pair whose reference signal measurement value exceeds the difference threshold, or the cell subset information is used to indicate a cell pair whose reference signal measurement value does not exceed the difference threshold.
  • the allocation information is sent by the positioning server according to the subset information of the cell.
  • the transceiver 171 may receive the difference threshold information from the positioning server, and send the difference threshold information to the terminal by using a broadcast or R C message; or transparently pass the difference threshold from the positioning server to the terminal.
  • the processor 172 may perform any one of the following adjustment operations according to the allocation information: adjusting the PRS transmit power, adjusting the PRS transmit frequency, and selecting the PRS receive power or SNR difference for transmitting the PRS.
  • the transceiver 171 can receive the positioning server to report the PRS configuration on the requesting base station.
  • the allocation information carried in the message; or the allocation information carried in the dedicated message before the positioning server requests the base station to report the PRS configuration message.
  • the embodiment of the present invention sets the difference threshold of the reference signal measurement value, thereby avoiding the excessive difference between the measured values of the PRS and reducing the interference between the PRSs.
  • the base station transmits the PRS using the first RAT with the lightest load among the plurality of RATs according to the allocation information of the positioning server, it is also possible to reduce the interference of the service signal to the PRS.
  • FIG. 18 is a block diagram of a positioning server in accordance with another embodiment of the present invention.
  • An example of the location server 180 of FIG. 18 is an e-SMLC that includes a transceiver 181 and a processor 182.
  • the transceiver 181 and the terminal interaction terminal support positioning capability information for performing positioning measurement according to multiple RATs.
  • the processor 182 determines the least loaded first RAT of the plurality of RATs.
  • the transceiver 181 sends the allocation information to the base station, where the allocation information is used to indicate that the base station transmits the PRS to the terminal on the first RAT, and receives the configuration of the PRS fed back by the base station.
  • the transceiver 181 notifies the terminal of the configuration of the PRS.
  • the transceiver 181 receives the RSTD measured by the terminal according to the configuration of the PRS.
  • the processor 182 determines the location of the terminal based on the RSTD.
  • the embodiment of the invention selects the RAT with the lightest load, thereby reducing the interference caused by the service signal to the PRS.
  • the embodiment of the present invention transmits PRS on the RAT with the lightest load, and can maintain service performance and throughput on a high load RAT.
  • the location server 180 can implement the steps involved in locating the server in the method of Figures 10-12, and will not be described in detail to avoid redundancy.
  • the transceiver 181 may carry the RAT request information in the message requesting the terminal to report the capability, where the RAT request information is used to request the terminal to report the positioning capability information; and the positioning carried by the receiving terminal in the reported capability information Capability information.
  • Figure 19 is a block diagram of a terminal in accordance with another embodiment of the present invention.
  • An example of terminal 190 of Figure 19 is a UE, including transceiver 191 and processor 192.
  • the transceiver 191 interacts with the positioning server to support positioning capability information for positioning measurement according to multiple RATs, so that the positioning server determines the lightest first RAT among the plurality of RATs.
  • the transceiver 191 receives the configuration of the PRS notified by the positioning server, wherein the base station transmits the PRS using the first RAT in the configuration of the PRS.
  • the processor 192 measures the RSTD based on the configuration of the PRS.
  • the transceiver 191 transmits an RSTD to the positioning server.
  • the embodiment of the present invention selects the RAT with the lightest load, thereby reducing the interference of the service signal on the PRS.
  • the embodiment of the present invention transmits the PRS on the RAT with the lightest load, and can maintain the service performance and the swallow on the high-load RAT. The amount of spit.
  • the method may be implemented terminal 190 in FIG. 10 to 12 relate to various steps of the terminal, to avoid repetition, not described in detail 0
  • the transceiver 191 may receive the RAT request information carried by the positioning server in the message requesting the terminal to report the capability, where the RAT request information is used to request the terminal to report the positioning capability information; and the capability information sent to the positioning server. Carry the positioning capability information.
  • Figure 20 is a block diagram of a base station in accordance with one embodiment of the present invention.
  • An example of a base station 200 of FIG. 20 is an eNB, including a transceiver 201 and a processor 202.
  • the base station 200 of Fig. 20 is applicable to the scenario shown in Fig. 13.
  • the processor 202 determines a configuration of the positioning reference signal PRS of the first cell, the second cell, and the third cell controlled by the base station, so that any one of the first cell, the second cell, and the third cell is in another cell when the PRS is transmitted.
  • the traffic signal is not transmitted on a frequency band overlapping the one cell.
  • the bandwidth of the base station is divided into a first frequency band, a second frequency band, a third frequency band, and a fourth frequency band, the first frequency band uses the first frequency band and the second frequency band, the second cell uses the third frequency band and the fourth frequency band, and the third cell uses the third frequency band. Two bands and a third band.
  • the transceiver 201 transmits a PRS to the terminal in accordance with the configuration of the PRS on the one cell.
  • the embodiment of the present invention does not transmit a service signal in a frequency band overlapping with a cell that transmits a PRS, thereby avoiding interference of the service signal to the PRS.
  • the base station 200 of Figure 20 can implement the various steps involved in the base station in the method of Figure 14, and will not be described in detail to avoid redundancy.
  • the processor 202 may limit PTS simultaneous transmission of the first cell, the second cell, and the third cell.
  • the processor 202 can configure a PRS subframe offset (prs-SubframeOffset) cell specified by TS36.355 to implement simultaneous PRS transmission of three cells.
  • a PRS subframe offset prs-SubframeOffset
  • prs-SubframeOffset 0 or no configuration (default is 0 if not configured)
  • the processor 202 may determine a configuration of the PRS: when configuring the first cell to transmit the PRS, the third cell does not transmit the service signal on the second frequency band; or, when configuring the second cell to transmit the PRS The third cell does not transmit the service signal on the third frequency band; or, when the third cell is configured to transmit the PRS, the first cell does not transmit the service signal on the second frequency band, and the second cell is not in the third The traffic signal is transmitted on the frequency band.
  • the embodiment of the present invention can avoid the interference of the service signal to the PRS in the scenario of FIG.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM) disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种定位方法、定位服务器、终端和基站。该定位方法包括:向终端通知差值门限信息,差值门限信息用于指示一个小区对中两个小区的参考信号测量值的差值门限;接收终端根据差值门限信息确定的小区子集信息,小区子集信息用于指示参考信号测量值超过差值门限的小区对,或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对;根据小区子集信息,确定PRS的配置,并向终端通知PRS的配置;接收终端根据PRS的配置测量得到的RSTD,根据RSTD确定所述终端的位置。本发明实施例设置参考信号测量值的差值门限,从而避免PRS的测量值差值过大,降低了PRS间的干扰。

Description

定位方法、 定位服务器、 终端和基站
本申请要求于 2012年 1月 16日提交中国专利局、 申请号为 CN 201210013759. 4、 发明名称为 "定位方法、 定位服务器、 终端和基站"的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。 技术领域 本发明实施例涉及无线通信领域, 并且更具体地, 涉及定位方法、 定位服务器、 终 端禾口基站。 背景技术 定位技术是为了确定移动台的地理位置而采用的技术, 可以利用无线通信网络的资 源来直接或者间接地得到移动台的位置信息。 LTE (Long Term Evolution,长期演进)中采 用的标准终端定位的方式有以下三种: 网络辅助的 GNSS ( Global Navigation Satellite System,全球导航卫星系统)定位;下行定位,或称为 OTDOA (Observed Time Difference of Arrival, 观察的到达时间差)方式; 和 e-CID (Enhanced Cell Identification, 增强的小 区标识) 定位。
LTE 的移动台定位算法一般可以通过检测移动台和基站之间无线电波传播信号的 特征参数 (信号场强、 传播信号到达时间差、 信号到达方向角等), 再根据有关的定位算 法来估计移动终端的几何位置。 GNSS的定位方法要求终端具有接收 GNSS信号的无线 接收器, GNSS的具体实现包含 GPS (Global Positioning System, 全球定位系统)定位、 Galileo (伽利略) 定位等等。 下行定位和 e-CID的定位都是网络定位的类型, 主要依靠 对移动通信系统内部的无线资源特征参数检测, 再根据定位算法来估计移动台位置, 是 当前研究的热点。 OTDOA定位利用移动台接收来自多个基站的下行 PRS (Positioning Reference Signal, 定位参考信号) 并进行定时测量, 并上报基站间的 PRS到达时间差, 在网络定位服务器上进行计算得到移动台的地理位置。
目前随着移动通信技术的不断发展, 对于定位服务的需求也日渐增加。 定位服务的 应用场景呈现出多元化的趋势, 例如紧急求援定位, 犯罪位置追踪, 导航及交通控制等 等。 但不论应用场景如何多样, 业界对于定位的需求始终是希望获得可靠、 有效、 快速 的方法, 换言之, 易于实现并且高精度的定位技术一直是人们追捧的热点。
OTDOA是一种常见的定位技术, 其原理是, 当系统中存在三个或以上基站时, 可 以根据不同基站下行传输信号的到达时间差确定终端的位置。此下行传输信号可以是参 考信号, 也可以是同步信号。 在 LTE中, OTDOA定位作为一种网络辅助终端定位的技 术。 在网络侧 e-SMLC (Enhanced Serving Mobile Location Centre, 增强的服务移动定位 中心) 为基站和移动台指定定位参考信号 (PRS) 的发送和接收配置之后, 基站下行发 送 PRS, 移动台接收到来自多个定位基站的 PRS, 并识别每个 PRS的首达径位置, 可 以得到不同基站之间的 PRS到达时间差, 并将其上报至 e-SMLC。 e-SMLC通过移动台 接收不同基站的信号时间差, 可以映射成移动台与不同基站之间的距离差, 通过双曲线 模型数学计算, e-SMLC就可以得到移动台的准确位置。 OTDOA定位的优点是定位精 确较高, 可用于非视距网络的移动台定位。
但是 OTDOA定位的精度很大程度上依赖于 PRS信号的接收和首达径的估计。虽然 与 GPS相比, OTDOA可以在部分密集城区或者室内场景完成终端的定位; 但是由于需 要估计信号的到达时间差 (Time difference of arrival), 密集城区及室内的无线传播环境 都会对信号的多径产生影响, 从而导致 OTDOA无法真实反映两个基站距离 UE的直线 距离差,这也就增加了定位的误差。而且下行 PRS的受干扰情况会极大地影响定位的精 度, 因此目前标准中讨论的都是在低干扰子帧中进行 PRS发送, 也就是 PRS的子帧中 除了 PRS的 RE (Resource Element, 资源单元), CRS (Cell-specific reference signal, 小 区参考信号)的 RE和公共信道之外, 不存在数据信道的 RE。但是由于 PRS pattern (图 案)在频域上是按照 PCI (Physical Cell Identifier,物理小区标识)模 6之后进行移位的, 所以当两个小区的 PCI模 6相等时, 这两个小区的 PRS存在同频干扰。 因此 Rel-9的协 议中引入了 muting (静默期), 通过时间域上的分隔来进行干扰的避免。 但是 muting浪 费了终端接收多个 PRS时域信号的机会, 对定位的精度会有所影响。 另外, 若 PRS的 PCI模 6之后不相同, 虽然这两个小区的 PRS映射在不同的 RE中, 但当这两个小区的 PRS的 SNR ( Signal to Noise Ratio; 信噪比) 差值过大时, 不同 RE间的正交性可能被 破坏, 导致不同 RE间 PRS干扰的产生。 如下所示,
Δ SNR 搜索窗长 RSTD误差 (Ts)
10dB 320Ts 0.5
20dB 320Ts 0.5
30dB 320Ts 1.1
35 dB 320Ts 1.8
40 dB 320Ts 130 其中 RSTD表示参考信号时间差 (Reference Signal Time Difference), Ts表示 LTE 系统内的最小时间单元, lTs=l/(2048 X 15000)秒。
当两个小区 (不同的 PCI) 之间的 PRS的 SNR差值大于 30dB时, rel-9的 RSTD (Reference Signal Time Difference, 参考信号时间差) 估计误差需求就无法被满足。 通 过系统级仿真发现, 这种差值大于 30dB的情况并不是小概率事件, 所以需要对目前的 OTDOA muting进行增强, 来抵消不同 RE的 PRS带来的干扰。
发明内容
本发明实施例提供一种定位方法、 定位服务器、 终端和基站, 能够降低定位参考信 号的干扰。
一方面, 提供了一种定位方法, 包括: 向终端通知差值门限信息, 差值门限信息用 于指示一个小区对中两个小区的参考信号测量值的差值门限; 接收终端根据差值门限信 息确定的小区子集信息, 小区子集信息用于指示参考信号测量值超过差值门限的小区 对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对; 根据小区子 集信息, 确定 PRS的配置, 并向终端通知 PRS的配置; 接收终端根据 PRS的配置测量 得到的参考信号时间差 RSTD, 根据 RSTD确定所述终端的位置。
另一方面, 提供了一种定位方法, 包括: 接收定位服务器通知的差值门限信息, 差 值门限信息用于指示一个小区对中两个小区的参考信号测量值的差值门限; 根据差值门 限信息确定小区子集信息并向定位服务器发送小区子集信息, 小区子集信息用于指示参 考信号测量值的差值超过差值门限的小区对, 或者小区子集信息用于指示参考信号测量 值的差值不超过差值门限的小区对; 接收定位服务器根据小区子集信息确定的定位参考 信号 PRS的配置; 根据 PRS的配置测量得到参考信号时间差 RSTD, 并向定位服务器 发送 RSTD。
另一方面, 提供了一种定位方法, 包括: 接收定位服务器发送的分配信息; 根据分 配信息调整定位参考信号 PRS的配置; 向定位服务器反馈调整后的 PRS的配置; 按照 调整后的 PRS的配置向终端发射 PRS。
另一方面, 提供了一种定位方法, 包括: 与终端交互终端支持按照多个 RAT进行 定位测量的定位能力信息; 确定多个 RAT中负载最轻的第一 RAT; 向基站发送分配信 息, 分配信息用于指示基站在第一 RAT上向终端发射定位参考信号 PRS, 并接收基站 反馈的 PRS 的配置; 向终端通知 PRS 的配置; 接收终端根据 PRS 的配置测量得到的 RSTD, 根据 RSTD确定终端的位置。
