WO2020224080A1 - 一种储热传热材料及其制备方法 - Google Patents

一种储热传热材料及其制备方法 Download PDF

Info

Publication number
WO2020224080A1
WO2020224080A1 PCT/CN2019/100133 CN2019100133W WO2020224080A1 WO 2020224080 A1 WO2020224080 A1 WO 2020224080A1 CN 2019100133 W CN2019100133 W CN 2019100133W WO 2020224080 A1 WO2020224080 A1 WO 2020224080A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
heat
parts
salt mixture
heat transfer
Prior art date
Application number
PCT/CN2019/100133
Other languages
English (en)
French (fr)
Inventor
张志峰
张凌霞
胡西芹
刘红军
Original Assignee
安徽普瑞普勒传热技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽普瑞普勒传热技术有限公司 filed Critical 安徽普瑞普勒传热技术有限公司
Publication of WO2020224080A1 publication Critical patent/WO2020224080A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Definitions

  • the invention relates to the technical field of physical heat transfer and energy storage, in particular to a heat storage and heat transfer material and a preparation method thereof.
  • the choice of heat transfer and storage materials is the basis of heat conversion, transmission and storage.
  • the commonly used heat transfer and storage materials include water/steam, heat transfer oil, molten salt and liquid metal. Because of its good thermophysical properties, nitrate is a potential heat transfer medium and heat storage material in solar thermal power generation applications. However, as a heat storage medium, the relatively low specific heat capacity makes the nitrate heat transfer medium have a lower heat storage density. Dispersing nanoparticles in a heat storage medium is a method to increase the specific heat capacity of heat storage materials. Incorporating a small amount of nanoparticles into the solvent and stably dispersing the nanoparticles, the resulting liquid can be called "nanofluid".
  • incorporating nanoparticles into inorganic salts can abnormally significantly increase the specific heat capacity of inorganic salts.
  • HO and others have obtained inorganic salts with increased specific heat capacity by incorporating the optimal proportion of alumina nanoparticles.
  • the specific heat capacity increased by 20%.
  • SHIN et al. synthesized a nanofluid based on molten salt mixed with SiO 2 nanoparticles, and observed a 26% increase in specific heat capacity after adding 1% mass fraction of nanofluid.
  • ZHOU et al. reported that the nanofluid formed by mixing Al 2 O 3 nanoparticles in water, after adding 21.7% Al 2 O 3 nanoparticles, observed a 40%-50% decrease in specific heat capacity.
  • the purpose of the present invention is to provide a heat storage and heat transfer material and a preparation method thereof.
  • Al 2 O 3 /SiO 2 composite nanoparticles are added to the mixed molten salt to prepare a heat storage and heat transfer material with high specific heat capacity.
  • the thermal material has high heat storage density and excellent performance.
  • a heat storage and heat transfer material whose raw materials include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.06-0.095% of the molten salt mixture, and a dispersant with a mass of 0.15-0.3% of the molten salt mixture;
  • the raw materials of the salt mixture include NaNO 3 , LiNO 3 , K NO 3 , Li 2 CO 3 , and Sr 2 CO 3 .
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 40-65 parts, LiNO 3 : 20-26 parts, KNO 3 : 30-40 parts, Li 2 CO 3 : 25-32 parts , Sr 2 CO 3 : 6-11 parts.
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts .
  • Al 2 O 3 /SiO 2 composite nanoparticles are prepared by the following method:
  • the average particle size D50 of the Al 2 O 3 nanoparticles is 5-15 nm.
  • the average particle size D50 of the Al 2 O 3 /SiO 2 composite nanoparticles is 80-110 nm.
  • the dispersant is polyvinylpyrrolidone.
  • the preparation method of the heat storage and heat transfer material of the present invention includes the following steps:
  • step (2) Place the material obtained in step (1) in a crystallization tank, heat up to 95 ⁇ 2°C and heat for 5-6h at a constant temperature to crystallize the powder; vacuum dry the powder at 50-55°C to obtain the result
  • the heat storage and heat transfer materials
  • the present invention is to add Al 2 O 3 / SiO 2 composite nanoparticles in a molten salt mixture, prepared according to the present invention is obtained.
  • Al 2 O 3 / SiO 2 composite nanoparticles are Al nanoparticles than its diameter in the range of the same 2 O 3 and nano-SiO 2 It is not easy to agglomerate, so it has better dispersion effect in molten salt mixture. Due to the significant reduction of the agglomeration phenomenon, the effect of increasing the specific heat capacity is the best. At the same time, the combined effect of the interface thermal resistance and the semi-solid layer produced by the Al 2 O 3 /SiO 2 composite nanoparticles can effectively increase the specific heat capacity of the molten salt mixture.
