WO2013107079A1 - 一种二氧化钒复合粉体及其制备方法 - Google Patents

一种二氧化钒复合粉体及其制备方法 Download PDF

Info

Publication number
WO2013107079A1
WO2013107079A1 PCT/CN2012/072018 CN2012072018W WO2013107079A1 WO 2013107079 A1 WO2013107079 A1 WO 2013107079A1 CN 2012072018 W CN2012072018 W CN 2012072018W WO 2013107079 A1 WO2013107079 A1 WO 2013107079A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
composite powder
dioxide composite
powder according
organic
Prior art date
Application number
PCT/CN2012/072018
Other languages
English (en)
French (fr)
Inventor
罗宏杰
刘奕燎
高彦峰
蔡朝辉
林裕卫
曹传祥
王少博
金平实
Original Assignee
中国科学院上海硅酸盐研究所
佛山佛塑科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所, 佛山佛塑科技集团股份有限公司 filed Critical 中国科学院上海硅酸盐研究所
Publication of WO2013107079A1 publication Critical patent/WO2013107079A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0006Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black containing bismuth and vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention relates to a vanadium dioxide powder in the chemical field and the material field and a preparation method thereof, in particular to an organic modified intelligent vanadium dioxide composite powder and a preparation method thereof.
  • the product of the invention can be applied to the preparation of intelligent energy-saving coatings, and can also be used for heat insulation applications such as glass and exterior walls.
  • China's building energy consumption has accounted for 27.8% of total social energy consumption, of which heating and air conditioning consumes 55% of total building energy consumption. .
  • the proportion of glass in the outer wall is increasing. It is estimated that the heat transfer through the glass window accounts for 48% and 71% respectively in the winter and summer. If the air conditioner is used to adjust the indoor temperature, the cooling temperature is increased by 2 °C, the cooling load is reduced by about 20%; the heating temperature is lowered by 2 °C, and the heating load is reduced by about 30%.
  • the energy consumption can be greatly reduced by attaching a heat-insulating film to the glass or applying a heat-insulating coating.
  • the thermal insulation film or coating on the market mainly relies on blocking infrared performance and cannot respond to environmental changes. They only have the function of reflecting infrared light, but they do not transmit infrared rays at low temperatures, and cannot intelligently adjust indoor and outdoor.
  • the role of temperature difference it is necessary to find a material that can intelligently adjust the heat of the sun, so as to achieve the role of warm winter and cool summer.
  • the vanadium dioxide material has a first-order phase change characteristic, which can sense the change of the ambient temperature, and the change of the intelligent response realizes selective transmission or shielding of the solar light band.
  • the vanadium dioxide-containing film or coating is almost completely transparent to visible and mid-infrared light in sunlight; when the temperature exceeds the vanadium dioxide semiconductor -
  • the metal phase transition temperature the vanadium dioxide undergoes a phase change and is converted into an R phase. At this time, the material can selectively block the mid-infrared light to achieve transparent (visible light transmission) heat resistance.
  • Vanadium dioxide semiconductor - Metal phase transition is a thermally induced reversible change, and its temperature switching effect can be used to intelligently control the switching of mid-infrared rays.
  • the use of vanadium dioxide in the low transmission of high temperature in the infrared region and high transmission at low temperatures can produce a completely intelligent energy-saving window system.
  • An intelligent temperature-controlled coating can be prepared by making the vanadium dioxide material nano-sized and compounded with the organically modified material.
  • agglomeration easily occurs between the particles.
  • the vanadium dioxide nanoparticles can be directly added to the coating, it is difficult to truly exert the performance of the nano material, and it is easy to agglomerate, affecting the optical properties and appearance of the coating, thereby limiting the application of the material on the glass film and the transparent glass.
  • a vanadium dioxide smart temperature control coating is mentioned in Chinese Patent Application No.
  • vanadium dioxide particles mentioned therein belong to unmodified vanadium dioxide particles, and do not involve pretreatment of particles, especially the present invention.
  • the vanadium dioxide particles are subjected to a pre-dispersion treatment, in particular, an organic modification treatment for improving the dispersibility and chemical stability properties.
  • the invention relates to a preparation method of a vanadium dioxide suspension, which relates to a dispersion treatment of vanadium dioxide powder, but adopts an inorganic modification method, and prepares vanadium dioxide composite particles with the organic modification scheme adopted by the invention. There are essential differences, and the use of acidic or alkaline conditions in the invention will destroy the structure of vanadium dioxide. .
  • vanadium dioxide powder and vanadium dioxide powder and other materials to prepare a film, the method is simple, easy to operate on a large scale, not only can be used for energy-saving transformation of the original glass window, and can be coated on different substrates, Expand the applicability of vanadium dioxide.
  • vanadium dioxide powder is prepared into a vanadium dioxide film and a coating, there are special requirements for the morphology and the particle size, and the vanadium dioxide powder is required to have excellent dispersing properties and chemical stability. .
  • the present invention provides a vanadium dioxide composite powder comprising a vanadium dioxide nanometer powder having a chemical composition of V 1-x M x O 2 , and an organically modified long-chain molecule on the surface of the vanadium dioxide nano powder.
  • M is a doping element, 0 ⁇ x ⁇ 0.5.
  • the vanadium dioxide composite powder of the invention is organically modified on the surface of vanadium dioxide and its doped nano powder. It is different from the generally unmodified or inorganically encapsulated and modified vanadium dioxide powder.
  • the surface of the vanadium dioxide is connected to the organically modified long-chain molecule by means of an organic modifier, thereby greatly increasing the vanadium dioxide powder.
  • the vanadium dioxide composite powder provided by the invention has good stability and dispersibility, can be stored for a long time, can be used as a smart heat insulating powder for preparing intelligent energy-saving coatings or coatings, and can also be used for heat insulation of glass and exterior walls. occasion. Unlike general insulation materials, it can block infrared light significantly above the phase transition temperature, while infrared rays can be highly transmitted below the phase transition temperature, and this change is reversible, enabling intelligent adjustment of solar heat.
  • the content of the organically modified long-chain molecule is 0.1 to 50%. . More preferably, the organic modified long chain molecular content is from 1 to 10% . If the molecular content of the organic modified long chain is too small, the full surface of the powder cannot be fully encapsulated; if the organic modified long chain molecular content is too large, the organic molecules will entangle each other, which will affect the dispersion effect.
  • the organically modified long chain molecular chain has a length of from 0.1 nm to 100 nm.
  • the invention relates to the organic surface modification of vanadium dioxide nanoparticles, which can effectively improve the dispersibility of vanadium dioxide and its doped nano powder and the chemical stability of the powder. .
  • the organically modified long-chain molecule is composed of a long-chain alkyl group, a polyacrylic acid group, a polyvinyl alcohol group, an epoxy group, a long-chain alkylamine group, a halogenated long-chain alkyl group, a carboxylated long-chain alkyl group, or the like. Functionalized organic long chain.
  • the vanadium dioxide composite powder of the invention is coated on the surface of the vanadium dioxide powder by grafting the organic modification modifier on the surface of the vanadium dioxide powder, thereby changing the surface characteristics of the vanadium dioxide, according to the selection
  • the difference in groups can increase the dispersion of vanadium dioxide composite particles in different solvents, and expand the use of vanadium dioxide particles in intelligent temperature-controlled coatings or coatings.
  • the vanadium dioxide nano powder in the vanadium dioxide composite powder of the present invention is a rutile phase, and the phase transition temperature is -20 to 70. °C adjustable.
  • the rutile phase of vanadium dioxide can account for up to 80%, or even 100%.
  • the vanadium dioxide nano powder has a first-order phase change characteristic, can sense the change of the ambient temperature, and the smart response can realize the selective transmission or shielding of the solar light band.
