WO2020087441A1 - Beam pattern exchange for positioning reference signal measurement - Google Patents

Beam pattern exchange for positioning reference signal measurement Download PDF

Info

Publication number
WO2020087441A1
WO2020087441A1 PCT/CN2018/113415 CN2018113415W WO2020087441A1 WO 2020087441 A1 WO2020087441 A1 WO 2020087441A1 CN 2018113415 W CN2018113415 W CN 2018113415W WO 2020087441 A1 WO2020087441 A1 WO 2020087441A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam pattern
positioning reference
beams
transmitting
reference signal
Prior art date
Application number
PCT/CN2018/113415
Other languages
French (fr)
Inventor
Yan Meng
Tao Tao
Jianguo Liu
Zhe LUO
Gang Shen
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201880099261.XA priority Critical patent/CN112956136A/en
Priority to PCT/CN2018/113415 priority patent/WO2020087441A1/en
Publication of WO2020087441A1 publication Critical patent/WO2020087441A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • Embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media of beam pattern exchange for positioning reference signal (PRS) measurement.
  • PRS positioning reference signal
  • Positioning technologies are being studied for new radio (NR) systems to enable NR-based radio access technology (RAT) dependent positioning in NR operating frequency bands including both low frequency bands ( ⁇ 6GHz, or FR1) and high frequency bands (>6GHz, or FR2) .
  • the observed Time Difference of Arrival (OTDOA) technology is a downlink (DL) positioning technology in long term evolution (LTE) systems.
  • the OTDOA technology is a multilateration technology where user equipment (UE) measures time of arrivals (TOAs) of signals received from multiple base stations (for example, eNodeBs or eNBs) and the UE can be positioned based on the TOAs.
  • UE user equipment
  • TOAs time of arrivals
  • a positioning reference signal PRS
  • the UE measures the TOAs of the PRSs from the base stations to improve the positioning performance of the OTDOA technology.
  • the OTDOA technology is a mature positioning technology and has been well specified in LTE standardization. However, this technology has not been applicable in NR positioning.
  • multi-beam transmission has been agreed to offer better coverage in the NR systems especially for the high frequency bands.
  • example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media of beam pattern exchange for PRS measurement.
  • a device comprising at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the device to receive, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell.
  • the device is further caused to detect the positioning reference signal based on the beam pattern.
  • a device comprising at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the device to collect, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells.
  • the device is also caused to select, for user equipment, a reference cell from the set of cells.
  • the device is further caused to transmit, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
  • a method is provided.
  • use equipment receives an indication of a beam pattern for transmitting a positioning reference signal in a reference cell.
  • the positioning reference signal is detected based on the beam pattern.
  • a location server collects a set of beam patterns for transmitting a set of positioning reference signals in a set of cells.
  • the location server selects for user equipment, a reference cell from the set of cells. Further, the location server transmits, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
  • an apparatus comprising means for performing the method according to the third or fourth aspect.
  • a computer readable storage medium that stores a computer program thereon.
  • the computer program when executed by a processor of a device, causes the device to perform the method according to the third or fourth aspect.
  • FIG. 1 illustrates an example PRS transmission mode in LTE systems
  • FIG. 2 illustrates an example beam sweeping mode in NR systems
  • FIG. 3 illustrates an example environment in which embodiments of the present disclosure can be implemented
  • FIG. 4 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure
  • FIG. 5 illustrates an example PRS transmission mode in accordance with some example embodiments of the present disclosure
  • FIG. 6 illustrates an example PRS transmission mode in accordance with some other example embodiments of the present disclosure
  • FIG. 7 (a) illustrates a conventional TOA estimation process without beam combining in the case of using the beam pattern as shown in FIG. 6;
  • FIG. 7 (b) illustrates another conventional TOA estimation process without beam combining in the case of using the beam pattern as shown in FIG. 6;
  • FIG. 7 (c) illustrates an example TOA estimation process with intra-beam combining in accordance with some example embodiments of the present disclosure
  • FIG. 8 illustrates a flowchart of an example method in accordance with some other embodiments of the present disclosure
  • FIG. 9 illustrates an example process of beam pattern exchange in accordance with some embodiments of the present disclosure.
  • FIG. 10 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • the term “base station” refers to a device via which a terminal device or UE can access a communication network.
  • the BS include a relay, an access point (AP) , a transmission point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a gigabit NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
  • AP access point
  • TRP transmission point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB gigabit NodeB
  • RRU Remote Radio Module
  • RH radio header
  • RRH remote radio head
  • a low power node such as a femto, a pico, and the
  • terminal device or “user equipment” (UE) refers to any terminal device capable of wireless communications with each other or with the base station.
  • the communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air.
  • the UE may be configured to transmit and/or receive information without direct human interaction. For example, the UE may transmit information to the network device on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
  • Examples of the UE include, but are not limited to, user equipment (UE) such as smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , and/or wireless customer-premises equipment (CPE) .
  • UE user equipment
  • LME laptop-embedded equipment
  • CPE wireless customer-premises equipment
  • the term “location server” refers to a device capable of communicating with the base station and providing location services to the UE.
  • the location server may be a device in a core network of the communication network, such as an Evolved Serving Mobile Location Center (E-SMLC) .
  • E-SMLC Evolved Serving Mobile Location Center
  • a reference cell refers to any cell that can be used as a reference for positioning the UE.
  • the reference cell may be a serving cell provided by a base station that is serving the UE or any other cell provided by the serving base station or any other base station.
  • circuitry may refer to one or more or all of the following:
  • combinations of hardware circuits and software such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular network device, or other computing or network device.
  • the UE In the OTDOA positioning of the LTE systems, the UE typically measures time differences in PRS signals from two or more base stations for positioning.
  • the PRS may be periodically transmitted by the base station in groups of consecutive DL sub-frames with an omnidirectional antenna.
  • FIG. 1 shows an example PRS transmission mode 100 in the LTE systems.
  • a PRS 105 is transmitted in several sub-frames 110 in PRS periodicity 115.
  • the PRS 105 has a PRS sub-frame offset 125.
  • assistance data such as the PRS sub-frame offset 125, the PRS periodicity115 and the number of consecutive PRS sub-frames 110, may be provided to the UE from the base station.
  • FIG. 2 shows an example beam sweeping mode 200 in the NR systems.
  • a TRP 205 transmits signals by sweeping (210) from a beam 215-1 to a beam 215-N where N represents any suitable positive integer greater than 1.
  • the beams will be collectively or individually referred to as beams 215.
  • Multiple UEs 220-1, 220-2...220-M can receive the signals transmitted using the respective beams.
  • the PRS may be transmitted with such multi-beam sweeping. If the UE is unaware of the beam sweeping design of the PRS, the UE would not be able to perform the reference signal time difference (RSTD) measurements.
  • RSTD reference signal time difference
  • Embodiments of the present disclosure provide a beam pattern exchange scheme to improve multi-beam PRS measurement and TOA estimation at the UE, for example.
  • the UE receives an indication of a beam pattern for transmitting a PRS in a reference cell.
