CN112126208B - 一种相变控温材料及其制备方法 - Google Patents

一种相变控温材料及其制备方法 Download PDF

Info

Publication number
CN112126208B
CN112126208B CN202010902770.0A CN202010902770A CN112126208B CN 112126208 B CN112126208 B CN 112126208B CN 202010902770 A CN202010902770 A CN 202010902770A CN 112126208 B CN112126208 B CN 112126208B
Authority
CN
China
Prior art keywords
phase
powder
change
parts
control material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010902770.0A
Other languages
English (en)
Other versions
CN112126208A (zh
Inventor
徐常威
屈俊任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202010902770.0A priority Critical patent/CN112126208B/zh
Publication of CN112126208A publication Critical patent/CN112126208A/zh
Application granted granted Critical
Publication of CN112126208B publication Critical patent/CN112126208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2262Oxides; Hydroxides of metals of manganese
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2289Oxides; Hydroxides of metals of cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种相变控温材料及其制备方法。本发明的相变控温材料包括以下质量份的组分:主体树脂:70~100份;相变金属氧化物粉末:1~10份;有机相变材料:5~20份;导热粉体:8~25份;分散剂:1~5份;相容剂:0~5份;抗氧剂:0.1~1份。本发明的相变控温材料的制备方法包括以下步骤:将各组分混合均匀后加入双螺杆挤出机,挤出造粒,即得。本发明的相变控温材料的相变潜热大、热导率高、综合力学性能优异,且制备方法简单,可以广泛用于电池外壳、家电外壳、工业设备外壳等产品的生产加工。

