WO2023050419A1 - Skipping report of positioning measurements - Google Patents

Skipping report of positioning measurements Download PDF

Info

Publication number
WO2023050419A1
WO2023050419A1 PCT/CN2021/122438 CN2021122438W WO2023050419A1 WO 2023050419 A1 WO2023050419 A1 WO 2023050419A1 CN 2021122438 W CN2021122438 W CN 2021122438W WO 2023050419 A1 WO2023050419 A1 WO 2023050419A1
Authority
WO
WIPO (PCT)
Prior art keywords
report
criterion
positioning measurements
positioning
indication
Prior art date
Application number
PCT/CN2021/122438
Other languages
French (fr)
Inventor
Tao Tao
Ryan Keating
Yan Meng
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/122438 priority Critical patent/WO2023050419A1/en
Publication of WO2023050419A1 publication Critical patent/WO2023050419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Example embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media for skipping a report of positioning measurements.
  • Radio Access Technology (RAT) -dependent positioning technologies based on downlink (DL) signals such as DL positioning reference signals (PRSs) have been developed by the 3rd Generation Partnership Project (3GPP) standards and extensively studied in Long Term Evolution (LTE) and New Radio (NR) .
  • 3GPP 3rd Generation Partnership Project
  • periodic PRSs may be configured to user equipment (UE) to track the UE positions in a network.
  • UE user equipment
  • more than one Transmit-Receive Point (TRP) and/or NR NodeB (gNB) may periodically transmit a PRS that may be detected or measured by the UE.
  • the report of positioning measurements obtained by the UE may be transmitted to the more than one TRP and/or NR gNB and then reported to a location server such as a location management function (LMF) for estimation of the UE positions.
  • LMF location management function
  • example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media for skipping a report of positioning measurements.
  • a method is provided.
  • a first device in a communication network determines a criterion for skipping transmission of a report of positioning measurements. Then, the first device, in response to the criterion being met, skips the transmission of the report of the positioning measurements to a second device in the communication network.
  • a method is provided.
  • a second device in a communication network determines a criterion for a first device in the communication network to skip transmission of a report of positioning measurement. Then, the second device receives, based on the criterion, the report of the positioning measurements from the first device.
  • a first device in a communication network which comprises at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to determine a criterion for skipping transmission of a report of positioning measurements. Then, the first device is further caused to, in response to the criterion being met, skip the transmission of the report of the positioning measurements to a second device in the communication network.
  • a second device in a communication network which comprises at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to determine a criterion for a first device in the communication network to skip transmission of a report of positioning measurement. Then, the second device is further caused to receive, based on the criterion, the report of the positioning measurements from the first device.
  • an apparatus comprising means for performing the method according to the first or second aspect.
  • a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by a processor of a device, cause the device to perform the method according to the first or second aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling flow between the first device and the second device according to some example embodiments of the present disclosure
  • FIG. 3 illustrates another signaling flow between the first device and the second device according to some example embodiments of the present disclosure
  • FIG. 4 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • FIG. 5 illustrates an example framework of basic two-stage beam sweeping based on PRS
  • FIG. 6 illustrates a flowchart of an example method according to some other example embodiments of the present disclosure.
  • FIG. 7 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • the term “positioning reference signal” refers to any reference signal that can be used for the positioning purpose.
  • the PRSs may be DL PRSs transmitted by a network device to a terminal device, a UL SRS transmitted by a terminal device to a network device, or other PRSs of other types.
  • the PRS may be configured in a periodic, semi-periodic or aperiodic or dynamic manner.
  • the term “access network device” refers to a device via which services may be provided to a terminal device in a cellular communication network.
  • the access network device include a relay, an access point (AP) , a transmission point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a New Radio (NR) NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
  • AP access point
  • TRP transmission point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB New Radio
  • RRU Remote Radio Module
  • RH radio header
  • RRH remote radio head
  • a low power node such as a femto, a pico
  • terminal device or “user equipment” (UE) refers to any terminal device capable of wireless communications with each other or with the base station.
  • the communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air.
  • the UE may be configured to transmit and/or receive information without direct human interaction. For example, the UE may transmit information to the base station on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
  • Examples of the UE include, but are not limited to, smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , wireless customer-premises equipment (CPE) , sensors, metering devices, personal wearables such as watches, and/or vehicles that are capable of communication.
  • LEE laptop-embedded equipment
  • LME laptop-mounted equipment
  • CPE wireless customer-premises equipment
  • sensors metering devices
  • personal wearables such as watches, and/or vehicles that are capable of communication.
  • the term “network device” refers to a device capable of communicating with the access network device and providing services to the terminal device in a core network.
  • the core network device may include user plane functions (UPFs) , application servers, Mobile Switching Centers (MSCs) , MMEs, Operation and Management (O&M) nodes, Operation Support System (OSS) nodes, Self-Organization Network (SON) nodes, positioning nodes such as Enhanced Serving Mobile Location Centers (E-SMLCs) , Mobile Data Terminals (MDTs) , a Common Control Network Function (CCNF) , an Access and mobility Management Function (AMF) , a Session Management Function (SMF) a Policy Control Function (PCF) and/or a Location Measurement Function (LMF) .
  • UPFs user plane functions
  • MSCs Mobile Switching Centers
  • O&M Operation and Management
  • OSS Operation Support System
  • SON Self-Organization Network
  • E-SMLCs Enhanced Serving Mobile Location Centers
  • circuitry may refer to one or more or all of the following:
  • combinations of hardware circuits and software such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular base station, or other computing or base station.
  • first As used herein, the terms “first” , “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be referred to as a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
  • NR positioning only supports a PRS as a reference signal to be used for DL-AoD positioning.
  • the network may configure at least two PRS resource sets for a UE.
  • One PRS resource set may be configured for wide beam PRS sweeping, and another PRS resource set may be configured for narrow beam PRS sweeping.
  • the UE In Rel-16, if the UE is configured with multiple PRS resource sets, it will try to measure all of them and report the highest RSRP (or multiple highest RSRP) per PRS resource set, which may lead to large resource overhead, low network and device efficiency and high power consumption at a UE.
  • NR positioning enhancements for a UE in a Radio Resource Control (RRC) inactive state has been discussed.
  • RRC Radio Resource Control
  • UE positioning measurements for UEs in RRC_inactive state have been supported.
  • the UE positioning method in RRC_INACTIVE state may be developed based on the enhancements of existing signaling and procedures (such as existing 2-step and/or 4-step PRACH procedures, a paging procedure and small data transmission) .
  • 3GPP RAN2 meeting (for example, RAN2#103) has some discussions related to positioning enhancements for a UE in the RRC inactive state.
  • small data transmission SDT is agreed to be used as a manner to transmit the report of positioning measurements when the UE is in the RRC inactive state.
  • SDT small data transmission
  • the UE if the UE is configured to report the PRS-based positioning measurements periodically or a-periodically, it may report all of the positioning measurements to a LMF at each report time.
  • it may lead to high power consumption, because there is little difference between two adjacent reports of positioning measurements and thus the frequent reporting makes no sense.
  • Example embodiments of the present disclosure provide a scheme of skipping a report of positioning measurements.
  • a device in a communication network such as a UE determines a criterion for skipping transmission of the report of positioning measurements. Then, if the criterion is met, the first device skips the transmission of a report of the positioning measurement to a further device in the communication network (referred to as a second device) .
  • This scheme reduces positioning overhead, for example, facilitates less power consumption and less radio resource utilization. Further, this scheme improves positioning accuracy by avoiding wrong filtering on multiple positioning measurements. As such, it is allowed to track a position of the device flexibly and efficiently in a network.
  • FIG. 1 shows an example environment 100 in which example embodiments of the present disclosure can be implemented.
  • the environment 100 which may be a part of a communication network, comprises two devices 110 and 120 communicating with each other or with other devices via each other.
  • the devices 110 and 120 may be referred to as a first device 110 and a second device 120, respectively.
  • the first and second devices 110 and 120 may be implemented by any suitable devices in the communication network.
  • the first device 110 may be implemented by a terminal device and the second device 120 may be implemented by a network device, or vice versa.
  • the first and second devices 110 and 120 may be both implemented by terminal devices or network devices.
  • the terminal device will be taken as an example of the first device 110
  • the network device will be taken as an example of the second device 120.
  • the environment 100 may comprise a further device (referred to as a third device) to communicate positioning related information with the first device 110 and the second device 120.
  • the third device may comprise an access network device such as a TRP.
  • the second device 120 may be physically integrated with the access network device and, for example, implemented as a function or entity physically integrated into the access network device. In this case, the second network device 120 may communicate with the access network device through internal wiring.
  • the communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and
  • the first device 110 determines a criterion for skipping transmission of the report of positioning measurements. Then, if the criterion is met, the first device 110 skips the transmission of the report of positioning measurements to the second device 120 in the communication network. Such skipping transmission of the report of positioning measurements reduces positioning overhead and improves positioning accuracy.