  • the beam pattern may include the number of beams, beam indexes of the beams, beam durations of the beams, sub-frame offsets of the beams, transmission occasions for one beam, a beam sweeping period, the like. Based on the beam pattern, the UE may detect the PRS more efficiently and accurately.
  • the PRS configuration related to the beam pattern may be delivered to UE to support multi-beam PRS measurements in NR especially for the high frequency bands (>6GHz) .
  • the UE may determine how to detect and measure the PRS and may perform the RSTD measurements more effectively and efficiently. For example, the UE may combine the PRS transmitted with one beam to improve the accuracy of the TOA estimation and thereby improve the positioning accuracy.
  • FIG. 3 shows an example environment 300 in which embodiments of the present disclosure can be implemented.
  • the environment 300 which is a part of a communication network, includes a base station 310 and a UE 320. As shown, the base station 310 provides a cell 330 in which the UE 320 can be served.
  • the environment 300 also includes a location server 340 which can communicate with the base station 310 and with the UE 320 via the base station 310 to provide a location service to the UE 320.
  • the environment 300 may include any suitable number of base stations, UEs and location servers adapted for implementing embodiments of the present disclosure. It is also to be understood that one cell is provided by the base station 310 only for the purpose of illustration. The base station 310 may provide more cells depending on specific implementations.
  • the UE 320 can communicate with the base station 310 or via the base station 310 with a further terminal device or the location server 340 or other network entities.
  • the communications between the UE 320 and the base station 310 may follow any suitable wireless communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-re
  • the location server 340 can communicate with the base station 310 and other base stations.
  • the communications between the location server 340 and the base station 310 may utilize any suitable communication technology.
  • the location server 340 and the base station 310 may communicate in a cable.
  • the base station 310 may transmit a PRS to the UE 320 on three beams 215-1, 215-2 and 215-3 in the cell 330.
  • the location server 340 can communicate with the base station 310 and other surrounding base stations to collect the beam patterns of the PRSs transmitted in the respective cells provided by the base stations.
  • the UE 320 receives an indication of a beam pattern for transmitting a PRS in a reference cell and detects the PRS based on the beam pattern.
  • the indication may be received by the UE 320 via the base station 310 from the location server 340.
  • the reference cell may be the serving cell of the UE 320 (for example, the cell 340) or any other cell that is provided by a further base station and used as a reference for positioning the UE 320.
  • FIG. 4 shows a flowchart of an example method 400 in accordance with some embodiments of the present disclosure.
  • the method 400 can be implemented at the UE 320 as shown in FIG. 3.
  • the method 400 will be described with reference to FIG. 3.
  • the UE 320 receives an indication of a beam pattern for transmitting a PRS in a reference cell.
  • the indication may be received by the UE 320 via the base station 310 from the location server 340.
  • the base station 310 and other base stations may transfer to the location server 340 the beam patterns for transmitting PRSs in the respective cells.
  • the location server 340 may know the beam sweeping manners of these base stations.
  • the location server 340 may then inform the UE 320 of the beam pattern in the reference cell via the base station 310.
  • the detailed processes and operations at the location server 340 will be discussed in the following paragraphs with reference to FIG. 8.
  • the beam pattern may convey any suitable information related to one or more beams for transmitting the PRS.
  • a PRS may be transmitted using multiple transmission occasions on all beams to cover the whole cell coverage.
  • the PRS may be transmitted within a beam duration.
  • the beam duration may include some continuous or non-continuous time resources such as OFDM symbols, sub-frames, and slots.
  • the beam durations of different beams may be different.
  • the beam duration indicates the transmission occasions associated with the corresponding beam. In this case, the transmission occasions for different beams may be distinguished so that the UE 320 may combine the PRS transmitted with the same beam, for example.
  • the beam pattern may include the number of beams, beam indexes of the beams, beam durations of the beams, sub-frame offsets of the beams, the transmission occasions for the beams, a beam sweeping period and the like.
  • the beam index may indicate which beam is used for the PRS transmission in a beam duration.
  • the beam pattern for the PRS transmission may be repeated within one period, and the period may be configured by the base station.
  • the beam pattern may be indicated in any suitable way.
  • a beam mask sequence based on a bit map may be used.
  • the beam mask sequence may be implemented by a bit string of a length K, where K is the total transmission occasions of all the beams.
  • K is the total transmission occasions of all the beams.
  • Each bit in the bit string may be assigned to the value “0” or “1” .
  • the positions of “1” bits indicate the transmission occasions (or sub-frames, symbols or slots) which have been used for the PRS transmission. If a bit in the beam mask sequence is set to “0” , the corresponding transmission occasion is not used for the PRS transmission.
  • the number of “1” bits may indicate the beam duration of the beam. Example implementations of the beam mask sequence will be discussed below with reference to FIGS. 5 and 6.
  • FIG. 5 illustrates an example PRS transmission mode 500 according to some example embodiments of the present disclosure.
  • the PRS is transmitted on three beams 215, indexed as beam #1, beam #2 and beam #3.
  • the PRS transmissions on beam #1, beam #2 and beam #3 are interleaved.
  • a beam duration 515 of beam #1 includes two non-continuous resource blocks 520, and each block 520 may include several sub-frames, slots or symbols. Each block 520 represents one PRS transmission occasion.
  • the beam pattern 510 may be repeated within a PRS period 525.
  • the configuration of beam #1 may be indicated by the bit sequence “100100”
  • the configuration of beam #2 may be indicated by the bit sequence “010010”
  • the configuration of beam #3 may be indicated by the bit sequence “001001” .
  • FIG. 6 illustrates an example PRS transmission mode 600 according to some other example embodiments of the present disclosure.
  • a beam duration 615 of beam #1 includes two continuous resource blocks 520.
  • the configuration of beam #1 may be indicated by the bit sequence “110000”
  • the configuration of beam #2 may be indicated by the bit sequence “001100”
  • the configuration of beam #3 may be indicated by the bit sequence “000011” .
  • bit mask scheme is only illustrative but not limited. Other indication approaches of the beam pattern are also possible.
  • the UE 320 detects the PRS based on the beam pattern.
  • the UE 320 may know when and where to detect or measure the PRS.
  • the beam pattern 610 related to the three beams may be represented as the beam mask sequence “110000 001100 000011” .
  • the UE 320 may derive the configuration of each beam. For example, for each beam, the beam duration may be derived based on the number of “1” bits, and the position of “1” represents the transmission occasions used for the PRS transmission with the beam.
  • the UE 320 may design appropriate estimation algorithms based on the beam pattern to improve the RSTD measurements and thereby to improve the positioning performance. Example optimization of the estimation algorithms will be discussed with reference to FIGS. 7 (a) , 7 (b) and 7 (c) .
  • FIG. 7 (a) shows a conventional TOA estimation process 705 without beam combining in the case of using the beam pattern 610 as shown in FIG. 6.
  • this conventional estimation process 705 no information related to the beam pattern of the PRS is provided to the UE 320.
  • the UE 320 estimates (710) the TOA independently at each block 520.
  • the minimum TOA may be selected as the estimated TOA.
  • FIG. 7 (b) shows another conventional TOA estimation process 715 with inter-beam combining in the case of using the beam pattern 610.
  • the process 715 all (or some) of the block 520 for the PRS transmission with different beams are combined (720) to estimate the TOA.
  • the inter-beam combining may bring combining diversity gain over several blocks 520.
  • most of the PRS signals received on different beams may be canceled due to large phase shift differences between different beams. As a result, the performance of TOA estimation may be poor.