另一方面, 提供了一种定位方法, 包括: 与定位服务器交互终端支持按照多个 RAT 进行定位测量的定位能力信息, 以便定位服务器确定多个 RAT中负载最轻的第一 RAT; 接收定位服务器通知的 PRS的配置, 其中 PRS的配置中基站使用第一 RAT发射 PRS; 根据 PRS的配置测量得到 RSTD, 并向定位服务器发送 RSTD。
另一方面, 提供了一种定位方法, 包括: 确定基站控制的第一小区、 第二小区和第 三小区的 PRS的配置, 基站的带宽划分为第一频带、 第二频带、 第三频带和第四频带, 第一小区使用第一频带和第二频带, 第二小区使用第三频带和第四频带, 第三小区使用 第二频带和第三频带, 以使得第一小区、 第二小区和第三小区中的任何一个小区在发射 PRS时其他小区不在与所述一个小区重叠的频带上发射业务信号;在所述一个小区上按 照 PRS的配置向终端发射 PRS。
另一方面, 提供了一种定位服务器, 包括收发器和处理器。 收发器用于向终端通知 差值门限信息, 差值门限信息用于指示一个小区对中两个小区的参考信号测量值的差值 门限; 收发器用于接收终端根据差值门限信息确定的小区子集信息, 小区子集信息用于 指示参考信号测量值超过差值门限的小区对, 或者小区子集信息用于指示参考信号测量 值不超过差值门限的小区对;处理器用于根据小区子集信息,确定 PRS的配置;收发器, 用于向终端通知 PRS的配置; 收发器用于接收终端根据 PRS的配置测量得到的 RSTD; 处理器用于根据 RSTD确定终端的位置。
另一方面, 提供了一种终端, 包括收发器和处理器, 收发器用于接收定位服务器通 知的差值门限信息,差值门限信息用于指示一个小区对中两个小区的参考信号测量值的 差值门限; 处理器用于根据差值门限信息确定小区子集信息, 小区子集信息用于指示参 考信号测量值的差值超过差值门限的小区对, 或者小区子集信息用于指示参考信号测量 值的差值不超过差值门限的小区对; 收发器用于向定位服务器发送小区子集信息, 接收 定位服务器根据小区子集信息确定的 PRS的配置; 处理器用于根据 PRS的配置测量得 到 RSTD; 收发器用于向定位服务器发送 RSTD。
另一方面, 提供了一种基站, 包括收发器和处理器, 收发器用于接收定位服务器发 送的分配信息;处理器用于根据分配信息调整 PRS的配置; 收发器用于向定位服务器反 馈调整后的 PRS的配置; 收发器用于按照调整后的 PRS的配置向终端发射 PRS。
另一方面, 提供了一种定位服务器, 包括收发器和处理器, 收发器用于与终端交互 终端支持按照多个 RAT进行定位测量的定位能力信息; 处理器用于确定多个 RAT中负 载最轻的第一 RAT; 收发器用于向基站发送分配信息, 分配信息用于指示基站在第一 RAT上向终端发射 PRS, 并接收所述基站反馈的 PRS的配置; 收发器用于向终端通知 PRS的配置; 收发器用于接收终端根据 PRS的配置测量得到的 RSTD; 处理器用于根据 RSTD确定终端的位置。
另一方面, 提供了一种终端, 包括收发器和处理器, 收发器用于与定位服务器交互 终端支持按照多个 RAT进行定位测量的定位能力信息, 以便定位服务器确定多个 RAT 中负载最轻的第一 RAT; 收发器用于接收定位服务器通知的 PRS的配置, 其中 PRS的 配置中基站使用第一 RAT发射 PRS; 处理器用于根据 PRS的配置测量得到 RSTD; 收 发器用于向定位服务器发送 RSTD。
另一方面, 提供了一种基站, 包括收发器和处理器, 处理器用于确定基站控制的第 一小区、 第二小区和第三小区的 PRS的配置, 基站的带宽划分为第一频带、 第二频带、 第三频带和第四频带, 第一小区使用第一频带和第二频带, 第二小区使用第三频带和第 四频带, 第三小区使用第二频带和第三频带, 以使得第一小区、 第二小区和第三小区中 的任何一个小区在发射 PRS 时其他小区不在与所述两个一个小区重叠的频带上发射 PDSCH业务信号; 收发器用于在一个小区上按照 PRS的配置向终端发射 PRS。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
附图说明 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技术描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1是本发明一个实施例的定位方法的流程图;
图 2是本发明另一实施例的定位方法的流程图;
图 3是本发明另一实施例的定位方法的流程图;
图 4是本发明一个实施例的定位过程的示意流程图;
图 5是本发明另一实施例的定位过程的示意流程图; 图 6是 CoMP场景的一个例子的示意图;
图 7是本发明另一实施例的定位过程的示意流程图;
图 8是本发明另一实施例的定位过程的示意流程图;
图 9是本发明另一实施例的定位过程的示意流程图;
图 10是本发明另一实施例的定位方法的流程图;
图 11是本发明另一实施例的定位方法的流程图;
图 12是本发明另一实施例的定位过程的示意流程图;
图 13是可应用本发明实施例的一个场景的示意图;
图 14是本发明另一实施例的定位方法的流程图;
图 15是本发明一个实施例的定位服务器的框图;
图 16是本发明一个实施例的终端的框图;
图 17是本发明一个实施例的基站的框图;
图 18是本发明另一实施例的定位服务器的框图;
图 19是本发明另一实施例的终端的框图;
图 20是本发明一个实施例的基站的框图。 具体实肺式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本 发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
图 1 是本发明一个实施例的定位方法的流程图。 图 1 的方法由定位服务器 (如 e-SMLC) 执行。
101 , 向终端通知差值门限信息, 差值门限信息用于指示一个小区对中两个小区的 参考信号测量值的差值门限。
例如, 参考信号可以是 CRS (Cell-specific reference signal, 小区参考信号)、 PRS 或其他合适的参考信号。测量值可以是接收功率,如 CRS接收功率 RSRP( reference signal receiving power) 和 PRS接收功率 PRP (PRS received power); 测量值也可以是其他类 型的值, 如 SNR。
可选地, 作为一个实施例, 差值门限信息可包括以下中的至少一种: 两个小区的 RSRP的差值门限、 两个小区的 CRS的 SNR的差值门限、 两个小区的 PRP的差值门限 和第一映射因子、 两个小区的 PRS的 SNR的差值门限和第二映射因子。 上述第一映射 因子 αι表示 RSRP差值 ?^与 PRP差值 ΔΡΡ„之间的映射因子, 第二映射因子 α2表示 CRS的 SNR的差值 ASCTS与 PRS的 SNR的差值 AS 之间的映射因子。
本发明实施例对于映射因子的类型不作限制。 例如, 第一映射因子可以是
Figure imgf000009_0001
, 或者 α ΔΡ^ΔΡ^。 第二映射因子可以是 a2=ASprs/ASCTS, 或者 a2=AScrs/ASprs o 定位服务器可以预先确定映射因子的取值, 例如根据仿真、 试验或其他 方式确定映射因子。
在步骤 101中, 定位服务器可通过各种方式向终端通知差值门限信息, 本发明实施 例对此不作限制。 可选地, 作为一个实施例, 定位服务器可在请求终端上报能力的消息 中携带差值门限信息。 或者, 定位服务器可在请求终端进行定位测量的消息中携带差值 门限信息。 或者, 定位服务器可在向终端发送的用于帮助终端进行定位测量的辅助数据 中携带差值门限信息。 或者, 定位服务器可向终端的服务基站发送差值门限信息, 以便 服务基站通过广播或 RRC (Radio Resource Control, 无线资源控制) 消息向终端发送差 值门限信息。
102, 接收终端根据差值门限信息确定的小区子集信息。 小区子集信息用于指示参 考信号测量值超过差值门限的小区对, 或者小区子集信息用于指示参考信号测量值不超 过差值门限的小区对。
本发明实施例对接收小区子集信息的方式不作限制。 可选地, 作为一个实施例, 定 位服务器可接收终端在上报能力的消息中携带的小区子集信息。 或者, 定位服务器可接 收终端在请求辅助数据的消息中携带的小区子集信息。
本发明实施例对小区子集信息的形式不作限制。 可选地, 作为一个实施例, 小区子 集信息可包括小区对的列表, 即小区对中两个小区的小区标识所组成的列表。 例如, 小 区子集信息可包括参考信号测量值的差值超过差值门限的小区对的列表, 或者小区子集 信息包括参考信号测量值的差值不超过差值门限的小区对的列表。
可选地, 作为另一实施例, 小区子集信息可包括针对当前考察小区的小区列表, 即 与当前考察小区之间的参考信号测量值满足一定条件的小区的标识所组成的列表。 例 如, 小区子集信息可包括与当前考察小区之间的参考信号测量值的差值超过差值门限的 小区的列表, 或者小区子集信息可包括与当前考察小区之间的参考信号测量值的差值不 超过差值门限的小区的列表。 本发明实施例对上述各种列表中的 "小区标识"的具体形式不做限制。 例如, 小区 标识可以是 PCI、CGI(Cell Global Identity,小区全球标识)或 ECGKE-UTRAN Cell Global Identity, E-UTRAN小区全球标识) 等。
可选地, 作为另一实施例, 除了上述小区列表之外, 小区子集信息还可以包括以下 中的至少一个: 参考信号测量值的差值信息、 小区的频点号、 小区的载波号。 例如, 在 小区子集信息指示参考信号测量值超过差值门限的小区对时, 如果终端同时上报参考信 号测量值的差值信息,则可以辅助定位服务器更精确地调整 PRS配置。参考信号测量值 的差值信息可以是差值本身, 也可以是对应于差值的索引值, 本发明实施例对此不作限 制。 另外, 在载波聚合的场景下, 小区子集信息也可以携带小区的频点号或载波号以辅 助定位服务器更精确地调整 PRS配置。
103, 根据小区子集信息, 确定 PRS的配置, 并向终端通知 PRS的配置。
可选地, 作为一个实施例, 定位服务器可根据小区子集信息的指示, 确定需要进行 调整 PRS配置的小区 (例如参考信号测量值的差值大于差值门限的小区对中的任一小区 或两个小区, 或者当前考察小区或与当前考察小区之间的参考信号测量值差值大于差值 门限的小区), 向基站发送相应的分配信息以指示该基站调整所确定的小区的 PRS配置 以减小参考信号测量值的差值, 并接收基站反馈的调整后的 PRS配置。
应注意, 本发明实施例中的 "调整"包括基站完全按照分配信息的指示进行调整, 部分按照分配信息的指示进行调整, 或者不进行调整 (例如, 分配信息可能指示基站无 需调整 PRS配置, 或者基站可能根据其他条件判断无需调整 PRS配置)。这些方式均落 入本发明实施例的范围内。
本发明实施例对分配信息的发送方式不作限制。 例如, 定位服务器可以在请求基站 上报 PRS配置的消息中携带分配信息, 或者在请求基站上报 PRS配置的消息之前的专 用消息中携带分配信息。
分配信息的类型与调整的方式有关。例如,如果通过调整 PRS功率减小参考信号测 量值的差值,则定位服务器可根据小区子集信息, 向需要调整 PRS发射功率的基站发送 功率分配信息。功率分配信息用于指示基站调整 PRS发射功率以减少小区对中两个小区 的 PRS接收功率或 SNR的差值。 然后定位服务器从基站接收所述基站在基于功率分配 信息进行调整之后得到的 PRS的配置。随着两个小区的 PRS接收功率或 SNR的差值的 减小, PRS之间的干扰也会降低。
可选地, 作为另一实施例, 在 CA (Carrier Aggregation, 载波聚合) 场景下, 每个 小区有多个可用频点 (或载波)。 定位服务器可根据小区子集信息, 向需要调整 PRS发 射频点的基站发送频点分配信息。频点分配信息用于指示基站调整 PRS发射频点以减少 小区对中两个小区的 PRS接收功率或 SNR的差值,从而能够降低或避免 PRS之间的干 扰。 定位服务器从基站接收基站在基于频点分配信息进行调整之后得到的 PRS的配置。 通过改变 PRS的发射频点, 也能减小两个小区的 PRS接收功率或 SNR的差值, 从而降 低 PRS之间的干扰。
可选地, 作为另一实施例, 在 CoMP (Coordinated Multi-Point, 协作多点)场景下,
CoMP集合中存在多个可以发射 PRS的小区。定位服务器可根据小区子集信息, 向基站 发送节点配置信息。 节点配置信息用于通知基站选择满足 PRS接收功率或 SNR差值门 限的最优协作节点 (CoMP节点)发射 PRS。 定位服务器从基站接收基站在基于节点配 置信息进行选择之后得到的 PRS的配置。最优协作节点在使得 PRS接收功率或 SNR低 于或等于差值门限的情况下采用尽量大的 PRS发射功率, 从而避免 PRS的测量值差值 过大, 避免 PRS间的干扰。
可选地, 作为另一实施例, 可通过基站的波束赋形的调整来满足 PRS 接收功率或 SNR差值门限。定位服务器可根据小区子集信息, 向基站发送波束赋形配置信息。波束 赋形配置信息用于通知基站选择满足 PRS 接收功率或 SNR差值门限的波束赋形发射 PRS。 定位服务器从基站接收该基站在基于波束赋形配置信息进行选择之后得到的 PRS 的配置。赋形天线可以进行 PRS的空间分隔,两个小区的主瓣之间只要满足角度的隔离 度, 即可以减少 PRS接收功率或 SNR的差值, 以尽量避免干扰。
可选地, 作为另一实施例, 定位服务器也可以不改变小区的 PRS配置。例如, 定位 服务器根据小区子集信息, 从终端的服务小区的邻区列表中选择满足 PRS 接收功率或 SNR差值门限的小区, 然后从所选择的小区的基站接收 PRS的配置。 邻区列表可包括 终端的当前服务小区及其相邻小区。 这样选择的小区能够满足 PRS接收功率或 SNR差 值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
本发明实施例对向终端通知 PRS配置的方式不作限制。 例如, 可采用现有技术中, 通过辅助数据下发 PRS配置的方式。 因此不再赘述。
104, 接收终端根据 PRS的配置测量得到的 RSTD, 根据 RSTD确定终端的位置。 本发明实施例对终端根据 PRS的配置测量得到 RSTD的过程以及定位服务器根据 RSTD确定终端位置的过程不作限制。 例如, 可采用现有技术中的相同处理, 因此不再 赘述。 因此,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
图 2是本发明另一实施例的定位方法的流程图。 图 2的方法由终端(如 UE)执行, 并且与图 1的方法相对应, 因此将适当省略重复的描述。
201, 接收定位服务器通知的差值门限信息, 差值门限信息用于指示一个小区对中 两个小区的参考信号测量值的差值门限。
例如, 参考信号可以是 CRS (Cell-specific reference signal, 小区参考信号)、 PRS 或其他合适的参考信号。测量值可以是接收功率,如 CRS接收功率 RSRP( reference signal receiving power) 和 PRS接收功率 PRP (PRS received power); 测量值也可以是其他类 型的值, 如 SNR。
可选地, 作为一个实施例, 差值门限信息可包括以下中的至少一种: 两个小区的 RSRP的差值门限、 两个小区的 CRS的 SNR的差值门限、 两个小区的 PRP的差值门限 和第一映射因子、 两个小区的 PRS的 SNR的差值门限和第二映射因子。 上述第一映射 因子 αι表示 RSRP差值 ?^与 PRP差值 ΔΡΡ„之间的映射因子, 第二映射因子 α2表示 CRS的 SNR的差值 ASCTS与 PRS的 SNR的差值 ASP„之间的映射因子。
本发明实施例对于映射因子的类型不作限制。 例如, 第一映射因子可以是
Figure imgf000012_0001
, 或者 α ΔΡ^ΔΡ^。 第二映射因子可以是 a2=ASprs/ASCTS, 或者 a2=AScrs/ASprs o 定位服务器可以预先确定映射因子的取值, 例如根据仿真、 试验或其他 方式确定映射因子。
在步骤 201中, 终端可通过各种方式接收定位服务器通知的差值门限信息, 本发明 实施例对此不作限制。 可选地, 作为一个实施例, 终端可接收定位服务器在请求终端上 报能力的消息中携带的差值门限信息。 或者, 终端可接收定位服务器在请求终端进行定 位测量的消息中携带的差值门限信息。 或者, 终端可接收定位服务器在向终端发送的用 于帮助终端进行定位测量的辅助数据中携带差值门限信息。 或者, 终端可接收该终端的 服务基站通过广播或 R C消息向终端发送的差值门限信息, 该差值门限信息是服务基 站从定位服务器接收的。
202, 根据差值门限信息确定小区子集信息并向定位服务器发送小区子集信息, 小 区子集信息用于指示参考信号测量值的差值超过差值门限的小区对, 或者小区子集信息 用于指示参考信号测量值的差值不超过差值门限的小区对。
本发明实施例对发送小区子集信息的方式不作限制。 可选地, 作为一个实施例, 终 端可在向定位服务器上报能力的消息中携带小区子集信息。 或者, 终端可在向定位服务 器请求辅助数据的消息中携带小区子集信息。
本发明实施例对小区子集信息的形式不作限制。 可选地, 作为一个实施例, 小区子 集信息可包括小区对的列表, 即小区对中两个小区的小区标识所组成的列表。 例如, 小 区子集信息可包括参考信号测量值的差值超过差值门限的小区对的列表, 或者小区子集 信息包括参考信号测量值的差值不超过差值门限的小区对的列表。
可选地, 作为另一实施例, 小区子集信息可包括针对当前考察小区的小区列表, 即 与当前考察小区之间的参考信号测量值满足一定条件的小区的标识所组成的列表。 例 如, 小区子集信息可包括与当前考察小区之间的参考信号测量值的差值超过差值门限的 小区的列表, 或者小区子集信息可包括与当前考察小区之间的参考信号测量值的差值不 超过差值门限的小区的列表。
本发明实施例对上述各种列表中的 "小区标识"的具体形式不做限制。 例如, 小区 标识可以是 PCI、CGI(Cell Global Identity,小区全球标识)或 ECGKE-UTRAN Cell Global Identity, E-UTRAN小区全球标识) 等。
可选地, 作为另一实施例, 除了上述小区列表之外, 小区子集信息还可以包括以下 中的至少一个: 参考信号测量值的差值信息、 小区的频点信息 (如频点号)、 小区的载 波信息 (如载波号)。 例如, 在小区子集信息指示参考信号测量值超过差值门限的小区 对时, 如果终端同时上报参考信号测量值的差值信息, 则可以辅助定位服务器更精确地 调整 PRS配置。参考信号测量值的差值信息可以是差值本身,也可以是对应于差值的索 引值, 本发明实施例对此不作限制。 另外, 在载波聚合的场景下, 小区子集信息也可以 携带小区的频点号或载波号以辅助定位服务器更精确地调整 PRS配置。
203, 接收定位服务器根据小区子集信息确定的定位参考信号 PRS的配置。
可选地, 作为一个实施例, 终端可接收定位服务器从邻区列表中选择的满足 PRS 接收功率或 SNR差值门限的小区的 PRS的配置。 邻区列表可包括终端的当前服务小区 及其相邻小区。
本发明实施例对从定位服务器接收 PRS配置的方式不作限制。例如,可采用现有技 术中, 通过辅助数据下发 PRS配置的方式。 因此不再赘述。
204,根据 PRS的配置测量得到参考信号时间差 RSTD,并向定位服务器发送 RSTD。 本发明实施例对终端根据 PRS的配置测量得到 RSTD的过程以及向定位服务器发 送 RSTD的过程不作限制。 例如, 可采用现有技术中的相同处理, 因此不再赘述。 因此,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
图 3是本发明另一实施例的定位方法的流程图。图 3的方法由基站(如 eNB)执行。
301 , 接收定位服务器发送的分配信息。
本发明实施例对分配信息的收发方式不作限制。 可选地, 作为一个实施例, 终端可 接收定位服务器在请求基站上报 PRS配置的消息中携带的分配信息。或者,终端可接收 定位服务器在请求基站上报 PRS配置的消息之前的专用消息中携带的分配信息。
302, 根据分配信息调整定位参考信号 PRS的配置。
可选地, 作为一个实施例, 基站可根据分配信息执行以下任一种调整操作: 调整 PRS发射功率、 调整 PRS发送频点、 选择用于发射 PRS的满足 PRS接收功率或 SNR 差值门限的最优协作节点、选择用于发射 PRS的满足 PRS接收功率或 SNR差值门限的 波束赋形、 使用多个 RAT (Radio Access Technique, 无线接入技术) 中负载最轻的第一 RAT发射 PRS。 但本发明实施例的调整方式不限于上述具体例子。
303, 向定位服务器反馈调整后的 PRS的配置。
本发明实施例对基站向定位服务器反馈 PRS的配置的过程不作限制。例如,可采用 现有技术中, 通过向定位服务器上报 PRS配置的 OTDOA信息响应消息, 携带 PRS配 置的信息。
304, 按照调整后的 PRS的配置向终端发射 PRS。
本发明实施例对基站按照 PRS的配置向终端发射 PRS的过程不作限制。 例如, 可 采用现有技术中的相同处理, 因此不再赘述。
因此,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
可选地, 作为另一实施例, 如果执行图 3的方法的基站是终端的服务基站, 则该基 站还可以从定位服务器接收差值门限信息并向终端转发差值门限信息。该差值门限信息 用于指示一个小区对中两个小区的参考信号测量值的差值门限。
然后, 该基站可以从终端接收该终端根据差值门限信息确定的小区子集信息并向定 位服务器转发小区子集信息。该小区子集信息用于指示参考信号测量值超过差值门限的 小区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对。 在此情 况下, 上述步骤 301中的分配信息是定位服务器根据小区子集信息发送的。
可选地, 作为另一实施例, 在转发差值门限信息的过程中, 该基站可以从定位服务 器接收差值门限信息, 并通过广播或 RRC消息向终端发送差值门限信息。 或者, 该基 站可从定位服务器向终端透传差值门限信息。
另外, 如果基站根据定位服务器的分配信息使用多个 RAT中负载最轻的第一 RAT 发射 PRS, 也可能够减少业务信号对 PRS的干扰 (下文中将结合图 10-图 12的实施例 详细描述)。
下面结合具体例子, 更加详细地描述本发明的实施例。
图 4是本发明一个实施例的定位过程的示意流程图。 图 4的实施例中, 采用 PRS 功率控制的方式对 SNR差值问题进行补偿, 通过调整 PRS功率减小参考信号测量值的 差值。
401, 定位服务器向终端发送允许的差值门限信息。 差值门限信息可包括差值门限 的绝对值, 或者还可以包括一个相对的映射因子 α (如上述第一映射因子 αΐ 或第二映 射因子 α2)。 映射因子 α是由网络确定的。 例如, 网络可以通知终端这个映射因子 α 终端在测量 RSRP时, 自主地估计哪些 RSRP是不满足要求的。 网络也可以直接告知终 端 RSRP的差值绝对门限, 帮助终端进行筛选。
下面的信令例子中, 参数的命名方式不对本发明实施例的范围构成限制。 在采用现 有信令的例子中, 除了本发明实施例新增或修改的参数之外, 其他参数的定义均可参照 相应的信令协议, 因此不再赘述。 在步骤 401中, 可采用以下示例信令发送差值门限信 白
401a, 定位服务器可以在与终端进行能力交互时发送差值门限信息:
LPP (LTE Positioning Protocal, LTE定位协议) 信元 OTDOA-RequestCapabilities
(OTDOA请求能力) 是定位服务器发送给终端请求终端上报自身能力的信元 (参见 3GPP TS36.355 ), 斜体部分为本发明实施例所添加,
醒礙纖顯
CRS-PowerDif erenceThreshold (CRS功率差值门限)只是一个命名方式, 其所代表 含义是定位服务器告知终端的 CRS 接收功率 (RSRP) 的差值门限。 "OPTIONAL"代 表这是可选的信元。
也可以写成: ΚΊ;.; 擺 !腦 t Ce.pe.bi 1 it i 曙觀
:. : . i " ' i ^ 纖 ^麵 ί : ; :纖腿
CRS-SNRDifferenceThreshold ( CRS-SNR差值门限) 只是一个命名方式, 其所代表 含义是定位服务器告知终端的 CRS接收信噪比 (SNR) 的差值门限。
也可以写成:
::::::::::::::::::!¾
聽 誰纏賴 ^ 截 ^顏 義 ^
PRS-PowerDifferenceFactor (PRS;¾¾ 覆因手) 只是一个命 方 , 含 义是定位服务器告知终端的 CRS接收功率差值与 PRS接收功率差值的映射因子 (第一 映射因子)。 当终端接到该映射因子之后, 用 RSRP 的测量结果按这个映射因子进行映 射, 获得估计的 PRS功率差值, 然后与 PRS-PowerDifferenceThreshold (PRS功率差值 门限, 表示 PRS接收功率的差值门限) 进行比较。
也可以写成:
SiSSSgSaigSHliii
^ ι養!! I , 難 麵 養 I 棄 ,ι| 截 議 議
::::::::| :||| ||||:::::^
PRS-SNRDif erenceFactor (PRS-SNR SS因子)只是一个命名方式, ¾戶 弋¾含义 是定位服务器告知终端的 CRS接收信噪比差值与 PRS接收信噪比差值的映射因子 (第 二映射因子)。 当终端接到这个映射因子之后, 用 CRS的 SNR测量结果按照这个映射 因子进行映射, 获得估计的 PRS SNR 差值, 然后与 PRS-SNRDifferenceThreshold ( PRS-SNR差值门限, 表示 PRS接收信噪比的差值门限) 进行比较。
401b, 定位服务器可以在请求定位测量时发送差值门限信息: LPP信元 OTDOA-RequestLocationlnformation (OTDOA请求位置信息) 是定位服 务器发送给终端请求终端进行 OTDOA定位测量的信元(参见 3GPPTS36.355),斜体部 分为本发明实施例所添加,
i i l,-;t..i I i :. d T、:
w. " i: : - κ.; '■;_—'(■::,'. i ' ; n、:.,: :'i ~ΤΤ Ν Τ:
CRS-PowerDif erenceThreshold (CRS功率差值门限)只是一个命名方式, 其所代表 含义是定位服务器告知终端的 CRS接收功率的差值门限。
Figure imgf000017_0001
含义是定位服务器告知终端的 CRS接收信噪比的差值门限。
也可以写成:
; ||變議謹議 纖|||||||||||||||||||||||||||||||||||||||||||||||||
.-;:·:■'·: i■'·::·.-; ι' :■ i h i I i :. '..· — ·,:·.'Τ· Αϊ'- T,
v ^.. - i; ;■■ - .:、,下.- ..(■::- ' :- i '、 : . -;、::■■:■:-■ ::;Τ'ΤΤ::; ·二 ·Τ ,
μ -■■'■:_ '〈■:■■、' ■ i:: : :·' · :■. : i ' ' ■' 、: r ι - .'