Description

一种相变控温材料及其制备方法
技术领域
本发明涉及相变材料技术领域,具体涉及一种相变控温材料及其制备方法。
背景技术
塑料是诸多电子电气设备生产过程中需要使用的材料,例如:灯具的基座和保护罩、手机和电脑外壳、电池外壳、各种家电组件等。在这些设备的使用过程中,塑料外壳的温度是影响使用效果的一大因素,塑料温度的控制能够保证电器功率的稳定输出以及提高使用者的使用体验,且还能有效防止火灾的发生。目前,塑料温度的控制往往需要额外进行制冷或加热,能源消耗大。因此,零能耗控温成为了研究的方向和重点。
相变材料在相变过程中可以吸收或释放大量潜热,能够有效吸收设备产生的热量,且温度几乎不变,将其添加到塑料中,有望开发一种相变控温材料,实现零能耗控温。相变材料可以分为无机相变材料和有机相变材料,无机相变材料的溶解热大、价格较便宜,有机相变材料固体状态时成型性较好、不容易出现过冷现象和相分离。然而,无机相变材料用于塑料容易发生相分离,且在塑料挤出和加工过程中易出现不可逆地脱水,在实际应用中无法达到相变控温的效果,而有机相变材料的导热系数小、单位体积的储能能力较小,热量吸收或释放过于缓慢,用于塑料不利于温度控制,容易造成热量吸收过慢而引发火灾。因此,目前尚未开发出实际使用效果让人满意的相变控温材料。
发明内容
本发明的目的之一在于提供一种相变控温材料。
本发明的另一目的在于提供一种相变控温材料的制备方法。
本发明所采取的技术方案是:
一种相变控温材料,包括以下质量份的组分:
主体树脂:70~100份;
相变金属氧化物粉末:1~10份;
有机相变材料:5~20份;
导热粉体:8~25份;
两亲性分散剂:1~5份;
相容剂:0~5份;
抗氧剂:0.1~1份。
优选的,一种相变控温材料,包括以下质量份的组分:
主体树脂:75~90份;
相变金属氧化物粉末:2~8份;
有机相变材料:8~15份;
导热粉体:10~20份;
两亲性分散剂:2~4份;
相容剂:0~3份;
抗氧剂:0.1~1份。
优选的,所述主体树脂为聚酰胺树脂、聚苯醚树脂、聚对苯二甲酸乙二醇酯树脂、聚碳酸酯树脂、聚甲醛树脂、乙烯-醋酸乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、热塑性聚氨酯弹性体、氢化苯乙烯-丁二烯嵌段共聚物中的至少一种。
优选的,所述相变金属氧化物粉末为二氧化钒粉末、二氧化锆粉末、二氧化锰粉末、氧化铜粉末、四氧化三钴粉末、二氧化锡粉末中的至少一种。
进一步优选的,所述相变金属氧化物粉末为二氧化钒粉末。
优选的,所述相变金属氧化物粉末的粒径为1~20μm。
进一步优选的,所述相变金属氧化物粉末的粒径为2~10μm。
优选的,所述有机相变材料为石蜡、季戊四醇、三羟甲基氨基甲烷、新戊二醇、月桂酸、葵酸、硬脂酸丁酯、丙二醇硬脂酸酯、硬脂酸异丙酯、三硬酯酸甘油酯中的至少一种。
进一步优选的,所述有机相变材料为三硬酯酸甘油酯。
优选的,所述导热粉体为导热碳粉、鳞片石墨粉、石墨烯粉末、碳纳米管粉末、氮化硼粉末、氧化镁粉末、氧化锌粉末、氧化铝粉末、碳化硅粉末中的至少一种。
进一步优选的,所述导热粉体为鳞片石墨粉。
优选的,所述导热粉体的粒径为1~10μm。
优选的,所述两亲性分散剂为氯化苄基三乙基铵、十六烷基苯磺酸钠、聚乙烯吡咯烷酮、四丁基硫酸氢铵、甘胆酸钠、环糊精、十四烷基二甲基苄基氯化铵、十六烷基二甲基苄基溴化铵、十八烷基二甲基苄基溴化铵中的至少一种。
进一步优选的,所述两亲性分散剂为氯化苄基三乙基铵。
优选的,所述相容剂为马来酸酐接枝丙烯腈-丁二烯-苯乙烯共聚物、马来酸酐接枝氢化苯乙烯-丁二烯嵌段共聚物、马来酸酐接枝聚乙烯、马来酸酐接枝聚丙烯中的至少一种。
进一步优选的,所述相容剂为马来酸酐接枝聚丙烯。
优选的,所述抗氧剂为双肉桂酰基硫代双丙酸脂、对叔丁基邻苯二酚、2,5-二叔丁基对苯二酚、柠檬酸、抗坏血酸、2,6-二叔丁基对甲酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、亚磷酸三壬基苯酯中的至少一种。
进一步优选,所述抗氧剂为对叔丁基邻苯二酚。
上述相变控温材料的制备方法包括以下步骤:将各组分混合均匀后加入双螺杆挤出机,挤出造粒,即得相变控温材料。
优选的,上述相变控温材料的制备方法包括以下步骤:将主体树脂、相变金属氧化物粉末、有机相变材料、导热粉体、两亲性分散剂、相容剂和抗氧剂加入搅拌机,搅拌均匀,再转入双螺杆挤出机,挤出造粒,即得相变控温材料。
优选的,所述搅拌机的转速为500~800r/min,搅拌时间5~30min。
优选的,所述双螺杆挤出机的加工温度为120~260℃,螺杆转速为25~100r/min。
本发明的有益效果是:本发明的相变控温材料的相变潜热大、热导率高、综合力学性能优异,且制备方法简单,可以广泛用于电池外壳、家电外壳、工业设备外壳等产品的生产加工。
具体来说:
1)本发明的相变控温材料中添加有相变金属氧化物粉末、有机相变材料和导热粉体,相变金属氧化物粉末和有机相变材料的复配可以综合两种相变材料的优点,同时导热粉体可以使材料内部形成导热网络,提高了材料的热导率,有利于热量的快速吸收或快速释放;