  • FIG. 2 shows a signaling flow 200 between the first device 110 and the second device 120 according to some example embodiments of the present disclosure.
  • the signaling flow 200 will be described with reference to FIG. 1.
  • the second device 120 determines (205) a criterion for the first device 110 to skip transmission of the report of positioning measurements.
  • the positioning measurements may be obtained based on one or more PRSs in one or more beam directions.
  • the second device transmits (210) an indication (referred to as a first indication) of the criterion to the first device 110.
  • the first device 110 receives (215) the first indication of the criterion.
  • the criterion may be transmitted in a long term evolution positioning message (referred to as a first long term evolution positioning message) .
  • the first device 110 skips (220) the transmission of the report of positioning measurements to the second device 120.
  • the criterion may be determined based on a difference of the report of positioning measurements and a report of previous positioning measurements.
  • the first device 110 may skip the transmission of the report of positioning measurements if the difference of the report of positioning measurements and the report of previous positioning measurements is less than a threshold difference.
  • the first device 110 may determine the threshold difference based on at least one of Reference signal received power (RSRP) , Time of Arrival (ToA) , Angle of Arrival (AoA) and Round-Trip Time (RTT) .
  • RSRP Reference signal received power
  • ToA Time of Arrival
  • AoA Angle of Arrival
  • RTT Round-Trip Time
  • the report of positioning measurements may comprise one or more line of sight probabilities for one or more beams.
  • the criterion may be determined based on the one or more Line of Sight (LoS) probabilities of the one or more beams.
  • the first device 110 may skip the transmission of the report of positioning measurements if the one or more Line of Sight (LoS) probabilities of the one or more beams are below a threshold probability.
  • the criterion may be determined based on whether a two-stage beam sweeping scheme may be used. If the two-stage beam sweeping scheme may be used, that is both wide beam sweeping and narrow beam sweeping may be used, for determining the position of the first device 110, the first device 110 may skip the transmission of the report of positioning measurements for a set of beams (referred as a first set of beams) and only transmitting a report of the positioning measurements for another set of beams (referred as a second set of beams) to the second device 120.
  • a two-stage beam sweeping scheme that is both wide beam sweeping and narrow beam sweeping may be used, for determining the position of the first device 110
  • the first device 110 may skip the transmission of the report of positioning measurements for a set of beams (referred as a first set of beams) and only transmitting a report of the positioning measurements for another set of beams (referred as a second set of beams) to the second device 120.
  • FIG. 3 shows a signaling flow 300 between the first device 110 and the second device 120 according to some example embodiments of the present disclosure.
  • the signaling flow 300 will be described with reference to FIG. 1.
  • the first device 110 determines (305) a criterion for skipping transmission of report of positioning measurements.
  • the positioning measurements may be obtained based on one or more PRSs in one or more beam directions.
  • the first device transmits (310) an indication (referred to as a second indication) of the criterion to the second device 120.
  • the second device 120 receives (315) the second indication of the criterion.
  • the criterion may be transmitted in a long term evolution positioning message (referred to as a second long term evolution positioning message) .
  • the first device 110 skips (320) the transmission of the report of positioning measurements to the second device 120.
  • the embodiments related to the criterion as discussed above with reference to FIG. 2 are likewise applicable to the signaling flow 300 and have similar effects. For the purpose of simplification, the details will be omitted.
  • FIG. 4 shows a flowchart of an example method 400 according to some example embodiments of the present disclosure.
  • the method 400 can be implemented by the first device 110 as shown in FIG. 1.
  • the method 400 will be described with reference to FIG. 1.
  • the first device 110 determines a criterion for skipping transmission of report of positioning measurements.
  • the first device 110 may skip perform positioning measurement operation, and thus there is no need for the first device 110 to report positioning measurements.
  • the first device 110 may perform positioning measurement operation and skip transmission of the report of some unnecessary positioning measurements for the position estimation for the first device 110.
  • the positioning measurements may be obtained based on one or more positioning reference signals in one or more beam directions.
  • the report of positioning measurements may be received from a device capable of obtaining data, such as a sensor.
  • the criterion may be determined by the second device 120 and sent the first indication of the criterion to the first device 110.
  • the first device 110 may receive the first indication of the criterion from the second device 120 accordingly.
  • the first device 110 may determine when to skip the transmission of the report of positioning measurements.
  • the first indication may be transmitted in a first long term evolution positioning message (such as a ProvideAssistanceData message or a RequestLocationInformation message) in a LTE Positioning Protocol (LPP) .
  • LTP LTE Positioning Protocol
  • the criterion may be specified in the specification.
  • the criterion may be determined by the first device 110 and sent the second indication of the criterion to the second device 120.
  • the second device 120 may receive the second indication of the criterion from the first device 110 accordingly. Then, the second device 120 may know when to expect the first device 110 to report the positioning measurements.
  • the second indication of the criterion may be transmitted in the second long term evolution positioning message in the LPP.
  • the second long term evolution positioning message may be any suitable massage in the LPP, without suggesting any limitation to the scope of the present disclosure.
  • the criterion may be determined based on a difference of the report of positioning measurements and a report of previous positioning measurements.
  • the first device 110 may skip the transmission of the report of positioning measurements if the difference of the report of positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference may be associated with quality of service requirements.
  • the threshold may be set to a bigger value for strict quality of service requirements, and a smaller value for less strict quality of service requirements.
  • the threshold may be determined based on speed of the first device 110.
  • the threshold may be determined based on a configured report interval.
  • the first device may firstly compare the current report of positioning measurements with the report of previous positioning measurements. If the difference between the two times of reports of positioning measurements is less than the threshold difference, the first device 110 may do not need to report the current positioning measurements to the second device 120. Accordingly, the second device may use the report of previous positioning measurements for estimating of the position of the first device 110.
  • the skipping of the unnecessary report of positioning measurements may reduce power consumption, which is more beneficial for UE in RRC-inactive mode to support positioning.
  • the report of positioning measurements may comprise one or more line of sight probabilities for one or more beams.
  • the criterion may be determined based on the one or more Line of Sight (LoS) probabilities of the one or more beams.
  • the first device 110 may skip the transmission of the report of positioning measurements for the one or more beams if the one or more LoS probabilities of the one or more beams are below a threshold probability.
  • the threshold probability may be determined to be any suitable value according to practical requirements.
  • the first device 110 may estimate LoS indicators indicating the LoS probabilities for one or more beams and report them to the second device 120 for DL positioning measurements according to the latest RAN1 agreements.
  • the method for calculating a LoS indicator may use a “soft” value, which be a value between [0, 1] .
  • the first device 110 may then use the LoS indicators when determining whether to skip the report of positioning measurements. For example, if the first device 110 may determine that more than Y Reference Signal Time Difference (RSTD) measurements with LoS indicators above the threshold probability may be obtained, then the first device 110 may report only these RSTD measurements and skip reporting the remaining RSTD measurements with LoS indicators below the threshold probability.
  • RSTD Reference Signal Time Difference
  • the value of Y may be configured by the second device 120 in the criterion as well as the threshold probability.
  • the value of Y and the threshold probability may be specified in the specification. In this way, radio resource utilization may be improved.
  • the first device 110 may skip the transmission of the report of positioning measurements for the first set of beams, if two-stage beam sweeping may be used. Instead, the first device 110 may transmit a report of the positioning measurements for the second set of beams.
  • a bandwidth range of a beam in the first set of beams may be partially overlapped with a bandwidth range of a beam in the second set of beams.
  • a bandwidth range of a beam in the second set of beams may be a part of a bandwidth range of a beam in the first set of beams.
  • one of the above two set of beams may comprise wide beams, and the other one of the above two set of beams may comprise narrow beams. There may be certain associations between the wide beams and the narrow beams, as will be discussed below with reference to FIG. 5.
  • FIG. 5 illustrates an example framework of basic two-stage beam sweeping based on PRS.
  • the second device may be configured with at least two PRS resource sets.
  • One PRS resource set may be configured for wide beam sweeping, and another PRS resource set may be configured for narrow beam sweeping.
  • the first set of beams include 3 wide beams (represented as 510, 520 and 530 respectively) and the second set of beams include 9 narrow beams (represented as 511, 512 513, 521, 522, 523, 531, 532 and 533 respectively) .
  • the wide beam 510 corresponds to three narrow beams 511, 512 and 513.
  • the wide beam 520 corresponds to three narrow beams 521, 522 and 523.
  • the wide beam 530 corresponds to three narrower beam 531, 532 and 533.
  • the first device 110 may firstly perform wide beam sweeping. Based on the report of positioning measurements for the first set of beams and the certain associations, the first device 110 may only measure a second set of beams associated with the first set of beams, in order to reduce measuring overhead. In this case, it is unnecessary to report the report of positioning measurements for the first set of beams. Accordingly, the first device may be configured to only transmit the report of positioning measurements for the second set of beams to the second device 120. For example, the first device 110 may report the positioning measurements associated with the narrow beams 511, 512 513, 521, 522, 523, 531, 532 and 533, while skipping the report the positioning measurements for the wide beams 510, 520 and 530.
