WO2023201597A1 - Method, device and computer readable medium for communications - Google Patents

Method, device and computer readable medium for communications Download PDF

Info

Publication number
WO2023201597A1
WO2023201597A1 PCT/CN2022/088027 CN2022088027W WO2023201597A1 WO 2023201597 A1 WO2023201597 A1 WO 2023201597A1 CN 2022088027 W CN2022088027 W CN 2022088027W WO 2023201597 A1 WO2023201597 A1 WO 2023201597A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
positioning reference
subband
reference signal
terminal device
Prior art date
Application number
PCT/CN2022/088027
Other languages
French (fr)
Inventor
Fang Xu
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/088027 priority Critical patent/WO2023201597A1/en
Publication of WO2023201597A1 publication Critical patent/WO2023201597A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a method, device and computer readable medium for positioning reduced capability terminal device.
  • the Time Difference of Arrival (TDOA) positioning method is a method that utilizes the difference values between a set of time occasions of a signal arriving at different locations to determine the position of the device transmitting the signal.
  • the performance of estimating the arrival time of the signal has significantly impact on the positioning accuracy.
  • the larger the bandwidth of the received signal the higher the performance of estimating the arrival time of the signal.
  • the Radio Frequency (RF) bandwidth for transmitting or receiving signals, the higher the cost of the communication devices.
  • RF bandwidth for transmitting or receiving signals
  • some reduced capability communication devices are limited with respect to RF bandwidth, for example, machine-type communication devices, the industrial sensors and wearables devices. In this case, the trade-off between the positioning accuracy and the device cost should be considered.
  • how to configure communication resources for positioning reference signal (PRS) transmissions is also a key aspect.
  • example embodiments of the present disclosure relate to methods, devices and computer readable media for controlling transmission at network devices.
  • the reduced capability terminal device receives a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap, the at least two frequency hopping subband carry a plurality of positioning reference signals.
  • the reduced capability terminal device detects, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
  • the network device transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicats a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap.
  • the at least two frequency hopping subband carry a plurality of positioning reference signals and a number of the at least two frequency hopping subbands in the preconfigured measurement gap.
  • the network device transmits, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
  • the reduced capability terminal device receives a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the reduced capability terminal device receives from a network device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal.
  • the communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal.
  • the reduced capability terminal device detects based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
  • a method implemented at a network device transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the network device transmits, to the reduced capability terminal device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal.
  • the communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal.
  • the network device transmits, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
  • the reduced capability terminal device receives a positioning enhancement configuration for a reduced capability terminal device.
  • the positioning enhancement configuration indicates at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
  • a method implemented at a network device transmits, to a reduced capability terminal device, a positioning enhancement configuration for the reduced capability reduced capability terminal device.
  • the positioning enhancement configuration indicates at least one of: a number of symbols for a positioning reference signal in a slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
  • a terminal device comprising a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method of any of the first aspect, third aspect and third aspect.
  • a network device comprising a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method of any of the second aspect, fourth aspect and sixth aspect.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method of any one of the first aspect to the eighth aspect.
  • FIG. 1 illustrates an example environment in which some embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling process for configuring dormancy transmission configuration according to some embodiments of the present disclosure
  • FIG. 3 illustrates a frequency hopping configuration according to some embodiments of the present disclosure
  • FIG. 4 illustrates a frequency hopping configuration according to some embodiments of the present disclosure
  • FIG. 5 illustrates a frequency hopping configuration according to some embodiments of the present disclosure
  • FIG. 6 illustrates a frequency hopping configuration according to some embodiments of the present disclosure
  • FIG. 7 illustrates a resource configuration for PRS transmission according to some embodiments of the present disclosure
  • FIG. 8 illustrates a resource configuration for PRS transmission according to some embodiments of the present disclosure
  • FIG. 9 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 10 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 11 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 12 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 13 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 14 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • FIG. 15 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eX
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal, a wireless device or a reduced capability terminal device.
  • the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • the network device may have the function of network energy saving, Self-Organizing Networks (SON) /Minimization of Drive Tests (MDT) .
  • the terminal may have the function of power saving.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • a reduced capability terminal device for example, a device with reduced bandwidth support and reduced complexity including reduced number of receive chains
  • the terminal device may detect PRSs on different frequency subbands of which each is configured in a different time interval. In this way, by polling, in time domain, each frequency subband, the PRSs can be received by the terminal device across a larger frequency band. As such, the performance of estimating the arrival time for PRSs can be improved with the expense of increased reception numbers.
  • the frequency subbands may be not arbitrarily distributed over the time domain.
  • the coordination between configuring one or more frequency subbands carrying PRSs and the preconfigured measurement gap should be further studied.
  • further scheduling of resources associated with frequency subbands is beneficial for the flexibility of communication.
  • the example embodiments of the disclosure propose a mechanism for positioning reduced capability terminal device.
  • one or more frequency hopping subbands are configured in a preconfigured measurement gap and the configuration is indicated to a reduced capability device, such that the reduced capability terminal device can detect PRSs across each of the one or more frequency hopping subbands during the measurement gap.
  • the terminal device After a PRS transmission period comprising a certain number of the measurement gaps, the terminal device can detect PRSs across a larger frequency band.
  • a muting pattern which indicates communication resource disabled for PRSs may be applied on the above frequency hopping configuration, in order to further schedule communication resources flexibly on the basis of the frequency hopping configuration.
  • a reduced capability terminal device receives a frequency hopping pattern from high layer.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subband within at least one preconfigured measurement gap.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals. Then, the reduced capability terminal device detects the plurality of positioning reference signals across the at least one frequency hopping subband during the at least one preconfigured measurement gap.
  • the reduced capability terminal device can receive PRSs across a larger frequency band bandwidth, in turn, the arrival time for the PRSs at the reduced capability terminal device can be estimated more accuracy. Therefore, time-of-arrival measurement performance of PRSs at low cost communication devices is improved with respect to a preconfigured measurement gap.
  • FIG. 1 illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
  • the environment 100 which may be a part of a communication network, comprises a terminal device 110, a network device 120 and a server 130.
  • the terminal device 110 may receive PRSs for estimating the time of arrival from the network device 120. Further, the terminal device 110 may receive a frequency hopping pattern from the network device 120 via the server 130. Further, the terminal device may determine the time of arrival from a Transmission Point (TP) or the time difference between different TPs for the PRSs and feedback the determined time of arrival or the time difference to the server 130 for calculating the position of the terminal device 110.
  • the server 130 may comprise a server associated with function for positioning the terminal device, for example, a Location Management Function (LMF) server. In further embodiments, the server 130 may comprise any other servers having similar functions.
  • LMF Location Management Function
  • the environment 100 may comprise a further terminal device to communicate information with a further network device.
  • the communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and
  • FIG. 2 illustrates a signaling process 200 for configuring dormancy transmission configuration according to some embodiments of the present disclosure. For purpose of discussion, the process 200 will be described with reference to FIG. 1.
  • the terminal device 110 receives (210) a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subband within a preconfigured measurement gap.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the frequency hopping subband may be occupied by a single PRS resource for the transmission.
  • the frequency hopping subband may be occupied by a set of PRS resources for the transmission of PRSs.
  • a PRS may have a resource identification (ID) for a PRS resource and a set ID for the set of PRS resources.
  • ID resource identification
  • the PRS is transmitted on the PRS resource configured with this resource ID, and this PRS resource belongs to the set of PRS resources configured with the set ID
  • the PRS resource may comprise one or more slots for a repetition transmission of a positioning reference signal.
  • the number of repetition of the transmission of the PRS resource may also be configured, and the repetition transmission of the PRS may be performed on the PRS resource configured with the number of repetition, the details will be discussed in the following.
  • the preconfigured measurement gap may be a measurement gap preconfigured for measuring the PRSs transmitted from a network work device 120.
  • the preconfigured measurement gap may be a measurement configured gap preconfigured for other measurement purposes, for example, a measurement gap for the terminal device 110 to measure a frequency band other than the frequency band (for example, the active downlink bandwidth part) on which the terminal device is residing.
  • the preconfigured measurement gap may also be any other measurement gaps preconfigured for other measuring purposes, for example, measuring channel quality, a timing advance parameter and so on.
  • the predefined period for the transmission of the PRSs is 160 ms. In some embodiments, the predefined period for the transmission of the PRSs is 80 ms. In some embodiments, the predefined period for the transmission of the PRSs may be any available value in time which is defined in the current 3GPP spec. For example, there may be four preconfigured measurement gaps in the predefined period. Alternatively, there may be two preconfigured measurement gaps in the predefined period. In some embodiments, there may be any other number of preconfigured measurement gaps in the predefined period.
  • the terminal device 110 may receive the frequency hopping pattern by receiving the frequency hopping pattern in a system information message from the network device 120. For example, during an initial access procedure, after receiving a Master Information Block (MIB) and System Information Block (SIB) 1 from the network device 120, the terminal device 110 transmits a system information request to the network device 120. Then, the terminal device may receive the system information message comprising the frequency hopping pattern for the reduced capability terminal device. In some embodiments, the network device 120 receives (215) the frequency hopping pattern from the LMF server 130 in advance. In an example, the terminal device 110 may receive the frequency hopping pattern based on the procedure shown below.
  • MIB Master Information Block
  • SIB System Information Block
  • the terminal device 110 may receive the frequency hopping pattern after reporting device capability associated with the terminal device to the LMF server 130.
  • the LMF server 130 may transmit a Long Term Evolution (LTE) positioning protocol (LPP) request for the capability of the terminal device 110 to the terminal device 110 via the network device 120.
  • LTP Long Term Evolution positioning protocol
  • the terminal device 110 may transmit the device capability associated with the terminal device 110 to the LMF server 130 via the network device 120.
  • the LMF server 130 determines that the terminal device 110 is a reduced capability terminal device based on the device capability and supportive for the frequency hopping pattern
  • the LMF server 130 transmits (215) the frequency hopping pattern to the terminal device 110 via the network device 120.
  • the terminal device 110 may receive the frequency hopping pattern based on the procedure shown below.
  • the frequency hopping pattern may comprise a plurality of parameters for indicating the time and frequency position of at least one subband within the preconfigured measurement gap.
  • the frequency hopping pattern may comprise a number of the frequency hopping subbands in the predefined period for the transmission of the positioning reference signal. In an example, if the predefined period comprises four preconfigured measurement gap, the number of the frequeny hopping subbands may be equal to the number of preconfigured measurement gap.
  • the plurality of parameters for indicating the time and frequency position may be discussed with reference to FIGs. 3-5.
  • FIG. 3 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
  • frequency hopping subbands 310, 320, 330 and 340 in the predefined period 350 for the transmission of PRSs are shown. Further, there are also four preconfigured measurement gaps in the predefined period 350. For example, the block 360 represents the second one of four preconfigured measurement gaps in the predefined period 350.
  • the frequency hopping pattern indicates that the number of subbands in the predefined period for the transmission of PRSs is four, which is equal to the number of preconfigured measurement gap. In this case, the frequency hopping pattern implicitly indicates that the frequency hopping subband and the preconfigured measurement gap are one-to-one correspondence. In turn, there is one frequency hopping subband in one preconfigured measurement gap.
  • the starting time position, starting frequency position, the bandwidth and frequency offset between neighboring frequency hopping subbands may be configured in the frequency hopping info and transmitted from the network device 120 to the terminal device 110.
  • the terminal device 110 may understand the time and frequency position of the frequency hopping subbands in each preconfigured measurement gap.
  • the frequency hopping pattern may further indicate the timing information associated with these hopping frequency subbands directly.
  • the frequency hopping pattern may indicate the number of hopping frequency subband in a measurement gap.
  • the frequency hopping pattern may indicate there is only 1 hopping frequency subband in a measurement gap, or the frequency hopping pattern may indicate there is 2 hopping frequency subbands in a measurement gap.
  • the frequency hopping pattern may indicate the starting time of a hopping frequency subband in a measurement gap.
  • the starting time may be indicated by indicating an offset between the starting occasion of the frequency hopping subband and the starting occasion of the measurement gap.
  • each subband indicated in this frequency hopping pattern may following the same timing information.
  • the timing information associated with each hopping frequency hopping subband may be indicated individually.
  • the frequency hopping pattern may explicitly contain the starting time position, starting frequency position, the bandwidth and frequency offset between neighboring frequency hopping subbands.
  • the network device 120 may configure the following table 1 in the frequency hopping pattern to the terminal device 110.
  • the subband index represents the respective frequency hopping subband, for example, the subband index 1 corresponds to the second one of subbands in the predefined period 350. As shown in FIG. 3, subband index 1 corresponds to subband 320 as shown in FIG. 3.
  • the starting frequency position in TABLE 1 represents the starting frequency position of a subband, and the starting frequency position may be expressed as a PRB ID.
  • the bandwidth represents the bandwidth of a corresponding frequency hopping subband, and may be expressed as the number of PRBs. In some embodiments, the bandwidth may be expressed in other frequency units. As shown in Table 1, the bandwidth of each frequency hopping subband is equal to 48 PRBs. In some other embodiments, the bandwidth of each frequency hopping subband may be configured individually.
  • the terminal device may determine the time and frequency position of frequency hopping subband in each preconfigured measurement gap based on the above Table 1.