2)本发明的相变控温材料中添加有导热粉体,其在材料内部形成的网络可以在一定程度上增加材料的刚性,提高了材料的抗蠕变性能,有利于防止制品在使用过程中发生蠕变,而有机相变材料、两亲性分散剂和相容剂又可以为材料提供一定的韧性,有利于提高材料的综合力学性能,便于生产加工;
3)本发明的相变控温材料中添加有两亲性分散剂,其可以促进相变金属氧化物粉末、导热粉体等无机粉体的分散,阻止无机粉体的团聚,且相容剂的加入又进一步加大了基体材料与无机粉料之间的相互作用,可以避免无机粉料在材料生产加工过程中出现相分离以及制品使用过程中剥落而导致的功能下降;
4)本发明通过调节所添加的相变材料的种类,便可以制备得到控温温度不同的材料,适用范围广。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种相变控温材料,其组成如下表所示:
表1一种相变控温材料的组成表
组分 质量份
聚碳酸酯树脂 75
二氧化锆粉末(粒径2~10μm) 2
三羟甲基氨基甲烷 8
氮化硼粉末(粒径1~10μm) 8
氯化苄基三乙基铵 2
抗坏血酸 1
上述相变控温材料的制备方法包括以下步骤:将聚碳酸酯树脂、二氧化锆粉末、三羟甲基氨基甲烷、氮化硼粉末、氯化苄基三乙基铵和抗坏血酸加入搅拌机,调节搅拌机的转速至550r/min,搅拌15min,再转入双螺杆挤出机,控制加工温度为215~230℃,螺杆转速为45~70r/min,挤出造粒,即得相变控温材料。
实施例2:
一种相变控温材料,其组成如下表所示:
表2一种相变控温材料的组成表
Figure BDA0002660322020000041
上述相变控温材料的制备方法包括以下步骤:将丙烯腈-丁二烯-苯乙烯共聚物、氧化铜粉末、硬脂酸异丙酯、鳞片石墨粉、氧化镁粉末、十八烷基二甲基苄基溴化铵、马来酸酐接枝丙烯腈-丁二烯-苯乙烯共聚物和对叔丁基邻苯二酚加入搅拌机,调节搅拌机的转速至600r/min,搅拌10min,再转入双螺杆挤出机,控制加工温度为165~185℃,螺杆转速为55~80r/min,挤出造粒,即得相变控温材料。
实施例3:
一种相变控温材料,其组成如下表所示:
表3一种相变控温材料的组成表
组分 质量份
聚酰胺树脂 90
二氧化钒粉末(粒径2~10μm) 5
石蜡 10
导热碳粉(粒径1~10μm) 7
氮化硼粉末(粒径1~10μm) 5
甘胆酸钠 4
柠檬酸 0.3
抗氧剂264 0.5
上述相变控温材料的制备方法包括以下步骤:将聚酰胺树脂、二氧化钒粉末、石蜡、导热碳粉、氮化硼粉末、甘胆酸钠、柠檬酸和抗氧剂264加入搅拌机,调节搅拌机的转速至800r/min,搅拌20min,再转入双螺杆挤出机,控制加工温度为220~245℃,螺杆转速为65~90r/min,挤出造粒,即得相变控温材料。
实施例4:
一种相变控温材料,其组成如下表所示:
表4一种相变控温材料的组成表
Figure BDA0002660322020000051
Figure BDA0002660322020000061
上述相变控温材料的制备方法包括以下步骤:将氢化苯乙烯-丁二烯嵌段共聚物、四氧化三钴粉末、季戊四醇、新戊二醇、石墨烯粉末、碳纳米管粉末、氧化锌粉末、环糊精、马来酸酐接枝氢化苯乙烯-丁二烯嵌段共聚物、2,5-二叔丁基对苯二酚和双肉桂酰基硫代双丙酸脂加入搅拌机,调节搅拌机的转速至700r/min,搅拌25min,再转入双螺杆挤出机,控制加工温度为190~225℃,螺杆转速为30~55r/min,挤出造粒,即得相变控温材料。
实施例5:
一种相变控温材料,其组成如下表所示:
表5一种相变控温材料的组成表
组分 质量份
聚对苯二甲酸乙二醇酯树脂 100
二氧化锰粉末(粒径2~10μm) 4
二氧化锆粉末(粒径2~10μm) 5
三硬酯酸甘油酯 11
碳化硅粉末(粒径1~10μm) 10
鳞片石墨粉(粒径1~10μm) 6
四丁基硫酸氢铵 3
抗氧剂1076 0.6
上述相变控温材料的制备方法包括以下步骤:将聚对苯二甲酸乙二醇酯树脂、二氧化锰粉末、二氧化锆粉末、三硬酯酸甘油酯、碳化硅粉末、鳞片石墨粉、四丁基硫酸氢铵和抗氧剂1076加入搅拌机,调节搅拌机的转速至650r/min,搅拌30min,再转入双螺杆挤出机,控制加工温度为245~260℃,螺杆转速为45~70r/min,挤出造粒,即得相变控温材料。
对比例1:
一种相变控温材料,除了未添加有机相变材料(11质量份的三硬酯酸甘油酯),其他组分和制备方法与实施例5完全一样。
对比例2:
一种相变控温材料,除了未添加相变金属氧化物粉末(4质量份的二氧化锰粉末+5质量份的二氧化锆粉末),其他组分和制备方法与实施例5完全一样。
对比例3:
一种相变控温材料,除了未添加导热粉体(10质量份的碳化硅粉末+6质量份的鳞片石墨粉),其他组分和制备方法与实施例5完全一样。
对比例4:
聚对苯二甲酸乙二醇酯树脂。
性能测试:
将实施例1~5和对比例1~4的材料制成测试样条进行性能测试,测试结果如下表所示:
表6实施例1~5的材料的性能测试结果
