WO2023206285A1 - Method, device and computer readable medium for management of cross link interference - Google Patents

Method, device and computer readable medium for management of cross link interference Download PDF

Info

Publication number
WO2023206285A1
WO2023206285A1 PCT/CN2022/090056 CN2022090056W WO2023206285A1 WO 2023206285 A1 WO2023206285 A1 WO 2023206285A1 CN 2022090056 W CN2022090056 W CN 2022090056W WO 2023206285 A1 WO2023206285 A1 WO 2023206285A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication resource
transmission
terminal device
network device
transmission direction
Prior art date
Application number
PCT/CN2022/090056
Other languages
French (fr)
Inventor
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/090056 priority Critical patent/WO2023206285A1/en
Publication of WO2023206285A1 publication Critical patent/WO2023206285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a method, device and computer readable medium for management of Cross Link Interference (CLI) .
  • CLI Cross Link Interference
  • network devices have been designed to operate in a duplex communication mode to improve the communication efficiency.
  • the network devices may transmit downlink (DL) data transmission and receive uplink (UL) data transmission simultaneously.
  • DL downlink
  • UL uplink
  • CLI may be occurred if there are different traffics/signals/channels in the same/neighboring communication (s) .
  • s traffics/signals/channels in the same/neighboring communication
  • a network device receives an uplink data transmission from a terminal device and a downlink data transmission from another network device to another terminal device.
  • the network device eliminates the CLI by coordinating the UL-DL transmission configuration with each other.
  • the efficiency utilization of communication resources is a key aspect.
  • example embodiments of the present disclosure relate to methods, devices and computer readable media for communication.
  • a communication method implemented at a first terminal device.
  • a first terminal device determines a first transmission direction associated with a communication resource.
  • the first terminal device performs a data transmission between the first terminal device and a first network device on the communication resource in accordance with a determination that a transmission direction of the data transmission to be performed on the communication resource is the same as the first transmission direction.
  • a communication method implemented at a first terminal device.
  • a first terminal device receives, from a first network device, an indication to schedule a first communication resource for a first data transmission from the first terminal device to the first network device and a second communication resource for a second data transmission from the first terminal device to the first network device.
  • the first terminal device determines a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource.
  • the first terminal device performs the first data transmission on the first communication resource using a first transmission power in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device.
  • the first terminal device performs the second data transmission on the second communication resource using a second transmission power larger than the first transmission power in accordance with a determination that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device.
  • a communication method implemented at a first terminal device.
  • a first terminal device receives, from a first network device, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal device and the first network device and a second part for defining a set of parameters for a channel access procedure.
  • the first terminal device performs the channel access procedure on the communication resource based on the set of parameters.
  • the first terminal device performs the data transmission on the communication resource in accordance with a determination that a channel on the communication resource is clear.
  • the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
  • a communication method implemented at a first terminal device.
  • a first terminal device receives, from a first network device, a first reference signal on a communication resource.
  • the first terminal device receives, from a second terminal device, a second reference signal on the communication resource for CLI measurement between the first terminal device and second terminal device.
  • the first reference signal and the second reference signal are orthogonal.
  • a communication method implemented at a first network device.
  • the first network device determines a first transmission direction associated with a communication resource.
  • the first network device performs the data transmission on the communication resource in accordance with a determination that a transmission direction of a data transmission to be performed between the first network device and a first terminal device on the communication resource is the same as the first transmission direction.
  • FIG. 1 illustrates an example environment in which some embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling process of UL data transmission with the management of CLI according to some embodiments of the present disclosure
  • FIG. 3A illustrates an example of a first slot configuration according to some embodiments of the present disclosure
  • FIG. 3B illustrates an example of a second slot configuration according to some embodiments of the present disclosure
  • FIG. 3C illustrates an example of a third slot configuration according to some embodiments of the present disclosure
  • FIG. 4 illustrates an example environment in which some embodiments of the present disclosure can be implemented
  • FIG. 5 illustrates a signaling process of data transmission with the management of CLI according to some embodiments of the present disclosure
  • FIG. 6A illustrates an example of a fourth slot configuration according to some embodiments of the present disclosure
  • FIG. 6B illustrates an example of a fifth slot configuration according to some embodiments of the present disclosure
  • FIG. 7 illustrates an example environment in which some embodiments of the present disclosure can be implemented
  • FIG. 8 illustrates a signaling process of data transmission with the management of CLI according to some embodiments of the present disclosure
  • FIG. 9A illustrates an example of a sixth slot configuration according to some embodiments of the present disclosure
  • FIG. 9B illustrates an example of a seventh slot configuration according to some embodiments of the present disclosure
  • FIG. 10 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure
  • FIG. 11 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure
  • FIG. 12 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure
  • FIG. 13 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure
  • FIG. 14 illustrates a flowchart of an example method implemented at a first network device in accordance with some embodiments of the present disclosure.
  • FIG. 15 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eX
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • the network device may have the function of network energy saving, Self-Organising Networks (SON) /Minimization of Drive Tests (MDT) .
  • the terminal may have the function of power saving.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • the CLI may be occurred between different terminal devices or between different network devices operating in the duplex communication mode.
  • One solution for the management of the CLI is that the network devices coordinate the UL-DL transmission configuration with each other.
  • CLI management based on backhaul coordination might be limited.
  • transmission direction information or reference signal configurations need to be exchanged through Xn for inter-TRP, which results in a large latency and low reliability.
  • the network devices might belong to different operators and may not be able to coordinate with each other.
  • how to reduce the overhead for CLI measurement is also a problem to be solved.
  • the example embodiments of the disclosure propose a mechanism for the management of CLI in a short term.
  • a transmission direction with priority on corresponding communication resource is defined. If the transmission direction of a data transmission to be performed on a communication resource is the same as the transmission direction with priority on the communication resource, the transmitter (e.g. a terminal device or a network device) may perform the data transmission on the communication resource directly or may send a reference signal associated with the communication resource before performing the data transmission. If the transmission direction of a data transmission to be performed on the communication resource is opposite to the transmission direction with priority on the communication resource, the transmitter needs to detect the CLI (e.g. by detecting an energy or a resource-specific reference signal) first.
  • the CLI e.g. by detecting an energy or a resource-specific reference signal
  • the transmitter can perform the data transmission on the communication resource; otherwise, it means that CLI exists on the communication resource and the transmitter may abandon the data transmission, or perform the data transmission with a lower power or on another communication resource.
  • the transmitter may provide feedback “CLI exists” or “CLI is not existing” implicitly or explicitly after detecting the CLI. In this way, a short-term interference measurement can be achieved.
  • interference management can be achieved in multi-operator scenarios.
  • FIG. 1 illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
  • the environment 100 which may be a part of a communication network, comprises a first network device 110, a second network device 120, a first terminal device 130 and a second terminal device 140.
  • the first network device 110 and second network device 120 may operate in duplex communication mode.
  • the first network device 110 may receive an uplink data transmission from the first terminal device 130 and a downlink data transmission from the second network device 120 simultaneously.
  • the environment 100 may also comprise a third terminal device 150.
  • the first network device 110 may simultaneously receive an uplink data transmission from the first terminal device 130 and a downlink data transmission from the first network device 110 to the third terminal device 150 which is reflected by surrounding objects.
  • the number of terminal devices and network device is shown in the environment 100 only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure.
  • the environment 100 may comprise further terminal devices to communicate information with a further network device.
  • the communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and
  • FIG. 2 illustrates a signaling process 200 of UL data transmission with the management of CLI according to some embodiments of the present disclosure. For purpose of discussion, the process 200 will be described with reference to FIG. 1.
  • the first network device 110 may transmit (210) , to the first terminal device 130, an indication for pre-scheduling a communication resource for a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device.
  • the indication may be transmitted via a Downlink Control Information (DCI) in a physical downlink control channel (PDCCH) or a Radio Resource Control (RRC) message.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • RRC Radio Resource Control
  • the first terminal device 130 determines (220) a first transmission direction associated with the communication resource to be used for the data transmission.
  • the terms “a first transmission direction on a communication resource” and “a first transmission direction associated with a communication resource” as used herein refer to a transmission direction with priority between a network device and a terminal device on the communication resource and may be used interchangeably.
  • the first terminal device 130 may receive, from the network device 110, information about a first transmission direction matrix and determine the first transmission direction on the communication resource based on the first transmission direction matrix.
  • Each element in the first transmission direction matrix indicates a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource.
  • the first transmission direction may be defined or configured on a specific subband and the first transmission direction may be comprised in a first direction vector. That is, each subband may correspond to a first transmission direction with a UL priority or a DL priority.
  • the carrier may comprise N subbands and a one-dimension vector ⁇ DL, UL, ..., UL, DL ⁇ may be defined or configured, each element representing the first transmission direction on the corresponding subband.
  • the first transmission direction may be defined or configured on a specific subband and a specific slot or a time unit.
  • the first transmission direction may indicate the transmission direction with priority for a data transmission on the combination resource of the specific subband and the specific slot or a time unit.
  • the first transmission direction may be comprised in the first transmission direction matrix as an element specified by two dimensions, a frequency domain dimension and a time domain dimension.
  • the first transmission direction matrix may comprise M rows and N lines.
  • M presents a subband number in a carrier or Bandwidth Part (BWP) and N presents the time unit number in a time duration or a measurement periodicity.
  • the row index presents each subband index, and the line presents the time unit index (such as a slot or k symbols) .
  • An element v (i, j) in the first transmission direction matrix represents the first transmission direction with a DL/UL priority for subband (i) in slot (j) .
  • the first transmission direction may be transmitted on a specific slot, a specific subband and a specific beam.
  • the first transmission direction may indicate the transmission direction with priority for a data transmission on the combination resource of the slot, the specific subband and the specific beam.
  • the first transmission direction may be comprised in the first transmission direction matrix as an element specified by three dimensions, a time domain dimension, frequency domain dimension and a spatial domain dimension.
  • the first transmission direction matrix may be predefined. In some examples, the first transmission direction matrix may be exchanged between network devices through Xn/X2. In some examples, the first transmission direction matrix may be transferred via an Access and Mobility Management Function (AMF) .
  • AMF Access and Mobility Management Function
  • the first network device 110 may receive, from the second network device 120, configuration of the first transmission direction matrix via AMF. The first network device 110 may transmit configuration of the first transmission direction matrix to the first terminal device 130 through specific RRC message or the group common DCI.
  • the first network device 110 may determine the first transmission direction on the communication resource based on the first transmission direction matrix and transmit an indication of the first transmission direction on the communication resource to be used to the first terminal device 130.
  • the first terminal device 130 may transmit (240) , to the first network device 110, the PUSCH on the communication resource.
  • the first network device 110 may transmit (230) a reference signal on the communication resource before receiving the PUSCH, in response to determining that the transmission direction is the same as the first transmission direction on the communication resource, informing other network devices (e.g., the second network device 120) the occupancy of the communication resource.
  • the reference signal may have the same QCL assumption with the data to be transmitted.
  • the reference signal can carry information about the transmission duration. Through this information, other nodes receiving the reference signal will be aware of the duration of occupancy of the communication resource and will not detect the reference signal again during this period.
  • the first terminal device 130 may determine a CLI between the first terminal device 130 and other terminal devices (e.g., the second terminal device 140 or the third terminal device 150) on the communication resource to determine whether the communication resource has been occupied or not.
  • the first terminal device 130 may detect an energy of the communication resource from other terminal devices, and determine the CLI based on the detected energy of the communication resource.
  • the first terminal device 130 may sense a reference signal on the communication resource from other terminal devices and determine the CLI based on a result of the sensing.
  • the first terminal device 130 may transmit, to the first network device 110, an indication about whether CLI exists on the communication resource or how heavy the CLI is based on the determined CLI. In some embodiments, the first terminal device 130 may transmit, to the first network device 110, the indication implicitly through Acknowledgement/Negative Acknowledgement (ACK/NACK) . If the first network device 110 receives a NACK indication, the first network device 110 is informed that the CLI exists or will exist. If the first network device 110 receives an ACK indication, the first network device 110 is informed that the CLI is lower than the threshold, and the PUSCH will be transmitted on the communication resource. In some embodiments, the first terminal device 130 may transmit, to the first network device 110, the indication explicitly through MAC Control Element (MAC CE) on a different communication resource from the communication resource.
  • MAC CE MAC Control Element
  • the first terminal device 130 may transmit (240) , to the first network device 110, the PUSCH on the communication resource. In some embodiments, if the CLI exceeds a predefined condition, the first terminal device 130 may abandon the PUSCH transmission. Alternatively, the first terminal device 130 may perform power backoff, i.e., transmitting the PUSCH in a lower power. Alternatively, the PUSCH may be transmitted from the first terminal device 130 to the first network device 110 on a different communication resource from the communication resource.
  • the first terminal device 130 may perform a channel accessprocedure before transmitting a PUSCH to the first network device 110.
  • Parameters for the channel access procedure such as Clear Channel Assessment (CCA) type, contention window or defer period, may be determined.
  • CCA Clear Channel Assessment
  • two sets of parameters for the channel access procedure may be pre-defined or configured and correspond to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
  • a first set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource.
  • the first set of parameters for the channel access procedure comprises a first listening information indicating a first listening duration of the channel access procedure.
  • a second set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource.
  • the second set of parameters for the channel access procedure comprises a second listening information indicating a second listening duration of the channel access procedure.
  • the first listening duration is longer than the second listening duration.
  • the first terminal device 130 may receive, from the first network device 110, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal 130 device and the first network device 110 and a second part for defining a set of parameters for a channel access procedure.
  • the first terminal device 130 may perform a channel access procedure on a communication resource based on a corresponding set of parameters. If a channel on the communication resource is clear according to the channel access procedure, the first terminal device 130 then performs the data transmission on the communication resource.