  • the vanadium dioxide-containing film or coating is almost completely transparent to visible and mid-infrared light in sunlight; when the temperature exceeds the vanadium dioxide semiconductor -
  • the vanadium dioxide undergoes a phase change and is converted into an R phase.
  • the material can selectively block the mid-infrared light to achieve transparent (visible light transmission) heat resistance.
  • Vanadium dioxide semiconductor - Metal phase transition is a thermally induced reversible change, and its temperature switching effect can be used to intelligently control the switching of mid-infrared rays.
  • the doping element M specified in the present invention may be 21 to 30 near vanadium in the periodic table.
  • 21 to 30 near vanadium in the periodic table The transition elements include tantalum, titanium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, and the tin and its nearby elements include indium, antimony, tin, gallium, antimony, lead, and antimony.
  • Preferred doping elements are tungsten, molybdenum, niobium, tin, iron, zinc and titanium.
  • the size and morphology of the doped vanadium dioxide powder can be controlled, and the doping elements used can also regulate the phase transition temperature of vanadium dioxide.
  • the doped vanadium dioxide powder is preferably in the form of particles, and the aspect ratio of the particles is from 1:1 to 10:1, preferably 1:1. 5:1, more preferably 1:1 to 2:1.
  • the particle size is no more than 1 um in at least one dimension, preferably no more than 100 nm in at least one dimension, more preferably no greater than three dimensions 100 nm, most preferably no more than 70 nm in all three dimensions.
  • the granules may be, for example, a nearly spherical shape, an elliptical shape, a snowflake shape, a cuboid shape, a sheet shape, or the like.
  • the vanadium dioxide powder having the above size and morphology has better dispersibility.
  • the dispersibility of the modified composite powder will be further improved.
  • the present application also provides a method for preparing a vanadium dioxide composite powder, comprising the steps (1) dispersing a vanadium dioxide nano powder in a dispersion medium to obtain a mixture. A; (2) adding a dispersing aid and an organic modifier for forming an organically modified long-chain molecule on the surface of the vanadium dioxide powder in the mixture A, stirring until fully mixed to obtain a mixture B; (3) mixture B Drying produces an organically modified vanadium dioxide composite powder.
  • the vanadium dioxide powder may be rutile phase vanadium dioxide nanoparticles or doped rutile phase vanadium dioxide nanoparticles. Can be based on public patents
  • the preparation method provided by 2010PA011267CN may also be rutile phase vanadium dioxide nanoparticles prepared by other known methods or doped rutile phase vanadium dioxide nanoparticles.
  • the powder particle size is preferably 200nm the following.
  • the morphology of the powder can be particles, nanorods and snowflake particles.
  • the precursor (the tetravalent vanadium ion aqueous solution) can be treated with an alkaline reagent before the doping element, and the size and morphology of the vanadium dioxide powder can be controlled. At least one dimension is not greater than 1um) and morphology (granular, length to diameter ratio not greater than 10:1
  • the prepared vanadium dioxide powder has a small crystal grain size, uniform particle size, and stable crystal form, and has good dispersibility in water and a dispersant (for example, polyvinylpyrrolidone), and is easily coated on a substrate such as glass.
  • a dispersant for example, polyvinylpyrrolidone
  • the dispersing aid added may be polyvinyl alcohol, polyvinylpyrrolidone, organically modified polysiloxane dipropylene glycol monomethyl ether solution, silicone surfactant or fluorosurfactant or a dispersion aid well known in the art. One or several of them.
  • the organic modifier added may be an organic modifier such as stearic acid, polyacrylic acid, a silane coupling agent, an aluminate coupling agent or a titanate coupling agent.
  • a silane coupling agent containing a long polymer chain is preferred.
  • the surface of the vanadium dioxide can be connected to the organic long-chain molecules by means of a coupling agent, thereby greatly improving the chemical stability and dispersibility of the vanadium dioxide powder.
  • the dispersion medium used in the preparation method of the vanadium dioxide composite powder provided by the present invention may be an inert solvent such as ethanol, isopropanol, chloroform, dimethylformamide, dimethyl sulfoxide dichloroethane or acetone. One or several.
  • Organic modification in an inert medium prevents the vanadium dioxide from denaturation and improves the chemical stability of the powder.
  • the preparation method of the vanadium dioxide composite powder provided by the invention, the preparation process innovation, the organic surface modification process of the organic modifier can effectively improve the dispersibility and chemical stability of the vanadium dioxide and the doped nano powder thereof Sex.
  • the vanadium dioxide composite powder of the invention can be applied to prepare intelligent energy-saving coatings or coatings, and the prepared coating has high transparency, low haze and strong aging resistance, and is mainly applied to flexible materials such as films and braids, and can also be used for glass. And insulation such as exterior walls .
  • Figure 1 is a transmission electron micrograph of the vanadium dioxide powder corresponding to Comparative Example 1;
  • Fig. 2 is a transmission electron micrograph of a vanadium dioxide composite powder of one example of the present invention.
  • the vanadium dioxide material has a first-order phase change characteristic, which can sense the change of the ambient temperature, and the change of the intelligent response realizes selective transmission or shielding of the solar light band.
  • Dispersing vanadium dioxide nanopowders in other matrices, such as transparent polymers can improve the visible light transmittance to a practical level on the basis of retaining the optical control properties of vanadium dioxide, and can be used for glass, wall surface, and Energy-saving renovation of the outer surface of vehicles such as vehicles and ships.
  • agglomeration easily occurs between the particles.
  • the invention relates to an organic surface modification process of vanadium dioxide nanoparticles, which can effectively improve the dispersibility of vanadium dioxide and its doped nano powder and the chemical stability of the powder.
  • the method of the present invention comprises the steps of dispersing vanadium dioxide nanopowder in a dispersion medium to obtain a mixture A; in the mixture A Adding a dispersing aid and an organic modifier for forming an organically modified long-chain molecule on the surface of the vanadium dioxide powder, stirring to a step of thoroughly mixing and obtaining a mixture B; The step of drying to obtain an organically modified vanadium dioxide composite powder.
  • the vanadium dioxide powder having a content of 1 to 50% by weight and 50 to 99% by weight may be used.
  • the dispersion medium is firstly stirred and mixed at a high speed, and ultrasonically dispersed to obtain a mixture, and then a dispersing aid and an organic modifier are added to the mixture at a constant temperature of 0 to 200. Stir at °C, disperse by ultrasonic, sanding or ball milling, and then centrifuge to precipitate, and vacuum dry at a certain temperature to obtain an organically modified vanadium dioxide composite powder.
  • the weight ratio of the vanadium dioxide nanopowder to the dispersion medium may be 1:1 ⁇ 1:1000.
  • the weight ratio of the vanadium dioxide nano powder to the dispersion medium is 1:5 to 1:100 .
  • the weight ratio is too small, the probability of contact of the vanadium dioxide powder with the organic modifier is low, and a long dispersion time and a large amount of modifier are required; if the weight ratio is too large, the powder is not suitable for the dispersion medium. Fully dispersed and wetted, affecting the later modification effect.
  • the high speed stirring speed can be from 1000 to 3000 rad/min.
  • Ultrasound power can range from 50 to 5000 W
  • the frequency is 21KHz.
  • the ball mill speed can be selected from 10 to 2000 rad/min.
  • the speed of the sander can be from 10 to 2000 rad/min.
  • the grinding medium may be selected from zirconia balls having a particle diameter of from 0.02 mm to 50 mm, preferably a grinding medium having a small particle size.
  • the organic modifier used in the surface organic modification process may be an organic modifier such as stearic acid, polyacrylic acid, a silane coupling agent, an aluminate coupling agent or a titanate coupling agent, and preferably has a high content.
  • the amount of the organic modifier added to the mixture can be 0.05 to 5 wt%; preferably 0.1 to 2 wt% . If the molecular content of the organic modified long chain is too small, the full surface of the powder cannot be fully encapsulated; if the organic modified long chain molecular content is too large, the organic molecules will entangle each other, which will affect the dispersion effect.