  • an indication may be transmitted, from the second device 120 to the first device 110, that the report of positioning measurements based on certain PRS resource sets (which have associated resources in another PRS resource set) may not be need by adding a flag to the LPP assistance data.
  • the first device 110 may also indicate to the second device 120 in the report of positioning measurements that it has skipped transmission of the report of positioning measurements for the first set of beams that are used to determine the second set of beams to measure. In such a way, it may facilitate low power consumption.
  • the first device 110 in response to the criterion being met, the first device 110 skips the transmission of the report of positioning measurements to a second device in the communication network. Accordingly, in some example embodiments, the first device 110 may transmit a further necessary report of positioning measurements report to the second device 120 later. Thus, positioning overhead may be reduced by skipping the report of some unnecessary positioning measurements, and positioning accuracy may be improved by avoiding wrong filtering on multiple positioning measurements.
  • FIG. 6 shows a flowchart of an example method 600 according to some example embodiments of the present disclosure.
  • the method 600 can be implemented by the second device 120 as shown in FIG. 1.
  • the method 600 will be described with reference to FIG. 1.
  • the second device 120 determines a criterion for a first device 110 in the communication network to skip transmission of report of positioning measurements.
  • the second device 120 may further transmit the first indication of the criterion to the first device 110.
  • the second device 120 may receive the second indication of the criterion from the first device 110, so the second device 120 may know when to expect the first device 110 to report the positioning measurements and know how to deal with the case if it may not receive a report of the positioning measurements from the first device 110.
  • the embodiments related to the above indications and the criteria as discussed above with reference to FIGS. 4 and 5 are likewise applicable to the method 600 and have similar effects. For the purpose of simplification, the details will be omitted.
  • the second device 120 receives, based on the criterion, the report of positioning measurements from the first device 110.
  • the second device 120 may determine the position of the first device 110 based on the new received report received from the first device 110. For example, if two-stage beam sweeping is used, the second device 120 may receive a report of the positioning measurements for a second set of beams, and then the second device 120 may determine the position of the first device 110 based on this report. In some other example embodiments, if the second device 120 may not receive the report, it may determine the position of the first device 110 based on the previous report. In such a way, positioning overhead may be reduced and positioning accuracy may be improved.
  • FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing example embodiments of the present disclosure.
  • the device 700 can be implemented at or as a part of the first device 110 or the second device 120 as shown in FIG. 1.
  • the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a communication module 730 coupled to the processor 710, and a communication interface (not shown) coupled to the communication module 730.
  • the memory 720 stores at least a program 740.
  • the communication module 730 is for bidirectional communications, for example, via multiple antennas.
  • the communication interface may represent any interface that is necessary for communication.
  • the program 740 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the example embodiments of the present disclosure, as discussed herein with reference to FIGS. 1-6.
  • the example embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.
  • the processor 710 may be configured to implement various example embodiments of the present disclosure.
  • the memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700.
  • the processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the processor 710 and the communication module 730 may cooperate to implement the method 400 as described above with reference to FIGS. 1 and 4-5.
  • the processor 710 and the communication module 730 may cooperate to implement the method 600 as described above with reference to FIGS. 1 and 6. All operations and features as described above with reference to FIGS. 1-6 are likewise applicable to the device 700 and have similar effects. For the purpose of simplification, the details will be omitted.
  • various example embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of example embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 400 or 600 as described above with reference to FIGS. 1-6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various example embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • DVD Digital Versatile Disc
  • an optical storage device a magnetic storage device, or any suitable combination of the foregoing.
  • a method comprises: determining, by a first device in a communication network, a criterion for skipping transmission of a report of positioning measurements; and in response to the criterion being met, skipping, by the first device, the transmission of the report of the positioning measurements to a second device in the communication network.
  • the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  • determining the criterion comprises: receiving a first indication of the criterion from the second device.
  • receiving the first indication of the criterion comprises: receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
  • the method further comprises: transmitting a second indication of the criterion to the second device.
  • transmitting the second indication of the criterion comprises: transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  • the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the method further comprises: transmitting a report of the positioning measurements for a second set of beams.
  • a method comprises: determining, by a second device in a communication network, a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and receiving, based on the criterion, the report of the positioning measurements from the first device.
  • the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  • the method further comprises: transmitting a first indication of the criterion to the first device.
  • transmitting the first indication of the criterion comprises: transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
  • determining the criterion comprises: receiving a second indication of the criterion from the first device.
  • receiving the second indication of the criterion comprises: receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  • the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beams are below a threshold probability.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the method further comprises: receiving a report of the positioning measurements for a second set of beams.
  • an apparatus implemented at a first device in a communication network comprising: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to: determine a criterion for skipping transmission of a report of positioning measurements; and in response to the criterion being met, skip the transmission of the report of the positioning measurements to a second device in the communication network.
  • the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  • the apparatus is caused to determine the criterion by: receiving a first indication of the criterion from the second device.
  • the apparatus is caused to receive the first indication of the criterion by: receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
  • the apparatus is further caused to: transmit a second indication of the criterion to the second device.
  • the apparatus is caused to transmit the second indication of the criterion by: transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  • the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus is further caused to: transmit a report of the positioning measurements for a second set of beams.
  • an apparatus implemented at a second device in a communication network comprising: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to: determine a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and receive, based on the criterion, the report of the positioning measurements from the first device.
  • the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  • the apparatus is further caused to: transmit a first indication of the criterion to the first device.
  • the apparatus is caused to transmit the first indication of the criterion by: transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
  • the apparatus is caused to determine the criterion by:receiving a second indication of the criterion from the first device.
  • the apparatus is caused to receive the second indication of the criterion by: receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  • the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus is further caused to: receive a report of the positioning measurements for a second set of beams.
  • an apparatus comprises: means for determining, by a first device in a communication network, a criterion for skipping transmission of a report of positioning measurements; and means for in response to the criterion being met, skipping, by the first device, the transmission of the report of the positioning measurements to a second device in the communication network.
  • the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  • the means for determining the criterion comprises: means for receiving a first indication of the criterion from the second device.
  • the means for receiving the first indication of the criterion comprises: means for receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
  • the apparatus further comprises: means for transmitting a second indication of the criterion to the second device.
  • the means for transmitting the second indication of the criterion comprises: means for transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  • the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus further comprises: means for transmitting a report of the positioning measurements for a second set of beams.
  • an apparatus comprises: means for determining, by a second device in a communication network, a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and means for receiving, based on the criterion, the report of the positioning measurements from the first device.
  • the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  • the apparatus further comprises: means for transmitting a first indication of the criterion to the first device.
  • the means for transmitting the first indication of the criterion comprises: means for transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
  • the means for determining the criterion comprises: means for receiving a second indication of the criterion from the first device.
  • the means for receiving the second indication of the criterion comprises: means for receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  • the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  • the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  • the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus further comprises: means for receiving a report of the positioning measurements for a second set of beams.
  • a computer readable storage medium comprises program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method according to some example embodiments of the present disclosure.