  • the channel access procedure may be a Listen before Talk (LBT) procedure or a Clear Channel Assessment (CCA) procedure.
  • the listening duration for the DL data transmission may be shorter than the listening duration for the UL data transmission.
  • the first terminal device 130 needs to perform the channel access procedure for a longer period before transmitting a PUSCH, resulting in a lower probability to perform the DL data transmission on the communication resource.
  • a reference signal on a communication resource and “a reference signal associated with a communication resource” as used herein indicates that the reference signal is resource-specific and may be used interchangeably.
  • Each resource unit such as one subband/RB set/beam, is associated with a certain reference signal sequence.
  • the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  • the reference signal may refer to the reference signal for CLI reference signal received power (RSRP) measurement or the reference signal transmitted to occupy the communication resource.
  • RSRP CLI reference signal received power
  • the base sequence index is determined based on the subband index or RB set index as illustrated in the figure and the cyclic shift index is determined based on the OFDM symbol index.
  • the whole demodulation reference signal (DMRS) for a UE may be obtained by aggregating one or multiple short demodulation reference signal corresponding to different resource units.
  • the orthogonality of whole DMRS can be obtained once each short demodulation reference signal is designed to be orthogonal.
  • the first symbol for PDSCH/PUSCH DMRS may use the cycle shift value 0, and the next DMRS may use the cycle shift value 1 and so on if Zadoff-Chu sequence is used as a base sequence.
  • the layer index may be added into the cyclic shift generation and different cell use different layer.
  • the sequence may also carry the cell identification information, through which, other node can know the aggressor cell through blind detection.
  • FIG. 3A illustrates an example of a first slot configuration 300A according to some embodiments of the present disclosure.
  • the first slot configuration 300A will be described with reference to FIG. 1.
  • the first slot configuration 300A corresponds to an embodiment in which a communication resource is scheduled for a PUSCH transmission from the first terminal device 130 to the first network device 110 and the first transmission direction on the communication resource is in a UL direction.
  • the first slot configuration 300A comprises a first part for the PDCCH, a second part for the reference signal (RS) , a third part for a Guard Period (GP) and a fourth part for the PUSCH transmission from the terminal device.
  • the symbols at the beginning of the slot can be used to transmit PDCCH from the first network device 110 to the first terminal device 130
  • the last symbols of the slot can be used to transmit PUSCH from the first terminal device 130 to the first network device 110
  • the GP is defined for DL-UL switching.
  • the RS is transmitted by the first network device 110 in symbols in between PDCCH and PUSCH and used to inform other network devices the occupancy of the communication resource.
  • FIG. 3B illustrates an example of a second slot configuration 300B according to some embodiments of the present disclosure.
  • the second slot configuration 300B will be described with reference to FIG. 1.
  • the second slot configuration 300B corresponds to an embodiment in which a communication resource is scheduled for a PUSCH transmission from the first terminal device 130 to the first network device 110 and the first transmission direction on the communication resource is in a DL direction.
  • the first slot configuration 300B comprises a first part for the PDCCH, a second part for the RS, a third part for the PUSCH transmission from the terminal device.
  • the first terminal device 130 may determine a CLI on the communication resource by detecting an energy of the communication resource or sensing a reference signal on the communication resource.
  • FIG. 3C illustrates an example of a third slot configuration 300C according to some embodiments of the present disclosure.
  • the third slot configuration 300C will be described with reference to FIG. 1.
  • the third slot configuration 300C corresponds to an embodiment in which the first network device 110 may transmit to the first terminal device 130 an indication for pre-scheduling multiple communication resources for multiple PUSCH transmissions (e.g., PUSCH-1 to PUSCH-5) from the first terminal device 130 to the first network device 110 carrying the same or different transmission blocks, respectively.
  • Corresponding first transmission directions are determined for each of the multiple communication resources. For example, a first communication resource for scheduling PUSCH-1 and a third communication resource for scheduling PUSCH-3 are in the DL direction, and the communication resources for scheduling PUSCH-2, PUSCH-4 and PUSCH-5 are in the UL direction.
  • the first terminal device 130 may transmit PUSCH-1 and PUSCH-3 using a first transmission power and transmit PUSCH-2, PUSCH-4 and PUSCH-5 using a second transmission power larger than the first transmission power.
  • the indication may comprise two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
  • TPC transmission power control
  • two sets of TPC parameter or P0-PUSCH-AlphaSet ID may be included in the DCI that scheduling the PUSCH or in the IE ConfiguredGrantConfig.
  • an energy detection or RS sensing may be performed on the communication resources corresponding to the PUSCHs, especially whose first transmission direction is opposite to the PUSCH transmission direction.
  • the first terminal device 130 may transmit PUSCHs on corresponding communication resources with heavy CLI using a first transmission power and transmit PUSCHs on corresponding communication resources without CLI using a second transmission power larger than the first transmission power.
  • FIG. 4 illustrates an example environment 400 in which some embodiments of the present disclosure can be implemented.
  • the environment 400 which may be a part of a communication network, comprises a first network device 410, a second network device 420, a first terminal device 430 and a second terminal device 440.
  • the terminal device 430 and a second terminal device 440 may operate in duplex communication mode.
  • the first terminal device 430 may receive a downlink data transmission from the first network device 430 and an uplink data transmission from the second terminal device 440 simultaneously.
  • the environment 400 may also comprise a third terminal device 450.
  • the first terminal device 430 may receive a downlink data transmission from the first network device 430 and an uplink data transmission from the third terminal device 450 simultaneously.
  • FIG. 5 illustrates a signaling process 500 of data transmission with the management of CLI according to some embodiments of the present disclosure. For purpose of discussion, the process 500 will be described with reference to FIG. 4.
  • the first network device 410 may transmit (510) , to the first terminal device 430, an indication for pre-scheduling a communication resource for a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device.
  • the indication may be transmitted via a DCI in a PDCCH or a RRC message.
  • the first network device 410 determines (520) a first transmission direction associated with the communication resource to be used for the data transmission. In some embodiments, if the first transmission direction on the communication resource to be used for the data transmission is in a DL direction, that is, the same as the transmission direction of the PDSCH transmission to be performed on the communication resource, the first network device 410 may transmit (550) , to the first terminal device 430, the PDSCH on the communication resource.
  • the first terminal device 430 may determine (530) that the transmission direction is the same as the first transmission direction on the communication resource, and transmit (540) a reference signal on the communication resource before receiving the PDSCH, informing other terminal devices (e.g., the second terminal device 440 and the fifth terminal device 450) the occupancy of the communication resource.
  • the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  • the sequence may also carry the cell identification information, through which, other node can know the aggressor cell through blind detection.
  • step 520 is shown in the figure after step 510, the present disclosure is not so limited. It will be appreciated that step 520 may also be performed prior to or concurrently with step 510.
  • the embodiments of the signaling processes in the disclosure are by way of example only and are not intended to be limiting.
  • the first network device 410 may determine a CLI between the first network device 410 and other network devices (e.g., the second network device 420) on the communication resource to determine whether the communication resource has been occupied or not. In some embodiments, the first network device 410 may transmit, to the first terminal device 430, an indication about whether CLI exists on the communication resource or how heavy the CLI is based on the determined CLI.
  • the first network device 410 may transmit, to the first terminal device 430, the indication implicitly through Acknowledgement/Negative Acknowledgement (ACK/NACK) or MAC Control Element (MAC CE) on a different communication resource from the communication resource.
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • MAC CE MAC Control Element
  • the first network device 410 may transmit (550) , to the first terminal device 430, the PDSCH on the communication resource. In some embodiments, if the CLI exceeds a predefined condition, the first network device 410 may abandon the PDSCH transmission, or perform power backoff, or transmit the PDSCH on a different communication resource from the communication resource.
  • FIG. 6A illustrates an example of a fourth slot configuration 600A according to some embodiments of the present disclosure.
  • the fourth slot configuration 600A will be described with reference to FIG. 5.
  • the fourth slot configuration 600A corresponds to an embodiment in which a communication resource is scheduled for a PDSCH transmission from the first network device 410 to the first terminal device 430 and the first transmission direction on the communication resource is in a DL direction.
  • the fourth slot configuration 600A comprises a first part for the PDCCH, a second part for a Guard Period (GP) , a third part for the reference signal (RS) , a fourth part for a Guard Period (GP) and a fifth part for the PDSCH transmission.
  • the RS is transmitted by the first terminal device 430 in symbols in between PDCCH and PDSCH and used to inform other network devices the occupancy of the communication resource.
  • FIG. 6B illustrates an example of a fifth slot configuration 600B according to some embodiments of the present disclosure.
  • the fifth slot configuration 600B will be described with reference to FIG. 5.
  • the fifth slot configuration 600B corresponds to an embodiment in which a communication resource is scheduled for a PDSCH transmission from the first network device 410 to the first terminal device 430 and the first transmission direction on the communication resource is in a UL direction.
  • the first slot configuration 300B comprises a first part for the PDCCH, a second part for the RS, a third part for the PDSCH transmission from the terminal device.
  • the first network device 410 may determine a CLI on the communication resource by detecting an energy of the communication resource or sensing a reference signal on the communication resource.
  • the first network device 410 may perform a channel access procedure before transmitting a PDSCH to the first terminal device 430.
  • the first and second sets of parameters for the channel access procedure may be pre-defined or configured.
  • the first set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource.
  • the first set of parameters for the channel access procedure comprises a first listening information indicating a first listening duration of the channel access procedure.
  • the second set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource.
  • the second set of parameters for the channel access procedure comprises a second listening information indicating a second listening duration of the channel access procedure.
  • the first listening duration is longer than the second listening duration.
  • the first network device 410 may perform a channel access procedure on a communication resource based on a corresponding set of parameters. If a channel on the communication resource is clear according to the channel access procedure, the first network device 410 then performs the data transmission on the communication resource.
  • the channel access procedure may be a LBT procedure or a CCA procedure.
  • the CLI may be occurred between different terminal devices or between different network devices operating in the duplex communication mode.
  • One solution for the management of the CLI is that the network devices coordinate the UL-DL transmission configuration with each other. For example, if a reference signal is used for DL-to-UL interference or UL-to-DL interference measurement, the resource blocks used for transmitting the reference signal on one link need to be blanked or muted on the other link to assure the reliability of the CLI measurement. However, the spectrum efficiency would be affected. How to reduce the overhead for CLI measurement is also a problem to be solved.
  • the example embodiments of the disclosure propose a mechanism for the CLI measurement by duplexing reference signals.
  • Orthogonal multiplexing of DL RS and UL RS for interference measurements is designed to avoid interference each other.
  • the CLI measurement can be performed simultaneously with channel estimation or CQI/CSI measurements or other functions of other reference signals.
  • FIG. 7 illustrates an example environment 700 in which some embodiments of the present disclosure can be implemented.
  • the environment 700 which may be a part of a communication network, comprises a first network device 710, a second network device 720, a first terminal device 730 and a second terminal device 740 operating in duplex communication mode.
  • the first network device 710 may receive an uplink data transmission from the first terminal device 730 and a downlink data transmission from the second network device 720 simultaneously.
  • the second terminal device 740 may receive a downlink data transmission from the second network device 720 and a uplink data transmission from the first terminal device 730 simultaneously.
  • FIG. 8 illustrates a signaling process 800 of data transmission with the management of CLI according to some embodiments of the present disclosure.
  • the first terminal device 730 transmits (810) , to the first network device 710, a first reference signal on a communication resource and transmits (820) , to the second terminal device 740, the first reference signal.
  • the second network device 720 transmits (830) , to the first network device 710, a second reference signal on the communication resource and transmits (840) , to the second terminal device 740, the second reference signal.
  • the first reference signal and the second reference signal are orthogonal. In some embodiments, the first reference signal and the second reference signal are orthogonal through Frequency-division multiplexing (FDM) or Code Division Multiplexing (CDM) .
  • FDM Frequency-division multiplexing
  • CDM Code Division Multiplexing
  • the first reference signal may comprise identification information of a cell in which the first terminal device 730 or the first network device 710 is located.
  • the second reference signal may comprise identification information of a cell in which the second terminal device 740 or the second network device 720 is located. In this way, duplexing flexibility of the reference signal is enabled
  • the first reference signal may be a first DMRS for channel estimation for PUSCH decoding for a PUSCH transmission from the first terminal device 730 to the first network device 710; and the second reference signal may be a second DMRS for channel estimation for PDSCH decoding for a PDSCH transmission from the second network device 720 to the second terminal device 740.
  • the first network device 710 may perform (850) channel estimation for PUSCH decoding for a PUSCH transmission from the first terminal device 730 to the first network device 710 based on the first DMRS simultaneously with a measurement of the CLI between the first network device 710 and the second network device 720 based on the second DMRS.
  • the second terminal device 740 may perform (860) channel estimation for PDSCH decoding for a PDSCH transmission from the second terminal device 720 to the second network device 740 based on the second DMRS simultaneously with a measurement of the CLI between the first terminal device 730 and the fourth terminal device 720 based on the first DMRS.
  • front loaded DMRSs for PUSCH decoding and PDSCH decoding can also be used as the CLI measurement reference signal.
  • the DMRSs for PUSCH decoding and for PDSCH decoding are designed in same OFDM-based waveform (and numerology) , they need to be located into the same OFDM symbols and subcarriers.
  • the first and second DMRSs are orthogonal and resource specific, rather than UE specific.
  • the first DMRS and the second DMRS may be designed with resource block (RB) specific RS sequences with cell specific root or scrambling sequence.
  • RB resource block
  • the RB number for DMRS may be half of the assigned PUSCH/PDSCH RB number respectively.
  • the first DMRS may occupy the odd RB index, and the second DMRS occupy the even RB index.