  • FIG. 7 (c) shows an example TOA estimation process 725 with intra-beam combining according to some example embodiments of the present disclosure.
  • the UE 320 may combine (730) the blocks 520 within a beam duration of each beam to achieve the combining diversity gain. Further, the UE 320 may select the minimum TOA as the estimated TOA to achieve selective diversity gain. As such, a high accurate TOA value may be obtained to improve the positioning accuracy.
  • the UE 320 may receive a further indication of a beam pattern for transmitting a PRS in a neighbor cell, and then detects the PRS based on the beam pattern.
  • the implementations of this indication are similar to those of the indication of the beam pattern in the reference cell, and details thereof will be omitted.
  • the UE 320 may be provided with the beam patterns related to any suitable number of neighbor cells to improve the positioning accuracy.
  • the location server 340 may need to collect the beam patterns from the related base stations. The detailed processes and operations of the location server 340 will be described below with reference to FIG. 8.
  • FIG. 8 shows a flowchart of an example method 800 in accordance with some other embodiments of the present disclosure.
  • the method 800 can be implemented at the location server 340 as shown in FIG. 3.
  • the method 800 will be described with reference to FIG. 3.
  • the location server 340 collects a set of beam patterns for transmitting a set of PRSs in a set of cells.
  • the beam patterns may be collected by the location server 340 from surrounding base stations.
  • the location server 340 selects the reference cell from the set of cells for the UE 320.
  • the location server 340 transmits the beam pattern for transmitting the PRS in the reference cell to the UE 320 via the base station 310.
  • the location server 340 may also transmit the beam pattern in the neighbor cell to the UE 320. For example, the location server 340 may select a neighbor cell from the set of cells for the UE 320 and then transmit a further indication of the beam pattern for transmitting a further PRS in the neighbor cell.
  • the location server 340 may transmit, to the UE 320 via the base station 310, OTDOA assistance data containing two elements: OTDOA reference cell information and OTDOA neighbor cell information.
  • OTDOA assistance data containing two elements: OTDOA reference cell information and OTDOA neighbor cell information.
  • the beam patterns related to the PRS configuration for the reference cell and the neighbor cell are included in the OTDOA assistance data.
  • Table 1 shows an example additional PRS information element related to the beam pattern in the OTDOA assistance data according to some example embodiments of the present disclosure.
  • the PRS configuration of the reference cell and one or more neighbor cells may be transported from the base stations to the location server 340 (for example, E-SMLC) , and the location server 340 may then forward the PRS configuration to UE 320.
  • the location server 340 for example, E-SMLC
  • the location server 340 may then forward the PRS configuration to UE 320.
  • the RSTD measurement of the UE 320 may be more effective and efficient.
  • FIG. 9 shows an example process 900 of beam pattern exchange between the base station 310, the location server 340 and the UE 320 according to some embodiments of the present disclosure.
  • the location server 340 sends (905) to the base station 310 an OTDOA information request for the OTDOA information of the reference and neighbor cells.
  • the OTDOA information request may include a request for the base station 310 to provide the additional PRS information for the beam pattern.
  • the base station 310 transfers (910) an OTDOA information response to the location server 340.
  • the OTDOA information response contains the assistant data including the additional beam pattern information for PRS as shown in Table 1, for example.
  • the location server 340 sends (915) a ProvideAssistanceData message to the UE 320 which contains the OTDOA assistance data.
  • the OTDOA assistance data may include the additional PRS information for the beam pattern of reference and neighbour cells as shown in Table 1.
  • the location server 340 sends (920) a RequestLocationInformation message to the UE 320 to request RSTD measurements.
  • the UE 320 then performs (925) the RSTD measurements using the received assistance data.
  • the assistance data includes candidate cells for measurements together with their PRS configuration in Table 1. Based on the assistance data, the UE would combine the PRS signal transmitted with the same beam and obtain one combined TOA measurements as shown in FIG. 7 (c) .
  • the UE 320 provides (930) the RSTD measurements to the location server 340.
  • an apparatus capable of performing the method 400 or 800 may comprise means for performing the respective steps of the method 400 or 800.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 400 comprises: means for receiving, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell; and means for detecting the positioning reference signal based on the beam pattern.
  • the beam pattern may comprise at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
  • the apparatus may further comprise: means for receiving a further indication of a further beam pattern for transmitting a further positioning reference signal in a neighbor cell; and means for detecting the further positioning reference signal based on the further beam pattern.
  • the indications may be received via a base station from a location server.
  • the apparatus capable of performing the method 800 comprises: means for collecting, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells; means for selecting, for user equipment, a reference cell from the set of cells; and means for transmitting, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
  • the beam pattern may comprise at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
  • the apparatus may further comprise: means for selecting, for the user equipment, a neighbor cell from the set of cells; and means for transmitting, via the base station to the user equipment, a further indication of a further beam pattern from the set of beam patterns for transmitting a further positioning reference signal from the set of positioning reference signals in the neighbor cell.
  • FIG. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure.
  • the device 1000 can be implemented at the UE 320 or the location server 340 as shown in FIG. 3.
  • the device 1000 includes a processor 1010, a memory 1020 coupled to the processor 1010, a communication module 1030 coupled to the processor 1010, and a communication interface (not shown) coupled to the communication module 1030.
  • the memory 1020 stores at least a program 1040.
  • the communication module 1030 is for bidirectional communications, for example, via multiple antennas.
  • the communication interface may represent any interface that is necessary for communication.
  • the program 1040 is assumed to include program instructions that, when executed by the associated processor 1010, enable the device 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 1 to 9.
  • the embodiments herein may be implemented by computer software executable by the processor 1010 of the device 1000, or by hardware, or by a combination of software and hardware.
  • the processor 1010 may be configured to implement various embodiments of the present disclosure.
  • the memory 1020 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1020 is shown in the device 1000, there may be several physically distinct memory modules in the device 1000.
  • the processor 1010 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the processor 1010 and the communication module 1030 may cooperate to implement the method 400 as described above with reference to FIGS. 4 to 7 (c) .
  • the processor 1010 and the communication module 1030 may cooperate to implement the method 800 as described above with reference to FIGS. 8 and 9. All operations and features as described above with reference to FIGS. 1to 9 are likewise applicable to the device 1000 and have similar effects. For the purpose of simplification, the details will be omitted.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 400 and 800 as described above with reference to FIGS. 1 to 9.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable cartier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • DVD Digital Versatile Disc
  • an optical storage device a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media of beam pattern exchange for positioning reference signal (PRS) measurement. In example embodiments, use equipment (UE) receives an indication of a beam pattern for transmitting a PRS in a reference cell. The PRS is then detected by the UE based on the beam pattern.