  • the surface of the vanadium dioxide can be connected to the organic long-chain molecules by means of a coupling agent, thereby greatly improving the chemical stability and dispersibility of the vanadium dioxide powder.
  • the above surface organic change Dispersing aids used in the process are polyvinyl alcohol, polyvinylpyrrolidone, organomodified polysiloxane dipropylene glycol monomethyl ether solution, silicone surfactant or fluorosurfactant or dispersion aids well known in the industry.
  • the dispersing aid is mainly used to reduce the surface tension of the solution and improve the wetting of the solvent on the surface of the powder, thereby improving the dispersion effect.
  • the amount of the dispersing aid added to the mixture can be 0.02 to 2% by weight; preferably 0.05 to 1% by weight. Very little addition can achieve the desired dispersion. If too much is added, it will affect the surface organic modification process of the powder.
  • each component is as follows: vanadium dioxide nano powder (doped tungsten, particle size 20 ⁇ 100 nm), 20g; ethanol (dispersion medium), 80 g; polyvinylpyrrolidone (dispersion aid), 0.05 g.
  • the vanadium dioxide nanopowder and the dispersion medium were firstly dispersed at a high speed of 1500 rad/min for 30 min, and ultrasonically dispersed.
  • the morphology of the vanadium dioxide particles without organic modification, the particle size of the powder varies from 10 to 100 nm, and the agglomerated particles are present but the particles are relatively loose.
  • vanadium dioxide nano powder doped tungsten, particle size 20 ⁇ 100 nm
  • 20g ethanol (dispersion medium), 80 g
  • silane coupling agent containing polyvinyl alcohol group, organic modifier
  • 1 g polyvinylpyrrolidone (dispersing aid)
  • 0.05 g First, vanadium dioxide nano powder and dispersion medium, at 1500 Stir at rad/min for 30 min at high speed, and ultrasonically disperse for 30 min. Add the dispersing aid and silane coupling agent to it, and stir at a constant temperature of 70 °C for 2 h on a high-speed mixer. Then, the precipitate was centrifuged and dried under vacuum at 60 ° C to obtain a vanadium dioxide composite powder modified by a silicone coupling agent; the main properties of the obtained vanadium dioxide and its doped composite powder are shown in Table 1.
  • the morphology of the organic surface-modified vanadium dioxide composite powder has a particle size of 10 to 100 nm.
  • the powders are slightly larger in particle size than the non-organic modified particles because the surface is coated with organic groups, but the powders are dispersed.
  • each component is as follows: vanadium dioxide nano powder (undoped, particle size 20 ⁇ 60 nm), 10g; ethanol (dispersion medium), 90 g; stearic acid, 1 g; polyvinyl alcohol (dispersing aid), 0.05 g.
  • the vanadium dioxide nano powder and the dispersion medium are firstly dispersed at a high speed of 1500 rad/min for 30 minutes.
  • each component is as follows: vanadium dioxide nano powder (doped tungsten, particle size 20 ⁇ 100 nm), 15 g; isopropyl alcohol (dispersion medium), 85 g; silane coupling agent (containing long-chain alkyl group, organic modifier), 1 g; organically modified polysiloxane dipropylene glycol monomethyl ether solution (dispersion aid) ), 0.08g.
  • the vanadium dioxide nano powder and the dispersion medium are firstly dispersed at a high speed of 1000 rad/min for 20 min, and ultrasonically dispersed for 60 min.
  • each component is as follows: vanadium dioxide nano powder (doped with molybdenum, particle size 20 ⁇ 100 nm), 25 g; isopropanol (dispersion medium), 75 g; titanate coupling agent (containing epoxy group, organic modifier), 1 g; polyvinyl alcohol (dispersion aid), 0.15 g.
  • vanadium dioxide nano powder and dispersion medium Disperse and disperse for 20 min at 1500 rad/min, and ultrasonically disperse for 60 min, then add dispersing aid and titanate coupling agent, and stir at a constant temperature of 80 °C on a high-speed mixer. 2 h, centrifugal precipitation, vacuum drying at 70 °C to obtain vanadium dioxide nanocomposite powder with epoxy group on the surface; the main properties of the obtained vanadium dioxide and its doped composite powder are shown in Table 1.
  • vanadium dioxide nano powder doped with molybdenum, particle size 20 ⁇ 100 nm
  • Isopropanol disersion medium
  • aluminate coupling agent containing long chain alkyl groups, organic modifier
  • polyvinylpyrrolidone dispersing aid
  • the vanadium dioxide nanopowder and dispersion medium were firstly dispersed at 1500 rad/min for 20 min at high speed and ultrasonically dispersed for 60 min.
  • each component is as follows: vanadium dioxide nano powder (doped tungsten, particle size 20 ⁇ 100 nm), 10 g; dimethylformamide (dispersion medium), 90 g; polyacrylic acid, 1.5 g; fluorosurfactant (dispersion aid), 0.1 g.
  • vanadium dioxide nano powder and dispersion medium at 1000 Stir at rad/min for 20 min at high speed, and ultrasonically disperse for 60 min, then add dispersing aid and polyacrylic acid to it, and stir at a constant temperature of 80 °C for 2 h on a high speed mixer. Then, the precipitate was centrifuged and vacuum dried at 60 ° C to obtain a vanadium dioxide nanocomposite powder with polyacrylic acid on the surface; the main properties of the obtained vanadium dioxide and its doped composite powder are shown in Table 1.
  • each component is as follows: vanadium dioxide nano powder (doped tungsten, particle size 20 ⁇ 100 nm), 20 g; ethanol (dispersion medium), 80 g; silane coupling agent (containing long-chain alkylamine group, organic modifier), 2.5 g; organic surfactant (dispersing aid), 0.07 g.
  • vanadium dioxide nano powder and dispersion medium at 1500 Stir at rad/min for 40 min at high speed, and ultrasonically disperse for 30 min. Add the dispersing aid and silane coupling agent to it, and stir at a constant temperature of 80 °C for 2 h on a high-speed mixer.
  • the precipitate was centrifuged and dried under vacuum at 70 ° C to obtain a vanadium dioxide nanocomposite powder having a long-chain alkylamine group attached thereto; the main properties of the obtained vanadium dioxide and its doped composite powder are shown in Table 1.
  • each component is as follows: vanadium dioxide nano powder (doped tungsten, particle size 20 ⁇ 100 nm), 10 g; dimethylformamide (dispersion medium), 90 g; silane coupling agent (containing halogenated long-chain alkyl group, organic modifier), 1.5 g; fluorosurfactant (dispersion aid), 0.06 g.
  • the vanadium dioxide nano powder and the dispersion medium are firstly dispersed at a high speed of 1000 rad/min for 20 min, and ultrasonically dispersed for 60 min.
  • the organic modified vanadium dioxide and the doped nanocomposite powder obtained by the method provided by the invention can be illustrated, and the particle size thereof is significantly smaller than that of the unmodified powder, and the BET specific surface area is larger than that.
  • the modified powder has better slurry stability than the unmodified powder slurry.
  • the 300 °C weight loss data shows that through the surface organic modification process, 5-11% organic long chain can be attached to the surface of the nanopowder, which greatly improves the chemical stability and dispersibility of the vanadium dioxide powder.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 8 Comparative example 1
  • Chemical combination Doped tungsten Undoped Doped tungsten Molybdenum Molybdenum Doped tungsten Doped tungsten Doped tungsten Modifier A silane coupling agent Hard acid A silane coupling agent Titanate coupling agent Aluminate coupling agent Polyacrylic acid A silane coupling agent A silane coupling agent Unmodified Surface group Polyvinyl alcohol group Octadecyl Long chain alkyl Epoxy group Long chain alkyl Long polypropylene chain Long chain alkylamine group Halogenated long chain alkyl - Dynamic light scattering particle size (nm) 20 ⁇ 100 50 ⁇ 300 20 ⁇ 150 50 ⁇ 150 50 ⁇ 200 60 ⁇ 350 50 ⁇ 150 20 ⁇ 150 20 ⁇ 200 BET specific surface area (m 3 /g) 60 ⁇ 70 45 ⁇ 55 50 ⁇ 60 50 ⁇ 60 45 ⁇ 55 40 ⁇ 50 50 ⁇ 60 50 ⁇ 60 40 ⁇ 50 Powder surface characteristics Hydrophilic Lipophilic Lipophilic
  • the vanadium dioxide composite powder of the invention can be applied to the preparation of intelligent energy-saving coatings or coatings, and the prepared coating has high transparency, low haze and strong aging resistance, and is mainly applied to flexible materials such as films and braids. It can also be used for heat insulation applications such as glass and exterior walls. It can also be widely used in energy saving and emission reduction equipment, such as energy-saving thin films, energy-saving coatings, solar temperature control devices, or energy information equipment, such as miniature photoelectric switching devices, thermistors, battery materials, and optical information storage devices.
  • the preparation method of the vanadium dioxide composite powder provided by the invention, the preparation process innovation, the vanadium dioxide (vanadium dioxide) and the doped nano powder thereof can be effectively improved by the organic surface modification process of the organic modifier Dispersibility and chemical stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种二氧化钒复合粉体及其制备方法,该二氧化钒复合粉体,包括化学组成为V1-xMxO2的二氧化钒纳米粉体,二氧化钒纳米粉体表面接有机改性长链分子,其中Μ为掺杂元素,0≤x≤0.5。通过在二氧化钒纳米粉体分散于分散介质中而得的混合物A中加入分散助剂和用于表面改性的长链分子的有机改性剂,对二氧化钒纳米粉体的表面进行有机改性,从而提高二氧化钒粉体的化学稳定性和分散性。