Abstract

Example embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media for skipping a report of positioning measurements. In example embodiments, a first device in a communication network determines a criterion for skipping transmission of a report of positioning measurements. Then, in response to the criterion being met, the first device skips the transmission of the report of the positioning measurements to a second device in the communication network.

Description

SKIPPING REPORT OF POSITIONING MEASUREMENTS FIELD
Example embodiments of the present disclosure generally relate to the field of communications, and in particular, to devices, methods, apparatuses and computer readable storage media for skipping a report of positioning measurements.
BACKGROUND
Positioning is very important to enable various verticals and use cases in the fifth generation (5G) . Currently, Radio Access Technology (RAT) -dependent positioning technologies based on downlink (DL) signals such as DL positioning reference signals (PRSs) have been developed by the 3rd Generation Partnership Project (3GPP) standards and extensively studied in Long Term Evolution (LTE) and New Radio (NR) .
For example, periodic PRSs may be configured to user equipment (UE) to track the UE positions in a network. Accordingly, more than one Transmit-Receive Point (TRP) and/or NR NodeB (gNB) may periodically transmit a PRS that may be detected or measured by the UE. The report of positioning measurements obtained by the UE may be transmitted to the more than one TRP and/or NR gNB and then reported to a location server such as a location management function (LMF) for estimation of the UE positions.
However, in some scenarios where a report of positioning measurements is not necessary for the estimation of the UE positions, transmission of the unnecessary report of positioning measurements at every report time will lead to large resource overhead.
SUMMARY
In general, example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable storage media for skipping a report of positioning measurements.
In a first aspect, a method is provided. In the method, a first device in a communication network determines a criterion for skipping transmission of a report of positioning measurements. Then, the first device, in response to the criterion being met, skips the transmission of the report of the positioning measurements to a second device in the communication network.
In a second aspect, a method is provided. In the method, a second device in a communication network determines a criterion for a first device in the communication network to skip transmission of a report of positioning measurement. Then, the second device receives, based on the criterion, the report of the positioning measurements from the first device.
In a third aspect, a first device in a communication network is provided which comprises at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to determine a criterion for skipping transmission of a report of positioning measurements. Then, the first device is further caused to, in response to the criterion being met, skip the transmission of the report of the positioning measurements to a second device in the communication network.
In a fourth aspect, a second device in a communication network is provided which comprises at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to determine a criterion for a first device in the communication network to skip transmission of a report of positioning measurement. Then, the second device is further caused to receive, based on the criterion, the report of the positioning measurements from the first device.
In a fifth aspect, there is provided an apparatus comprising means for performing the method according to the first or second aspect.
In a sixth aspect, there is provided a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by a processor of a device, cause the device to perform the method according to the first or second aspect.
It is to be understood that the summary section is not intended to identify key or essential features of example embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the  accompanying drawings, where:
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a signaling flow between the first device and the second device according to some example embodiments of the present disclosure;
FIG. 3 illustrates another signaling flow between the first device and the second device according to some example embodiments of the present disclosure;
FIG. 4 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
FIG. 5 illustrates an example framework of basic two-stage beam sweeping based on PRS;
FIG. 6 illustrates a flowchart of an example method according to some other example embodiments of the present disclosure; and
FIG. 7 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these example embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “positioning reference signal” (PRS) refers to any reference signal that can be used for the positioning purpose. Examples of the PRSs may be DL PRSs transmitted by a network device to a terminal device, a UL SRS transmitted by  a terminal device to a network device, or other PRSs of other types. In various embodiments of the present disclosure, the PRS may be configured in a periodic, semi-periodic or aperiodic or dynamic manner.
As used herein, the term “access network device” refers to a device via which services may be provided to a terminal device in a cellular communication network. Examples of the access network device include a relay, an access point (AP) , a transmission point (TRP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a New Radio (NR) NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like. For the purpose of discussion, some example embodiments will be described by taking a base station as an example of the access network device.
As used herein, the term “terminal device” or “user equipment” (UE) refers to any terminal device capable of wireless communications with each other or with the base station. The communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air. In some example embodiments, the UE may be configured to transmit and/or receive information without direct human interaction. For example, the UE may transmit information to the base station on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
Examples of the UE include, but are not limited to, smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , wireless customer-premises equipment (CPE) , sensors, metering devices, personal wearables such as watches, and/or vehicles that are capable of communication. For the purpose of discussion, some example embodiments will be described with reference to UEs as examples of the terminal devices, and the terms “terminal device” and “user equipment” (UE) may be used interchangeably in the context of the present disclosure.
As used herein, in some example embodiments, the term “network device” refers to a device capable of communicating with the access network device and providing services to the terminal device in a core network. Examples of the core network device may include user plane functions (UPFs) , application servers, Mobile Switching Centers (MSCs) , MMEs, Operation and Management (O&M) nodes, Operation Support System  (OSS) nodes, Self-Organization Network (SON) nodes, positioning nodes such as Enhanced Serving Mobile Location Centers (E-SMLCs) , Mobile Data Terminals (MDTs) , a Common Control Network Function (CCNF) , an Access and mobility Management Function (AMF) , a Session Management Function (SMF) a Policy Control Function (PCF) and/or a Location Measurement Function (LMF) .
As used herein, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in a server, a cellular base station, or other computing or base station.
As used herein, the singular forms “a” , “an” , and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
As used herein, the terms “first” , “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be referred to as a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
In 3GPP, there are some discussions about trade-off between resource overhead and positioning accuracy in beam sweeping operation for downlink (DL) Angle of Departure (DL-AoD) positioning. To achieve higher positioning accuracy, beam sweeping with narrow beams is required, which may achieve higher angular resolution. However, it means that a large number of PRS resources are required for the higher positioning accuracy.
Two-stage beam sweeping scheme has been further discussed in the latest 3GPP Radio Access Network 1 (RAN1) meeting (for example, RAN1 #105) . In Release 16 (Rel-16) , NR positioning only supports a PRS as a reference signal to be used for DL-AoD positioning. In order to support two-stage beam sweeping for DL-AoD, the network may configure at least two PRS resource sets for a UE. One PRS resource set may be configured for wide beam PRS sweeping, and another PRS resource set may be configured for narrow beam PRS sweeping. In Rel-16, if the UE is configured with multiple PRS resource sets, it will try to measure all of them and report the highest RSRP (or multiple highest RSRP) per PRS resource set, which may lead to large resource overhead, low network and device efficiency and high power consumption at a UE.
Moreover, in 3GPP RAN1 meeting (for example, RAN1#103) , NR positioning enhancements for a UE in a Radio Resource Control (RRC) inactive state has been discussed. In this meeting, UE positioning measurements for UEs in RRC_inactive state have been supported. The UE positioning method in RRC_INACTIVE state may be developed based on the enhancements of existing signaling and procedures (such as existing 2-step and/or 4-step PRACH procedures, a paging procedure and small data transmission) .
3GPP RAN2 meeting (for example, RAN2#103) has some discussions related to positioning enhancements for a UE in the RRC inactive state. In this meeting, small data transmission (SDT) is agreed to be used as a manner to transmit the report of positioning  measurements when the UE is in the RRC inactive state. As defined in Rel-16, if the UE is configured to report the PRS-based positioning measurements periodically or a-periodically, it may report all of the positioning measurements to a LMF at each report time. However, for a UE with low mobility, it may lead to high power consumption, because there is little difference between two adjacent reports of positioning measurements and thus the frequent reporting makes no sense.