Description

BEAM PATTERN EXCHANGE FOR POSITIONING REFERENCE SIGNAL MEASUREMENT FIELD
Embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media of beam pattern exchange for positioning reference signal (PRS) measurement.
BACKGROUND
Positioning technologies are being studied for new radio (NR) systems to enable NR-based radio access technology (RAT) dependent positioning in NR operating frequency bands including both low frequency bands (<6GHz, or FR1) and high frequency bands (>6GHz, or FR2) . The observed Time Difference of Arrival (OTDOA) technology is a downlink (DL) positioning technology in long term evolution (LTE) systems. The OTDOA technology is a multilateration technology where user equipment (UE) measures time of arrivals (TOAs) of signals received from multiple base stations (for example, eNodeBs or eNBs) and the UE can be positioned based on the TOAs.
To improve the positioning performance of the OTDOA technology, a positioning reference signal (PRS) has been introduced. For example, the UE measures the TOAs of the PRSs from the base stations to improve the positioning performance of the OTDOA technology. The OTDOA technology is a mature positioning technology and has been well specified in LTE standardization. However, this technology has not been applicable in NR positioning. In addition, multi-beam transmission has been agreed to offer better coverage in the NR systems especially for the high frequency bands.
SUMMARY
In general, example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media of beam pattern exchange for PRS measurement.
In a first aspect, a device is provided comprising at least one processor and at least one memory including computer program code. The at least one memory and the  computer program code are configured to, with the at least one processor, cause the device to receive, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell. The device is further caused to detect the positioning reference signal based on the beam pattern.
In a second aspect, a device is provided comprising at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the device to collect, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells. The device is also caused to select, for user equipment, a reference cell from the set of cells. The device is further caused to transmit, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
In a third aspect, a method is provided. In the method, use equipment receives an indication of a beam pattern for transmitting a positioning reference signal in a reference cell. The positioning reference signal is detected based on the beam pattern.
In a fourth aspect, a method is provided. In the method, a location server collects a set of beam patterns for transmitting a set of positioning reference signals in a set of cells. The location server selects for user equipment, a reference cell from the set of cells. Further, the location server transmits, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
In a fifth aspect, there is provided an apparatus comprising means for performing the method according to the third or fourth aspect.
In a sixth aspect, there is provided a computer readable storage medium that stores a computer program thereon. The computer program, when executed by a processor of a device, causes the device to perform the method according to the third or fourth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1 illustrates an example PRS transmission mode in LTE systems;
FIG. 2 illustrates an example beam sweeping mode in NR systems;
FIG. 3 illustrates an example environment in which embodiments of the present disclosure can be implemented;
FIG. 4 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure;
FIG. 5 illustrates an example PRS transmission mode in accordance with some example embodiments of the present disclosure;
FIG. 6 illustrates an example PRS transmission mode in accordance with some other example embodiments of the present disclosure;
FIG. 7 (a) illustrates a conventional TOA estimation process without beam combining in the case of using the beam pattern as shown in FIG. 6;
FIG. 7 (b) illustrates another conventional TOA estimation process without beam combining in the case of using the beam pattern as shown in FIG. 6;
FIG. 7 (c) illustrates an example TOA estimation process with intra-beam combining in accordance with some example embodiments of the present disclosure;
FIG. 8 illustrates a flowchart of an example method in accordance with some other embodiments of the present disclosure;
FIG. 9 illustrates an example process of beam pattern exchange in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some  example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “base station” (BS) refers to a device via which a terminal device or UE can access a communication network. Examples of the BS include a relay, an access point (AP) , a transmission point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a gigabit NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
As used herein, the term “terminal device” or “user equipment” (UE) refers to any terminal device capable of wireless communications with each other or with the base station. The communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air. In some embodiments, the UE may be configured to transmit and/or receive information without direct human interaction. For example, the UE may transmit information to the network device on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
Examples of the UE include, but are not limited to, user equipment (UE) such as smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , and/or wireless customer-premises equipment (CPE) . For the purpose of discussion, some embodiments will be described with reference to UEs as examples of the terminal devices, and the terms “terminal device” and “user equipment” (UE) may be used interchangeably in the context of the present disclosure.
As used herein, the term “location server” refers to a device capable of communicating with the base station and providing location services to the UE. As an example, the location server may be a device in a core network of the communication  network, such as an Evolved Serving Mobile Location Center (E-SMLC) .
As used herein, the term “a reference cell” refers to any cell that can be used as a reference for positioning the UE. As an example, the reference cell may be a serving cell provided by a base station that is serving the UE or any other cell provided by the serving base station or any other base station.
As used herein, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular network device, or other computing or network device.
As used herein, the singular forms “a” , “an” , and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
In the OTDOA positioning of the LTE systems, the UE typically measures time differences in PRS signals from two or more base stations for positioning. The PRS may be periodically transmitted by the base station in groups of consecutive DL sub-frames with an omnidirectional antenna.