PRS-PowerDifferenceFactor (PRS 功率差值因子) 只是一个命名方式, 其所代表含 义是定位服务器告知终端的 CRS接收功率差值与 PRS接收功率差值的映射因子 (第一 映射因子)。 当终端接到该映射因子之后, 用 RSRP 的测量结果按这个映射因子进行映 射, 获得估计的 PRS功率差值, 然后与 PRS-PowerDifferenceThreshold (PRS功率差值 门限, 表示 PRS接收功率的差值门限) 进行比较。 也可以写成:
: -; :1
: ;
: ; 、; .' 二
PRS-SNRDif erenceFactor (PRS-SNR差值因子)只是一个命名方式, 其所代表含义 是定位服务器告知终端的 CRS接收信噪比差值与 PRS接收信噪比差值的映射因子 (第 二映射因子)。 当终端接到该映射因子之后, 用 CRS的 SNR测量结果按这个映射因子 进行映射, 获得估计的 PRS SNR差值, 然后与 PRS-SNRDifferenceThreshold (PRS-SNR 差值门限, 表示 PRS接收信噪比的差值门限) 进行比较。
401c, 定位服务器可以在发送辅助数据时进行发送差值门限信息:
LPP信元 OTDOA-ProvideAssistanceData (OTDOA提供辅助数据)是定位服务器发 送给终端的辅助数据, 帮助终端进行 OTDOA定位测量 (参见 3GPP TS36.355 ), 斜体
Figure imgf000018_0001
CRS-PowerDiiiferenceThreshold ( CRS ¾ 门 )只是 命名方式, 其所代表 含义是定位服务器告知终端的 CRS接收功率的差值门限。
也可以写成:
Figure imgf000018_0002
CRS-SNRDifferenceThreshold ( CRS-SNR差值门限) 只是- 命名方式, 其所代表 含义是定位服务器告知终端的 CRS接收信噪比的差值门限。
也可以写成:
Figure imgf000019_0001
义是定位服务器告知终端的 CRS接收功率差值与 PRS接收功率差值的映射因子 (第一 映射因子)。 当终端接到该映射因子之后, 用 RSRP 的测量结果按这个映射因子进行映 射, 获得估计的 PRS功率差值, 然后与 PRS-PowerDifferenceThreshold (PRS功率差值 门限, 表示 PRS接收功率的差值门限) 进行比较。
Figure imgf000019_0002
PRS-SNRDif erenceFactor (PRS-SNR差值因子)只是一个命名方式, 其所代表含义 是定位服务器告知终端的 CRS接收信噪比差值与 PRS接收信噪比差值的映射因子 (第 二映射因子)。 当终端接到该映射因子之后, 用 CRS的 SNR测量结果按这个映射因子 进行映射, 获得估计的 PRS SNR差值, 然后与 PRS-SNRDifferenceThreshold (PRS-SNR 差值门限, 表示 PRS接收信噪比的差值门限) 进行比较。
401d, 差值门限信息可以通过 LPPa (LTE Positioning Protocol A, LTE定位协议 A) 信令由定位服务器发送给基站, 再由基站通过广播或者 RRC信息发送给终端。
例如, 可定义从定位服务器到基站的 LPPa 信令 OTDOA Power (或者是 SNR) Difference Information (OTDOA功率或 SNR差值信息)。 该 LPPa信令是定位服务器发 送给基站的, 向基站通知网络侧定义的差值门限信息, 如 CRS 的功率差值门限 (或者 SNR差值门限), 或者可以向基站通知网络侧定义的 PRS 的功率差值门限 (或者 SNR 差值门限)和 CRS的功率(或 SNR)差值与 PRS功率(或 SNR)差值之间的映射因子 (如上述第一映射因子 αΐ或第二映射因子 02 )。
下面分情况举例描述该 LPPa信令所携带的信息。
401d-l , 若定位服务器下发的是接收端 CRS功率差值门限, 详细信令举例:
CRSPowerDifferenceThreshold (CRS功率差值门限) 只是一个命名方式, 代表的含 义是定位服务器发送给基站的 CRS 功率差值门限; 其取值形式可以是一个整数值 ( INTEGER)
401d-2, 若定位服务器下发的是接收端 CRS SNR差值门限, 详细信令举例:
Figure imgf000020_0002
1111111111111111111111111111111111111111111111111111111111111111111111111111111; CRSSNRDifferenceThreshold ( CRS SNR SS门限) 只是一个命名方 ϊζ, f¾S的含 义是定位服务器发送给基站的 CRS SNR差值门限; 其取值形式可以是一个整数值。
401d-3, 若定位服务器下发的是接收端 PRS功率差值门限和映射因子, 详细信令举
Figure imgf000021_0001
PRSPowerDiflferenceThreshold (PRS功率差值门限) 只是一个命名方式, 代表的含 义是定位服务器发送给基站的 PRS 功率差值门限; 其取值形式可以是一个整数值。 PRS-CRSMappingFactor (PRS-CRS映射因子)是 PRS与 CRS功率差值的映射因子(第 一映射因子), 本发明不限制此参数类型。
401d-4, 若定位服务器下发的是接收端 PRS接收端 SNR差值门限和映射因子, 详 细信令举例:
― ' .TFF .: . TirrORMAT TOi;
::::::::::::::::::^:¾::::::^^
Figure imgf000022_0001
是定位服务器发送给基站的 PRS 接收端 SNR差值门限;其取值形式可以是一个整数值。 PRS-CRSSNRMappingFactor (PRS-CRS SNR映射因子) 是 PRS与 CRS的 SNR差值的 映射因子 (第二映射因子), 本发明不限制此参数类型。
基站到终端的差值门限信息下发, 可以通过广播或者 RRC信息发送; 与上面例子 类似, 下发的内容可以分为接收端 CRS功率差值, 接收端 CRS SNR差值, PRS功率差 值及映射因子, 以及 PRS SNR差值及映射因子这四种。 3GPP TS36.331信令举例(斜体 部分为本发明实施例新增部分 ):
如果基站通过广播信道下发差值门限信息, 则可采用系统信息块类型 1 ( SystemlnformationBlockTypel ):
SystemlnformationBlockTypel message
Figure imgf000022_0002
Figure imgf000023_0001
命名方式, 其所代表含义是 eNB告知终端的 CRS接收功率的差值门限。
Figure imgf000024_0001
5¾ss5ui d 5[00|axioxi¾iujoju]TU5is s
T0S0-0/CT0lM3/I3d :醒 「隨:: :::::::::::::::::::::::::::::
'e ::
::: s: m丽 :::::: ( ::: 願; ::: 0 醒 :雌腿 i¾i ¾ ^ ί : ϋ : m i:纖
; :
- '■' , - :; ί·: :
i :: s /:::
p
CRS-SNRDifferenceThresholdforOTDOA (OTDOA的 CRS SNR差值门限) 只是- 命名方式, 其所代表含义是 eNB告知终端的 CRS接收 SNR的差值门限。
也可以写成:
SystemlnformationBlockTypel message
Figure imgf000025_0001
Figure imgf000026_0001
tz
l0 0L0/£l0ZSD/lDd L££LOl/£lOZ OAV
Figure imgf000027_0001
义是 eNB告知终端的 CRS接收功率差值与 PRS接收功率差值的映射因子(第一映射因 子)。 当终端接到该映射因子之后, 用 RSRP 的测量结果按这个映射因子进行映射, 获 得估计的 PRS接收功率差值, 然后与 PRS-PowerDifferenceThreshold (PRS功率差值门 限, 表示 PRS接收功率的差值门限) 进行比较。
也可以写成:
SystemlnformationBlockTypel message
Figure imgf000027_0002
Figure imgf000028_0001
PRS-SNRDififerenceFactor (PRS-SNR 5画 )只是一个命 ^方 ^ 箕画 含 是 eNB告知终端的 CRS接收信噪比差值与 PRS接收信噪比差值的映射因子(第二映射 因子)。 当终端接到该映射因子之后, 用 CRS的 SNR测量结果按这个映射因子进行映 射, 获得估计的 PRS SNR差值, 然后与 PRS-SNRDifferenceThreshold (PRS-SNR差值 门限, 表示 PRS接收信噪比的差值门限) 进行比较。 eNB也可以通过 R C信令下发差值门限信息给每个终端, 其信令形式本发明实施 例不予限制, 可利用现有的 RRC信令, 也可新增 R C信令。
402, 终端测量参考信号, 并将测量得到的邻区和本小区 RSRP或者 CRS SNR进行 对比, 将获得的差值与网络侧通知的差值门限进行对比。 此步骤 402属于终端内部实现 过程, 根据差值门限信息所包含的参考信号测量值的类型执行相应的对比操作。
例如, 如果差值门限信息包括 RSRP的差值门限, 则终端可将测得的 RSRP差值与 该差值门限进行对比。 如果差值门限信息包括 CRS SNR的差值门限, 则终端可将测得 的 CRS SNR差值与该差值门限进行对比。
另外, 如果差值门限信息包括 PRP的差值门限和第一映射因子, 则终端可将 RSRP 差值的测量结果按第一映射因子进行映射, 获得估计的 PRP差值, 然后将 PRP差值与 PRP差值门限进行对比。 或者, 如果差值门限信息包括 PRS SNR的差值门限和第二映 射因子, 则终端可将 CRS SNR差值的测量结果按第二映射因子进行映射, 获得估计的 PRS SNR差值, 然后将 PRS SNR差值与 PRS SNR差值门限进行对比。
403, 终端向定位服务器上报小区子集信息, 指示参考信号测量值超过差值门限的 小区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对, 以帮助 定位服务器筛除 PRS接收端功率或 SNR差值较大的小区。
步骤 403所涉及的信令形式主要有四种:
信令形式 1 :在步骤 401中下发的差值门限信息包括 RSRP或 CRS SNR的差值门限, 在步骤 403中上报的小区子集信息指示 RSRP或 CRS SNR的差值超过差值门限的小区 对。
信令形式 2:在步骤 401中下发的差值门限信息包括 RSRP或 CRS SNR的差值门限, 在步骤 403中上报的小区子集信息指示 RSRP或 CRS SNR的差值不超过差值门限的小 区对。
信令形式 3: 在步骤 401中下发的差值门限信息包括 PRP或 PRS SNR的差值门限 和相应的映射因子, 在步骤 403中上报的小区子集信息指示 PRP或 PRS SNR的差值超 过差值门限的小区对。
信令形式 4: 在步骤 401中下发的差值门限信息包括 PRP或 PRS SNR的差值门限 和相应的映射因子, 在步骤 403中上报的小区子集信息指示 PRP或 PRS SNR的差值不 超过差值门限的小区对。
下面分别举例说明四种信令形式。 信令形式 1 :
在步骤 401中, 网络侧下发的是 CRS接收功率或者 SNR差值门限, 终端上报的内 容是那些接收端 CRS功率或者 CRS SNR超过差值门限的小区对, 其 LPP信令举例: ( 1 ) 终端可以在与定位服务器进行能力交互时发送小区子集信息
LPP信元 OTDOA-ProvideCapabilities (OTDOA提供能力) 是终端发送给定位服务 器上报自身能力的信元 (参见 3GPP TS36.355 ), 斜体部分为本发明实施例所添加。 若 考察是 CRS接收功率 (RSRP) 的差值,
Figure imgf000030_0001
表含义是表示终端向网络侧上报的 CRS接收功率差值过大的小区对的列表。 这个列表 的长度 maXNUm = 可以根据终端的能力和网络的要求来确定一个值。
CRSPowerDif CellPair (CRS 功率差值小区对) 只是一个命名方式, 其所代表含义 是表示终端向网络侧上报的 CRS 接收功率差值过大的小区对。 其 IE ( Information Element,信元)的内部构成有: physCellldAgr只是一个命名方式,其所代表含义是 CRS 功率较大的那个小区的 PCI, 因为较大功率的小区对较小功率的小区 (两者差别在某个 门限以上时)会产生 PRS的干扰, 因此又称其为干扰源小区。 cellGloballdAgr只是一个 命名方式, 其所代表含义是干扰源小区的 CGI。 physCellldVic只是一个命名方式, 其所 代表含义是 CRS功率较小的那个小区的 PCI,因为较小功率的小区会收到较大功率的小 区(两者差别在某个门限以上时)的 PRS干扰, 因此又称其为受害小区。 cellGloballdVic 只是一个命名方式, 其所代表含义是受害小区的 CGI。 powerDifference只是一个命名方 式, 其所代表含义是 CRSPowerDiffCellPair这个 IE中所涉及的两个小区 (受害和干扰 源小区)之间的终端接收的 CRS功率差值。 y只是一个命名方式, 其所代表含义是功率 差值的上报范围。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号),在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示两个同频小区之间接收功率或者 SNR差值过大的 频点号或者载波号。
这里需要说明, 若网络侧下发的是一个 CRS 功率差值的门限, 那么这个上报的 powerDifference是一个 CRS的接收功率(RSRP)差值。 若网络下发的是一个 PRS功率 差值和 CRS功率差值的映射因子, 以及 PRS功率差值门限, 那么 powerDifference可以 是一个 CRS的接收功率(RSRP)差值也可以是 PRS的接收功率差值(根据协议的规定 确定其中之一)。 IE 中 OPTIONAL (可选) 的含义表示的是可选项, 即可以传这个 IE 也可以不传, 由 IE发送端决定。
在报告接收端 CRS功率或者 CRS SNR超过差值门限小区对时,其 LPP的信令形式 可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差值 超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差
Figure imgf000031_0001
醒;觀匪
tk - ϋ 二
: τ τ-;.;- - (::: · ·■■:■: ) ,
■■::' I I■;.'■ I■:·:!:·■-; I τ :
: 、;
T :.,— 'T T:., . r., -- κ :. ,
crsPowerDif CellList (CRS功率差值小区列表) 只是一个命名方式, 其所代表含义 是表示终端向网络侧上报的 CRS接收功率差值过大的小区的列表。 这个列表的长度 表示考察的小区个数。
CRSPowerDiffCell ( CRS功率差值小区) 只是一个命名方式, 其所代表含义是表示 终端向网络侧上报的 CRS 接收功率差值过大的小区信息。 其 IE 的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI。 cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI。 failedThresCellList只是一个命名方 式, 其所代表含义是与这个考察小区相比不满足差值门限的小区列表。 y只是一个命名 方式, 其所代表的含义是与考察小区相比不满足差值门限的小区个数(小区列表长度)。
FailedThresCell只是一个命名方式, 其所代表的含义是与考察小区相比不满足差值门限 的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在这个信 令中就是与考察小区相比不满足差值门限的小区的 PCI。类似的, cellGloballd只是一个 命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不满足差值 门限的小区的 CGI。 powerDifference只是一个命名方式, 其所代表含义是与考察小区相 比不满足差值门限的小区与考察小区之间的功率差值大小, 这个值可以是正是负, 它的 取值为 l z。 z只是一个命名方式, 其所代表含义是功率差值的上报范围, 这是一个索 引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号),在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示两个同频小区之间接收功率或者 SNR差值过大的 频点号或者载波号。
若考察是 SNR的差值, 也可以写成:
Figure imgf000033_0001
crsSNRDiffCellPairList ( CRS SNR差值小区对列表) 只是一个命名方式, 其所代表 含义是表示终端向网络侧上报的接收端 CRS SNR差值过大的小区对的列表。
CRSSNRDiffCellPair ( CRS SNR差值小区对)只是一个命名方式, 其所代表含义是 表示终端向网络侧上报的接收端 CRS SNR值过大的小区对。 其 IE 的内部构成有: physCelUdAgr只是一个命名方式, 其所代表含义是接收端 CRS SNR较大的那个小区的 PCI, 因为较大 SNR的小区对较小 SNR的小区 (两者差别在某个门限以上时) 会产生 PRS的干扰, 因此又称其为干扰源小区。 cellGloballdAgr只是一个命名方式, 其所代表 含义是干扰源小区的 CGI。 physCellldVic 只是一个命名方式, 其所代表含义是接收端 CRS SNR较小的那个小区的 PCI, 因为较小 SNR的小区会收到较大 SNR的小区(两者 差别在某个门限以上时) 的 PRS干扰, 因此又称其为受害小区。 cellGloballdVic只是一 个命名方式, 其所代表含义是受害小区的 CGI。 snrDifference只是一个命名方式, 其所 代表含义是 CRSSNRDiffCellPair这个 IE中所涉及的两个小区 (受害和干扰源小区) 之 间的接收端 CRS SNR差值。 y只是一个命名方式, 其所代表含义是 SNR差值的上报范 这里需要说明: 若网络侧下发的是一个 CRS SNR差值的门限, 那么这个上报的 snrDif erence是一个 CRS的接收端 SNR差值。 若网络下发的是一个 PRS SNR差值和 CRS SNR差值的映射因子,以及 PRS SNR差值门限,那么 snrDifference可以是一个 CRS 的接收端 SNR差值也可以是 PRS的接收端 SNR差值(根据协议的规定确定其中之一)。
同样的在报告接收端 CRS功率或者 CRS SNR超过差值门限小区对时,其 LPP的信 令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小 区差值超过门限的小区; 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差
Figure imgf000034_0001
是表示终端向网络侧上报的 CRS接收 SNR差值过大的小区的列表。 这个列表的长度 X 表示考察的小区个数。
CRSSNRDiffCell ( CRS SNR差值小区) 只是一个命名方式, 其所代表含义是表示 终端向网络侧上报的接收端 CRS SNR差值过大的小区信息。 其 IE 的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI failedThresCellList只是一个命名方 式, 其所代表含义是与这个考察小区相比不满足差值门限的小区列表。 y只是一个命名 方式, 其所代表的含义是与考察小区相比不满足差值门限的小区个数(小区列表长度)。 FailedThresCell只是一个命名方式, 其所代表的含义是与考察小区相比不满足差值门限 的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在这个信 令中就是与考察小区相比不满足差值门限的小区的 PCI。类似的, cellGloballd只是一个 命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不满足差值 门限的小区的 CGI sNRDifference只是一个命名方式,其所代表含义是与考察小区相比 不满足差值门限的小区与考察小区之间的接收端 SNR差值大小, 这个值可以是正是负, 它的取值为 l z z只是一个命名方式, 其所代表含义是 SNR差值的上报范围, 这是一 个索引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
(2) 终端可以在请求辅助信息时发送小区子集信息
LPP信元 OTDOA-RequestAssistanceData (0TD0A请求辅助数据)是终端发送给定 位服务器请求辅助数据的信元(参见 3GPP TS36.355 ),斜体部分为本发明实施例所添加。 若考察的是功率的差值, 举例如下:
Figure imgf000035_0001
各个参数含义如上述信令形式 1的 (1 ) 中所描述, 因此不再赘述。
在报告接收端 CRS功率或者 CRS SNR超过差值门限小区对时,其 LPP的信令形式 可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差值 超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差 值超过门限的小区。 信令举例如下: ^ 賴 ^ ^^讀 顏科 !園
( :
、 : :.':. 〔 ; '- ; !^ :
; 、 、
,:、 、 : 二
: 、 : ; ; - '、 .::: 纖誦誦: ; : : ::::誦
; : 1 疆謹 顯:::顯醒國:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ^
各个参数含义如上述信令形式 1的 (1 ) 对应部分中所描述, 因此不再赘述 t 若考察的是 SNR的差值, 则也可以写成:
( ) ),
: : : ) .下 : : :
:誦變 {
i: m::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
i 二
:ίί:(5::::::::::::::::::::::::: ':■■ 1 I ;.Ί . t, ; I T i ~r:; : - 'ΤΤ::; · ·Τ , ― Τ-: :··: ::; Τ-:
;.·π -~ i;:', ',.: ,': Τ "^ί.:"^ Ί . . '/) , :.. ΤΤ:..:Κ..Τ ,
;ιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιι;
; 謹 ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ
各个参数含义如上述信令形式 1的 (1) 中所描述, 因此不再赘述。
同样的,在报告接收端 CRS功率或者 CRS SNR超过差值门限小区对时,其 LPP的 信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察 小区差值超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差
Figure imgf000037_0001
信令形式 2:
在步骤 401中, 网络侧下发的是 CRS接收功率或者 SNR差值门限, 终端上报的内 容是那些接收端 CRS功率或者 CRS SNR不超过差值门限的小区对, 其 LPP信令举例: (1) 终端可以在与定位服务器进行能力交互时发送小区子集信息
LPP信元 OTDOA-ProvideCapabilities (OTDOA提供能力) 是终端发送给定位服务 器上报自身能力的信元 (参见 3GPPTS36.355), 斜体部分为本发明实施例所添加。 若 考察是 CRS接收功率 (RSRP) 的差值, 举例如下:
Figure imgf000038_0001
表含义是表示终端向网络侧上报的 CRS接收功率差值不超过差值门限的小区对的列表。 这个列表的长度 maXNUm = 可以根据终端的能力和网络的要求来确定一个值。
CRSPowerDiffCellPair (CRS 功率差值小区对) 只是一个命名方式, 其所代表含义 是表示终端向网络侧上报的 CRS接收功率差值不超过差值门限的小区对。 其 IE的内部 构成有: physCellldHigher只是一个命名方式, 其所代表含义是 CRS功率较大的那个小 区的 PCI cellGloballdHigher只是一个命名方式,其所代表含义是 CRS功率较大的那个 小区的 CGI physCellldLower只是一个命名方式, 其所代表含义是 CRS功率较小的那 个小区的 PCI cellGloballdLower只是一个命名方式, 其所代表含义是 CRS功率较小的 那个小区的 CGI powerDifference 只是 个命名方式, 其所代表含义是
CRSPowerDiffCellPair这个 IE中所涉及的两个小区之间的终端接收的 CRS功率差值。 y 只是一个命名方式, 其所代表含义是功率差值的上报范围。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number绝对无线载频号, 在同频网络中这个 IE可以不发, 但是对于 CA或者 多频点的系统, 发送这个 IE表示接收功率或者 SNR差值不超过差值门限两个同频小区 的频点号或者载波号。
这里需要说明: 若网络侧下发的是一个 CRS 功率差值的门限, 那么这个上报的 powerDifference是一个 CRS的接收功率(RSRP)差值。 若网络下发的是一个 PRS功率 差值和 CRS功率差值的映射因子, 以及 PRS功率差值门限, 那么 powerDifference可以 是一个 CRS的接收功率(RSRP)差值也可以是 PRS的接收功率差值(根据协议的规定 确定其中之一)。
在报告接收端 CRS功率或者 CRS SNR不超过差值门限小区对时,其 LPP的信令形 式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差 值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR 差值不超过门限的小区。 信令举例如下:
Figure imgf000039_0001
crsPowerDif CellList (CRS功率差值小区列表) 只是一个命名方式, 其所代表含义 是表示终端向网络侧上报的 CRS接收功率差值不超过门限的小区的列表。 这个列表的 长度 X表示考察的小区个数。
CRSPowerDiffCell ( CRS功率差值小区) 只是一个命名方式, 其所代表含义是表示 终端向网络侧上报的 CRS接收功率差值不超过门限的小区信息。 其 IE的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI。 cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI。 passedThresCellList只是一个命名 方式, 其所代表含义是与这个考察小区相比不超过差值门限的小区列表。 y只是一个命 名方式, 其所代表的含义是与考察小区相比不超过差值门限的小区个数 (小区列表长 度)。 PassedThresCell 只是一个命名方式, 其所代表的含义是与考察小区相比不超过差 值门限的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在 这个信令中就是与考察小区相比不超过差值门限的小区的 PCI。类似的, cellGloballd只 是一个命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不超 过差值门限的小区的 CGI。 powerDifference只是一个命名方式, 其所代表含义是与考察 小区相比不超过差值门限的小区与考察小区之间的功率差值大小, 这个值可以是正是 负, 它的取值为 l〜z。 z只是一个命名方式, 其所代表含义是功率差值的上报范围, 这 是一个索引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号)。在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示接收功率或者 SNR差值不超过差值门限两个同频 小区的频点号或者载波号。
若考察的是 SNR的差值, 则也可以写成:
: 、 : (:;)
「 : : :.':. "υ ".-. ; . .【 「 ■ ;.
、: i : ; < . I I: i - T i . .. ;.; -τ ( ;.; τ i i :' :: 1 I— : i
;ιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιιι;
: :
::::::::::::::::::
ΙΙΙΙΙ ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ ,Κ:Ϊ 7; I tk .: -Λ ϋ—'ΤΤ 二 T ,
; ί 籍隱籍酵 議 賴 ;;; | | | | | | | | | | | | | | | | | |
: ^::;.: Τ ;. "'ΤΤ Ν Τ r ― N- - Ν
τ τ-;.;-- (::: · ·■■:■: ) ,
τ U"TT ;KAT , ― κ .··: υκ
crsSNRDifflCellPairList (CRS SNR S小区对列 )只是二个命 方 , 含义是表示终端向网络侧上报的接收端 CRS SNR差值不超过差值门限的小区对的列 表。
CRSSNRDiffCellPair (CRS SNR差值小区对)只是一个命名方式, 其所代表含义是 表示终端向网络侧上报的接收端 CRS SNR值不超过差值门限的小区对。其 IE的内部构 成有: physCellldHigher只是一个命名方式, 其所代表含义是接收端 CRS SNR较大的那 个小区的 PCI。 cellGloballdHigher只是一个命名方式, 其所代表含义是接收端 CRS SNR 较大的那个小区的 CGI。 physCellldLower只是一个命名方式, 其所代表含义是接收端 CRS SNR较小的那个小区的 PCI。 cellGloballdLower只是一个命名方式, 其所代表含义 是接收端 CRS SNR较小的那个小区的 CGI。 snrDifference只是一个命名方式,其所代表 含义是 CRSSNRDiffCellPair这个 IE中所涉及的两个小区之间的接收端 CRS SNR差值。 y只是一个命名方式, 其所代表含义是 SNR差值的上报范围。
这里需要说明, 若网络侧下发的是一个 CRS SNR差值的门限, 那么这个上报的 snrDifference是一个 CRS的接收端 SNR差值。 若网络下发的是一个 PRS SNR差值和 CRS SNR差值的映射因子,以及 PRS SNR差值门限,那么 snrDifference可以是一个 CRS 的接收端 SNR差值也可以是 PRS的接收端 SNR差值(根据协议的规定确定其中之一)。
同样的, 在报告接收端 CRS功率或者 CRS SNR不超过差值门限小区对时, 其 LPP 的信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考 察小区差值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR 差值不超过门限的小区。 信令举例如下: m mm擺 纖 m m丽 m:::::::
Figure imgf000042_0001
是表示终端向网络侧上报的 CRS接收 SNR差值不超过门限的小区的列表。 这个列表的 长度 X表示考察的小区个数。
CRSSNRDiffCell ( CRS SNR差值小区) 只是一个命名方式, 其所代表含义是表示 终端向网络侧上报的接收端 CRS SNR差值不超过门限的小区信息。其 IE的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI。 cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI。 passedThresCellList只是一个命名 方式, 其所代表含义是与这个考察小区相比不超过差值门限的小区列表。 y只是一个命 名方式, 其所代表的含义是与考察小区相比不超过差值门限的小区个数 (小区列表长 度)。 PassedThresCell 只是一个命名方式, 其所代表的含义是与考察小区相比不超过差 值门限的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在 这个信令中就是与考察小区相比不超过差值门限的小区的 PCI。类似的, cellGloballd只 是一个命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不超 过差值门限的小区的 CGI。 sNRDifference只是一个命名方式,其所代表含义是与考察小 区相比不超过差值门限的小区与考察小区之间的接收端 SNR差值大小, 这个值可以是 正是负, 它的取值为 l〜z。 z只是一个命名方式,其所代表含义是 SNR差值的上报范围, 这是一个索引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
(2) 终端可以在请求辅助信息时发送小区子集信息
LPP信元 OTDOA-RequestAssistanceData (OTDOA请求辅助数据)是终端发送给定 位服务器请求辅助数据的信元(参见 3GPP TS36.355 ),斜体部分为本发明实施例所添加。
Figure imgf000043_0001
各个参数含义如上述信令形式 2的 (1 ) 中所描述, 因此不再赘述。
在报告接收端 CRS功率或者 CRS SNR不超过差值门限小区对时,其 LPP的信令形 式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差 值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR
Figure imgf000043_0002
擺 擺驢 :面 ::::赫::
: : 丽 : e¾:3: : G Ί' :纖猶:: ^觀鹏 ::
各个参数含义如上述信令形式 2的 (1) 对应部分中所描述, 因此不再赘述 t 若考察的是 SNR的差值, 则也可以写成: :,'l I τ:-: τ τ :
、 : ; : : : 、
疆醫画 誦觀醒:^:::
::::: :
1 :.)