Example embodiments of the present disclosure provide a scheme of skipping a report of positioning measurements. With the scheme, a device in a communication network (referred to as a first device) such as a UE determines a criterion for skipping transmission of the report of positioning measurements. Then, if the criterion is met, the first device skips the transmission of a report of the positioning measurement to a further device in the communication network (referred to as a second device) .
This scheme reduces positioning overhead, for example, facilitates less power consumption and less radio resource utilization. Further, this scheme improves positioning accuracy by avoiding wrong filtering on multiple positioning measurements. As such, it is allowed to track a position of the device flexibly and efficiently in a network.
FIG. 1 shows an example environment 100 in which example embodiments of the present disclosure can be implemented.
The environment 100, which may be a part of a communication network, comprises two  devices  110 and 120 communicating with each other or with other devices via each other. For the purpose of discussion, the  devices  110 and 120 may be referred to as a first device 110 and a second device 120, respectively.
The first and  second devices  110 and 120 may be implemented by any suitable devices in the communication network. In some example embodiments, the first device 110 may be implemented by a terminal device and the second device 120 may be implemented by a network device, or vice versa. In some other example embodiments, the first and  second devices  110 and 120 may be both implemented by terminal devices or network devices. Just for the purpose of discussion, in some example embodiments, the terminal device will be taken as an example of the first device 110, and the network device will be taken as an example of the second device 120.
It is to be understood that two devices are shown in the environment 100 only for the purpose of illustration, without suggesting any limitation to the scope of the present  disclosure. In some example embodiments, the environment 100 may comprise a further device (referred to as a third device) to communicate positioning related information with the first device 110 and the second device 120. As an example, the third device may comprise an access network device such as a TRP. Alternatively, the second device 120 may be physically integrated with the access network device and, for example, implemented as a function or entity physically integrated into the access network device. In this case, the second network device 120 may communicate with the access network device through internal wiring.
The communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and New Radio Unlicensed (NR-U) technologies.
The first device 110 determines a criterion for skipping transmission of the report of positioning measurements. Then, if the criterion is met, the first device 110 skips the transmission of the report of positioning measurements to the second device 120 in the communication network. Such skipping transmission of the report of positioning measurements reduces positioning overhead and improves positioning accuracy.
FIG. 2 shows a signaling flow 200 between the first device 110 and the second device 120 according to some example embodiments of the present disclosure. For the purpose of discussion, the signaling flow 200 will be described with reference to FIG. 1.
As shown in FIG. 2, the second device 120 determines (205) a criterion for the first device 110 to skip transmission of the report of positioning measurements. For example, the positioning measurements may be obtained based on one or more PRSs in one or more beam directions. Then, the second device transmits (210) an indication (referred  to as a first indication) of the criterion to the first device 110. Accordingly, the first device 110 receives (215) the first indication of the criterion. For example, the criterion may be transmitted in a long term evolution positioning message (referred to as a first long term evolution positioning message) . Then, if the criterion is met, the first device 110 skips (220) the transmission of the report of positioning measurements to the second device 120.
In some example embodiments, the criterion may be determined based on a difference of the report of positioning measurements and a report of previous positioning measurements. The first device 110 may skip the transmission of the report of positioning measurements if the difference of the report of positioning measurements and the report of previous positioning measurements is less than a threshold difference. For example, the first device 110 may determine the threshold difference based on at least one of Reference signal received power (RSRP) , Time of Arrival (ToA) , Angle of Arrival (AoA) and Round-Trip Time (RTT) .
In some other example embodiments, the report of positioning measurements may comprise one or more line of sight probabilities for one or more beams. In these example embodiments, the criterion may be determined based on the one or more Line of Sight (LoS) probabilities of the one or more beams. The first device 110 may skip the transmission of the report of positioning measurements if the one or more Line of Sight (LoS) probabilities of the one or more beams are below a threshold probability.
Alternatively or in addition, the criterion may be determined based on whether a two-stage beam sweeping scheme may be used. If the two-stage beam sweeping scheme may be used, that is both wide beam sweeping and narrow beam sweeping may be used, for determining the position of the first device 110, the first device 110 may skip the transmission of the report of positioning measurements for a set of beams (referred as a first set of beams) and only transmitting a report of the positioning measurements for another set of beams (referred as a second set of beams) to the second device 120.
Those skilled in the art may determine that the above criterion are provided only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure, and any suitable criterion for skipping transmission of report of positioning measurements may be used.
FIG. 3 shows a signaling flow 300 between the first device 110 and the second device 120 according to some example embodiments of the present disclosure. For the  purpose of discussion, the signaling flow 300 will be described with reference to FIG. 1.
As shown in FIG. 3, the first device 110 determines (305) a criterion for skipping transmission of report of positioning measurements. For example, the positioning measurements may be obtained based on one or more PRSs in one or more beam directions. Then, the first device transmits (310) an indication (referred to as a second indication) of the criterion to the second device 120. Accordingly, the second device 120 receives (315) the second indication of the criterion. For example, the criterion may be transmitted in a long term evolution positioning message (referred to as a second long term evolution positioning message) . Then, if the criterion is met, the first device 110 skips (320) the transmission of the report of positioning measurements to the second device 120. The embodiments related to the criterion as discussed above with reference to FIG. 2 are likewise applicable to the signaling flow 300 and have similar effects. For the purpose of simplification, the details will be omitted.
FIG. 4 shows a flowchart of an example method 400 according to some example embodiments of the present disclosure. The method 400 can be implemented by the first device 110 as shown in FIG. 1. For the purpose of discussion, the method 400 will be described with reference to FIG. 1.
At block 405, the first device 110 determines a criterion for skipping transmission of report of positioning measurements. In some example embodiments, the first device 110 may skip perform positioning measurement operation, and thus there is no need for the first device 110 to report positioning measurements. In some other example embodiments, the first device 110 may perform positioning measurement operation and skip transmission of the report of some unnecessary positioning measurements for the position estimation for the first device 110. In some example embodiments, the positioning measurements may be obtained based on one or more positioning reference signals in one or more beam directions. In some other example embodiments, the report of positioning measurements may be received from a device capable of obtaining data, such as a sensor.
In some example embodiments, the criterion may be determined by the second device 120 and sent the first indication of the criterion to the first device 110. The first device 110 may receive the first indication of the criterion from the second device 120 accordingly. As such, the first device 110 may determine when to skip the transmission of the report of positioning measurements. For example, the first indication may be  transmitted in a first long term evolution positioning message (such as a ProvideAssistanceData message or a RequestLocationInformation message) in a LTE Positioning Protocol (LPP) . As another example, the criterion may be specified in the specification.
In some other example embodiments, the criterion may be determined by the first device 110 and sent the second indication of the criterion to the second device 120. The second device 120 may receive the second indication of the criterion from the first device 110 accordingly. Then, the second device 120 may know when to expect the first device 110 to report the positioning measurements. For example, the second indication of the criterion may be transmitted in the second long term evolution positioning message in the LPP. The second long term evolution positioning message may be any suitable massage in the LPP, without suggesting any limitation to the scope of the present disclosure.