  • the bandwidth of a frequency hopping subband it may be smaller than the RF band supported by the terminal device 110 and it is adjusted by the granularity of 4 PRBs. For example, if the terminal device 110 supports a RF bandwidth of 5Mhz and the subcarrier spacing is 15Khz, then the bandwidth of the frequency hopping subband is 24 PRBs. In another example, if the terminal device 110 supports a RF bandwidth of 5Mhz and the subcarrier spacing is 30Khz, then the bandwidth of the frequency hopping subband is 12 PRBs. In a yet example, if the terminal device 110 supports a RF bandwidth of 20Mhz and the subcarrier spacing is 30Khz, then the bandwidth of the frequency hopping subband is 48 PRBs.
  • the bandwidth of the frequency hopping subband is 96 PRBs.
  • the number of PRBs in a frequency hopping subband being used to respective supported RF bandwidth is illustrated in Table 2.
  • the frequency hopping pattern may further indicate the order of the four frequency hopping subbands.
  • the frequency hopping pattern may comprise a bitmap ⁇ 3, 1, 2, 0 ⁇ indicating the hopping order for the subbands. Then, the terminal device may determine the time and frequency position of the frequency subband hopping based on corresponding subband index in Table 1 and the indicated hopping order.
  • the frequency hopping subband start index may from the index 0, or the terminal device 110 can be configured a special start index, or the start index can be: (cell id) mod (number of subbands) .
  • the frequency hopping subband may also indicate a hopping start index among the number of the frequency hopping subbands, then the frequency hopping subband begins to loop from the starting index which is indicated.
  • the frequency hopping pattern may indicate the time and frequency position of the frequency hopping subband in the way of starting and length.
  • the frequency hopping pattern may comprise the starting position of the first one (subband 310) of the frequency hopping subbands in the predefined period 350.
  • the frequency hopping pattern may indicate an offset 370 between the first symbol of the preconfigured measurement gap and the starting position.
  • the frequency hopping pattern may indicate the bandwidth of the subband 310, for example, the bandwidth 380.
  • the frequency hopping pattern may indicate the frequency offset 390 between neighboring frequency hopping subbands, for example, subbands 310 and 320, subbands 320 and 330 and subbands 330 and 340.
  • the terminal device may determine the time and frequency position of each frequency hopping subband. For example, with respect to subband 320, the terminal device 110 may determine the starting frequency position by calculating the ending of the subband 310 plus the frequency offset 390. For the starting time position of subband 320, the terminal device may determine it in the same way of the subband 310.
  • the frequency hopping pattern may indicate a time interval between frequency hopping subbands in a predefined period for a transmission of the positioning reference signal.
  • the frequency hopping pattern may further indicate a Comb configuration for introducing different stagger structure for each subband.
  • the frequency hopping pattern may indicate a separate comb size resource element offset indicator used by each frequency hopping subband.
  • each frequency hopping subband shares the same Comb configuration indicated by the common PRS resource configuration.
  • the frequency hopping pattern may indicate a separate Comb configuration specific to a certain frequency hopping subband.
  • the frequency hopping configuration provided by higher layers may contain the following:
  • each preconfigured measurement gap there may be two or more frequency hopping subbands in each preconfigured measurement gap.
  • FIG. 4 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
  • frequency hopping subbands 410, 420, 430 and 440 are shown.
  • Frequency hopping subbands 410 and 420 are configured in a preconfigured measurement gap and frequency hopping subbands 430 and 440 are configured in another preconfigured measurement gap.
  • the frequency hopping pattern may indicate a number of frequency hopping subbands in the preconfigured measurement gap.
  • the frequency hopping pattern may indicate that there are two frequency hopping subbands in a preconfigured measurement gap. It is to be understood that the number of frequency hopping subbands is just an example without any limitation. In some embodiments, the number of frequency hopping subbands in each preconfigured measurement gap may be configured individually.
  • the frequency hopping pattern may further indicate a time interval between the frequency hopping subbands in the same preconfigured measurement gap.
  • the time and frequency position of the frequency hopping subbands may be also indicated in the similar way as the Table 1 which may comprise a further dimension for indicating the number of frequency hopping subbands in a preconfigured measurement gap.
  • the frequency hopping subbands are not limited in the preconfigured measurement gap.
  • FIG. 5 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
  • frequency hopping subbands 510, 520, 530 and 540 in the predefined period 550 are shown.
  • the time and frequency position of these frequency hopping subbands may be indicated in the same way as discussed above, except that the positions of subbands are not limited in a preconfigured measurement gap.
  • the terminal device 110 may determine the time and frequency position of these frequency hopping subbands accordingly.
  • the terminal device 110 may request a measurement gap adapted to a determined frequency hopping subband from the network device 120.
  • the terminal device 110 may detect PRSs across the frequency hopping subband during the measurement gap if the request is granted.
  • the terminal device 110 may detects the plurality of positioning reference signals across the at least one frequency hopping subband during the preconfigured measurement gap. In this way, the reduced capability terminal device can receive PRSs across a larger frequency band bandwidth, in turn, the arrival time for the PRSs at the reduced capability terminal device can be estimated more accuracy.
  • the resources for the transmission of PRSs may be required to be scheduled temporarily for other communication purposes. Therefore, for further refining the communication resources, a muting mechanism for disabling some communication resources initially configured to the frequency hopping subbands may be required.
  • the terminal device 110 may receive (220) a muting pattern from the network device 120.
  • the muting pattern indicates a communication resource which is disabled for the transmission of the positioning reference signal.
  • the communication resource comprises at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband.
  • the positioning reference signal resource comprises one or more slots for a repetition transmission of a positioning reference signal.
  • the communication resource indicated by the muting pattern only comprises a first frequency hopping subband.
  • the first frequency hopping subband may comprise one or more frequency hopping subbands in one or more predefined periods.
  • the muting pattern is specific to a predefined period, for example the predefined period 350 as discussed above. In this case, the one or more frequency hopping subbands indicated in the muting pattern are disabled.
  • the muting pattern may cross two or more predefined periods. In this case, the muting pattern may indicate a hopping subband frequency across two or more predefined periods in a sequential manner.
  • the terminal device 110 may detect the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
  • the muting pattern may indicate the frequency hopping subband 310, then the terminal device 110 may detect the PRSs across the subbands 320, 330 and 340 without detecting the subband 310.
  • the first frequency hopping subbands may be indicated in a first subband level mapping table.
  • the first subband level mapping table may be ⁇ 1, 1, 0, 1 ⁇ , and assuming that there are four frequency hopping subbands in a predefined period and it means that the third one is disabled. For discussion clarity, this may be discussed with reference to FIG. 6.
  • the first subband level mapping table may be ⁇ 1, 1, 0, 1, 0, 1, 1, 1 ⁇ , in this case, if each predefined period comprises four frequency hopping subband, the muting pattern crosses two predefined periods. In this case, all the frequency hopping subbands in these two predefined periods are ordered in a sequential manner and respective frequency hopping subband is disabled based on this mapping table.
  • each two consecutive predefined periods may repeat this table until a new muting pattern is received.
  • FIG. 6 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
  • frequency hopping subbands 610, 620, 630 and 640 are shown.
  • the terminal device 110 may understand that the communication resources of the frequency hopping subband 630 are disabled for the transmission of PRSs. Therefore, the terminal device 110 may perform no detection of the PRSs across the frequency hopping subband 630.
  • the muting pattern may indicate at least one of a PRS resource and a set of PRSs.
  • the communication resource may be indicated in a two level structure. If the muting pattern only indicates in a level of the set PRS resources, then each PRS resource in the set of PRSs is disabled. In this case, if this muting pattern is applied to a certain frequency hopping subband, then the indicated set of PRSs associated with the frequency hopping subband is disabled.
  • the muting pattern may indicate a slot in a level of the PRS resource. In this case, if the muting pattern is applied to a certain frequency hopping subband, then the indicated slot in the PRS resource is disabled on the certain frequency hopping band.
  • the muting pattern indicating at least one of a PRS resource and a set of PRSs is disabled in one or more predefined periods.
  • each subband in the one or more predefined period is configured based on the muting pattern.
  • only indicated frequency hopping subbands or the default subbands in the predefined period are configured based on the muting pattern.
  • there is a plurality of muting patterns and each of the muting patterns is specific to a subband in the predefined period. Accordingly, this subband may be configured based on the specific muting pattern. For discussion clarity, these may be discussed with reference to FIGs. 7-8.
  • the muting pattern may be applied on the one or more predefined periods in the same way as discussion above, for example, the muting pattern crosses two or more predefined periods, and the frequency hopping subbands which may be applied the muting pattern can be indexed in the sequential way.
  • the length 701 represents a predefined period for the transmission of PRSs which may comprise one or more preconfigured measurement gaps, and the length 701 may equal to the predefined period 350 or 550 as discussed above.
  • the block 710, 720, 730 and 740 represent the disabling states of the set of PRSs relating to four predefined periods.
  • the disabling states of the set of PRSs relating to four predefined periods may be indicated in a bitmap for the level of the set of PRS ⁇ 1, 1, 1, 0 ⁇ . It means that the set of PRS resources 740 is disabled. Then, the following predefined periods may following this bitmap repeatedly or may be indicated by a new similar bitmap.
  • this muting pattern is applied to each of frequency hopping subbands in the predefined period. This means that if the set of PRSs associated with a predefined period is indicated in the muting pattern, for example, the set of PRSs 740, is disabled in each subband in the corresponding predefined period.
  • the terminal device 110 may detects, based on the muting pattern and across a second frequency hopping subband.
  • the second frequency hopping subband may be one or more default frequency hopping subbands. Accordingly, this muting pattern is only applied to one or more default frequency hopping subbands or network device-indicated frequency hopping subbands in the associated one or more predefined period. For example, this muting pattern is only applied to the first one (which is the default frequency hopping subband) of the frequency hopping subbands in the corresponding predefined period, such as, the predefined period corresponding to the block 740. In this case, other frequency hopping subbands in this predefined period are not disabled, the terminal device 110 may detect PRSs across these other un-default subbands. In some embodiments, the default frequency hopping subband may be other subbands in the predefined period.
  • the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the positioning reference signal.
  • the second subband level mapping table may be ⁇ 1, 0, 1, 0 ⁇ , it means that the second one and fourth one of frequency hopping subbands in the predefined period may be disabled or configured based on the muting pattern. If the muting pattern only indicates a set of PRS resources, then the respective set of PRS resources in the second and fourth frequency hopping subband are disabled.
  • the muting pattern indicating a level of a PRS for example, indicating a slot 750 as shown in FIG. 7, the corresponding slot in the PRS resource may be disabled. Similarly with the level of the set of PRS, the muting pattern may be also applied on each frequency hopping subband in the predefined period, default one or more frequency hopping subbands in the predefined period or indicated frequency hopping subbands in the predefined period.
  • the muting pattern may indicate the communication resources in the level of the set of PRS and the level of PRS simultaneously. Then, the terminal device 110 may determine the disabled subbands or slots in the same way as discussed above respectively.
  • the muting pattern may be specific to a third frequency hopping subband in a predefined period.
  • the third frequency hopping subband comprises one or more frequency hopping subbands in a predefined period.
  • this muting pattern specific to the third frequency hopping subband may be indicated by a third table.
  • FIG. 8 illustrates a resource configuration for PRS transmission according to some embodiments of the present disclosure.
  • Subband index 0 1 The level of the set of PRS ⁇ 1, 1, 1, 0 ⁇ ⁇ 1, 0, 1, 0 ⁇ The level of PRS ⁇ 1, 1, 0, 1 ⁇ ⁇ 1, 0, 0, 1 ⁇
  • the set of PRS resources in frequency hopping subband 0 is disabled in the fourth predefined period.
  • the terminal device 110 may detect the PRSs across each frequency hopping subband 0 in the predefined period corresponding to the set of PRS resources 810, 820 and 830.
  • the terminal may perform no detection of the indicated set of PRS resources across each frequency hopping subband 0 in the predefined period corresponding to the set of PRS resources 840.
  • the terminal device may perform no detection of the PRS in the third slot 850 for the transmission of the PRS.
  • the set of PRS resources in frequency hopping subband 1 is disabled in the second and fourth predefined periods.
  • the terminal device 110 may detect the PRS across each frequency hopping subband 1 in the predefined period corresponding to the first set of PRS resources 860 and the third set of PRS resources 880.
  • the terminal may perform no detection of the indicated set of PRS resources across frequency hopping subbands 1 in the predefined periods corresponding to the second 870 and third 890 sets of PRS resource.
  • the terminal device may perform no detection of the PRS in the second slot and third slot 895 for the transmission of the PRS.
  • the terminal device 110 further receives a repetition factor indicating a number of repetition for the transmission of a PRS resource from a network device.
  • the repetition factor is configured for at least one of a set of positioning reference signal resources and a fourth frequency hopping subband.
  • each PRS resource in the set of PRSs may have this same repetition number.
  • there may be another parameter dl-PRS-ResourceTimeGap which defines the offset in number of slots between two repeated instances of a PRS resource with the same PRS resource ID within the set of PRS resources.
  • each PRS resource in a frequency hopping subband in the predefined period may be repeated with the repetition number indicated by this repetition factor.
  • the network device 120 may determine that the transmission quality on certain communication resources is lower than that of other communication resources based on previous estimation of communication. Then, the network device 120 may identify the frequency hopping subbands comprising these certain communication resources as the default frequency hopping subbands for configured repetition factor. In this way, once the terminal device 110 receives the repetition factor, the terminal device 110 may determine that the PRS resources in these default frequency hopping subbands will be repeated the number indicated by the repetition factor.
  • the frequency hopping subbands for the received repetition factor may be indicated dynamically.
  • these frequency hopping subbands may be indicated in a fourth subband level table, and each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.
  • the fourth subband level mapping table may be ⁇ 1, 0, 0, 0 ⁇ . Then, with receiving the repetition factor and this fourth subband level mapping table, the terminal device 110 may understand that the first one of the frequency hopping subbands in the predefined period or the frequency hopping subband with index 0 will be repeated with the number indicated by the repetition factor.
  • the performance of estimating the arrival of time may be improved by extending the PRS on more PRS timing and frequency resources, increasing the number of repetition for transmitting PRS resources or adapting the predefined period for certain terminal devices.
  • the terminal device 110 receives a positioning enhancement configuration for a reduced capability terminal device, the positioning enhancement configuration indicating at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
  • the terminal device 110 may receive the positioning enhancement configuration in the same way as the frequency hopping pattern.
  • the number of symbols of the DL PRS resource within a slot is indicated as any of L PRS ⁇ ⁇ 2, 4, 6, 12 ⁇ .
  • the number of symbols can be extended to, for example, 16, 18, 20, 24, and it may last at most 2 consecutive slots. Accordingly the extended combination is one of ⁇ 16, 2 ⁇ , ⁇ 18, 2 ⁇ , ⁇ 20, 2 ⁇ , ⁇ 24, 2 ⁇ , ⁇ 16, 4 ⁇ , ⁇ 20, 4 ⁇ , ⁇ 24, 4 ⁇ , ⁇ 18, 6 ⁇ , ⁇ 24, 6 ⁇ and ⁇ 24, 12 ⁇ , where L PRS represents the length of symbols, and represents a comb size.
  • a PRS-ResourceRepetitionFactor may define how many times each PRS resource is repeated for a single instance of the DL-PRS resource set and the number of repetition may takes values of any of Then, all PRS resources within one resource set have the same resource repetition number. Further, for reduced capability terminal devices, the maximum number of repetition factors can be extended to 48 or 64.
  • a dormancy state for reduced capability terminal device may be further extended.
  • the predefined period may be adapted for the extended dormancy state in order to enhance the receiving performance at the terminal devices.