  • the scrambling identification (ID) of the neighboring cell may be assumed or predefined as mod (the cell ID + n) .
  • the layer or port for the first and second DMRSs may be predefined (such as operator 1, use 1) and may be different for a overlapped time-frequency resource and each layer, and may have a specific orthogonal cover code.
  • the first reference signal may be a first sounding reference signal (SRS) for uplink channel quality measurement between the first terminal device 730 and the first network device 710; and the second reference signal may be a second SRS for downlink channel quality measurement between the second network device 720 and the second terminal device 740.
  • SRS sounding reference signal
  • the first network device 710 may perform (850) uplink channel quality measurement between the first terminal device 730 and the first network device 710 based on the first SRS simultaneously with a measurement of the CLI between the first network device 710 and the second network device 720 based on the second SRS.
  • the second terminal device 740 may perform (860) downlink channel quality measurement between the second network device 720 and the second terminal device 740 based on the second SRS simultaneously with a measurement of the CLI between the first terminal device 730 and the fourth terminal device 720 based on the first SRS.
  • the first SRS and the second SRS are both resource-specific and are orthogonal through FDM/CDM, thus the first and second SRSs can be distinguish. In this way, CLI measurement and CQI/CSI measurement can be performed simultaneously.
  • FDM method different frequency offsets or different subbands/RB sets/combs are used.
  • CDM method different sequences are used.
  • different cells may use different antenna ports, and the first and second SRSs can be orthogonal as the cyclic shifts are not the same.
  • the SRS resource configuration can be exchanged between two TRPs.
  • port 1 and port 2 may be assigned to cell 1
  • port 3 and port 4 may be assigned to cell 2
  • port 1 and port 2 may be assigned to cell 2
  • port 3 and port 4 may be assigned to cell 1.
  • the first reference signal may be a first channel state information reference signal (CSI-RS) for uplink channel quality measurement between the first terminal device 730 and the first network device 710; and the second CSI-RS for downlink channel quality measurement between the second network device 720 and the second terminal device 740.
  • CSI-RS channel state information reference signal
  • the first network device 710 may perform (850) uplink channel quality measurement between the first terminal device 730 and the first network device 710 based on the first CSI-RS simultaneously with a measurement of the CLI between the first network device 710 and the second network device 720 based on the second CSI-RS.
  • the second terminal device 740 may perform (860) downlink channel quality measurement between the second network device 720 and the second terminal device 740 based on the second CSI-RS simultaneously with a measurement of the CLI between the first terminal device 730 and the fourth terminal device 720 based on the first CSI-RS.
  • the first CSI-RS and the second CSI-RS are cell-specific and are orthogonal through FDM/CDM.
  • the cell ID can be included into the scrambling ID for sequence initialization. That is, CSI-RS sequence is scrambled with cell specific ID and a largest possible system bandwidth is assumed. In some embodiments, the middle of the sequence may be always aligned with the center of the bandwidth and only the sequence elements in the resource allocation area are active.
  • the first and second CSI-RSs may use different frequency domain Orthogonal Cover Codes (OCCs) , or different time domain OCCs.
  • OCCs Orthogonal Cover Codes
  • M RS ports among a total of N RS ports may be allocated to the first RS, while the remaining (N-M) RS ports may be assigned to second RS.
  • N-M Orthogonal Cover Codes
  • all the N RS ports may be assigned to both the first RS in the UL channel and the second RS in the DL channel.
  • FIG. 9A illustrates an example of a sixth slot configuration according to some embodiments of the present disclosure.
  • description of Fig. 9A will be described with reference to FIGs. 7 and 8.
  • the slot configuration may indicate a first structure 910 for the UL channel between the first terminal device 730 and the first network device 710 comprising DL symbols, UL symbols, UL RS symbols and Flexible symbols, a second structure 920 for the DL channel between the second network device 720 and the second terminal device 740 comprising DL symbols, UL symbols, DL RS symbols and Flexible symbols.
  • orthogonal design between the UL RS and DL RS can be considered to ensure the accuracy.
  • the UL RS and DL RS can be other RS besides DMRS, CSI-RS, and SRS.
  • DL RS and the UL RS are transmitted in the overlapped time-frequency resource, but are orthogonal in RE/RB level FDM. In some embodiments, DL RS and the UL RS are covered with different OCC. In some embodiments, DL RS and the UL RS correspond to orthogonal sequences. In this way, CLI measurements between terminal devices and CLI measurements between network devices can be performed on the same resource at the same time.
  • FIG. 9B illustrates an example of a seventh slot configuration according to some embodiments of the present disclosure. For purpose of discussion, description of Fig. 9B will be described with reference to FIGs. 7 and 8.
  • the slot configuration may indicate a structure 930 for both the UL channel between the first terminal device 730 and the first network device 710 and for the DL channel between the second network device 720 and the second terminal device 740 comprising DL symbols, UL symbols, RS symbols and Flexible symbols.
  • DL RS and UL RS for CLI measurements may transmit in separate beam direction.
  • FIG. 10 illustrates a flowchart of an example method 1000 implemented at a first terminal device in accordance with some embodiments of the present disclosure.
  • the method 1000 can be implemented at the first terminal device 130 shown in FIG. 1 and the first terminal device 430 shown in FIG. 4.
  • the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the first terminal device 130 determines a first transmission direction associated with a communication resource.
  • the first terminal device 130 performs a data transmission between the first terminal device 130 and a first network device 110 on the communication resource in accordance with a determination that a transmission direction of a data transmission to be performed on the communication resource is the same as the first transmission direction.
  • the first terminal device 130 receives, from the first network device 110, information about a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource.
  • the first terminal device 130 determines the first transmission direction associated with the communication resource based on the first transmission direction matrix.
  • the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device 130 to the first network device 110 on the communication resource.
  • PUSCH physical uplink shared channel
  • the first terminal device 130 determines a Cross Link Interference (CLI) between the first terminal device 130 and a second terminal device 140 on the communication resource in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite to the first transmission direction.
  • the first terminal device 130 performs the PUSCH transmission on the communication resource in accordance with a determination that the CLI is within a predefined condition.
  • the first terminal device 130 may abandon the PUSCH transmission, or perform power backoff, or perform the PUSCH transmission on a different communication resource from the communication resource.
  • the first terminal device 130 transmits, to the first network device 110, an indication about whether CLI exists on the communication resource based on the determined CLI.
  • the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device 110 to the first terminal device 130 on the communication resource.
  • the first terminal device 130 transmits a reference signal on the communication resource before performing the PDSCH transmission in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction; and then performs the PDSCH transmission on the communication resource.
  • PDSCH physical downlink shared channel
  • the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device 130 to the first network device 110 on the communication resource.
  • the first terminal device 130 detects a reference signal on the communication resource before sending the PUSCH in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite the first transmission direction; and then performs the PUSCH transmission on the communication resource.
  • PUSCH physical uplink shared channel
  • the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  • the predefined sequence comprises identification information of a cell in which the first terminal device 130 is located.
  • FIG. 11 illustrates a flowchart of an example method 1100 implemented at a first terminal device in accordance with some embodiments of the present disclosure.
  • the method 1100 can be implemented at the first terminal device 130 shown in FIG. 1.
  • the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the first terminal device 130 receives, from a first network device 110, an indication to schedule a first communication resource for a first data transmission from the first terminal device 130 to the first network device 110 and a second communication resource for a second data transmission from the first terminal device 130 to the first network device 110.
  • the second transmission direction used here is a transmission direction with priority on the second communication resource.
  • the expression “second” is merely to distinguish from a “first” transmission direction.
  • the first transmission direction and the second transmission direction here actually denote a transmission direction with priority on the first transmission resource and a transmission direction with priority on the second transmission resource, respectively.
  • the first terminal device 130 determines a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource.
  • the first terminal device 130 performs the first data transmission on the first communication resource using a first transmission power and the second data transmission on the second communication resource in accordance with a determination that the first transmission direction is opposite to a transmission direction and the second transmission direction is the same to the transmission direction.
  • the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
  • TPC transmission power control
  • FIG. 12 illustrates a flowchart of an example method 1200 implemented at a first terminal device in accordance with some embodiments of the present disclosure.
  • the method 1200 can be implemented at the first terminal device 130 shown in FIG. 1 and the first terminal device 430 shown in FIG. 4.
  • the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the first terminal device 130 receives, from a first network device 110, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal device 130 and the first network device 110 and a second part for defining a set of parameters for a channel access procedure.
  • the first terminal device 130 performs the channel access procedure on the communication resource based on the set of parameters.
  • the first terminal device 130 performs the data transmission on the communication resource in accordance with a determination that a channel on the communication resource is clear.
  • the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
  • the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
  • the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure.
  • the first listening duration is longer than the second listening duration.
  • FIG. 13 illustrates a flowchart of an example method 1300 implemented at a first terminal device in accordance with some embodiments of the present disclosure.
  • the method 1700 can be implemented at the second terminal device 740 shown in FIG. 1.
  • the method 1300 will be described with reference to FIG. 7. It is to be understood that the method 1300 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 740 receives from the network device a first reference signal on a communication resource.
  • the terminal device 740 receives from another terminal device 730 a second reference signal on the communication resource for Cross Link Interference (CLI) measurement between the first terminal device and second terminal device.
  • CLI Cross Link Interference
  • the first reference signal comprises identification information of a cell in which the first terminal device is located; and the second reference signal comprises identification information of a cell in which the second terminal device is located.
  • FIG. 14 illustrates a flowchart of an example method 1400 implemented at a first network device in accordance with some embodiments of the present disclosure.
  • the method 1400 can be implemented at the first network device 110 shown in FIG. 1 and the first network device 410 shown in FIG. 4. For the purpose of discussion, the method 1400 will be described with reference to FIG. 1. It is to be understood that the method 1400 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the first network device 110 determines a first transmission direction associated with a communication resource.
  • the first network device 110 performs the data transmission between the first network device 110 and a first terminal device 130 on the communication resource in accordance with a determination that a transmission direction of a data transmission to be performed on the communication resource is the same as the first transmission direction.
  • the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device 110 on the communication resource.
  • the first network device 110 transmits, to a second network device 120, a reference signal on the communication resource in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction.
  • PUSCH physical uplink shared channel
  • the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  • the predefined sequence comprises identification information of a cell in which the first network device 110 is located.
  • Fig. 15 is a simplified block diagram of a device 1500 that is suitable for implementing some embodiments of the present disclosure.
  • the device 1500 can be considered as a further example embodiment of the terminal devices 130, 140, 150 as shown in FIG. 1, the terminal devices 430, 440, 450 as shown in FIG. 4, and the terminal devices 730 and 740 as shown in FIG. 7 or the network devices 110, 120 as shown in FIG. 1, the network devices 410, 420 as shown in FIG. 4 and the network devices 710, 720 as shown in FIG. 7.
  • the device 1500 can be implemented at or as at least a part of the above network devices or terminal devices.
  • the device 1500 includes a processor 1510, a memory 1520 coupled to the processor 1510, a suitable transmitter (TX) and receiver (RX) 1540 coupled to the processor 1510, and a communication interface coupled to the TX/RX 1540.
  • the memory 1520 stores at least a part of a program 1530.
  • the TX/RX 1540 is for bidirectional communications.
  • the TX/RX 1140 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the gNB or eNB and a relay node (RN)
  • Uu interface for communication between the gNB or eNB and a terminal device.
  • the program 1530 is assumed to include program instructions that, when executed by the associated processor 1510, enable the device 1500 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-14.
  • the embodiments herein may be implemented by computer software executable by the processor 1510 of the device 1500, or by hardware, or by a combination of software and hardware.
  • the processor 1510 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1510 and memory 1520 may form processing means 1550 adapted to implement various embodiments of the present disclosure.
  • the memory 1520 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1520 is shown in the device 1500, there may be several physically distinct memory modules in the device 1500.
  • the processor 1510 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a terminal device comprises circuitry configured to perform method 1000-1300.
  • a network device comprises circuitry configured to perform method 1400.
  • the components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof.
  • one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium.
  • parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components.
  • FPGAs Field-programmable Gate Arrays
  • ASICs Application-specific Integrated Circuits
  • ASSPs Application-specific Standard Products
  • SOCs System-on-a-chip systems
  • CPLDs Complex Programmable Logic Devices
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 11.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • the embodiments may further be implemented in the following aspects .
  • a communication method implemented at a first terminal device.
  • the communication method comprises: determining a first transmission direction associated with a communication resource; and in accordance with a determination that a transmission direction of a data transmission to be performed between the first terminal device and a first network device on the communication resource is the same as the first transmission direction, performing the data transmission on the communication resource.
  • the method further comprises: receiving, from the first network device, information about a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource; wherein determining the first transmission direction comprises: determining the first transmission direction associated with the communication resource based on the first transmission direction matrix.
  • the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource.
  • the method further comprises: in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite to the first transmission direction, determining a Cross Link Interference (CLI) between the first terminal device and a second terminal device on the communication resource; and in accordance with a determination that the CLI is within a predefined condition, performing the PUSCH transmission on the communication resource.
  • CLI Cross Link Interference
  • the method further comprises: in accordance with a determination that the CLI exceeds the predefined condition, one of: abandoning the PUSCH transmission; performing power backoff; and performing the PUSCH transmission on a different communication resource from the communication resource.
  • the method further comprises: transmitting, to the first network device, an indication about whether CLI exists on the communication resource based on the determined CLI.
  • transmitting the indication comprises: transmitting, to the first network device, the indication through Acknowledgement/Negative Acknowledgement (ACK/NACK) or MAC Control Element (MAC CE) on a different communication resource from the communication resource.
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • MAC CE MAC Control Element
  • the method further comprises: in accordance with a determination that the transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction, performing the PUSCH transmission on the communication resource.