In some example embodiments, the criterion may be determined based on a difference of the report of positioning measurements and a report of previous positioning measurements. The first device 110 may skip the transmission of the report of positioning measurements if the difference of the report of positioning measurements and a report of previous positioning measurements is less than a threshold difference. For example, the threshold difference may be associated with quality of service requirements. The threshold may be set to a bigger value for strict quality of service requirements, and a smaller value for less strict quality of service requirements. Alternatively, or in addition, the threshold may be determined based on speed of the first device 110. Alternatively or in addition, the threshold may be determined based on a configured report interval.
In these example embodiments, the first device may firstly compare the current report of positioning measurements with the report of previous positioning measurements. If the difference between the two times of reports of positioning measurements is less than the threshold difference, the first device 110 may do not need to report the current positioning measurements to the second device 120. Accordingly, the second device may use the report of previous positioning measurements for estimating of the position of the first device 110.
For UEs with low mobility, there is no need to report the positioning measurements at every report time, because typically the two adjacent report of positioning measurements may not change much. Thus, the skipping of the unnecessary report of  positioning measurements may reduce power consumption, which is more beneficial for UE in RRC-inactive mode to support positioning.
In some other example embodiments, the report of positioning measurements may comprise one or more line of sight probabilities for one or more beams. In this case, the criterion may be determined based on the one or more Line of Sight (LoS) probabilities of the one or more beams. For example, the first device 110 may skip the transmission of the report of positioning measurements for the one or more beams if the one or more LoS probabilities of the one or more beams are below a threshold probability. It is to be understood that the threshold probability may be determined to be any suitable value according to practical requirements.
In these example embodiments, the first device 110 may estimate LoS indicators indicating the LoS probabilities for one or more beams and report them to the second device 120 for DL positioning measurements according to the latest RAN1 agreements. For example, the method for calculating a LoS indicator may use a “soft” value, which be a value between [0, 1] . The first device 110 may then use the LoS indicators when determining whether to skip the report of positioning measurements. For example, if the first device 110 may determine that more than Y Reference Signal Time Difference (RSTD) measurements with LoS indicators above the threshold probability may be obtained, then the first device 110 may report only these RSTD measurements and skip reporting the remaining RSTD measurements with LoS indicators below the threshold probability. For example, the value of Y may be configured by the second device 120 in the criterion as well as the threshold probability. As another example, the value of Y and the threshold probability may be specified in the specification. In this way, radio resource utilization may be improved.
In some yet other example embodiments, the first device 110 may skip the transmission of the report of positioning measurements for the first set of beams, if two-stage beam sweeping may be used. Instead, the first device 110 may transmit a report of the positioning measurements for the second set of beams. For example, a bandwidth range of a beam in the first set of beams may be partially overlapped with a bandwidth range of a beam in the second set of beams. Alternatively or in addition, a bandwidth range of a beam in the second set of beams may be a part of a bandwidth range of a beam in the first set of beams. As an example, one of the above two set of beams may comprise wide beams, and the other one of the above two set of beams may comprise narrow beams.  There may be certain associations between the wide beams and the narrow beams, as will be discussed below with reference to FIG. 5.
FIG. 5 illustrates an example framework of basic two-stage beam sweeping based on PRS. As described above, in order to support two-stage beam sweeping, the second device may be configured with at least two PRS resource sets. One PRS resource set may be configured for wide beam sweeping, and another PRS resource set may be configured for narrow beam sweeping.
As shown in FIG. 5, the first set of beams include 3 wide beams (represented as 510, 520 and 530 respectively) and the second set of beams include 9 narrow beams (represented as 511, 512 513, 521, 522, 523, 531, 532 and 533 respectively) . There are certain associations between the wide beams and the narrow beams. The wide beam 510 corresponds to three narrow beams 511, 512 and 513. The wide beam 520 corresponds to three  narrow beams  521, 522 and 523. The wide beam 530 corresponds to three  narrower beam  531, 532 and 533.
For example, the first device 110 may firstly perform wide beam sweeping. Based on the report of positioning measurements for the first set of beams and the certain associations, the first device 110 may only measure a second set of beams associated with the first set of beams, in order to reduce measuring overhead. In this case, it is unnecessary to report the report of positioning measurements for the first set of beams. Accordingly, the first device may be configured to only transmit the report of positioning measurements for the second set of beams to the second device 120. For example, the first device 110 may report the positioning measurements associated with the narrow beams 511, 512 513, 521, 522, 523, 531, 532 and 533, while skipping the report the positioning measurements for the  wide beams  510, 520 and 530.
For example, an indication may be transmitted, from the second device 120 to the first device 110, that the report of positioning measurements based on certain PRS resource sets (which have associated resources in another PRS resource set) may not be need by adding a flag to the LPP assistance data. Alternatively, the first device 110 may also indicate to the second device 120 in the report of positioning measurements that it has skipped transmission of the report of positioning measurements for the first set of beams that are used to determine the second set of beams to measure. In such a way, it may facilitate low power consumption.
Reference back to FIG. 4, at block 410, in response to the criterion being met, the first device 110 skips the transmission of the report of positioning measurements to a second device in the communication network. Accordingly, in some example embodiments, the first device 110 may transmit a further necessary report of positioning measurements report to the second device 120 later. Thus, positioning overhead may be reduced by skipping the report of some unnecessary positioning measurements, and positioning accuracy may be improved by avoiding wrong filtering on multiple positioning measurements.
All operations and features as described above with reference to FIGS. 1-3 are likewise applicable to the method 400 and have similar effects. For the purpose of simplification, the details will be omitted.
FIG. 6 shows a flowchart of an example method 600 according to some example embodiments of the present disclosure. The method 600 can be implemented by the second device 120 as shown in FIG. 1. For the purpose of discussion, the method 600 will be described with reference to FIG. 1.
At block 605, the second device 120 determines a criterion for a first device 110 in the communication network to skip transmission of report of positioning measurements. In some example embodiments, the second device 120 may further transmit the first indication of the criterion to the first device 110. In some other example embodiments, the second device 120 may receive the second indication of the criterion from the first device 110, so the second device 120 may know when to expect the first device 110 to report the positioning measurements and know how to deal with the case if it may not receive a report of the positioning measurements from the first device 110. The embodiments related to the above indications and the criteria as discussed above with reference to FIGS. 4 and 5 are likewise applicable to the method 600 and have similar effects. For the purpose of simplification, the details will be omitted.
At block 610, the second device 120 receives, based on the criterion, the report of positioning measurements from the first device 110. In some example embodiments, , the second device 120 may determine the position of the first device 110 based on the new received report received from the first device 110. For example, if two-stage beam sweeping is used, the second device 120 may receive a report of the positioning measurements for a second set of beams, and then the second device 120 may determine the  position of the first device 110 based on this report. In some other example embodiments, if the second device 120 may not receive the report, it may determine the position of the first device 110 based on the previous report. In such a way, positioning overhead may be reduced and positioning accuracy may be improved.
All operations and features as described above with reference to FIGS. 1-5 are likewise applicable to the method 600 and have similar effects. For the purpose of simplification, the details will be omitted.
FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing example embodiments of the present disclosure. The device 700 can be implemented at or as a part of the first device 110 or the second device 120 as shown in FIG. 1.
As shown, the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a communication module 730 coupled to the processor 710, and a communication interface (not shown) coupled to the communication module 730. The memory 720 stores at least a program 740. The communication module 730 is for bidirectional communications, for example, via multiple antennas. The communication interface may represent any interface that is necessary for communication.
The program 740 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the example embodiments of the present disclosure, as discussed herein with reference to FIGS. 1-6. The example embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware. The processor 710 may be configured to implement various example embodiments of the present disclosure.
The memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700. The processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers,  microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
When the device 700 acts as the first device 110 or a part of the first device 110, the processor 710 and the communication module 730 may cooperate to implement the method 400 as described above with reference to FIGS. 1 and 4-5. When the device 700 acts as the second device 120 or a part of the second device 120, the processor 710 and the communication module 730 may cooperate to implement the method 600 as described above with reference to FIGS. 1 and 6. All operations and features as described above with reference to FIGS. 1-6 are likewise applicable to the device 700 and have similar effects. For the purpose of simplification, the details will be omitted.
Generally, various example embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of example embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  method  400 or 600 as described above with reference to FIGS. 1-6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various example embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In  a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable media.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , Digital Versatile Disc (DVD) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular example embodiments. Certain features that are described in the context of separate  example embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple example embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Various example embodiments of the techniques have been described. In addition to or as an alternative to the above, the following examples are described. The features described in any of the following examples may be utilized with any of the other examples described herein.
In some aspects, a method comprises: determining, by a first device in a communication network, a criterion for skipping transmission of a report of positioning measurements; and in response to the criterion being met, skipping, by the first device, the transmission of the report of the positioning measurements to a second device in the communication network.
In some example embodiments, the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
In some example embodiments, determining the criterion comprises: receiving a first indication of the criterion from the second device.
In some example embodiments, receiving the first indication of the criterion comprises: receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
In some example embodiments, the method further comprises: transmitting a second indication of the criterion to the second device.
In some example embodiments, transmitting the second indication of the criterion comprises: transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
In some example embodiments, the criterion comprises: skipping the transmission  of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
In some example embodiments, the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
In some example embodiments, the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the method further comprises: transmitting a report of the positioning measurements for a second set of beams.
In some aspects, a method comprises: determining, by a second device in a communication network, a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and receiving, based on the criterion, the report of the positioning measurements from the first device.
In some example embodiments, the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
In some example embodiments, the method further comprises: transmitting a first indication of the criterion to the first device.
In some example embodiments, transmitting the first indication of the criterion comprises: transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
In some example embodiments, determining the criterion comprises: receiving a second indication of the criterion from the first device.
In some example embodiments, receiving the second indication of the criterion comprises: receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
In some example embodiments, the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
In some example embodiments, the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beams are below a threshold probability.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the method further comprises: receiving a report of the positioning measurements for a second set of beams.
In some aspects, an apparatus implemented at a first device in a communication network, comprising: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to: determine a criterion for skipping transmission of a report of positioning measurements; and in response to the criterion being met, skip the transmission of the report of the positioning measurements to a second device in the communication network.
In some example embodiments, the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
In some example embodiments, the apparatus is caused to determine the criterion by: receiving a first indication of the criterion from the second device.
In some example embodiments, the apparatus is caused to receive the first indication of the criterion by: receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
In some example embodiments, the apparatus is further caused to: transmit a  second indication of the criterion to the second device.
In some example embodiments, the apparatus is caused to transmit the second indication of the criterion by: transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
In some example embodiments, the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
In some example embodiments, the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus is further caused to: transmit a report of the positioning measurements for a second set of beams.
In some aspects, an apparatus implemented at a second device in a communication network, comprising: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to: determine a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and receive, based on the criterion, the report of the positioning measurements from the first device.
In some example embodiments, the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
In some example embodiments, the apparatus is further caused to: transmit a first indication of the criterion to the first device.
In some example embodiments, the apparatus is caused to transmit the first indication of the criterion by: transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
In some example embodiments, the apparatus is caused to determine the criterion by:receiving a second indication of the criterion from the first device.
In some example embodiments, the apparatus is caused to receive the second indication of the criterion by: receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
In some example embodiments, the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
In some example embodiments, the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus is further caused to: receive a report of the positioning measurements for a second set of beams.
In some aspects, an apparatus comprises: means for determining, by a first device in a communication network, a criterion for skipping transmission of a report of positioning measurements; and means for in response to the criterion being met, skipping, by the first device, the transmission of the report of the positioning measurements to a second device in the communication network.
In some example embodiments, the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
In some example embodiments, the means for determining the criterion comprises: means for receiving a first indication of the criterion from the second device.
In some example embodiments, the means for receiving the first indication of the criterion comprises: means for receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
In some example embodiments, the apparatus further comprises: means for transmitting a second indication of the criterion to the second device.
In some example embodiments, the means for transmitting the second indication of the criterion comprises: means for transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
In some example embodiments, the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
In some example embodiments, the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus further comprises: means for transmitting a report of the positioning measurements for a second set of beams.
In some aspects, an apparatus comprises: means for determining, by a second device in a communication network, a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and means for receiving, based on the criterion, the report of the positioning measurements from the first device.
In some example embodiments, the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
In some example embodiments, the apparatus further comprises: means for transmitting a first indication of the criterion to the first device.
In some example embodiments, the means for transmitting the first indication of the criterion comprises: means for transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
In some example embodiments, the means for determining the criterion comprises: means for receiving a second indication of the criterion from the first device.
In some example embodiments, the means for receiving the second indication of the criterion comprises: means for receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
In some example embodiments, the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
In some example embodiments, the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises: skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
In some example embodiments, the criterion comprises: skipping the transmission of the report of the positioning measurements for a first set of beams, and the apparatus further comprises: means for receiving a report of the positioning measurements for a second set of beams.
In some aspects, a computer readable storage medium comprises program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform the method according to some example embodiments of the  present disclosure.