FIG. 1 shows an example PRS transmission mode 100 in the LTE systems. As shown, a PRS 105 is transmitted in several sub-frames 110 in PRS periodicity 115. With respect to a reference time 120 when subframe number (SFN) = 0 and slot number = 0, the PRS 105 has a PRS sub-frame offset 125. In order to aid the UE in acquisition or detection of the PRS 105, assistance data, such as the PRS sub-frame offset 125, the PRS periodicity115 and the number of consecutive PRS sub-frames 110, may be provided to the UE from the base station.
In the NR systems, multi-beam transmission or beam sweeping is enabled in the high frequency bands (>6GHz) to provide better coverage. FIG. 2 shows an example beam sweeping mode 200 in the NR systems. As shown, in the beam sweeping mode 200, a TRP 205 transmits signals by sweeping (210) from a beam 215-1 to a beam 215-N where N represents any suitable positive integer greater than 1. For the purpose of discussion, the beams will be collectively or individually referred to as beams 215. Multiple UEs 220-1, 220-2...220-M (where M represents any suitable positive integer) can receive the signals transmitted using the respective beams.
For the NR positioning, the PRS may be transmitted with such multi-beam sweeping. If the UE is unaware of the beam sweeping design of the PRS, the UE would not be able to perform the reference signal time difference (RSTD) measurements.
Embodiments of the present disclosure provide a beam pattern exchange scheme to improve multi-beam PRS measurement and TOA estimation at the UE, for example. With this scheme, the UE receives an indication of a beam pattern for transmitting a PRS in a reference cell. The beam pattern may include the number of beams, beam indexes of the beams, beam durations of the beams, sub-frame offsets of the beams, transmission occasions for one beam, a beam sweeping period, the like. Based on the beam pattern, the UE may detect the PRS more efficiently and accurately.
In this way, the PRS configuration related to the beam pattern may be delivered to UE to support multi-beam PRS measurements in NR especially for the high frequency bands (>6GHz) . Based on the received beam pattern, the UE may determine how to  detect and measure the PRS and may perform the RSTD measurements more effectively and efficiently. For example, the UE may combine the PRS transmitted with one beam to improve the accuracy of the TOA estimation and thereby improve the positioning accuracy.
FIG. 3 shows an example environment 300 in which embodiments of the present disclosure can be implemented. The environment 300, which is a part of a communication network, includes a base station 310 and a UE 320. As shown, the base station 310 provides a cell 330 in which the UE 320 can be served. The environment 300 also includes a location server 340 which can communicate with the base station 310 and with the UE 320 via the base station 310 to provide a location service to the UE 320.
It is to be understood that one base station, one UE and one location server are shown in FIG. 1 only for the purpose of illustration without suggesting any limitation to the scope of the present disclosure. The environment 300 may include any suitable number of base stations, UEs and location servers adapted for implementing embodiments of the present disclosure. It is also to be understood that one cell is provided by the base station 310 only for the purpose of illustration. The base station 310 may provide more cells depending on specific implementations.
The UE 320 can communicate with the base station 310 or via the base station 310 with a further terminal device or the location server 340 or other network entities. The communications between the UE 320 and the base station 310 may follow any suitable wireless communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC) technologies.
The location server 340 can communicate with the base station 310 and other base stations. The communications between the location server 340 and the base station 310 may utilize any suitable communication technology. In some embodiments, the location  server 340 and the base station 310 may communicate in a cable.
In this example, the base station 310 may transmit a PRS to the UE 320 on three beams 215-1, 215-2 and 215-3 in the cell 330. The location server 340 can communicate with the base station 310 and other surrounding base stations to collect the beam patterns of the PRSs transmitted in the respective cells provided by the base stations.
In various example embodiments of the present disclosures, the UE 320 receives an indication of a beam pattern for transmitting a PRS in a reference cell and detects the PRS based on the beam pattern. The indication may be received by the UE 320 via the base station 310 from the location server 340. The reference cell may be the serving cell of the UE 320 (for example, the cell 340) or any other cell that is provided by a further base station and used as a reference for positioning the UE 320.
FIG. 4 shows a flowchart of an example method 400 in accordance with some embodiments of the present disclosure. The method 400 can be implemented at the UE 320 as shown in FIG. 3. For the purpose of discussion, the method 400 will be described with reference to FIG. 3.
At block 405, the UE 320 receives an indication of a beam pattern for transmitting a PRS in a reference cell. The indication may be received by the UE 320 via the base station 310 from the location server 340. For example, the base station 310 and other base stations may transfer to the location server 340 the beam patterns for transmitting PRSs in the respective cells. Thus, the location server 340 may know the beam sweeping manners of these base stations. The location server 340 may then inform the UE 320 of the beam pattern in the reference cell via the base station 310. The detailed processes and operations at the location server 340 will be discussed in the following paragraphs with reference to FIG. 8.
The beam pattern may convey any suitable information related to one or more beams for transmitting the PRS. For example, in the beam sweeping mode 200 as shown in FIG. 2, a PRS may be transmitted using multiple transmission occasions on all beams to cover the whole cell coverage. On one beam, the PRS may be transmitted within a beam duration. The beam duration may include some continuous or non-continuous time resources such as OFDM symbols, sub-frames, and slots. The beam durations of different beams may be different. The beam duration indicates the transmission occasions associated with the corresponding beam. In this case, the transmission occasions for  different beams may be distinguished so that the UE 320 may combine the PRS transmitted with the same beam, for example.
As an example, the beam pattern may include the number of beams, beam indexes of the beams, beam durations of the beams, sub-frame offsets of the beams, the transmission occasions for the beams, a beam sweeping period and the like. In some example embodiments of the present disclosure, the beam index may indicate which beam is used for the PRS transmission in a beam duration. The beam pattern for the PRS transmission may be repeated within one period, and the period may be configured by the base station.