: :; 二 :::面 ::::無::: 謹議 賴 ;二. ::囊:丽 :誦::::
ϋ :ί¾: :^ ϋϋϋϋ ;
各个参数含义如上述信令形式 2的 (1) 中所描述, 因此不再赘述。
同样的, 在报告接收端 CRS功率或者 CRS SNR不超过差值门限小区对时, 其 LPP 的信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考 察小区差值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR
Figure imgf000044_0001
^漏 E觀 ϊ¾¾ : ; : : : ::::誦
、 、 〔; . ,) ) : ;■ ■?■、: 、: 纖丽薦 ::::::: I
【 ;::::: :Ei3ES:::(:Q:;i :; ,
: : : :::::隱
¥不 1¥ ¾± ¥形¾ 2的 (r) 芬 r因 芣再 。 信令形式 3:
在步骤 401中, 网络侧下发的是 PRS接收功率或者 SNR差值门限及 PRS功率差值 和 CRS功率差值的映射因子,终端上报的内容是那些接收端 PRS功率或者 PRS SNR超 过差值门限的小区对, 其 LPP信令举例:
(1) 终端可以在与定位服务器进行能力交互时发送小区子集信息
LPP信元 OTDOA-ProvideCapabilities (OTDOA提供能力) 是终端发送给定位服务 器上报自身能力的信元 (参见 3GPPTS36.355), 斜体部分为本发明实施例所添加。 若 考察是 CRS接收功率 (RSRP) 的差值, 举例如下:
顯:::顯醒國 ,::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::^
隱 II圏 棄 I賴 I賴 議刚 I賴賴^;霧 ;; V
: : ; 7~ ? : : : :
:: [雷 iiSiE GEiiiiii
:、; : ^v --' 二
":、 (:; . ) ,
Figure imgf000046_0002
Figure imgf000046_0001
含义是表示终端向网络侧上报的 PRS接收功率差值过大的小区对的列表。这个列表的长 度 maxNum = X可以根据终端的能力和网络的要求来确定一个值。
PRSPowerDif CellPair (PRS功率差值小区对)只是一个命名方式, 其所代表含义是 表示终端向网络侧上报的 PRS 接收功率差值过大的小区对。 其 IE 的内部构成有: physCellldAgr只是一个命名方式,其所代表含义是 PRS功率较大的那个小区的 PCI, 因 为较大功率的小区对较小功率的小区 (两者差别在某个门限以上时)会产生 PRS的干扰, 因此又称其为干扰源小区。 cellGloballdAgr只是一个命名方式, 其所代表含义是干扰源 小区的 CGI。 physCellldVic只是一个命名方式,其所代表含义是 PRS功率较小的那个小 区的 PCI, 因为较小功率的小区会收到较大功率的小区 (两者差别在某个门限以上时) 的 PRS干扰, 因此又称其为受害小区。 cellGloballdVic只是一个命名方式, 其所代表含 义是受害小区的 CGI 。 powerDifference 只是一个命名方式, 其所代表含义是 PRSPowerDiffCellPair这个 IE中所涉及的两个小区(受害和干扰源小区)之间的终端接 收的 PRS功率差值。 y只是一个命名方式, 其所代表含义是功率差值的上报范围。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号)。在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示两个同频小区之间接收功率或者 SNR差值过大的 频点号或者载波号。
这里需要说明: 若网络侧下发的是一个 CRS 功率差值的门限, 那么这个上报的 powerDifference是一个 CRS的接收功率(RSRP)差值。 若网络下发的是一个 PRS功率 差值和 CRS功率差值的映射因子, 以及 PRS功率差值门限, 那么 powerDifference可以 是一个 CRS的接收功率(RSRP)差值也可以是 PRS的接收功率差值(根据协议的规定 确定其中之一)。
在报告接收端 PRS功率或者 PRS SNR超过差值门限小区对时, 其 LPP的信令形式 可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差值 超过门限的小区; 那么其 LPP的信令例子可以如下: 终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差
Figure imgf000047_0001
是表示终端向网络侧上报的 PRS 接收功率差值过大的小区的列表。 这个列表的长度 X 表示考察的小区个数。
PRSPowerDif Cell ( PRS功率差值小区) 只是一个命名方式, 其所代表含义是表示 终端向网络侧上报的 PRS 接收功率差值过大的小区信息。 其 IE 的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI failedThresCellList只是一个命名方 式, 其所代表含义是与这个考察小区相比不满足差值门限的小区列表。 y只是一个命名 方式, 其所代表的含义是与考察小区相比不满足差值门限的小区个数(小区列表长度)。
FailedThresCell只是一个命名方式, 其所代表的含义是与考察小区相比不满足差值门限 的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在这个信 令中就是与考察小区相比不满足差值门限的小区的 PCI。类似的, cellGloballd只是一个 命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不满足差值 门限的小区的 CGI。 powerDifference只是一个命名方式, 其所代表含义是与考察小区相 比不满足差值门限的小区与考察小区之间的功率差值大小, 这个值可以是正是负, 它的 取值为 l〜z。 z只是一个命名方式, 其所代表含义是功率差值的上报范围, 这是一个索 引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号)。在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示两个同频小区之间接收功率或者 SNR差值过大的 频点号或者载波号。
若考察的是 SNR的差值, 则也可以写成:
Figure imgf000048_0001
表含义是表示终端向网络侧上报的接收端 PRS SNR差值过大的小区对的列表。
PRSSNRDiffCellPair (PRS SNR差值小区对) 只是一个命名方式, 其所代表含义是 表示终端向网络侧上报的接收端 PRS SNR值过大的小区对。 其 IE 的内部构成有: physCelUdAgr只是一个命名方式, 其所代表含义是接收端 PRS SNR较大的那个小区的 PCI, 因为较大 SNR的小区对较小 SNR的小区 (两者差别在某个门限以上时) 会产生 PRS的干扰, 因此又称其为干扰源小区。 cellGloballdAgr只是一个命名方式, 其所代表 含义是干扰源小区的 CGI。 physCellldVic 只是一个命名方式, 其所代表含义是接收端 PRS SNR较小的那个小区的 PCI, 因为较小 SNR的小区会收到较大 SNR的小区 (两者 差别在某个门限以上时) 的 PRS干扰, 因此又称其为受害小区。 cellGloballdVic只是一 个命名方式, 其所代表含义是受害小区的 CGI。 snrDifference只是一个命名方式, 其所 代表含义是 PRSSNRDiffCellPair这个 IE中所涉及的两个小区 (受害和干扰源小区) 之 间的接收端 PRS SNR差值。 y只是一个命名方式, 其所代表含义是 SNR差值的上报范 围。
这里需要说明, 若网络侧下发的是一个 CRS SNR差值的门限, 那么这个上报的 snrDifference是一个 CRS的接收端 SNR差值。 若网络下发的是一个 PRS SNR差值和 CRS SNR差值的映射因子,以及 PRS SNR差值门限,那么 snrDifference可以是一个 CRS 的接收端 SNR差值也可以是 PRS的接收端 SNR差值(根据协议的规定确定其中之一)。
同样的, 在报告接收端 PRS功率或者 PRS SNR超过差值门限小区对时, 其 LPP的 信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察 小区差值超过门限的小区; 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差 。 信令举例如下:
Figure imgf000049_0001
Figure imgf000050_0001
是表示终端向网络侧上报的 PRS接收 SNR差值过大的小区的列表。 这个列表的长度 X 表示考察的小区个数。
PRSSNRDiffCell (PRS SNR差值小区)只是一个命名方式, 其所代表含义是表示终 端向网络侧上报的接收端 PRS SNR 差值过大的小区信息。 其 IE 的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI。 cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI。 failedThresCellList只是一个命名方 式, 其所代表含义是与这个考察小区相比不满足差值门限的小区列表。 y只是一个命名 方式, 其所代表的含义是与考察小区相比不满足差值门限的小区个数(小区列表长度)。 FailedThresCell只是一个命名方式, 其所代表的含义是与考察小区相比不满足差值门限 的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在这个信 令中就是与考察小区相比不满足差值门限的小区的 PCI。类似的, cellGloballd只是一个 命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不满足差值 门限的小区的 CGI。 sNRDifference只是一个命名方式,其所代表含义是与考察小区相比 不满足差值门限的小区与考察小区之间的接收端 SNR差值大小, 这个值可以是正是负, 它的取值为 l z。 z只是一个命名方式, 其所代表含义是 SNR差值的上报范围, 这是一 个索引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
(2) 终端可以在请求辅助信息时发送小区子集信息
LPP信元 OTDOA-RequestAssistanceData (0TD0A请求辅助数据)是终端发送给定 位服务器请求辅助数据的信元(参见 3GPP TS36.355 ),斜体部分为本发明实施例所添加。 若考察的是接收功率的差值, 举例如下: : ¾: ¾¾ :£ : : S ϋ: ϊ 顯靈顯疆
各个参数含义如上述信令形式 3的 (1 ) 中所描述, 因此不再赘述。
在报告接收端 PRS功率或者 PRS SNR超过差值门限小区对时, 其 LPP的信令形式 可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差值 超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差
Figure imgf000051_0001
各个参数含义如上述信令形式 3的 (1 ) 对应部分中所描述, 因此不再赘述。 若考察的是 SNR的差值, 则也可以写成:
Figure imgf000052_0001
同样的, 在报告接收端 PRS功率或者 PRS SNR超过差值门限小区对时, 其 LPP的 信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察 小区差值超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将超过差值门限的小区 作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR差 值超过门限的小区。 信令举例如下:
Figure imgf000052_0002
Figure imgf000053_0001
信令形式 4:
在步骤 401中, 网络侧下发的是 PRS接收功率或者 SNR差值门限及 PRS功率差值 和 CRS功率差值的映射因子,终端上报的内容是那些接收端 PRS功率或者 PRS SNR不 超过差值门限的小区对, 其 LPP信令举例:
( 1 ) 终端可以在与定位服务器进行能力交互时发送小区子集信息
LPP信元 OTDOA-ProvideCapabilities (OTDOA提供能力) 是终端发送给定位服务 器上报自身能力的信元 (参见 3GPP TS36.355 ), 斜体部分为本发明实施例所添加。 若
Figure imgf000053_0002
含义是表示终端向网络侧上报的 PRS接收功率差值不超过差值门限的小区对的列表。这 个列表的长度 maXNUm = x可以根据终端的能力和网络的要求来确定一个值。
PRSPowerDiffCellPair (PRS功率差值小区对)只是一个命名方式, 其所代表含义是 表示终端向网络侧上报的 PRS接收功率差值不超过差值门限的小区对。 其 IE的内部构 成有: physCellldHigher只是一个命名方式, 其所代表含义是 PRS功率较大的那个小区 的 PCI。 cellGloballdHigher只是一个命名方式, 其所代表含义是 PRS功率较大的那个小 区的 CGI。 physCellldLower只是一个命名方式, 其所代表含义是 PRS功率较小的那个 小区的 PCI。 cellGloballdLower只是一个命名方式, 其所代表含义是 PRS功率较小的那 个小区的 CGI 。 powerDifference 只是一个命名方式, 其所代表含义是 PRSPowerDiffCellPair这个 IE中所涉及的两个小区之间的终端接收的 PRS功率差值。 y 只是一个命名方式, 其所代表含义是功率差值的上报范围。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号)。在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示接收功率或者 SNR差值不超过差值门限两个同频 小区的频点号或者载波号。
这里需要说明, 若网络侧下发的是一个 CRS 功率差值的门限, 那么这个上报的 powerDifference是一个 CRS的接收功率(RSRP)差值。 若网络下发的是一个 PRS功率 差值和 CRS功率差值的映射因子, 以及 PRS功率差值门限, 那么 powerDifference可以 是一个 CRS的接收功率(RSRP)差值也可以是 PRS的接收功率差值(根据协议的规定 确定其中之一)。
在报告接收端 PRS功率或者 PRS SNR不超过差值门限小区对时, 其 LPP的信令形 式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差 值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR
Figure imgf000054_0001
Figure imgf000055_0001
是表示终端向网络侧上报的 PRS接收功率差值不超过门限的小区的列表。这个列表的长 度 X表示考察的小区个数。
PRSPowerDif Cell (PRS功率差值小区) 只是一个命名方式, 其所代表含义是表示 终端向网络侧上报的 PRS接收功率差值不超过门限的小区信息。 其 IE的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI。 cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI。 passedThresCellList只是一个命名 方式, 其所代表含义是与这个考察小区相比不超过差值门限的小区列表。 y只是一个命 名方式, 其所代表的含义是与考察小区相比不超过差值门限的小区个数 (小区列表长 度)。 PassedThresCell 只是一个命名方式, 其所代表的含义是与考察小区相比不超过差 值门限的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在 这个信令中就是与考察小区相比不超过差值门限的小区的 PCI。类似的, cellGloballd只 是一个命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不超 过差值门限的小区的 CGI。 powerDifference只是一个命名方式, 其所代表含义是与考察 小区相比不超过差值门限的小区与考察小区之间的功率差值大小, 这个值可以是正是 负, 它的取值为 l〜z。 z只是一个命名方式, 其所代表含义是功率差值的上报范围, 这 是一个索引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
earfcn只是一个命名方式,其所代表的含义是 E-UTRAN Absolute Radio Frequency Channel Number (绝对无线频率信道号),在同频网络中这个 IE可以不发,但是对于 CA 或者多频点的系统, 发送这个 IE表示接收功率或者 SNR差值不超过差值门限两个同频 小区的频点号或者载波号。
Figure imgf000056_0001
含义是表示终端向网络侧上报的接收端 PRS SNR差值不超过差值门限的小区对的列表。
PRSSNRDiffCellPair (PRS SNR差值小区对) 只是一个命名方式, 其所代表含义是 表示终端向网络侧上报的接收端 PRS SNR值不超过差值门限的小区对。其 IE的内部构 成有: physCellldHigher只是一个命名方式, 其所代表含义是接收端 PRS SNR较大的那 个小区的 PCI cellGloballdHigher只是一个命名方式, 其所代表含义是接收端 PRS SNR 较大的那个小区的 CGI physCellldLower只是一个命名方式, 其所代表含义是接收端 PRS SNR较小的那个小区的 PCI cellGloballdLower只是一个命名方式, 其所代表含义 是接收端 PRS SNR较小的那个小区的 CGI snrDifference只是一个命名方式,其所代表 含义是 PRSSNRDiffCellPair这个 IE中所涉及的两个小区之间的接收端 PRS SNR差值。 y只是一个命名方式, 其所代表含义是 SNR差值的上报范围。 这里需要说明: 若网络侧下发的是一个 CRS SNR差值的门限, 那么这个上报的 snrDif erence是一个 CRS的接收端 SNR差值。 若网络下发的是一个 PRS SNR差值和 CRS SNR差值的映射因子,以及 PRS SNR差值门限,那么 snrDifference可以是一个 CRS 的接收端 SNR差值也可以是 PRS的接收端 SNR差值(根据协议的规定确定其中之
同样的, 在报告接收端 PRS功率或者 PRS SNR不超过差值门限小区对时, 其 LPP 的信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考 察小区差值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR
Figure imgf000057_0001
是表示终端向网络侧上报的 PRS接收 SNR差值不超过门限的小区的列表。 这个列表的 长度 X表示考察的小区个数。 PRSSNRDiffCell (PRS SNR差值小区)只是一个命名方式, 其所代表含义是表示终 端向网络侧上报的接收端 PRS SNR差值不超过门限的小区信息。 其 IE的内部构成有: physCellldRef只是一个命名方式, 其所代表含义是考察小区的 PCI。 cellGloballdRef只 是一个命名方式, 其所代表含义是考察小区的 CGI。 passedThresCellList只是一个命名 方式, 其所代表含义是与这个考察小区相比不超过差值门限的小区列表。 y只是一个命 名方式, 其所代表的含义是与考察小区相比不超过差值门限的小区个数 (小区列表长 度)。 PassedThresCell 只是一个命名方式, 其所代表的含义是与考察小区相比不超过差 值门限的小区信息。 physCellld只是一个命名方式, 其所代表的含义是小区的 PCI, 在 这个信令中就是与考察小区相比不超过差值门限的小区的 PCI。类似的, cellGloballd只 是一个命名方式, 其所代表含义是小区的 CGI, 在这个信令中就是与考察小区相比不超 过差值门限的小区的 CGI。 sNRDifference只是一个命名方式,其所代表含义是与考察小 区相比不超过差值门限的小区与考察小区之间的接收端 SNR差值大小, 这个值可以是 正是负, 它的取值为 l〜z。 z只是一个命名方式,其所代表含义是 SNR差值的上报范围, 这是一个索引值, 所以是从 1到 z (都大于零), 映射到真实值是正负值皆有的。
(2) 终端可以在请求辅助信息时发送小区子集信息
LPP信元 OTDOA-RequestAssistanceData (0TD0A请求辅助数据)是终端发送给定 位服务器请求辅助数据的信元(参见 3GPP TS36.355 ),斜体部分为本发明实施例所添加。 若考察的是接收功率的差值, 举例如下:
Figure imgf000058_0001
各个参数含义如上述信令形式 4的 (1 ) 中所描述, 因此不再赘述。 在报告接收端 PRS功率或者 PRS SNR不超过差值门限小区对时, 其 LPP的信令形 式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考察小区差 值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR 差值不超过门限的小区。 信令举例如下:
Figure imgf000059_0001
各个参数含义如上述信令形式 4的 (1 ) 对应部分中所描述, 因此不再赘述 t 若考察的是 SNR的差值, 则也可以写成:
Figure imgf000059_0002
各个参数含义如上述信令形式 4的 (1 ) 中所描述, 因此不再赘述。
同样的, 在报告接收端 PRS功率或者 PRS SNR不超过差值门限小区对时, 其 LPP 的信令形式可以像上述的一对一对上报, 也可以取某个小区为考察小区, 上报与这个考 察小区差值不超过门限的小区。 那么其 LPP的信令例子可以如下:
终端上报时, 取一个考察小区, 然后把其它邻区与之相比, 将不超过差值门限的小 区作为一个列表上报, 这个列表中的小区全是与当前考察小区的接收端功率或者 SNR
Figure imgf000060_0001
404, 定位服务器根据终端上报的小区子集信息, 通过 LPPa信令与相应基站交互, 向基站发送功率分配信息。功率分配信息用于指示基站调整 PRS发射功率以减少小区对 中两个小区的 PRS接收功率或 SNR的差值。功率分配信息的具体实现方式可以有多种, 本发明实施例对此不作限制。
如图 4所示, 步骤 404可以按照两种方式 (步骤 404a或者步骤 404b) 之一执行。 步骤 404a中, 定位服务器在请求基站上报 PRS配置的消息中携带功率分配信息。 OTDOA信息请求 (OTDOA INFORMATION REQUEST) 消息是 TS36.455中规定的信 令,用于由定位服务器请求基站上报 PRS配置的消息。本发明实施例在该消息中增加功 率分配信息, 举例如下, 其中斜体部分为本发明实施例所添加:
OTDOA INFORMAT ION REQUEST
OTDOAInf ormationRequest SEQUENCE {
protocol IEs Protocol IE -Container { { OTDOAInf ormationRequest -
OTDOAInf ormationRequest- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-OTDOA- Information-Type-Group CRIT ICALITY TYPE OTDOA- Information-Type
PRESENCE mandatory } ,
{ I D id-PRS-Power-Allocat ion-Configuration CRIT ICALITY TYPE
PRS -Power-Allocation-Con figuration
PRESENCE OPTIONAL } ,
OTDOA- Information-Type :: = SEQUENCE ( S I ZE ( 1 . . maxnoOTDOAtypes ) ) OF Protocol IE-Single-Container { { OTDOA- Information-Type IEs } }
OTDOA- Information-Type IEs LPPA-PROTOCOL- IES :
{ I D id-OTDOA- Information-Type- Item CRIT ICALITY TYPE OTDOA- Information-Type- Item PRESENCE
OTDOA- Information-Type- Item :: = SEQUENCE {
oTDOA- Information-Type- Item OTDOA- Information- Item,
{ { OTDOA- Information-Type- I temExt IEs } } OPT IONAL ,
. . .