Description

一种二氧化钒复合粉体及其制备方法 技术领域
本发明涉及化工领域及材料领域中的二氧化钒粉体及其制备方法,具体涉及有机改性智能二氧化钒复合粉体及其制备方法。本发明的产品可应用于制备智能节能涂层,也可用于玻璃以及外墙等隔热场合。
背景技术
我国的建筑能耗已经占到社会总能耗的 27.8% ,其中采暖和空调的能耗占建筑总能耗的 55% 。在现代建筑物中,玻璃占外墙的面积比例越来越大,据测算通过玻璃窗进行的热传递在冬夏季节分别占 48% 和 71% 。若采用空调调节室内温度,制冷温度提高 2 ℃ ,制冷负荷减少约 20% ;制热温度调低 2 ℃ ,制热负荷减少约 30% ,通过在玻璃上贴上隔热膜或涂布隔热涂层可大幅减少能耗。
目前市面上的隔热膜或涂层主要还是以阻隔红外性能为主,不能响应环境变化,他们只有反射红外光的功能,而在低温下没有透过红外线的作用,不能起到智能调节室内外温差的作用,需要寻找一种可智能调节太阳热的材料,从而实现冬暖夏凉的作用。
二氧化钒材料具有一级相变特性,可感应环境温度变化,智能响应这一变化实现对太阳光的波段选择性透过或遮蔽。通常在环境温度低于相变温度时,含有二氧化钒的薄膜或涂层对太阳光中的可见光和中红外光几乎是完全通透的;当温度超过二氧化钒的半导体 - 金属相变温度时,二氧化钒发生相变转化为 R 相,此时材料可对中红外光选择性遮断,达到透明(可见光透过)阻热的目的。二氧化钒的半导体 - 金属相变是热诱导的可逆变化,其温度开关效应可用来对中红外线的通断进行智能控制。利用二氧化钒在红外光区高温下的低透过和低温下的高透过,可以制备完全智能的节能窗口系统。
光学计算表明( S.-Y. Li,a_ G. A. Niklasson, and C. G. Granqvist Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation , JOURNAL OF APPLIED PHYSICS 108, 063525 2010 )若能将二氧化钒纳米粉体分散于其他基质,如透明高分子,可在保留二氧化钒光学调控性能的基础上,提高可见光透过率至实用水平,可对服役中的玻璃、墙面、以及车船等运输工具的外表面进行节能改造。通过把二氧化钒材料做到纳米尺寸并和有机改性材料复合可以制备一种智能温控涂料,但由于纳米粒子比表面积小和表面自由能高,粒子之间很容易发生团聚,这种特性决定了直接把二氧化钒纳米粒 子加入到涂料中,很难真正发挥纳米材料的性能,而且容易发生团聚,影响涂层的光学性能和外观,从而限制了材料在玻璃贴膜以及透明玻璃上的应用。如中国专利申请号 200410051965 中提到了一种二氧化钒智能温控涂料,但其提到的二氧化钒粒子属于未改性二氧化钒粒子,并未涉及粒子的前处理,特别是本发明提到的二氧化钒粒子进行前分散处理,特别是有机改性处理对于其分散性能和化学稳定性性能的提高。
中国专利申请号: 200610117027.4 提及一种二氧化钒悬浮液的制备方法,其中涉及二氧化钒粉体的分散处理,但其采用的是无机改性的方法,与本发明采取的有机改性方案制备二氧化钒复合粒子有本质的不同,且发明中采用酸性或碱性条件,会破坏二氧化钒的结构 。
中国专利申请号: 200980123044.0 热变色微粒子及其分散液和制造方法以及调光性涂料、调光性膜、调光性油墨中提及了调光性涂料微粒的表面处理,但其并未提出具体改性方法,且该发明处理的是二氧化钛和二氧化钒复合粒子与本专利发明内容所涉及的二氧化钒复合粉体有本质的不同 。
发明内容
应用二氧化钒粉体及二氧化钒粉体与其他物质复合制备薄膜,方法简单,便于大规模操作,不但可以用于原有玻璃窗的节能化改造,并且可以涂覆在不同衬底上,扩大二氧化钒的应用性。但是二氧化钒粉体制备成二氧化钒薄膜及涂层时,对形貌和粒径均有着特殊的要求,要求二氧化钒粉体具有优异的分散性能和化学稳定性 。
在此,本发明提供一种二氧化钒复合粉体,包括化学组成为 V1-xMxO2 的二氧化钒纳米粉体,二氧化钒纳米粉体表面接有机改性长链分子 ,其中 M 为掺杂元素, 0 ≤ x ≤ 0.5 。
本发明的二氧化钒复合粉体,对二氧化钒及其掺杂纳米粉体的表面经过有机改性。它不同于一般未改性或者无机包裹和改性的二氧化钒粉体,通过有机改性剂的方式使二氧化钒表面接上有机改性长链分子,从而极大提高二氧化钒粉体的化学稳定性和分散性。应用本发明提供的二氧化钒复合粉体稳定性和分散性好,能够长期保存使用,可作为智能隔热粉体应用于制备智能节能涂层或涂料,也可用于玻璃以及外墙等隔热场合。它与一般的隔热材料不同,其在相变温度以上时可大幅阻隔红外光,而低于相变温度红外线可以高度透过,而且这种变化是可逆的,可以实现太阳热的智能调节。
较佳地,本发明的二氧化钒复合粉体中,有机改性长链分子的含量在 0.1 ~ 50% 。更优选地,有机改性长链分子含量在 1 ~ 10% 。有机改性长链分子含量过小,则无法实现粉体表面的充分包裹;有机改性长链分子含量过大,会导致有机分子之间相互缠结,反而影响分散效果。
较佳地,有机改性长链分子链长度在 0.1nm ~ 100nm 。
本发明涉及二氧化钒纳米粒子的有机表面改性,可以有效的提高二氧化钒及其掺杂纳米粉体的分散性和粉体的化学稳定性 。
有机改性长链分子为包括长链烷基、聚丙烯酸基团、聚乙烯醇基团、环氧基团、长链烷基胺基团、卤化长链烷基、羧基化长链烷基等官能化有机长链 。
本发明的二氧化钒复合粉体,通过有机改性改性剂在二氧化钒粉体表面的接枝,包裹在二氧化钒粉体表面,从而可以改变二氧化钒的表面特性,根据所选基团的不同,可以增加二氧化钒复合粒子在不同溶剂里的分散性能,扩展了二氧化钒粒子在智能温控涂料或涂层中的用途。
较佳地, 本发明的二氧化钒复合粉体中的二氧化钒纳米粉体为金红石相,相转变温度在 -20 ~ 70 ℃可调。金红石相二氧化钒所占的比例可以高达 80% ,甚至可以达到 100% 。该二氧化钒纳米粉体具有一级相变特性,可感应环境温度变化,智能响应这一变化实现对太阳光的波段选择性透过或遮蔽。通常在环境温度低于相变温度时,含有二氧化钒的薄膜或涂层对太阳光中的可见光和中红外光几乎是完全通透的;当温度超过二氧化钒的半导体 - 金属相变温度时,二氧化钒发生相变转化为 R 相,此时材料可对中红外光选择性遮断,达到透明(可见光透过)阻热的目的。二氧化钒的半导体 - 金属相变是热诱导的可逆变化,其温度开关效应可用来对中红外线的通断进行智能控制。
在本发明中规定的掺杂元素 M 可以是元素周期表中钒附近的 21 ~ 30 过渡元素、锡及其附近的元素以及钨、钼、钌、铌等元素中的一个或者任意组合。其中,元素周期表中钒附近的 21 ~ 30 过渡元素包括钪、钛、铬、锰、铁、钴、镍、铜、和锌,所述锡及其附近的元素包括铟、锑、锡、镓、锗、铅、和铋。优选的掺杂元素为钨、钼、铋、锡、铁、锌和钛。
采用上述掺杂元素,可以控制掺杂二氧化钒粉体尺寸和形貌,所用的掺杂元素同样也能调控二氧化钒的相转变温度。
在本发明中,掺杂二氧化钒粉体优选为颗粒状,且颗粒的长径比为 1:1 ~ 10:1 ,优选为 1:1 ~ 5:1 ,更优选为 1:1 ~ 2:1 。颗粒尺寸在至少一个维度上不大于 1um ,优选在至少一个维度上不大于 100nm ,更优选在三个维度上均不大于 100nm ,最优选在三个维度上均不大于 70nm 。所述颗粒状可以为例如近球形、椭圆形、雪花形、立方形、片形等。
具有上述尺寸和形貌的二氧化钒粉体的分散性更好。经过改性后的复合粉体的分散性也将进一步得到提高。