  • determining the CLI comprises: detecting an energy of the communication resource; and determining the CLI based on the detected energy of the communication resource.
  • determining the CLI comprises: sensing a reference signal on the communication resource from the second terminal device; and determining the CLI based on a result of the sensing.
  • the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device on the communication resource.
  • Performing the data transmission on the communication resource comprises: in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction, transmitting a reference signal on the communication resource before performing the PDSCH transmission; and performing the PDSCH transmission on the communication resource.
  • PDSCH physical downlink shared channel
  • the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  • the predefined sequence comprises identification information of a cell in which the first terminal device is located.
  • a communication method implemented at a first terminal device.
  • the communication method comprises: receiving, from a first network device, an indication to schedule a first communication resource for a first data transmission from the first terminal device to the first network device and a second communication resource for a second data transmission from the first terminal device to the first network device; determining a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource; in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device, performing the first data transmission on the first communication resource using a first transmission power; and in accordance with a determination that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device, performing the second data transmission on the second communication resource using a second transmission power larger than the first transmission power.
  • the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
  • TPC transmission power control
  • a communication method implemented at a first terminal device.
  • the communication method comprises: receiving, from a first network device, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal device and the first network device and a second part for defining a set of parameters for a channel access procedure; performing the channel access procedure on the communication resource based on the set of parameters; and in accordance with a determination that a channel on the communication resource is clear, performing the data transmission on the communication resource; wherein the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
  • the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
  • the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure, wherein the first listening duration is longer than the second listening duration.
  • the channel access procedure is one of: a Listen before Talk (LBT) procedure; or a Clear Channel Assessment (CCA) procedure.
  • LBT Listen before Talk
  • CCA Clear Channel Assessment
  • a communication method implemented at a first terminal device.
  • the communication method comprises: receiving, from a first network device, a first reference signal on a communication resource; and receiving, from a second terminal device, a second reference signal on the communication resource for Cross Link Interference (CLI) measurement between the first terminal device and second terminal device; wherein the first reference signal and the second reference signal are orthogonal.
  • CLI Cross Link Interference
  • the first reference signal is a first demodulation reference signal (DMRS) for channel estimation for physical downlink shared channel (PDSCH) decoding for a PDSCH transmission from the first network device to the first terminal device; and the second reference signal is a second DMRS for channel estimation for physical uplink shared channel (PUSCH) decoding for a PUSCH transmission from the second terminal device to a second network device.
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • the first reference signal is a first sounding reference signal (SRS) for downlink channel quality measurement between the first network device and the first terminal device; and the second reference signal is a second SRS for uplink channel quality measurement between the second terminal device and a second network device.
  • SRS sounding reference signal
  • the first reference signal is a channel state information reference signal (CSI-RS) for downlink channel quality measurement between the first network device and the first terminal device; and the second reference signal is a second CSI-RS for uplink channel quality measurement between the second terminal device and a second network device.
  • CSI-RS channel state information reference signal
  • the first reference signal comprises identification information of a cell in which the first terminal device is located; and the second reference signal comprises identification information of a cell in which the second terminal device is located.
  • the first reference signal and the second reference signal are orthogonal through Frequency-division multiplexing (FDM) or Code Division Multiplexing (CDM) .
  • FDM Frequency-division multiplexing
  • CDM Code Division Multiplexing
  • a communication method implemented at a first network device.
  • the communication method comprises: determining a first transmission direction associated with a communication resource; and in accordance with a determination that a transmission direction of a data transmission to be performed between the first network device and a first terminal device on the communication resource is the same as the first transmission direction, performing the data transmission on the communication resource.
  • determining the first transmission direction comprises: determining the first transmission direction associated with the communication resource based on a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource.
  • the first transmission direction matrix is predefined.
  • the method further comprises: receiving, from a second network device, configuration of the first transmission direction matrix via a Access and Mobility Management Function (AMF) .
  • AMF Access and Mobility Management Function
  • the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device on the communication resource; wherein the method further comprises: in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is opposite to the first transmission direction, determining a Cross Link Interference (CLI) between the first network device and a second network device on the communication resource; and in accordance with a determination that the CLI is within a predefined condition, performing the PDSCH transmission on the communication resource.
  • PDSCH physical downlink shared channel
  • the method further comprises: in accordance with a determination that the CLI exceeds the predefined condition, one of: abandoning the PDSCH transmission; performing power backoff; and performing the PDSCH transmission on a different communication resource from the communication resource.
  • the method further comprises: transmitting, to the first terminal device, an indication about whether CLI exists on the communication resource based on the determined CLI.
  • transmitting the indication comprises: transmitting, to the first terminal device, the indication through Acknowledgement/Negative Acknowledgement (ACK/NACK) or MAC Control Element (MAC CE) on a different communication resource from the communication resource.
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • MAC CE MAC Control Element
  • the method further comprises: in accordance with a determination that the transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction, performing the PDSCH transmission on the communication resource.
  • determining the CLI comprises: detecting an energy of the communication resource from the second network device; and determining the CLI based on the detected energy of the communication resource.
  • determining the CLI comprises: sensing a reference signal on the communication resource for CLI measurement from the second network device; and determining the CLI based on a result of the sensing.
  • the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource; wherein performing the data transmission on the communication resource comprises: in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction, transmitting a reference signal on the communication resource for CLI measurement before performing the PUSCH transmission; and performing the PUSCH transmission on the communication resource.
  • PUSCH physical uplink shared channel
  • the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  • the predefined sequence comprises identification information of a cell in which the first network device is located.
  • a communication method implemented at a first network device.
  • the communication method comprises: determining a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource; and in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device and that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device, transmitting, to a first terminal device, an indication to schedule: a first communication resource for a first data transmission on the first communication resource from the first terminal device to the first network device using a first transmission power, and a second communication resource for a second data transmission on the second communication resource from the first terminal device to the first network device using a second transmission power larger than the first transmission power.
  • the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
  • TPC transmission power control
  • a communication method implemented at a first network device.
  • the communication method comprises: performing a channel access procedure on a communication resource based on a set of parameters; and in accordance with a determination that a channel on the communication resource is clear, performing a data transmission on the communication resource; wherein the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
  • the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
  • the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure, wherein the first listening duration is longer than the second listening duration.
  • the channel access procedure is one of: a Listen before Talk (LBT) procedure; or a Clear Channel Assessment (CCA) procedure.
  • LBT Listen before Talk
  • CCA Clear Channel Assessment
  • a communication method implemented at a first network device.
  • the communication method comprises: receiving, from a first terminal device, a first reference signal on a communication resource; and receiving, from a second network device, a second reference signal on the communication resource for Cross Link Interference (CLI) measurement between the first network device and second network device; wherein the first reference signal and the second reference signal are orthogonal.
  • CLI Cross Link Interference
  • the first reference signal is a first demodulation reference signal (DMRS) for channel estimation for physical uplink shared channel (PUSCH) decoding for a PUSCH transmission from the first terminal device to the first network device; and the second reference signal is a second DMRS for channel estimation for physical downlink shared channel (PDSCH) decoding for a PDSCH transmission from the second network device to a second terminal device.
  • DMRS demodulation reference signal
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • the first reference signal is a first sounding reference signal (SRS) for uplink channel quality measurement between the first terminal device and the first network device; and the second reference signal is a second SRS for downlink channel quality measurement between the second network device and a second terminal device.
  • SRS sounding reference signal
  • the first reference signal is a channel state information reference signal (CSI-RS) for uplink channel quality measurement between the first terminal device and the first network device; and the second reference signal is a second CSI-RS for downlink channel quality measurement between the second network device and a second terminal device.
  • CSI-RS channel state information reference signal
  • the first reference signal comprises identification information of a cell in which the first network device is located; and the second reference signal comprises identification information of a cell in which the second network device is located.
  • the first reference signal and the second reference signal are orthogonal through Frequency-division multiplexing (FDM) or Code Division Multiplexing (CDM) .
  • FDM Frequency-division multiplexing
  • CDM Code Division Multiplexing
  • a terminal device comprising: a processor configured to cause the terminal device to perform the method according to any embodiments of the first to fourth aspects.
  • a network device comprising: a processor configured to cause the network device perform the method according to any embodiments of the fifth to eighth aspects.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any embodiments of the first to eighth aspects.

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for management of Cross Link Interference (CLI). According to embodiments of the present disclosure, there is provided a communication method implemented at a first terminal device. In the method, a first terminal device determines a first transmission direction associated with a communication resource. The first terminal device performs a data transmission between the first terminal device and a first network device on the communication resource in accordance with a determination that a transmission direction of the data transmission to be performed on the communication resource is the same as the first transmission direction.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR MANAGEMENT OF CROSS LINK INTERFERENCE FIELD
Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a method, device and computer readable medium for management of Cross Link Interference (CLI) .
BACKGROUND
With development of the communication technology, network devices have been designed to operate in a duplex communication mode to improve the communication efficiency. In the duplex communication mode, the network devices may transmit downlink (DL) data transmission and receive uplink (UL) data transmission simultaneously. Accordingly, there may be a situation that a terminal device receives a downlink data transmission from a network device and an uplink data transmission from another terminal device to the network device, simultaneously. That is, CLI may be occurred if there are different traffics/signals/channels in the same/neighboring communication (s) . There may also be CLI occurred between network devices operating in the duplex communication mode. For example, there may be a situation that a network device receives an uplink data transmission from a terminal device and a downlink data transmission from another network device to another terminal device. Conventionally, the network device eliminates the CLI by coordinating the UL-DL transmission configuration with each other. In the case that the CLI being existed at terminal devices side or network devices side, the efficiency utilization of communication resources is a key aspect.
SUMMARY
In general, example embodiments of the present disclosure relate to methods, devices and computer readable media for communication.
In a first aspect, there is provided a communication method implemented at a first terminal device. In the method, a first terminal device determines a first transmission direction associated with a communication resource. The first terminal device performs a data transmission between the first terminal device and a first network device on the  communication resource in accordance with a determination that a transmission direction of the data transmission to be performed on the communication resource is the same as the first transmission direction.
In a second aspect, there is provided a communication method implemented at a first terminal device. In the method, a first terminal device receives, from a first network device, an indication to schedule a first communication resource for a first data transmission from the first terminal device to the first network device and a second communication resource for a second data transmission from the first terminal device to the first network device. The first terminal device determines a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource. The first terminal device performs the first data transmission on the first communication resource using a first transmission power in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device. The first terminal device performs the second data transmission on the second communication resource using a second transmission power larger than the first transmission power in accordance with a determination that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device.
In a third aspect, there is provided a communication method implemented at a first terminal device. In the method, a first terminal device receives, from a first network device, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal device and the first network device and a second part for defining a set of parameters for a channel access procedure. The first terminal device performs the channel access procedure on the communication resource based on the set of parameters. The first terminal device performs the data transmission on the communication resource in accordance with a determination that a channel on the communication resource is clear. The set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
In a fourth aspect, there is provided a communication method implemented at a first terminal device. In the method, a first terminal device receives, from a first network device, a first reference signal on a communication resource. The first terminal device  receives, from a second terminal device, a second reference signal on the communication resource for CLI measurement between the first terminal device and second terminal device. The first reference signal and the second reference signal are orthogonal.
In a fifth aspect, there is provided a communication method implemented at a first network device. In the method, the first network device determines a first transmission direction associated with a communication resource. The first network device performs the data transmission on the communication resource in accordance with a determination that a transmission direction of a data transmission to be performed between the first network device and a first terminal device on the communication resource is the same as the first transmission direction.
It is to be understood that the summary section is not intended to identify key or essential features of example embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1 illustrates an example environment in which some embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a signaling process of UL data transmission with the management of CLI according to some embodiments of the present disclosure;
FIG. 3A illustrates an example of a first slot configuration according to some embodiments of the present disclosure;
FIG. 3B illustrates an example of a second slot configuration according to some embodiments of the present disclosure;
FIG. 3C illustrates an example of a third slot configuration according to some embodiments of the present disclosure;
FIG. 4 illustrates an example environment in which some embodiments of the present disclosure can be implemented;
FIG. 5 illustrates a signaling process of data transmission with the management of  CLI according to some embodiments of the present disclosure;
FIG. 6A illustrates an example of a fourth slot configuration according to some embodiments of the present disclosure;
FIG. 6B illustrates an example of a fifth slot configuration according to some embodiments of the present disclosure;
FIG. 7 illustrates an example environment in which some embodiments of the present disclosure can be implemented;
FIG. 8 illustrates a signaling process of data transmission with the management of CLI according to some embodiments of the present disclosure;
FIG. 9A illustrates an example of a sixth slot configuration according to some embodiments of the present disclosure;
FIG. 9B illustrates an example of a seventh slot configuration according to some embodiments of the present disclosure;
FIG. 10 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure;
FIG. 11 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure;
FIG. 12 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure;
FIG. 13 illustrates a flowchart of an example method implemented at a first terminal device in accordance with some embodiments of the present disclosure;
FIG. 14 illustrates a flowchart of an example method implemented at a first network device in accordance with some embodiments of the present disclosure; and
FIG. 15 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some  embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
As used herein, the term “network device” refers to a device which is capable of  providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information. The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The network device may have the function of network energy saving, Self-Organising Networks (SON) /Minimization of Drive Tests (MDT) . The terminal may have the function of power saving.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access  technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or  processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
As mentioned above, the CLI may be occurred between different terminal devices or between different network devices operating in the duplex communication mode. One solution for the management of the CLI is that the network devices coordinate the UL-DL transmission configuration with each other. However, such CLI management based on backhaul coordination might be limited. For example, in a coordination mechanism, transmission direction information or reference signal configurations need to be exchanged through Xn for inter-TRP, which results in a large latency and low reliability. There is no mechanism for configuring the CLI measurement in a short term. In some scenarios, the network devices might belong to different operators and may not be able to coordinate with each other. There is no mechanism for configuring the CLI measurement without the need to coordinating between network devices. Further, how to reduce the overhead for CLI measurement is also a problem to be solved.