  • DRX Discontinuous Reception
  • RRC_INACTIVE >10.24s
  • the predefined period may be extended.
  • the subcarrier spacing for PRS may also be reduced in order to receiving more PRSs at the terminal device 110.
  • performance of timing-based positioning methods depends on the bandwidth of the PRS, and reduced capability terminal device may support a limited bandwidth.
  • the subcarrier spacing of PRS for reduced capability terminal devices can be any of ⁇ 7.5kHz, 5kHz, 3.75kHz, 2.5kHz, 1.25kHz ⁇ . Smaller subcarrier spacing can help to map more PRS resources in the limited bandwidth.
  • the terminal device 110 may obtain the arrival time for PRSs with more accuracy. Then, the terminal device 110 may transmit (230) the determined arrival time for PRSs to the network device 120. Then, the network device 120 may forward the determined arrival time for PRSs to the LMF server 130 to estimate the position of the terminal device 110.
  • the reduced capability terminal device can receive PRSs across a larger frequency band bandwidth, with more repetition times or more times, in turn, the arrival time for the PRSs at the reduced capability terminal device can be estimated more accuracy. Therefore, time-of-arrival measurement performance of PRSs at low cost communication devices is improved with respect to a preconfigured measurement gap.
  • FIG. 9 illustrates a flowchart of a method 900 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 900 can be implemented at the terminal device 110 shown in FIG. 1.
  • the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap.
  • the at least two frequency hopping subband carry a plurality of positioning reference signals.
  • the terminal device 110 detects, during the preconfigured measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
  • the frequency hopping pattern indicates at least one of: a starting physical resource block for the frequency hopping subband; a bandwidth for the frequency hopping subband; a number of the frequency hopping subbands in a predefined period for a transmission of the positioning reference signal; a first time interval between frequency hopping subbands in the preconfigured measurement gap; a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a hopping sequence among the number of the frequency hopping subbands; a hopping start index among the number of the frequency hopping subbands; and a comb size resource element offset indicator used by each frequency hopping subband.
  • the repetition factor is configured for at least one of: a set of positioning reference signal resources; and a fourth frequency hopping subband.
  • the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.
  • FIG. 10 illustrates a flowchart of a method 1000 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1000 can be implemented at the network device 120 shown in FIG. 1.
  • the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 120 transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap.
  • the at least two frequency hopping subband carry a plurality of positioning reference signals
  • the network device 120 transmits, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
  • FIG. 11 illustrates a flowchart of a method 1100 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 1100 can be implemented at the terminal device 110 shown in FIG. 1.
  • the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the terminal device 110 receives from a network device 120, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal.
  • the communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal.
  • the terminal device 110 detects, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises the frequency hopping subband, detecting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
  • the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponding to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
  • the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the positioning reference signal.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
  • the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
  • FIG. 12 illustrates a flowchart of a method 1100 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1200 can be implemented at the terminal device 120 shown in FIG. 1.
  • the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 120 transmits, to a reduced capability terminal device 110, a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the network device 120 transmits, to the reduced capability terminal device 110, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal.
  • the communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources, and a first frequency hopping subband of the at least one frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal.
  • the network device 120 transmits, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
  • FIG. 13 illustrates a flowchart of a method 1300 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 1300 can be implemented at the terminal device 110 shown in FIG. 1.
  • the method 1300 will be described with reference to FIG. 1. It is to be understood that the method 1300 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives a positioning enhancement configuration for a reduced capability terminal device.
  • the positioning enhancement configuration indicating at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
  • FIG. 14 illustrates a flowchart of a method 1400 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1400 can be implemented at the network device 120 shown in FIG. 1.
  • the method 1400 will be described with reference to FIG. 1. It is to be understood that the method 1400 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 120 transmits, to a reduced capability terminal device 110, a positioning enhancement configuration for the reduced capability reduced capability terminal device 110.
  • the positioning enhancement configuration indicating at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
  • Fig. 15 is a simplified block diagram of a device 1500 that is suitable for implementing some embodiments of the present disclosure.
  • the device 1500 can be considered as a further example embodiment of the terminal device 110 as shown in FIG. 1, or network devices 120 as shown in FIG. 1. Accordingly, the device 1500 can be implemented at or as at least a part of the above network devices or terminal devices.
  • the device 1500 includes a processor 1510, a memory 1520 coupled to the processor 1510, a suitable transmitter (TX) and receiver (RX) 1540 coupled to the processor 1510, and a communication interface coupled to the TX/RX 1540.
  • the memory 1520 stores at least a part of a program 1530.
  • the TX/RX 1540 is for bidirectional communications.
  • the TX/RX 1540 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the gNB or eNB and a relay node (RN)
  • Uu interface for communication between the gNB or eNB and a terminal device.
  • the program 1530 is assumed to include program instructions that, when executed by the associated processor 1510, enable the device 1500 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-14.
  • the embodiments herein may be implemented by computer software executable by the processor 1510 of the device 1500, or by hardware, or by a combination of software and hardware.
  • the processor 1310 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1510 and memory 1520 may form processing means 1550 adapted to implement various embodiments of the present disclosure.
  • the memory 1520 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1520 is shown in the device 1500, there may be several physically distinct memory modules in the device 1500.
  • the processor 1510 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a terminal device comprises circuitry configured to perform method 900, 1100 or 1300.
  • a network device comprises circuitry configured to perform method 1000, 1200 or 1400.
  • the components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof.
  • one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium.
  • parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components.
  • FPGAs Field-programmable Gate Arrays
  • ASICs Application-specific Integrated Circuits
  • ASSPs Application-specific Standard Products
  • SOCs System-on-a-chip systems
  • CPLDs Complex Programmable Logic Devices
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 14.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • a method implemented at a reduced network device receives a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subband within a preconfigured measurement gap, the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the reduced capability terminal device detects, during the measurement gap, the plurality of positioning reference signals across the at least one frequency hopping subband.
  • receiving the frequency hopping pattern comprises: receiving, from a network device, the frequency hopping pattern in a system information message.
  • receiving the frequency hopping pattern comprises: receiving from a Location Management Function (LMF) Server and via the network device, the frequency hopping pattern after transmitting device capability associated with the reduced capability terminal device to the network device.
  • LMF Location Management Function
  • the frequency hopping pattern indicates at least one of: a starting physical resource block for the frequency hopping subband; a bandwidth for the frequency hopping subband; a number of the frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a number of frequency hopping subbands in the preconfigured measurement gap; a first time interval between frequency hopping subbands in the preconfigured measurement gap; a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a hopping sequence among the number of the frequency hopping subbands; a hopping start index among the number of the frequency hopping subbands; and a comb size resource element offset indicator used by each frequency hopping subband.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises the frequency hopping subband, detecting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
  • the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponding to a respective frequency hopping subband.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
  • the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
  • detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
  • the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
  • the repetition factor is configured for at least one of: a set of positioning reference signal resources; and a fourth frequency hopping subband.
  • the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.
  • a method implemented at a network device transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device.
  • the frequency hopping pattern indicatess a time and frequency position of at least one frequency hopping subband within a preconfigured measurement gap.
  • the at least one frequency hopping subband carries a plurality of positioning reference signals.
  • the network device transmits, during the measurement gap, the plurality of positioning reference signals across the at least one frequency hopping subband.
  • transmitting the frequency hopping pattern comprises: transmitting, to the reduced capability terminal device, the frequency hopping pattern in a system information message.
  • transmitting the frequency hopping pattern comprises: receiving, from the reduced capability terminal device, device capability associated with the reduced capability terminal device; and transmitting the device capability associated with the reduced capability terminal device to a Location Management Function (LMF) Server; and transmitting, to the reduced capability terminal device, the frequency hopping pattern received from a Location Management Function (LMF) Server in response to the transmission of the device capability.
  • LMF Location Management Function
  • the frequency hopping pattern indicates at least one of: a starting physical resource block for the frequency hopping subband; a bandwidth for the frequency hopping subband; a number of the frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a number of frequency hopping subbands in the preconfigured measurement gap; a first time interval between frequency hopping subbands in the preconfigured measurement gap; a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signal; a hopping sequence among the number of the frequency hopping subbands; a hopping start index among the number of the frequency hopping subbands; and a comb size resource element offset indicator used by each frequency hopping subband.
  • transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises the frequency hopping subband, transmitting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
  • the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponds to a respective frequency hopping subband.
  • transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, transmitting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
  • transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, transmitting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
  • the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
  • transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, transmitting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
  • the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
  • the repetition factor is configured for at least one of: a set of positioning reference signal resources; and a fourth frequency hopping subband.
  • the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for communications. According to embodiments of the present disclosure, a reduced capability terminal device receives a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap, the at least one frequency hopping subband carries a plurality of positioning reference signals. Further, the reduced capability terminal device detects, during the measurement gap, the plurality of positioning reference signals across the at least one frequency hopping subband.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR COMMUNICATIONS FIELD
Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a method, device and computer readable medium for positioning reduced capability terminal device.
BACKGROUND
With the development of communication technology, various positioning methods for communication devices have been proposed. For example, the Time Difference of Arrival (TDOA) positioning method is a method that utilizes the difference values between a set of time occasions of a signal arriving at different locations to determine the position of the device transmitting the signal. In this method, the performance of estimating the arrival time of the signal has significantly impact on the positioning accuracy. Specifically, the larger the bandwidth of the received signal, the higher the performance of estimating the arrival time of the signal. However, at the communication devices, the larger the Radio Frequency (RF) bandwidth for transmitting or receiving signals, the higher the cost of the communication devices. In order to reduce the costs, some reduced capability communication devices are limited with respect to RF bandwidth, for example, machine-type communication devices, the industrial sensors and wearables devices. In this case, the trade-off between the positioning accuracy and the device cost should be considered. Further, how to configure communication resources for positioning reference signal (PRS) transmissions is also a key aspect.
SUMMARY
In general, example embodiments of the present disclosure relate to methods, devices and computer readable media for controlling transmission at network devices.
In a first aspect, there is provided a method implemented at a reduced capability terminal device. In the method, the reduced capability terminal device receives a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least two frequency hopping  subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap, the at least two frequency hopping subband carry a plurality of positioning reference signals. Further, the reduced capability terminal device detects, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
In a second aspect, there is provided a method implemented at a network device. In the method, the network device transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicats a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap. The at least two frequency hopping subband carry a plurality of positioning reference signals and a number of the at least two frequency hopping subbands in the preconfigured measurement gap. Further, the network device transmits, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
In a third aspect, there is provided a method implemented at a reduced capability terminal device. In the method, the reduced capability terminal device receives a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands. The at least one frequency hopping subband carries a plurality of positioning reference signals. The reduced capability terminal device receives from a network device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal. The communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal. The reduced capability terminal device detects based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
In a fourth aspect, there is provided a method implemented at a network device. In the method, the network device transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping  subbands. The at least one frequency hopping subband carries a plurality of positioning reference signals. The network device transmits, to the reduced capability terminal device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal. The communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal. The network device transmits, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
In a fifth aspect, there is provided a method implemented at a reduced capability terminal device. In the method, the reduced capability terminal device receives a positioning enhancement configuration for a reduced capability terminal device. The positioning enhancement configuration indicates at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
In a sixth aspect, there is provided a method implemented at a network device. In the method, the network device transmits, to a reduced capability terminal device, a positioning enhancement configuration for the reduced capability reduced capability terminal device. The positioning enhancement configuration indicates at least one of: a number of symbols for a positioning reference signal in a slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
In a seventh aspect, there is provided a terminal device. The terminal device comprises a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method of any of the first aspect, third aspect and third aspect.
In an eighth aspect, there is provided a network device. The network device comprises a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method of any of the second aspect, fourth aspect and sixth aspect.
In a ninth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method of any one of the first aspect to the eighth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of example embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1 illustrates an example environment in which some embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a signaling process for configuring dormancy transmission configuration according to some embodiments of the present disclosure;
FIG. 3 illustrates a frequency hopping configuration according to some embodiments of the present disclosure;
FIG. 4 illustrates a frequency hopping configuration according to some embodiments of the present disclosure;
FIG. 5 illustrates a frequency hopping configuration according to some embodiments of the present disclosure;
FIG. 6 illustrates a frequency hopping configuration according to some embodiments of the present disclosure;
FIG. 7 illustrates a resource configuration for PRS transmission according to some embodiments of the present disclosure;
FIG. 8 illustrates a resource configuration for PRS transmission according to some  embodiments of the present disclosure;
FIG. 9 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 11 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 12 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 13 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 14 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure; and
FIG. 15 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular  phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal, a wireless device or a reduced capability terminal device.
As used herein, the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information. The terminal or the network device may work on several frequency ranges,  e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The network device may have the function of network energy saving, Self-Organizing Networks (SON) /Minimization of Drive Tests (MDT) . The terminal may have the function of power saving.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with  reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
As mentioned above, the trade-off between the positioning accuracy and the device cost should be considered. One solution is that a reduced capability terminal device (for example, a device with reduced bandwidth support and reduced complexity including reduced number of receive chains) may be configured with a frequency hopping pattern  indicating a plurality of frequency subbands distributed on different time intervals. Then, the terminal device may detect PRSs on different frequency subbands of which each is configured in a different time interval. In this way, by polling, in time domain, each frequency subband, the PRSs can be received by the terminal device across a larger frequency band. As such, the performance of estimating the arrival time for PRSs can be improved with the expense of increased reception numbers. However, for efficiency utilization of the communication resources, the frequency subbands may be not arbitrarily distributed over the time domain. For example, there may be a preconfigured measurement gap which may be used for the terminal device to detect PRSs. In this case, the coordination between configuring one or more frequency subbands carrying PRSs and the preconfigured measurement gap should be further studied. In addition, in a case that a configuration of one or more frequency subbands is coordinated with the preconfigured measurement gap, further scheduling of resources associated with frequency subbands is beneficial for the flexibility of communication.
The example embodiments of the disclosure propose a mechanism for positioning reduced capability terminal device. In this mechanism, one or more frequency hopping subbands are configured in a preconfigured measurement gap and the configuration is indicated to a reduced capability device, such that the reduced capability terminal device can detect PRSs across each of the one or more frequency hopping subbands during the measurement gap. After a PRS transmission period comprising a certain number of the measurement gaps, the terminal device can detect PRSs across a larger frequency band. Further, a muting pattern which indicates communication resource disabled for PRSs may be applied on the above frequency hopping configuration, in order to further schedule communication resources flexibly on the basis of the frequency hopping configuration.
Specifically, a reduced capability terminal device receives a frequency hopping pattern from high layer. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subband within at least one preconfigured measurement gap. The at least one frequency hopping subband carries a plurality of positioning reference signals. Then, the reduced capability terminal device detects the plurality of positioning reference signals across the at least one frequency hopping subband during the at least one preconfigured measurement gap.
In this way, the reduced capability terminal device can receive PRSs across a larger frequency band bandwidth, in turn, the arrival time for the PRSs at the reduced capability  terminal device can be estimated more accuracy. Therefore, time-of-arrival measurement performance of PRSs at low cost communication devices is improved with respect to a preconfigured measurement gap.
FIG. 1 illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
The environment 100, which may be a part of a communication network, comprises a terminal device 110, a network device 120 and a server 130. The terminal device 110 may receive PRSs for estimating the time of arrival from the network device 120. Further, the terminal device 110 may receive a frequency hopping pattern from the network device 120 via the server 130. Further, the terminal device may determine the time of arrival from a Transmission Point (TP) or the time difference between different TPs for the PRSs and feedback the determined time of arrival or the time difference to the server 130 for calculating the position of the terminal device 110. In some embodiments, the server 130 may comprise a server associated with function for positioning the terminal device, for example, a Location Management Function (LMF) server. In further embodiments, the server 130 may comprise any other servers having similar functions.
It is to be understood that the number of terminal devices and network device is shown in the environment 100 only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure. In some embodiments, the environment 100 may comprise a further terminal device to communicate information with a further network device.
The communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual  Connection (DC) , and New Radio Unlicensed (NR-U) technologies.
FIG. 2 illustrates a signaling process 200 for configuring dormancy transmission configuration according to some embodiments of the present disclosure. For purpose of discussion, the process 200 will be described with reference to FIG. 1.
In the signaling process 200, the terminal device 110 receives (210) a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subband within a preconfigured measurement gap. The at least one frequency hopping subband carries a plurality of positioning reference signals. In some embodiments, the frequency hopping subband may be occupied by a single PRS resource for the transmission. In some embodiments, the frequency hopping subband may be occupied by a set of PRS resources for the transmission of PRSs. Correspondingly, a PRS may have a resource identification (ID) for a PRS resource and a set ID for the set of PRS resources. In this case, the PRS is transmitted on the PRS resource configured with this resource ID, and this PRS resource belongs to the set of PRS resources configured with the set ID In some embodiments, the PRS resource may comprise one or more slots for a repetition transmission of a positioning reference signal. Further, the number of repetition of the transmission of the PRS resource may also be configured, and the repetition transmission of the PRS may be performed on the PRS resource configured with the number of repetition, the details will be discussed in the following.
In some embodiments, the preconfigured measurement gap may be a measurement gap preconfigured for measuring the PRSs transmitted from a network work device 120. In some embodiments, the preconfigured measurement gap may be a measurement configured gap preconfigured for other measurement purposes, for example, a measurement gap for the terminal device 110 to measure a frequency band other than the frequency band (for example, the active downlink bandwidth part) on which the terminal device is residing. In some embodiments, the preconfigured measurement gap may also be any other measurement gaps preconfigured for other measuring purposes, for example, measuring channel quality, a timing advance parameter and so on.
In this disclosure, there is at least one preconfigured measurement gap in a predefined period for a transmission of the PRSs. In some embodiments, the predefined period for the transmission of the PRSs is 160 ms. In some embodiments, the predefined  period for the transmission of the PRSs is 80 ms. In some embodiments, the predefined period for the transmission of the PRSs may be any available value in time which is defined in the current 3GPP spec. For example, there may be four preconfigured measurement gaps in the predefined period. Alternatively, there may be two preconfigured measurement gaps in the predefined period. In some embodiments, there may be any other number of preconfigured measurement gaps in the predefined period.
In some embodiments, the terminal device 110 may receive the frequency hopping pattern by receiving the frequency hopping pattern in a system information message from the network device 120. For example, during an initial access procedure, after receiving a Master Information Block (MIB) and System Information Block (SIB) 1 from the network device 120, the terminal device 110 transmits a system information request to the network device 120. Then, the terminal device may receive the system information message comprising the frequency hopping pattern for the reduced capability terminal device. In some embodiments, the network device 120 receives (215) the frequency hopping pattern from the LMF server 130 in advance. In an example, the terminal device 110 may receive the frequency hopping pattern based on the procedure shown below.
Figure PCTCN2022088027-appb-000001
In addition or alternatively, the terminal device 110 may receive the frequency hopping pattern after reporting device capability associated with the terminal device to the LMF server 130. For example, the LMF server 130 may transmit a Long Term Evolution (LTE) positioning protocol (LPP) request for the capability of the terminal device 110 to the terminal device 110 via the network device 120. In response to receiving the LPP request, the terminal device 110 may transmit the device capability associated with the terminal device 110 to the LMF server 130 via the network device 120. Then, if the LMF server 130 determines that the terminal device 110 is a reduced capability terminal device based on the device capability and supportive for the frequency hopping pattern, the LMF server 130 transmits (215) the frequency hopping pattern to the terminal device 110 via the  network device 120. In an example, the terminal device 110 may receive the frequency hopping pattern based on the procedure shown below.
Figure PCTCN2022088027-appb-000002
The frequency hopping pattern may comprise a plurality of parameters for indicating the time and frequency position of at least one subband within the preconfigured measurement gap. In some embodiments, the frequency hopping pattern may comprise a number of the frequency hopping subbands in the predefined period for the transmission of the positioning reference signal. In an example, if the predefined period comprises four preconfigured measurement gap, the number of the frequeny hopping subbands may be equal to the number of preconfigured measurement gap. For discussion clarity, the plurality of parameters for indicating the time and frequency position may be discussed with reference to FIGs. 3-5.
FIG. 3 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
In FIG. 3,  frequency hopping subbands  310, 320, 330 and 340 in the predefined period 350 for the transmission of PRSs are shown. Further, there are also four preconfigured measurement gaps in the predefined period 350. For example, the block 360 represents the second one of four preconfigured measurement gaps in the predefined period 350. In some embodiments, the frequency hopping pattern indicates that the number of subbands in the predefined period for the transmission of PRSs is four, which is equal to the number of preconfigured measurement gap. In this case, the frequency hopping pattern implicitly indicates that the frequency hopping subband and the preconfigured measurement gap are one-to-one correspondence. In turn, there is one frequency hopping subband in one preconfigured measurement gap. In this case, in some embodiments, the starting time position, starting frequency position, the bandwidth and  frequency offset between neighboring frequency hopping subbands may be configured in the frequency hopping info and transmitted from the network device 120 to the terminal device 110. In this way, if the terminal device is indicated that the number of the frequency hopping subbands is equal to the number of preconfigured measurement gap, the terminal device 110 may understand the time and frequency position of the frequency hopping subbands in each preconfigured measurement gap.
In addition, the frequency hopping pattern may further indicate the timing information associated with these hopping frequency subbands directly. In some embodiments, the frequency hopping pattern may indicate the number of hopping frequency subband in a measurement gap. For example, the frequency hopping pattern may indicate there is only 1 hopping frequency subband in a measurement gap, or the frequency hopping pattern may indicate there is 2 hopping frequency subbands in a measurement gap. In some embodiments, the frequency hopping pattern may indicate the starting time of a hopping frequency subband in a measurement gap. For example, the starting time may be indicated by indicating an offset between the starting occasion of the frequency hopping subband and the starting occasion of the measurement gap. In addition, each subband indicated in this frequency hopping pattern may following the same timing information. In addition or alternatively, the timing information associated with each hopping frequency hopping subband may be indicated individually.
In addition or alternatively, the frequency hopping pattern may explicitly contain the starting time position, starting frequency position, the bandwidth and frequency offset between neighboring frequency hopping subbands. In an example, the network device 120 may configure the following table 1 in the frequency hopping pattern to the terminal device 110. In the Table 1, the subband index represents the respective frequency hopping subband, for example, the subband index 1 corresponds to the second one of subbands in the predefined period 350. As shown in FIG. 3, subband index 1 corresponds to subband 320 as shown in FIG. 3. In addition, the starting frequency position in TABLE 1 represents the starting frequency position of a subband, and the starting frequency position may be expressed as a PRB ID. Moreover, the bandwidth represents the bandwidth of a corresponding frequency hopping subband, and may be expressed as the number of PRBs. In some embodiments, the bandwidth may be expressed in other frequency units. As shown in Table 1, the bandwidth of each frequency hopping subband is equal to 48 PRBs. In some other embodiments, the bandwidth of each frequency hopping subband may be  configured individually.
TABLE 1
Figure PCTCN2022088027-appb-000003
As such, the terminal device may determine the time and frequency position of frequency hopping subband in each preconfigured measurement gap based on the above Table 1.
For the bandwidth of a frequency hopping subband, it may be smaller than the RF band supported by the terminal device 110 and it is adjusted by the granularity of 4 PRBs. For example, if the terminal device 110 supports a RF bandwidth of 5Mhz and the subcarrier spacing is 15Khz, then the bandwidth of the frequency hopping subband is 24 PRBs. In another example, if the terminal device 110 supports a RF bandwidth of 5Mhz and the subcarrier spacing is 30Khz, then the bandwidth of the frequency hopping subband is 12 PRBs. In a yet example, if the terminal device 110 supports a RF bandwidth of 20Mhz and the subcarrier spacing is 30Khz, then the bandwidth of the frequency hopping subband is 48 PRBs. In a further example, if the terminal device 110 supports a RF bandwidth of 20Mhz and the subcarrier spacing is 15Khz, then the bandwidth of the frequency hopping subband is 96 PRBs. In an example, the number of PRBs in a frequency hopping subband being used to respective supported RF bandwidth is illustrated in Table 2.
TABLE 2
Figure PCTCN2022088027-appb-000004
It is to be understood that the parameters shown in Table 1 are only for discussion, and any other parameters for indicating the time and frequency position of a frequency hopping subband may be additionally or altertively configured in Table 1.
In addition, with the Table 1, the frequency hopping pattern may further indicate the order of the four frequency hopping subbands. For example, the frequency hopping pattern may comprise a bitmap {3, 1, 2, 0} indicating the hopping order for the subbands. Then, the terminal device may determine the time and frequency position of the frequency subband hopping based on corresponding subband index in Table 1 and the indicated hopping order.
In some embodiments, the frequency hopping subband start index may from the index 0, or the terminal device 110 can be configured a special start index, or the start index can be: (cell id) mod (number of subbands) . For example, the frequency hopping subband may also indicate a hopping start index among the number of the frequency hopping subbands, then the frequency hopping subband begins to loop from the starting index which is indicated.
In addition or alternatively to Table 1, the frequency hopping pattern may indicate the time and frequency position of the frequency hopping subband in the way of starting and length. In some embodiments, the frequency hopping pattern may comprise the starting position of the first one (subband 310) of the frequency hopping subbands in the predefined period 350. For example, the frequency hopping pattern may indicate an offset 370 between the first symbol of the preconfigured measurement gap and the starting position. In addition, the frequency hopping pattern may indicate the bandwidth of the subband 310, for example, the bandwidth 380. Further, the frequency hopping pattern may indicate the frequency offset 390 between neighboring frequency hopping subbands, for example,  subbands  310 and 320,  subbands  320 and 330 and  subbands  330 and 340. Then, the terminal device may determine the time and frequency position of each frequency hopping subband. For example, with respect to subband 320, the terminal device 110 may determine the starting frequency position by calculating the ending of the subband 310 plus the frequency offset 390. For the starting time position of subband 320, the terminal device may determine it in the same way of the subband 310. In some embodiments, the frequency hopping pattern may indicate a time interval between frequency hopping subbands in a predefined period for a transmission of the positioning reference signal.
In some embodiments, the frequency hopping pattern may further indicate a Comb configuration for introducing different stagger structure for each subband. For example, the frequency hopping pattern may indicate a separate comb size resource element offset indicator used by each frequency hopping subband. In some embodiments, each  frequency hopping subband shares the same Comb configuration indicated by the common PRS resource configuration. In addition or alternatively, the frequency hopping pattern may indicate a separate Comb configuration specific to a certain frequency hopping subband. In an example, if frequency hopping pattern is configured by higher layers, the frequency hopping configuration provided by higher layers may contain the following:
Figure PCTCN2022088027-appb-000005
In addition or alternatively to there is only one frequency hopping subband in each preconfigured measurement gap, there may be two or more frequency hopping subbands in each preconfigured measurement gap.
FIG. 4 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
In FIG. 4,  frequency hopping subbands  410, 420, 430 and 440 are shown. Frequency hopping subbands 410 and 420 are configured in a preconfigured measurement gap and  frequency hopping subbands  430 and 440 are configured in another preconfigured measurement gap. In some embodiments, the frequency hopping pattern may indicate a number of frequency hopping subbands in the preconfigured measurement gap. As shown in FIG. 4, the frequency hopping pattern may indicate that there are two frequency hopping subbands in a preconfigured measurement gap. It is to be understood that the number of frequency hopping subbands is just an example without any limitation. In some  embodiments, the number of frequency hopping subbands in each preconfigured measurement gap may be configured individually.
If there are more than one frequency hopping subbands in a preconfigured measurement gap, the frequency hopping pattern may further indicate a time interval between the frequency hopping subbands in the same preconfigured measurement gap.
In some embodiments, even though there are more than one frequency hopping subbands in a preconfigured measurement gap, the time and frequency position of the frequency hopping subbands may be also indicated in the similar way as the Table 1 which may comprise a further dimension for indicating the number of frequency hopping subbands in a preconfigured measurement gap.
In addition or alternatively, the frequency hopping subbands are not limited in the preconfigured measurement gap.
FIG. 5 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
In FIG. 5,  frequency hopping subbands  510, 520, 530 and 540 in the predefined period 550 are shown. The time and frequency position of these frequency hopping subbands may be indicated in the same way as discussed above, except that the positions of subbands are not limited in a preconfigured measurement gap. In this case, the terminal device 110 may determine the time and frequency position of these frequency hopping subbands accordingly. In some embodiments, once the terminal device 110 is required to measure the PRSs, the terminal device 110 may request a measurement gap adapted to a determined frequency hopping subband from the network device 120. In turn, the terminal device 110 may detect PRSs across the frequency hopping subband during the measurement gap if the request is granted.
Referring back to FIG. 2, upon determining the time and frequency position of at least one frequency hopping subband wihin a preconfigured measurement gap, the terminal device 110 may detects the plurality of positioning reference signals across the at least one frequency hopping subband during the preconfigured measurement gap. In this way, the reduced capability terminal device can receive PRSs across a larger frequency band bandwidth, in turn, the arrival time for the PRSs at the reduced capability terminal device can be estimated more accuracy.
However, the resources for the transmission of PRSs may be required to be  scheduled temporarily for other communication purposes. Therefore, for further refining the communication resources, a muting mechanism for disabling some communication resources initially configured to the frequency hopping subbands may be required.
The terminal device 110 may receive (220) a muting pattern from the network device 120. The muting pattern indicates a communication resource which is disabled for the transmission of the positioning reference signal. In some embodiments, the communication resource comprises at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband. The positioning reference signal resource comprises one or more slots for a repetition transmission of a positioning reference signal.
In some embodiments, the communication resource indicated by the muting pattern only comprises a first frequency hopping subband. In some embodiments, the first frequency hopping subband may comprise one or more frequency hopping subbands in one or more predefined periods. In some embodiments, the muting pattern is specific to a predefined period, for example the predefined period 350 as discussed above. In this case, the one or more frequency hopping subbands indicated in the muting pattern are disabled. In addition or alternatively, the muting pattern may cross two or more predefined periods. In this case, the muting pattern may indicate a hopping subband frequency across two or more predefined periods in a sequential manner. Then, the terminal device 110 may detect the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband. For example, the muting pattern may indicate the frequency hopping subband 310, then the terminal device 110 may detect the PRSs across the  subbands  320, 330 and 340 without detecting the subband 310.
In some embodiments, the first frequency hopping subbands may be indicated in a first subband level mapping table. For example, the first subband level mapping table may be {1, 1, 0, 1} , and assuming that there are four frequency hopping subbands in a predefined period and it means that the third one is disabled. For discussion clarity, this may be discussed with reference to FIG. 6. In addition or alternatively, the first subband level mapping table may be {1, 1, 0, 1, 0, 1, 1, 1} , in this case, if each predefined period comprises four frequency hopping subband, the muting pattern crosses two predefined periods. In this case, all the frequency hopping subbands in these two predefined periods are ordered in a sequential manner and respective frequency hopping subband is disabled  based on this mapping table. For example, the first one of the frequency hopping subbands in the latter predefined period is disabled, since the fifth bit in this table is “0” . In addition, for further following predefined periods, each two consecutive predefined periods may repeat this table until a new muting pattern is received.
FIG. 6 illustrates a frequency hopping configuration according to some embodiments of the present disclosure.
In FIG. 6,  frequency hopping subbands  610, 620, 630 and 640 are shown. As discussed above, if the muting pattern comprises the first subband level mapping table may be {1, 1, 0, 1} , the terminal device 110 may understand that the communication resources of the frequency hopping subband 630 are disabled for the transmission of PRSs. Therefore, the terminal device 110 may perform no detection of the PRSs across the frequency hopping subband 630.
In addition or alternatively, the muting pattern may indicate at least one of a PRS resource and a set of PRSs. In this case, the communication resource may be indicated in a two level structure. If the muting pattern only indicates in a level of the set PRS resources, then each PRS resource in the set of PRSs is disabled. In this case, if this muting pattern is applied to a certain frequency hopping subband, then the indicated set of PRSs associated with the frequency hopping subband is disabled. In addition or alternatively, the muting pattern may indicate a slot in a level of the PRS resource. In this case, if the muting pattern is applied to a certain frequency hopping subband, then the indicated slot in the PRS resource is disabled on the certain frequency hopping band.
In some embodiments, the muting pattern indicating at least one of a PRS resource and a set of PRSs is disabled in one or more predefined periods. In some embodiments, each subband in the one or more predefined period is configured based on the muting pattern. In some other embodiments, only indicated frequency hopping subbands or the default subbands in the predefined period are configured based on the muting pattern. In some further embodiments, there is a plurality of muting patterns and each of the muting patterns is specific to a subband in the predefined period. Accordingly, this subband may be configured based on the specific muting pattern. For discussion clarity, these may be discussed with reference to FIGs. 7-8. In addition, the muting pattern may be applied on the one or more predefined periods in the same way as discussion above, for example, the muting pattern crosses two or more predefined periods, and the frequency hopping  subbands which may be applied the muting pattern can be indexed in the sequential way.
In FIG. 7, the length 701 represents a predefined period for the transmission of PRSs which may comprise one or more preconfigured measurement gaps, and the length 701 may equal to the  predefined period  350 or 550 as discussed above. Further, the  block  710, 720, 730 and 740 represent the disabling states of the set of PRSs relating to four predefined periods. The disabling states of the set of PRSs relating to four predefined periods may be indicated in a bitmap for the level of the set of PRS {1, 1, 1, 0} . It means that the set of PRS resources 740 is disabled. Then, the following predefined periods may following this bitmap repeatedly or may be indicated by a new similar bitmap. In some embodiments, this muting pattern is applied to each of frequency hopping subbands in the predefined period. This means that if the set of PRSs associated with a predefined period is indicated in the muting pattern, for example, the set of PRSs 740, is disabled in each subband in the corresponding predefined period.
In addition of alternatively, in some embodiments, the terminal device 110 may detects, based on the muting pattern and across a second frequency hopping subband. In some embodiments, the second frequency hopping subband may be one or more default frequency hopping subbands. Accordingly, this muting pattern is only applied to one or more default frequency hopping subbands or network device-indicated frequency hopping subbands in the associated one or more predefined period. For example, this muting pattern is only applied to the first one (which is the default frequency hopping subband) of the frequency hopping subbands in the corresponding predefined period, such as, the predefined period corresponding to the block 740. In this case, other frequency hopping subbands in this predefined period are not disabled, the terminal device 110 may detect PRSs across these other un-default subbands. In some embodiments, the default frequency hopping subband may be other subbands in the predefined period.
In addition or alternatively, the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the positioning reference signal. For example, the second subband level mapping table may be {1, 0, 1, 0} , it means that the second one and fourth one of frequency hopping subbands in the predefined period may be disabled or configured based on the muting pattern. If the muting pattern only indicates a set of PRS resources, then the respective set of PRS resources in the second and fourth frequency hopping  subband are disabled.
Regarding the muting pattern indicating a level of a PRS, for example, indicating a slot 750 as shown in FIG. 7, the corresponding slot in the PRS resource may be disabled. Similarly with the level of the set of PRS, the muting pattern may be also applied on each frequency hopping subband in the predefined period, default one or more frequency hopping subbands in the predefined period or indicated frequency hopping subbands in the predefined period.
In some embodiments, the muting pattern may indicate the communication resources in the level of the set of PRS and the level of PRS simultaneously. Then, the terminal device 110 may determine the disabled subbands or slots in the same way as discussed above respectively.
In addition or alternatively, the muting pattern may be specific to a third frequency hopping subband in a predefined period. In some embodiments, the third frequency hopping subband comprises one or more frequency hopping subbands in a predefined period. In some embodiments, this muting pattern specific to the third frequency hopping subband may be indicated by a third table.
FIG. 8 illustrates a resource configuration for PRS transmission according to some embodiments of the present disclosure.
In FIG 8, two muting pattern of which each is specific to the frequency hopping subband 0 and the frequency hopping subband 1 respectively are shown, and assuming that the muting repetition factor is 1. The third table indicating these two frequency hopping subbands may be the following Table 3.
TABLE 3
Subband index 0 1
The level of the set of PRS {1, 1, 1, 0} {1, 0, 1, 0}
The level of PRS {1, 1, 0, 1} {1, 0, 0, 1}
For the frequency hopping subband 0, in a consecutive four predefined periods, the set of PRS resources in frequency hopping subband 0 is disabled in the fourth predefined period. In this case, the terminal device 110 may detect the PRSs across each frequency hopping subband 0 in the predefined period corresponding to the set of  PRS resources  810, 820 and  830. In turn, the terminal may perform no detection of the indicated set of PRS resources across each frequency hopping subband 0 in the predefined period corresponding to the set of PRS resources 840. Further, for each frequency hopping subband 0, the terminal device may perform no detection of the PRS in the third slot 850 for the transmission of the PRS.
Similarly, for the frequency hopping subband 1, in a consecutive four predefined periods, the set of PRS resources in frequency hopping subband 1 is disabled in the second and fourth predefined periods. In this case, the terminal device 110 may detect the PRS across each frequency hopping subband 1 in the predefined period corresponding to the first set of PRS resources 860 and the third set of PRS resources 880. In turn, the terminal may perform no detection of the indicated set of PRS resources across frequency hopping subbands 1 in the predefined periods corresponding to the second 870 and third 890 sets of PRS resource. Further, for each frequency hopping subband 1, the terminal device may perform no detection of the PRS in the second slot and third slot 895 for the transmission of the PRS.
In some embodiments, the terminal device 110 further receives a repetition factor indicating a number of repetition for the transmission of a PRS resource from a network device. In some embodiments, the repetition factor is configured for at least one of a set of positioning reference signal resources and a fourth frequency hopping subband.
For example, it has defined how many times each PRS resource is repeated for a set of PRS, and the number of repetition transmissions of a PRS may be taken from the set of predefined values
Figure PCTCN2022088027-appb-000006
Once a value is taken for the number of the repetition, the each PRS resource in the set of PRSs may have this same repetition number. Further, there may be another parameter dl-PRS-ResourceTimeGap which defines the offset in number of slots between two repeated instances of a PRS resource with the same PRS resource ID within the set of PRS resources.
In some embodiments, with the frequency hopping pattern, if the repetition factor is configured for a set of PRS resources, then each PRS resource in a frequency hopping subband in the predefined period may be repeated with the repetition number indicated by this repetition factor.
In addition or alternatively, only default subbands or indicated frequency hopping subbands are repeated with the repetition number indicated by this repetition factor, but other frequency hopping subbands are repeated with the default number. For example, the  network device 120 may determine that the transmission quality on certain communication resources is lower than that of other communication resources based on previous estimation of communication. Then, the network device 120 may identify the frequency hopping subbands comprising these certain communication resources as the default frequency hopping subbands for configured repetition factor. In this way, once the terminal device 110 receives the repetition factor, the terminal device 110 may determine that the PRS resources in these default frequency hopping subbands will be repeated the number indicated by the repetition factor.
In some embodiments, the frequency hopping subbands for the received repetition factor may be indicated dynamically. For example, these frequency hopping subbands may be indicated in a fourth subband level table, and each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal. For example, the fourth subband level mapping table may be {1, 0, 0, 0} . Then, with receiving the repetition factor and this fourth subband level mapping table, the terminal device 110 may understand that the first one of the frequency hopping subbands in the predefined period or the frequency hopping subband with index 0 will be repeated with the number indicated by the repetition factor.
In addition or alternatively to the frequency hopping pattern, the performance of estimating the arrival of time may be improved by extending the PRS on more PRS timing and frequency resources, increasing the number of repetition for transmitting PRS resources or adapting the predefined period for certain terminal devices. In some embodiments, the terminal device 110 receives a positioning enhancement configuration for a reduced capability terminal device, the positioning enhancement configuration indicating at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
In some embodiments, the terminal device 110 may receive the positioning enhancement configuration in the same way as the frequency hopping pattern.
In an example, it has defined that the number of symbols of the DL PRS resource  within a slot is indicated as any of L PRS∈ {2, 4, 6, 12} . Further, for reduced capability terminal devices, the number of symbols can be extended to, for example, 16, 18, 20, 24, and it may last at most 2 consecutive slots. Accordingly the extended combination 
Figure PCTCN2022088027-appb-000007
is one of {16, 2} , {18, 2} , {20, 2} , {24, 2} , {16, 4} , {20, 4} , {24, 4} , {18, 6} , {24, 6} and {24, 12} , where L PRS represents the length of symbols, and
Figure PCTCN2022088027-appb-000008
represents a comb size.
In another example, a PRS-ResourceRepetitionFactor may define how many times each PRS resource is repeated for a single instance of the DL-PRS resource set and the number of repetition may takes values of any of
Figure PCTCN2022088027-appb-000009
Then, all PRS resources within one resource set have the same resource repetition number. Further, for reduced capability terminal devices, the maximum number of repetition factors can be extended to 48 or 64.
In a yet example, a dormancy state for reduced capability terminal device may be further extended. The predefined period may be adapted for the extended dormancy state in order to enhance the receiving performance at the terminal devices. For example, enhanced Discontinuous Reception (DRX) in RRC_INACTIVE (>10.24s) are considered for the reduced capability terminal devices, currently the maximum predefined period is 10.24s. Accordingly, the predefined period may be extended.
In addition or alternatively, the subcarrier spacing for PRS may also be reduced in order to receiving more PRSs at the terminal device 110. For example, performance of timing-based positioning methods depends on the bandwidth of the PRS, and reduced capability terminal device may support a limited bandwidth. In order to increase positioning accuracy for reduced capability terminal device, considering to use smaller subcarrier spacing (compared with 15kHz subcarrier spacing) to increase the effective reception of PRS. For example, the subcarrier spacing of PRS for reduced capability terminal devices can be any of {7.5kHz, 5kHz, 3.75kHz, 2.5kHz, 1.25kHz} . Smaller subcarrier spacing can help to map more PRS resources in the limited bandwidth.
Referring back to FIG. 2, with the above mechanism for estimating the arrival time of PRSs, the terminal device 110 may obtain the arrival time for PRSs with more accuracy. Then, the terminal device 110 may transmit (230) the determined arrival time for PRSs to the network device 120. Then, the network device 120 may forward the determined arrival time for PRSs to the LMF server 130 to estimate the position of the terminal device  110.
In this way, the reduced capability terminal device can receive PRSs across a larger frequency band bandwidth, with more repetition times or more times, in turn, the arrival time for the PRSs at the reduced capability terminal device can be estimated more accuracy. Therefore, time-of-arrival measurement performance of PRSs at low cost communication devices is improved with respect to a preconfigured measurement gap.
FIG. 9 illustrates a flowchart of a method 900 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. The method 900 can be implemented at the terminal device 110 shown in FIG. 1. For the purpose of discussion, the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 910, the terminal device 110 receives a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap. The at least two frequency hopping subband carry a plurality of positioning reference signals.
At block 920, the terminal device 110 detects, during the preconfigured measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
In some embodiments, the frequency hopping pattern indicates at least one of: a starting physical resource block for the frequency hopping subband; a bandwidth for the frequency hopping subband; a number of the frequency hopping subbands in a predefined period for a transmission of the positioning reference signal; a first time interval between frequency hopping subbands in the preconfigured measurement gap; a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a hopping sequence among the number of the frequency hopping subbands; a hopping start index among the number of the frequency hopping subbands; and a comb size resource element offset indicator used by each frequency hopping subband.
In some embodiments, further comprising: receiving, from a network device, a  repetition factor indicating a number of repetition for the transmission of a positioning reference signal resource.
In some embodiments, the repetition factor is configured for at least one of: a set of positioning reference signal resources; and a fourth frequency hopping subband.
In some embodiments, the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.
FIG. 10 illustrates a flowchart of a method 1000 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 1000 can be implemented at the network device 120 shown in FIG. 1. For the purpose of discussion, the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1010, the network device 120 transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap. The at least two frequency hopping subband carry a plurality of positioning reference signals
At block 1020, the network device 120 transmits, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
FIG. 11 illustrates a flowchart of a method 1100 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. The method 1100 can be implemented at the terminal device 110 shown in FIG. 1. For the purpose of discussion, the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1110, the terminal device 110 receives a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands. The at least one  frequency hopping subband carries a plurality of positioning reference signals.
At block 1120, the terminal device 110 receives from a network device 120, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal. The communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources of the at least one frequency hopping subband, and a first frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal.
At block 1130, the terminal device 110 detects, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises the frequency hopping subband, detecting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
In some embodiments, the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponding to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
In some embodiments, the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level  mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the positioning reference signal.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
In some embodiments, the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
FIG. 12 illustrates a flowchart of a method 1100 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 1200 can be implemented at the terminal device 120 shown in FIG. 1. For the purpose of discussion, the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1210, the network device 120 transmits, to a reduced capability terminal device 110, a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subbands. The at least one frequency hopping subband carries a plurality of positioning reference signals.
At block 1220, the network device 120 transmits, to the reduced capability terminal device 110, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal. The  communication resource comprising at least one of: a positioning reference signal resource of the at least one frequency hopping subband, a set of positioning reference signal resources, and a first frequency hopping subband of the at least one frequency hopping subband, and wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal.
At block 1230, the network device 120 transmits, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
FIG. 13 illustrates a flowchart of a method 1300 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. The method 1300 can be implemented at the terminal device 110 shown in FIG. 1. For the purpose of discussion, the method 1300 will be described with reference to FIG. 1. It is to be understood that the method 1300 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1310, the terminal device 110 receives a positioning enhancement configuration for a reduced capability terminal device. The positioning enhancement configuration indicating at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
FIG. 14 illustrates a flowchart of a method 1400 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 1400 can be implemented at the network device 120 shown in FIG. 1. For the purpose of discussion, the method 1400 will be described with reference to FIG. 1. It is to be understood that the method 1400 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1410, the network device 120 transmits, to a reduced capability terminal device 110, a positioning enhancement configuration for the reduced capability reduced capability terminal device 110. The positioning enhancement configuration indicating at least one of: a number of symbols for a positioning reference signal in at least one slot, a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources, a period for a transmission of the positioning reference signal  adapted for the reduced capability terminal device, and a subcarrier spacing adapted for the reduced capability terminal device.
Fig. 15 is a simplified block diagram of a device 1500 that is suitable for implementing some embodiments of the present disclosure. The device 1500 can be considered as a further example embodiment of the terminal device 110 as shown in FIG. 1, or network devices 120 as shown in FIG. 1. Accordingly, the device 1500 can be implemented at or as at least a part of the above network devices or terminal devices.
As shown, the device 1500 includes a processor 1510, a memory 1520 coupled to the processor 1510, a suitable transmitter (TX) and receiver (RX) 1540 coupled to the processor 1510, and a communication interface coupled to the TX/RX 1540. The memory 1520 stores at least a part of a program 1530. The TX/RX 1540 is for bidirectional communications. The TX/RX 1540 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
The program 1530 is assumed to include program instructions that, when executed by the associated processor 1510, enable the device 1500 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-14. The embodiments herein may be implemented by computer software executable by the processor 1510 of the device 1500, or by hardware, or by a combination of software and hardware. The processor 1310 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1510 and memory 1520 may form processing means 1550 adapted to implement various embodiments of the present disclosure.
The memory 1520 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and  removable memory, as non-limiting examples. While only one memory 1520 is shown in the device 1500, there may be several physically distinct memory modules in the device 1500. The processor 1510 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a terminal device comprises circuitry configured to perform  method  900, 1100 or 1300.
In some embodiments, a network device comprises circuitry configured to perform  method  1000, 1200 or 1400.
The components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In one embodiment, one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium. In addition to or instead of machine-executable instructions, parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs) , Application-specific Integrated Circuits (ASICs) , Application-specific Standard Products (ASSPs) , System-on-a-chip systems (SOCs) , Complex Programmable Logic Devices (CPLDs) , and the like.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware  or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 14. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific embodiment details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
According to first aspect of this disclosure, a method implemented at a reduced network device is provided. In this method, the reduced capability terminal device receives a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicates a time and frequency position of at least one frequency hopping subband within a preconfigured measurement gap, the at least one frequency hopping subband carries a plurality of positioning reference signals. Further, the reduced capability terminal device detects, during the measurement gap, the plurality of positioning reference signals across the at least one frequency hopping subband.
In some embodiments, receiving the frequency hopping pattern comprises: receiving, from a network device, the frequency hopping pattern in a system information message.
In some embodiments, receiving the frequency hopping pattern comprises: receiving from a Location Management Function (LMF) Server and via the network device, the frequency hopping pattern after transmitting device capability associated with the reduced capability terminal device to the network device.
In some embodiments, the frequency hopping pattern indicates at least one of: a  starting physical resource block for the frequency hopping subband; a bandwidth for the frequency hopping subband; a number of the frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a number of frequency hopping subbands in the preconfigured measurement gap; a first time interval between frequency hopping subbands in the preconfigured measurement gap; a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a hopping sequence among the number of the frequency hopping subbands; a hopping start index among the number of the frequency hopping subbands; and a comb size resource element offset indicator used by each frequency hopping subband.
In some embodiments, further comprising: receiving, from a network device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signals, the communication resource comprising at least one of: a positioning reference signal resource, a set of positioning reference signal resources and a first frequency hopping subband; and wherein the positioning reference signal resource comprises one or more slots for a repetition transmission of a positioning reference signal.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises the frequency hopping subband, detecting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
In some embodiments, the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponding to a respective frequency hopping subband.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises  at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
In some embodiments, the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
In some embodiments, detecting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
In some embodiments, the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
In some embodiments, further comprising: receiving, from a network device, a repetition factor indicating a number of repetition for the transmission of a positioning reference signal resource.
In some embodiments, the repetition factor is configured for at least one of: a set of positioning reference signal resources; and a fourth frequency hopping subband.
In some embodiments, the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.
According to second aspect of this disclosure, a method implemented at a network device is provided. In this method, the network device transmits, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device. The frequency hopping pattern indicats a time and frequency position of at least one frequency hopping subband within a preconfigured measurement gap. The at least one frequency hopping subband carries a plurality of positioning reference signals. Further, the network device transmits, during the measurement gap, the plurality of positioning reference signals across the at least one frequency hopping subband.
In some embodiments, transmitting the frequency hopping pattern comprises: transmitting, to the reduced capability terminal device, the frequency hopping pattern in a system information message.
In some embodiments, transmitting the frequency hopping pattern comprises: receiving, from the reduced capability terminal device, device capability associated with the reduced capability terminal device; and transmitting the device capability associated with the reduced capability terminal device to a Location Management Function (LMF) Server; and transmitting, to the reduced capability terminal device, the frequency hopping pattern received from a Location Management Function (LMF) Server in response to the transmission of the device capability.
In some embodiments, the frequency hopping pattern indicates at least one of: a starting physical resource block for the frequency hopping subband; a bandwidth for the frequency hopping subband; a number of the frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals; a number of frequency hopping subbands in the preconfigured measurement gap; a first time interval between frequency hopping subbands in the preconfigured measurement gap; a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signal; a hopping sequence among the number of the frequency hopping subbands; a hopping start index among the number of the frequency hopping subbands; and a comb size resource element offset indicator used by each frequency hopping subband.
In some embodiments, further comprising: transmitting, to the reduced capability terminal device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signals, the  communication resource comprising at least one of: a positioning reference signal resource, a set of positioning reference signal resources, and a first frequency hopping subband; and wherein the positioning reference signal resource comprises one or more slots for a repetition transmission of a positioning reference signal.
In some embodiments, transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises the frequency hopping subband, transmitting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
In some embodiments, the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponds to a respective frequency hopping subband.
In some embodiments, transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, transmitting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
In some embodiments, transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, transmitting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
In some embodiments, the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
In some embodiments, transmitting the plurality of positioning reference signals comprises: in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, transmitting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
In some embodiments, the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
In some embodiments, further comprising: transmitting, to the reduced capability terminal device, a repetition factor indicating a number of repetition for the transmission of a positioning reference signal resource.
In some embodiments, the repetition factor is configured for at least one of: a set of positioning reference signal resources; and a fourth frequency hopping subband.
In some embodiments, the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.