  • the components of the mixed molten salt in the present invention are reasonably matched, have a large specific heat capacity, high thermal conductivity, and high latent heat of phase change.
  • Adding polyvinylpyrrolidone for dispersion enhances the dispersibility of Al 2 O 3 /SiO 2 composite nanoparticles in the mixed molten salt, which can effectively alleviate the agglomeration of nanoparticles and further improve the specific heat capacity of the heat storage material.
  • a heat storage and heat transfer material whose raw materials include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.08% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.2% of the molten salt mixture;
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts.
  • Al 2 O 3 /SiO 2 composite nanoparticles are prepared by the following method:
  • the preparation method of heat storage and heat transfer material includes the following steps:
  • step (2) Place the material obtained in step (1) in a crystallization tank, heat up to 95 ⁇ 2°C and heat at a constant temperature for 6 hours to crystallize to obtain a powder; vacuum dry the powder at 50°C to obtain a heat storage and heat transfer material .
  • a heat storage and heat transfer material whose raw materials include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.06% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.25% of the molten salt mixture;
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts.
  • Al 2 O 3 /SiO 2 composite nanoparticles are prepared by the following method:
  • the ethanol and water are mixed uniformly in a mass ratio of 4:1 to obtain an ethanol aqueous solution.
  • the preparation method of heat storage and heat transfer material includes the following steps:
  • step (2) Put the material obtained in step (1) in a crystallization tank, heat up to 95 ⁇ 2°C and heat at constant temperature for 5.5h to crystallize to obtain a powder; vacuum dry the powder at 50°C to obtain heat storage and heat transfer material.
  • a heat storage and heat transfer material the raw materials of which include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.075% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.2% of the molten salt mixture;
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts.
  • Al 2 O 3 /SiO 2 composite nanoparticles are prepared by the following method:
  • the preparation method of heat storage and heat transfer material includes the following steps:
  • step (2) Put the material obtained in step (1) in a crystallization tank, heat up to 95 ⁇ 2°C and heat at a constant temperature for 5h to crystallize to obtain a powder; vacuum dry the powder at 55°C to obtain a heat storage and heat transfer material .
  • a heat storage and heat transfer material the raw materials of which include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.095% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.3% of the molten salt mixture.
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts.
  • the preparation method of the heat storage and heat transfer material is the same as in Example 1.
  • a heat storage and heat transfer material the raw materials of which include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.085% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.2% of the molten salt mixture.
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts.
  • the preparation method of the heat storage and heat transfer material is the same as in Example 3.
  • a heat storage and heat transfer material the raw materials of which include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.06% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.15% of the molten salt mixture.
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 53.5 parts, LiNO 3 : 22.5 parts, KNO 3 : 36 parts, Li 2 CO 3 : 29 parts, Sr 2 CO 3 : 9.5 parts.
  • the preparation method of the heat storage and heat transfer material is the same as in Example 1.
  • a heat storage and heat transfer material whose raw materials include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.065% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.2% of the molten salt mixture;
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 65 parts, LiNO 3 : 20 parts, KNO 3 : 40 parts, Li 2 CO 3 : 32 parts, Sr 2 CO 3 : 11 parts.
  • the preparation method of the heat storage and heat transfer material is the same as in Example 2.
  • a heat storage and heat transfer material whose raw materials include molten salt mixture, Al 2 O 3 /SiO 2 composite nanoparticles with a mass of 0.06-0.095% of the molten salt mixture, and polyvinylpyrrolidone with a mass of 0.15-0.3% of the molten salt mixture;
  • the molten salt mixture is composed of the following components in weight fraction: NaNO 3 : 40 parts, LiNO 3 : 26 parts, KNO 3 : 30 parts, Li 2 CO 3 : 25 parts, Sr 2 CO 3 : 6 parts.
  • the preparation method of the heat storage and heat transfer material is the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Colloid Chemistry (AREA)

