WO2022170520A1 - Mobility-based beam configuration for positioning reference signal - Google Patents

Mobility-based beam configuration for positioning reference signal Download PDF

Info

Publication number
WO2022170520A1
WO2022170520A1 PCT/CN2021/076368 CN2021076368W WO2022170520A1 WO 2022170520 A1 WO2022170520 A1 WO 2022170520A1 CN 2021076368 W CN2021076368 W CN 2021076368W WO 2022170520 A1 WO2022170520 A1 WO 2022170520A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
reference signal
beam configuration
configurations
positioning reference
Prior art date
Application number
PCT/CN2021/076368
Other languages
French (fr)
Inventor
Jianguo Liu
Tao Tao
Yan Meng
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/076368 priority Critical patent/WO2022170520A1/en
Priority to CN202180063573.7A priority patent/CN116250187A/en
Publication of WO2022170520A1 publication Critical patent/WO2022170520A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0834Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection based on external parameters, e.g. subscriber speed or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • Example embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media for mobility-based beam configuration for a positioning reference signal (PRS) .
  • PRS positioning reference signal
  • New Radio (NR) positioning technologies are based on Downlink Time Difference of Arrival (DL-TDOA) , Uplink Time Difference of Arrival (UL-TDOA) , Downlink Angle of Departure (DL-AoD) , Uplink Angle of Arrival (UL-AoA) , and Multi-cell Round Trip Time (Multi-RTT) .
  • DL-TDOA Downlink Time Difference of Arrival
  • UL-TDOA Uplink Time Difference of Arrival
  • DL-AoD Downlink Angle of Departure
  • U-AoA Uplink Angle of Arrival
  • Multi-RTT Multi-cell Round Trip Time
  • RAT Radio access Technology dependent positioning in Rel-16 is directed to user equipment (UEs) in a RRC connected mode.
  • Positioning is to be enhanced in Rel-17 to support positioning for UEs in RRC inactive states.
  • the spatial relation configuration may be not effective for the positioning.
  • example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media for mobility-based beam configuration for a positioning reference signal (PRS) .
  • PRS positioning reference signal
  • a first device which comprises at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to determine, from a plurality of mobility states, a mobility state of the first device and select a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state.
  • the first device is further caused to transmit, to a second device, the positioning reference signal using the selected beam configuration.
  • a second device which comprises at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to derive at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal.
  • the second device is further caused to receive, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
  • a third device which comprises at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device to determine at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal.
  • the third device is further caused to send, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
  • a method is provided at a first device.
  • the first device determines, from a plurality of mobility states, a mobility state of the first device and selects a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state. Further, the first device transmits, to a second device, the positioning reference signal using the selected beam configuration.
  • a method is provided at a second device.
  • the second device derives at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal.
  • the second device then receives, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
  • a method is provided at a third device.
  • the third device determines at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal.
  • the third device sends, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
  • an apparatus comprising means for performing the method according to the fourth, fifth or sixth aspect.
  • a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by a processor of a device, cause the device to perform the method according to the fourth, fifth or sixth aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling flow according to some example embodiments of the present disclosure
  • FIG. 3 illustrates an example mobility state machine of a first device according to some example embodiments of the present disclosure
  • FIG. 4 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • FIG. 5 illustrates a flowchart of an example method according to some other example embodiments of the present disclosure
  • FIG. 6 illustrates a flowchart of an example method according to some other example embodiments of the present disclosure.
  • FIG. 7 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • terminal device or “user equipment” (UE) refers to any terminal device capable of wireless communications with each other or with the base station.
  • the communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air.
  • the UE may be configured to transmit and/or receive information without direct human interaction. For example, the UE may transmit information to the base station on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
  • Examples of the UE include, but are not limited to, smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , wireless customer-premises equipment (CPE) , sensors, metering devices, personal wearables such as watches, and/or vehicles that are capable of communication.
  • LEE laptop-embedded equipment
  • LME laptop-mounted equipment
  • CPE wireless customer-premises equipment
  • sensors metering devices
  • personal wearables such as watches, and/or vehicles that are capable of communication.
  • the term “network device” refers to a device via which services can be provided to a terminal device in a communication network.
  • the network device may comprise a base station.
  • the term “base station” refers to a network device via which services can be provided to a terminal device in a communication network.
  • the base station may comprise any suitable device via which a terminal device or UE can access the communication network.
  • Examples of the base stations include a relay, an access point (AP) , a transmission and reception point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a New Radio (NR) NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
  • AP access point
  • TRP transmission and reception point
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB New Radio
  • RRU Remote Radio Module
  • RH radio header
  • RRH remote radio head
  • a low power node such as a femto, a pico, and the like.
  • the term “positioning reference signal” refers to any reference signal that can be used for the positioning purpose.
  • the PRSs may comprise DL PRSs transmitted by a network device to a terminal device, a UL SRS transmitted by a terminal device to a network device, or other PRSs of other types.
  • the PRS may comprise a SRS, a demodulation reference signal (DMRS) , a random access channel (RACH) preamble, or a dedicated reference signal for positioning.
  • DMRS demodulation reference signal
  • RACH random access channel
  • circuitry may refer to one or more or all of the following:
  • combinations of hardware circuits and software such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular base station, or other computing or base station.
  • first As used herein, the terms “first” , “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be referred to as a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
  • transmission beam configuration of Sounding Reference Signal (SRS) resource is introduced for a target neighbor cell or Transmission and Reception Point (TRP) , and power control considers a neighbor cell or TRP.
  • SRS Sounding Reference Signal
  • TRP Transmission and Reception Point
  • a UE can transmit an SRS resource intended to a target cell or TRP.
  • the higher layer parameter spatialRelationInfoPos-r16 is introduced in the configuration per SRS resource to determine a transmitting (Tx) spatial filter for positioning SRS transmission.
  • Pathloss reference RSs for power control of positioning SRS may follow downlink RSs in spatial relation configuration from the serving cell or neighboring cell.
  • the pathloss reference RS and the spatial relation information are configured per SRS resource set in Rel-16 NR.
  • the configuration of the spatial relation between a reference RS and a target SRS may be provided by Radio Resource Control (RRC) or Media Access Control Control Element (MAC-CE) as below:
  • RRC Radio Resource Control
  • MAC-CE Media Access Control Control Element
  • the beam transmission may benefit the coverage or hearability of SRSs for uplink positioning.
  • a UE can be configured with the higher layer parameter spatialRelationInfo to determine a transmission spatial filter (such as a transmission beam) for transmission of a positioning SRS.
  • DL-RSs from multiple TRPs are individually associated with receiving (Rx) spatial filters of the UE. Based on the principle of reciprocity, the UE will first measure DL-RSs such as Synchronization Signal Block (SSBs) , PRS or/and CSI-RS in per SRS resource from a target cell or neighboring cell, and then transmit SRSs in the corresponding UL beam directions based on the received DL Rx beams. At the same time, the UE may estimate pathloss based on the pathloss reference RS per SRS resource for power control of the positioning SRS.
  • SSBs Synchronization Signal Block
  • NR positioning is focused on Industrial Internet of Things (IIoT) .
  • IIoT Industrial Internet of Things
  • One key objective is to support the high accuracy (horizontal and vertical) , low latency, network efficiency (scalability, reference signal overhead and the like) , and device efficiency (power consumption, complexity, and the like) requirements for commercial uses cases including general commercial use cases and specific (I) IoT use cases.
  • One of the use cases in the industry IoT is asset tracking. Asset tracking is to track locations of assets and becomes increasingly important in improving processes and increasing flexibility in industrial environments. This use case requires combination of positioning and wireless communication technologies in a cost and power efficient manner.
  • NR Positioning is to be enhanced for a UE in a RRC inactive state in Rel-17.
  • the spatial relation configuration may be not effective any more for uplink positioning. Accordingly, the spatial relationship configuration needs to be updated at a network side.
  • the UE may transmit the positioning SRS with larger output power to compensate the pathloss estimated based on the pathloss reference RS, the received signal quality at the TRPs may still very weak due to invalid configuration of the spatial relationship for transmission beam determination, which will cause positioning performance degradation and unnecessary power consumption of the UE. Therefore, it is necessary to quickly update the spatial relationship for positioning UE in moving state so as to align the transmission beam with directions of TRPs and thus to improve the positioning SRS hearability and reduce UE power consumption.
  • the NR data transmission is only supported in a RRC connected state.
  • it is necessary to frequently cause the inactive UE to enter the RRC connected state for beam management and spatial relationship configuration.
  • frequent message exchange with the network will inevitably result in unnecessary UE power consumption as well as increase of UE complexity, which is not effective and acceptable especially for low-power asset tracking devices.
  • Example embodiments of the present disclosure provide a mobility-based autonomous selection mechanism for a beam configuration for transmission of a positioning reference signal (PRS) such as a SRS.
  • PRS positioning reference signal
  • the mechanism at least two beam configurations are provided to a device such as a UE for transmission of a positioning reference signal.
  • the device autonomously selects a beam configuration based at least in part on a mobility state of the device and transmits the positioning reference signal using the selected beam configuration.
  • the device may be provided with a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal, as well as at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • the beam configuration based on the spatial relation configuration may be used for the transmission of the positioning reference signal.
  • an omni-directional beam or a plurality of narrow beams for beam sweeping may be used for the transmission of the positioning reference signal.
  • a positioning device such as an asset tracking device
  • FIG. 1 shows an example environment 100 in which example embodiments of the present disclosure can be implemented.
  • the environment 100 which may be a part of a communication network, comprises a terminal device 110 (such as a UE) and a base station 120 (such as a new radio NodeB or a gNB) that can communicate with each other.
  • the environment 100 further comprises a transmission and reception point (TRP) 130 and a location management functionality (LMF) 140 for providing a location service to the terminal device 110.
  • TRP transmission and reception point
  • LMF location management functionality
  • terminal device 110 the terminal device 110, the base station 120, the TRP 130 and the LMF 140 are shown in the environment 200 only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure. There may be any suitable numbers of terminal devices, base stations, TRPs and LMFs and any other devices in the environment 100.
  • the physically separate arrangement of the base station 120, the TRP 130 and the LMF 140 is shown only for the purpose of illustration, without suggesting any limitation.
  • the TRP 130 and/or the LMF 140 may be integrated within the base station 120 or a further base station (not shown) .
  • the communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and
  • the base station 120 or the LMF 140 may specify at least two beam configurations for the terminal device 110 to transmit a positioning reference signal such as SRS.
  • the beam configurations may be dynamic, semi-persistent or semi-static, or even fixed or predefined. Accordingly, before the terminal device 110 transmits a SRS, the terminal device 110 selects a beam configuration based on its mobility state and then uses the selected beam configuration to transmit the SRS to the base station 120 or the TRP 130.
  • FIG. 2 illustrates an example signaling flow 200 of PRS transmission in accordance with some example embodiments of the present disclosure.
  • a first device 205 receives (210) an indication of at least one of a plurality of beam configurations via a second device 215 from a third device 220.
  • the first device 210 may be implemented by the terminal device 110 in FIG. 1
  • the second device 220 may be implemented by the base station 120 or the TRP 130 in FIG. 1
  • the third device 230 may be implemented by the LMF 140 in FIG. 1.
  • the first device 205 may be implemented by a relay or a TRP or even a further base station.
  • the second device 215 may be implemented by a terminal device or a relay or even a LMF with the function of positioning measurement. It would be also possible that the second device 215 and the third device 220 are implemented by one device such as the base station 220.
  • the plurality of beam configurations may comprise a first beam configuration such as a configuration of a narrow beam.
  • the first beam configuration may comprise a beam configuration based on a spatial relation configuration of a resource for a PRS. Based on the spatial relation configuration, a transmission beam (or a transmission spatial filter) of the PRS is associated with downlink reference signal (DL-RS) such as a Synchronization Signal Block (SSB) , a Channel State Information Reference Signal (CSI-RS) or a Downlink Positioning Reference Signal (DL-PRS) , from a serving or neighboring cell.
  • DL-RS downlink reference signal
  • the beam configurations may also comprise a different second beam configuration such as a configuration of a wide beam.
  • the second beam configuration may comprise a configuration of an omni-directional beam or a plurality of narrow beams for beam sweeping.
  • the indication of the beam configurations from the third device 220 to the first device 205 is optional.
  • the plurality of beam configurations can be predefined or indicated together or separately.
  • one or more beam configurations of the plurality of beam configurations may be predefined, and other beam configurations may be dynamically indicated from the network.
  • the first device 205 may receive one or more indications from the third device 220.
  • the first device 205 may receive from the third device 220 one indication for all the dynamically adjusted beam configurations.