本申请还提供一种二氧化钒复合粉体的制备方法,包括工序( 1 )将二氧化钒纳米粉体分散于分散介质中,得混合物 A ;( 2 )在所述混合物 A 中加入分散助剂和用于形成二氧化钒粉体表面有机改性长链分子的有机改性剂,搅拌至充分混合均匀得混合物 B ;( 3 )将混合物 B 干燥制得有机改性的二氧化钒复合粉体。
二氧化钒粉体可以为金红石相二氧化钒纳米粒子或掺杂金红石相二氧化钒纳米粒子。可以是根据公开专利 2010PA011267CN 所提供的方法制备,也可以是其他已知的方法制备的金红石相二氧化钒纳米粒子或掺杂金红石相二氧化钒纳米粒子。粉体颗粒尺寸优选在 200nm 以下。粉体的形貌可以是颗粒、纳米棒及雪花状粒子。若制备掺杂金红石相二氧化钒纳米粒子,在掺杂元素前可采用碱性试剂处理前驱体(四价钒离子水溶液),可以得到尺寸和形貌可控的二氧化钒粉体尺寸(在至少一个维度上不大于 1um )和形貌(颗粒状,长径比不大于 10:1 ),制备的二氧化钒粉体晶粒尺寸小,粒径均一,且晶型稳定,其在水、分散剂(例如聚乙烯吡咯烷酮)中分散性好,易于涂覆在玻璃等基体上,适于制备二氧化钒粉体的薄膜和涂层。
本发明提供的二氧化钒复合粉体的制备方法,工序( 2 )中加入的分散助剂可以为聚乙烯醇,聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二 醇单甲醚溶液、 有机硅表面活性剂或含氟表面活性剂或业内共知的分散助剂中的一种或几种。
本发明提供的二氧化钒复合粉体的制备方法,工序( 2 )中加入的有机改性剂可以是硬脂酸、聚丙烯酸,硅烷偶联剂、铝酸酯偶联剂或钛酸酯偶联剂等有机改性剂。优选为含高分子长链的硅烷偶联剂。
通过偶联剂的方式可以使二氧化钒表面接有机长链分子,从而极大提高二氧化钒粉体的化学稳定性和分散性 。
本发明提供的二氧化钒复合粉体的制备方法中所用的分散介质可以是乙醇,异丙醇、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷或丙酮等惰性溶剂中的一种或几种。
在惰性介质中进行有机改性,可以防止二氧化钒的变性,提高粉体的化学稳定性 。
本发明提供的二氧化钒复合粉体的制备方法,制备工艺创新,通过有机改性剂的有机表面改性过程,可以有效的提高二氧化钒及其掺杂纳米粉体的分散性和化学稳定性。本发明二氧化钒复合粉体可应用于制备智能节能涂层或涂料,制备的涂层透明度高,雾度低、耐老化能力强,主要应用于薄膜,编织物等柔性材料,也可用于玻璃以及外墙等隔热场合 。
附图说明
图 1 为比较例 1 所对应的二氧化钒粉体的透射电镜图;
图 2 为本发明其中一个示例的二氧化钒复合粉体的透射电镜图。
具体实施方式
以下,参照附图,并结合下属实施方式进一步说明本发明。
二氧化钒材料具有一级相变特性,可感应环境温度变化,智能响应这一变化实现对太阳光的波段选择性透过或遮蔽。将二氧化钒纳米粉体分散于其他基质,如透明高分子,可在保留二氧化钒光学调控性能的基础上,提高可见光透过率至实用水平,可对服役中的玻璃、墙面、以及车船等运输工具的外表面进行节能改造。但由于纳米粒子比表面积小和表面自由能高,粒子之间很容易发生团聚,这种特性决定了直接把二氧化钒纳米粒子加入到涂料中,很难真正发挥纳米材料的性能,而且容易发生团聚,影响涂层的光学性能和外观,从而限制了材料在玻璃贴膜以及透明玻璃上的应用。本发明涉及二氧化钒纳米粒子的有机表面改性过程,可以有效的提高二氧化钒及其掺杂纳米粉体的分散性和粉体的化学稳定性。
本发明的方法,包括,将二氧化钒纳米粉体分散于分散介质中,得混合物 A 的工序;在所述混合物 A 中加入分散助剂和用于形成二氧化钒粉体表面有机改性长链分子的有机改性剂,搅拌至充分混合均匀得混合物 B 的工序;将混合物 B 干燥制得有机改性的二氧化钒复合粉体的工序。
具体地,可将重量百分比含量为 1 ~ 50 % 的二氧化钒粉体和 50 ~ 99% 的分散介质先高速搅拌分散混合、并超声分散得混合物,之后在混合物中再加入分散助剂和有机改性剂,恒温 0 ~ 200 ℃下搅拌,通过超声、砂磨或球磨等方式分散,再离心沉淀,一定温度下真空干燥得到有机改性的二氧化钒复合粉体 。
其中,在将二氧化钒纳米粉体与分散介质混合的工序中,二氧化钒纳米粉体与分散介质的重量比可以为 1:1 ~ 1:1000 。优选地,二氧化钒纳米粉体与分散介质的重量比为 1:5 ~ 1:100 。重量比过小时,则二氧化钒粉体同有机改性剂接触概率低,需要较长的分散时间和较大的改性剂用量;重量比过大,则不利于粉体在分散介质中的充分分散和润湿,影响后期的改性效果。
高速搅拌的转速可以为 1000 ~ 3000rad/min 。超声的功率可以为 50 ~ 5000 W ,频率为 21KHz 。
此外,球磨机转速可以选择为 10 ~ 2000 rad/min 。
又,砂磨机的转速可以为 10 ~ 2000 rad/min 。
研磨介质可以选择二氧化锆球,粒径在 0.02mm ~ 50mm ,优选为小粒径的研磨介质。
上述的表面有机改性工艺所用的有机改性剂可以是硬脂酸、聚丙烯酸,硅烷偶联剂、铝酸酯偶联剂或钛酸酯偶联剂等有机改性剂,优选为含高分子长链的硅烷偶联剂。有机改性剂加入混合物中的量可以为 0.05 ~ 5 重量 % ;优选地为 0.1 ~ 2 重量 % 。有机改性长链分子含量过小,则无法实现粉体表面的充分包裹;有机改性长链分子含量过大,会导致有机分子之间相互缠结,反而影响分散效果。 通过偶联剂的方式可以使二氧化钒表面接上有机长链分子,从而极大提高二氧化钒粉体的化学稳定性和分散性。
上述的表面有机改 性工艺所用分散助剂为聚乙烯醇,聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂或含氟表面活性剂或业内共知的分散助剂中的一种或几种。分散助剂主要用于降低溶液的表面张力,提高溶剂在粉体表面的润湿,从而提高分散效果。分散助剂加入混合物中的量可以为 0.02 ~ 2 重量 % ; 优选地为 0.05 ~ 1 重量 % 。极少的加入量即能达到所需要的分散效果。若加入过多会影响粉体的表面有机改性过程。
应理解,本发明详述的上述实施方式,及以下实施例仅用于说明本发明而不用于限制本发明的范围。采用的原料、试剂可以通过购买市售原料或传统化学转化方式合成制得。除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所熟悉的意义相同。此外任何与所记载内容相似或等同的方法及材料皆可应用于本发明方法中。本发明的其他方面由于本文的公开内容,对本领域的技术人员而言是容易理解的。
以下,通过实施例对本发明进行更加详细的说明。
比较例 1
取各组分质量如下:二氧化钒纳米粉体(掺杂钨,粒径 20~100 nm ), 20g;乙醇(分散介质), 80 g; 聚乙烯吡咯烷酮(分散助剂), 0.05 g 。先将二氧化钒纳米粉体和分散介质在 1500 rad/min 下高速搅拌分散 30min ,并超声分散 30min ,再将分散助剂加入其中,在高速搅拌机上恒温 70 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到未经改性的二氧化钒复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
如图1所示,未经有机改性的二氧化钒颗粒的形貌,粉体粒径10~100nm不等,呈团聚颗粒存在但颗粒之间较为疏松。
实施例 1