Claims (20)

  1. A communication method implemented at a reduced capability terminal device, comprising:
    receiving a frequency hopping pattern for the reduced capability terminal device, the frequency hopping pattern indicating a time and frequency position of at least two frequency hopping subbands within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap, the at least two frequency hopping subband carrying a plurality of positioning reference signals; and
    detecting, during the preconfigured measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
  2. The method of claim 1, wherein receiving the frequency hopping pattern comprises:
    receiving, from a network device, the frequency hopping pattern in a system information message; or
    receiving from a Location Management Function (LMF) Server and via the network device, the frequency hopping pattern after transmitting device capability associated with the reduced capability terminal device to the network device.
  3. The method of claim 1, wherein the frequency hopping pattern indicates at least one of:
    a starting physical resource block for the frequency hopping subband;
    a bandwidth for the frequency hopping subband;
    a number of the frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals;
    a time interval between frequency hopping subbands in the preconfigured measurement gap;
    a second time interval between frequency hopping subbands in a predefined period for a transmission of the plurality of positioning reference signals;
    a hopping sequence among the number of the frequency hopping subbands;
    a hopping start index among the number of the frequency hopping subbands; and
    a comb size resource element offset indicator used by each frequency hopping subband.
  4. The method of claim 1, further comprising:
    receiving, from a network device, a repetition factor indicating a number of repetition for the transmission of a positioning reference signal resource.
  5. The method of claim 4, wherein the repetition factor is configured for at least one of:
    a set of positioning reference signal resources; and
    a fourth frequency hopping subband.
  6. The method of claim 5, wherein the fourth frequency hopping subband is indicated in a fourth subband level table, each element in the fourth subband level mapping table corresponds to a respective frequency hopping subband in the predefined period for a transmission of the positioning reference signal.
  7. A method implemented at a reduced capability terminal device, comprising:
    receiving a frequency hopping pattern for the reduced capability terminal device, the frequency hopping pattern indicating a time and frequency position of at least one frequency hopping subbands, the at least one frequency hopping subband carrying a plurality of positioning reference signals;
    receiving, from a network device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal, the communication resource comprising at least one of:
    a positioning reference signal resource of the at least one frequency hopping subband,
    a set of positioning reference signal resources of the at least one frequency hopping subband, and
    a first frequency hopping subband, and
    wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal; and
    detecting, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
  8. The method of claim 7, wherein detecting the plurality of positioning reference signals comprises:
    in accordance with a determination that the communication resource comprises the frequency hopping subband, detecting the plurality of positioning reference signals across the frequency hopping subbands other than the first frequency hopping subband.
  9. The method of claim 8, wherein the muting pattern indicates the first frequency hopping subband based on a first subband level mapping table, each element in the first subband level mapping table corresponding to a respective frequency hopping subband.
  10. The method of claim 7, wherein detecting the plurality of positioning reference signals comprises:
    in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across each frequency hopping subband in a predefined period for a transmission of the positioning reference signal, the plurality of positioning reference signals.
  11. The method of claim 7, wherein detecting the plurality of positioning reference signals comprises:
    in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on the muting pattern and across a second frequency hopping subband, the plurality of positioning reference signals.
  12. The method of claim 11, wherein the second frequency hopping subband is indicated based on a second subband level mapping table, each element in the second subband level mapping table corresponds to a respective frequency hopping subband in a predefined period for a transmission of the plurality of positioning reference signals.
  13. The method of claim 7, wherein detecting the plurality of positioning reference signals comprises:
    in accordance with a determination that the communication resource comprises at least one of the positioning reference signal resource and the set of positioning reference signal resources, detecting, based on a muting pattern specific to a third frequency hopping subband and across the third frequency hopping subband, the plurality of positioning reference signals.
  14. The method of claim 13, wherein the muting pattern specific to the third frequency hopping subband comprises a third table, each element in the third table corresponding to at least one of a first bit string for the set of positioning reference signal resources and a second bit string for the positioning reference signal resource, and
    wherein each bit in the first bit string corresponds to one or more respective predefined periods for a transmission of the positioning reference signal, a set of positioning reference signal resources associated with the third subband in the one or more respective predefined periods being disabled for the transmission of the plurality of positioning reference signal, and wherein each bit in the second bit string corresponds to a respective slot in the positioning reference signal resource.
  15. A communication method implemented at a network device, comprising:
    transmitting, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device, the frequency hopping pattern indicating a time and frequency position of at least two frequency hopping subband within a preconfigured measurement gap and a number of the at least two frequency hopping subbands in the preconfigured measurement gap, the at least two frequency hopping subband carrying a plurality of positioning reference signals; and
    transmitting, during the measurement gap, the plurality of positioning reference signals across the at least two frequency hopping subband.
  16. A communication method implemented at a network device, comprising:
    transmitting, to a reduced capability terminal device, a frequency hopping pattern for the reduced capability terminal device, the frequency hopping pattern indicating a time  and frequency position of at least one frequency hopping subbands, the at least one frequency hopping subband carrying a plurality of positioning reference signals;
    transmitting, to the reduced capability terminal device, a muting pattern for indicating a communication resource which is disabled for the transmission of the plurality of positioning reference signal, the communication resource comprising at least one of:
    a positioning reference signal resource of the at least one frequency hopping subband,
    a set of positioning reference signal resources of the at least one frequency hopping subband, and
    a first frequency hopping subband, and
    wherein the positioning reference signal resource comprises one or more time units for a repetition transmission of a positioning reference signal; and
    transmitting, based on the muting pattern, the plurality of positioning reference signals across the at least one frequency hopping subband.
  17. A communication method implemented at a reduced capability terminal device, comprising:
    receiving a positioning enhancement configuration for the reduced capability terminal device, the positioning enhancement configuration indicating at least one of:
    a number of symbols for a positioning reference signal in at least one slot,
    a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources,
    a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and
    a subcarrier spacing adapted for the reduced capability terminal device.
  18. A communication method implemented at a network device, comprising:
    transmitting, to a reduced capability terminal device, a positioning enhancement configuration for the reduced capability reduced capability terminal device, the positioning enhancement configuration indicating at least one of:
    a number of symbols for a positioning reference signal in a slot,
    a number of repetition of a positioning reference signal resource in a set of positioning reference signal resources,
    a period for a transmission of the positioning reference signal adapted for the reduced capability terminal device, and
    a subcarrier spacing adapted for the reduced capability terminal device.
  19. A reduced capability terminal device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to any of claims 1-6, or any of claims 7-14 or claim 17.
  20. A network device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method according to claim 15, or claim 16 or claim 18.
PCT/CN2022/088027 2022-04-20 2022-04-20 Method, device and computer readable medium for communications WO2023201597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088027 WO2023201597A1 (en) 2022-04-20 2022-04-20 Method, device and computer readable medium for communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088027 WO2023201597A1 (en) 2022-04-20 2022-04-20 Method, device and computer readable medium for communications