Claims (44)

  1. A method comprising:
    determining, by a first device in a communication network, a criterion for skipping transmission of a report of positioning measurements; and
    in response to the criterion being met, skipping, by the first device, the transmission of the report of the positioning measurements to a second device in the communication network.
  2. The method of claim 1, wherein the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  3. The method of claim 1 or 2, wherein determining the criterion comprises:
    receiving a first indication of the criterion from the second device.
  4. The method of claim 3, wherein receiving the first indication of the criterion comprises:
    receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
  5. The method of claim 1 or 2, further comprising:
    transmitting a second indication of the criterion to the second device.
  6. The method of claim 5, wherein transmitting the second indication of the criterion comprises:
    transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
  7. The method of any of claims 1-6, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  8. The method of claim 7, wherein the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  9. The method of any of claims 1-8, wherein the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises:
    skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  10. The method of any of claims 1-9, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements for a first set of beams, and
    the method further comprises:
    transmitting a report of the positioning measurements for a second set of beams.
  11. A method comprising:
    determining, by a second device in a communication network, a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and
    receiving, based on the criterion, the report of the positioning measurements from the first device.
  12. The method of claim 11, wherein the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  13. The method of claim 11 or 12, further comprising:
    transmitting a first indication of the criterion to the first device.
  14. The method of claim 13, wherein transmitting the first indication of the criterion comprises:
    transmitting the first indication of the criterion to the first device in a first long term  evolution positioning message.
  15. The method of claim 11 or 12, wherein determining the criterion comprises:
    receiving a second indication of the criterion from the first device.
  16. The method of claim 15, wherein receiving the second indication of the criterion comprises:
    receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
  17. The method of any of claims 11-16, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  18. The method of claim 17, wherein the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  19. The method of any of claims 11-18, wherein the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises:
    skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  20. The method of any of claims 11-19, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements for a first set of beams, and
    the method further comprises:
    receiving a report of the positioning measurements for a second set of beams.
  21. An apparatus implemented at a first device in a communication network,  comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to:
    determine a criterion for skipping transmission of a report of positioning measurements; and
    in response to the criterion being met, skip the transmission of the report of the positioning measurements to a second device in the communication network.
  22. The method of claim 21, wherein the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  23. The method of claim 21 or 22, wherein the apparatus is caused to determine the criterion by:
    receiving a first indication of the criterion from the second device.
  24. The method of claim 23, wherein the apparatus is caused to receive the first indication of the criterion by:
    receiving the first indication of the criterion from the second device in a first long term evolution positioning message.
  25. The method of claim 21 or 22, the apparatus is further caused to:
    transmit a second indication of the criterion to the second device.
  26. The method of claim 25, wherein the apparatus is caused to transmit the second indication of the criterion by:
    transmitting the second indication of the criterion to the second device in a second long term evolution positioning message.
  27. The method of any of claims 21-26, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous  positioning measurements is less than a threshold difference.
  28. The method of claim 27, wherein the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  29. The method of any of claims 21-28, wherein the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises:
    skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  30. The method of any of claims 21-29, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements for a first set of beams, and
    the apparatus is further caused to:
    transmit a report of the positioning measurements for a second set of beams.
  31. An apparatus implemented at a second device in a communication network, comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to:
    determine a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and
    receive, based on the criterion, the report of the positioning measurements from the first device.
  32. The method of claim 31, wherein the positioning measurements are obtained based on one or more positioning reference signals in one or more beam directions.
  33. The method of claim 31 or 32, the apparatus is further caused to:
    transmit a first indication of the criterion to the first device.
  34. The method of claim 33, wherein the apparatus is caused to transmit the first indication of the criterion by:
    transmitting the first indication of the criterion to the first device in a first long term evolution positioning message.
  35. The method of claim 31 or 32, wherein the apparatus is caused to determine the criterion by:
    receiving a second indication of the criterion from the first device.
  36. The method of claim 35, wherein the apparatus is caused to receive the second indication of the criterion by:
    receiving the second indication of the criterion from the first device in a second long term evolution positioning message.
  37. The method of any of claims 31-36, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements if a difference of the report of the positioning measurements and a report of previous positioning measurements is less than a threshold difference.
  38. The method of claim 37, wherein the threshold difference is associated with at least one of quality of service requirements, speed of the first device, or a configured report interval.
  39. The method of any of claims 31-38, wherein the report of the positioning measurements comprise one or more line of sight probabilities for one or more beams, the criterion comprises:
    skipping the transmission of the report of the positioning measurements for the one or more beams if the one or more line of sight probabilities of the one or more beam are below a threshold probability.
  40. The method of any of claims 31-39, wherein the criterion comprises:
    skipping the transmission of the report of the positioning measurements for a first set of beams, and
    the apparatus is further caused to:
    receive a report of the positioning measurements for a second set of beams.
  41. An apparatus implemented at a first device in a communication network, comprising:
    means for determining a criterion for skipping transmission of a report of positioning measurements; and
    means for in response to the criterion being met, skipping the transmission of the report of the positioning measurements to a second device in the communication network.
  42. An apparatus implemented at a second device in a communication network, comprising:
    means for determining a criterion for a first device in the communication network to skip transmission of a report of positioning measurements; and
    means for receiving, based on the criterion, the report of the positioning measurements from the first device.
  43. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform The apparatus of any of claims 1-10.
  44. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by a processor of a device, causing the device to perform The apparatus of any of claims 11-20.
PCT/CN2021/122438 2021-09-30 2021-09-30 Skipping report of positioning measurements WO2023050419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122438 WO2023050419A1 (en) 2021-09-30 2021-09-30 Skipping report of positioning measurements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122438 WO2023050419A1 (en) 2021-09-30 2021-09-30 Skipping report of positioning measurements

Publications (1)

Publication Number Publication Date
WO2023050419A1 true WO2023050419A1 (en) 2023-04-06

Family

ID=85781209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122438 WO2023050419A1 (en) 2021-09-30 2021-09-30 Skipping report of positioning measurements

Country Status (1)

Country Link
WO (1) WO2023050419A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370963A (en) * 2011-02-17 2013-10-23 瑞典爱立信有限公司 Methods and devices for reporting inter-radio access technology measurements
EP2684405A1 (en) * 2011-03-07 2014-01-15 Telefonaktiebolaget L M Ericsson (PUBL) Methods and arrangements for handling positioning in a radio communication system
CN104349383A (en) * 2013-08-01 2015-02-11 宏碁股份有限公司 Method of reporting measurement report triggering events and related communication system
CN112385259A (en) * 2018-05-23 2021-02-19 联想(北京)有限公司 Method and apparatus for measurement report triggering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370963A (en) * 2011-02-17 2013-10-23 瑞典爱立信有限公司 Methods and devices for reporting inter-radio access technology measurements
EP2684405A1 (en) * 2011-03-07 2014-01-15 Telefonaktiebolaget L M Ericsson (PUBL) Methods and arrangements for handling positioning in a radio communication system
CN104349383A (en) * 2013-08-01 2015-02-11 宏碁股份有限公司 Method of reporting measurement report triggering events and related communication system
CN112385259A (en) * 2018-05-23 2021-02-19 联想(北京)有限公司 Method and apparatus for measurement report triggering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Measurement reporting overhead reduction based on enhanced event triggering", 3GPP DRAFT; R2-1906206 - MEASUREMENT REPORTING OVERHEAD REDUCTION BASED ON ENHANCED EVENT TRIGGERING CRITERIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, US; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051736729 *

Similar Documents

Publication Publication Date Title
EP3677076B1 (en) Positioning in wireless communication networks
US11070337B2 (en) Methods and apparatuses for reference signal configuration
CN113475101A (en) Uplink positioning of idle or inactive terminal devices
CN109964142B (en) Method for detecting the position of a narrowband positioning reference signal NPRS in a radio frame
US10945227B2 (en) Method and device for signal measurement
US11864145B2 (en) Neighbor cell measurement based timing advance validation
EP4008122A1 (en) Positioning-specific beam refinement for neighbor cell positioning reference signal (prs) transmission
WO2023050419A1 (en) Skipping report of positioning measurements
WO2020164124A1 (en) Multi-cell positioning
US20230397151A1 (en) Positioning Based on Multiple Measurement Reports
CN115176491A (en) Adaptive measurement of cross-link interference
WO2022151160A1 (en) Configuration of small data transmission
WO2023092560A1 (en) De-configuration of mobility management
WO2022170520A1 (en) Mobility-based beam configuration for positioning reference signal
WO2022073215A1 (en) Updating positioning assistance configuration
WO2023130468A1 (en) Autonomous preconfigured measurement gap activation for prs measurement
WO2023221103A1 (en) Ue location determination in a mobile iab system
WO2023141889A1 (en) Location determination
WO2023050430A1 (en) Positioning measurement reporting
US20240057004A1 (en) METHODS AND APPARATUSES FOR RECEIVER (Rx) - TRANSMITTER (Tx) ROUND TRIP TIME ESTIMATION
US20230370883A1 (en) Utilizing user equipment (ue) detection of radio state conditions
US20220303725A1 (en) Long term evolution (lte) positioning protocol (lpp) enhancements for latency control
US20230050082A1 (en) Methods, devices, and medium for communication
WO2023066660A1 (en) Method for reducing user equipment transmit timing error group reporting overhead
WO2024035431A1 (en) Pre-compensation of phase center offset on uplink carrier phase positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958986

Country of ref document: EP

Kind code of ref document: A1