取各组分质量如下:二氧化钒纳米粉体(掺杂钨,粒径 20~100 nm ), 20g;乙醇(分散介质), 80 g;硅烷偶联剂(含聚乙烯醇基团,有机改性剂), 1 g;聚乙烯吡咯烷酮(分散助剂), 0.05 g 。先将二氧化钒纳米粉体和分散介质,在 1500 rad/min 下高速搅拌分散 30min ,并超声分散 30min ,再将分散助剂和硅烷偶联剂加入其中,在高速搅拌机上恒温 70 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到有机硅偶联剂改性的二氧化钒复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
如图 2 所示,经过有机表面改性的二氧化钒复合粉体的形貌,粉体粒径 10 ~ 100nm 不等,粉体因为表面包裹有机基团,粒径较未有机改性粒子略微增大,但粉体之间呈现分散状态。
实施例 2
取各组分质量如下:二氧化钒纳米粉体(不掺杂,粒径 20~60 nm ), 10g;乙醇(分散介质), 90 g;硬脂酸, 1 g;聚乙烯醇(分散助剂), 0.05 g。先将二氧化钒纳米粉体和分散介质,在 1500 rad/min 下高速搅拌分散 30min ,并超声分散 30min ,再将分散助剂和硬脂酸加入其中,在高速搅拌机上恒温 60 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到有硬脂酸改性的二氧化钒纳米复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
实施例 3
取各组分质量如下:二氧化钒纳米粉体(掺杂钨,粒径 20~100 nm ), 15 g;异丙醇(分散介质), 85 g;硅烷偶联剂(含长链烷基,有机改性剂), 1 g;有机改性聚硅氧烷二丙二醇单甲醚溶液(分散助剂), 0.08g。先将二氧化钒纳米粉体和分散介质,在 1000 rad/min 下高速搅拌分散 20min ,并超声分散 60min ,再将分散助剂和硅烷偶联剂加入其中,在高速搅拌机上恒温 80 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到表面接有长链烷基的二氧化钒纳米复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
实施例 4
取各组分质量如下:二氧化钒纳米粉体(掺杂钼,粒径 20~100 nm ), 25 g;异丙醇(分散介质), 75 g;钛酸酯偶联剂(含环氧基团,有机改性剂), 1 g;聚乙烯醇(分散助剂), 0.15g。先将二氧化钒纳米粉体和分散介质在 1500 rad/min 下高速搅拌分散 20min ,并超声分散 60min ,再将分散助剂和钛酸酯偶联剂加入其中,在高速搅拌机上恒温 80 ℃下搅拌 2 h ,再离心沉淀, 70 ℃下真空干燥得到表面接有环氧基团的二氧化钒纳米复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
实施例 5
取各组分质量如下:二氧化钒纳米粉体(掺杂钼,粒径 20~100 nm ), 5 g; 异丙醇(分散介质), 95 g;铝酸酯偶联剂(含长链烷基,有机改性剂), 0.7 g;聚乙烯吡咯烷酮(分散助剂), 0.04g。先将二氧化钒纳米粉体和分散介质,在 1500 rad/min 下高速搅拌分散 20min ,并超声分散 60min ,再将分散助剂和铝酸酯偶联剂加入其中,在高速搅拌机上恒温 80 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到表面接有长链烷基的二氧化钒纳米粉体 ;所得到的二氧化钒及其掺杂复合粉体的主要性能见表1。
实施例 6
取各组分质量如下:二氧化钒纳米粉体(掺杂钨,粒径 20~100 nm ), 10 g;二甲基甲酰胺(分散介质), 90 g;聚丙烯酸 , 1.5g;含氟表面活性剂(分散助剂), 0.1g。先将二氧化钒纳米粉体和分散介质,在 1000 rad/min 下高速搅拌分散 20min ,并超声分散 60min ,再将分散助剂和聚丙烯酸加入其中,在高速搅拌机上恒温 80 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到表面接有聚丙烯酸的二氧化钒纳米复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
实施例 7
取各组分质量如下:二氧化钒纳米粉体(掺杂钨,粒径 20~100 nm ), 20 g;乙醇(分散介质), 80 g;硅烷偶联剂 (含长链烷基胺基,有机改性剂),2.5g;有机表面活性剂(分散助剂), 0.07g。先将二氧化钒纳米粉体和分散介质,在 1500 rad/min 下高速搅拌分散 40min ,并超声分散 30min ,再将分散助剂和硅烷偶联剂加入其中,在高速搅拌机上恒温 80 ℃下搅拌 2 h ,再离心沉淀, 70 ℃下真空干燥得到表面接有长链烷基胺基的二氧化钒纳米复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
实施例 8
取各组分质量如下:二氧化钒纳米粉体(掺杂钨,粒径 20~100 nm ), 10 g;二甲基甲酰胺(分散介质), 90 g;硅烷偶联剂 (含卤化长链烷基,有机改性剂), 1.5g;含氟表面活性剂(分散助剂), 0.06g。 先将二氧化钒纳米粉体和分散介质,在 1000 rad/min 下高速搅拌分散 20min ,并超声分散 60min ,再将分散助剂和硅烷偶联剂加入其中,在高速搅拌机上恒温 80 ℃下搅拌 2 h ,再离心沉淀, 60 ℃下真空干燥得到表面接有卤化长链烷基的二氧化钒纳米复合粉体;所得到的二氧化钒及其掺杂复合粉体的主要性能见表 1 。
参看下表1,从该表可说明本发明提供的方法得到的有机改性二氧化钒及其掺杂纳米复合粉体,其粒径明显小于未改性的粉体,BET比表面积要大于未改性的粉体,浆料稳定性也要明显好于未改性的粉体浆料。通过 300 ℃失重数据可以看出通过表面有机改性过程,可以在纳米粉体表面接上5~11%的有机长链,从而极大提高二氧化钒粉体的化学稳定性和分散性。
表1 :
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 比较例1
化学组合 掺杂钨 未掺杂 掺杂钨 掺杂钼 掺杂钼 掺杂钨 掺杂钨 掺杂钨 掺杂钨
改性剂 硅烷偶联剂 硬质酸 硅烷偶联剂 钛酸酯偶联剂 铝酸酯偶联剂 聚丙烯酸 硅烷偶联剂 硅烷偶联剂 未改性
表面基团 聚乙烯醇基团 十八烷基 长链烷基 环氧基团 长链烷基 聚丙烯长链 长链烷基胺基团 卤化长链烷基 -
动态光散射粒径(nm) 20~100 50~300 20~150 50~150 50~200 60~350 50~150 20~150 20~200
BET比表面积(m3/g) 60~70 45~55 50~60 50~60 45~55 40~50 50~60 50~60 40~50
粉体表面特性 亲水 亲油 亲油 亲水 亲油 亲水 亲水 亲油 亲水
300℃失重 12% 4% 10% 8% 7% 3% 8% 9% 1%
产业应用性 本发明二氧化钒复合粉体可应用于制备智能节能涂层或涂料,制备的涂层透明度高,雾度低、耐老化能力强,主要应用于薄膜,编织物等柔性材料,也可用于玻璃以及外墙等隔热场合。 也可以广泛应用于节能减排设备,例如节能薄膜、节能涂料、太阳能温控装置;或能源信息设备,例如,微型光电开关器件、热敏电阻、电池材料和光信息存储器件。 本发明提供的二氧化钒复合粉体的制备方法,制备工艺创新,通过有机改性剂的有机表面改性过程,可以有效的提高二氧化钒( 二氧化钒 )及其掺杂纳米粉体的分散性和化学稳定性。