The example embodiments of the disclosure propose a mechanism for the management of CLI in a short term. In this mechanism, a transmission direction with priority on corresponding communication resource is defined. If the transmission direction of a data transmission to be performed on a communication resource is the same as the transmission direction with priority on the communication resource, the transmitter (e.g. a terminal device or a network device) may perform the data transmission on the communication resource directly or may send a reference signal associated with the communication resource before performing the data transmission. If the transmission direction of a data transmission to be performed on the communication resource is opposite to the transmission direction with priority on the communication resource, the transmitter needs to detect the CLI (e.g. by detecting an energy or a resource-specific reference signal) first. If the detected CLI is within a predetermined condition, the transmitter can perform the data transmission on the communication resource; otherwise, it means that CLI exists on the communication resource and the transmitter may abandon the data transmission, or perform the data transmission with a lower power or on another communication resource. In an example embodiment, the transmitter may provide feedback “CLI exists” or “CLI is  not existing” implicitly or explicitly after detecting the CLI. In this way, a short-term interference measurement can be achieved. In addition, interference management can be achieved in multi-operator scenarios.
FIG. 1 illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
The environment 100, which may be a part of a communication network, comprises a first network device 110, a second network device 120, a first terminal device 130 and a second terminal device 140. The first network device 110 and second network device 120 may operate in duplex communication mode. For example, in some situations, the first network device 110 may receive an uplink data transmission from the first terminal device 130 and a downlink data transmission from the second network device 120 simultaneously. In addition or alternatively, the environment 100 may also comprise a third terminal device 150. In some situations, the first network device 110 may simultaneously receive an uplink data transmission from the first terminal device 130 and a downlink data transmission from the first network device 110 to the third terminal device 150 which is reflected by surrounding objects.
It is to be understood that the number of terminal devices and network device is shown in the environment 100 only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure. In some embodiments, the environment 100 may comprise further terminal devices to communicate information with a further network device.
The communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual  Connection (DC) , and New Radio Unlicensed (NR-U) technologies.
FIG. 2 illustrates a signaling process 200 of UL data transmission with the management of CLI according to some embodiments of the present disclosure. For purpose of discussion, the process 200 will be described with reference to FIG. 1.
For initiating a UL data transmission from the first terminal device 130 to the first network device 110, in some embodiments, the first network device 110 may transmit (210) , to the first terminal device 130, an indication for pre-scheduling a communication resource for a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device. In some embodiments, the indication may be transmitted via a Downlink Control Information (DCI) in a physical downlink control channel (PDCCH) or a Radio Resource Control (RRC) message.
In the signaling process 200, the first terminal device 130 determines (220) a first transmission direction associated with the communication resource to be used for the data transmission. The terms “a first transmission direction on a communication resource” and “a first transmission direction associated with a communication resource” as used herein refer to a transmission direction with priority between a network device and a terminal device on the communication resource and may be used interchangeably.
In some embodiments, the first terminal device 130 may receive, from the network device 110, information about a first transmission direction matrix and determine the first transmission direction on the communication resource based on the first transmission direction matrix. Each element in the first transmission direction matrix indicates a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource. For example, the first transmission direction may be defined or configured on a specific subband and the first transmission direction may be comprised in a first direction vector. That is, each subband may correspond to a first transmission direction with a UL priority or a DL priority. For example, the carrier may comprise N subbands and a one-dimension vector {DL, UL, …, UL, DL} may be defined or configured, each element representing the first transmission direction on the corresponding subband. In addition or alternatively, the first transmission direction may be defined or configured on a specific subband and a specific slot or a time unit. In this case, the first transmission direction may indicate the transmission direction with priority for a data transmission on the combination resource of  the specific subband and the specific slot or a time unit. Accordingly, the first transmission direction may be comprised in the first transmission direction matrix as an element specified by two dimensions, a frequency domain dimension and a time domain dimension. For example, the first transmission direction matrix may comprise M rows and N lines. M presents a subband number in a carrier or Bandwidth Part (BWP) and N presents the time unit number in a time duration or a measurement periodicity. The row index presents each subband index, and the line presents the time unit index (such as a slot or k symbols) . An element v (i, j) in the first transmission direction matrix represents the first transmission direction with a DL/UL priority for subband (i) in slot (j) . In addition or alternatively, the first transmission direction may be transmitted on a specific slot, a specific subband and a specific beam. In this case, the first transmission direction may indicate the transmission direction with priority for a data transmission on the combination resource of the slot, the specific subband and the specific beam. Accordingly, the first transmission direction may be comprised in the first transmission direction matrix as an element specified by three dimensions, a time domain dimension, frequency domain dimension and a spatial domain dimension.
In some examples, the first transmission direction matrix may be predefined. In some examples, the first transmission direction matrix may be exchanged between network devices through Xn/X2. In some examples, the first transmission direction matrix may be transferred via an Access and Mobility Management Function (AMF) . For example, the first network device 110 may receive, from the second network device 120, configuration of the first transmission direction matrix via AMF. The first network device 110 may transmit configuration of the first transmission direction matrix to the first terminal device 130 through specific RRC message or the group common DCI.
In some embodiments, the first network device 110 may determine the first transmission direction on the communication resource based on the first transmission direction matrix and transmit an indication of the first transmission direction on the communication resource to be used to the first terminal device 130.
In some embodiments, if the first transmission direction on the communication resource to be used for the data transmission is in a UL direction, that is, the same as the transmission direction of the PUSCH transmission to be performed on the communication resource, the first terminal device 130 may transmit (240) , to the first network device 110, the PUSCH on the communication resource. In some embodiments, the first network  device 110 may transmit (230) a reference signal on the communication resource before receiving the PUSCH, in response to determining that the transmission direction is the same as the first transmission direction on the communication resource, informing other network devices (e.g., the second network device 120) the occupancy of the communication resource. The reference signal may have the same QCL assumption with the data to be transmitted. Furthermore, the reference signal can carry information about the transmission duration. Through this information, other nodes receiving the reference signal will be aware of the duration of occupancy of the communication resource and will not detect the reference signal again during this period.
In some embodiments, if the first transmission direction on the communication resource to be used for the data transmission is in a DL direction, that is, opposite to the transmission direction of the PUSCH transmission to be performed on the communication resource, the first terminal device 130 may determine a CLI between the first terminal device 130 and other terminal devices (e.g., the second terminal device 140 or the third terminal device 150) on the communication resource to determine whether the communication resource has been occupied or not. In some embodiments, the first terminal device 130 may detect an energy of the communication resource from other terminal devices, and determine the CLI based on the detected energy of the communication resource. Alternatively or in addition, the first terminal device 130 may sense a reference signal on the communication resource from other terminal devices and determine the CLI based on a result of the sensing.
In some embodiments, the first terminal device 130 may transmit, to the first network device 110, an indication about whether CLI exists on the communication resource or how heavy the CLI is based on the determined CLI. In some embodiments, the first terminal device 130 may transmit, to the first network device 110, the indication implicitly through Acknowledgement/Negative Acknowledgement (ACK/NACK) . If the first network device 110 receives a NACK indication, the first network device 110 is informed that the CLI exists or will exist. If the first network device 110 receives an ACK indication, the first network device 110 is informed that the CLI is lower than the threshold, and the PUSCH will be transmitted on the communication resource. In some embodiments, the first terminal device 130 may transmit, to the first network device 110, the indication explicitly through MAC Control Element (MAC CE) on a different communication resource from the communication resource.
In some embodiments, if the CLI is within a predefined condition, the first terminal device 130 may transmit (240) , to the first network device 110, the PUSCH on the communication resource. In some embodiments, if the CLI exceeds a predefined condition, the first terminal device 130 may abandon the PUSCH transmission. Alternatively, the first terminal device 130 may perform power backoff, i.e., transmitting the PUSCH in a lower power. Alternatively, the PUSCH may be transmitted from the first terminal device 130 to the first network device 110 on a different communication resource from the communication resource.
In an alternative implementation, the first terminal device 130 may perform a channel accessprocedure before transmitting a PUSCH to the first network device 110. Parameters for the channel access procedure, such as Clear Channel Assessment (CCA) type, contention window or defer period, may be determined.
In some embodiments, two sets of parameters for the channel access procedure may be pre-defined or configured and correspond to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource. A first set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource. The first set of parameters for the channel access procedure comprises a first listening information indicating a first listening duration of the channel access procedure. A second set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource. The second set of parameters for the channel access procedure comprises a second listening information indicating a second listening duration of the channel access procedure. The first listening duration is longer than the second listening duration. The first terminal device 130 may receive, from the first network device 110, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal 130 device and the first network device 110 and a second part for defining a set of parameters for a channel access procedure. The first terminal device 130 may perform a channel access procedure on a communication resource based on a corresponding set of parameters. If a channel on the communication resource is clear according to the channel access procedure, the first terminal device 130 then  performs the data transmission on the communication resource. In some embodiments, the channel access procedure may be a Listen before Talk (LBT) procedure or a Clear Channel Assessment (CCA) procedure.
In an embodiment, if the transmission direction with priority on a communication resource is on the DL transmission direction, the listening duration for the DL data transmission may be shorter than the listening duration for the UL data transmission. In such event, the first terminal device 130 needs to perform the channel access procedure for a longer period before transmitting a PUSCH, resulting in a lower probability to perform the DL data transmission on the communication resource.
The terms “a reference signal on a communication resource” and “a reference signal associated with a communication resource” as used herein indicates that the reference signal is resource-specific and may be used interchangeably. Each resource unit, such as one subband/RB set/beam, is associated with a certain reference signal sequence. The reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource. In some embodiments, the reference signal may refer to the reference signal for CLI reference signal received power (RSRP) measurement or the reference signal transmitted to occupy the communication resource. The reference signal configuration is implicitly obtained through the assigned RB/subband and symbol index for PUSCH/PDSCH. For example, the base sequence index is determined based on the subband index or RB set index as illustrated in the figure and the cyclic shift index is determined based on the OFDM symbol index. For data PDSCH/PUSCH decoding, the whole demodulation reference signal (DMRS) for a UE may be obtained by aggregating one or multiple short demodulation reference signal corresponding to different resource units. The orthogonality of whole DMRS can be obtained once each short demodulation reference signal is designed to be orthogonal. Alternatively, the first symbol for PDSCH/PUSCH DMRS may use the cycle shift value 0, and the next DMRS may use the cycle shift value 1 and so on if Zadoff-Chu sequence is used as a base sequence. Alternatively, the layer index may be added into the cyclic shift generation and different cell use different layer. Furthermore, the sequence may also carry the cell identification information, through which, other node can know the aggressor cell through blind detection.
FIG. 3A illustrates an example of a first slot configuration 300A according to some  embodiments of the present disclosure. For purpose of discussion, the first slot configuration 300A will be described with reference to FIG. 1.
The first slot configuration 300A corresponds to an embodiment in which a communication resource is scheduled for a PUSCH transmission from the first terminal device 130 to the first network device 110 and the first transmission direction on the communication resource is in a UL direction. As illustrated, the first slot configuration 300A comprises a first part for the PDCCH, a second part for the reference signal (RS) , a third part for a Guard Period (GP) and a fourth part for the PUSCH transmission from the terminal device. Specifically, the symbols at the beginning of the slot can be used to transmit PDCCH from the first network device 110 to the first terminal device 130, and the last symbols of the slot can be used to transmit PUSCH from the first terminal device 130 to the first network device 110, and the GP is defined for DL-UL switching. The RS is transmitted by the first network device 110 in symbols in between PDCCH and PUSCH and used to inform other network devices the occupancy of the communication resource.
FIG. 3B illustrates an example of a second slot configuration 300B according to some embodiments of the present disclosure. For purpose of discussion, the second slot configuration 300B will be described with reference to FIG. 1.
The second slot configuration 300B corresponds to an embodiment in which a communication resource is scheduled for a PUSCH transmission from the first terminal device 130 to the first network device 110 and the first transmission direction on the communication resource is in a DL direction. As illustrated, the first slot configuration 300B comprises a first part for the PDCCH, a second part for the RS, a third part for the PUSCH transmission from the terminal device. Specifically, during the GP, the first terminal device 130 may determine a CLI on the communication resource by detecting an energy of the communication resource or sensing a reference signal on the communication resource.
FIG. 3C illustrates an example of a third slot configuration 300C according to some embodiments of the present disclosure. For purpose of discussion, the third slot configuration 300C will be described with reference to FIG. 1.
The third slot configuration 300C corresponds to an embodiment in which the first network device 110 may transmit to the first terminal device 130 an indication for pre-scheduling multiple communication resources for multiple PUSCH transmissions (e.g.,  PUSCH-1 to PUSCH-5) from the first terminal device 130 to the first network device 110 carrying the same or different transmission blocks, respectively. Corresponding first transmission directions are determined for each of the multiple communication resources. For example, a first communication resource for scheduling PUSCH-1 and a third communication resource for scheduling PUSCH-3 are in the DL direction, and the communication resources for scheduling PUSCH-2, PUSCH-4 and PUSCH-5 are in the UL direction. The first terminal device 130 may transmit PUSCH-1 and PUSCH-3 using a first transmission power and transmit PUSCH-2, PUSCH-4 and PUSCH-5 using a second transmission power larger than the first transmission power.
In some examples, the indication may comprise two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively. In some examples, two sets of TPC parameter or P0-PUSCH-AlphaSet ID may be included in the DCI that scheduling the PUSCH or in the IE ConfiguredGrantConfig.