Publications (1)

Publication Number Publication Date
WO2023201597A1 true WO2023201597A1 (en) 2023-10-26

Family

ID=88418748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088027 WO2023201597A1 (en) 2022-04-20 2022-04-20 Method, device and computer readable medium for communications

Country Status (1)

Country Link
WO (1) WO2023201597A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180176753A1 (en) * 2015-04-03 2018-06-21 Lg Electronics Inc. Method of transmitting and receiving signal in wireless communication system and apparatus therefor
US20210105040A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Sounding reference signal (srs) configurations for one or more frequency hops
CN114070504A (en) * 2020-07-31 2022-02-18 维沃移动通信有限公司 Reference signal transmission method and device and communication equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180176753A1 (en) * 2015-04-03 2018-06-21 Lg Electronics Inc. Method of transmitting and receiving signal in wireless communication system and apparatus therefor
US20210105040A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Sounding reference signal (srs) configurations for one or more frequency hops
CN114070504A (en) * 2020-07-31 2022-02-18 维沃移动通信有限公司 Reference signal transmission method and device and communication equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining details of OTDOA enhancements for FeMTC", 3GPP DRAFT; R1-1701991 REMAINING DETAILS OF OTDOA ENHANCEMENTS FOR FEMTC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051209153 *

Similar Documents

Publication Publication Date Title
WO2023102846A1 (en) Method, device and computer readable medium for communications
WO2023201597A1 (en) Method, device and computer readable medium for communications
US20230336304A1 (en) Method, device and computer readable medium for communication
WO2024020814A1 (en) Method, device and computer readable medium for communications
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
WO2023206285A1 (en) Method, device and computer readable medium for management of cross link interference
WO2023197175A1 (en) Method, device and computer readable medium for communications
WO2023122996A1 (en) Method, device and computer readable medium for communication
WO2023178695A1 (en) Method, device and computer readable medium for communications
WO2023220936A1 (en) Method, device and computer readable medium for communications
WO2023178625A1 (en) Methods, devices and computer readable media for communications
WO2023141904A1 (en) Methods, devices, and computer readable medium for communication
WO2023050220A1 (en) Method, device and computer readable medium for communication
WO2023178478A1 (en) Method, device and computer storage medium of communication
WO2023137721A1 (en) Methods, devices, and computer readable medium for communication
WO2023070592A1 (en) Method, device and computer readable medium for communications
WO2023245688A1 (en) Methods of communication, terminal device, network device and computer readable medium
WO2024031581A1 (en) Method, device, and medium for communication
WO2023178694A1 (en) Method, device and computer readable medium for communciations
WO2023082261A1 (en) Methods, devices, and computer readable medium for communication
WO2023240569A1 (en) Method, device and computer readable medium for sidelink communications
WO2023159360A1 (en) Method, device and computer readable medium for communications
WO2024065459A1 (en) Method, device, and medium for communication
WO2023240639A1 (en) Method, device and computer readable medium for communications
WO2024040539A1 (en) Methods, devices, and computer readable medium for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937834

Country of ref document: EP

Kind code of ref document: A1