测试项目 实施例1 实施例2 实施例3 实施例4 实施例5
拉伸强度(MPa) 74.28 46.52 49.41 11.26 68.68
弯曲强度(MPa) 77.32 61.51 62.87 8.32 92.24
断裂伸长率(%) 37.11 25.74 39.48 242.14 29.15
导热系数(W·m<sup>-1</sup>·K<sup>-1</sup>) 1.9 2.1 2.3 1.9 2.5
相变温度(℃) 48~51 50~53 51~55 47~50 55~62
相变潜热(kJ·kg<sup>-1</sup>) 129.5 132.3 142.9 133.6 153.1
表7对比例1~4的材料的性能测试结果
Figure BDA0002660322020000071
Figure BDA0002660322020000081
注:
拉伸强度:参照“GB/T 1040.2-2006塑料拉伸性能的测定”进行测试;
弯曲强度:参照“GB/T 9341-2000塑料弯曲性能试验方法”进行测试;
断裂伸长率:参照“GB/T 1040.2-2006塑料拉伸性能的测定”进行测试;
导热系数:参照“GB/T 10297-2015非金属固体材料导热系数的测定热线法”进行测试;
相变温度:用差示扫描量热法测试;
相变潜热:用差示扫描量热法测试。
由表6和表7可知:实施例1~5的相变控温材料具有相变控温的效果,相变潜热大,相变温度可调控,与对比例1和2的相变控温材料相比,相变潜热明显增大,与对比例3的相变控温材料相比,导热系数明显提高,有助于热量的传递,而导热粉体与相变金属氧化物粉末共同提高了材料的拉伸强度和弯曲强度,能够满足产品在使用过程中力学性能需求。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种相变控温材料,其特征在于,包括以下质量份的组分:
主体树脂:70~100份;
相变金属氧化物粉末:1~10份;
有机相变材料:5~20份;
导热粉体:8~25份;
两亲性分散剂:1~5份;
相容剂:0~5份;
抗氧剂:0.1~1份;
所述相变金属氧化物粉末为二氧化钒粉末、二氧化锆粉末、二氧化锰粉末、氧化铜粉末、四氧化三钴粉末、二氧化锡粉末中的至少一种;
所述相变金属氧化物粉末的粒径为1~20μm;
所述有机相变材料为石蜡、季戊四醇、三羟甲基氨基甲烷、新戊二醇、月桂酸、癸 酸、硬脂酸丁酯、丙二醇硬脂酸酯、硬脂酸异丙酯、三硬脂 酸甘油酯中的至少一种;
所述导热粉体为导热碳粉、鳞片石墨粉、石墨烯粉末、碳纳米管粉末、氮化硼粉末、氧化镁粉末、氧化锌粉末、氧化铝粉末、碳化硅粉末中的至少一种;
所述导热粉体的粒径为1~10μm;
所述两亲性分散剂为氯化苄基三乙基铵、十六烷基苯磺酸钠、聚乙烯吡咯烷酮、四丁基硫酸氢铵、甘胆酸钠、环糊精、十四烷基二甲基苄基氯化铵、十六烷基二甲基苄基溴化铵、十八烷基二甲基苄基溴化铵中的至少一种。
2.根据权利要求1所述的相变控温材料,其特征在于:所述主体树脂为聚酰胺树脂、聚苯醚树脂、聚对苯二甲酸乙二醇酯树脂、聚碳酸酯树脂、聚甲醛树脂、乙烯-醋酸乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、热塑性聚氨酯弹性体、氢化苯乙烯-丁二烯嵌段共聚物中的至少一种。
3.根据权利要求1或2所述的相变控温材料,其特征在于:所述相容剂为马来酸酐接枝丙烯腈-丁二烯-苯乙烯共聚物、马来酸酐接枝氢化苯乙烯-丁二烯嵌段共聚物、马来酸酐接枝聚乙烯、马来酸酐接枝聚丙烯中的至少一种;所述抗氧剂为双肉桂酰基硫代双丙酸脂、对叔丁基邻苯二酚、2,5-二叔丁基对苯二酚、柠檬酸、抗坏血酸、2,6-二叔丁基对甲酚、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、亚磷酸三壬基苯酯中的至少一种。
4.权利要求1~3中任意一项所述的相变控温材料的制备方法,其特征在于,包括以下步骤:
将各组分混合均匀后加入双螺杆挤出机,挤出造粒,即得相变控温材料。
CN202010902770.0A 2020-09-01 2020-09-01 一种相变控温材料及其制备方法 Active CN112126208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010902770.0A CN112126208B (zh) 2020-09-01 2020-09-01 一种相变控温材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010902770.0A CN112126208B (zh) 2020-09-01 2020-09-01 一种相变控温材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112126208A CN112126208A (zh) 2020-12-25
CN112126208B true CN112126208B (zh) 2022-11-15