Alternatively, an energy detection or RS sensing may be performed on the communication resources corresponding to the PUSCHs, especially whose first transmission direction is opposite to the PUSCH transmission direction. The first terminal device 130 may transmit PUSCHs on corresponding communication resources with heavy CLI using a first transmission power and transmit PUSCHs on corresponding communication resources without CLI using a second transmission power larger than the first transmission power.
FIG. 4 illustrates an example environment 400 in which some embodiments of the present disclosure can be implemented.
The environment 400, which may be a part of a communication network, comprises a first network device 410, a second network device 420, a first terminal device 430 and a second terminal device 440. The terminal device 430 and a second terminal device 440 may operate in duplex communication mode. For example, in some situations, the first terminal device 430 may receive a downlink data transmission from the first network device 430 and an uplink data transmission from the second terminal device 440 simultaneously. In addition or alternatively, the environment 400 may also comprise a third terminal device 450. In some situations, the first terminal device 430 may receive a downlink data transmission from the first network device 430 and an uplink data  transmission from the third terminal device 450 simultaneously.
FIG. 5 illustrates a signaling process 500 of data transmission with the management of CLI according to some embodiments of the present disclosure. For purpose of discussion, the process 500 will be described with reference to FIG. 4.
For initiating a DL data transmission from the first network device 410 to the first terminal device 430, in some embodiments, the first network device 410 may transmit (510) , to the first terminal device 430, an indication for pre-scheduling a communication resource for a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device. In some embodiments, the indication may be transmitted via a DCI in a PDCCH or a RRC message.
In the signaling process 500, the first network device 410 determines (520) a first transmission direction associated with the communication resource to be used for the data transmission. In some embodiments, if the first transmission direction on the communication resource to be used for the data transmission is in a DL direction, that is, the same as the transmission direction of the PDSCH transmission to be performed on the communication resource, the first network device 410 may transmit (550) , to the first terminal device 430, the PDSCH on the communication resource. In some embodiments, the first terminal device 430 may determine (530) that the transmission direction is the same as the first transmission direction on the communication resource, and transmit (540) a reference signal on the communication resource before receiving the PDSCH, informing other terminal devices (e.g., the second terminal device 440 and the fifth terminal device 450) the occupancy of the communication resource. The reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource. The sequence may also carry the cell identification information, through which, other node can know the aggressor cell through blind detection.
It should be noted that although step 520 is shown in the figure after step 510, the present disclosure is not so limited. It will be appreciated that step 520 may also be performed prior to or concurrently with step 510. The embodiments of the signaling processes in the disclosure are by way of example only and are not intended to be limiting.
In some embodiments, if the first transmission direction on the communication  resource to be used for the data transmission is in a UL direction, that is, opposite to the transmission direction of the PDSCH transmission to be performed on the communication resource, the first network device 410 may determine a CLI between the first network device 410 and other network devices (e.g., the second network device 420) on the communication resource to determine whether the communication resource has been occupied or not. In some embodiments, the first network device 410 may transmit, to the first terminal device 430, an indication about whether CLI exists on the communication resource or how heavy the CLI is based on the determined CLI. In some embodiments, the first network device 410 may transmit, to the first terminal device 430, the indication implicitly through Acknowledgement/Negative Acknowledgement (ACK/NACK) or MAC Control Element (MAC CE) on a different communication resource from the communication resource.
In some embodiments, if the CLI is within a predefined condition, the first network device 410 may transmit (550) , to the first terminal device 430, the PDSCH on the communication resource. In some embodiments, if the CLI exceeds a predefined condition, the first network device 410 may abandon the PDSCH transmission, or perform power backoff, or transmit the PDSCH on a different communication resource from the communication resource.
FIG. 6A illustrates an example of a fourth slot configuration 600A according to some embodiments of the present disclosure. For purpose of discussion, the fourth slot configuration 600A will be described with reference to FIG. 5.
The fourth slot configuration 600A corresponds to an embodiment in which a communication resource is scheduled for a PDSCH transmission from the first network device 410 to the first terminal device 430 and the first transmission direction on the communication resource is in a DL direction. As illustrated, the fourth slot configuration 600A comprises a first part for the PDCCH, a second part for a Guard Period (GP) , a third part for the reference signal (RS) , a fourth part for a Guard Period (GP) and a fifth part for the PDSCH transmission. The RS is transmitted by the first terminal device 430 in symbols in between PDCCH and PDSCH and used to inform other network devices the occupancy of the communication resource.
FIG. 6B illustrates an example of a fifth slot configuration 600B according to some embodiments of the present disclosure. For purpose of discussion, the fifth slot  configuration 600B will be described with reference to FIG. 5.
The fifth slot configuration 600B corresponds to an embodiment in which a communication resource is scheduled for a PDSCH transmission from the first network device 410 to the first terminal device 430 and the first transmission direction on the communication resource is in a UL direction. As illustrated, the first slot configuration 300B comprises a first part for the PDCCH, a second part for the RS, a third part for the PDSCH transmission from the terminal device. Specifically, during the GP, the first network device 410 may determine a CLI on the communication resource by detecting an energy of the communication resource or sensing a reference signal on the communication resource.
In an alternative implementation, the first network device 410 may perform a channel access procedure before transmitting a PDSCH to the first terminal device 430. In some embodiments, the first and second sets of parameters for the channel access procedure may be pre-defined or configured. The first set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource. The first set of parameters for the channel access procedure comprises a first listening information indicating a first listening duration of the channel access procedure. The second set of parameters for the channel access procedure corresponds to the situation where the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource. The second set of parameters for the channel access procedure comprises a second listening information indicating a second listening duration of the channel access procedure. The first listening duration is longer than the second listening duration. The first network device 410 may perform a channel access procedure on a communication resource based on a corresponding set of parameters. If a channel on the communication resource is clear according to the channel access procedure, the first network device 410 then performs the data transmission on the communication resource. In some embodiments, the channel access procedure may be a LBT procedure or a CCA procedure.
As mentioned above, the CLI may be occurred between different terminal devices or between different network devices operating in the duplex communication mode. One solution for the management of the CLI is that the network devices coordinate the UL-DL transmission configuration with each other. For example, if a reference signal is used for  DL-to-UL interference or UL-to-DL interference measurement, the resource blocks used for transmitting the reference signal on one link need to be blanked or muted on the other link to assure the reliability of the CLI measurement. However, the spectrum efficiency would be affected. How to reduce the overhead for CLI measurement is also a problem to be solved.
The example embodiments of the disclosure propose a mechanism for the CLI measurement by duplexing reference signals. In this mechanism, Orthogonal multiplexing of DL RS and UL RS for interference measurements is designed to avoid interference each other. The CLI measurement can be performed simultaneously with channel estimation or CQI/CSI measurements or other functions of other reference signals.
FIG. 7 illustrates an example environment 700 in which some embodiments of the present disclosure can be implemented.
The environment 700, which may be a part of a communication network, comprises a first network device 710, a second network device 720, a first terminal device 730 and a second terminal device 740 operating in duplex communication mode. For example, in some situations, the first network device 710 may receive an uplink data transmission from the first terminal device 730 and a downlink data transmission from the second network device 720 simultaneously. In addition or alternatively, the second terminal device 740 may receive a downlink data transmission from the second network device 720 and a uplink data transmission from the first terminal device 730 simultaneously.
FIG. 8 illustrates a signaling process 800 of data transmission with the management of CLI according to some embodiments of the present disclosure.
In the signaling process 800, the first terminal device 730 transmits (810) , to the first network device 710, a first reference signal on a communication resource and transmits (820) , to the second terminal device 740, the first reference signal. The second network device 720 transmits (830) , to the first network device 710, a second reference signal on the communication resource and transmits (840) , to the second terminal device 740, the second reference signal. The first reference signal and the second reference signal are orthogonal. In some embodiments, the first reference signal and the second reference signal are orthogonal through Frequency-division multiplexing (FDM) or Code Division Multiplexing (CDM) . In some embodiments, the first reference signal may comprise identification  information of a cell in which the first terminal device 730 or the first network device 710 is located. The second reference signal may comprise identification information of a cell in which the second terminal device 740 or the second network device 720 is located. In this way, duplexing flexibility of the reference signal is enabled
In some examples, the first reference signal may be a first DMRS for channel estimation for PUSCH decoding for a PUSCH transmission from the first terminal device 730 to the first network device 710; and the second reference signal may be a second DMRS for channel estimation for PDSCH decoding for a PDSCH transmission from the second network device 720 to the second terminal device 740.
In some embodiments, the first network device 710 may perform (850) channel estimation for PUSCH decoding for a PUSCH transmission from the first terminal device 730 to the first network device 710 based on the first DMRS simultaneously with a measurement of the CLI between the first network device 710 and the second network device 720 based on the second DMRS. In some embodiments, the second terminal device 740 may perform (860) channel estimation for PDSCH decoding for a PDSCH transmission from the second terminal device 720 to the second network device 740 based on the second DMRS simultaneously with a measurement of the CLI between the first terminal device 730 and the fourth terminal device 720 based on the first DMRS.
In this way, when performing a PDSCH transmission and a PUSCH transmission on the same resource from different cells, front loaded DMRSs for PUSCH decoding and PDSCH decoding can also be used as the CLI measurement reference signal. In some embodiments, if it is assumed that the DMRSs for PUSCH decoding and for PDSCH decoding are designed in same OFDM-based waveform (and numerology) , they need to be located into the same OFDM symbols and subcarriers.
In some embodiments, the first and second DMRSs are orthogonal and resource specific, rather than UE specific. In some embodiments, the first DMRS and the second DMRS may be designed with resource block (RB) specific RS sequences with cell specific root or scrambling sequence. For example, the RB number for DMRS may be half of the assigned PUSCH/PDSCH RB number respectively. For example, the first DMRS may occupy the odd RB index, and the second DMRS occupy the even RB index. In some embodiments, the scrambling identification (ID) of the neighboring cell may be assumed or predefined as mod (the cell ID + n) . In some embodiments, the layer or port for the first  and second DMRSs may be predefined (such as operator 1, use 1) and may be different for a overlapped time-frequency resource and each layer, and may have a specific orthogonal cover code.
In some examples, the first reference signal may be a first sounding reference signal (SRS) for uplink channel quality measurement between the first terminal device 730 and the first network device 710; and the second reference signal may be a second SRS for downlink channel quality measurement between the second network device 720 and the second terminal device 740.
In some embodiments, the first network device 710 may perform (850) uplink channel quality measurement between the first terminal device 730 and the first network device 710 based on the first SRS simultaneously with a measurement of the CLI between the first network device 710 and the second network device 720 based on the second SRS. In some embodiments, the second terminal device 740 may perform (860) downlink channel quality measurement between the second network device 720 and the second terminal device 740 based on the second SRS simultaneously with a measurement of the CLI between the first terminal device 730 and the fourth terminal device 720 based on the first SRS.
The first SRS and the second SRS are both resource-specific and are orthogonal through FDM/CDM, thus the first and second SRSs can be distinguish. In this way, CLI measurement and CQI/CSI measurement can be performed simultaneously. In embodiments using the FDM method, different frequency offsets or different subbands/RB sets/combs are used. In embodiments using the CDM method, different sequences are used. In some embodiments, different cells may use different antenna ports, and the first and second SRSs can be orthogonal as the cyclic shifts are not the same.
In some embodiments, for situations where the first and second network devices belong to the same operator, the SRS resource configuration can be exchanged between two TRPs. For situations where the first and second network devices belong to different operator, the SRS resource can be divided first and each operator use a predefined resource. For example, for time duration t1, comb k=4 or comb=8 is used, and operator 1 or cell 1 use comb#1, while operator 2 or cell 2 use comb#2, and so on. Alternatively, for time duration T1, port 1 and port 2 may be assigned to cell 1, and port 3 and port 4 may be assigned to cell 2; and for time duration T2, port 1 and port 2 may be assigned to cell 2, and  port 3 and port 4 may be assigned to cell 1.
In some examples, the first reference signal may be a first channel state information reference signal (CSI-RS) for uplink channel quality measurement between the first terminal device 730 and the first network device 710; and the second CSI-RS for downlink channel quality measurement between the second network device 720 and the second terminal device 740.
In some embodiments, the first network device 710 may perform (850) uplink channel quality measurement between the first terminal device 730 and the first network device 710 based on the first CSI-RS simultaneously with a measurement of the CLI between the first network device 710 and the second network device 720 based on the second CSI-RS. In some embodiments, the second terminal device 740 may perform (860) downlink channel quality measurement between the second network device 720 and the second terminal device 740 based on the second CSI-RS simultaneously with a measurement of the CLI between the first terminal device 730 and the fourth terminal device 720 based on the first CSI-RS.
The first CSI-RS and the second CSI-RS are cell-specific and are orthogonal through FDM/CDM. The cell ID can be included into the scrambling ID for sequence initialization. That is, CSI-RS sequence is scrambled with cell specific ID and a largest possible system bandwidth is assumed. In some embodiments, the middle of the sequence may be always aligned with the center of the bandwidth and only the sequence elements in the resource allocation area are active.
In some examples, the first and second CSI-RSs may use different frequency domain Orthogonal Cover Codes (OCCs) , or different time domain OCCs. In some examples, M RS ports among a total of N RS ports may be allocated to the first RS, while the remaining (N-M) RS ports may be assigned to second RS. When duplexing flexibility is not enabled, all the N RS ports may be assigned to both the first RS in the UL channel and the second RS in the DL channel.
FIG. 9A illustrates an example of a sixth slot configuration according to some embodiments of the present disclosure. For purpose of discussion, description of Fig. 9A will be described with reference to FIGs. 7 and 8.
As illustrated, the slot configuration may indicate a first structure 910 for the UL channel between the first terminal device 730 and the first network device 710 comprising  DL symbols, UL symbols, UL RS symbols and Flexible symbols, a second structure 920 for the DL channel between the second network device 720 and the second terminal device 740 comprising DL symbols, UL symbols, DL RS symbols and Flexible symbols.