OTDOA- Information-Type- I temExt IEs LPPA-PROTOCOL-EXTENS ION :: = { }
PRS-Power-Allocation-Configuration (PRS功率分配配置)只是功率分配信息的一个 命名方式,其所代表含义是表示定位服务器发送给基站的 PRS功率分配的信息,其内容 形式不限,主要目的是用于通知基站调整 PRS的发射功率, 以减少小区对中两个小区之 间的 PRS的接收功率或 SNR的差值,尽量保证终端侧接收到来自两个小区的 PRS接收 功率或者 SNR差值在相应的门限要求内。 PRS-Power-Allocation-Configuration是一个可 选项, 若定位服务器不发送 PRS-Power-Allocation-Configuration给基站, 则基站可按照 其原有的功率分配方式执行 PRS功率分配。
可替换地, 步骤 404b也可以用于向基站发送功率分配信息。 步骤 404b包括新增的 定位服务器与基站的专用消息 404b- 1 和现有的 OTDOA 信息请求 (OTDOA INFORMATION REQUEST ) 消息 404b-2。
步骤 404b-l中的信令形式不限, 由定位服务器发送给基站, 通知基站 PRS的功率 控制信息。 信令举例:
__ PRS POWER ALLOCAT ION CONFIGURAT ION
PRSPowerAllocationConf iguration :: = SEQUENCE {
protocol IEs Protocol IE -Container
{ { PRSPowerAllocationConf iguration- IEs } } ,
PRSPowerAllocationConf iguration- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-PRS-Power-Allocat ion-Configuration CRIT ICALITY rej ect TYPE
PRS -Power-Allocation-Con figuration
PRESENCE OPT IONAL } ,
PRSPowerAllocationConfiguration (PRS功率分配配置)只是功率分配信息的一个命 名方式,其所代表含义是表示定位服务器发送给基站的 PRS功率分配的信息。其内容形 式不限,主要目的是用于告知基站调整 PRS的发射功率, 以减少小区对中两个小区之间 的 PRS的接收功率或 SNR的差值,尽量保证终端侧接收到来自两个小区的 PRS接收功 率或者 SNR差值在相应的门限要求内。
步骤 404b-2采用现有的 OTDOA信息请求消息, 不作变动。 若采用 404b的方式, 步骤 404b-l可以在步骤 404b-2之前进行, 定位服务器通过步骤 404b- 1要求某些基站调 整 PRS的发射功率; 然后定位服务器通过步骤 404b-2请求基站上报自身最终的 PRS配 直 息
405, 基站将自身的最终 PRS 配置反馈给定位服务器。 步骤 405 可利用现有的 OTDOA信息响应 (OTDOAInformation esponse) 消息, 因此不再赘述。
406, 定位服务器通过辅助数据发送 PRS配置信息给终端。
407, 终端根据辅助数据中的 PRS配置信息, 进行 PRS检测, 估计 RSTD。
408, 终端将 RSTD上报给定位服务器。 409, 定位服务器根据终端上报的 RSTD计算终端地理位置。
上述步骤 406-409可利用现有技术中的相应处理过程, 因此不再赘述。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
图 5是本发明另一实施例的定位过程的示意流程图。图 5的实施例应用于 CA场景, 通过配置 PRS发射频点减小参考信号测量值的差值。 CA场景下, 对于不同的小区, 每 个小区的有多个可用频点 (载波), 终端也支持多个频点 (载波) 的接收。
501,定位服务器向终端发送允许的差值门限信息。步骤 501可以与图 4的步骤 401 相同, 因此不再赘述。
502, 终端测量参考信号, 并将测量得到的邻区和本小区 RSRP或者 CRS SNR进行 对比,将获得的差值与网络侧通知的差值门限进行对比。步骤 502可以与图 4的步骤 402 相同, 因此不再赘述。
503, 终端向定位服务器上报小区子集信息, 指示参考信号测量值超过差值门限的 小区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对, 以帮助 定位服务器筛除 PRS接收端功率或 SNR差值较大的小区。 步骤 503可以与图 4的步骤 403相同, 因此不再赘述。
504, 定位服务器根据终端上报的小区子集信息, 通过 LPPa信令与相应基站交互, 向基站发送频点分配信息。频点分配信息用于指示基站调整 PRS发射频点以减少小区对 中两个小区的 PRS接收功率或 SNR的差值。频点分配信息的具体实现方式可以有多种, 本发明实施例对此不作限制。
如图 5所示, 步骤 504可以按照两种方式 (步骤 504a或者步骤 504b) 之一执行。 步骤 504a中, 定位服务器在请求基站上报 PRS配置的消息中携带频点分配信息。 OTDOA信息请求 (OTDOA INFORMATION REQUEST) 消息是 TS36.455中规定的信 令,用于由定位服务器请求基站上报 PRS配置的消息。本发明实施例在该消息中增加频 点分配信息, 举例如下, 其中斜体部分为本发明实施例所添加:
―— OTDOA INFORMAT ION REQUEST
OTDOAInformationRequest :: = SEQUENCE {
protocol IEs Protocol IE -Container { { OTDOAInformationReques t- IEs OTDOAInformationRequest-IEs LPPA-PROTOCOL-IES :: = {
{ ID id-OTDOA- Information-Type-Group CRITICALITY reject TYPE OTDOA-Inf ormation-Type
PRESENCE mandatory} ,
{ ID id-PRS-Carrier-Allocat ion-Configuration CRITICALITY reject TYPE
) -Car rier-Al location-Configuration
PRESENCE OPTIONAL} ,
OTDOA-Inf ormation-Type :: = SEQUENCE (SIZE (1.. maxnoOTDOAtypes ) ) OF ProtocolIE-Single-Container { { OTDOA-Inf ormation-TypelEs } }
OTDOA-Informat ion-Type IEs LPPA-PROTOCOL-IES :: = {
{ ID id-OTDOA- Information-Type- I tern CRITICALITY reject TYPE OTDOA-Inf ormation-Type- Item PRESENCE
OTDOA-Inf ormation-Type- I tern :: = SEQUENCE {
oTDOA- Information-Type- Item OTDOA-Inf ormat ion- I tern
iE-Extensions
{ { OTDOA- Information-Type- I temExt IEs } } OPTIONAL
OTDOA- Information-Type- I temExt IEs LPPA-PROTOCOL-EXTENSION :: = { }
PRS-Carrier-Allocation-Configuration (PRS 载波分配配置) 只是频点分配信息的一 个命名方式,其所代表含义是表示定位服务器发送给基站的 PRS载波分配的信息,其内 容形式不限, 主要目的是用于通知基站调整 PRS的发射频点 (载波), 以减少小区对中 两个小区之间的 PRS的接收功率或 SNR的差值,尽量避免两个小区的 PRS之间产生干 扰。 PRS-Carrier- Allocation- Configuration 是一个可选项, 若定位服务器不发送 PRS-Carrier-AUocation- Configuration给基站,则基站可按照其原有的载波分配方式执行 PRS发送。
可替换地, 步骤 504b也可以用于向基站发送频点分配信息。 步骤 504b包括新增的 定位服务器与基站的专用消息 504b- 1 和现有的 OTDOA 信息请求 (OTDOA INFORMATION REQUEST) 消息 504b-2。
步骤 504b-l中的信令形式不限, 由定位服务器发送给基站, 通知基站 PRS的频带 (载波) 信息。 信令举例: __ PRS CARRIER ALLOCAT ION CONFIGURAT ION
PRSCarrierAllocationConf iguration :: = SEQUENCE {
protocol IEs Protocol IE -Container
{ { PRSCarrierAllocationConf iguration- IEs } } ,
PRSCarrierAllocationConf iguration- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-PRS-Carrier-Allocat ion-Configuration CRIT ICALITY rej ect TYPE
PRS -Carrie r-Al location-Configuration
PRESENCE OPT IONAL } ,
PRSCarrierAllocationConfiguration (PRS 载波分配配置) 只是频点分配信息的一个 命名方式,其所代表含义是表示定位服务器发送给基站的 PRS频点(载波)分配的信息, 其内容形式不限, 主要目的是用于通知基站调整 PRS的发射频点 (载波), 以减少小区 对中两个小区之间的 PRS的接收功率或 SNR的差值,尽量避免两个小区的 PRS之间产 生干扰。
步骤 504b-2采用现有的 OTDOA信息请求消息, 不作变动。 若采用 504b的方式, 步骤 504b-l可以在步骤 504b-2之前进行, 定位服务器通过步骤 504b-l要求某些基站调 整 PRS的发射频点; 然后定位服务器通过步骤 404b-2请求基站上报自身最终的 PRS配 直 息。
505, 基站将自身的最终 PRS 配置反馈给定位服务器。 步骤 505 可利用现有的 OTDOA信息响应 (OTDOAInformationResponse) 消息, 因此不再赘述。
506, 定位服务器通过辅助数据发送 PRS配置信息给终端。
507, 终端根据辅助数据中的 PRS配置信息, 进行 PRS检测, 估计 RSTD。
508, 终端将 RSTD上报给定位服务器。
509, 定位服务器根据终端上报的 RSTD计算终端地理位置。
上述步骤 506-509可利用现有技术中的相应处理过程, 因此不再赘述。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
图 6是 CoMP场景的一个例子的示意图。 图 6的 CoMP节点(协作节点)属于同小 区 ID, 因此它们的 PRS pattern (图案) 相同 (根据相同的小区 ID得到)。 现有的方案 一般选择三个 CoMP节点中最强的那条路径进行 PRS发射。 例如, 若 CoMP节点 0到 达终端信号质量最好, CoMP节点 1次之, CoMP节点 2最差, 则选择 CoMP节点 0为 终端发射 PRS。但是, 如果按照该现有方案选择最优 CoMP节点, 可能导致其与邻区基 站发送的 PRS在终端侧的接收功率或者 SNR差值过大, 导致对邻区 PRS的接收造成干 扰。 因此本发明实施例在选择 CoMP的节点进行 PRS发送时还需要考虑 PRS的接收功 率差, 从而选择最合适的 CoMP节点。 本发明实施例选择 CoMP节点的规则是, 满足 PRS功率或者 SNR差门限前提下的最优 PRS质量 CoMP节点。
图 7是本发明另一实施例的定位过程的示意流程图。 图 7的实施例应用于例如图 6 所示的 CoMP场景, 通过选择满足参考信号测量值的差值门限的最优小区进行 PRS传 输, 以减小参考信号测量值的差值。
701,定位服务器向终端发送允许的差值门限信息。步骤 701可以与图 4的步骤 401 相同, 因此不再赘述。
702, 终端测量参考信号, 并将测量得到的邻区和本小区 RSRP或者 CRS SNR进行 对比,将获得的差值与网络侧通知的差值门限进行对比。步骤 702可以与图 4的步骤 402 相同, 因此不再赘述。
703, 终端向定位服务器上报小区子集信息, 指示参考信号测量值超过差值门限的 小区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对, 以帮助 定位服务器筛除 PRS接收端功率或 SNR差值较大的小区。 步骤 703可以与图 4的步骤 403相同, 因此不再赘述。
704, 定位服务器根据终端上报的小区子集信息, 通过 LPPa信令与相应基站交互, 向基站发送节点配置信息。 节点配置信息用于通知基站选择满足 PRS接收功率或 SNR 差值门限的最优协作节点发射 PRS。节点配置信息的具体实现方式可以有多种, 本发明 实施例对此不作限制。
如图 7所示, 步骤 704可以按照两种方式 (步骤 704a或者步骤 704b) 之一执行。 步骤 704a中, 定位服务器在请求基站上报 PRS配置的消息中携带节点配置信息。 OTDOA信息请求 (OTDOA INFORMATION REQUEST) 消息是 TS36.455中规定的信 令,用于由定位服务器请求基站上报 PRS配置的消息。本发明实施例在该消息中增加节 点配置信息, 举例如下, 其中斜体部分为本发明实施例所添加:
- OTDOA INFORMAT ION REQUEST OTDOAInf ormationRequest SEQUENCE {
protocol IEs Protocol IE -Container { { OTDOAInf ormationRequest -
OTDOAInf ormationRequest- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-OTDOA- Information-Type-Group CRIT ICALITY rej ect TYPE OTDOA- Inf ormation-Type
PRESENCE mandatory } ,
{ I D id-PRS-CoMP-Node-Conf iguration CRIT ICALITY rej ect TYPE PRS-CoMP-Node-Conf iguration PRESENCE OPT IONAL } ,
OTDOA- Information-Type :: = SEQUENCE ( S I ZE ( 1 . . maxnoOTDOAtypes ) ) OF Protocol IE-Single-Container { { OTDOA- Inf ormation-Type IEs } }
OTDOA- Information-Type IEs LPPA-PROTOCOL- IES ::
{ I D id-OTDOA- Information-Type- Item CRIT ICALITY TYPE OTDOA- Inf ormat ion-Type- Item PRESENCE
OTDOA- Information-Type- Item :: = SEQUENCE {
oTDOA- Information-Type- Item OTDOA- Inf ormat ion- Item
iE -Ext ens ions
OTDOA- Information-Type- I temExt IEs } } OPT IONAL
OTDOA- Information-Type- I temExt IEs LPPA-PROTOCOL-EXTENS ION
PRS-CoMP-Node-Configuration (PRS CoMP节点配置)只是节点配置信息的一个命 名方式, 其所代表含义是表示定位服务器发送给基站的 CoMP节点 (协作节点)的配置 信息, 其内容形式不限, 主要目的是用于通知基站选择合适的 CoMP节点发射 PRS, 以 减少小区对中两个小区之间的 PRS的接收功率或 SNR的差值,尽量避免两个小区的 PRS 之间产生干扰。 PRS-CoMP-Node-Configuration 是一个可选项, 若定位服务器不发送 PRS-CoMP-Node-Configuration给基站, 则基站可按照其原有的 CoMP节点配置方式执 行 PRS发射。
可替换地, 步骤 704b也可以用于向基站发送节点配置信息。 步骤 704b包括新增的 定位服务器与基站的专用消息 704b- 1 和现有的 OTDOA 信息请求 (OTDOA INFORMATION REQUEST) 消息 704b-2。
步骤 704b-l中的信令形式不限, 由定位服务器发送给基站, 通知基站发射 PRS的 CoMP节点的配置信息。 信令举例:
PRS COMP NODE CONFIGURAT ION
protocol IEs Protocol IE -Container
PRSCoMPNodeConf iguration- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-PRS-CoMP-Node-Conf iguration CRIT ICALITY rej ect TYPE PRS-CoMP-Node-Conf iguration PRESENCE OPT IONAL } ,
PRSCoMPNodeConfiguration (PRS CoMP节点配置)只是节点配置信息的一个命名 方式, 其所代表含义是表示定位服务器发送给基站的 CoMP节点 (协作节点) 的配置信 息, 其内容形式不限, 主要目的是用于通知基站选择合适的 CoMP节点发射 PRS, 以减 少小区对中两个小区之间的 PRS的接收功率或 SNR的差值, 尽量避免两个小区的 PRS 之间产生干扰。
步骤 704b-2采用现有的 OTDOA信息请求消息, 不作变动。 若采用 704b的方式, 步骤 704b-l可以在步骤 704b-2之前进行, 定位服务器通过步骤 704b-l要求某些基站选 择用于发射 PRS的最优 CoMP节点; 然后定位服务器通过步骤 704b-2请求基站上报自 身最终的 PRS配置信息。
705, 基站将自身的最终 PRS 配置反馈给定位服务器。 步骤 705 可利用现有的 OTDOA信息响应 (OTDOAInformationResponse) 消息, 因此不再赘述。
706, 定位服务器通过辅助数据发送 PRS配置信息给终端。
707, 终端根据辅助数据中的 PRS配置信息, 进行 PRS检测, 估计 RSTD。
708, 终端将 RSTD上报给定位服务器。
709, 定位服务器根据终端上报的 RSTD计算终端地理位置。
上述步骤 706-709可利用现有技术中的相应处理过程, 因此不再赘述。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
图 8是本发明另一实施例的定位过程的示意流程图。 图 8的实施例中, 通过基站的 波束赋形的调整来满足 PRS接收功率或 SNR差值门限。通过赋形天线可以进行 PRS的 空间分隔, 当终端上报 PRS差值信息时, 网络侧可以去配置 PRS的发送主瓣方向, 两 个小区的主瓣之间只要满足角度的隔离度, 即可以减少 PRS接收功率或 SNR的差值, 以尽量避免 PRS之间的干扰。本发明实施例不限制赋形天线的种类,可以是二维的赋形 天线, 也可以是三维的空间赋形天线。
801,定位服务器向终端发送允许的差值门限信息。步骤 801可以与图 4的步骤 401 相同, 因此不再赘述。
802, 终端测量参考信号, 并将测量得到的邻区和本小区 RSRP或者 CRS SNR进行 对比,将获得的差值与网络侧通知的差值门限进行对比。步骤 802可以与图 4的步骤 402 相同, 因此不再赘述。
803, 终端向定位服务器上报小区子集信息, 指示参考信号测量值超过差值门限的 小区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对, 以帮助 定位服务器筛除 PRS接收端功率或 SNR差值较大的小区。 步骤 803可以与图 4的步骤 403相同, 因此不再赘述。
804, 定位服务器根据终端上报的小区子集信息, 通过 LPPa信令与相应基站交互, 向基站发送波束赋形配置信息。波束赋形配置信息用于通知基站选择满足 PRS接收功率 或 SNR差值门限的波束赋形发射 PRS。波束赋形配置信息的具体实现方式可以有多种, 本发明实施例对此不作限制。
如图 8所示, 步骤 804可以按照两种方式 (步骤 804a或者步骤 804b) 之一执行。 步骤 804a中, 定位服务器在请求基站上报 PRS配置的消息中携带波束赋形配置信 息。 OTDOA信息请求 (OTDOA INFORMATION REQUEST) 消息是 TS36.455中规定 的信令,用于由定位服务器请求基站上报 PRS配置的消息。本发明实施例在该消息中增 加波束赋形配置信息, 举例如下, 其中斜体部分为本发明实施例所添加: __ OTDOA INFORMAT ION REQUEST
OTDOAInformationRequest :: = SEQUENCE {
protocol IEs Protocol IE -Container { { OTDOAInformationRequest -
OTDOAInformationRequest- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-OTDOA- Information-Type-Group CRIT ICALITY rej ect TYPE OTDOA- Inf ormation-Type
PRESENCE mandatory } , { I D id-PRS-Beamforming-Conf iguration CRIT ICALITY rej ect TYPE
PRS-Beamforming-Configuration
PRESENCE OPTIONAL } ,
OTDOA- Information-Type :: = SEQUENCE ( S I ZE ( 1 . . maxnoOTDOAtypes ) ) OF Protocol IE-Single-Container { OTDOA- Inf ormation-Type lEs } }
OTDOA- Informat ion-Type IEs LPPA-PROTOCOL- IES :: = {
{ I D id-OTDOA- Informat ion-Type- I tern CRIT ICALITY rej ect TYPE OTDOA- Inf ormat ion-Type- Item PRESENCE mandatory } ,
OTDOA- Informat ion-Type- I tern :: = SEQUENCE {
oTDOA- Informat ion-Type- Item OTDOA- Inf ormat ion- I tern,
iE-Extens ions
{ { OTDOA- Informat ion-Type- I temExt IEs } } OPT IONAL ,
OTDOA- Informat ion-Type- I temExt IEs LPPA-PROTOCOL-EXTENS ION :: = { }
PRS-Beamforming-Configuration (PRS波束赋形配置) 只是波束赋形配置信息的一 个命名方式,其所代表含义是表示定位服务器发送给基站的 PRS波束赋形的配置(用于 配置基站的 PRS波束方向), 其内容形式不限, 主要目的是用于通知基站调整 PRS的波 束赋形方式, 以减少小区对中两个小区之间的 PRS的接收功率或 SNR的差值, 尽量避 免两个小区的 PRS之间产生干扰。 PRS-Beamforming-Configuration是一个可选项, 若定 位服务器不发送 PRS-Beamforming-Configuration给基站,则基站可按照其原有的波束赋 形方式执行 PRS发射。
可替换地, 步骤 804b也可以用于向基站发送波束赋形配置信息。 步骤 804b包括新 增的定位服务器与基站的专用消息 804b-l 和现有的 OTDOA 信息请求 (OTDOA INFORMATION REQUEST) 消息 804b-2。
步骤 804b-l中的信令形式不限, 由定位服务器发送给基站, 通知基站发射 PRS的 波束赋形的配置信息。 信令举例: PRS BEAMFORMING CONFIGURAT ION
PRSBeamformingConf iguration :: = SEQUENCE { protocol IEs Protocol IE-Container
PRSBeamformingConf iguration-IEs LPPA-PROTOCOL- IES :: = {
{ I D id-PRS-Beamforming-Conf iguration CRIT ICALITY rej ect TYPE
PRS-Beamforming-Con figuration
PRESENCE OPT IONAL } , }
PRSBeamformingConfiguration (PRS波束赋形配置)只是波束赋形配置信息的一个 命名方式,其所代表含义是表示定位服务器发送给基站的 PRS波束赋形的配置(用于配 置基站的 PRS波束方向), 其内容形式不限, 主要目的是用于通知基站调整 PRS的波束 赋形, 以减少小区对中两个小区之间的 PRS的接收功率或 SNR的差值, 尽量避免两个 小区的 PRS之间产生干扰。
步骤 804b-2采用现有的 OTDOA信息请求消息, 不作变动。 若采用 804b的方式, 步骤 804b- 1可以在步骤 804b-2之前进行, 定位服务器通过步骤 804b- 1要求某些基站选 择用于发射 PRS的波束赋形; 然后定位服务器通过步骤 804b-2请求基站上报自身最终 的 PRS配置信息。
应注意, 本发明实施例对波束赋形配置信息的内部信令表达形式不做限制。 例如, 波束赋形配置信息的主要内容可包括指示波束方向的角度信息, 可以是水平方向, 也可 以是垂直方向, 也可以是水平加垂直方向的角度信息。 或者, 波束赋形配置信息的主要 内容可包括赋形天线 (多天线系统) 的 PMI (Precoding Matrix Indicator, 预编码矩阵指 示)。 PMI 主要指示多天线系统预编码矩阵的配置, 通过每个天线的不同配置可以达到 整个天线阵波束方向的改变。 因此定位服务器无论是直接下发角度信息还是下发 PMI 都可以配置基站发射 PRS的波束方向。
805, 基站将自身的最终 PRS 配置反馈给定位服务器。 步骤 805 可利用现有的 OTDOA信息响应 (OTDOAInformationResponse) 消息, 因此不再赘述。
806, 定位服务器通过辅助数据发送 PRS配置信息给终端。
807, 终端根据辅助数据中的 PRS配置信息, 进行 PRS检测, 估计 RSTD。
808, 终端将 RSTD上报给定位服务器。
809, 定位服务器根据终端上报的 RSTD计算终端地理位置。
上述步骤 806-809可利用现有技术中的相应处理过程, 因此不再赘述。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
图 9是本发明另一实施例的定位过程的示意流程图。 图 9的实施例中, 定位服务器 不改变小区的 PRS配置。定位服务器通过从终端的服务小区的邻区列表中选择满足 PRS 接收功率或 SNR差值门限的小区, 以减少 PRS接收功率或 SNR的差值,尽量避免 PRS 之间的干扰。
901,定位服务器向终端发送允许的差值门限信息。步骤 901可以与图 4的步骤 401 相同, 因此不再赘述。
902, 终端测量参考信号, 并将测量得到的邻区和本小区 RSRP或者 CRS SNR进行 对比,将获得的差值与网络侧通知的差值门限进行对比。步骤 902可以与图 4的步骤 402 相同, 因此不再赘述。
903, 终端向定位服务器上报小区子集信息, 指示参考信号测量值超过差值门限的 小区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对, 以帮助 定位服务器筛除 PRS接收端功率或 SNR差值较大的小区。 步骤 903可以与图 4的步骤 403相同, 因此不再赘述。
904,定位服务器根据小区子集信息,从终端的服务小区的邻区列表中选择满足 PRS 接收功率或 SNR差值门限的小区。邻区列表可包括终端的当前服务小区及其相邻小区。 这样选择的小区能够满足 PRS接收功率或 SNR差值门限, 从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。本发明实施例对选择小区的具体方式不作限制。例如, 可 选择地理位置与终端所在服务小区最接近且满足差值门限的小区。
905,定位服务区向在步骤 904中选择的小区的基站发送 OTDOA信息请求 (OTDOA
INFORMATION REQUEST) 消息, 以请求该基站上报 PRS配置的消息。 步骤 905可采 用现有的 OTDOA信息请求消息。
906, 基站将自身的最终 PRS 配置反馈给定位服务器。 步骤 906 可利用现有的 OTDOA信息响应 (OTDOAInformationResponse) 消息, 因此不再赘述。
907, 定位服务器通过辅助数据发送 PRS配置信息给终端。
908, 终端根据辅助数据中的 PRS配置信息, 进行 PRS检测, 估计 RSTD。
909, 终端将 RSTD上报给定位服务器。
910, 定位服务器根据终端上报的 RSTD计算终端地理位置。
上述步骤 907-910可利用现有技术中的相应处理过程, 因此不再赘述。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
在终端支持多模 (多个 RAT) 并且支持在多个 RAT下进行定位测量的情况下, 现 有技术中不考虑 RAT的负载对定位测量带来的影响。 如果在高负载 RAT下发射 PRS, 会占用高负载 RAT对应的资源,影响高负载 RAT的业务性能和吞吐量,并且高负载 RAT 上发送的业务信号会对 PRS带来干扰。
图 10是本发明另一实施例的定位方法的流程图。图 10的方法由定位服务器(例如, e-SMLC) 执行。 图 10 的实施例应用于终端支持在多 RAT下进行定位测量的场景。
1001 , 与终端交互该终端支持按照多个 RAT进行定位测量的定位能力信息。
本发明实施例对定位服务器和终端交互定位能力信息的方式不作限制。 可选地, 作 为一个实施例,定位服务器可在请求终端上报能力的消息中携带 RAT请求信息,该 RAT 请求信息用于请求终端上报定位能力信息。定位服务器接收终端在上报的能力信息中携 带的上述定位能力信息。
1002, 确定多个 RAT中负载最轻的第一 RAT。
定位服务器可以通过与网络侧的一个集中控制节点 (如移动管理实体) 进行交互, 或者分别与每个基站进行交互, 从而获得多个 RAT 的负载信息, 从而确定负载最轻的 第一 RAT。
1003, 向基站发送分配信息, 该分配信息用于指示基站在第一 RAT上向终端发射 定位参考信号 PRS, 并接收基站反馈的 PRS的配置。