The beam pattern may be indicated in any suitable way. In some embodiments, a beam mask sequence based on a bit map may be used. The beam mask sequence may be implemented by a bit string of a length K, where K is the total transmission occasions of all the beams. Each bit in the bit string may be assigned to the value “0” or “1” . In the bit string, the positions of “1” bits indicate the transmission occasions (or sub-frames, symbols or slots) which have been used for the PRS transmission. If a bit in the beam mask sequence is set to “0” , the corresponding transmission occasion is not used for the PRS transmission. For each beam, the number of “1” bits may indicate the beam duration of the beam. Example implementations of the beam mask sequence will be discussed below with reference to FIGS. 5 and 6.
FIG. 5 illustrates an example PRS transmission mode 500 according to some example embodiments of the present disclosure.
In the PRS transmission mode 500, the PRS has a PRS sub-frame offset 505 with respect to a reference time when SFN = 0 and slot number = 0. In a beam pattern 510 as shown in FIG. 5, the PRS is transmitted on three beams 215, indexed as beam #1, beam #2 and beam #3. To achieve a diversity gain or to enable interference coordination, the PRS transmissions on beam #1, beam #2 and beam #3 are interleaved. As shown in FIG. 5, a beam duration 515 of beam #1 includes two non-continuous resource blocks 520, and each block 520 may include several sub-frames, slots or symbols. Each block 520 represents one PRS transmission occasion. The beam pattern 510 may be repeated within a PRS period 525.
In this example, the configuration of beam #1 may be indicated by the bit sequence “100100” , the configuration of beam #2 may be indicated by the bit sequence “010010” ,  and the configuration of beam #3 may be indicated by the bit sequence “001001” .
FIG. 6 illustrates an example PRS transmission mode 600 according to some other example embodiments of the present disclosure.
Compared with the PRS transmission mode 500 as shown in FIG. 5, in a beam pattern 610 of the PRS transmission mode 600, the PRS transmissions on beam #1, beam #2 and beam #3 are subsequent. As shown in FIG. 6, a beam duration 615 of beam #1 includes two continuous resource blocks 520. In this case, the configuration of beam #1 may be indicated by the bit sequence “110000” , the configuration of beam #2 may be indicated by the bit sequence “001100” , and the configuration of beam #3 may be indicated by the bit sequence “000011” .
It is to be understood that the above bit mask scheme is only illustrative but not limited. Other indication approaches of the beam pattern are also possible.
Still with reference to FIG. 4, at block 410, the UE 320 detects the PRS based on the beam pattern. For example, the UE 320 may know when and where to detect or measure the PRS. Taking the beam pattern 600 in FIG. 6 as an example, the beam pattern 610 related to the three beams may be represented as the beam mask sequence “110000 001100 000011” . Based on the beam mask sequence, the UE 320 may derive the configuration of each beam. For example, for each beam, the beam duration may be derived based on the number of “1” bits, and the position of “1” represents the transmission occasions used for the PRS transmission with the beam.
Further, the UE 320 may design appropriate estimation algorithms based on the beam pattern to improve the RSTD measurements and thereby to improve the positioning performance. Example optimization of the estimation algorithms will be discussed with reference to FIGS. 7 (a) , 7 (b) and 7 (c) .
FIG. 7 (a) shows a conventional TOA estimation process 705 without beam combining in the case of using the beam pattern 610 as shown in FIG. 6. In this conventional estimation process 705, no information related to the beam pattern of the PRS is provided to the UE 320. The UE 320 estimates (710) the TOA independently at each block 520. The minimum TOA may be selected as the estimated TOA.
FIG. 7 (b) shows another conventional TOA estimation process 715 with inter-beam combining in the case of using the beam pattern 610. In the process 715, all (or some) of the block 520 for the PRS transmission with different beams are combined  (720) to estimate the TOA. The inter-beam combining may bring combining diversity gain over several blocks 520. However, most of the PRS signals received on different beams may be canceled due to large phase shift differences between different beams. As a result, the performance of TOA estimation may be poor.
FIG. 7 (c) shows an example TOA estimation process 725 with intra-beam combining according to some example embodiments of the present disclosure. In the process 725, the UE 320 may combine (730) the blocks 520 within a beam duration of each beam to achieve the combining diversity gain. Further, the UE 320 may select the minimum TOA as the estimated TOA to achieve selective diversity gain. As such, a high accurate TOA value may be obtained to improve the positioning accuracy.
In some embodiments, in order to further improve the RSTD measurements of the UE 320, the UE 320 may receive a further indication of a beam pattern for transmitting a PRS in a neighbor cell, and then detects the PRS based on the beam pattern. The implementations of this indication are similar to those of the indication of the beam pattern in the reference cell, and details thereof will be omitted. In implementations, the UE 320 may be provided with the beam patterns related to any suitable number of neighbor cells to improve the positioning accuracy.
To enable the UE 320 to be aware of the beam pattern of the PRS in the reference cell or the neighbor cell, the location server 340 may need to collect the beam patterns from the related base stations. The detailed processes and operations of the location server 340 will be described below with reference to FIG. 8.
FIG. 8 shows a flowchart of an example method 800 in accordance with some other embodiments of the present disclosure. The method 800 can be implemented at the location server 340 as shown in FIG. 3. For the purpose of discussion, the method 800 will be described with reference to FIG. 3.
At block 805, the location server 340 collects a set of beam patterns for transmitting a set of PRSs in a set of cells. The beam patterns may be collected by the location server 340 from surrounding base stations.
At block 810, the location server 340 selects the reference cell from the set of cells for the UE 320. At block 815, the location server 340 transmits the beam pattern for transmitting the PRS in the reference cell to the UE 320 via the base station 310.
In some embodiments, the location server 340 may also transmit the beam pattern  in the neighbor cell to the UE 320. For example, the location server 340 may select a neighbor cell from the set of cells for the UE 320 and then transmit a further indication of the beam pattern for transmitting a further PRS in the neighbor cell.