Claims (19)

  1. 一种二氧化钒复合粉体,其特征在于,包括化学组成为 V1-xMxO2 的二氧化钒纳米粉体,所述粉体表面接有机改性长链分子 ,其中 M 为掺杂元素, 0 ≤ x ≤ 0.5 。
  2. 根据权利要求 1 所述的二氧化钒复合粉体,其特征在于,所述有机改性长链分子含量在 0.1 ~ 50% 。
  3. 根据权利要求 2 所述的二氧化钒复合粉体,其特征在于,所述有机改性长链分子含量在 1 ~ 10% 。
  4. 根据权利要求 1 所述的二氧化钒复合粉体,其特征在于,所述有机改性长链分子链长度在 0.1nm ~ 100nm 。
  5. 根据权利要求 1 - 4 中任一项所述的二氧化钒复合粉体,其特征在于,所述有机改性长链分子为官能化有机长链。
  6. 根据权利要求 1 - 4 中任一项所述的二氧化钒复合粉体,其特征在于,所述官能化有机长链是长链烷基、聚丙烯酸基团、聚乙烯醇基团、环氧基团、长链烷基胺基团、卤化长链烷基、和 / 或羧基化长链烷基。
  7. 根据权利要求 1 ~ 4 中任一项所述的二氧化钒复合粉体,其特征在于,所述粉体为金红石相二氧化钒纳米粉体,相变温度在 -20 ~ 70 ℃可调。
  8. 根据权利要求 7 所述的二氧化钒复合粉体,其特征在于,所述掺杂元素 M 是元素周期表中钒附近的 21 ~ 30 过渡元素、锡及其附近的元素以及钨、钼、钌、铌等元素中的一个或者任意组合。
  9. 根据权利要求 8 所述的二氧化钒复合粉体,其特征在于,元素周期表中钒附近的 21 ~ 30 过渡元素包括钪、钛、铬、锰、铁、钴、镍、铜、和锌,所述锡及其附近的元素包括铟、锑、锡、镓、锗、铅、和铋。
  10. 根据权利要求 1 ~ 4 中任一项所述的二氧化钒复合粉体,其特征在于,所述粉体的颗粒尺寸在 200nm 以下。
  11. 一种权利要求 1 ~ 10 中任一项所述的二氧 化钒复合粉体的制备方法,其特征在于,包括工序( 1 )将二氧化钒纳米粉体分散于分散介质中,得混合物 A ;( 2 )在所述混合物 A 中加入分散助剂和用于形成二氧化钒粉体表面有机改性长链分子的有机改性剂,搅拌至充分混合均匀得混合物 B ;( 3 )将混合物 B 干燥制得有机改性的二氧化钒复合粉体。
  12. 根据权利要求 11 所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 2 )中加入的所述有机改性剂是硬脂酸、聚丙烯酸,硅烷偶联剂、铝酸酯偶联剂和 / 或钛酸酯偶联剂。
  13. 根据权利要求 12 所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 2 )中加入的所述有机改性剂是含有机高分子长链的硅烷偶联剂 。
  14. 根据权利要求 11 ~ 13 中任一项所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 2 )中加入混合物 A 的 0.05 ~ 5 重量 % 的所述有机改性剂。
  15. 根据权利要求 11 ~ 13 中任一项所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 2 )中所述分散助剂为聚乙烯醇,聚乙烯吡咯烷酮、有机改性聚硅氧烷二丙二醇单甲醚溶液、有机硅表面活性剂和 / 或含氟表面活性剂。
  16. 根据权利要求 11 ~ 13 中任一项所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 2 )中加入混合物 A 的 0.02 ~ 2 重量 % 的所述分散助剂。
  17. 根据权利要求 11 ~ 13 中任一项所述的二氧化钒复合粉体的制 备方法,其特征在于,在工序( 2 )中的所述分散介质是乙醇,异丙醇、氯仿、二甲基甲酰胺、二甲基亚砜二氯乙烷和 / 或丙酮。
  18. 根据权利要求 11 ~ 13 中任一项所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 1 )中二氧化钒纳米粉体与所述分散介质的重量比为 1:1 ~ 1:1000 。
  19. 根据权利要求 18 中任一项所述的二氧化钒复合粉体的制备方法,其特征在于,在工序( 1 )中二氧化钒纳米粉体与所述分散介质的重量比为 1:5:~1:100 。
PCT/CN2012/072018 2012-01-19 2012-03-07 一种二氧化钒复合粉体及其制备方法 WO2013107079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210017918.8A CN103073942B (zh) 2012-01-19 2012-01-19 一种二氧化钒复合粉体及其制备方法
CN201210017918.8 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013107079A1 true WO2013107079A1 (zh) 2013-07-25