本发明实施例对定位服务器向基站发送分配信息的方式不做限制。 可选地, 作为一 个实施例,定位服务器可以在请求基站上报 PRS配置的消息(如上述 OTDOA信息请求 消息) 中或者在请求基站上报 PRS配置的消息之前的专用消息中, 携带该分配信息。
1004, 向终端通知 PRS的配置。
定位服务器向终端通知 PRS配置的方式可利用现有技术中的相应处理,例如通过辅 助数据下发 PRS配置, 因此不再赘述。
1005, 接收终端根据 PRS的配置测量得到的 RSTD, 根据所述 RSTD确定终端的位 置。
本发明实施例对终端根据 PRS的配置测量得到 RSTD的过程以及定位服务器根据 RSTD确定终端位置的过程不作限制。 例如, 可采用现有技术中的相同处理, 因此不再 赘述。
本发明实施例选择负载最轻的 RAT, 从而减轻业务信号对 PRS造成的干扰。 另外, 本发明实施例在负载最轻的 RAT上发射 PRS, 能够保持高负载 RAT上的业务性能和吞 吐量。
图 11是本发明另一实施例的定位方法的流程图。 图 11的方法由终端 (如 UE) 执 行, 并且与图 10的方法相对应, 因此将适当省略重复的描述。
1101, 与定位服务器交互终端支持按照多个 RAT进行定位测量的定位能力信息, 以便定位服务器确定多个 RAT中负载最轻的第一 RAT。
本发明实施例对定位服务器和终端交互定位能力信息的方式不作限制。 可选地, 作 为一个实施例, 终端可接收定位服务器在请求终端上报能力的消息中携带的 RAT请求 信息, 该 RAT请求信息用于请求终端上报上述定位能力信息。 终端可在向定位服务器 发送的能力信息中携带上述定位能力信息。
1102, 接收定位服务器通知的 PRS的配置, 其中 PRS的配置中基站使用第一 RAT 发射 PRS。
终端接收定位服务器通知的 PRS配置的方式可利用现有技术中的相应处理,例如接 收通过辅助数据下发的 PRS配置, 因此不再赘述。
1103, 根据 PRS的配置测量得到 RSTD, 并向定位服务器发送 RSTD。
本发明实施例对终端根据 PRS的配置测量得到 RSTD的过程以及向定位服务器发 送 RSTD的过程不作限制。 例如, 可采用现有技术中的相同处理, 因此不再赘述。
本发明实施例选择负载最轻的 RAT, 从而减轻业务信号对 PRS造成的干扰。 另外, 本发明实施例在负载最轻的 RAT上发射 PRS, 能够保持高负载 RAT上的业务性能和吞 吐量。
图 12是本发明另一实施例的定位过程的示意流程图。 图 12的实施例应用于终端支 持在多个 RAT进行 OTDOA测量的场景。 对于多模终端而言, 网络侧可以选择 load最 轻的 RAT让发射定位参考信号,这样也可以避免诸如 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道) 的业务信号对 PRS造成的干扰。
1201, 终端的定位业务被触发, 需要对该终端进行定位。 触发这个业务的实体可以 是终端自身, 可以是 MME (Mobility Management Entity, 移动管理实体), 可以是定位 服务器 (e-SMLC), 也可以是网络侧的第三方实体等, 本发明对此不作限制。
1202: 定位服务器向终端发送请求定位能力信息的 RAT请求信息。 可利用定位服 务器请求终端上报能力的消息来携带该 RAT请求信息。
LPP信元 OTDOA-RequestCapabilities (OTDOA请求能力) 是定位服务器发送给终 端请求终端上报自身能力的信元(参见 3GPP TS36.355 ), 举例如下, 斜体部分为本发明 实施例所添加: ,§ 曜 ,) 棄 ¾導 :^
■v.;rn :·;τ:·一'
OTDOA-MultiRATSupport (OTDOA多 RAT支持) 只是 RAT请求信息的一 rw 方式, 其所代表含义是定位服务器请求终端上报的多 RAT定位的支持情况信息。
1203, 收到步骤 1202中发出请求之后, 终端会向定位服务器反馈自身的能力信息。 若终端支持多模定位, 则可以将定位能力信息告知定位服务器。
LPP信元 OTDOA-ProvideCapabilities (OTDOA提供能力) 是终端发送给定位服务 器上报自身能力的信元(参见 3GPP TS36.355 ), 其中可增加定位能力信息的内容。举例 如下, 斜体部分为本发明实施例所添加,
Figure imgf000075_0001
supportedRATList (支持的 RAT列表只是定位能力信息的一个命名方式, 其所代表 含义是标示终端支持的 0TD0A的 RAT列表。 maxRAT只是一个命名方式,其所代表含 义是表示 RAT的个数, 这个数目一般是一个定值, 根据 0TD0A在哪些 RAT内被支持 而定,本发明不做限制。 SupportedRATList里面的每一个成员 IE这里都给了一个举例的 命名方式,其含义指示是否对于相应的 RAT支持;比如: supportGSM表示是否支持 GSM, 是一个布尔型的变量, ' Γ 为支持, '0' 表示不支持。
1204, 定位服务器根据每个 RAT在服务区内的业务量, 判断负载最轻的 RAT (第 一 RAT)0
判断负载大小的方式, 可以与一个网络侧集中控制节点交互, 也可以是与每个基站 交互, 获得负载信息。 定位服务器与基站交互涉及的是 3GPP TS36.455的 IE, 包括请求 1204-1和反馈 1204-2两步。 信令举例如下:
1204-1 , 定位服务器向基站发送负载状态请求 (LOAD STATUS REQUEST), 以请 求基站反馈多个 RAT的负载状态。
- LOAD STATUS REQUEST
LoadStatusRequest SEQUENCE {
protocol IEs Protocol IE -Container - IEs
LoadStatusRequest- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-Load-Status -Type-Group CRIT ICALITY rej ect TYPE Load-Status -Type
PRESENCE
Load-Status -Type :: = SEQUENCE ( S I ZE ( 1 . . maxnoLI types ) ) OF Protocol IE-Single-Container { { Load-Status -Type IEs } }
Load-Status -Type IEs LPPA-PROTOCOL- IES :: = {
{ I D id-Load-Status -Type- Item CRIT ICALITY rej ect TYPE Load-Status -Type- Item PRESENCE mandatory } ,
Load-Status -Type- Item SEQUENCE {
load-Status -Type- Item Load-Status - Item,
iE -Ext ens ions { { Load-Status -Type- ItemExt lEs } OPT IONAL , Load-Status -Type- I temExt lEs LPPA-PROTOCOL-EXTENS ION :: = {
Load-Status-Item (负载状态项)只是一个命名方式, 其所代表含义是请求基站在这 个 RAT上的负载情况。 这个 IE的内容和形式本发明实施例不作限制。
1204-2, 当基站收到定位服务器的负载情况请求时, 可返回负载状态响应 (LOAD STATUS RESPONSE) 消息, 以反馈多个 RAT上的负载状态。 相应反馈信令举例如下:
―— LOAD STATUS RESPONSE
LoadStatusResponse : : = SEQUENCE {
protocol IEs Protocol IE -Container { { LoadStatusResponse- IE s } } , }
LoadStatusResponse- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-OTDOACells CRIT ICALITY ignore TYPE OTDOACells RESENCE mandatory } |
{ I D id-CriticalityDiagnostics CRIT ICALITY ignore TYPE CriticalityDiagnostics
PRESENCE optional } ,
Load Status (负载状态)只是一个命名方式, 其所代表含义是此基站在这个 RAT上 的负载情况。 这个 IE的内容和形式本发明实施例不作限制。
1204-3, 定位服务器根据基站反馈的负载状态, 确定负载最轻的 RAT (即上述第一 RAT) o
1205, 定位服务器向基站发送分配信息, 以配置基站在第一 RAT上发送定位信号。 本发明实施例对分配信息的信令形式不作限制。 分配信息由定位服务器发送给基 站, 通知基站在第一 RAT上发射 PRS。 信令举例:
CONFIGURATION
PRSRATConf iguration :: = SEQUENCE {
protocol IEs Protocol IE -Container { { PRSRATConf iguration- IEs } PRSRATConf iguration- IEs LPPA-PROTOCOL- IES :: = {
{ I D id-PRS-RAT-Conf iguration CRIT ICALITY rej ect TYPE PRS-RAT-Conf iguration
PRESENCE OPT IONAL } ,
PRSRATConfiguration (PRS RAT配置) 只是分配信息的一个命名方式, 其所代表 含义是表示定位服务器发送给基站的分配信息, 用于向基站指示 PRS的 RAT配置, 其 内容形式不限, 主要目的是用于通知基站选择合适 RAT (第一 RAT), 避免 PRS之间产 生干扰。
1206 , 定位服务区向在步骤 904 中选择的小区的基站发送 OTDOA 信息请求 (OTDOA INFORMATION REQUEST) 消息, 以请求该基站上报 PRS配置的消息。 步 骤 1206可采用现有的 OTDOA信息请求消息。
可替换地, 作为另一实施例, 类似于图 4中的步骤 404a, 步骤 1205中的分配信息 也可以合并到 OTDOA信息请求消息中。
1207, 基站将自身的最终 PRS 配置反馈给定位服务器。 步骤 906 可利用现有的 OTDOA信息响应 (OTDOAInformationResponse) 消息, 因此不再赘述。
1208, 定位服务器通过辅助数据发送 PRS配置信息给终端。
1209, 终端根据辅助数据中的 PRS配置信息, 进行 PRS检测, 估计 RSTD。
1210, 终端将 RSTD上报给定位服务器。
1211, 定位服务器根据终端上报的 RSTD计算终端地理位置。
上述步骤 1208-1211可利用现有技术中的相应处理过程, 因此不再赘述。
本发明实施例选择负载最轻的 RAT, 从而减轻业务信号对 PRS造成的干扰。 另外, 本发明实施例在负载最轻的 RAT上发射 PRS, 能够保持高负载 RAT上的业务性能和吞 吐量。
图 13是可应用本发明实施例的一个场景的示意图。 如图 13的上半部分所示, 基站 131控制三个小区 Sl、 S2和 S3。 图 13的下半部分是三个小区的带宽划分示意图。基站 的带宽划分为第一频带 Bl、 第二频带 B2、 第三频带 B3和第四频带 B4。 第一小区 SI 使用第一频带 B1和第二频带 B2, 第二小区 S2使用第三频带 B3和第四频带 B4, 第三 小区 S3使用第二频带 B2和第三频带 B3。 例如, 如果基站的带宽为 40MHz, 且四个频 带 B1-B4 是平均分配的, 则每个频带的带宽为 10MHz, 每个小区 S1-S3 占用其中的 20MHz。 小区 S1和小区 S3有 10MHz的带宽重叠 (第二频带 B2), 小区 S2和小区 S3 有 10MHz的带宽重叠 (第三频带 B3 )。
对于 Rel-9的异频场景而言, 可以允许两个频点一个发送 PRS, 一个发送业务信号 (如数据的 PDSCH)。 在此情况下, 因为在频率上完全正交因此不会产生相互干扰。 但 是图 13的场景中, 不同小区的系统带宽有重叠, 即使异频也会产生干扰。 由于 OTDOA 需要估计不同小区 PRS的 RSTD, 也就是需要用到 PRS到达时间的估计, 因此对于干 扰非常敏感。 需要解决在这种异频场景中 PRS干扰的问题。
图 14是本发明另一实施例的定位方法的流程图。 图 14的方法由基站(如 eNB)执 行。 结合图 13的场景描述图 14的方法。
1401 , 确定基站控制的第一小区、第二小区和第三小区的 PRS的配置, 该基站的带 宽划分为第一频带、 第二频带、 第三频带和第四频带, 第一小区使用第一频带和第二频 带, 第二小区使用第三频带和第四频带, 第三小区使用第二频带和第三频带, 以使得第 一小区、第二小区和第三小区中的任何一个小区在发射 PRS时其他小区不在与所述一个 小区重叠的频带上发射业务信号。
1402, 在所述一个小区上按照该 PRS的配置向终端发射 PRS。
本发明实施例不在与发射 PRS的小区重叠的频带上发射业务信号, 从而 避免业务 信号对 PRS的干扰。
可选地, 作为一个实施例, 在步骤 1401中配置 PRS时, 可限制第一小区、 第二小 区和第三小区的 PRS同时发射。 也就是在同一时刻进行 PRS发送, 由于三个小区属于 同一基站, 因此 PRS信号的发送同步可以保证。 因为 PRS子帧是 LIS ( low interference subframe, 低干扰子帧), 因此三个小区同时发送的 PRS子帧中不会包含任何业务信号 (如 PDSCH) 的内容, 能够避免业务信号对彼此的干扰。
在此情况下, 可配置 TS36.355规定的 PRS子帧偏量 (prs-SubframeOffset) 信元, 以实现三个小区的 PRS同时发射。 如将 PRS的配置中的 PRS子帧偏量配置为 0或不配 置 PRS子帧偏量:
prs-SubframeOffset=0或者不配置 (不配置就默认为 0)
可选地, 作为另一实施例, 可对每个小区分别进行配置, 在重叠的频带上不发射业 务信号, 但是可以发射 PRS或其他公共信号或其他控制信号。
具体地, 当配置第一小区 S1发射 PRS时, 第三小区 S3不在第二频带 B2上发射业 务信号。 对于第三小区 S3在第三频带 B3上的功率分配和资源分配以及第二小区 S2在 第三频带 B3和第四频带 B4上的功率分配和资源分配, 本发明实施例不作限制。 可选 地, 第三小区 S3可以在第二频带 B2上发射 PRS或其他公共信号或其他控制信号。 另一方面, 当配置第二小区 S2发射 PRS时, 第三小区 S3不在第三频带 B3上发射 业务信号。 对于第三小区 S3在第二频带 B2上的功率分配和资源分配以及第一小区 S1 在第一频带 B1和第二频带 B2上的功率分配和资源分配, 本发明实施例不作限制。 可 选地, 第三小区 S3可以在第三频带 B3上发射 PRS或其他公共信号或其他控制信号。
另外, 当配置第三小区 S3发射 PRS时, 第一小区 S1不在第二频带 B2上发射业务 信号, 并且第二小区 S2不在第三频带 B3上发射业务信号。 对于第一小区 S1在第一频 带 B1上的功率分配和资源分配以及第二小区 S2在第四频带 B4上的功率分配和资源分 配, 本发明实施例不作限制。 可选地, 第一小区 S1可以在第二频带 B2上发射 PRS或 其他公共信号或其他控制信号, 第二小区 S2可以在第三频带 B3上发射 PRS或其他公 共信号或其他控制信号。
这样, 本发明实施例能避免图 13的场景下业务信号对 PRS的干扰。
图 15是本发明一个实施例的定位服务器的框图。 图 15的定位服务器 150的一个例 子是 e-SMLC, 包括收发器 151和处理器 152。
收发器 151可以向终端通知差值门限信息。差值门限信息用于指示一个小区对中两 个小区的参考信号测量值的差值门限。
收发器 151还可以接收终端根据差值门限信息确定的小区子集信息。小区子集信息 用于指示参考信号测量值超过差值门限的小区对, 或者小区子集信息用于指示参考信号 测量值不超过差值门限的小区对。
处理器 152根据小区子集信息,确定定位参考信号 PRS的配置。收发器 151向终端 通知 PRS的配置。
收发器 151接收终端根据 PRS的配置测量得到的 RSTD。处理器 152根据 RSTD确 定终端的位置。
本发明实施例设置参考信号测量值的差值门限, 从而避免 PRS的测量值差值过大, 降低了 PRS间的干扰。
定位服务器 150可实现图 1-图 9的方法中涉及定位服务器的各个步骤,为避免重复, 不再详细描述。
可选地, 作为一个实施例, 差值门限信息可包括以下中的至少一个: 两个小区的 RSRP的差值门限、两个小区的 CRS的 SNR的差值门限、两个小区的 PRS接收功率 PRP 的差值门限和第一映射因子、 两个小区的 PRS的 SNR的差值门限和第二映射因子; 其 中第一映射因子表示 RSRP差值与 PRP差值之间的映射因子, 第二映射因子表示 CRS 的 SNR的差值与 PRS的 SNR的差值之间的映射因子。
可选地, 作为另一实施例, 收发器 151可以在请求终端上报能力的消息中携带差值 门限信息; 或者, 在请求终端进行定位测量的消息中携带差值门限信息; 或者, 在向终 端发送的用于帮助终端进行定位测量的辅助数据中携带差值门限信息; 或者, 向终端的 服务基站发送差值门限信息, 以便服务基站通过广播或无线资源控制消息向终端发送差 值门限信息。
可选地, 作为另一实施例, 收发器 151可接收终端在上报能力的消息中携带的小区 子集信息; 或者, 接收终端在请求辅助数据的消息中携带的小区子集信息。
可选地, 作为另一实施例, 处理器 152可根据小区子集信息, 通过收发器 151向需 要调整 PRS发射功率的基站发送功率分配信息。 功率分配信息用于指示基站调整 PRS 发射功率以减少小区对中两个小区的 PRS接收功率或 SNR的差值。 收发器 151可从基 站接收基站在基于功率分配信息进行调整之后得到的 PRS的配置。
可选地, 作为另一实施例, 处理器 152可根据小区子集信息, 通过收发器 151向需 要调整 PRS发送频点的基站发送频点分配信息。 频点分配信息用于指示基站调整 PRS 发送频点以减少小区对中两个小区的 PRS接收功率或 SNR的差值。 收发器 151可从基 站接收基站在基于频点分配信息进行调整之后得到的 PRS的配置。
可选地, 作为另一实施例, 处理器 152可根据小区子集信息, 通过收发器 151向基 站发送节点配置信息。 节点配置信息用于通知基站选择满足 PRS接收功率或 SNR差值 门限的最优协作节点 (CoMP节点)发射 PRS。 收发器 151可从基站接收基站在基于节 点配置信息进行选择之后得到的 PRS的配置。
可选地, 作为另一实施例, 处理器 152可根据小区子集信息, 从终端的服务小区的 邻区列表中选择满足 PRS接收功率或 SNR差值门限的小区。 收发器 151可从所选择的 小区的基站接收 PRS的配置。
可选地, 作为另一实施例, 处理器 152可根据小区子集信息, 通过收发器 151向基 站发送波束赋形配置信息。 波束赋形配置信息用于通知基站选择满足 PRS 接收功率或 SNR差值门限的波束赋形发射 PRS。收发器 152可从基站接收基站在基于波束赋形配置 信息进行选择之后得到的 PRS的配置。
可选地,作为另一实施例,收发器 151可在请求基站上报 PRS配置的消息中或者在 请求基站上报 PRS配置的消息之前的专用消息中,携带上述分配信息 (如功率分配信息、 频点分配信息、 节点配置信息、 波束赋形配置信息等)。
这样,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
图 16是本发明一个实施例的终端的框图。 图 16的终端 160的一个例子是 UE, 包 括收发器 161和处理器 162。
收发器 161接收定位服务器通知的差值门限信息。差值门限信息用于指示一个小区 对中两个小区的参考信号测量值的差值门限。处理器 162根据差值门限信息确定小区子 集信息。 小区子集信息用于指示参考信号测量值的差值超过差值门限的小区对, 或者小 区子集信息用于指示参考信号测量值的差值不超过差值门限的小区对。
收发器 161向定位服务器发送小区子集信息, 接收定位服务器根据小区子集信息确 定的定位参考信号 PRS的配置。 处理器 162根据 PRS的配置测量得到 RSTD。 收发器 161向定位服务器发送 RSTD。
这样,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
终端 160可实现图 1-图 9的方法中涉及终端的各个步骤, 为避免重复, 不再详细描 述。
可选地, 作为一个实施例, 差值门限信息可包括以下中的至少一个: 两个小区的 RSRP的差值门限、两个小区的 CRS的 SNR的差值门限、两个小区的 PRS接收功率 PRP 的差值门限和第一映射因子、 两个小区的 PRS的 SNR的差值门限和第二映射因子。 第 一映射因子表示 RSRP差值与 PRP差值之间的映射因子,第二映射因子表示 CRS的 SNR 的差值与 PRS的 SNR的差值之间的映射因子。
可选地, 作为另一实施例, 收发器 161可接收定位服务器在请求终端上报能力的消 息中携带的差值门限信息; 或者, 接收定位服务器在请求终端进行定位测量的消息中携 带的差值门限信息; 或者, 接收定位服务器在向终端发送的用于帮助终端进行定位测量 的辅助数据中携带的差值门限信息; 或者, 接收终端的服务基站通过广播或 RRC消息 向终端发送的差值门限信息, 该差值门限信息是服务基站从定位服务器接收的。
可选地, 作为另一实施例, 收发器 161可在向定位服务器上报能力的消息中携带小 区子集信息; 或者, 在向定位服务器请求辅助数据的消息中携带小区子集信息。
可选地, 作为另一实施例, 小区子集信息可包括参考信号测量值的差值超过差值门 限的小区对的列表,或者小区子集信息包括参考信号测量值的差值不超过差值门限的小 区对的列表, 或者小区子集信息包括与当前考察小区之间的参考信号测量值的差值超过 差值门限的小区的列表, 或者小区子集信息包括与当前考察小区之间的参考信号测量值 的差值不超过差值门限的小区的列表。
这样,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
图 17是本发明一个实施例的基站的框图。 图 17的基站 170的一个例子是 eNB, 包 括收发器 171和处理器 172。
收发器 171接收定位服务器发送的分配信息。 处理器 172根据分配信息调整 PRS 的配置。收发器 171向定位服务器反馈调整后的 PRS的配置。收发器 171按照调整后的 PRS的配置向终端发射 PRS。
这样,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
图 17的基站 170可实现图 1-图 12的方法中涉及基站的各个步骤, 为避免重复, 不 再详细描述。
可选地, 作为一个实施例, 收发器 171还可从定位服务器接收差值门限信息并向终 端转发差值门限信息。差值门限信息用于指示一个小区对中两个小区的参考信号测量值 的差值门限。
收发器 171还可从终端接收所述终端根据差值门限信息确定的小区子集信息并向定 位服务器转发小区子集信息。小区子集信息用于指示参考信号测量值超过差值门限的小 区对, 或者小区子集信息用于指示参考信号测量值不超过差值门限的小区对。 其中分配 信息是定位服务器根据小区子集信息发送的。
可选地, 作为另一实施例, 收发器 171可从定位服务器接收差值门限信息, 并通过 广播或 R C消息向终端发送差值门限信息; 或者, 从定位服务器向终端透传差值门限
I Ή自、 o
可选地, 作为另一实施例, 处理器 172可根据分配信息执行以下任一种调整操作: 调整 PRS发射功率、 调整 PRS发送频点、 选择用于发射 PRS的满足 PRS接收功率或 SNR差值门限的最优协作节点(CoMP节点)、选择用于发射 PRS的满足 PRS接收功率 或 SNR差值门限的波束赋形、使用多个无线接入技术 RAT中负载最轻的第一 RAT发射 PRS o
可选地,作为另一实施例,收发器 171可接收定位服务器在请求基站上报 PRS配置 的消息中携带的分配信息;或者接收定位服务器在请求基站上报 PRS配置的消息之前的 专用消息中携带的分配信息。
这样,本发明实施例设置参考信号测量值的差值门限,从而避免 PRS的测量值差值 过大, 降低了 PRS间的干扰。
另外, 如果基站根据定位服务器的分配信息使用多个 RAT中负载最轻的第一 RAT 发射 PRS, 也可能够减少业务信号对 PRS的干扰。
图 18是本发明另一实施例的定位服务器的框图。 图 18的定位服务器 180的一个例 子是 e-SMLC, 包括收发器 181和处理器 182。
收发器 181与终端交互终端支持按照多个 RAT进行定位测量的定位能力信息。 处 理器 182确定多个 RAT中负载最轻的第一 RAT。
收发器 181 向基站发送分配信息, 该分配信息用于指示基站在第一 RAT上向终端 发射 PRS, 并接收基站反馈的 PRS的配置。 收发器 181向终端通知 PRS的配置。 收发 器 181接收终端根据 PRS的配置测量得到的 RSTD。处理器 182根据 RSTD确定终端的 位置。
本发明实施例选择负载最轻的 RAT, 从而减轻业务信号对 PRS造成的干扰。 另外, 本发明实施例在负载最轻的 RAT上发射 PRS, 能够保持高负载 RAT上的业务性能和吞 吐量。
定位服务器 180可实现图 10-图 12的方法中涉及定位服务器的各个步骤,为避免重 复, 不再详细描述。
可选地, 作为一个实施例, 收发器 181 可在请求终端上报能力的消息中携带 RAT 请求信息, 该 RAT请求信息用于请求终端上报定位能力信息; 接收终端在上报的能力 信息中携带的定位能力信息。
图 19是本发明另一实施例的终端的框图。 图 19的终端 190的一个例子是 UE, 包 括收发器 191和处理器 192。
收发器 191与定位服务器交互终端支持按照多个 RAT进行定位测量的定位能力信 息, 以便定位服务器确定多个 RAT中负载最轻的第一 RAT。 收发器 191接收定位服务 器通知的 PRS的配置, 其中 PRS的配置中基站使用第一 RAT发射 PRS。 处理器 192根 据 PRS的配置测量得到 RSTD。 收发器 191向定位服务器发送 RSTD。
本发明实施例选择负载最轻的 RAT, 从而减轻业务信号对 PRS造成的干扰。 另外, 本发明实施例在负载最轻的 RAT上发射 PRS, 能够保持高负载 RAT上的业务性能和吞 吐量。
终端 190可实现图 10-图 12的方法中涉及终端的各个步骤, 为避免重复, 不再详细 描述 0
可选地, 作为一个实施例, 收发器 191可接收定位服务器在请求终端上报能力的消 息中携带的 RAT请求信息, RAT请求信息用于请求终端上报定位能力信息; 在向定位 服务器发送的能力信息中携带定位能力信息。
图 20是本发明一个实施例的基站的框图。 图 20的基站 200的一个例子是 eNB, 包 括收发器 201和处理器 202。 图 20的基站 200可应用于图 13所示的场景。
处理器 202 确定基站控制的第一小区、 第二小区和第三小区的定位参考信号 PRS 的配置, 以使得第一小区、第二小区和第三小区中的任何一个小区在发射 PRS时其他小 区不在与所述一个小区重叠的频带上发射业务信号。 基站的带宽划分为第一频带、 第二 频带、 第三频带和第四频带, 第一小区使用第一频带和第二频带, 第二小区使用第三频 带和第四频带, 第三小区使用第二频带和第三频带。 收发器 201在所述一个小区上按照 PRS的配置向终端发射 PRS。
本发明实施例不在与发射 PRS的小区重叠的频带上发射业务信号, 从而 避免业务 信号对 PRS的干扰。
图 20的基站 200可实现图 14的方法中涉及基站的各个步骤, 为避免重复, 不再详 细描述。
可选地, 作为一个实施例, 处理器 202 可限制第一小区、 第二小区和第三小区的 PRS 同时发射。 例如, 处理器 202 可配置 TS36.355 规定的 PRS 子帧偏量 (prs-SubframeOffset) 信元, 以实现三个小区的 PRS同时发射。 如将 PRS的配置中的 PRS子帧偏量配置为 0或不配置 PRS子帧偏量:
prs-SubframeOffset=0或者不配置 (不配置就默认为 0)
可选地, 作为另一实施例, 处理器 202可确定如下 PRS的配置: 当配置第一小区发 射 PRS 时, 第三小区不在第二频带上发射业务信号; 或者, 当配置第二小区发射 PRS 时, 第三小区不在所述第三频带上发射业务信号; 或者, 当配置第三小区发射 PRS时, 第一小区不在所述第二频带上发射业务信号, 并且第二小区不在所述第三频带上发射业 务信号。
这样, 本发明实施例能避免图 13的场景下业务信号对 PRS的干扰。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示例的单元 及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。 这些功能究 竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术 人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认 为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可以 通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单 元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一 点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置 或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示 的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个 网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是 各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存 储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说 对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以 是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory) 随机存取存储器 (RAM, Random Access Memory) 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应 涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应所述以权利要求的保护范围 为准。

Claims

权利要求
1、 一种定位方法, 其特征在于, 包括:
向终端通知差值门限信息,所述差值门限信息用于指示一个小区对中两个小区的参 考信号测量值的差值门限;
接收所述终端根据所述差值门限信息确定的小区子集信息,所述小区子集信息用于 指示参考信号测量值超过所述差值门限的小区对, 或者所述小区子集信息用于指示参考 信号测量值不超过所述差值门限的小区对;
根据所述小区子集信息, 确定定位参考信号 PRS 的配置, 并向所述终端通知所述 PRS的配置;
接收所述终端根据所述 PRS 的配置测量得到的参考信号时间差 RSTD, 根据所述 RSTD确定所述终端的位置。