As an example, the location server 340 may transmit, to the UE 320 via the base station 310, OTDOA assistance data containing two elements: OTDOA reference cell information and OTDOA neighbor cell information. The beam patterns related to the PRS configuration for the reference cell and the neighbor cell are included in the OTDOA assistance data.
Table 1 shows an example additional PRS information element related to the beam pattern in the OTDOA assistance data according to some example embodiments of the present disclosure.
Table 1
Figure PCTCN2018113415-appb-000001
The PRS configuration of the reference cell and one or more neighbor cells may be transported from the base stations to the location server 340 (for example, E-SMLC) , and the location server 340 may then forward the PRS configuration to UE 320. Using these beam patterns, the RSTD measurement of the UE 320 may be more effective and efficient.
FIG. 9 shows an example process 900 of beam pattern exchange between the base station 310, the location server 340 and the UE 320 according to some embodiments of the  present disclosure.
In the process 900, the location server 340 sends (905) to the base station 310 an OTDOA information request for the OTDOA information of the reference and neighbor cells. The OTDOA information request may include a request for the base station 310 to provide the additional PRS information for the beam pattern.
The base station 310 transfers (910) an OTDOA information response to the location server 340. The OTDOA information response contains the assistant data including the additional beam pattern information for PRS as shown in Table 1, for example.
The location server 340 sends (915) a ProvideAssistanceData message to the UE 320 which contains the OTDOA assistance data. The OTDOA assistance data may include the additional PRS information for the beam pattern of reference and neighbour cells as shown in Table 1.
The location server 340 sends (920) a RequestLocationInformation message to the UE 320 to request RSTD measurements. The UE 320 then performs (925) the RSTD measurements using the received assistance data. The assistance data includes candidate cells for measurements together with their PRS configuration in Table 1. Based on the assistance data, the UE would combine the PRS signal transmitted with the same beam and obtain one combined TOA measurements as shown in FIG. 7 (c) . The UE 320 provides (930) the RSTD measurements to the location server 340.
All operations and features as described above with reference to FIGS. 3 to 7 (c) are likewise applicable to the method 800 and have similar effects. For the purpose of simplification, the details will be omitted.
In some embodiments, an apparatus capable of performing the  method  400 or 800 may comprise means for performing the respective steps of the  method  400 or 800. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 400 comprises: means for receiving, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell; and means for detecting the positioning reference signal based on the beam pattern.
In some example embodiments, the beam pattern may comprise at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
In some example embodiments, the apparatus may further comprise: means for receiving a further indication of a further beam pattern for transmitting a further positioning reference signal in a neighbor cell; and means for detecting the further positioning reference signal based on the further beam pattern.
In some example embodiments, the indications may be received via a base station from a location server.
In some example embodiments, the apparatus capable of performing the method 800 comprises: means for collecting, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells; means for selecting, for user equipment, a reference cell from the set of cells; and means for transmitting, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
In some example embodiments, the beam pattern may comprise at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
In some example embodiments, the apparatus may further comprise: means for selecting, for the user equipment, a neighbor cell from the set of cells; and means for transmitting, via the base station to the user equipment, a further indication of a further beam pattern from the set of beam patterns for transmitting a further positioning reference signal from the set of positioning reference signals in the neighbor cell.
FIG. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure. The device 1000 can be implemented at the UE 320 or the location server 340 as shown in FIG. 3.
As shown, the device 1000 includes a processor 1010, a memory 1020 coupled to the processor 1010, a communication module 1030 coupled to the processor 1010, and a communication interface (not shown) coupled to the communication module 1030. The memory 1020 stores at least a program 1040. The communication module 1030 is for bidirectional communications, for example, via multiple antennas. The communication  interface may represent any interface that is necessary for communication.
The program 1040 is assumed to include program instructions that, when executed by the associated processor 1010, enable the device 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 1 to 9. The embodiments herein may be implemented by computer software executable by the processor 1010 of the device 1000, or by hardware, or by a combination of software and hardware. The processor 1010 may be configured to implement various embodiments of the present disclosure.
The memory 1020 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1020 is shown in the device 1000, there may be several physically distinct memory modules in the device 1000. The processor 1010 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
When the device 1000 acts as the UE 320 or a part of the UE 320, the processor 1010 and the communication module 1030 may cooperate to implement the method 400 as described above with reference to FIGS. 4 to 7 (c) . When the device 1000 acts as the location server 340 or a part of the location server 340, the processor 1010 and the communication module 1030 may cooperate to implement the method 800 as described above with reference to FIGS. 8 and 9. All operations and features as described above with reference to FIGS. 1to 9 are likewise applicable to the device 1000 and have similar effects. For the purpose of simplification, the details will be omitted.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other  computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  methods  400 and 800 as described above with reference to FIGS. 1 to 9. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable cartier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable media.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor  system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Various embodiments of the techniques have been described. In addition to or as an alternative to the above, the following examples are described. The features described in any of the following examples may be utilized with any of the other examples described herein.