Abstract

一种储热传热材料及其制备方法,涉及物理传热储能技术领域。储热传热材料的原料包括熔盐混合物、熔盐混合物质量0.06-0.095%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.15-0.3%的分散剂;所述熔盐混合物的原料包括NaNO 3、LiNO 3、KNO 3、Li 2CO 3、Sr 2CO 3。在混合熔盐中加入Al 2O 3/SiO 2复合纳米颗粒,可制备得到高比热容的储热传热材料,储热传热材料储热密度高,性能优异。

Description

一种储热传热材料及其制备方法 技术领域
本发明涉及物理传热储能技术领域,具体涉及一种储热传热材料及其制备方法。
背景技术
随着科技进步和人类社会发展,能源需求与环境污染问题日益严重,并已成为制约人类社会发展的瓶颈。为此,许多国家大力倡导节能减排,提倡各种可再生能源的开发利用。在众多节能减排与可再生能源利用系统中,热量的转换、传输与储存技术能够保证系统的连续稳定运行,提高系统效率,是节能减排和可再生能源利用的关键技术之一。
传热储热材料的选择是热量转换、传输与储存的基础。目前常用的传热储热材料有水/蒸汽、导热油、熔融盐和液态金属等。硝酸盐因为具有良好的热物理性能,是太阳能热发电应用中极具潜力的热传递介质和储热材料。然而,作为储热介质,相对较低的比热容使得硝酸盐热传递介质具有较低的储热密度。将纳米颗粒分散在储热介质中是一种提高储热材料比热容的方法。在溶剂中掺入少量的纳米颗粒并使纳米颗粒稳定分散,所得的液体可以称为“纳米流体”。据报道,在无机盐中掺入纳米颗粒可以非正常地显著提高无机盐的比热容。HO等通过掺入最优比例的氧化铝纳米颗粒得到了比热容提高的无机盐。BETTS等在二元硝酸盐中掺入SiO 2纳米颗粒后,比热容提高了20%。SHIN等合成了基于熔融盐掺入SiO 2纳米颗粒的纳米流体,并观察到在添加了质量分数1%的纳米流体后有26%的比热容升高。而ZHOU等报道了在水中掺入Al 2O 3纳米颗粒形成的纳米流体、在加入体积含量21.7%的Al 2O 3纳米颗粒后观察到40%~50%的比热容下降。
因此,在储热传热材料中加入适量的纳米SiO 2、纳米Al 2O 3等颗粒,对于提高储热传热材料有较好的效果。因此,对纳米颗粒在储热传热材料中的影响进行研究,并制备新型的高性能储热传热材料,对该领域的发展具有较大作用。
发明内容
本发明的目的在于提供一种储热传热材料及其制备方法,在混合熔盐中加入Al 2O 3/SiO 2复合纳米颗粒,可制备得到高比热容的储热传热材料,储热传热材料储热密度高,性能优异。
为实现以上目的,本发明通过以下技术方案予以实现:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.06-0.095%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.15-0.3%的分散剂;所述熔盐混合物的原料包括NaNO 3、LiNO 3、K NO 3、Li 2CO 3、Sr 2CO 3
优选地,所述熔盐混合物由以下重量分数的组分组成:NaNO 3:40-65份、LiNO 3:20-26份、KNO 3:30-40份、Li 2CO 3:25-32份、Sr 2CO 3:6-11份。
优选地,所述熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
优选地,Al 2O 3/SiO 2复合纳米颗粒由以下方法制备得到:
将乙醇与水按质量比4-5:1混合均匀,得乙醇水溶液,搅拌升温至50-60℃后,加入其质量20-25%的正硅酸乙酯,并加入适量稀盐酸促进反应,保温反应3-6h后,得SiO 2溶胶;然后向SiO 2溶胶中加入纳米Al 2O 3,边搅拌边超声分散2-3h,然后使用无水乙醇洗涤4-5次,将所得溶胶进行干燥,研磨后置于450-490℃的马弗炉中煅烧2-3h,即得所述Al 2O 3/SiO 2复合纳米颗粒。
优选地,所述Al 2O 3纳米颗粒的平均粒径D50为5-15nm。
优选地,所述Al 2O 3/SiO 2复合纳米颗粒的平均粒径D50为80-110nm。
优选地,所述分散剂为聚乙烯吡咯烷酮。
本发明中储热传热材料的制备方法,包括以下步骤:
(1)将熔盐混合物中的各原料混合均匀,并加入其质量2-2.5倍的去离子水中,边搅拌边升温至45-50℃,后加入熔盐混合物质量0.06-0.095%的Al 2O 3/SiO 2复合纳米颗粒,并超声分散1-1.5h;然后加入熔盐混合物质量0.15-0.3%的分散剂,继续超声分散1-1.5h;
(2)将经步骤(1)所得的物料置于结晶罐中,升温至95±2℃下恒温加热5-6h,结晶得粉末;将粉末在50-55℃下进行真空干燥,即得所述储热传热材料。
本发明的有益效果是:
1、本发明在熔盐混合物中添加Al 2O 3/SiO 2复合纳米颗粒,本发明制备得到的Al 2O 3/SiO 2复合纳米颗粒其较相同直径范围的纳米Al 2O 3和纳米SiO 2不易团聚,因此在熔盐混合物中具有较好的分散效果。由于团聚现象的显著减少,比热容增强的效果最好。同时加入的Al 2O 3/SiO 2复合纳米颗粒产生的界面热阻和半固体层的综合作用,可有效提高熔盐混合物的比热容。
2、本发明中的混合熔盐各组分配合合理,其本身比热容大,并具有较高的导热性,相变潜热高。
3、加入聚乙烯吡咯烷酮进行分散,增强了Al 2O 3/SiO 2复合纳米颗粒在混合熔盐中的分散性,可有效缓解纳米颗粒的团聚,进一步提高了储热材料的比热容。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全 部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.08%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.2%的聚乙烯吡咯烷酮;
熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
Al 2O 3/SiO 2复合纳米颗粒由以下方法制备得到:
将乙醇与水按质量比5:1混合均匀,得乙醇水溶液,搅拌升温至55℃后,加入其质量20%的正硅酸乙酯,并加入适量稀盐酸促进反应,保温反应6h后,得SiO 2溶胶;然后向SiO 2溶胶中加入纳米Al 2O 3(平均粒径D50为5nm),边搅拌边超声分散2.5h,然后使用无水乙醇洗涤5次,将所得溶胶进行干燥,研磨后置于480℃的马弗炉中煅烧3h,即得所述Al 2O 3/SiO 2复合纳米颗粒,其平均粒径D50为85nm。
储热传热材料的制备方法,包括以下步骤:
(1)将熔盐混合物中的各原料混合均匀,并加入其质量2.5倍的去离子水中,边搅拌边升温至50℃,后加入Al 2O 3/SiO 2复合纳米颗粒,并超声分散1.5h;然后加入聚乙烯吡咯烷酮,继续超声分散1.5h;
(2)将经步骤(1)所得的物料置于结晶罐中,升温至95±2℃下恒温加热6h,结晶得粉末;将粉末在50℃下进行真空干燥,即得储热传热材料。
实施例2:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.06%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.25%的聚乙烯吡咯烷酮;
熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
Al 2O 3/SiO 2复合纳米颗粒由以下方法制备得到:
将乙醇与水按质量比4:1混合均匀,得乙醇水溶液,搅拌升温至50℃后,加入其质量25%的正硅酸乙酯,并加入适量稀盐酸促进反应,保温反应3h后,得SiO 2溶胶;然后向SiO 2溶胶中加入纳米Al 2O 3(平均粒径D50为10nm),边搅拌边超声分散3h,然后使用无水乙醇洗涤5次,将所得溶胶进行干燥,研磨后置于490℃的马弗炉中煅烧3h,即得所述Al 2O 3/SiO 2复合纳米颗粒,其平均粒径D50为102nm。
储热传热材料的制备方法,包括以下步骤:
(1)将熔盐混合物中的各原料混合均匀,并加入其质量2.5倍的去离子水中,边搅拌边升温至50℃,后加入Al 2O 3/SiO 2复合纳米颗粒,并超声分散80min;然后加入聚乙烯吡咯烷酮,继续超声分散80min;
(2)将经步骤(1)所得的物料置于结晶罐中,升温至95±2℃下恒温加热5.5h,结晶得粉末;将粉末在50℃下进行真空干燥,即得储热传热材料。
实施例3:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.075%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.2%的聚乙烯吡咯烷酮;
熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
Al 2O 3/SiO 2复合纳米颗粒由以下方法制备得到:
将乙醇与水按质量比5:1混合均匀,得乙醇水溶液,搅拌升温至60℃后,加入其质量20%的正硅酸乙酯,并加入适量稀盐酸促进反应,保温反应4.5h后,得SiO 2溶胶;然后向SiO 2溶胶中加入纳米Al 2O 3(平均粒径D50为5nm),边搅拌边超声分散3h,然后使用无水乙醇洗涤4次,将所得溶胶进行干燥,研磨后置于460℃的马弗炉中煅烧3h,即得Al 2O 3/SiO 2复合纳米颗粒,其平均粒径D50为80nm。
储热传热材料的制备方法,包括以下步骤:
(1)将熔盐混合物中的各原料混合均匀,并加入其质量2.5倍的去离子水中,边搅拌边升温至45℃,后加入Al 2O 3/SiO 2复合纳米颗粒,并超声分散1h;然后加入聚乙烯吡咯烷酮,继续超声分散1h;
(2)将经步骤(1)所得的物料置于结晶罐中,升温至95±2℃下恒温加热5h,结晶得粉末;将粉末在55℃下进行真空干燥,即得储热传热材料。
实施例4:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.095%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.3%的聚乙烯吡咯烷酮。
熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
Al 2O 3/SiO 2复合纳米颗粒的制备方法同实施例1。
储热传热材料的制备方法同实施例1。
实施例5:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.085%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.2%的聚乙烯吡咯烷酮。
熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
Al 2O 3/SiO 2复合纳米颗粒的制备方法同实施例1。
储热传热材料的制备方法同实施例3。
实施例6:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.06%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.15%的聚乙烯吡咯烷酮。
熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
Al 2O 3/SiO 2复合纳米颗粒的制备方法同实施例2。
储热传热材料的制备方法同实施例1。
实施例7:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.065%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.2%的聚乙烯吡咯烷酮;
熔盐混合物由以下重量分数的组分组成:NaNO 3:65份、LiNO 3:20份、KNO 3:40份、Li 2CO 3:32份、Sr 2CO 3:11份。
Al 2O 3/SiO 2复合纳米颗粒的制备方法同实施例2。
储热传热材料的制备方法同实施例2。
实施例8:
一种储热传热材料,其原料包括熔盐混合物、熔盐混合物质量0.06-0.095%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.15-0.3%的聚乙烯吡咯烷酮;
熔盐混合物由以下重量分数的组分组成:NaNO 3:40份、LiNO 3:26份、KNO 3:30份、Li 2CO 3:25份、Sr 2CO 3:6份。
Al 2O 3/SiO 2复合纳米颗粒的制备方法同实施例1。
储热传热材料的制备方法同实施例1。
性能测试:
测定实施例1-6中的熔盐混合物的固态比热容和液态比热容,然后再对实施例1-6中所制备得到的储热传热材料的固态比热容和液态比热容进行测定。
表1储热传热材料的比热容值
Figure PCTCN2019100133-appb-000001
由表1可知,加入Al 2O 3/SiO 2复合纳米颗粒后,所得的储热传热材料相对于熔盐混合物其固态比热容和液态比热容具有较大提高。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种储热传热材料,其特征在于,其原料包括熔盐混合物、熔盐混合物质量0.06-0.095%的Al 2O 3/SiO 2复合纳米颗粒以及熔盐混合物质量0.15-0.3%的分散剂;所述熔盐混合物的原料包括NaNO 3、LiNO 3、K NO 3、Li 2CO 3、Sr 2CO 3
  2. 根据权利要求1所述的储热传热材料,其特征在于,所述熔盐混合物由以下重量分数的组分组成:NaNO 3:40-65份、LiNO 3:20-26份、KNO 3:30-40份、Li 2CO 3:25-32份、Sr 2CO 3:6-11份。
  3. 根据权利要求2所述的储热传热材料,其特征在于,所述熔盐混合物由以下重量分数的组分组成:NaNO 3:53.5份、LiNO 3:22.5份、KNO 3:36份、Li 2CO 3:29份、Sr 2CO 3:9.5份。
  4. 根据权利要求1所述的储热传热材料,其特征在于,Al 2O 3/SiO 2复合纳米颗粒由以下方法制备得到:
    将乙醇与水按质量比4-5:1混合均匀,得乙醇水溶液,搅拌升温至50-60℃后,加入其质量20-25%的正硅酸乙酯,并加入适量稀盐酸促进反应,保温反应3-6h后,得SiO 2溶胶;然后向SiO 2溶胶中加入纳米Al 2O 3,边搅拌边超声分散2-3h,然后使用无水乙醇洗涤4-5次,将所得溶胶进行干燥,研磨后置于450-490℃的马弗炉中煅烧2-3h,即得所述Al 2O 3/SiO 2复合纳米颗粒。
  5. 根据权利要求5所述的储热传热材料,其特征在于,所述Al 2O 3纳米颗粒的平均粒径D50为5-15nm。
  6. 根据权利要求5所述的储热传热材料,其特征在于,所述Al 2O 3/SiO 2复合纳米颗粒的平均粒径D50为80-110nm。
  7. 根据权利要求1所述的储热传热材料,其特征在于,所述分散剂为聚乙烯吡咯烷酮。
  8. 根据权利要求1-7中任一项所述的储热传热材料的制备方法,其特征在于,包括以下步骤:
    (1)将熔盐混合物中的各原料混合均匀,并加入其质量2-2.5倍的去离子水中,边搅拌边升温至45-50℃,后加入熔盐混合物质量0.06-0.095%的Al 2O 3/SiO 2复合纳米颗粒,并超声分散1-1.5h;然后加入熔盐混合物质量0.15-0.3%的分散剂,继续超声分散1-1.5h;
    (2)将经步骤(1)所得的物料置于结晶罐中,升温至95±2℃下恒温加热5-6h,结晶得粉末;将粉末在50-55℃下进行真空干燥,即得所述储热传热材料。
PCT/CN2019/100133 2019-05-07 2019-08-12 一种储热传热材料及其制备方法 WO2020224080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910376548.9A CN110041895B (zh) 2019-05-07 2019-05-07 一种储热传热材料及其制备方法
CN201910376548.9 2019-05-07