When CLI measurements between terminal devices and CLI measurements between network devices are both considered, orthogonal design between the UL RS and DL RS can be considered to ensure the accuracy. It should be understood, the UL RS and DL RS can be other RS besides DMRS, CSI-RS, and SRS.
In some embodiments, DL RS and the UL RS are transmitted in the overlapped time-frequency resource, but are orthogonal in RE/RB level FDM. In some embodiments, DL RS and the UL RS are covered with different OCC. In some embodiments, DL RS and the UL RS correspond to orthogonal sequences. In this way, CLI measurements between terminal devices and CLI measurements between network devices can be performed on the same resource at the same time.
FIG. 9B illustrates an example of a seventh slot configuration according to some embodiments of the present disclosure. For purpose of discussion, description of Fig. 9B will be described with reference to FIGs. 7 and 8.
As illustrated, the slot configuration may indicate a structure 930 for both the UL channel between the first terminal device 730 and the first network device 710 and for the DL channel between the second network device 720 and the second terminal device 740 comprising DL symbols, UL symbols, RS symbols and Flexible symbols.
In some embodiments, DL RS and UL RS for CLI measurements may transmit in separate beam direction.
FIG. 10 illustrates a flowchart of an example method 1000 implemented at a first terminal device in accordance with some embodiments of the present disclosure. The method 1000 can be implemented at the first terminal device 130 shown in FIG. 1 and the first terminal device 430 shown in FIG. 4. For the purpose of discussion, the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1010, the first terminal device 130 determines a first transmission direction associated with a communication resource.
At block 1020, the first terminal device 130 performs a data transmission between the first terminal device 130 and a first network device 110 on the communication resource in accordance with a determination that a transmission direction of a data transmission to be performed on the communication resource is the same as the first transmission direction.
In some embodiments, the first terminal device 130 receives, from the first network device 110, information about a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource. The first terminal device 130 determines the first transmission direction associated with the communication resource based on the first transmission direction matrix.
In some embodiments, the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device 130 to the first network device 110 on the communication resource.
In some embodiments, the first terminal device 130 determines a Cross Link Interference (CLI) between the first terminal device 130 and a second terminal device 140 on the communication resource in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite to the first transmission direction. The first terminal device 130 performs the PUSCH transmission on the communication resource in accordance with a determination that the CLI is within a predefined condition.
In some embodiments, in accordance with a determination that the CLI exceeds the predefined condition, the first terminal device 130 may abandon the PUSCH transmission, or perform power backoff, or perform the PUSCH transmission on a different communication resource from the communication resource.
In some embodiments, the first terminal device 130 transmits, to the first network device 110, an indication about whether CLI exists on the communication resource based on the determined CLI.
In some embodiments, the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device 110 to the first terminal device 130 on the communication resource. The first terminal device 130 transmits a reference signal on the communication  resource before performing the PDSCH transmission in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction; and then performs the PDSCH transmission on the communication resource.
In some embodiments, the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device 130 to the first network device 110 on the communication resource. The first terminal device 130 detects a reference signal on the communication resource before sending the PUSCH in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite the first transmission direction; and then performs the PUSCH transmission on the communication resource.
In some embodiments, the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
In some embodiments, the predefined sequence comprises identification information of a cell in which the first terminal device 130 is located.
FIG. 11 illustrates a flowchart of an example method 1100 implemented at a first terminal device in accordance with some embodiments of the present disclosure. The method 1100 can be implemented at the first terminal device 130 shown in FIG. 1. For the purpose of discussion, the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1110, the first terminal device 130 receives, from a first network device 110, an indication to schedule a first communication resource for a first data transmission from the first terminal device 130 to the first network device 110 and a second communication resource for a second data transmission from the first terminal device 130 to the first network device 110. It should be understood that “the second transmission direction” used here is a transmission direction with priority on the second communication resource. As used herein, the expression “second” is merely to distinguish from a “first” transmission direction. The first transmission direction and the second transmission  direction here actually denote a transmission direction with priority on the first transmission resource and a transmission direction with priority on the second transmission resource, respectively.
At block 1120, the first terminal device 130 determines a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource.
At block 1130, the first terminal device 130 performs the first data transmission on the first communication resource using a first transmission power and the second data transmission on the second communication resource in accordance with a determination that the first transmission direction is opposite to a transmission direction and the second transmission direction is the same to the transmission direction.
In some embodiments, the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
FIG. 12 illustrates a flowchart of an example method 1200 implemented at a first terminal device in accordance with some embodiments of the present disclosure. The method 1200 can be implemented at the first terminal device 130 shown in FIG. 1 and the first terminal device 430 shown in FIG. 4. For the purpose of discussion, the method 1200 will be described with reference to FIG. 1. It is to be understood that the method 1200 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1210, the first terminal device 130 receives, from a first network device 110, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal device 130 and the first network device 110 and a second part for defining a set of parameters for a channel access procedure.
At block 1220, the first terminal device 130 performs the channel access procedure on the communication resource based on the set of parameters.
At block 1230, the first terminal device 130 performs the data transmission on the communication resource in accordance with a determination that a channel on the communication resource is clear. The set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to  be performed and a first transmission direction associated with the communication resource.
In some embodiments, if the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource, the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
In some embodiments, if the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource, the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure. The first listening duration is longer than the second listening duration.
FIG. 13 illustrates a flowchart of an example method 1300 implemented at a first terminal device in accordance with some embodiments of the present disclosure. The method 1700 can be implemented at the second terminal device 740 shown in FIG. 1. For the purpose of discussion, the method 1300 will be described with reference to FIG. 7. It is to be understood that the method 1300 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1310, the terminal device 740 receives from the network device a first reference signal on a communication resource.
At block 1320, the terminal device 740 receives from another terminal device 730 a second reference signal on the communication resource for Cross Link Interference (CLI) measurement between the first terminal device and second terminal device. The first reference signal and the second reference signal are orthogonal.
In some embodiments, the first reference signal comprises identification information of a cell in which the first terminal device is located; and the second reference signal comprises identification information of a cell in which the second terminal device is located.
FIG. 14 illustrates a flowchart of an example method 1400 implemented at a first network device in accordance with some embodiments of the present disclosure.
The method 1400 can be implemented at the first network device 110 shown in FIG. 1 and the first network device 410 shown in FIG. 4. For the purpose of discussion,  the method 1400 will be described with reference to FIG. 1. It is to be understood that the method 1400 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At block 1410, the first network device 110 determines a first transmission direction associated with a communication resource.
At block 1420, the first network device 110 performs the data transmission between the first network device 110 and a first terminal device 130 on the communication resource in accordance with a determination that a transmission direction of a data transmission to be performed on the communication resource is the same as the first transmission direction.
In some embodiments, the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device 110 on the communication resource. The first network device 110 transmits, to a second network device 120, a reference signal on the communication resource in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction.
In some embodiments, the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
In some embodiments, the predefined sequence comprises identification information of a cell in which the first network device 110 is located.
Fig. 15 is a simplified block diagram of a device 1500 that is suitable for implementing some embodiments of the present disclosure. The device 1500 can be considered as a further example embodiment of the  terminal devices  130, 140, 150 as shown in FIG. 1, the  terminal devices  430, 440, 450 as shown in FIG. 4, and the  terminal devices  730 and 740 as shown in FIG. 7 or the  network devices  110, 120 as shown in FIG. 1, the  network devices  410, 420 as shown in FIG. 4 and the  network devices  710, 720 as shown in FIG. 7. Accordingly, the device 1500 can be implemented at or as at least a part of the above network devices or terminal devices.
As shown, the device 1500 includes a processor 1510, a memory 1520 coupled to  the processor 1510, a suitable transmitter (TX) and receiver (RX) 1540 coupled to the processor 1510, and a communication interface coupled to the TX/RX 1540. The memory 1520 stores at least a part of a program 1530. The TX/RX 1540 is for bidirectional communications. The TX/RX 1140 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
The program 1530 is assumed to include program instructions that, when executed by the associated processor 1510, enable the device 1500 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-14. The embodiments herein may be implemented by computer software executable by the processor 1510 of the device 1500, or by hardware, or by a combination of software and hardware. The processor 1510 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1510 and memory 1520 may form processing means 1550 adapted to implement various embodiments of the present disclosure.
The memory 1520 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1520 is shown in the device 1500, there may be several physically distinct memory modules in the device 1500. The processor 1510 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a terminal device comprises circuitry configured to perform  method 1000-1300.
In some embodiments, a network device comprises circuitry configured to perform method 1400.
The components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In one embodiment, one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium. In addition to or instead of machine-executable instructions, parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs) , Application-specific Integrated Circuits (ASICs) , Application-specific Standard Products (ASSPs) , System-on-a-chip systems (SOCs) , Complex Programmable Logic Devices (CPLDs) , and the like.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 11. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined  or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific embodiment details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various  features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
The embodiments may further be implemented in the following aspects .
In a first aspect, there is provided a communication method implemented at a first terminal device. The communication method comprises: determining a first transmission direction associated with a communication resource; and in accordance with a determination that a transmission direction of a data transmission to be performed between the first terminal device and a first network device on the communication resource is the same as the first transmission direction, performing the data transmission on the communication resource.
In some examples, the method further comprises: receiving, from the first network device, information about a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource; wherein determining the first transmission direction comprises: determining the first transmission direction associated with the communication resource based on the first transmission direction matrix.
In some examples, the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource. The method further comprises: in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite to the first transmission direction, determining a Cross Link Interference (CLI) between the first terminal device and a second terminal device on the communication resource; and in accordance with a determination that the CLI is within a predefined condition, performing the PUSCH transmission on the communication resource.
In some examples, the method further comprises: in accordance with a determination that the CLI exceeds the predefined condition, one of: abandoning the PUSCH transmission; performing power backoff; and performing the PUSCH transmission on a different communication resource from the communication resource.
In some examples, the method further comprises: transmitting, to the first network device, an indication about whether CLI exists on the communication resource based on the  determined CLI.
In some examples, transmitting the indication comprises: transmitting, to the first network device, the indication through Acknowledgement/Negative Acknowledgement (ACK/NACK) or MAC Control Element (MAC CE) on a different communication resource from the communication resource.
In some examples, the method further comprises: in accordance with a determination that the transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction, performing the PUSCH transmission on the communication resource.
In some examples, determining the CLI comprises: detecting an energy of the communication resource; and determining the CLI based on the detected energy of the communication resource.
In some examples, determining the CLI comprises: sensing a reference signal on the communication resource from the second terminal device; and determining the CLI based on a result of the sensing.
In some examples, the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device on the communication resource. Performing the data transmission on the communication resource comprises: in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction, transmitting a reference signal on the communication resource before performing the PDSCH transmission; and performing the PDSCH transmission on the communication resource.
In some examples, the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
In some examples, the predefined sequence comprises identification information of a cell in which the first terminal device is located.
In a second aspect, there is provided a communication method implemented at a first terminal device. The communication method comprises: receiving, from a first  network device, an indication to schedule a first communication resource for a first data transmission from the first terminal device to the first network device and a second communication resource for a second data transmission from the first terminal device to the first network device; determining a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource; in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device, performing the first data transmission on the first communication resource using a first transmission power; and in accordance with a determination that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device, performing the second data transmission on the second communication resource using a second transmission power larger than the first transmission power.
In some examples, the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
In a third aspect, there is provided a communication method implemented at a first terminal device. The communication method comprises: receiving, from a first network device, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first terminal device and the first network device and a second part for defining a set of parameters for a channel access procedure; performing the channel access procedure on the communication resource based on the set of parameters; and in accordance with a determination that a channel on the communication resource is clear, performing the data transmission on the communication resource; wherein the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
In some examples, if the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource, the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
In some examples, if the transmission direction of the data transmission to be  performed is the same as the first transmission direction associated with the communication resource, the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure, wherein the first listening duration is longer than the second listening duration.
In some examples, the channel access procedure is one of: a Listen before Talk (LBT) procedure; or a Clear Channel Assessment (CCA) procedure.
In a fourth aspect, there is provided a communication method implemented at a first terminal device. The communication method comprises: receiving, from a first network device, a first reference signal on a communication resource; and receiving, from a second terminal device, a second reference signal on the communication resource for Cross Link Interference (CLI) measurement between the first terminal device and second terminal device; wherein the first reference signal and the second reference signal are orthogonal.
In some examples, the first reference signal is a first demodulation reference signal (DMRS) for channel estimation for physical downlink shared channel (PDSCH) decoding for a PDSCH transmission from the first network device to the first terminal device; and the second reference signal is a second DMRS for channel estimation for physical uplink shared channel (PUSCH) decoding for a PUSCH transmission from the second terminal device to a second network device.
In some examples, the first reference signal is a first sounding reference signal (SRS) for downlink channel quality measurement between the first network device and the first terminal device; and the second reference signal is a second SRS for uplink channel quality measurement between the second terminal device and a second network device.
In some examples, the first reference signal is a channel state information reference signal (CSI-RS) for downlink channel quality measurement between the first network device and the first terminal device; and the second reference signal is a second CSI-RS for uplink channel quality measurement between the second terminal device and a second network device.
In some examples, the first reference signal comprises identification information of a cell in which the first terminal device is located; and the second reference signal comprises identification information of a cell in which the second terminal device is located.
In some examples, the first reference signal and the second reference signal are  orthogonal through Frequency-division multiplexing (FDM) or Code Division Multiplexing (CDM) .
In a fifth aspect, there is provided a communication method implemented at a first network device. The communication method comprises: determining a first transmission direction associated with a communication resource; and in accordance with a determination that a transmission direction of a data transmission to be performed between the first network device and a first terminal device on the communication resource is the same as the first transmission direction, performing the data transmission on the communication resource.