2、 如权利要求 1所述的方法, 其特征在于, 所述差值门限信息包括以下中的至少 一个: 所述两个小区的参考信号接收功率 RSRP的差值门限、 所述两个小区的小区参考 信号 CRS的信噪比 SNR的差值门限、所述两个小区的定位参考信号 PRS接收功率 PRP 的差值门限和第一映射因子、所述两个小区的 PRS的 SNR的差值门限和第二映射因子; 其中所述第一映射因子表示 RSRP差值与 PRP差值之间的映射因子,所述第二映射因子 表示 CRS的 SNR的差值与 PRS的 SNR的差值之间的映射因子。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述向终端通知差值门限信息, 包括:
在请求所述终端上报能力的消息中携带所述差值门限信息; 或者,
在请求所述终端进行定位测量的消息中携带所述差值门限信息; 或者,
在向所述终端发送的用于帮助终端进行定位测量的辅助数据中携带所述差值门限 信息; 或者,
向所述终端的服务基站发送所述差值门限信息, 以便所述服务基站通过广播或无线 资源控制消息向所述终端发送所述差值门限信息。
4、 如权利要求 1-3 任一项所述的方法, 其特征在于, 所述接收所述终端根据所述 差值门限信息确定的小区子集信息, 包括:
接收所述终端在上报能力的消息中携带的所述小区子集信息; 或者,
接收所述终端在请求辅助数据的消息中携带的所述小区子集信息。
5、 如权利要求 1-4任一项所述的方法, 其特征在于, 所述根据所述小区子集信息, 确定定位参考信号 PRS的配置, 包括:
根据所述小区子集信息, 向需要调整 PRS发射功率的基站发送功率分配信息,所述 功率分配信息用于指示基站调整 PRS发射功率以减少所述小区对中两个小区的 PRS接 收功率的差值或 PRS的 SNR的差值;
从所述需要调整 PRS发射功率的基站接收所述需要调整 PRS发射功率的基站在基 于所述功率分配信息进行调整之后得到的所述 PRS的配置。
6、 如权利要求 5所述的方法, 其特征在于, 所述向需要调整 PRS发射功率的基站 发送功率分配信息, 包括:
在请求所述需要调整 PRS发射功率的基站上报 PRS配置的消息中或者在请求所述 需要调整 PRS发射功率的基站上报 PRS配置的消息之前的专用消息中, 携带所述功率 分配信息。
7、 如权利要求 1-4任一项所述的方法, 其特征在于, 所述根据所述小区子集信息, 确定定位参考信号 PRS的配置, 包括:
根据所述小区子集信息, 向需要调整 PRS发射频点的基站发送频点分配信息,所述 频点分配信息用于指示基站调整 PRS发射频点以减少所述小区对中两个小区的 PRS接 收功率的差值或 PRS的 SNR的差值;
从所述需要调整 PRS发射频点的基站接收所述需要调整 PRS发射频点的基站在基 于所述频点分配信息进行调整之后得到的所述 PRS的配置。
8、 如权利要求 7所述的方法, 其特征在于, 所述向需要调整 PRS发射功率的基站 发送频点分配信息, 包括:
在请求所述需要调整 PRS发射频点的基站上报 PRS配置的消息中或者在请求所述 需要调整 PRS发射频点的基站上报 PRS配置的消息之前的专用消息中, 携带所述频点 分配信息。
9、 如权利要求 1-4任一项所述的方法, 其特征在于, 所述根据所述小区子集信息, 确定定位参考信号 PRS的配置, 包括:
根据所述小区子集信息, 向基站发送节点配置信息, 所述节点配置信息用于通知所 述基站选择满足 PRS接收功率差值门限或 PRS的 SNR差值门限的最优协作节点发射 PRS;
从所述基站接收所述基站在基于所述节点配置信息进行选择之后得到的所述 PRS 的配置。
10、如权利要求 9所述的方法, 其特征在于, 所述向基站发送节点配置信息, 包括: 在请求所述基站上报 PRS配置的消息中或者在请求所述基站上报 PRS配置的消息 之前的专用消息中, 携带所述节点配置信息。
11、如权利要求 1-4任一项所述的方法, 其特征在于, 所述根据所述小区子集信息, 确定定位参考信号 PRS的配置, 包括:
根据所述小区子集信息,从所述终端的服务小区的邻区列表中选择满足 PRS接收功 率差值门限或 PRS的 SNR差值门限的小区;
从所选择的小区的基站接收所述 PRS的配置。
12、如权利要求 1-4任一项所述的方法, 其特征在于, 所述根据所述小区子集信息, 确定定位参考信号 PRS的配置, 包括:
根据所述小区子集信息, 向基站发送波束赋形配置信息, 所述波束赋形配置信息用 于通知所述基站选择满足 PRS接收功率差值门限或 PRS的 SNR差值门限的波束赋形发 射 PRS;
从所述基站接收所述基站在基于所述波束赋形配置信息进行选择之后得到的 PRS 的配置。
13、 如权利要求 12所述的方法, 其特征在于, 所述向基站发送波束赋形配置信息, 包括:
在请求所述基站上报 PRS配置的消息中或者在请求所述基站上报 PRS配置的消息 之前的专用消息中, 携带所述波束赋形配置信息。
14、 一种定位方法, 其特征在于, 包括:
接收定位服务器通知的差值门限信息,所述差值门限信息用于指示一个小区对中两 个小区的参考信号测量值的差值门限;
根据所述差值门限信息确定小区子集信息并向所述定位服务器发送所述小区子集 信息, 所述小区子集信息用于指示参考信号测量值的差值超过所述差值门限的小区对, 或者所述小区子集信息用于指示参考信号测量值的差值不超过所述差值门限的小区对; 接收所述定位服务器根据所述小区子集信息确定的定位参考信号 PRS的配置; 根据所述 PRS的配置测量得到参考信号时间差 RSTD,并向所述定位服务器发送所 述 RSTD。
15、 如权利要求 14所述的方法, 其特征在于, 所述差值门限信息包括以下中的至 少一个: 所述两个小区的参考信号接收功率 RSRP的差值门限、 所述两个小区的小区参 考信号 CRS的信噪比 SNR的差值门限、 所述两个小区的定位参考信号 PRS接收功率 PRP的差值门限和第一映射因子、 所述两个小区的 PRS的 SNR的差值门限和第二映射 因子;其中所述第一映射因子表示 RSRP差值与 PRP差值之间的映射因子,所述第二映 射因子表示 CRS的 SNR的差值与 PRS的 SNR的差值之间的映射因子。
16、 如权利要求 14或 15所述的方法, 其特征在于, 所述接收定位服务器通知的差 值门限信息, 包括:
接收所述定位服务器在请求所述终端上报能力的消息中携带的所述差值门限信息; 或者,
接收所述定位服务器在请求所述终端进行定位测量的消息中携带的所述差值门限 信息; 或者,
接收所述定位服务器在向所述终端发送的用于帮助终端进行定位测量的辅助数据 中携带所述差值门限信息; 或者,
接收所述终端的服务基站通过广播或无线资源控制消息向所述终端发送的所述差 值门限信息, 所述差值门限信息是所述服务基站从所述定位服务器接收的。
17、 如权利要求 14-16任一项所述的方法, 其特征在于, 所述向所述定位服务器发 送所述小区子集信息, 包括:
在向所述定位服务器上报能力的消息中携带所述小区子集信息; 或者,
在向所述定位服务器请求辅助数据的消息中携带所述小区子集信息。
18、 如权利要求 14-16任一项所述的方法, 其特征在于, 所述小区子集信息包括参 考信号测量值的差值超过所述差值门限的小区对的列表, 或者所述小区子集信息包括参 考信号测量值的差值不超过所述差值门限的小区对的列表, 或者所述小区子集信息包括 与当前考察小区之间的参考信号测量值的差值超过所述差值门限的小区的列表, 或者所 述小区子集信息包括与当前考察小区之间的参考信号测量值的差值不超过所述差值门 限的小区的列表。
19、 如权利要求 18所述的方法, 其特征在于, 所述小区子集信息还包括以下中的 至少一个: 参考信号测量值的差值信息、 小区的频点信息、 小区的载波信息。
20、 如权利要求 14-19任一项所述的方法, 其特征在于, 所述接收所述定位服务器 根据所述小区子集信息确定的 PRS的配置, 包括:
接收所述定位服务器从邻区列表中选择的满足 PRS 接收功率差值门限或 PRS 的 SNR差值门限的小区的 PRS的配置。
21、 一种定位方法, 其特征在于, 包括:
接收所述定位服务器发送的分配信息;
根据所述分配信息调整定位参考信号 PRS的配置;
向所述定位服务器反馈所述调整后的 PRS的配置;
按照所述调整后的 PRS的配置向终端发射 PRS。
22、 如权利要求 21所述的方法, 其特征在于, 还包括:
从定位服务器接收差值门限信息并向终端转发所述差值门限信息,所述差值门限信 息用于指示一个小区对中两个小区的参考信号测量值的差值门限;
从所述终端接收所述终端根据所述差值门限信息确定的小区子集信息并向所述定 位服务器转发所述小区子集信息,所述小区子集信息用于指示参考信号测量值超过所述 差值门限的小区对,或者所述小区子集信息用于指示参考信号测量值不超过所述差值门 限的小区对,
其中所述分配信息是所述定位服务器根据所述小区子集信息发送的。
23、 如权利要求 22所述的方法, 其特征在于, 所述从定位服务器接收差值门限信 息并向终端转发所述差值门限信息, 包括:
从所述定位服务器接收所述差值门限信息, 并通过广播或无线资源控制消息向所述 终端发送所述差值门限信息; 或者,
从所述定位服务器向所述终端透传所述差值门限信息。
24、 如权利要求 21-23任一项所述的方法, 其特征在于, 所述根据所述分配信息调 整 PRS的配置, 包括:
根据所述分配信息执行以下任一种调整操作: 调整 PRS发射功率、 调整 PRS发送 频点、 选择用于发射 PRS的满足 PRS接收功率差值门限或 PRS的 SNR差值门限的最 优协作节点、选择用于发射 PRS的满足 PRS接收功率差值门限或 PRS的 SNR差值门限 的波束赋形、 使用多个无线接入技术 RAT中负载最轻的第一 RAT发射 PRS。
25、 如权利要求 21-24任一项所述的方法, 其特征在于, 所述接收所述定位服务器 发送的分配信息, 包括:
接收所述定位服务器在请求所述基站上报 PRS配置的消息中携带的所述分配信息; 或者
接收所述定位服务器在请求所述基站上报 PRS 配置的消息之前的专用消息中携带 的所述分配信息。
26、 一种定位方法, 其特征在于, 包括:
与终端交互所述终端支持按照多个无线接入技术 RAT进行定位测量的定位能力信 自 .
确定所述多个 RAT中负载最轻的第一 RAT;
向基站发送分配信息, 所述分配信息用于指示所述基站在所述第一 RAT上向所述 终端发射定位参考信号 PRS, 并接收所述基站反馈的 PRS的配置;
向所述终端通知所述 PRS的配置;
接收所述终端根据所述 PRS 的配置测量得到的参考信号时间差 RSTD, 根据所述 RSTD确定所述终端的位置。
27、 如权利要求 26所述的方法, 其特征在于, 所述与终端交互所述终端支持按照 多个无线接入技术 RAT进行定位测量的定位能力信息, 包括:
在请求终端上报能力的消息中携带 RAT请求信息, 所述 RAT请求信息用于请求所 述终端上报所述定位能力信息;
接收所述终端在上报的能力信息中携带的所述定位能力信息。
28、 如权利要求 26或 27所述的方法, 其特征在于, 所述向基站发送分配信息, 包 括:
在请求所述基站上报 PRS配置的消息中或者在请求所述基站上报 PRS配置的消息 之前的专用消息中, 携带所述分配信息。
29、 一种定位方法, 其特征在于, 包括:
与定位服务器交互终端支持按照多个无线接入技术 RAT进行定位测量的定位能力 信息, 以便所述定位服务器确定所述多个 RAT中负载最轻的第一 RAT;
接收所述定位服务器通知的定位参考信号 PRS的配置, 其中所述 PRS的配置中基 站使用所述第一 RAT发射 PRS;
根据所述 PRS的配置测量得到参考信号时间差 RSTD,并向所述定位服务器发送所 述 RSTD。
30、 如权利要求 29所述的方法, 其特征在于, 所述与定位服务器交互终端支持按 照多个无线接入技术 RAT进行定位测量的定位能力信息, 包括:
接收所述定位服务器在请求终端上报能力的消息中携带的 RAT请求信息,所述 RAT 请求信息用于请求所述终端上报所述定位能力信息; 在向所述定位服务器发送的能力信息中携带所述定位能力信息。
31、 一种定位方法, 其特征在于, 包括:
确定基站控制的第一小区、第二小区和第三小区的定位参考信号 PRS的配置,所述 基站的带宽划分为第一频带、 第二频带、 第三频带和第四频带, 所述第一小区使用第一 频带和第二频带, 所述第二小区使用第三频带和第四频带, 所述第三小区使用第二频带 和第三频带, 以使得所述第一小区、 第二小区和第三小区中的任何一个小区在发射 PRS 时其他小区不在与所述一个小区重叠的频带上发射业务信号;
在所述一个小区上按照所述 PRS的配置向终端发射 PRS。
32、 如权利要求 31所述的方法, 其特征在于, 所述确定基站控制的第一小区、 第 二小区和第三小区的定位参考信号 PRS的配置, 包括:
限制第一小区、 第二小区和第三小区的 PRS同时发射。
33、 如权利要求 32所述的方法, 其特征在于, 所述限制第一小区、 第二小区和第 三小区的 PRS同时发射, 包括:
将 PRS的配置中的 PRS子帧偏量配置为 0或不配置 PRS子帧偏量。
34、 如权利要求 31所述的方法, 其特征在于, 所述确定基站控制的第一小区、 第 二小区和第三小区的定位参考信号 PRS的配置, 包括:
当配置所述第一小区发射 PRS 时, 所述第三小区不在所述第二频带上发射业务 ί 号; 或者,
当配置所述第二小区发射 PRS 时, 所述第三小区不在所述第三频带上发射业务 ί 号; 或者,
当配置所述第三小区发射 PRS 时, 所述第一小区不在所述第二频带上发射业务 f 号, 并且所述第二小区不在所述第三频带上发射业务信号。
35、 一种定位服务器, 其特征在于, 包括收发器和处理器,
所述收发器, 用于向终端通知差值门限信息, 所述差值门限信息用于指示一个小区 对中两个小区的参考信号测量值的差值门限;
所述收发器, 用于接收所述终端根据所述差值门限信息确定的小区子集信息, 所述 小区子集信息用于指示参考信号测量值超过所述差值门限的小区对, 或者所述小区子集 信息用于指示参考信号测量值不超过所述差值门限的小区对;
所述处理器, 用于根据所述小区子集信息, 确定定位参考信号 PRS的配置; 所述收发器, 用于向所述终端通知所述 PRS的配置; 所述收发器, 用于接收所述终端根据所述 PRS 的配置测量得到的参考信号时间差 RSTD;
所述处理器, 用于根据所述 RSTD确定所述终端的位置。
36、 如权利要求 35所述的定位服务器, 其特征在于, 所述差值门限信息包括以下 中的至少一个: 所述两个小区的参考信号接收功率 RSRP的差值门限、 所述两个小区的 小区参考信号 CRS的信噪比 SNR的差值门限、所述两个小区的定位参考信号 PRS接收 功率 PRP的差值门限和第一映射因子、所述两个小区的 PRS的 SNR的差值门限和第二 映射因子;其中所述第一映射因子表示 RSRP差值与 PRP差值之间的映射因子,所述第 二映射因子表示 CRS的 SNR的差值与 PRS的 SNR的差值之间的映射因子。
37、 如权利要求 35或 36所述的方法, 其特征在于, 所述收发器具体用于在请求所 述终端上报能力的消息中携带所述差值门限信息; 或者, 在请求所述终端进行定位测量 的消息中携带所述差值门限信息; 或者, 在向所述终端发送的用于帮助终端进行定位测 量的辅助数据中携带所述差值门限信息; 或者, 向所述终端的服务基站发送所述差值门 限信息, 以便所述服务基站通过广播或无线资源控制消息向所述终端发送所述差值门限 信息。
38、 如权利要求 35-37任一项所述的定位服务器, 其特征在于, 所述收发器具体用 于接收所述终端在上报能力的消息中携带的所述小区子集信息; 或者, 接收所述终端在 请求辅助数据的消息中携带的所述小区子集信息。
39、 如权利要求 35-37任一项所述的定位服务器, 其特征在于, 所述处理器具体用 于根据所述小区子集信息,通过所述收发器向需要调整 PRS发射功率的基站发送功率分 配信息, 所述功率分配信息用于指示所述需要调整 PRS发射功率的基站调整 PRS发射 功率以减少小区对中两个小区的 PRS接收功率的差值或 PRS的 SNR的差值;
所述收发器具体用于从所述需要调整 PRS发射功率的基站接收所述需要调整 PRS 发射功率的基站在基于所述功率分配信息进行调整之后得到的 PRS的配置。
40、 如权利要求 35-37任一项所述的定位服务器, 其特征在于, 所述处理器具体用 于根据所述小区子集信息,通过所述收发器向需要调整 PRS发送频点的基站发送频点分 配信息, 所述频点分配信息用于指示所述需要调整 PRS发送频点的基站调整 PRS发送 频点以减少小区对中两个小区的 PRS接收功率的差值或 PRS 的 SNR的差值;
所述收发器具体用于从所述需要调整 PRS发送频点的基站接收所述需要调整 PRS 发送频点的基站在基于所述频点分配信息进行调整之后得到的 PRS的配置。
41、 如权利要求 35-37任一项所述的定位服务器, 其特征在于, 所述处理器具体用 于根据所述小区子集信息, 通过所述收发器向基站发送节点配置信息, 所述节点配置信 息用于通知所述基站选择满足 PRS接收功率差值门限或 PRS的 SNR差值门限的最优协 作节点发射 PRS;
所述收发器具体用于从所述基站接收所述基站在基于所述节点配置信息进行选择 之后得到的所述 PRS的配置。
42、 如权利要求 35-37任一项所述的定位服务器, 其特征在于, 所述处理器具体用 于根据所述小区子集信息,从所述终端的服务小区的邻区列表中选择满足 PRS接收功率 或 SNR差值门限的小区;
所述收发器具体用于从所选择的小区的基站接收所述 PRS的配置。
43、 如权利要求 35-37任一项所述的定位服务器, 其特征在于, 所述处理器具体用 于根据所述小区子集信息, 通过所述收发器向基站发送波束赋形配置信息, 所述波束赋 形配置信息用于通知所述基站选择满足 PRS接收功率差值门限或 PRS 的 SNR差值门限 的波束赋形发射 PRS;
所述收发器具体用于从所述基站接收所述基站在基于所述波束赋形配置信息进行 选择之后得到的所述 PRS的配置。
44、 一种终端, 其特征在于, 包括收发器和处理器,
所述收发器, 用于接收定位服务器通知的差值门限信息, 所述差值门限信息用于指 示一个小区对中两个小区的参考信号测量值的差值门限;
所述处理器, 用于根据所述差值门限信息确定小区子集信息, 所述小区子集信息用 于指示参考信号测量值的差值超过所述差值门限的小区对, 或者所述小区子集信息用于 指示参考信号测量值的差值不超过所述差值门限的小区对;
所述收发器, 用于向所述定位服务器发送所述小区子集信息, 接收所述定位服务器 根据所述小区子集信息确定的定位参考信号 PRS的配置;
所述处理器, 用于根据所述 PRS的配置测量得到参考信号时间差 RSTD;
所述收发器, 用于向所述定位服务器发送所述 RSTD。
45、 如权利要求 44所述的终端, 其特征在于, 所述差值门限信息包括以下中的至 少一个: 所述两个小区的参考信号接收功率 RSRP的差值门限、 所述两个小区的小区参 考信号 CRS的信噪比 SNR的差值门限、 所述两个小区的定位参考信号 PRS接收功率 PRP的差值门限和第一映射因子、 所述两个小区的 PRS的 SNR的差值门限和第二映射 因子;其中所述第一映射因子表示 RSRP差值与 PRP差值之间的映射因子,所述第二映 射因子表示 CRS的 SNR的差值与 PRS的 SNR的差值之间的映射因子。
46、 如权利要求 44或 45所述的终端, 其特征在于, 所述收发器具体用于接收所述 定位服务器在请求所述终端上报能力的消息中携带的所述差值门限信息; 或者, 接收所 述定位服务器在请求所述终端进行定位测量的消息中携带的所述差值门限信息; 或者, 接收所述定位服务器在向所述终端发送的用于帮助终端进行定位测量的辅助数据中携 带的所述差值门限信息; 或者, 接收所述终端的服务基站通过广播或无线资源控制消息 向所述终端发送的所述差值门限信息,所述差值门限信息是所述服务基站从所述定位服 务器接收的。
47、 如权利要求 44-46任一项所述的终端, 其特征在于, 所述收发器具体用于在向 所述定位服务器上报能力的消息中携带所述小区子集信息; 或者, 在向所述定位服务器 请求辅助数据的消息中携带所述小区子集信息。
48、 如权利要求 44-46任一项所述的终端, 其特征在于, 所述小区子集信息包括参 考信号测量值的差值超过所述差值门限的小区对的列表, 或者所述小区子集信息包括参 考信号测量值的差值不超过所述差值门限的小区对的列表, 或者所述小区子集信息包括 与当前考察小区之间的参考信号测量值的差值超过所述差值门限的小区的列表, 或者所 述小区子集信息包括与当前考察小区之间的参考信号测量值的差值不超过所述差值门 限的小区的列表。
49、 一种基站, 其特征在于, 包括收发器和处理器,
所述收发器, 用于接收所述定位服务器发送的分配信息;
所述处理器, 用于根据所述分配信息调整定位参考信号 PRS的配置;
所述收发器, 用于向所述定位服务器反馈所述调整后的 PRS的配置;
所述收发器, 用于按照所述调整后的 PRS的配置向终端发射 PRS。
50、 如权利要求 49所述的基站, 其特征在于,
所述收发器,还用于从定位服务器接收差值门限信息并向终端转发所述差值门限信 息, 所述差值门限信息用于指示一个小区对中两个小区的参考信号测量值的差值门限; 所述收发器,还用于从所述终端接收所述终端根据所述差值门限信息确定的小区子 集信息并向所述定位服务器转发所述小区子集信息,所述小区子集信息用于指示参考信 号测量值超过所述差值门限的小区对, 或者所述小区子集信息用于指示参考信号测量值 不超过所述差值门限的小区对, 其中所述分配信息是所述定位服务器根据所述小区子集信息发送的。
51、 如权利要求 50所述的基站, 其特征在于, 所述收发器具体用于从所述定位服 务器接收所述差值门限信息, 并通过广播或无线资源控制消息向所述终端发送所述差值 门限信息; 或者, 从所述定位服务器向所述终端透传所述差值门限信息。
52、 如权利要求 49-51任一项所述的基站, 其特征在于, 所述处理器具体用于根据 所述分配信息执行以下任一种调整操作: 调整 PRS发射功率、 调整 PRS发送频点、 选 择用于发射 PRS的满足 PRS接收功率差值门限或 PRS的 SNR差值门限的最优协作节点、 选择用于发射 PRS的满足 PRS接收功率差值门限或 PRS的 SNR差值门限的波束赋形、 使用多个无线接入技术 RAT中负载最轻的第一 RAT发射 PRS。
53、 如权利要求 49-52任一项所述的基站, 其特征在于, 所述收发器具体用于接收 所述定位服务器在请求所述基站上报 PRS配置的消息中携带的所述分配信息;或者接收 所述定位服务器在请求所述基站上报 PRS 配置的消息之前的专用消息中携带的所述分 配信息。
54、 一种定位服务器, 其特征在于, 包括收发器和处理器,
所述收发器, 用于与终端交互所述终端支持按照多个无线接入技术 RAT进行定位 测量的定位能力信息;
所述处理器, 用于确定所述多个 RAT中负载最轻的第一 RAT;
所述收发器, 用于向基站发送分配信息, 所述分配信息用于指示所述基站在所述第 一 RAT上向所述终端发射定位参考信号 PRS, 并接收所述基站反馈的 PRS的配置; 所述收发器, 用于向所述终端通知所述 PRS的配置;
所述收发器, 用于接收所述终端根据所述 PRS 的配置测量得到的参考信号时间差 RSTD;
所述处理器, 用于根据所述 RSTD确定所述终端的位置。
55、 如权利要求 54所述的定位服务器, 其特征在于, 所述收发器具体用于在请求 终端上报能力的消息中携带 RAT请求信息, 所述 RAT请求信息用于请求所述终端上报 所述定位能力信息; 接收所述终端在上报的能力信息中携带的所述定位能力信息。
56、 一种终端, 其特征在于, 包括收发器和处理器,
所述收发器, 用于与定位服务器交互终端支持按照多个无线接入技术 RAT进行定 位测量的定位能力信息, 以便所述定位服务器确定所述多个 RAT 中负载最轻的第一 RAT; 所述收发器,用于接收所述定位服务器通知的定位参考信号 PRS的配置,其中所述 PRS的配置中基站使用所述第一 RAT发射 PRS ;
所述处理器, 用于根据所述 PRS的配置测量得到参考信号时间差 RSTD;
所述收发器, 用于向所述定位服务器发送所述 RSTD。
57、 如权利要求 56所述的方法, 其特征在于, 所述收发器具体用于接收所述定位 服务器在请求终端上报能力的消息中携带的 RAT请求信息, 所述 RAT请求信息用于请 求所述终端上报所述定位能力信息; 在向所述定位服务器发送的能力信息中携带所述定 位能力信息。
58、 一种基站, 其特征在于, 包括收发器和处理器,
所述处理器, 用于确定基站控制的第一小区、 第二小区和第三小区的定位参考信号 PRS的配置, 所述基站的带宽划分为第一频带、 第二频带、 第三频带和第四频带, 所述 第一小区使用第一频带和第二频带, 所述第二小区使用第三频带和第四频带, 所述第三 小区使用第二频带和第三频带, 以使得所述第一小区、 第二小区和第三小区中的任何一 个小区在发射 PRS时其他小区不在与所述一个小区重叠的频带上发射业务信号;
所述收发器, 用于在所述一个小区上按照所述 PRS的配置向终端发射 PRS。
59、 如权利要求 58所述的基站, 其特征在于, 所述处理器具体用于限制第一小区、 第二小区和第三小区的 PRS同时发射。
60、 如权利要求 59所述的基站, 其特征在于, 所述处理器还用于将 PRS的配置中 的 PRS子帧偏量配置为 0或不配置 PRS子帧偏量。
61、 如权利要求 58所述的基站, 其特征在于, 所述处理器具体用于确定如下 PRS 的配置:
当配置所述第一小区发射 PRS 时, 所述第三小区不在所述第二频带上发射业务信 号; 或者,
当配置所述第二小区发射 PRS 时, 所述第三小区不在所述第三频带上发射业务信 号; 或者,
当配置所述第三小区发射 PRS 时, 所述第一小区不在所述第二频带上发射业务信 号, 并且所述第二小区不在所述第三频带上发射业务信号。
PCT/CN2013/070501 2012-01-16 2013-01-16 定位方法、定位服务器、终端和基站 WO2013107337A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13738696.7A EP2797347B1 (en) 2012-01-16 2013-01-16 Positioning methods, positioning server and terminal
US14/333,239 US9814015B2 (en) 2012-01-16 2014-07-16 Positioning method, positioning server, terminal and base station
US15/705,025 US10212688B2 (en) 2012-01-16 2017-09-14 Positioning method, positioning server, terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210013759.4 2012-01-16
CN201210013759.4A CN103209475B (zh) 2012-01-16 2012-01-16 定位方法、定位服务器、终端和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/333,239 Continuation US9814015B2 (en) 2012-01-16 2014-07-16 Positioning method, positioning server, terminal and base station

Publications (1)

Publication Number Publication Date
WO2013107337A1 true WO2013107337A1 (zh) 2013-07-25

Family

ID=48756524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070501 WO2013107337A1 (zh) 2012-01-16 2013-01-16 定位方法、定位服务器、终端和基站

Country Status (4)

Country Link
US (2) US9814015B2 (zh)
EP (1) EP2797347B1 (zh)
CN (1) CN103209475B (zh)
WO (1) WO2013107337A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141090A1 (zh) * 2018-01-19 2019-07-25 电信科学技术研究院有限公司 定位方法和相关设备
WO2022105756A1 (zh) * 2020-11-18 2022-05-27 维沃移动通信有限公司 定位方法、装置、终端设备、基站及位置管理服务器
WO2023202575A1 (zh) * 2022-04-20 2023-10-26 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
CN103634899B (zh) 2012-08-20 2018-04-27 华为技术有限公司 终端定位方法、基站及用户设备
US9143920B2 (en) * 2013-06-06 2015-09-22 Qualcomm Incorporated Fine grain position data collection
CN104735775B (zh) * 2013-12-18 2019-12-03 中兴通讯股份有限公司 一种增强型小区定位终端的方法及系统、基站
CN103687006A (zh) * 2013-12-31 2014-03-26 京信通信系统(中国)有限公司 无线定位方法与系统
US9426609B2 (en) * 2014-01-24 2016-08-23 Qualcomm Incorporated Methods, apparatuses, and devices for processing positioning reference signals
EP3102962B2 (en) * 2014-02-07 2020-11-18 Signify Holding B.V. Network centric localization
CN105165078B (zh) * 2014-03-17 2019-11-22 华为技术有限公司 定位方法和装置
EP3641426B1 (en) 2014-03-19 2022-02-23 Huawei Technologies Co., Ltd. Positioning apparatus and method
US9480043B2 (en) 2014-04-25 2016-10-25 Qualcomm Incorporated Method and apparatus for network based positioning
US10638266B2 (en) * 2014-06-25 2020-04-28 Apple Inc. User equipment positioning in long-term evolution coordinated multipoint communication systems
CN105208650A (zh) * 2014-06-27 2015-12-30 上海贝尔股份有限公司 一种定位方法及设备
CN105451328A (zh) * 2014-08-19 2016-03-30 乐视致新电子科技(天津)有限公司 一种位置定位方法和电子设备