  • the first device 205 may receive separate indications for different beam configurations.
  • the first device 205 selects (225) a beam configuration from the plurality of beam configurations for transmission of a PRS, based at least in part on a mobility state of the first device 205.
  • the terminal device 205 may autonomously select one of the beam configurations based on its mobility state machine.
  • FIG. 3 shows an example mobility state machine 300 of the first device 205 according to some example embodiments of the present disclosure.
  • the mobility state machine 300 may be pre-defined or configured by taking a plurality of mobility states into account.
  • the mobility state of the first device 205 is classified into a quasi-static state 305 and a moving state 310.
  • the mobility state may be determined based on a moving speed and/or a moving distance. For example, if the moving speed of the first device 205 is larger than a threshold speed, and/or the moving distance is larger than a threshold distance, the terminal device 205 may be determined to be in the moving state 310. Otherwise, the terminal device 205 may be considered to be in the quasi-static state 305.
  • the first device 205 may use the outcome of DL-RS measurement from the second device 215 such as the TRP 130 in FIG. 1 as one factor to determine the mobility state. For example, the first device 205 may compare received signal strength such as SSB Reference Signal Receiving Power (SSB-RSRP) or PRS-RSRP with threshold signal strength.
  • SSB-RSRP SSB Reference Signal Receiving Power
  • PRS-RSRP PRS-RSRP with threshold signal strength.
  • the RS to be measured such as a DL-RS may be indicated by the spatial relation configuration of the resource for the PRS.
  • the first device 205 may determine the mobility state based on joint consideration of the moving speed and the measurement results of the DL-RS from the second device 215. For example, if the moving speed is larger than a given threshold and the measured RSRP of the DL-RS is lower than a given threshold, the first device 205 may determine to be in the moving state. Otherwise, the first device 205 may be identified to be in the quasi-static state 305.
  • the thresholds as discussed above may be predefined in the 3GPP standards or configured by the network such as the third device 220 (for example, the base station 120 or the LMF 140 in FIG. 1) .
  • the first device 204 may select the first kind of beam configuration in the quasi-static state. After the first device 205 moves, the narrow beam may become invalid and then first device 205 may select a configuration of a wide beam (such as an omin-directional beam) for transmission of PRS.
  • a wide beam such as an omin-directional beam
  • the first device 205 transmits (230) a PRS to the second device 215 such as the base station 120 or the TRP 130.
  • the second device 215 receives (225) at least one indication of the plurality of beam configurations from the third device 220.
  • the second device 215 derives (225) at least two beam configurations of the plurality of beam configurations for the first device 205 to transmit a PRS.
  • the second device 215 receives (240) the PRS from the first device 205 based at least in part on a beam configuration of the plurality of beam configurations.
  • the transmission of at least one indication of the plurality of beam configurations from the third device 220 to the second device 215 is also optional.
  • such an indication is not needed.
  • the first device 205 may report (245) to the third device 220 an indication of at least one transition between the plurality of mobility states, for example, as defined in the mobility state machine 300 as shown in FIG. 3. Accordingly, the network can determine at least whether or not to update the beam configuration for the first device 205.
  • FIG. 4 shows a flowchart of an example method 400 according to some example embodiments of the present disclosure.
  • the method 400 can be implemented by the first device 205 as shown in FIG. 2, such as the terminal device 110.
  • the method 400 will be described with reference to FIGS. 1-3.
  • the first device 205 determines, from a plurality of mobility states, a mobility state of the first device 205. For example, the determination may be performed by the first device 205 when it is to transmit a PRS to the second device 215. The determination may also be triggered by a specific event such as update for a beam configuration which will be detailed in the following paragraphs.
  • the plurality of mobility states may be predefined or configured, for example, in the mobility state machine 300 as shown FIG. 3.
  • the first device 205 may use any suitable rule or criterion to determine its mobility state.
  • the first device 205 may jointly consider a moving speed, moving distance and/or received signal strength of a DL RS from the second device 215.
  • the DL RS may be indicated by a beam configuration of the plurality of beam configurations.
  • the first device 205 may compare its moving speed with threshold speed or compare its moving distance with a threshold distance. If the first device 205 moves faster or farther, the first device 205 may be moving. If the first device 205 moves slower or nearer, the first device 205 may be considered as semi-static. The moving speed or distance may be measured using any suitable positioning techniques or devices that already exist or will be developed in the future.
  • the first device 205 may compare received signal strength of a DL RS, such as Reference Signal Received Power (RSRP) and Reference Signal Receiving Quality (RSRQ) , from the second device 215 with threshold signal strength to determine its moving state.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Receiving Quality
  • Any suitable signal measurement mechanism may be used, and the scope of the present disclosure will not be limited in this regards.
  • the first device 205 may be considered to be semi-static. In the example embodiments where both the moving speed and the received signal strength are considered, if the moving speed is larger than a given threshold and the measured RSRP of the DL-RS is lower than a given threshold, the first device 205 may be treated to be in the moving state. Otherwise, the first device 205 may be identified to be in the quasi-static state.
  • the thresholds as described above may be predefined the 3GPP standards or configured dynamically, semi-persistently or fixedly by the network such as the third device 220 according to actual needs.
  • the first device 205 selects a beam configuration from a plurality of beam configurations for transmission of a PRS based at least in part on the determined mobility state.
  • the network can specify two or more beam configurations for transmission of the PRS on the given SRS resources.
  • one beam configuration may be determined by the spatial relation configuration where the transmission spatial filter (such as a transmission beam) of the PRS is associated with DL-RS (such as SSB, CSI-RS or DL-PRS) from the serving or neighboring cell.
  • the first device 205 may measure the transmission of the DL-RS for transmission beam alignment with the second device 215 (such as the TRP 130 in FIG. 1) and use a narrow beam for transmission of the PRS to improve the PRS hearability at the second device 215.
  • the beam configurations may comprise another beam configuration where the first device 205 transmits the PRS with a wide beam (such as an omni-directional beam) or beam sweeping operation. If an omni-directional beam is used or the beam sweeping configuration is used, it may be ensured that the second device 215 (such as the TRP 130 in FIG. 1) can hear transmission of the PRS and therefore the transmission efficiency of the PRS may be ensured.
  • a wide beam such as an omni-directional beam
  • the second device 215 such as the TRP 130 in FIG. 1
  • the plurality of beam configurations may be predefined or specified together or separately.
  • these beam configurations may be indicated to the first device 205 together, for example, by the Information Element (IE) SRS-Config or other messages.
  • IE Information Element
  • one beam configuration may be indicated to the first device 205, for example, by the IE SRS-Config or other messages, and another beam configuration may be pre-defined in the 3GPP standards.
  • the plurality of beam configurations may be signed to the first device 205 separately through different messages.
  • the first device 205 may receive the plurality of beam configurations from the third device 220 such as the base station 120 or/and the LMF 140 in FIG. 1.
  • the beam configuration may be determined by the base station 120 and then be signaled to the terminal device 110 through higher layer signaling such as RRC signaling as defined in Rel-16 NR positioning or L1 or physical layer (PHY) signaling.
  • the spatial relation configuration may be determined by the LMF 140.
  • the LMF 140 may signal the beam configuration to the terminal device 110 through Long Term evolution (LTE) Positioning Protocol (LPP) .
  • LTP Long Term evolution
  • the LMF 140 may forward the spatial relation configuration to the base station 120 and then the base station 120 sends the configuration to the terminal device 110 through RRC or L1 signaling.
  • each beam configuration may be determined by different network nodes or function entities (for example, by the base station 120 or the LMF 140) , respectively.
  • the beam configuration may be selected based on a mobility state machine of the first device 205 such as the mobility state machine 300.
  • the mobility state machine may be predefined in the 3GPP standards or configured by the network based on the mobility states of the first device 205.
  • the first device 205 may have mobility state transition/switching from the quasi-static state 305 to the moving state 310, or from the moving state 310 to the quasi-static state 305.
  • the first device 205 can autonomously select one of the beam configurations based on the state transition or specific event, for example.
  • the first device 205 when the first device 205 starts moving (for example, switches the quasi-static state 305 to the moving state 310) , the first beam configuration such as a narrow beam will become invalid and the first device 205 may select the second beam configuration such as a wide beam to determine the spatial filter (such as the transmission beam) for transmission of the PRS.
  • the first beam configuration such as a narrow beam
  • the first device 205 may select the second beam configuration such as a wide beam to determine the spatial filter (such as the transmission beam) for transmission of the PRS.
  • the first device 205 may check whether the first beam configuration is valid or not. If the first beam configuration is valid, the terminal device 205 will use the first beam configuration, otherwise it will still use the second beam configuration to determine the transmission spatial filter for the PRS.
  • the beam configurations may be updated.
  • the first device 205 may receive an indication of update for one or more beam configurations.
  • the first device 205 may receive such an indication in a connected state such as a RRC connected state or in an inactive state such as a RRC inactive state through a paging procedure and/or a RACH/Configured Grant (CG) -based procedure.
  • a connected state such as a RRC connected state
  • an inactive state such as a RRC inactive state through a paging procedure and/or a RACH/Configured Grant (CG) -based procedure.
  • CG RACH/Configured Grant
  • the first device 205 may be triggered to check the mobility state. For example, when the first device 205 is in the moving state 310, it can be transited to the -static state 305quasi after receiving this indication for the update of a beam configuration.
  • the first device 205 may refresh the validity state for a beam configuration. For example, if the configuration for a narrow beam is updated, it may be activated by the first device 205 for transmission of the PRS while the first device 205 is in the quasi-static state 305. If the configuration for a wide beam is updated, it may be activated by the first device 205 for transmission of the PRS when the first device 205 is in the moving state 310 or when the configuration for a narrow beam is invalid while in the quasi-static state. In some example embodiments, if a beam configuration is invalid, the beam configuration will be marked as an invalid configuration.
  • the first device 205 may be configured to report the mobility state transition information. Accordingly, the first device 205 may send to the third device 220 (such as the base station 120 and the LMF 140 in FIG. 1) an indication of at least one transition between its mobility states.
  • the third device 220 such as the base station 120 and the LMF 140 in FIG. 1
  • the configuration information may be delivered to the first device 205 in any suitable way.
  • the configuration information may be received from the bases station 120 such as the serving gNB through RRC or L1 signaling, or from the LMF 140 based on the LPP protocol.
  • the configuration for the report may be signaled to the first device 205 by the IE SRS-Config.
  • the report may be triggered by at least one of state transitions as defined in the mobility state machine 300, for example.
  • the first device 205 may be configured to report an indication for each state transition defined in the mobility state machine 300, separately.
  • the first device 205 may be triggered to report an indication for any state transition as defined in the mobility state machine 300.
  • the third device 220 may update the corresponding beam configuration, which will be detailed in the following paragraphs with reference to FIG. 5.
  • the first device 205 Upon the selection of a beam configuration, at block 415, the first device 205 transmits a PRS to the second device 215 using the selected beam configuration. For example, the first device 205 may transmit the PRS on the corresponding resources in a beam direction determined using the beam configuration selected based on its own mobility state machine.
  • the first device 205 may transmit the PRS with an omni-directional beam or a plurality of narrow beams by beam sweeping indicated by a beam configuration in the moving state 310 so as to ensure that the second device 215 can effectively measure the PRS.
  • the first device 205 may transmit the PRS with a narrow beam associated with a DL-RS of the second device 215 indicated by the first beam configuration in the quasi-static state so as to improve the hearability/coverage of the PRS.
  • FIG. 5 shows a flowchart of an example method 500 according to some example embodiments of the present disclosure.
  • the method 500 can be implemented by the second device 215 as shown in FIG. 2, such as the TRP 130 or the base station 120 in FIG. 1.
  • the method 500 will be described with reference to FIGS. 1-3.
  • the second device 215 derives at least two beam configurations of the plurality of beam configurations for the first device 205 to transmit a PRS.
  • the second device 215 such as the TRP 130 or the base station 120 may receive one or more indication of the at least one beam configurations.
  • the second device 215 may configure the at least two beam configurations by itself.
  • the second device 215 may indicate the at least two beam configurations to the first device 205.
  • the second device 215 may receive at least one indication of the plurality of beam configurations from the third device 220.
  • one or more beam configurations of the plurality of beam configurations may be configured by the third device 220 and the beam configurations may be indicated to the second device 215 together or separately. Accordingly, the second device 215 may receive from the third device 220 one indication for all the configured beam configurations or separate indications for different beam configurations.
  • the plurality of beam configurations may be predefined in the 3GPP standards. In this example, there is no need for the second device 215 to receive an indication of the beam configurations from the third device 220.
  • the second device 215 receives the PRS from the first device 205 based at least in part on a beam configuration of the plurality of beam configurations.
  • the used beam configuration may be selected from the plurality of beam configurations by beam sweeping.
  • the third device 220 may signal the mobility state of the first device 205 to the second device 215. Accordingly, the second device 215 may switch to corresponding receiving beam for PRS measurement based on the mobility state so as to improve the measurement accuracy.
  • FIG. 6 shows a flowchart of an example method 600 according to some example embodiments of the present disclosure.
  • the method 600 can be implemented by the third device 220 as shown in FIG. 2, such as the base station 120 or the LMF 140 in FIG. 1.
  • the method 600 will be described with reference to FIGS. 1-3.
  • the third device 220 determines at least two beam configurations for the first device 205 to transmit a PRS.
  • the determination of the beam configurations may be dynamic, semi-persistent or even fixed.
  • one or more beam configurations may be updated based on the mobility state of the first device 205.
  • the third device 220 may receive, from the first device 205, an indication of at least one transition between a plurality of mobility states of the first device 205. Based on the indication of the state transition of the first device 205, the third device 220 may determine whether or not to update a beam configuration. For example, if the indication is related to the state transition from the moving state 310 to the quasi-static state 305, the third device 220 may determine to update the configuration for a narrow beam such as a beam based on the spatial relation configuration of a PRS for the first device 205 so as to achieve better performance. The update of the SRS configuration can be performed based on a location of the first device 205.
  • the third device 220 may configure or indicate the first device 205 to report the mobility state transition information.
  • the configuration information may be delivered to the first device 205 through RRC or L1 signaling.
  • the configuration information may be transmitted based on the LPP protocol.
  • the indication to report the mobility state may be signaled to the first device 205 by the IE SRS-Config.
  • the third device 220 sends, to the first device 205, an indication of the at least two beam configurations of the plurality of beam configurations.
  • the third device 220 may receive, from the first device 205, the PRS using a beam configuration of the plurality of beam configurations.
  • one or more beam configurations of the plurality of beam configurations may be specified by the third device 220.
  • the third device 220 may send at least one indication of the one or more beam configurations to the second device 215.
  • FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing example embodiments of the present disclosure.
  • the device 700 can be implemented at or as a part of the first device 205, the second device 215 or the third device 220 as shown in FIG. 2.
  • the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a communication module 730 coupled to the processor 710, and a communication interface (not shown) coupled to the communication module 730.
  • the memory 720 stores at least a program 740.
  • the communication module 730 is for bidirectional communications, for example, via multiple antennas.
  • the communication interface may represent any interface that is necessary for communication.
  • the program 740 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the example embodiments of the present disclosure, as discussed herein with reference to FIGS. 1-6.
  • the example embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.
  • the processor 710 may be configured to implement various example embodiments of the present disclosure.
  • the memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700.
  • the processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the processor 710 and the communication module 730 may cooperate to implement the method 400 as described above with reference to FIGS. 1-4.
  • the processor 710 and the communication module 730 may cooperate to implement the method 500 as described above with reference to FIGS. 1-3 and 5.
  • the processor 710 and the communication module 730 may cooperate to implement the method 600 as described above with reference to FIGS. 1-3 and 6. All operations and features as described above with reference to FIGS. 1-6 are likewise applicable to the device 700 and have similar effects. For the purpose of simplification, the details will be omitted.
  • various example embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of example embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 400, 500 or 600 as described above with reference to FIGS. 1-5.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various example embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • DVD Digital Versatile Disc
  • an optical storage device a magnetic storage device, or any suitable combination of the foregoing.
  • a first device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the first device to: determine, from a plurality of mobility states, a mobility state of the first device; select a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and transmit, to a second device, the positioning reference signal using the selected beam configuration.
  • the first device is further caused to: receive, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
  • At least one beam configuration of the plurality of beam configurations is predefined.
  • the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration
  • the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal
  • the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • the first device is caused to select the beam configuration by: in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
  • the first device is further caused to: in response to a transition from the quasi-static state to a moving state, select the second beam configuration for subsequent transmission of the positioning reference signal.
  • the first device is caused to select the beam configuration by: in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
  • the first device is further caused to: in accordance with a determination that the first device stops moving, determine validity of the first beam configuration; and in accordance with a determination that the first beam configuration is valid, select the first beam configuration for subsequent transmission of the positioning reference signal.
  • the first device is further caused to: in accordance with a determination that the first beam configuration is invalid, continue the use of the second beam configuration for the subsequent transmission of the positioning reference signal.
  • the first device is further caused to: send to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
  • the first device is caused to determine the mobility state of the first device by: in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device.
  • the first device is caused to transmit the positioning reference signal using the selected beam configuration by: in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and transmitting, to the second device, the positioning reference signal using the updated beam configuration.
  • the first device is caused to determine the mobility state of the first device by at least one of: comparing moving speed of the first device with threshold speed; comparing a moving distance of the first device with a threshold distance; or comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
  • the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
  • the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  • a second device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the second device to: derive at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and receive, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
  • the second device is caused to derive the at least two beam configurations by: receiving, from the third device, at least one indication of the plurality of beam configurations.
  • the second device comprises a new radio NodeB or a transmission and reception point.
  • the third device comprises a new radio NodeB or a location management functionality unit.
  • a third device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the third device to: determine at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and send, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
  • the third device is further caused to receive, from the first device, the positioning reference signal using a beam configuration of the plurality of beam configurations.
  • At least one beam configuration of the plurality of beam configurations is predefined.
  • the third device is further caused to: receive, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
  • the third device is further caused to: determine, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and update, based on a location of the first device, at least one of the plurality of beam configurations.
  • the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  • a method implemented at a first device comprises: determining, from a plurality of mobility states, a mobility state of the first device; selecting a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and transmitting, to a second device, the positioning reference signal using the selected beam configuration.
  • the method further comprises: receiving, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
  • At least one beam configuration of the plurality of beam configurations is predefined.
  • the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration
  • the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal
  • the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • selecting the beam configuration comprises: in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
  • the method further comprises: in response to a transition from the quasi-static state to a moving state, selecting the second beam configuration for subsequent transmission of the positioning reference signal.
  • selecting the beam configuration comprises: in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
  • the method further comprises: in accordance with a determination that the first device stops moving, determining validity of the first beam configuration; and in accordance with a determination that the first beam configuration is valid, selecting the first beam configuration for subsequent transmission of the positioning reference signal.
  • the method further comprises: in accordance with a determination that the first beam configuration is invalid, continues the use of the second beam configuration for the subsequent transmission of the positioning reference signal.
  • the method further comprises: sending, to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
  • determining the mobility state of the first device comprises: in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device.
  • Transmitting the positioning reference signal using the selected beam configuration comprises: in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and transmitting, to the second device, the positioning reference signal using the updated beam configuration.
  • determining the mobility state of the first device comprises determining the mobility state of the first device by at least one of: comparing moving speed of the first device with threshold speed; comparing a moving distance of the first device with a threshold distance; or comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
  • the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
  • the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  • a method implemented at a second device comprises: deriving at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and receiving, from the first device, the positioning reference signal based at least in part ona beam configuration of the plurality of beam configurations.
  • deriving the at least two beam configurations comprises: receiving, from the third device, at least one indication of the plurality of beam configurations.
  • the second device comprises a new radio NodeB or a transmission and reception point.
  • the third device comprises a new radio NodeB or a location management functionality unit.
  • a method implemented at a third device comprises: determining at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and sending, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
  • the method further comprises: receiving, from the first device, the positioning reference signal using a beam configuration of the plurality of beam configurations.
  • At least one beam configuration of the plurality of beam configurations is predefined.
  • the method further comprises: receiving, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
  • the method further comprises: determining, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and updating, based on a location of the first device, at least one of the plurality of beam configurations
  • the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  • an apparatus comprises: means for determining, from a plurality of mobility states, a mobility state of the first device; means for selecting a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and means for transmitting, to a second device, the positioning reference signal using the selected beam configuration.
  • the apparatus further comprises: means for receiving, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
  • At least one beam configuration of the plurality of beam configurations is predefined.
  • the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration
  • the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal
  • the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • the means for selecting the beam configuration comprises: means for in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
  • the apparatus further comprises: means for in response to a transition from the quasi-static state to a moving state, selecting the second beam configuration for subsequent transmission of the positioning reference signal.
  • the means for selecting the beam configuration comprises: means for in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
  • the apparatus further comprises: means for in accordance with a determination that the first device stops moving, determining validity of the first beam configuration; and means for in accordance with a determination that the first beam configuration is valid, selecting the first beam configuration for subsequent transmission of the positioning reference signal.
  • the apparatus further comprises: means for in accordance with a determination that the first beam configuration is invalid, continuing the use of the second beam configuration for the subsequent transmission of the positioning reference signal.
  • the apparatus further comprises: means for sending, to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
  • the means for determining the mobility state of the first device comprises: means for in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device.
  • the means for transmitting the positioning reference signal using the selected beam configuration comprises: means for in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and means for transmitting, to the second device, the positioning reference signal using the updated beam configuration.
  • the means for determining the mobility state of the first device comprises means for determining the mobility state of the first device by at least one of: comparing moving speed of the first device with threshold speed; means for comparing a moving distance of the first device with a threshold distance; or means for comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
  • the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
  • the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  • an apparatus comprises: means for deriving at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and means for receiving, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
  • the means for deriving the at least two beam configurations comprises: means for receiving, from the third device, at least one indication of the plurality of beam configurations.
  • the second device comprises a new radio NodeB or a transmission and reception point.
  • the third device comprises a new radio NodeB or a location management functionality unit.
  • an apparatus comprises: means for determining at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and means for sending, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
  • the apparatus further comprises means for receiving, from the first device, the positioning reference signal using a beam configuration of the plurality of beam configurations.
  • At least one beam configuration of the plurality of beam configurations is predefined.
  • the apparatus further comprises: means for receiving, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
  • the apparatus further comprises: means for determining, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and means for updating, based on a location of the first device, at least one of the plurality of beam configurations.
  • the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  • the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  • a computer readable storage medium comprises program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method according to some example embodiments of the present disclosure.

Abstract

Example embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media for mobility-based beam configuration for a positioning reference signal (PRS). In example embodiments, the first device determines, from a plurality of mobility states, a mobility state of the first device and selects a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state. Further, the first device transmits, to a second device, the PRS using the selected beam configuration. It is beneficial to reduce power consumption and processing complexity at the positioning device.

Description

MOBILITY-BASED BEAM CONFIGURATION FOR POSITIONING REFERENCE SIGNAL FIELD
Example embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media for mobility-based beam configuration for a positioning reference signal (PRS) .
BACKGROUND
In Release 16 (Rel-16) , New Radio (NR) positioning technologies are based on Downlink Time Difference of Arrival (DL-TDOA) , Uplink Time Difference of Arrival (UL-TDOA) , Downlink Angle of Departure (DL-AoD) , Uplink Angle of Arrival (UL-AoA) , and Multi-cell Round Trip Time (Multi-RTT) . Moreover, a new Sounding Reference Signal (SRS) for uplink positioning was introduced. Radio access Technology (RAT) dependent positioning in Rel-16 is directed to user equipment (UEs) in a RRC connected mode.
Positioning is to be enhanced in Rel-17 to support positioning for UEs in RRC inactive states. However, if a UE is configured with a narrow beam, when the UE moves, the spatial relation configuration may be not effective for the positioning.
SUMMARY
In general, example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media for mobility-based beam configuration for a positioning reference signal (PRS) .
In a first aspect, a first device is provided which comprises at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to determine, from a plurality of mobility states, a mobility state of the first device and select a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state. The first device is further caused to transmit, to a second device, the positioning reference signal  using the selected beam configuration.
In a second aspect, a second device is provided which comprises at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to derive at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal. The second device is further caused to receive, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
In a third aspect, a third device is provided which comprises at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the third device to determine at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal. The third device is further caused to send, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
In a fourth aspect, a method is provided at a first device. In the method, the first device determines, from a plurality of mobility states, a mobility state of the first device and selects a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state. Further, the first device transmits, to a second device, the positioning reference signal using the selected beam configuration.
In a fifth aspect, a method is provided at a second device. In the method, the second device derives at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal. The second device then receives, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
In a sixth aspect, a method is provided at a third device. In the method, the third device determines at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal. The third device sends, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
In a seventh aspect, there is provided an apparatus comprising means for  performing the method according to the fourth, fifth or sixth aspect.
In a seventh aspect, there is provided a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by a processor of a device, cause the device to perform the method according to the fourth, fifth or sixth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of example embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a signaling flow according to some example embodiments of the present disclosure;
FIG. 3 illustrates an example mobility state machine of a first device according to some example embodiments of the present disclosure;
FIG. 4 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
FIG. 5 illustrates a flowchart of an example method according to some other example embodiments of the present disclosure;
FIG. 6 illustrates a flowchart of an example method according to some other example embodiments of the present disclosure; and
FIG. 7 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these example embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “terminal device” or “user equipment” (UE) refers to any terminal device capable of wireless communications with each other or with the base station. The communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air. In some example embodiments, the UE may be configured to transmit and/or receive information without direct human interaction. For example, the UE may transmit information to the base station on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
Examples of the UE include, but are not limited to, smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , wireless customer-premises equipment (CPE) , sensors, metering devices, personal wearables such as watches, and/or vehicles that are capable of communication. For the purpose of discussion, some example embodiments will be described with reference to UEs as examples of the terminal devices, and the terms “terminal device” and “user equipment” (UE) may be used interchangeably in the context of the present disclosure.
As used herein, the term “network device” refers to a device via which services can be provided to a terminal device in a communication network. As an example, the network device may comprise a base station. As used herein, the term “base station” (BS) refers to a network device via which services can be provided to a terminal device in a communication network. The base station may comprise any suitable device via which a terminal device or UE can access the communication network. Examples of the base stations include a relay, an access point (AP) , a transmission and reception point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a New Radio (NR) NodeB  (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
As used herein, the term “positioning reference signal” (PRS) refers to any reference signal that can be used for the positioning purpose. Examples of the PRSs may comprise DL PRSs transmitted by a network device to a terminal device, a UL SRS transmitted by a terminal device to a network device, or other PRSs of other types. As an example, the PRS may comprise a SRS, a demodulation reference signal (DMRS) , a random access channel (RACH) preamble, or a dedicated reference signal for positioning.
As used herein, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular base station, or other computing or base station.
As used herein, the singular forms “a” , “an” , and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “based on” is to be read as “based at least in part on” . The term “one  embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
As used herein, the terms “first” , “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be referred to as a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
In Rel-16, transmission beam configuration of Sounding Reference Signal (SRS) resource is introduced for a target neighbor cell or Transmission and Reception Point (TRP) , and power control considers a neighbor cell or TRP. As such, a UE can transmit an SRS resource intended to a target cell or TRP. For this, the higher layer parameter spatialRelationInfoPos-r16 is introduced in the configuration per SRS resource to determine a transmitting (Tx) spatial filter for positioning SRS transmission. Pathloss reference RSs for power control of positioning SRS may follow downlink RSs in spatial relation configuration from the serving cell or neighboring cell. In addition, the pathloss reference RS and the spatial relation information are configured per SRS resource set in Rel-16 NR.
For example, in the 3rd Generation Partnership Project (3GPP) standards such as 3GPP TS 38.331, the configuration of the spatial relation between a reference RS and a target SRS may be provided by Radio Resource Control (RRC) or Media Access Control Control Element (MAC-CE) as below:
Figure PCTCN2021076368-appb-000001
Figure PCTCN2021076368-appb-000002
The beam transmission may benefit the coverage or hearability of SRSs for uplink positioning. If TRPs provide DL-RSs for positioning measurement, a UE can be configured with the higher layer parameter spatialRelationInfo to determine a transmission spatial filter (such as a transmission beam) for transmission of a positioning SRS. DL-RSs from multiple TRPs are individually associated with receiving (Rx) spatial filters of the UE. Based on the principle of reciprocity, the UE will first measure DL-RSs such as Synchronization Signal Block (SSBs) , PRS or/and CSI-RS in per SRS resource from a target cell or neighboring cell, and then transmit SRSs in the corresponding UL beam directions based on the received DL Rx beams. At the same time, the UE may estimate pathloss based on the pathloss reference RS per SRS resource for power control of the positioning SRS.
In Rel-17, NR positioning is focused on Industrial Internet of Things (IIoT) . One key objective is to support the high accuracy (horizontal and vertical) , low latency, network efficiency (scalability, reference signal overhead and the like) , and device efficiency (power consumption, complexity, and the like) requirements for commercial uses cases including general commercial use cases and specific (I) IoT use cases. One of the use cases in the industry IoT is asset tracking. Asset tracking is to track locations of assets and becomes increasingly important in improving processes and increasing flexibility in industrial environments. This use case requires combination of positioning and wireless communication technologies in a cost and power efficient manner. NR Positioning is to be enhanced for a UE in a RRC inactive state in Rel-17.
However, if the UE moves, the spatial relation configuration may be not effective any more for uplink positioning. Accordingly, the spatial relationship configuration needs to be updated at a network side. Although the UE may transmit the positioning SRS with larger output power to compensate the pathloss estimated based on the pathloss reference RS, the received signal quality at the TRPs may still very weak due to invalid configuration of the spatial relationship for transmission beam determination, which will cause positioning performance degradation and unnecessary power consumption of the UE. Therefore, it is necessary to quickly update the spatial relationship for positioning UE in moving state so as to align the transmission beam with directions of TRPs and thus to improve the positioning SRS hearability and reduce UE power consumption.
By now, the NR data transmission is only supported in a RRC connected state. In order to maintain valid spatial relationship between UE transmission and TRP reception for positioning in RRC inactive state, it is necessary to frequently cause the inactive UE to enter the RRC connected state for beam management and spatial relationship configuration. However, such frequent message exchange with the network will inevitably result in unnecessary UE power consumption as well as increase of UE complexity, which is not effective and acceptable especially for low-power asset tracking devices.
Example embodiments of the present disclosure provide a mobility-based autonomous selection mechanism for a beam configuration for transmission of a positioning reference signal (PRS) such as a SRS. With the mechanism, at least two beam configurations are provided to a device such as a UE for transmission of a positioning reference signal. The device autonomously selects a beam configuration based at least in part on a mobility state of the device and transmits the positioning reference signal using the selected beam configuration.
By way of example, the device may be provided with a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal, as well as at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping. When the device is in the quasi-static state, the beam configuration based on the spatial relation configuration may be used for the transmission of the positioning reference signal. When the device is in the moving state, an omni-directional beam or a plurality of narrow beams for beam sweeping may be used for the transmission of the positioning reference signal.
In this way, there is no need for a positioning device (such as an asset tracking  device) to frequently update a configuration of a positioning reference signal from a network due to the mobility. Accordingly, it is beneficial to reduce power consumption and processing complexity at the positioning device. This mechanism is especially meaningful for a UE in a RRC inactive state.
FIG. 1 shows an example environment 100 in which example embodiments of the present disclosure can be implemented.
The environment 100, which may be a part of a communication network, comprises a terminal device 110 (such as a UE) and a base station 120 (such as a new radio NodeB or a gNB) that can communicate with each other. The environment 100 further comprises a transmission and reception point (TRP) 130 and a location management functionality (LMF) 140 for providing a location service to the terminal device 110.
It is to be understood that the terminal device 110, the base station 120, the TRP 130 and the LMF 140 are shown in the environment 200 only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure. There may be any suitable numbers of terminal devices, base stations, TRPs and LMFs and any other devices in the environment 100.
It is also to be understood that the physically separate arrangement of the base station 120, the TRP 130 and the LMF 140 is shown only for the purpose of illustration, without suggesting any limitation. As another example, the TRP 130 and/or the LMF 140 may be integrated within the base station 120 or a further base station (not shown) .
The communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and New Radio Unlicensed (NR-U) technologies.
According to some example embodiments of the present disclosure, the base station 120 or the LMF 140 may specify at least two beam configurations for the terminal device 110 to transmit a positioning reference signal such as SRS. The beam configurations may be dynamic, semi-persistent or semi-static, or even fixed or predefined. Accordingly, before the terminal device 110 transmits a SRS, the terminal device 110 selects a beam configuration based on its mobility state and then uses the selected beam configuration to transmit the SRS to the base station 120 or the TRP 130.
FIG. 2 illustrates an example signaling flow 200 of PRS transmission in accordance with some example embodiments of the present disclosure.
As shown in FIG. 2, a first device 205 receives (210) an indication of at least one of a plurality of beam configurations via a second device 215 from a third device 220. As an example, the first device 210 may be implemented by the terminal device 110 in FIG. 1, the second device 220 may be implemented by the base station 120 or the TRP 130 in FIG. 1, and the third device 230 may be implemented by the LMF 140 in FIG. 1.
Other implementations of the  devices  205, 215 and 220 are possible. For example, the first device 205 may be implemented by a relay or a TRP or even a further base station. The second device 215 may be implemented by a terminal device or a relay or even a LMF with the function of positioning measurement. It would be also possible that the second device 215 and the third device 220 are implemented by one device such as the base station 220.
As an embodiment, the plurality of beam configurations may comprise a first beam configuration such as a configuration of a narrow beam. In some example embodiments, the first beam configuration may comprise a beam configuration based on a spatial relation configuration of a resource for a PRS. Based on the spatial relation configuration, a transmission beam (or a transmission spatial filter) of the PRS is associated with downlink reference signal (DL-RS) such as a Synchronization Signal Block (SSB) , a Channel State Information Reference Signal (CSI-RS) or a Downlink Positioning Reference Signal (DL-PRS) , from a serving or neighboring cell. The beam configurations may also comprise a different second beam configuration such as a configuration of a wide beam. As an example, the second beam configuration may comprise a configuration of an omni-directional beam or a plurality of narrow beams for beam sweeping.
The indication of the beam configurations from the third device 220 to the first  device 205 is optional. The plurality of beam configurations can be predefined or indicated together or separately. For example, one or more beam configurations of the plurality of beam configurations may be predefined, and other beam configurations may be dynamically indicated from the network. In the example embodiments where more than one beam configuration are configured by the third device 220, the first device 205 may receive one or more indications from the third device 220. For example, the first device 205 may receive from the third device 220 one indication for all the dynamically adjusted beam configurations. Alternatively or in addition, the first device 205 may receive separate indications for different beam configurations.
The first device 205 selects (225) a beam configuration from the plurality of beam configurations for transmission of a PRS, based at least in part on a mobility state of the first device 205. For example, the terminal device 205 may autonomously select one of the beam configurations based on its mobility state machine.
FIG. 3 shows an example mobility state machine 300 of the first device 205 according to some example embodiments of the present disclosure.
As an example, the mobility state machine 300 may be pre-defined or configured by taking a plurality of mobility states into account. In this example, the mobility state of the first device 205 is classified into a quasi-static state 305 and a moving state 310. The mobility state may be determined based on a moving speed and/or a moving distance. For example, if the moving speed of the first device 205 is larger than a threshold speed, and/or the moving distance is larger than a threshold distance, the terminal device 205 may be determined to be in the moving state 310. Otherwise, the terminal device 205 may be considered to be in the quasi-static state 305.
Alternatively or in addition, the first device 205 may use the outcome of DL-RS measurement from the second device 215 such as the TRP 130 in FIG. 1 as one factor to determine the mobility state. For example, the first device 205 may compare received signal strength such as SSB Reference Signal Receiving Power (SSB-RSRP) or PRS-RSRP with threshold signal strength. The RS to be measured such as a DL-RS may be indicated by the spatial relation configuration of the resource for the PRS.
In some example embodiments, the first device 205 may determine the mobility state based on joint consideration of the moving speed and the measurement results of the DL-RS from the second device 215. For example, if the moving speed is larger than a  given threshold and the measured RSRP of the DL-RS is lower than a given threshold, the first device 205 may determine to be in the moving state. Otherwise, the first device 205 may be identified to be in the quasi-static state 305.
Herein, the thresholds as discussed above may be predefined in the 3GPP standards or configured by the network such as the third device 220 (for example, the base station 120 or the LMF 140 in FIG. 1) .
As shown in FIG. 3, there are two transitions between the mobility states, including a transition 315 of starting moving and a transition 320 of stopping moving. In the example embodiments where the plurality of beam configurations comprise a configuration of a narrow beam such as a beam configuration based on the spatial relation configuration, the first device 204 may select the first kind of beam configuration in the quasi-static state. After the first device 205 moves, the narrow beam may become invalid and then first device 205 may select a configuration of a wide beam (such as an omin-directional beam) for transmission of PRS.
Still with reference to FIG. 2, using the selected beam configuration, the first device 205 transmits (230) a PRS to the second device 215 such as the base station 120 or the TRP 130. Moreover, the second device 215 receives (225) at least one indication of the plurality of beam configurations from the third device 220. The second device 215 derives (225) at least two beam configurations of the plurality of beam configurations for the first device 205 to transmit a PRS. Accordingly, the second device 215 receives (240) the PRS from the first device 205 based at least in part on a beam configuration of the plurality of beam configurations.
The transmission of at least one indication of the plurality of beam configurations from the third device 220 to the second device 215 is also optional. For example, in the example embodiments where the plurality of beam configurations are predefined in the 3GPP standards, such an indication is not needed.
Optionally, the first device 205 may report (245) to the third device 220 an indication of at least one transition between the plurality of mobility states, for example, as defined in the mobility state machine 300 as shown in FIG. 3. Accordingly, the network can determine at least whether or not to update the beam configuration for the first device 205.
FIG. 4 shows a flowchart of an example method 400 according to some example  embodiments of the present disclosure. The method 400 can be implemented by the first device 205 as shown in FIG. 2, such as the terminal device 110. For the purpose of discussion, the method 400 will be described with reference to FIGS. 1-3.
At block 405, the first device 205 determines, from a plurality of mobility states, a mobility state of the first device 205. For example, the determination may be performed by the first device 205 when it is to transmit a PRS to the second device 215. The determination may also be triggered by a specific event such as update for a beam configuration which will be detailed in the following paragraphs.
The plurality of mobility states may be predefined or configured, for example, in the mobility state machine 300 as shown FIG. 3. The first device 205 may use any suitable rule or criterion to determine its mobility state. In some example embodiments, the first device 205 may jointly consider a moving speed, moving distance and/or received signal strength of a DL RS from the second device 215. The DL RS may be indicated by a beam configuration of the plurality of beam configurations.
For example, the first device 205 may compare its moving speed with threshold speed or compare its moving distance with a threshold distance. If the first device 205 moves faster or farther, the first device 205 may be moving. If the first device 205 moves slower or nearer, the first device 205 may be considered as semi-static. The moving speed or distance may be measured using any suitable positioning techniques or devices that already exist or will be developed in the future.
Alternatively or in addition, the first device 205 may compare received signal strength of a DL RS, such as Reference Signal Received Power (RSRP) and Reference Signal Receiving Quality (RSRQ) , from the second device 215 with threshold signal strength to determine its moving state. Any suitable signal measurement mechanism may be used, and the scope of the present disclosure will not be limited in this regards.
As an example, if the received signal strength is lower, it is possible that the first device 205 is moving. Otherwise, the first device 205 may be considered to be semi-static. In the example embodiments where both the moving speed and the received signal strength are considered, if the moving speed is larger than a given threshold and the measured RSRP of the DL-RS is lower than a given threshold, the first device 205 may be treated to be in the moving state. Otherwise, the first device 205 may be identified to be in the quasi-static state.
The thresholds as described above may be predefined the 3GPP standards or configured dynamically, semi-persistently or fixedly by the network such as the third device 220 according to actual needs.
At block 410, the first device 205 selects a beam configuration from a plurality of beam configurations for transmission of a PRS based at least in part on the determined mobility state. In some example embodiments, the network can specify two or more beam configurations for transmission of the PRS on the given SRS resources. For example, one beam configuration may be determined by the spatial relation configuration where the transmission spatial filter (such as a transmission beam) of the PRS is associated with DL-RS (such as SSB, CSI-RS or DL-PRS) from the serving or neighboring cell. With this beam configuration, the first device 205 may measure the transmission of the DL-RS for transmission beam alignment with the second device 215 (such as the TRP 130 in FIG. 1) and use a narrow beam for transmission of the PRS to improve the PRS hearability at the second device 215.
As another example, the beam configurations may comprise another beam configuration where the first device 205 transmits the PRS with a wide beam (such as an omni-directional beam) or beam sweeping operation. If an omni-directional beam is used or the beam sweeping configuration is used, it may be ensured that the second device 215 (such as the TRP 130 in FIG. 1) can hear transmission of the PRS and therefore the transmission efficiency of the PRS may be ensured.
The plurality of beam configurations may be predefined or specified together or separately. For example, these beam configurations may be indicated to the first device 205 together, for example, by the Information Element (IE) SRS-Config or other messages. As another example, one beam configuration may be indicated to the first device 205, for example, by the IE SRS-Config or other messages, and another beam configuration may be pre-defined in the 3GPP standards.
In some example embodiments, the plurality of beam configurations may be signed to the first device 205 separately through different messages. For example, the first device 205 may receive the plurality of beam configurations from the third device 220 such as the base station 120 or/and the LMF 140 in FIG. 1.
For example, in the example embodiments where the first device 205 is implemented by the terminal device 110, the beam configuration may be determined by the  base station 120 and then be signaled to the terminal device 110 through higher layer signaling such as RRC signaling as defined in Rel-16 NR positioning or L1 or physical layer (PHY) signaling. As another example, the spatial relation configuration may be determined by the LMF 140. The LMF 140 may signal the beam configuration to the terminal device 110 through Long Term evolution (LTE) Positioning Protocol (LPP) . Alternatively or in addition, the LMF 140 may forward the spatial relation configuration to the base station 120 and then the base station 120 sends the configuration to the terminal device 110 through RRC or L1 signaling. As a further example, each beam configuration may be determined by different network nodes or function entities (for example, by the base station 120 or the LMF 140) , respectively.
The beam configuration may be selected based on a mobility state machine of the first device 205 such as the mobility state machine 300. The mobility state machine may be predefined in the 3GPP standards or configured by the network based on the mobility states of the first device 205. In the mobility state machine 300 as shown in FIG. 3, the first device 205 may have mobility state transition/switching from the quasi-static state 305 to the moving state 310, or from the moving state 310 to the quasi-static state 305. Based on the mobility state machine 300, the first device 205 can autonomously select one of the beam configurations based on the state transition or specific event, for example.
For example, when the first device 205 starts moving (for example, switches the quasi-static state 305 to the moving state 310) , the first beam configuration such as a narrow beam will become invalid and the first device 205 may select the second beam configuration such as a wide beam to determine the spatial filter (such as the transmission beam) for transmission of the PRS.
When the first device 205 stops moving (for example, switches the moving state 310 to the quasi-static state 305) , the first device 205 may check whether the first beam configuration is valid or not. If the first beam configuration is valid, the terminal device 205 will use the first beam configuration, otherwise it will still use the second beam configuration to determine the transmission spatial filter for the PRS.
In some example embodiment, the beam configurations may be updated. For example, the first device 205 may receive an indication of update for one or more beam configurations. In the case that the first device 205 is implemented by the terminal device 110 in FIG. 2, the first device 205 may receive such an indication in a connected state such as a RRC connected state or in an inactive state such as a RRC inactive state through a  paging procedure and/or a RACH/Configured Grant (CG) -based procedure.
With the indication of the update for a beam configuration, the first device 205 may be triggered to check the mobility state. For example, when the first device 205 is in the moving state 310, it can be transited to the -static state 305quasi after receiving this indication for the update of a beam configuration.
In some example embodiment, the first device 205 may refresh the validity state for a beam configuration. For example, if the configuration for a narrow beam is updated, it may be activated by the first device 205 for transmission of the PRS while the first device 205 is in the quasi-static state 305. If the configuration for a wide beam is updated, it may be activated by the first device 205 for transmission of the PRS when the first device 205 is in the moving state 310 or when the configuration for a narrow beam is invalid while in the quasi-static state. In some example embodiments, if a beam configuration is invalid, the beam configuration will be marked as an invalid configuration.
In some example embodiments, the first device 205 may be configured to report the mobility state transition information. Accordingly, the first device 205 may send to the third device 220 (such as the base station 120 and the LMF 140 in FIG. 1) an indication of at least one transition between its mobility states.
The configuration information may be delivered to the first device 205 in any suitable way. For example, the example embodiments where the first device 205 is implemented by the terminal device 110, the configuration information may be received from the bases station 120 such as the serving gNB through RRC or L1 signaling, or from the LMF 140 based on the LPP protocol. As an example, the configuration for the report may be signaled to the first device 205 by the IE SRS-Config.
The report may be triggered by at least one of state transitions as defined in the mobility state machine 300, for example. As an example, the first device 205 may be configured to report an indication for each state transition defined in the mobility state machine 300, separately. As another example, the first device 205 may be triggered to report an indication for any state transition as defined in the mobility state machine 300. After receiving the state transition indication from the first device 205, the third device 220 may update the corresponding beam configuration, which will be detailed in the following paragraphs with reference to FIG. 5.
Upon the selection of a beam configuration, at block 415, the first device 205  transmits a PRS to the second device 215 using the selected beam configuration. For example, the first device 205 may transmit the PRS on the corresponding resources in a beam direction determined using the beam configuration selected based on its own mobility state machine.
As an example, the first device 205 may transmit the PRS with an omni-directional beam or a plurality of narrow beams by beam sweeping indicated by a beam configuration in the moving state 310 so as to ensure that the second device 215 can effectively measure the PRS. As another example, the first device 205 may transmit the PRS with a narrow beam associated with a DL-RS of the second device 215 indicated by the first beam configuration in the quasi-static state so as to improve the hearability/coverage of the PRS.
FIG. 5 shows a flowchart of an example method 500 according to some example embodiments of the present disclosure. The method 500 can be implemented by the second device 215 as shown in FIG. 2, such as the TRP 130 or the base station 120 in FIG. 1. For the purpose of discussion, the method 500 will be described with reference to FIGS. 1-3.
At block 505, the second device 215 derives at least two beam configurations of the plurality of beam configurations for the first device 205 to transmit a PRS. For example, in the example embodiments where the at least two beam configurations are configured by the third device 220 such as the base station 120 or the LMF 140, the second device 215 such as the TRP 130 or the base station 120 may receive one or more indication of the at least one beam configurations.
In some example embodiments, the second device 215 may configure the at least two beam configurations by itself. In this example, the second device 215 may indicate the at least two beam configurations to the first device 205.
In some example embodiments, the second device 215 may receive at least one indication of the plurality of beam configurations from the third device 220. For example, one or more beam configurations of the plurality of beam configurations may be configured by the third device 220 and the beam configurations may be indicated to the second device 215 together or separately. Accordingly, the second device 215 may receive from the third device 220 one indication for all the configured beam configurations or separate indications for different beam configurations. In some example embodiments, the plurality of beam configurations may be predefined in the 3GPP standards. In this example, there is no need  for the second device 215 to receive an indication of the beam configurations from the third device 220.
At block 510, the second device 215 receives the PRS from the first device 205 based at least in part on a beam configuration of the plurality of beam configurations. As an example, the used beam configuration may be selected from the plurality of beam configurations by beam sweeping. As another example, in the example embodiments where the second device 215 is implemented by the TRP 130 and the third device 220 is implemented by the LMF 140, the third device 220 may signal the mobility state of the first device 205 to the second device 215. Accordingly, the second device 215 may switch to corresponding receiving beam for PRS measurement based on the mobility state so as to improve the measurement accuracy.
All operations and features as described above with reference to FIGS. 1-4 are likewise applicable to the method 500 and have similar effects. For the purpose of simplification, the details will be omitted.
FIG. 6 shows a flowchart of an example method 600 according to some example embodiments of the present disclosure. The method 600 can be implemented by the third device 220 as shown in FIG. 2, such as the base station 120 or the LMF 140 in FIG. 1. For the purpose of discussion, the method 600 will be described with reference to FIGS. 1-3.
At block 605, the third device 220 determines at least two beam configurations for the first device 205 to transmit a PRS. The determination of the beam configurations may be dynamic, semi-persistent or even fixed. For example, in some example embodiments, one or more beam configurations may be updated based on the mobility state of the first device 205.
For example, the third device 220 may receive, from the first device 205, an indication of at least one transition between a plurality of mobility states of the first device 205. Based on the indication of the state transition of the first device 205, the third device 220 may determine whether or not to update a beam configuration. For example, if the indication is related to the state transition from the moving state 310 to the quasi-static state 305, the third device 220 may determine to update the configuration for a narrow beam such as a beam based on the spatial relation configuration of a PRS for the first device 205 so as to achieve better performance. The update of the SRS configuration can be  performed based on a location of the first device 205.
In some example embodiments, the third device 220 may configure or indicate the first device 205 to report the mobility state transition information. In the example embodiments where the first device 205 is implemented by the terminal device 110 and the third device 220 is implemented by the base station 120, the configuration information may be delivered to the first device 205 through RRC or L1 signaling. In the example embodiments where the third device 220 is implemented by the LMF 140, the configuration information may be transmitted based on the LPP protocol. As an example, the indication to report the mobility state may be signaled to the first device 205 by the IE SRS-Config.
At block 610, the third device 220 sends, to the first device 205, an indication of the at least two beam configurations of the plurality of beam configurations. In the example embodiments where the third device 220 participates in the positioning measurement of the first device 205, the third device 220 may receive, from the first device 205, the PRS using a beam configuration of the plurality of beam configurations.
In some example embodiments, one or more beam configurations of the plurality of beam configurations may be specified by the third device 220. In this example, the third device 220 may send at least one indication of the one or more beam configurations to the second device 215.
All operations and features as described above with reference to FIGS. 1-5 are likewise applicable to the method 600 and have similar effects. For the purpose of simplification, the details will be omitted.
FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing example embodiments of the present disclosure. The device 700 can be implemented at or as a part of the first device 205, the second device 215 or the third device 220 as shown in FIG. 2.
As shown, the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a communication module 730 coupled to the processor 710, and a communication interface (not shown) coupled to the communication module 730. The memory 720 stores at least a program 740. The communication module 730 is for bidirectional communications, for example, via multiple antennas. The communication interface may represent any interface that is necessary for communication.
The program 740 is assumed to include program instructions that, when executed  by the associated processor 710, enable the device 700 to operate in accordance with the example embodiments of the present disclosure, as discussed herein with reference to FIGS. 1-6. The example embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware. The processor 710 may be configured to implement various example embodiments of the present disclosure.
The memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700. The processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
When the device 700 acts as the first device 205 or a part of the first device 205, the processor 710 and the communication module 730 may cooperate to implement the method 400 as described above with reference to FIGS. 1-4. When the device 700 acts as the second device 215 or a part of the second device 215, the processor 710 and the communication module 730 may cooperate to implement the method 500 as described above with reference to FIGS. 1-3 and 5. When the device 700 acts as the third device 220 or a part of the third device 220, the processor 710 and the communication module 730 may cooperate to implement the method 600 as described above with reference to FIGS. 1-3 and 6. All operations and features as described above with reference to FIGS. 1-6 are likewise applicable to the device 700 and have similar effects. For the purpose of simplification, the details will be omitted.
Generally, various example embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller,  microprocessor or other computing device. While various aspects of example embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  method  400, 500 or 600 as described above with reference to FIGS. 1-5. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various example embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable media.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not  limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular example embodiments. Certain features that are described in the context of separate example embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple example embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Various example embodiments of the techniques have been described. In addition to or as an alternative to the above, the following examples are described. The features described in any of the following examples may be utilized with any of the other examples described herein.
In some aspects, a first device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the first device to: determine, from a plurality of mobility states, a mobility state of the first device; select a  beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and transmit, to a second device, the positioning reference signal using the selected beam configuration.
In some example embodiments, the first device is further caused to: receive, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
In some example embodiments, at least one beam configuration of the plurality of beam configurations is predefined.
In some example embodiments, the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration, the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal, and the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
In some example embodiments, the first device is caused to select the beam configuration by: in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
In some example embodiments, the first device is further caused to: in response to a transition from the quasi-static state to a moving state, select the second beam configuration for subsequent transmission of the positioning reference signal.
In some example embodiments, the first device is caused to select the beam configuration by: in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
In some example embodiments, the first device is further caused to: in accordance with a determination that the first device stops moving, determine validity of the first beam configuration; and in accordance with a determination that the first beam configuration is valid, select the first beam configuration for subsequent transmission of the positioning reference signal.
In some example embodiments, the first device is further caused to: in accordance with a determination that the first beam configuration is invalid, continue the use of the  second beam configuration for the subsequent transmission of the positioning reference signal.
In some example embodiments, the first device is further caused to: send to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
In some example embodiments, the first device is caused to determine the mobility state of the first device by: in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device. The first device is caused to transmit the positioning reference signal using the selected beam configuration by: in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and transmitting, to the second device, the positioning reference signal using the updated beam configuration.
In some example embodiments, the first device is caused to determine the mobility state of the first device by at least one of: comparing moving speed of the first device with threshold speed; comparing a moving distance of the first device with a threshold distance; or comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
In some example embodiments, the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
In some example embodiments, the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
In some aspects, a second device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the second device to: derive at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and receive, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
In some example embodiments, the second device is caused to derive the at least two beam configurations by: receiving, from the third device, at least one indication of the  plurality of beam configurations.
In some example embodiments, the second device comprises a new radio NodeB or a transmission and reception point.
In some example embodiments, the third device comprises a new radio NodeB or a location management functionality unit.
In some aspects, a third device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the third device to: determine at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and send, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
In some example embodiments, the third device is further caused to receive, from the first device, the positioning reference signal using a beam configuration of the plurality of beam configurations.
In some example embodiments, at least one beam configuration of the plurality of beam configurations is predefined.
In some example embodiments, the third device is further caused to: receive, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
In some example embodiments, the third device is further caused to: determine, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and update, based on a location of the first device, at least one of the plurality of beam configurations.
In some example embodiments, the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
In some example embodiments, the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
In some aspects, a method implemented at a first device comprises: determining, from a plurality of mobility states, a mobility state of the first device; selecting a beam  configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and transmitting, to a second device, the positioning reference signal using the selected beam configuration.
In some example embodiments, the method further comprises: receiving, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
In some example embodiments, at least one beam configuration of the plurality of beam configurations is predefined.
In some example embodiments, the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration, the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal, and the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
In some example embodiments, selecting the beam configuration comprises: in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
In some example embodiments, the method further comprises: in response to a transition from the quasi-static state to a moving state, selecting the second beam configuration for subsequent transmission of the positioning reference signal.
In some example embodiments, selecting the beam configuration comprises: in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
In some example embodiments, the method further comprises: in accordance with a determination that the first device stops moving, determining validity of the first beam configuration; and in accordance with a determination that the first beam configuration is valid, selecting the first beam configuration for subsequent transmission of the positioning reference signal.
In some example embodiments, the method further comprises: in accordance with a determination that the first beam configuration is invalid, continues the use of the second beam configuration for the subsequent transmission of the positioning reference signal.
In some example embodiments, the method further comprises: sending, to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
In some example embodiments, determining the mobility state of the first device comprises: in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device. Transmitting the positioning reference signal using the selected beam configuration comprises: in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and transmitting, to the second device, the positioning reference signal using the updated beam configuration.
In some example embodiments, determining the mobility state of the first device comprises determining the mobility state of the first device by at least one of: comparing moving speed of the first device with threshold speed; comparing a moving distance of the first device with a threshold distance; or comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
In some example embodiments, the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
In some example embodiments, the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
In some aspects, a method implemented at a second device comprises: deriving at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and receiving, from the first device, the positioning reference signal based at least in part ona beam configuration of the plurality of beam configurations.
In some example embodiments, deriving the at least two beam configurations comprises: receiving, from the third device, at least one indication of the plurality of beam configurations.
In some example embodiments, the second device comprises a new radio NodeB or a transmission and reception point.
In some example embodiments, the third device comprises a new radio NodeB or a location management functionality unit.
In some aspects, a method implemented at a third device comprises: determining at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and sending, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
In some example embodiments, the method further comprises: receiving, from the first device, the positioning reference signal using a beam configuration of the plurality of beam configurations.
In some example embodiments, at least one beam configuration of the plurality of beam configurations is predefined.
In some example embodiments, the method further comprises: receiving, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
In some example embodiments, the method further comprises: determining, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and updating, based on a location of the first device, at least one of the plurality of beam configurations
In some example embodiments, the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
In some example embodiments, the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
In some aspects, an apparatus comprises: means for determining, from a plurality of mobility states, a mobility state of the first device; means for selecting a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and means for transmitting, to a second device, the positioning reference signal using the selected beam configuration.
In some example embodiments, the apparatus further comprises: means for  receiving, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
In some example embodiments, at least one beam configuration of the plurality of beam configurations is predefined.
In some example embodiments, the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration, the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal, and the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
In some example embodiments, the means for selecting the beam configuration comprises: means for in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
In some example embodiments, the apparatus further comprises: means for in response to a transition from the quasi-static state to a moving state, selecting the second beam configuration for subsequent transmission of the positioning reference signal.
In some example embodiments, the means for selecting the beam configuration comprises: means for in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
In some example embodiments, the apparatus further comprises: means for in accordance with a determination that the first device stops moving, determining validity of the first beam configuration; and means for in accordance with a determination that the first beam configuration is valid, selecting the first beam configuration for subsequent transmission of the positioning reference signal.
In some example embodiments, the apparatus further comprises: means for in accordance with a determination that the first beam configuration is invalid, continuing the use of the second beam configuration for the subsequent transmission of the positioning reference signal.
In some example embodiments, the apparatus further comprises: means for sending, to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
In some example embodiments, the means for determining the mobility state of the first device comprises: means for in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device. The means for transmitting the positioning reference signal using the selected beam configuration comprises: means for in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and means for transmitting, to the second device, the positioning reference signal using the updated beam configuration.
In some example embodiments, the means for determining the mobility state of the first device comprises means for determining the mobility state of the first device by at least one of: comparing moving speed of the first device with threshold speed; means for comparing a moving distance of the first device with a threshold distance; or means for comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
In some example embodiments, the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
In some example embodiments, the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
In some aspects, an apparatus comprises: means for deriving at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and means for receiving, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
In some example embodiments, the means for deriving the at least two beam configurations comprises: means for receiving, from the third device, at least one indication of the plurality of beam configurations.
In some example embodiments, the second device comprises a new radio NodeB or a transmission and reception point.
In some example embodiments, the third device comprises a new radio NodeB or a location management functionality unit.
In some aspects, an apparatus comprises: means for determining at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and means for sending, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
In some example embodiments, the apparatus further comprises means for receiving, from the first device, the positioning reference signal using a beam configuration of the plurality of beam configurations.
In some example embodiments, at least one beam configuration of the plurality of beam configurations is predefined.
In some example embodiments, the apparatus further comprises: means for receiving, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
In some example embodiments, the apparatus further comprises: means for determining, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and means for updating, based on a location of the first device, at least one of the plurality of beam configurations.
In some example embodiments, the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
In some example embodiments, the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
In some aspects, a computer readable storage medium comprises program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method according to some example embodiments of the present disclosure.

Claims (25)

  1. A method implemented at a first device, comprising:
    determining, from a plurality of mobility states, a mobility state of the first device;
    selecting a beam configuration from a plurality of beam configurations for transmission of a positioning reference signal based at least in part on the determined mobility state; and
    transmitting, to a second device, the positioning reference signal using the selected beam configuration.
  2. The method of claim 1, further comprising:
    receiving, from a third device, an indication of at least one beam configuration of the plurality of beam configurations.
  3. The method of claim 1 or 2, wherein at least one beam configuration of the plurality of beam configurations is predefined.
  4. The method of any of claims 1-3, wherein the plurality of beam configurations comprises at least a first beam configuration and a second beam configuration, the first beam configuration comprises a beam configuration based on a spatial relation configuration of a resource for the positioning reference signal, and the second beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  5. The method of claim 4, wherein selecting the beam configuration comprises:
    in accordance with a determination that the mobility state of the first device is a quasi-static state, selecting the first beam configuration.
  6. The method of claim 5, further comprising:
    in response to a transition from the quasi-static state to a moving state, selecting the second beam configuration for subsequent transmission of the positioning reference signal.
  7. The method of claim 4, wherein selecting the beam configuration  comprises:
    in accordance with a determination that the mobility state of the first device is a moving state, selecting the second beam configuration.
  8. The method of claim 7, further comprising:
    in accordance with a determination that the first device stops moving, determining validity of the first beam configuration; and
    in accordance with a determination that the first beam configuration is valid, selecting the first beam configuration for subsequent transmission of the positioning reference signal.
  9. The method of claim 8, further comprising:
    in accordance with a determination that the first beam configuration is invalid, continuing the use of the second beam configuration for the subsequent transmission of the positioning reference signal.
  10. The method of any of claims 1-9, further comprising:
    sending, to a third device, an indication of at least one transition between a plurality of mobility states of the first device.
  11. The method of any of claims 1-10, wherein
    determining the mobility state of the first device comprises:
    in response to receiving, from a third device, an indication of update for at least one beam configuration, determining the mobility state of the first device; and
    transmitting the positioning reference signal using the selected beam configuration comprises:
    in accordance with a determination that the update is associated with the selected beam configuration, updating the selected beam configuration based on the received indication; and
    transmitting, to the second device, the positioning reference signal using the updated beam configuration.
  12. The method of any of claims 1-11, wherein determining the mobility state of the first device comprises determining the mobility state of the first device by at least  one of:
    comparing moving speed of the first device with threshold speed;
    comparing a moving distance of the first device with a threshold distance; or
    comparing received signal strength of a downlink reference signal from the second device with threshold signal strength.
  13. The method of claim 12, wherein the downlink reference signal is indicated by a beam configuration of the plurality of beam configurations.
  14. The method of any of claims 1-13, wherein the positioning reference signal comprises at least one of a sounding reference signal, a demodulation reference signal, a random access channel preamble, or a dedicated reference signal for positioning.
  15. A method implemented at a second device, comprising:
    deriving at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and
    receiving, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
  16. The method of claim 15, wherein the deriving comprises receiving the plurality of beam configuration from a third device.
  17. The method of claim 15 or claim 16, wherein the second device comprises a new radio NodeB or a transmission and reception point.
  18. A method implemented at a third device, comprising:
    determining at least two beam configurations of a plurality of beam configurations for a first device to transmit a positioning reference signal; and
    sending, to the first device, an indication of the at least two beam configurations of the plurality of beam configurations.
  19. The method of claim 18, further comprising:
    receiving, from the first device, the positioning reference signal based at least in part on a beam configuration of the plurality of beam configurations.
  20. The method of claim 15 or 18, further comprising:
    receiving, from the first device, an indication of at least one transition between a plurality of mobility states of the first device.
  21. The method of claim 20, further comprising:
    determining, based on the received indication, a transition from a moving state to a quasi-static state of the first device; and
    updating, based on a location of the first device, at least one of the plurality of beam configurations.
  22. The method of any of claims 15-21, wherein the at least one beam configuration comprises at least one of a configuration of an omni-directional beam, or a configuration of a plurality of narrow beams for beam sweeping.
  23. A device, comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the first device to perform a method according to any of claims 1-14, or 15-17, or 18-22.
  24. An apparatus comprising means for performing the method of any of claims 1-14, claims 15-17 or claims 18-22.
  25. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method of any of claims 1-14, claims 15-17 or claims 18-22.
PCT/CN2021/076368 2021-02-09 2021-02-09 Mobility-based beam configuration for positioning reference signal WO2022170520A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/076368 WO2022170520A1 (en) 2021-02-09 2021-02-09 Mobility-based beam configuration for positioning reference signal
CN202180063573.7A CN116250187A (en) 2021-02-09 2021-02-09 Mobility-based beam configuration for positioning reference signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076368 WO2022170520A1 (en) 2021-02-09 2021-02-09 Mobility-based beam configuration for positioning reference signal

Publications (1)

Publication Number Publication Date
WO2022170520A1 true WO2022170520A1 (en) 2022-08-18

Family

ID=82837426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076368 WO2022170520A1 (en) 2021-02-09 2021-02-09 Mobility-based beam configuration for positioning reference signal

Country Status (2)

Country Link
CN (1) CN116250187A (en)
WO (1) WO2022170520A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044677A1 (en) * 2017-08-01 2019-02-07 Qualcomm Incorporated Downlink positioning reference signal in multi-beam systems
CN110574327A (en) * 2017-05-05 2019-12-13 华为技术有限公司 system and method for network positioning of devices in a beamforming communication system
US20200169336A1 (en) * 2018-11-26 2020-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses and Methods for Positioning
US20200329395A1 (en) * 2019-04-12 2020-10-15 Qualcomm Incorporated Beam preference feedback for data transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574327A (en) * 2017-05-05 2019-12-13 华为技术有限公司 system and method for network positioning of devices in a beamforming communication system
US20190044677A1 (en) * 2017-08-01 2019-02-07 Qualcomm Incorporated Downlink positioning reference signal in multi-beam systems
US20200169336A1 (en) * 2018-11-26 2020-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses and Methods for Positioning
US20200329395A1 (en) * 2019-04-12 2020-10-15 Qualcomm Incorporated Beam preference feedback for data transmissions

Also Published As

Publication number Publication date
CN116250187A (en) 2023-06-09

Similar Documents

Publication Publication Date Title
US11070337B2 (en) Methods and apparatuses for reference signal configuration
CN108293195B (en) Wireless device, wireless network node and methods performed therein for managing signaling in a wireless communication network
CN113382469B (en) Transmit power control for positioning reference signals
CN112740571A (en) SSB to RO mapping for remote interference
CN113271656A (en) Power control of positioning reference signals
WO2021026699A1 (en) Prs resource mapping and configuration based on grouping
WO2022170520A1 (en) Mobility-based beam configuration for positioning reference signal
WO2021208003A1 (en) Cross link interference (cli) measurement adaptation
WO2021127840A1 (en) Method, device and computer storage medium for communication
WO2020154855A1 (en) Mobility enhancement of terminal device
WO2023092560A1 (en) De-configuration of mobility management
US20230370993A1 (en) Updating positioning assistance configuration
WO2022151160A1 (en) Configuration of small data transmission
US20230397151A1 (en) Positioning Based on Multiple Measurement Reports
WO2021203386A1 (en) Reporting of event for beam failure recovery
KR20140037692A (en) Method for estimating downlink and uplink, base station device and communication system
US20240023143A1 (en) Methods for sidelink communications, terminal devices, network devices, and computer readable media
WO2024031457A1 (en) Resource reservation for a positioning reference signal
WO2023159403A1 (en) Demodulation performance degradation at ue autonomous receive beam switch
WO2021243708A1 (en) Optimization of csi-rs measurement
US20230050082A1 (en) Methods, devices, and medium for communication
WO2020087350A1 (en) Method, device and computer readable medium for communications
CN116746260A (en) Autonomous preconfigured measurement gap activation for PRS measurements
CN115039481A (en) Beam management for devices in inactive mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925186

Country of ref document: EP

Kind code of ref document: A1