In some examples, determining the first transmission direction comprises: determining the first transmission direction associated with the communication resource based on a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource.
In some examples, the first transmission direction matrix is predefined.
In some examples, the method further comprises: receiving, from a second network device, configuration of the first transmission direction matrix via a Access and Mobility Management Function (AMF) .
In some examples, the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device on the communication resource; wherein the method further comprises: in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is opposite to the first transmission direction, determining a Cross Link Interference (CLI) between the first network device and a second network device on the communication resource; and in accordance with a determination that the CLI is within a predefined condition, performing the PDSCH transmission on the communication resource.
In some examples, the method further comprises: in accordance with a determination that the CLI exceeds the predefined condition, one of: abandoning the PDSCH transmission; performing power backoff; and performing the PDSCH transmission on a different communication resource from the communication resource.
In some examples, the method further comprises: transmitting, to the first terminal device, an indication about whether CLI exists on the communication resource based on the determined CLI.
In some examples, transmitting the indication comprises: transmitting, to the first terminal device, the indication through Acknowledgement/Negative Acknowledgement (ACK/NACK) or MAC Control Element (MAC CE) on a different communication resource from the communication resource.
In some examples, the method further comprises: in accordance with a determination that the transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction, performing the PDSCH transmission on the communication resource.
In some examples, determining the CLI comprises: detecting an energy of the communication resource from the second network device; and determining the CLI based on the detected energy of the communication resource.
In some examples, determining the CLI comprises: sensing a reference signal on the communication resource for CLI measurement from the second network device; and determining the CLI based on a result of the sensing.
In some examples, the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource; wherein performing the data transmission on the communication resource comprises: in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction, transmitting a reference signal on the communication resource for CLI measurement before performing the PUSCH transmission; and performing the PUSCH transmission on the communication resource.
In some examples, the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
In some examples, the predefined sequence comprises identification information of a cell in which the first network device is located.
In a sixth aspect, there is provided a communication method implemented at a first network device. The communication method comprises: determining a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource; and in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device and that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device, transmitting, to a first terminal device, an indication to schedule: a first communication resource for a first data transmission on the first communication resource from the first terminal device to the first network device using a first transmission power, and a second communication resource for a second data transmission on the second communication resource from the first terminal device to the first network device using a second transmission power larger than the first transmission power.
In some examples, the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
In a seventh aspect, there is provided a communication method implemented at a first network device. The communication method comprises: performing a channel access procedure on a communication resource based on a set of parameters; and in accordance with a determination that a channel on the communication resource is clear, performing a data transmission on the communication resource; wherein the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
In some examples, if the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource, the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
In some examples, if the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource, the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure, wherein the first listening duration is  longer than the second listening duration.
In some examples, the channel access procedure is one of: a Listen before Talk (LBT) procedure; or a Clear Channel Assessment (CCA) procedure.
In an eighth aspect, there is provided a communication method implemented at a first network device. The communication method comprises: receiving, from a first terminal device, a first reference signal on a communication resource; and receiving, from a second network device, a second reference signal on the communication resource for Cross Link Interference (CLI) measurement between the first network device and second network device; wherein the first reference signal and the second reference signal are orthogonal.
In some examples, the first reference signal is a first demodulation reference signal (DMRS) for channel estimation for physical uplink shared channel (PUSCH) decoding for a PUSCH transmission from the first terminal device to the first network device; and the second reference signal is a second DMRS for channel estimation for physical downlink shared channel (PDSCH) decoding for a PDSCH transmission from the second network device to a second terminal device.
In some examples, the first reference signal is a first sounding reference signal (SRS) for uplink channel quality measurement between the first terminal device and the first network device; and the second reference signal is a second SRS for downlink channel quality measurement between the second network device and a second terminal device.
In some examples, the first reference signal is a channel state information reference signal (CSI-RS) for uplink channel quality measurement between the first terminal device and the first network device; and the second reference signal is a second CSI-RS for downlink channel quality measurement between the second network device and a second terminal device.
In some examples, the first reference signal comprises identification information of a cell in which the first network device is located; and the second reference signal comprises identification information of a cell in which the second network device is located.
In some examples, the first reference signal and the second reference signal are orthogonal through Frequency-division multiplexing (FDM) or Code Division Multiplexing (CDM) .
In a ninth aspect, there is provided a terminal device comprising: a processor configured to cause the terminal device to perform the method according to any embodiments of the first to fourth aspects.
In a tenth aspect, there is provided a network device comprising: a processor configured to cause the network device perform the method according to any embodiments of the fifth to eighth aspects.
In a eleventh aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any embodiments of the first to eighth aspects.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

  1. A communication method implemented at a first terminal device, comprising:
    determining a first transmission direction associated with a communication resource; and
    in accordance with a determination that a transmission direction of a data transmission to be performed between the first terminal device and a first network device on the communication resource is the same as the first transmission direction, performing the data transmission on the communication resource.
  2. The method of claim 1, further comprising:
    receiving, from the first network device, information about a first transmission direction matrix, each element in the first transmission direction matrix indicating a respective first transmission direction of a combination resource of at least one of the time domain resource, frequency domain resource and spatial domain resource;
    wherein determining the first transmission direction comprises:
    determining the first transmission direction associated with the communication resource based on the first transmission direction matrix.
  3. The method of claim 1, wherein the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource;
    wherein the method further comprises:
    in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite to the first transmission direction, determining a Cross Link Interference (CLI) between the first terminal device and a second terminal device on the communication resource; and
    in accordance with a determination that the CLI is within a predefined condition, performing the PUSCH transmission on the communication resource.
  4. The method of claim 3, further comprising:
    in accordance with a determination that the CLI exceeds the predefined condition, one of:
    abandoning the PUSCH transmission;
    performing power backoff; and
    performing the PUSCH transmission on a different communication resource from the communication resource.
  5. The method of claim 3, further comprising:
    transmitting, to the first network device, an indication about whether CLI exists on the communication resource based on the determined CLI.
  6. The method of claim 1, wherein the data transmission to be performed on the communication resource is a physical downlink shared channel (PDSCH) transmission from the first network device to the first terminal device on the communication resource;
    wherein performing the data transmission on the communication resource comprises:
    in accordance with a determination that a transmission direction of the PDSCH transmission to be performed on the communication resource is the same as the first transmission direction, transmitting a reference signal on the communication resource before performing the PDSCH transmission ; and
    performing the PDSCH transmission on the communication resource.
  7. The method of claim 1, wherein the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource;
    wherein performing the data transmission on the communication resource comprises:
    in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is opposite the first transmission direction, detecting a reference signal on the communication resource before sending the PUSCH; and
    performing the PUSCH transmission on the communication resource.
  8. The method of claim 6 or 7, wherein the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  9. The method of claim 8, wherein the predefined sequence comprises identification information of a cell in which the first terminal device is located.
  10. A communication method implemented at a first terminal device, comprising:
    receiving, from a first network device, an indication to schedule a first communication resource for a first data transmission from the first terminal device to the first network device and a second communication resource for a second data transmission from the first terminal device to the first network device;
    determining a first transmission direction associated with the first communication resource and a second transmission direction associated with the second communication resource;
    in accordance with a determination that the first transmission direction is opposite to a transmission direction from the first terminal device to the first network device, performing the first data transmission on the first communication resource using a first transmission power; and
    in accordance with a determination that the second transmission direction is the same to the transmission direction from the first terminal device to the first network device, performing the second data transmission on the second communication resource using a second transmission power larger than the first transmission power.
  11. The method of claim 10, wherein the indication comprises two sets of transmission power control (TPC) parameters which correspond to the first transmission power and the second transmission power, respectively.
  12. A communication method implemented at a first terminal device, comprising:
    receiving, from a first network device, a command, the command comprising a first part for pre-scheduling a communication resource for a data transmission between the first  terminal device and the first network device and a second part for defining a set of parameters for a channel access procedure;
    performing the channel access procedure on the communication resource based on the set of parameters; and
    in accordance with a determination that a channel on the communication resource is clear, performing the data transmission on the communication resource;
    wherein the set of parameters for the channel access procedure corresponds to a relationship between a transmission direction of the data transmission to be performed and a first transmission direction associated with the communication resource.
  13. The method of claim 12, wherein if the transmission direction of the data transmission to be performed is opposite to the first transmission direction associated with the communication resource, the set of parameters comprises a first listening information indicating a first listening duration of the channel access procedure.
  14. The method of claim 13, wherein if the transmission direction of the data transmission to be performed is the same as the first transmission direction associated with the communication resource, the set of parameters comprises a second listening information indicating a second listening duration of the channel access procedure,
    wherein the first listening duration is longer than the second listening duration.
  15. A communication method implemented at a first terminal device, comprising:
    receiving, from a first network device, a first reference signal on a communication resource; and
    receiving, from a second terminal device, a second reference signal on the communication resource for CLI measurement between the first terminal device and second terminal device;
    wherein the first reference signal and the second reference signal are orthogonal.
  16. The method of claim 15, wherein the first reference signal comprises identification information of a cell in which the first terminal device is located; and
    the second reference signal comprises identification information of a cell in which the second terminal device is located.
  17. A communication method implemented at a first network device, comprising:
    determining a first transmission direction associated with a communication resource; and
    in accordance with a determination that a transmission direction of a data transmission to be performed between the first network device and a first terminal device on the communication resource is the same as the first transmission direction, performing the data transmission on the communication resource.
  18. The method of claim 17, wherein the data transmission to be performed on the communication resource is a physical uplink shared channel (PUSCH) transmission from the first terminal device to the first network device on the communication resource;
    wherein performing the data transmission on the communication resource comprises:
    in accordance with a determination that a transmission direction of the PUSCH transmission to be performed on the communication resource is the same as the first transmission direction, transmitting, to a second network device, a reference signal on the communication resource; and
    performing the PUSCH transmission on the communication resource.
  19. The method of claim 18, wherein the reference signal on the communication resource corresponds to a predefined sequence which is orthogonal to a further predefined sequence corresponding to a further reference signal on a further communication resource different from the communication resource.
  20. The method of claim 18, wherein the predefined sequence comprises identification information of a cell in which the first network device is located.
    .
PCT/CN2022/090056 2022-04-28 2022-04-28 Method, device and computer readable medium for management of cross link interference WO2023206285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090056 WO2023206285A1 (en) 2022-04-28 2022-04-28 Method, device and computer readable medium for management of cross link interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090056 WO2023206285A1 (en) 2022-04-28 2022-04-28 Method, device and computer readable medium for management of cross link interference

Publications (1)

Publication Number Publication Date
WO2023206285A1 true WO2023206285A1 (en) 2023-11-02

Family

ID=88516819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090056 WO2023206285A1 (en) 2022-04-28 2022-04-28 Method, device and computer readable medium for management of cross link interference

Country Status (1)

Country Link
WO (1) WO2023206285A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289336A (en) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 Interference elimination method and device
CN110383722A (en) * 2017-01-09 2019-10-25 Lg电子株式会社 The method and its terminal of reporting measurement data
WO2021163411A1 (en) * 2020-02-12 2021-08-19 Idac Holdings, Inc. Channel access in unlicensed spectrum
WO2021243688A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Reference signal orthogonality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289336A (en) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 Interference elimination method and device
CN110383722A (en) * 2017-01-09 2019-10-25 Lg电子株式会社 The method and its terminal of reporting measurement data
WO2021163411A1 (en) * 2020-02-12 2021-08-19 Idac Holdings, Inc. Channel access in unlicensed spectrum
WO2021243688A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Reference signal orthogonality

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Interference management in NR", 3GPP DRAFT; R1-1704450 INTERFERENCE MANAGEMENT IN NR V1 FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051242595 *

Similar Documents

Publication Publication Date Title
CN110754043B (en) Frequency selective uplink precoding for new radios
EP3692756B1 (en) Beam-specific and non-beam-specific synchronization signal block positions for wireless networks
WO2019215874A1 (en) Reception device and transmission device
US20220078738A1 (en) Full duplex timing advance enhancements
JPWO2017078129A1 (en) User terminal, radio base station, and radio communication method
KR102277257B1 (en) Apparatus and method of performing communication in a system supporting full-duplex communication and Half-duplex communication
CN108605346B (en) Method and apparatus for operating multiple frame structures in mobile communication system
US20230269709A1 (en) Physical uplink control channel resource indication for dynamic time division duplex
WO2023206285A1 (en) Method, device and computer readable medium for management of cross link interference
US20230107971A1 (en) Method by which terminal reallocates transmission resources by considering transmission resources between traveling groups in wireless communication system that supports sidelink, and apparatus therefor
WO2023178695A1 (en) Method, device and computer readable medium for communications
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
WO2023082261A1 (en) Methods, devices, and computer readable medium for communication
WO2023220936A1 (en) Method, device and computer readable medium for communications
WO2024020814A1 (en) Method, device and computer readable medium for communications
WO2023137721A1 (en) Methods, devices, and computer readable medium for communication
WO2023201597A1 (en) Method, device and computer readable medium for communications
WO2023240639A1 (en) Method, device and computer readable medium for communications
WO2023178478A1 (en) Method, device and computer storage medium of communication
WO2023141904A1 (en) Methods, devices, and computer readable medium for communication
WO2023123609A1 (en) Methods, devices, and computer readable medium for communication
WO2024060246A1 (en) Method, device and computer storage medium of communication
US20230319786A1 (en) Multiple component carrier simultaneous transmission control indicator state activation with multiple transmission and reception point transmission
WO2023122996A1 (en) Method, device and computer readable medium for communication
WO2024026641A1 (en) Methods, terminal devices and computer readable medium for communication