US20170288897A1 (en) * 2014-08-29 2017-10-05 Lg Electronics Inc. Method and user equipment for performing measurement to support positioning, method and positioning server for supporting positioning, and base station for supporting positioning
CN104469930A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备
US9549329B2 (en) * 2014-11-13 2017-01-17 Verizon Patent And Licensing Inc. Remotely configurable mobile wireless access point device
US9397769B2 (en) * 2014-11-28 2016-07-19 Qualcomm Incorporated Interference mitigation for positioning reference signals
CN104581940A (zh) * 2015-01-05 2015-04-29 中山大学 一种基于进化策略的无线室内定位方法
JP2016143916A (ja) * 2015-01-29 2016-08-08 ソニー株式会社 装置
WO2016153253A1 (ko) * 2015-03-26 2016-09-29 엘지전자 주식회사 무선 통신 시스템에서 위치 결정을 위한 측정 결과 보고 방법 및 이를 위한 장치
CN107466370B (zh) * 2015-03-30 2023-06-20 索尼公司 用于改进用户设备的定位准确度的方法以及定位服务器
WO2016163770A1 (ko) * 2015-04-08 2016-10-13 엘지전자 주식회사 무선 통신 시스템에서 위치 결정을 위한 참조 신호 측정, 또는 위치 결정을 위한 방법 및 이를 위한 장치
EP3295731B1 (en) * 2015-05-13 2020-07-08 Telefonaktiebolaget LM Ericsson (publ) Apparatuses and methods therein for positioning measurements
BR112017020558B1 (pt) 2015-05-29 2022-08-09 Huawei Technologies Co., Ltd Método, aparelho e dispositivo para obter tempo de chegada quando um terminal móvel é localizado
CN106304328B (zh) * 2015-06-01 2020-10-16 索尼公司 无线通信系统中的电子设备和无线通信方法
CN105188025B (zh) * 2015-06-04 2018-08-21 深圳信息职业技术学院 一种定位参考信号的发送方法及系统
BR112017028337B1 (pt) 2015-07-08 2023-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Dispositivo para fornecer informação de localização, dispositivo para obter informação de posicionamento e métodos relacionados
JP6639650B2 (ja) 2015-08-25 2020-02-05 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて位置決定のための参照信号の受信又は送信方法、及びそのための装置
CN108029090A (zh) * 2015-10-12 2018-05-11 华为技术有限公司 定位参考信号发送方法及装置
US20170134128A1 (en) * 2015-11-05 2017-05-11 Qualcomm Incorporated Support of otdoa positioning using mixed transmission port antenna configurations
US10551480B2 (en) 2015-11-09 2020-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods performed therein for enabling positioning of the wireless device
US9723437B1 (en) * 2016-02-01 2017-08-01 Qualcomm Incorporated Method and apparatus for improving positioning performance on a mobile device with carrier aggregation capabilities
CN108702726B (zh) * 2016-03-24 2021-06-01 苹果公司 用于5g系统的定位方法
WO2017184043A1 (en) * 2016-04-20 2017-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods for improved reception of positioning reference signals
US11070332B2 (en) 2016-04-28 2021-07-20 Sony Group Corporation Pilot signals
EP3461190A4 (en) * 2016-06-22 2019-04-10 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING POSITION BASE STATION, POSITIONING SERVER, BASE STATION AND NETWORK SYSTEM
ES2858152T3 (es) * 2016-06-28 2021-09-29 Ipcom Gmbh & Co Kg Información de haz de radio direccional en un sistema de comunicaciones móvil
US11122535B2 (en) * 2016-07-15 2021-09-14 Qualcomm Incorporated Techniques for locating devices using narrowband positioning reference signals
EP3497872A4 (en) * 2016-08-12 2020-03-25 Innovative Technology Lab Co., Ltd. METHOD AND DEVICE FOR SENDING / RECEIVING POSITIONING REFERENCE SIGNALS IN A WIRELESS COMMUNICATION SYSTEM
ES2770678T3 (es) * 2016-08-12 2020-07-02 Nokia Technologies Oy Detección de posición de equipos de usuario dentro de una red de telecomunicaciones inalámbrica
US10045325B2 (en) 2016-08-12 2018-08-07 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
EP3282276A1 (en) * 2016-08-12 2018-02-14 Nokia Technologies Oy Position detection of user equipment within a network
CN108064081B (zh) * 2016-11-07 2020-10-02 上海朗帛通信技术有限公司 一种ue、基站、服务中心中的定位的方法和装置
KR20190092548A (ko) 2016-12-14 2019-08-07 후아웨이 테크놀러지 컴퍼니 리미티드 포지셔닝 방법 및 시스템, 및 관련 디바이스
EP3577481B1 (en) * 2017-02-03 2023-11-08 Telefonaktiebolaget LM Ericsson (PUBL) Radio network node, location node, wireless device and methods performed therein for reporting measured positioning information
CN108418618A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 波束处理方法、发起节点及响应节点
US10512056B2 (en) * 2017-05-05 2019-12-17 Futurewei Technologies, Inc. System and method for network positioning of devices in a beamformed communications system
US11012820B2 (en) 2017-05-05 2021-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods performed therein
US10237754B1 (en) * 2017-05-12 2019-03-19 Sprint Spectrum L.P. Minimizing interference in different sectors of wireless networks
US10736074B2 (en) 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
CN109392000A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院 一种定位、测量上报方法及装置
US11129195B2 (en) * 2017-08-09 2021-09-21 Qualcomm Incorporated Techniques and apparatuses for positioning reference signal (PRS) management
US11178551B2 (en) 2017-08-31 2021-11-16 Lg Electronics Inc. Method and device for transmitting positioning reference signal
US10511929B2 (en) 2017-09-14 2019-12-17 Qualcomm Incorporated Opportunistic signal reception for mobile device position location estimation
US20200037145A1 (en) * 2017-10-09 2020-01-30 Telefonaktiebolaget Lm Ericsson (Publ) First Node, Second Node, Radio Network Node and Mobility Management Entity and Methods Performed Thereby for Handling Assistance Data About a Location of a Second Node
US10834623B2 (en) * 2017-10-13 2020-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods for reference determination in inter-RAT TDOA
US10098088B1 (en) * 2017-12-13 2018-10-09 Qualcomm Incorporated System and method for selecting a transceiver for performing a positioning reference signal measurement
US10547979B2 (en) * 2018-01-21 2020-01-28 Qualcomm Incorporated Systems and methods for locating a user equipment using generic position methods for a 5G network
US11304174B2 (en) * 2018-03-23 2022-04-12 Kt Corporation Method and apparatus for performing positioning in next generation wireless network
CN110557719B (zh) * 2018-06-01 2021-03-30 电信科学技术研究院有限公司 定位方法及装置
JP7289189B2 (ja) * 2018-06-28 2023-06-09 シャープ株式会社 端末装置、ロケーションサーバー及び方法
US10652691B2 (en) * 2018-07-20 2020-05-12 Qualcomm Incorporated Optimized positioning method for mobile devices
WO2020026211A1 (en) * 2018-08-03 2020-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Method for dynamic configuration of reference signal
CN110831150B (zh) 2018-08-13 2022-07-19 中兴通讯股份有限公司 到达时间差确定方法及通信设备、系统
CN118019066A (zh) * 2018-09-05 2024-05-10 大唐移动通信设备有限公司 一种定位资源协调方法、装置、网络节点、终端及基站
CN110536229B (zh) * 2018-09-28 2023-03-28 中兴通讯股份有限公司 一种参考信号配置及定位方法、装置、存储介质
CN111082907B (zh) * 2018-10-22 2021-06-01 成都华为技术有限公司 一种确定参考信号的测量值的方法及装置
WO2020087441A1 (en) * 2018-11-01 2020-05-07 Nokia Shanghai Bell Co., Ltd. Beam pattern exchange for positioning reference signal measurement
CN111435887B (zh) * 2019-01-11 2022-02-08 大唐移动通信设备有限公司 一种定位处理方法、装置及设备
CN111565414B (zh) * 2019-02-13 2022-04-05 华为技术有限公司 一种用于定位的波束信息获取方法及装置
CN111182579B (zh) * 2019-03-26 2022-04-29 维沃移动通信有限公司 定位测量信息上报方法、终端和网络设备
US11777764B2 (en) 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
CN111867050B (zh) * 2019-04-29 2023-03-14 中兴通讯股份有限公司 一种信息传输的方法、装置、节点和服务器
CN111954147B (zh) * 2019-04-30 2021-10-29 大唐移动通信设备有限公司 信号传输、信号测量上报、定位方法及装置
US11239967B2 (en) 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
KR20220002698A (ko) * 2019-06-21 2022-01-06 엘지전자 주식회사 사이드링크 tdoa에 기반한 포지셔닝
CN112188541B (zh) * 2019-07-04 2022-06-07 大唐移动通信设备有限公司 信号传输方法及装置
CN112333624A (zh) * 2019-07-16 2021-02-05 华为技术有限公司 用于定位的方法和通信装置
US11523364B2 (en) 2019-08-13 2022-12-06 Qualcomm Incorporated Computation complexity framework for positioning reference signal processing
US11082183B2 (en) 2019-09-16 2021-08-03 Qualcomm Incorporated Comb shift design
US20210112474A1 (en) * 2019-10-15 2021-04-15 Qualcomm Incorporated Detailed warning and error reporting related to ul prs transmission properties
CN113839758B (zh) * 2020-06-24 2022-11-04 大唐移动通信设备有限公司 一种载波相位定位参考信号的传输方法及装置
CN115769538A (zh) * 2020-07-09 2023-03-07 联想(新加坡)私人有限公司 定位参考信号资源配置
CN114007213B (zh) * 2020-07-28 2023-01-24 维沃移动通信有限公司 干扰协调处理方法及相关设备
CN114143703A (zh) * 2020-08-14 2022-03-04 中国移动通信有限公司研究院 定位门限参数配置的方法、定位方式指示的方法及设备
CN112004188A (zh) * 2020-08-27 2020-11-27 北京航天拓扑高科技有限责任公司 一种基于室内定位的信息推送系统
CN114828195B (zh) * 2021-01-18 2024-02-13 大唐移动通信设备有限公司 信号处理方法及装置
US11722978B2 (en) * 2021-04-05 2023-08-08 Qualcomm Incorporated Signaling timing error group updates for positioning
CN114630269B (zh) * 2022-02-28 2024-01-09 北京百度网讯科技有限公司 信号处理方法、装置、设备及存储介质
CN115190585A (zh) * 2022-07-26 2022-10-14 深圳艾灵网络有限公司 终端的定位方法、装置、以及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969694A (zh) * 2009-07-27 2011-02-09 华为技术有限公司 测量参考信号时间频率资源配置的方法和装置
US20110039577A1 (en) * 2009-08-13 2011-02-17 Interdigital Patent Holdings, Inc. Method and apparatus for supporting positioning measurements
WO2011099909A1 (en) * 2010-02-11 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for positioning in a wireless communications system
US20110205914A1 (en) * 2010-02-24 2011-08-25 Motorola, Inc. Threshold Determination in TDOA-Based Positioning System

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072060B2 (en) * 2008-06-03 2015-06-30 Nokia Technologies Oy Method, apparatus and computer program for power control to mitigate interference
CN101686545B (zh) * 2008-09-26 2012-07-18 西门子(中国)有限公司 多跳无线通信系统及该系统中的中继方法和中继站
US7974627B2 (en) * 2008-11-11 2011-07-05 Trueposition, Inc. Use of radio access technology diversity for location
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
US8213957B2 (en) * 2009-04-22 2012-07-03 Trueposition, Inc. Network autonomous wireless location system
US9002354B2 (en) 2009-06-12 2015-04-07 Google Technology Holdings, LLC Interference control, SINR optimization and signaling enhancements to improve the performance of OTDOA measurements
TWI455626B (zh) * 2009-06-22 2014-10-01 Htc Corp 處理定位量測的方法
US9091746B2 (en) * 2010-07-01 2015-07-28 Qualcomm Incorporated Determination of positions of wireless transceivers to be added to a wireless communication network
US8942720B2 (en) * 2010-08-16 2015-01-27 Telefonaktiebolaget L M Ericsson (Publ) Positioning node, user equipment and methods therein
US9188660B2 (en) * 2011-02-11 2015-11-17 Telefonaktiebolaget L M Ericsson (Publ) Network-side removal of positioning assistance ambiguity via selective delay of assistance data transmission
US20120290253A1 (en) * 2011-05-10 2012-11-15 Qualcomm Incorporated Apparatus and methods for height determination
EP2721883B1 (en) * 2011-06-16 2018-02-21 Telefonaktiebolaget LM Ericsson (publ) Base station and method for positioning support
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
WO2013172773A1 (en) * 2012-05-14 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Enhanced receiver adaptation based on relation between signals from aggressor and victim cells
US9883415B2 (en) * 2014-05-28 2018-01-30 Lg Electronics Inc. Method for performing discovery signal measurements in wireless communication system and user equipment thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969694A (zh) * 2009-07-27 2011-02-09 华为技术有限公司 测量参考信号时间频率资源配置的方法和装置
US20110039577A1 (en) * 2009-08-13 2011-02-17 Interdigital Patent Holdings, Inc. Method and apparatus for supporting positioning measurements
WO2011099909A1 (en) * 2010-02-11 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for positioning in a wireless communications system
US20110205914A1 (en) * 2010-02-24 2011-08-25 Motorola, Inc. Threshold Determination in TDOA-Based Positioning System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797347A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141090A1 (zh) * 2018-01-19 2019-07-25 电信科学技术研究院有限公司 定位方法和相关设备
WO2022105756A1 (zh) * 2020-11-18 2022-05-27 维沃移动通信有限公司 定位方法、装置、终端设备、基站及位置管理服务器
WO2023202575A1 (zh) * 2022-04-20 2023-10-26 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN103209475B (zh) 2016-05-25
US20140349677A1 (en) 2014-11-27
EP2797347A4 (en) 2015-03-18
EP2797347A1 (en) 2014-10-29
US9814015B2 (en) 2017-11-07
EP2797347B1 (en) 2020-03-11
CN103209475A (zh) 2013-07-17
US10212688B2 (en) 2019-02-19
US20180049152A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2013107337A1 (zh) 定位方法、定位服务器、终端和基站
US11523364B2 (en) Computation complexity framework for positioning reference signal processing
US11362921B2 (en) Systems and methods for multiple round trip time (RTT) estimation in wireless networks
EP2763478B1 (en) Method and device using observed time difference of arrival for positioning mobile station
KR102439942B1 (ko) 이동 단말기의 위치측정시스템
WO2013078888A1 (zh) 对用户设备进行定位的方法和装置
US20230180174A1 (en) Positioning optimizations for multiplexing low latency downlink traffic
US20220116906A1 (en) Systems and methods for improving positioning of a mobile device using channel conditions
EP4205466A1 (en) Dynamic bandwidth configuration for positioning reference signal (prs) operation
US20240205872A1 (en) Configuration details for autonomous gaps for positioning
US20230319767A1 (en) User equipment (ue) positioning for radio resource control (rrc) idle and inactive state during a positioning session
WO2023076763A1 (en) Considerations regarding multiple measurement gaps configured with different signaling mechanisms
WO2023044232A1 (en) Conditions related to positioning reference signals (prs) for performing processing without measurement gaps
WO2023028413A2 (en) Assistance data update procedures during radio resource control (rrc) idle or inactive state positioning
JP2024513864A (ja) 基地局および基準デバイスを含む位置推定プロシージャ
WO2024138889A1 (zh) 定位方法及定位装置
KR102347447B1 (ko) 단말기의 위치측정을 위한 장치 및 그 제어 방법
WO2024130867A1 (zh) 用于定位的方法及装置
WO2023028391A1 (en) Using quasi-colocation relationships for beighboring cells in positioning
WO2023192705A1 (en) User equipment processing load-aware positioning reference signal measurement period optimization
WO2023019041A1 (en) On demand and dynamic positioning reference unit (pru) measurement request and report
KR20220031531A (ko) 단말의 위치 측정을 위한 통신 방식 및 주파수 대역을 결정하는 방법 및 장치
WO2024112463A1 (en) Positioning measurement relaxation states

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013738696

Country of ref document: EP