Claims (18)

  1. A device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the device to:
    receive, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell; and
    detect the positioning reference signal based on the beam pattern.
  2. The device of claim 1, wherein the beam pattern comprises at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
  3. The device of claim 1 or 2, wherein the device is further caused to:
    receive a further indication of a further beam pattern for transmitting a further positioning reference signal in a neighbor cell; and
    detect the further positioning reference signal based on the further beam pattern.
  4. The device of claim 3, wherein the indications are received via a base station from a location server.
  5. A device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the device to:
    collect, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells;
    select, for user equipment, a reference cell from the set of cells; and
    transmit, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
  6. The device of claim 5, wherein the beam pattern comprises at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
  7. The device of claim 5 or 6, wherein the device is further caused to:
    select, for the user equipment, a neighbor cell from the set of cells; and
    transmit, via the base station to the user equipment, a further indication of a further beam pattern from the set of beam patterns for transmitting a further positioning reference signal from the set of positioning reference signals in the neighbor cell.
  8. A method comprising:
    receiving, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell; and
    detecting the positioning reference signal based on the beam pattern.
  9. The method of claim 8, wherein the beam pattern comprises at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
  10. The method of claim 8 or 9, further comprising:
    receiving a further indication of a further beam pattern for transmitting a further positioning reference signal in a neighbor cell; and
    detecting the further positioning reference signal based on the further beam pattern.
  11. The method of claim 10, wherein the indications are received via a base station from a location server.
  12. A method comprising:
    collecting, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells;
    selecting, for user equipment, a reference cell from the set of cells; and
    transmitting, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from  the set of positioning reference signals in the reference cell.
  13. The method of claim 12, wherein the beam pattern comprises at least one of the number of beams in the set of beams, respective beam indexes of the beams and respective beam durations of the beams.
  14. The method of claim 12 or 13, further comprising:
    selecting, for the user equipment, a neighbor cell from the set of cells; and
    transmitting, via the base station to the user equipment, a further indication of a further beam pattern from the set of beam patterns for transmitting a further positioning reference signal from the set of positioning reference signals in the neighbor cell.
  15. An apparatus comprising:
    means for receiving, at use equipment, an indication of a beam pattern for transmitting a positioning reference signal in a reference cell; and
    means for detecting the positioning reference signal based on the beam pattern.
  16. An apparatus comprising:
    means for collecting, at a location server, a set of beam patterns for transmitting a set of positioning reference signals in a set of cells;
    means for selecting, for user equipment, a reference cell from the set of cells; and
    means for transmitting, to the user equipment via a base station, an indication of a beam pattern from the set of beam patterns for transmitting a positioning reference signal from the set of positioning reference signals in the reference cell.
  17. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method of any of claims 8-11.
  18. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method of any of claims 12-14.
PCT/CN2018/113415 2018-11-01 2018-11-01 Beam pattern exchange for positioning reference signal measurement WO2020087441A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880099261.XA CN112956136A (en) 2018-11-01 2018-11-01 Beam pattern switching for positioning reference signal measurements
PCT/CN2018/113415 WO2020087441A1 (en) 2018-11-01 2018-11-01 Beam pattern exchange for positioning reference signal measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113415 WO2020087441A1 (en) 2018-11-01 2018-11-01 Beam pattern exchange for positioning reference signal measurement

Publications (1)

Publication Number Publication Date
WO2020087441A1 true WO2020087441A1 (en) 2020-05-07

Family

ID=70462914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113415 WO2020087441A1 (en) 2018-11-01 2018-11-01 Beam pattern exchange for positioning reference signal measurement

Country Status (2)

Country Link
CN (1) CN112956136A (en)
WO (1) WO2020087441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385678A1 (en) * 2020-06-04 2021-12-09 Qualcomm Incorporated Location assistance data for wideband positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150133173A1 (en) * 2013-08-22 2015-05-14 Qualcomm, Incorporated Utilizing a reference signal for indoor positioning
US20170108579A1 (en) * 2014-03-28 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Observed time difference of arrival angle of arrival discriminator
US20170332368A1 (en) * 2015-03-24 2017-11-16 Panasonic Intellectual Property Corporation Of America Pdsch precoding adaptation for lte in unlicensed bands
US20170366244A1 (en) * 2014-12-16 2017-12-21 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475B (en) * 2012-01-16 2016-05-25 华为技术有限公司 Localization method, location-server, terminal and base station
WO2016129744A1 (en) * 2015-02-13 2016-08-18 엘지전자 주식회사 Scanning method using position information of terminal in wireless access system supporting millimeter waves and devices for same
WO2017164925A1 (en) * 2016-03-24 2017-09-28 Intel Corporation Method of positioning for 5g systems
US10547421B2 (en) * 2016-09-30 2020-01-28 Qualcomm Incorporated Scheduling for positioning reference signal (PRS) in narrowband-internet of things (NB-IoT)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150133173A1 (en) * 2013-08-22 2015-05-14 Qualcomm, Incorporated Utilizing a reference signal for indoor positioning
US20170108579A1 (en) * 2014-03-28 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Observed time difference of arrival angle of arrival discriminator
US20170366244A1 (en) * 2014-12-16 2017-12-21 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus therefor
US20170332368A1 (en) * 2015-03-24 2017-11-16 Panasonic Intellectual Property Corporation Of America Pdsch precoding adaptation for lte in unlicensed bands

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385678A1 (en) * 2020-06-04 2021-12-09 Qualcomm Incorporated Location assistance data for wideband positioning
US11792666B2 (en) * 2020-06-04 2023-10-17 Qualcomm Incorporated Location assistance data for wideband positioning

Also Published As

Publication number Publication date
CN112956136A (en) 2021-06-11

Similar Documents

Publication Publication Date Title
US20220116902A1 (en) Uplink positioning for idle or inactive terminal device
EP3281347B1 (en) Enhanced positioning reference signal patterns for positioning
US11310816B2 (en) Associating a downlink reference signal for positioning of a user equipment with an uplink reference signal for transmission by the user equipment
US11070337B2 (en) Methods and apparatuses for reference signal configuration
US11546103B2 (en) Physical layer aspects of round-trip time and observed time difference of arrival based positioning
CN109964142B (en) Method for detecting the position of a narrowband positioning reference signal NPRS in a radio frame
RU2694015C1 (en) Wireless device, a radio network node and a method of controlling signal transmission in a wireless communication network
CN114402667B (en) Multi-stage Positioning Reference Signal (PRS) mechanism for downlink departure angle (DL-AOD) positioning
US10320511B2 (en) Methods and arrangements for pilot sequence coordination
WO2020163983A1 (en) Enhanced positioning mechanism based on otdoa
US20140256332A1 (en) Interference coordination between macrocell and small cell
WO2021026699A1 (en) Prs resource mapping and configuration based on grouping
US20220086787A1 (en) Wireless device, network node and methods performed therein for time of arrival estimation
US11956168B2 (en) PRS design by extending the basic signal
WO2020087441A1 (en) Beam pattern exchange for positioning reference signal measurement
WO2020191657A1 (en) Sidelink transmission and reception
US20230397151A1 (en) Positioning Based on Multiple Measurement Reports
WO2022170520A1 (en) Mobility-based beam configuration for positioning reference signal
WO2023273681A1 (en) Network device, terminal device, server, and methods therein for indoor positioning
US20230366977A1 (en) Method and apparatus for positioning reference signal transmission and reception
WO2023201597A1 (en) Method, device and computer readable medium for communications
WO2023050419A1 (en) Skipping report of positioning measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938995

Country of ref document: EP

Kind code of ref document: A1