Publications (1)

Publication Number Publication Date
WO2020224080A1 true WO2020224080A1 (zh) 2020-11-12

Family

ID=67281106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100133 WO2020224080A1 (zh) 2019-05-07 2019-08-12 一种储热传热材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110041895B (zh)
WO (1) WO2020224080A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041895B (zh) * 2019-05-07 2020-07-28 安徽普瑞普勒传热技术有限公司 一种储热传热材料及其制备方法
CN112126208B (zh) * 2020-09-01 2022-11-15 广州大学 一种相变控温材料及其制备方法
CN113969141A (zh) * 2021-11-22 2022-01-25 卓聪(上海)环保科技发展有限公司 It通信设备浸没式冷却液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113854A (zh) * 2013-02-06 2013-05-22 青岛奥环新能源科技发展有限公司 一种移动供热用复合相变材料及其制备方法
US20160355720A1 (en) * 2013-11-19 2016-12-08 Korea Institute Of Energy Research Thermal storage material containing hexanary composition
CN109021927A (zh) * 2017-06-09 2018-12-18 徐辉 用于储热式电暖器的相变储热材料组合物及其制备方法
CN110041895A (zh) * 2019-05-07 2019-07-23 安徽普瑞普勒传热技术有限公司 一种储热传热材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289653B (zh) * 2013-04-24 2015-07-15 华北电力大学 一种混合纳米颗粒高导热性储热熔盐及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113854A (zh) * 2013-02-06 2013-05-22 青岛奥环新能源科技发展有限公司 一种移动供热用复合相变材料及其制备方法
US20160355720A1 (en) * 2013-11-19 2016-12-08 Korea Institute Of Energy Research Thermal storage material containing hexanary composition
CN109021927A (zh) * 2017-06-09 2018-12-18 徐辉 用于储热式电暖器的相变储热材料组合物及其制备方法
CN110041895A (zh) * 2019-05-07 2019-07-23 安徽普瑞普勒传热技术有限公司 一种储热传热材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIERUZZI MANILA: "Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature", SOLAR ENERGY MATERIALS AND SOLAR CELLS, 10 April 2017 (2017-04-10), XP029994378, ISSN: 0927-0248, DOI: 10.1016/j.solmat.2017.04.011 *

Also Published As

Publication number Publication date
CN110041895B (zh) 2020-07-28
CN110041895A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Shah A review on enhancement of phase change materials-A nanomaterials perspective
WO2020224080A1 (zh) 一种储热传热材料及其制备方法
CN103881662B (zh) 一种三元硝酸纳米熔盐传热蓄热介质及其制备方法与应用
CN101824307B (zh) 一种微胶囊复合相变储能材料及其制备方法
CN103911121B (zh) 二元硝酸纳米熔盐传热蓄热介质及其制备方法
CN103073942B (zh) 一种二氧化钒复合粉体及其制备方法
CN109096998B (zh) 一种光热转换相变储能复合材料的制备方法
CN103289653A (zh) 一种混合纳米颗粒高导热性储热熔盐及其制备方法
CN111621264B (zh) 一种纳米改性三水醋酸钠相变储热材料及其制备方法
WO2014114220A1 (zh) 一种纳米熔盐传热蓄热介质及其制备方法与应用
CN107732245B (zh) 一种用于锂电池的硬碳/石墨烯复合负极材料的制备方法
CN107266047B (zh) 一种稀土陶瓷高温相变蓄放能材料及其制备方法
CN108251067B (zh) 基于氧化石墨烯二氧化钛包覆石蜡的相变流体及其制备方法
CN102618016B (zh) 一种透光的隔热薄膜及其制备方法及其应用
WO2016090958A1 (zh) 一种混合型电容器负极浆料制备方法
CN102249210A (zh) 一种共沉淀制备纳米晶磷酸铁锂正极材料的方法
CN103923620A (zh) 基于纳米粒子电磁波吸收的热储存复合材料的制备方法
WO2016110126A1 (zh) 一种含无机纳米颗粒的超级电容器有机电解液
CN105038720A (zh) 一种可高效利用太阳能的定形相变复合材料及其制备方法
CN105754554A (zh) 一种含纳米TiO2的纤维素基低温相变储能微胶囊及其制备方法
CN108923028B (zh) 一种多级纳米Sn基材料及其制备方法
CN103468220B (zh) 一种降低无机纳米相变储能材料熔点的方法
CN104357025A (zh) 一种离子液体纳米流体黑液及其制备方法与应用
CN104650815A (zh) 一种复合定形相变储冷材料及其制备方法
CN116218027B (zh) 一种气凝胶吸波材料、电磁波吸收体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927635

Country of ref document: EP

Kind code of ref document: A1