Family

ID=48150646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072018 WO2013107079A1 (zh) 2012-01-19 2012-03-07 一种二氧化钒复合粉体及其制备方法

Country Status (2)

Country Link
CN (1) CN103073942B (zh)
WO (1) WO2013107079A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277561A (zh) * 2021-04-26 2021-08-20 中南民族大学 纳米Cr2V4O13材料及其制备方法和应用
CN115197545A (zh) * 2021-04-14 2022-10-18 上海沪正实业有限公司 医用卫生亲水防静电功能填充母粒及其用途
CN115216074A (zh) * 2021-04-14 2022-10-21 上海沪正实业有限公司 医用卫生疏水防尘功能填充母粒及其用途
CN116042013A (zh) * 2022-11-24 2023-05-02 成都先进金属材料产业技术研究院股份有限公司 一种油漆添加剂及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218846B (zh) * 2015-09-10 2018-01-16 昆山博益鑫成高分子材料有限公司 一种微球智能隔热窗膜及其制备方法
CN105838111B (zh) * 2016-05-25 2018-02-23 赣州有色冶金研究所 具有感温变色效果的珠光颜料及其制备方法与系统
CN106047154A (zh) * 2016-07-04 2016-10-26 铜陵方正塑业科技有限公司 一种铝溶胶薄膜涂料及其制备方法
CN106047157A (zh) * 2016-07-04 2016-10-26 铜陵方正塑业科技有限公司 一种抗日晒薄膜涂料及其制备方法
CN108084742A (zh) * 2017-11-22 2018-05-29 纳琳威纳米科技南通有限公司 一种绝缘高导热氮化铝分散液的制备方法和用途
CN108147458B (zh) * 2017-12-11 2019-11-05 青岛大学 一种一步法制备氧化钒量子点的方法
CN108210939B (zh) * 2018-01-16 2021-01-01 四川大学 一种主动式太赫兹成像对比度增强剂及其制备方法
CN108611089A (zh) * 2018-03-27 2018-10-02 纳琳威纳米科技南通有限公司 一种有机改性荧光纳米粉体的制备方法和应用
CN110467230B (zh) * 2019-09-09 2020-05-15 湖北大学 相变温度可调的RuxV1-xO2合金半导体薄膜材料、制备方法及其在智能窗中的应用
CN116023800A (zh) * 2022-12-01 2023-04-28 成都先进金属材料产业技术研究院股份有限公司 一种改性二氧化钒纳米粉体及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538066A (zh) * 2008-12-25 2009-09-23 武汉理工大学 一种实现二氧化钒纳米线单分散修饰和择优取向排列的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726545B1 (fr) * 1994-11-09 1997-01-31 Peintures Jefco Microparticules de dioxyde de vanadium, procede d'obtention desdites microparticules et leur utilisation, notamment pour des revetements de surface
JP3744188B2 (ja) * 1998-03-16 2006-02-08 住友金属鉱山株式会社 熱線遮蔽膜形成用塗布液及び熱線遮蔽膜
CN100434486C (zh) * 2006-10-11 2008-11-19 上海师范大学 一种二氧化钒悬浮液的制备方法
JP5136976B2 (ja) * 2007-09-12 2013-02-06 独立行政法人産業技術総合研究所 バナジウム酸化物薄膜パターン及びその作製方法
JP5598857B2 (ja) * 2009-02-09 2014-10-01 独立行政法人産業技術総合研究所 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
JP5625172B2 (ja) * 2009-12-28 2014-11-19 東亞合成株式会社 二酸化バナジウム微粒子、その製造方法、及びサーモクロミックフィルム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538066A (zh) * 2008-12-25 2009-09-23 武汉理工大学 一种实现二氧化钒纳米线单分散修饰和择优取向排列的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YONG: "Study on Preparation and Modification of the VO2 Nano Functional Materials", SCIENCE-ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 September 2006 (2006-09-15), pages 39 *
SONG, QIANG: "Preparation and Performance Investigation of Vanadium Dioxide Intelligent Temperature Control Materials", SCIENCE-ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 October 2011 (2011-10-15), pages 41 - 43, 49 - 50, 59 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197545A (zh) * 2021-04-14 2022-10-18 上海沪正实业有限公司 医用卫生亲水防静电功能填充母粒及其用途
CN115216074A (zh) * 2021-04-14 2022-10-21 上海沪正实业有限公司 医用卫生疏水防尘功能填充母粒及其用途
CN115216074B (zh) * 2021-04-14 2023-07-21 上海沪正实业有限公司 医用卫生疏水防尘功能填充母粒及其用途
CN113277561A (zh) * 2021-04-26 2021-08-20 中南民族大学 纳米Cr2V4O13材料及其制备方法和应用
CN116042013A (zh) * 2022-11-24 2023-05-02 成都先进金属材料产业技术研究院股份有限公司 一种油漆添加剂及其制备方法

Also Published As

Publication number Publication date
CN103073942B (zh) 2014-09-10
CN103073942A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2013107079A1 (zh) 一种二氧化钒复合粉体及其制备方法
WO2013107080A1 (zh) 一种二氧化钒粉体浆料及其制备方法
WO2013107081A1 (zh) 一种二氧化钒智能温控涂层
US10481301B2 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
US11873383B2 (en) Thermochromic fenestration films containing vanadium dioxide nanocrystals
JP5228376B2 (ja) 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材
JP5548479B2 (ja) 単結晶微粒子の製造方法
Kang et al. Facile fabrication of VO2/SiO2 aerogel composite films with excellent thermochromic properties for smart windows
WO2010055570A1 (ja) 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
WO2010090274A1 (ja) 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
Guo et al. Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties
Guo et al. Influence of dopant valence on the thermochromic properties of VO2 nanoparticles
CN108862389A (zh) 一种高性能氧化钨纳米粉体及其制备方法和应用
JP6004418B2 (ja) Vo2含有組成物及びvo2分散樹脂層の製造方法
Qian et al. Near-infrared-activated VO2 based nanothermochromic smart windows by incorporation of photothermal W18O49 nanorods
CN113214740B (zh) 光反射透明隔热涂料及制备方法和光反射隔热罩面
WO2020224080A1 (zh) 一种储热传热材料及其制备方法
WO2019006154A1 (en) THERMOCHROMIC COMPOSITIONS, THERMOCHROMIC SUBSTRATES AND METHODS OF MAKING THE SAME
Tang et al. Synergetic effect of LaB 6 and ITO nanoparticles on optical properties and thermal stability of poly (vinylbutyral) nanocomposite films
CN113185802A (zh) 三聚氰胺-甲醛树脂包覆的二氧化钒光热响应复合纳米颗粒及其制备方法
Zuo et al. “Cherimoya-like” polysilsequioxane microspheres with structure-enhanced spectral capability for passive daytime radiative cooling
CN107987701B (zh) 一种铝掺杂氧化锌纳米粒子温敏材料涂层、制备方法及其应用
Guo et al. Photothermal polydopamine coated VO2 nanoparticle thin film with enhanced optical property and stability
CN105668625A (zh) 一种被纳米氧化铝包覆的二氧化钒纳米颗粒及其制备方法
JP7133183B2 (ja) サーモクロミック特性を有するvo2担持中空粒子とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865555

Country of ref document: EP

Kind code of ref document: A1