Family

ID=73848554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010902770.0A Active CN112126208B (zh) 2020-09-01 2020-09-01 一种相变控温材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112126208B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680197B (zh) * 2021-01-06 2022-01-04 华中科技大学 一种无机水合盐复合相变材料及其制备方法
CN114574169B (zh) * 2022-02-09 2023-10-03 中国科学院深圳先进技术研究院 一种二氧化钒-氮化硼相变导热复合材料及其制备方法和应用
CN114874756B (zh) * 2022-07-12 2022-09-16 北京金羽新能科技有限公司 复合相变材料及其制备方法和应用
CN114892307B (zh) * 2022-07-13 2022-09-30 北京金羽新能科技有限公司 一种锂电池铝塑膜调温粘合层
CN115558468B (zh) * 2022-09-22 2023-06-20 武汉长盈通热控技术有限公司 一种高导热的液-固相变储能材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773317A (zh) * 2012-10-24 2014-05-07 深圳市润麒麟科技发展有限公司 一种多层碳纳米管复合相变储能材料及其制备方法
US10093843B2 (en) * 2013-10-15 2018-10-09 Enrad Ltd. Elastomer and/or composite based material for thermal energy storage
CN110041895B (zh) * 2019-05-07 2020-07-28 安徽普瑞普勒传热技术有限公司 一种储热传热材料及其制备方法
CN110305470A (zh) * 2019-07-02 2019-10-08 金旸(厦门)新材料科技有限公司 一种固/固相变储能复合改性尼龙材料和制备原料及其制备方法和应用

Also Published As

Publication number Publication date
CN112126208A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN112126208B (zh) 一种相变控温材料及其制备方法
CN107603211B (zh) 一种高流动高韧性导热尼龙复合材料及其制备方法
CN102977603B (zh) 一种耐高温高导热pps/ppo合金及其制备方法
CN103087456A (zh) 一种耐热abs材料及其制备方法
CN103435895B (zh) 一种制备绝缘高导热复合材料的方法
CN102850650A (zh) 一种玄武岩纤维增强聚丙烯复合材料及其制备方法
CN112409701B (zh) 一种低密度导电聚丙烯组合物及其制备方法与应用
Lou et al. Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites
CN109251419A (zh) 一种高导热系数聚丙烯改性材料及其制备方法
CN107974057A (zh) 一种高刚高韧耐热低翘曲导电pbt/pct合金
CN112694661A (zh) 一种兼具导热和吸波功能的电磁屏蔽聚丙烯复合材料及其制备方法
CN111378226A (zh) 一种高导热石墨烯复合材料及其制备方法
CN111925594A (zh) 石墨烯增强聚丙烯复合材料及其制备方法、导热产品
CN109553963B (zh) 一种散热材料及其制备方法
CN112552604B (zh) 一种导热绝缘聚丙烯复合材料及其制备方法和应用
CN110978366B (zh) 一种用于提高发泡材料中的功能组分添加量的方法
CN111393744A (zh) 具有抗菌导电性的tpe材料及其制备方法
CN103980676A (zh) 一种高导热导电聚对苯二甲酸丁二醇酯复合材料及其制备方法
CN103214799A (zh) 一种导热抗静电pet/ptt材料及其制备方法
CN109867859B (zh) 具有导电性的聚丙烯纳米复合材料及其制备方法
CN105733116A (zh) 一种耐磨导电性高的pe-ps合金及其制备方法
CN111534075B (zh) 一种热塑性导热复合材料及其制备方法
CN111253656A (zh) 一种碳纳米管/抗静电剂复合改性聚乙烯材料及其制备方法
CN115678196A (zh) 基于液态金属增韧的高分子复合材料及其制备方法
CN114381084A (zh) 一种导热绝缘母粒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant