WO2013102973A1 - 冷却装置及びそれを用いた電子機器 - Google Patents

冷却装置及びそれを用いた電子機器 Download PDF

Info

Publication number
WO2013102973A1
WO2013102973A1 PCT/JP2012/007941 JP2012007941W WO2013102973A1 WO 2013102973 A1 WO2013102973 A1 WO 2013102973A1 JP 2012007941 W JP2012007941 W JP 2012007941W WO 2013102973 A1 WO2013102973 A1 WO 2013102973A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing
height
cooling device
unit
refrigerant
Prior art date
Application number
PCT/JP2012/007941
Other languages
English (en)
French (fr)
Inventor
正樹 千葉
吉川 実
坂本 仁
暁 小路口
賢一 稲葉
有仁 松永
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP12864294.9A priority Critical patent/EP2801780B1/en
Priority to JP2013552343A priority patent/JP6015675B2/ja
Priority to CN201280066148.4A priority patent/CN104040278A/zh
Priority to US14/370,190 priority patent/US20140331709A1/en
Publication of WO2013102973A1 publication Critical patent/WO2013102973A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a cooling device such as a semiconductor device or an electronic device, and more particularly, to a cooling device using a boiling cooling method that transports and dissipates heat by a phase change cycle of refrigerant vaporization and condensation, and an electronic device using the same.
  • a cooling device using the heat pipe that circulates the hydraulic fluid by capillary force there is a problem that the hydraulic fluid is dried out and the cooling performance is deteriorated.
  • a cooling device using a boiling cooling (thermosyphon) system that transports and dissipates heat using a phase change cycle of refrigerant vaporization and condensation and reflux by gravity, the refrigerant is a gas-liquid two-phase flow Since it moves, the heat transport capability can be improved. Therefore, it is expected as a cooling device for semiconductor devices and electronic devices that generate a large amount of heat.
  • FIG. 13 is a side cross-sectional view showing a configuration of a related boiling cooling device 500 described in Patent Document 1.
  • the related boiling cooling apparatus 500 is used for cooling a semiconductor device 502 as a heat generation source such as a CPU mounted on a circuit board 501.
  • the related boiling cooling apparatus 500 includes a boiling unit 510 attached to the surface of the semiconductor device 502 and a condensing unit 520 having a radiator, and a pair of pipes composed of a vapor pipe 531 and a liquid return pipe 532 are attached therebetween. It has been.
  • the boiling cooling apparatus 500 related here is maintained in a reduced (low) pressure state of about 1/10 of the atmospheric pressure, and without external power such as an electric pump due to the phase change of water as a liquid refrigerant.
  • a thermosiphon capable of circulating the refrigerant liquid is constructed.
  • the heat generated in the semiconductor device 502, which is a heat source, is transmitted to the boiling unit 510.
  • water (Wa) which is a liquid refrigerant
  • the generated steam (ST) passes through the steam pipe 531 from the boiling section 510 and is condensed.
  • AIR air
  • the cooling fan 540 or the like the refrigerant vapor is cooled by air (AIR) blown by the cooling fan 540 or the like to become liquid (water), and then recirculates to the boiling unit 510 through the liquid return pipe 532 by gravity. .
  • the condensing unit 520 includes a plurality of flat tubes, and a large number of fine grooves are formed on the inner wall surface thereof. With such a configuration, it is possible to improve the condensation heat transfer coefficient and improve the performance of the condensing unit 520, so that the heat generated from the heating element can be cooled at low cost and efficiently. , And.
  • a socket or the like for maintaining and exchanging a central processing unit (CPU) is mounted on a substrate. Therefore, in a thin electronic device such as a server (hereinafter also referred to as “1U server”) mounted in a rack having a height of “1U”, a space allowed for a cooling device for cooling the CPU is about 25 mm. It will be limited to the height.
  • the related boiling cooling apparatus employs a thermosiphon system that utilizes the buoyancy of the refrigerant vapor and the gravity of the liquid refrigerant
  • the condensing part is arranged vertically above the boiling part.
  • the condensing part and the boiling part are arranged in the above-described space of about 25 mm, a sufficient level difference cannot be obtained, and the reflux of the refrigerant due to gravity is hindered. Therefore, it becomes difficult to obtain sufficient cooling performance.
  • the condensing unit 520 is cooled by air (AIR) blown by a cooling fan 540 or the like.
  • AIR air
  • the related boiling cooling device is mounted on a thin electronic device, the air flow path from the cooling fan is limited, and the warm air absorbed in the condenser 520 flows in the electronic device. Therefore, there has been a problem that the cooling efficiency of the entire electronic device is reduced.
  • the related boiling cooling device has a problem that not only a sufficient cooling performance can be obtained when mounted on a thin electronic device, but also the cooling efficiency of the entire electronic device is lowered.
  • the object of the present invention is a cooling device using the boiling cooling system, which is the above-mentioned problem, and not only a sufficient cooling performance cannot be obtained when mounted on a thin electronic device, but also the cooling efficiency of the entire electronic device is reduced.
  • An object of the present invention is to provide a cooling device and an electronic device using the same.
  • the cooling device passes through an evaporating unit that stores refrigerant, a condensing unit that condenses and liquefies the gas-phase refrigerant vaporized by the evaporating unit, a pipe that connects the evaporating unit and the condensing unit, and a condensing unit.
  • the evaporation means and the condensing means are positioned at substantially the same height with respect to the vertical direction, and the evaporation means is disposed in the evaporation container and the evaporation container.
  • Partition wall means for partitioning the refrigerant the height of the partition wall means is not less than the height of the gas-liquid interface of the refrigerant and less than the height of the evaporation container, and the pipe is a vapor pipe through which the gas-phase refrigerant flows And a liquid pipe through which the condensed liquid phase refrigerant flows, and the condensing means includes a first condensing means and a second condensing means different in height in the vertical direction of a condensing container constituting the condensing means.
  • the condensing means height of the first condensing means is the second condensing means
  • the first condensing means includes a steam pipe connecting portion connected to the steam pipe at a position vertically above the condensing means height of the second condensing means. Arranged above the condensing means.
  • the electronic apparatus includes a cooling device, a heating element, and a heat radiating unit.
  • the cooling device condenses and liquefies the vapor phase refrigerant vaporized by the evaporation unit that stores the refrigerant, and performs heat dissipation.
  • the evaporating means and the condensing means are substantially the same height with respect to the vertical direction.
  • the evaporation means comprises an evaporation container and partition means for partitioning the refrigerant disposed in the evaporation container, and the height of the partition means is equal to or higher than the height of the gas-liquid interface of the refrigerant, and the evaporation container
  • the pipe includes a vapor pipe in which the gas-phase refrigerant flows and a liquid pipe in which the condensed liquid-phase refrigerant flows, and the condensing means is a vertical height of the condensing container constituting the condensing means.
  • the first condensing means and the second condensing means having different heights are included.
  • the condensing means height of the first condensing means is higher than the condensing means height of the second condensing means, and the first condensing means is positioned vertically above the condensing means height of the second condensing means.
  • a steam pipe connecting means for connecting to the steam pipe, the rectifying means is disposed above the second condensing means, and the evaporating means is disposed thermally connected to the top of the heating element;
  • the means is disposed in thermal connection with the upper part of the heat dissipation means.
  • the cooling of the boiling cooling method has sufficient cooling performance and can avoid a decrease in the cooling efficiency of the entire electronic device. A device is obtained.
  • FIG. 1 It is side surface sectional drawing which shows the structure of the cooling device which concerns on the 1st Embodiment of this invention. It is a figure which shows the structure of the cooling device which concerns on the 1st Embodiment of this invention, and is the II-II sectional view taken on the line in FIG. It is a see-through
  • FIG. 8 is a diagram showing a configuration of a cooling device according to a third embodiment of the present invention, and is a cross-sectional view taken along line VIII-VIII in FIG. It is a see-through
  • FIG. 1 It is a figure which shows another structure of the cooling device which concerns on the 3rd Embodiment of this invention, and is the VIII-VIII sectional view taken on the line in FIG. It is side surface sectional drawing which shows the structure of the electronic device which concerns on the 4th Embodiment of this invention. It is side surface sectional drawing which shows another structure of the electronic device which concerns on the 4th Embodiment of this invention. It is side surface sectional drawing which shows the structure of the related boiling cooling device.
  • FIG. 1 is a side sectional view showing a configuration of a cooling device 100 according to a first embodiment of the present invention.
  • the cooling device 100 includes an evaporation unit 110 that stores the refrigerant 130, a condensing unit 120 that condenses and liquefies the gas-phase refrigerant vaporized by the evaporation unit 110, and a pipe 140 that connects the evaporating unit 110 and the condensing unit 120. . Therefore, the condensing unit 120 can be disposed apart from the heating element 160 that is thermally connected to the evaporation unit 110.
  • the evaporating unit 110 and the condensing unit 120 are located at substantially the same height with respect to the vertical direction. As a result, the electronic device can be mounted on a thin electronic device in which the height of the device is limited.
  • the evaporation unit 110 includes an evaporation container 111 and a partition wall 112 that partitions the refrigerant 130 disposed in the evaporation container 111.
  • the height of the partition wall 112 is equal to or higher than the height of the gas-liquid interface of the refrigerant 130 and less than the height of the evaporation container 111.
  • the gas-liquid interface of the refrigerant means an interface between the liquid-phase refrigerant and the gas-phase refrigerant.
  • the pipe 140 includes a vapor pipe 141 through which a gas-phase refrigerant flows and a liquid pipe 142 through which a condensed liquid-phase refrigerant flows.
  • the inside of the evaporation container 111 can always be maintained at the saturated vapor pressure of the refrigerant 130 by using a low boiling point material for the refrigerant 130 and injecting the refrigerant 130 into the evaporation container 111 and then evacuating.
  • hatched portions in the evaporation unit 110 and the condensing unit 120 indicate a liquid phase refrigerant
  • a dotted line in the hatched portion indicates a gas-liquid interface of the refrigerant 130.
  • the refrigerant 130 for example, a low boiling point refrigerant such as hydrofluorocarbon or hydrofluoroether which is an insulative and inert material can be used.
  • the material which comprises the evaporation part 110 and the condensation part 120 can use the metal which was excellent in the heat conductivity, for example, aluminum, copper, etc.
  • the condensing unit 120 includes a first condensing unit 122 and a second condensing unit 123 having different condensing unit heights which are heights in the vertical direction of the condensing container 121 constituting the condensing unit 120.
  • the condensing part height of the first condensing part 122 is configured to be higher than the condensing part height of the second condensing part 123.
  • the first condensing unit 122 includes a steam pipe connecting unit 124 connected to the steam pipe 141 at a position vertically above the condensing unit height of the second condensing unit 123.
  • the cooling device 100 includes a rectifying unit 150 disposed on the upper surface of the second condensing unit 123.
  • the rectifying unit 150 controls the flow direction of the air passing through the condensing unit 120.
  • the rectifying unit 150 is arranged without causing an increase in the height of the condensing unit while securing the volume occupied by the gas-phase refrigerant (refrigerant vapor) in the condensing unit 120. It becomes possible.
  • FIGS. 3 is a perspective view showing a configuration in the vicinity of the condensing unit 120 of the cooling device 100 according to the present embodiment.
  • FIG. 4 is a top view showing the configuration of the cooling device 100 according to the present embodiment.
  • the rectifying unit 150 may include a plurality of rectifying thin plates 152 in which rectangular thin plates are erected. At this time, a part of the air (cooling air 170) flowing into the condensing part flows along the rectifying thin plate 152.
  • the cooling air 170 can be configured to be sent out by a cooling fan for cooling an electronic device on which the cooling device 100 is mounted.
  • the extending direction of the rectifying thin plate 152 can be inclined with respect to the inflow direction of the air (cooling air 170) flowing into the condensing unit 120.
  • the flow direction of the cooling air can be changed from the direction flowing into the condensing unit 120 to a desired direction.
  • the flow direction of the cooling air is changed to a direction toward the heat generating component 180 disposed obliquely downstream of the cooling device 100 (broken line arrow in FIG. 4).
  • a part of the cooling air 170 passes through the condensing unit 120 to absorb heat and flows as warm air, but a part of the cooling air 170 that passes through the rectifying unit 150 reaches the heat generating component 180 with the cold air. . Therefore, the heat generating component 180 constituting the electronic device can be efficiently cooled.
  • the heat generating component 180 include a CPU peripheral element (chip set) having a small allowable temperature range (temperature margin).
  • the heating element 160 thermally connected to the evaporation unit 110 is cooled by releasing heat in the condensing unit 120.
  • the other heat generating component 180 mounted on the electronic device can be cooled by the cooling air whose flow direction is controlled by the rectifying unit 150. That is, according to the cooling device 100 of the present embodiment, even when mounted on a thin electronic device, the cooling device 100 has sufficient cooling performance and can avoid a decrease in the cooling efficiency of the entire electronic device.
  • the configuration of the rectifying unit 150 is not limited to that shown in FIG. 4, and the rectifying thin plate 152 can be configured so that the cooling air flows in the direction in which the heat generating component 180 is disposed.
  • the side surface of the condensing container 121 at the boundary between the first condensing unit 122 and the second condensing unit 123 is inclined with respect to the inflow direction of the air flowing into the condensing unit 120. Also good. Thereby, the flow of the cooling air in the direction in which the heat generating components are arranged can be further promoted.
  • the cooling device 100 uses a heating element 160 such as a central processing unit (CPU) disposed under the evaporation unit 110 and is thermally connected to the evaporation unit 110.
  • a heating element 160 such as a central processing unit (CPU) disposed under the evaporation unit 110 and is thermally connected to the evaporation unit 110.
  • a good thermal connection can be obtained by mounting the evaporator 110 and the heating element 160 via a heat conducting member such as grease.
  • the amount of heat from the heating element is transmitted to the refrigerant 130 via the evaporation container 111 of the evaporator 110, and the refrigerant 130 is vaporized.
  • the amount of heat from the heating element is lost to the refrigerant as heat of vaporization, an increase in the temperature of the heating element is suppressed.
  • the injection amount of the refrigerant 130 is not less than the amount calculated from the heat generation amount of the heating element 160 and the heat of vaporization of the refrigerant, and the height of the gas-liquid interface of the refrigerant 130 is not more than the height of the partition wall portion 112.
  • Stipulated in The height of the partition wall 112 can be set such that a space of about 5 to 10 mm is disposed between the upper end of the partition wall 112 and the top plate portion of the evaporation container 111.
  • the refrigerant vapor evaporated in the evaporation section 110 expands in volume from the liquid phase and fills the evaporation container 111, but a pressure difference is generated in the evaporation container 111 due to the presence of the partition wall 112. That is, since the height of the partition wall 112 is equal to or higher than the height of the gas-liquid interface of the refrigerant 130, the refrigerant vapor also exists in the region of the partition wall 112. However, the volume of the partition wall 112 is limited because the refrigerant vapor is partitioned by the partition wall 112.
  • the partition wall portion 112 may include a plurality of partition wall thin plates (fins) in which, for example, rectangular thin plates are erected. At this time, the volume occupied by the refrigerant vapor in the partition wall portion 112 is limited by the interval between the partition wall thin plates (fins).
  • the refrigerant vapor comes into contact with the condensing container 121 and is cooled to be condensed and liquefied.
  • the phase of the refrigerant vapor changes to a liquid, the volume is rapidly reduced, so that the pressure of the gas phase refrigerant in the condensing container 121 is lower than that in the evaporation container 111.
  • the pressure gradient of the refrigerant vapor is generated in this order between the partition wall 112 of the evaporation section 110, the region between the upper end of the partition wall 112 and the top plate portion of the evaporation container 111, and the condensation container 121.
  • the cooling device 100 since the evaporator 110 and the condenser 120 are located at substantially the same height in the vertical direction, even if the circulation due to the buoyancy of the refrigerant vapor cannot be used, It becomes possible to transport the refrigerant vapor from the evaporating unit 110 to the condensing unit 120.
  • the liquid-phase refrigerant when the liquid-phase refrigerant is vaporized and separated as bubbles in the evaporation unit 110, the gas-liquid interface of the refrigerant in the evaporation unit 110 is lowered. However, the liquid phase refrigerant is immediately supplied from the condensing unit 120 to the evaporating unit 110 through the liquid pipe 142 so as to keep the gas-liquid interface of the refrigerant in the evaporating unit 110 and the condensing unit 120 constant.
  • the evaporation unit 110 and the condensing unit 120 are positioned at substantially the same height with respect to the vertical direction and the circulation of the liquid phase refrigerant due to gravity cannot be used, the evaporation unit 110 And the condenser 120 can be circulated.
  • the pipe 140 includes the vapor pipe 141 through which the gas-phase refrigerant flows and the liquid pipe 142 through which the condensed liquid-phase refrigerant flows.
  • the steam pipe 141 is preferably connected to the evaporation container 111 at a position higher than the height of the partition wall portion 112.
  • the liquid pipe 142 is preferably connected to the evaporation container 111 and the condensation container 121 at positions below the height of the gas-liquid interface of the refrigerant.
  • the cooling device 100 when it is necessary to arrange the evaporator 110 and the condenser 120 at substantially the same height in the vertical direction, for example, it is mounted on a thin electronic device. Even in this case, a boiling cooling type cooling device having sufficient cooling performance can be obtained.
  • FIG. 6 is a side sectional view showing the configuration of the cooling device 200 according to the second embodiment of the present invention.
  • the cooling device 200 includes an evaporation unit 110 that stores the refrigerant 130, a condensation unit 220 that condenses and liquefies the gas-phase refrigerant vaporized by the evaporation unit 110, and a pipe 140 that connects the evaporation unit 110 and the condensation unit 220.
  • the evaporator 110 and the condenser 220 are located at substantially the same height with respect to the vertical direction.
  • the evaporation unit 110 includes an evaporation container 111 and a partition wall 112 that partitions the refrigerant 130 disposed in the evaporation container 111, and the height of the partition wall 112 is equal to or higher than the height of the gas-liquid interface of the refrigerant 130. And it is less than the height of the evaporation container 111.
  • the pipe 140 includes a vapor pipe 141 through which a gas-phase refrigerant flows and a liquid pipe 142 through which a condensed liquid-phase refrigerant flows.
  • the condensing unit 220 includes a first condensing unit 122 and a second condensing unit 123 having different condensing unit heights, which are vertical heights of the condensing container 121 constituting the condensing unit 220.
  • the condensing part height of the first condensing part 122 is configured to be higher than the condensing part height of the second condensing part 123.
  • the first condensing unit 122 includes a steam pipe connecting part 124 that is connected to the steam pipe 141 at a position vertically above the condensing part height of the second condensing part 123.
  • the cooling device 200 according to the present embodiment includes a rectifying unit 150 disposed on the upper surface of the second condensing unit 123. The rectifying unit 150 controls the flow direction of the air passing through the condensing unit 220.
  • the cooling device 200 is different from the cooling device 100 of the first embodiment in the configuration of the condensing unit 220, and the other configurations are the same, and thus detailed description thereof is omitted.
  • the condensing unit 220 includes a condensing plate unit 225 that promotes heat dissipation of the gas-phase refrigerant in the condensing container 121. Since the condensing plate portion 225 promotes cooling and condensing of the refrigerant vapor in the condensing unit 220, the cooling performance of the cooling device 200 can be improved.
  • the condensing plate portion 225 can include a plurality of condensing thin plates (fins) in which rectangular thin plates are erected. Further, in order to arrange the condensing plate portion 225 not only in the first condensing portion 122 but also in the second condensing portion 123, the height of the condensing plate portion 225 is lower than the condensing portion height of the second condensing portion 123. It is desirable to have a configuration.
  • the cooling and condensation liquefaction of the refrigerant vapor is promoted by the condensing plate portion 225 disposed in the condensing container 121, so that the cooling performance can be further improved. Can do.
  • the other heat generating component 180 mounted on the electronic device can be cooled by the cooling air whose flow direction is controlled by the rectifying unit 150. That is, according to the cooling device 200 of this embodiment, even when mounted on a thin electronic device, the cooling device 200 has sufficient cooling performance and can avoid a decrease in the cooling efficiency of the entire electronic device.
  • FIG. 7 is a side sectional view showing a configuration of a cooling device 300 according to the third embodiment of the present invention.
  • the cooling device 300 includes an evaporation unit 110 that stores the refrigerant 130, a condensation unit 220 that condenses and liquefies the gas-phase refrigerant vaporized by the evaporation unit 110, and a pipe 140 that connects the evaporation unit 110 and the condensation unit 220.
  • the evaporator 110 and the condenser 220 are located at substantially the same height with respect to the vertical direction.
  • the evaporation unit 110 includes an evaporation container 111 and a partition wall 112 that partitions the refrigerant 130 disposed in the evaporation container 111, and the height of the partition wall 112 is equal to or higher than the height of the gas-liquid interface of the refrigerant 130. And it is less than the height of the evaporation container 111.
  • the condensing unit 220 includes a condensing plate unit 225 that promotes heat dissipation of the gas-phase refrigerant in the condensing container 121.
  • the pipe 140 includes a vapor pipe 141 through which a gas-phase refrigerant flows and a liquid pipe 142 through which a condensed liquid-phase refrigerant flows.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a perspective exploded perspective view showing the configuration in the vicinity of the condensing unit 220 of the cooling device 300 according to the present embodiment.
  • the condensing unit 220 includes a first condensing unit 122 and a second condensing unit 123 having different condensing unit heights, which are vertical heights of the condensing container 121 constituting the condensing unit 220.
  • the condensing part height of the first condensing part 122 is configured to be higher than the condensing part height of the second condensing part 123.
  • the first condensing unit 122 includes a steam pipe connecting part 124 that is connected to the steam pipe 141 at a position vertically above the condensing part height of the second condensing part 123.
  • the cooling device 300 includes a rectifying unit 150 disposed on the upper surface of the second condensing unit 123.
  • the rectifying unit 150 includes a plurality of rectifying thin plates 152 erected with rectangular thin plates, and controls the flow direction of air passing through the condensing unit 220.
  • the condensation part 220 was set as the structure provided with the condensation board part 225 which accelerates
  • the cooling device 300 is different from the cooling device 200 of the second embodiment in that it further includes a heat radiating unit 310 that is thermally connected to the condensing unit 220. Since other configurations are the same as those of the second embodiment, detailed description thereof is omitted.
  • the heat radiating unit 310 is disposed below the condensing unit 220 and may include a plurality of heat radiating thin plates 312 erected with rectangular thin plates.
  • the heat radiating thin plate 312 is typically fin-shaped, and can be formed using a metal having excellent heat conduction characteristics, such as aluminum or copper.
  • the heat dissipating part 310 and the condenser plate part 225 may be formed integrally or may be formed separately and then thermally connected.
  • the interval between the rectifying thin plates 152 can be larger than the interval between the heat radiating thin plates 312.
  • the respective functions of the rectifying thin plate 152 controlling the flow direction of the air passing through the condensing unit 220 and the heat dissipating thin plate 312 accelerating the cooling of the refrigerant vapor in the condensing unit 220 are more effectively exhibited.
  • the interval between the rectifying thin plates 152 can be about 7 mm, and the interval between the heat radiating thin plates 312 can be about 2 mm.
  • the cooling performance of the cooling device 300 can be further improved. Furthermore, according to the cooling device 300 of the present embodiment, the refrigerant can be circulated even in a configuration in which the evaporator 110 and the condenser 220 are located at substantially the same height in the vertical direction. Therefore, the heat radiating unit 310 can be disposed below the condensing unit 220 on the same side as the heating element 160. Therefore, it is not necessary to secure a separate area for installing the heat radiating section 310, so that it can be mounted on a thin electronic device.
  • FIG. 8 as a configuration of the heat radiating unit 310, the case where the heat radiating thin plate 312 is arranged in the entire region below the condensing unit 220 is shown.
  • the present invention is not limited to this, and a configuration including an air blowing region 314 in which the heat dissipation thin plate 312 is not disposed may be employed.
  • FIG. 10 it can be set as the structure which has the ventilation area
  • the cooling air 170 passes through the vicinity of the heat radiating portion 310 without being received from the heat radiating thin plate 312 while being cooled.
  • the heat-generating component in the extension of the cooling air inflow direction is not cooled by the cooling air whose flow direction is controlled by the rectifying unit 150, but is cooled by a part of the cooling air 170 that passes through the air blowing region 314. become.
  • the cooling and condensing liquefaction of the refrigerant vapor is promoted by the heat radiating unit 310 thermally connected to the condensing unit 220, so that the cooling performance is further improved. be able to.
  • the other heat generating components mounted on the electronic device can be cooled by the cooling air whose flow direction is controlled by the rectifying unit 150. That is, according to the cooling device 300 of the present embodiment, even when mounted on a thin electronic device, the cooling device 300 has sufficient cooling performance and can avoid a decrease in the cooling efficiency of the entire electronic device.
  • FIG. 11 is a side sectional view showing a configuration of an electronic apparatus 400 according to the fourth embodiment of the present invention.
  • the electronic device 400 includes a cooling device, a heating element 160, and a heat dissipation unit 310.
  • the cooling device is the same as the configuration of the cooling device 100 according to the first embodiment. That is, the cooling device includes an evaporation unit 110 that stores the refrigerant 130, a condensation unit 120 that condenses and liquefies the gas-phase refrigerant vaporized in the evaporation unit 110, dissipates heat, a pipe 140 that connects the evaporation unit 110 and the condensation unit 120, and a condensation unit.
  • a rectifying unit 150 that controls the flow direction of the air passing through the unit 120 is provided.
  • the evaporating unit 110 and the condensing unit 120 are located at substantially the same height with respect to the vertical direction.
  • the evaporation unit 110 includes an evaporation container 111 and a partition wall 112 that partitions the refrigerant 130 disposed in the evaporation container 111, and the height of the partition wall 112 is equal to or higher than the height of the gas-liquid interface of the refrigerant 130. And less than the height of the evaporation container 111.
  • the pipe 140 includes a vapor pipe through which the gas-phase refrigerant flows and a liquid pipe through which the condensed liquid-phase refrigerant flows.
  • the condensing unit 120 includes a first condensing unit and a second condensing unit having different condensing unit heights, which are vertical heights of the condensing containers constituting the condensing unit 120, and the condensing unit height of the first condensing unit The height of the second condensing part is higher than the condensing part height.
  • the 1st condensing part is provided with the steam pipe connection part connected with a steam pipe in the position of the vertically upper part rather than the condensing part height of the 2nd condensing part.
  • the rectifying unit 150 is disposed above the second condensing unit.
  • the evaporation unit 110 is disposed in thermal connection with the upper portion of the heating element 160
  • the condensing unit 120 is disposed in thermal connection with the upper portion of the heat dissipation unit 310. ing.
  • the electronic device 400 is, for example, a server or the like provided with a central processing unit (CPU) as the heating element 160, and is disposed on the substrate 410 and stored in the housing 420.
  • a heating element 160 such as a CPU is mounted on the substrate 410 while being mounted on a socket 430 or the like.
  • the evaporating unit 110 is mounted on the upper part of the heating element 160 via a heat conducting member such as grease.
  • the condensing unit 120 connected to the evaporating unit 110 and the pipe 140 is disposed together with the heat radiating unit 310 at a position separated from the heating element 160.
  • the amount of heat from the heating element 160 is transported by heat as the refrigerant 130 moves as a gas-liquid two-phase flow, and as a result, the heating element 160 is cooled.
  • the other heat generating components mounted on the electronic device can be cooled by the cooling air whose flow direction is controlled by the rectifying unit 150.
  • FIG. 11 shows a configuration in which the condensing unit 120 and the heat radiating unit 310 have substantially the same width.
  • the configuration of the electronic device 400 is not limited to this, and for example, as illustrated in FIG. 12, the width of the condensing unit 120 may be extended in a direction toward the evaporation unit 110.
  • coolant occupies also increases.
  • an increase in the boiling point of the refrigerant due to an increase in the internal pressure of the cooling device 100 is mitigated, and thus it is possible to avoid the vaporization of the liquid phase refrigerant in the evaporation unit 110 being suppressed. Therefore, the cooling performance of the cooling device 100 can be further improved.
  • the electronic apparatus 400 of the present embodiment even when the evaporation unit 110 and the condensation unit 120 are arranged at substantially the same height with respect to the vertical direction, boiling with excellent heat transport capability is achieved.
  • a cooling device using a cooling method can be used. Therefore, sufficient cooling performance can be obtained even with a thin electronic device that is compatible with, for example, a rack height of 1 U (44.45 mm). Furthermore, it is possible to avoid a decrease in the cooling efficiency of the entire electronic device.
  • Cooling device 110 Evaporating part 111 Evaporating container 112 Partition part 120, 220 Condensing part 121 Condensing container 122 First condensing part 123 Second condensing part 124 Steam pipe connection part 130 Refrigerant 140 Piping 141 Steam pipe 142 Liquid Tube 150 Rectifying unit 152 Rectifying thin plate 160 Heat generating element 170 Cooling air 180 Heating component 225 Condensing plate unit 310 Heat dissipating unit 312 Heat dissipating thin plate 314 Blowing area 400 Electronic device 410 Substrate 420 Case 430 Socket 500 Associated boiling cooling device 501 Circuit substrate 502 Semiconductor Device 510 Boiling part 520 Condensing part 531 Steam pipe 532 Liquid return pipe 540 Cooling fan

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 沸騰冷却方式を用いた冷却装置においては、薄型の電子機器に実装すると充分な冷却性能が得られないばかりでなく、電子機器全体の冷却効率が低下するため、本発明の冷却装置は、蒸発部と、凝縮部と、蒸発部と凝縮部を接続する配管と、凝縮部を通過する空気の流動方向を制御する整流部、とを有し、蒸発部と凝縮部は鉛直方向に対して略同一高さに位置し、蒸発部は冷媒を仕切る隔壁部を備え、隔壁部の高さは冷媒の気液界面の高さ以上かつ蒸発容器の高さ未満であり、凝縮部は、凝縮部を構成する凝縮容器の鉛直方向の高さである凝縮部高さが異なる第1の凝縮部と第2の凝縮部を含み、第1の凝縮部の凝縮部高さは第2の凝縮部の凝縮部高さよりも高く、第1の凝縮部は、第2の凝縮部の凝縮部高さよりも鉛直上方の位置に蒸気管と接続する蒸気管接続部を備え、整流部は第2の凝縮部の上部に配置している。

Description

冷却装置及びそれを用いた電子機器
 本発明は、半導体装置や電子装置などの冷却装置に関し、特に、冷媒の気化と凝縮の相変化サイクルによって熱の輸送・放熱を行う沸騰冷却方式による冷却装置及びそれを用いた電子機器に関する。
 近年、半導体装置や電子装置などの高性能化、高機能化に伴い、それらの発熱量も増大している。そのため、毛細管力で作動液の循環を図るヒートパイプを用いた冷却装置では、作動液のドライアウトが起こり、冷却性能が低下してしまうという問題があった。それに対して、冷媒の気化と凝縮の相変化サイクルと重力による還流を使用して熱の輸送・放熱を行う沸騰冷却(サーモサイフォン)方式を用いた冷却装置は、冷媒が気液二相流として移動するので、熱輸送能力を向上させることができる。そのため、発熱量の大きな半導体装置や電子装置などの冷却装置として期待されている。
 このような沸騰冷却方式を用いた冷却装置(以下では、「沸騰冷却装置」とも言う)の一例が特許文献1に記載されている。図13は、特許文献1に記載された関連する沸騰冷却装置500の構成を示す側面断面図である。関連する沸騰冷却装置500は、回路基板501に搭載されたCPUなど発熱源としての半導体デバイス502を冷却するために用いられる。関連する沸騰冷却装置500は、半導体デバイス502の表面に取り付けられた沸騰部510とラジエータを備えた凝縮部520を備え、これらの間に蒸気管531と液戻り管532からなる一対の配管が取り付けられている。ここで関連する沸騰冷却装置500は、その内部を大気圧の略1/10程度の減(低)圧状態に保たれ、液体冷媒である水の相変化により、電動ポンプなどの外部動力なしで冷媒液を循環することの出来るサーモサイフォンを構成している。
 関連する沸騰冷却装置500において、発熱源である半導体デバイス502で発生した熱は、沸騰部510へ伝達される。その結果、沸騰部510では、伝達された熱により液体冷媒である水(Wa)が減圧下で沸騰して蒸発し、発生した蒸気(ST)は沸騰部510から蒸気管531を通って凝縮部520へ導かれる。そして、凝縮部520では、冷媒蒸気が冷却ファン540などによって送風される空気(AIR)により冷却されて液体(水)となり、その後、重力により液戻り管532を通って再び沸騰部510へ還流する。
 ここで、凝縮部520は複数の扁平管を備え、その内壁面に多数の微細な溝が形成されている。このような構成とすることにより、凝縮熱伝達率を向上することが可能となり、凝縮部520の性能を改善することが出来るので、発熱体からの発熱を低コストかつ効率よく冷却することができる、としている。
特開2011-047616号公報(段落「0023」~「0049」、図1)
 近年、サーバなどの各種コンピュータを大量に使用するデータセンター等の普及に伴い、サーバ等の電子機器を収容するラックの薄型化が図られている。このラックの寸法に関し、米国電子工業会(Electronic Industries Alliance:EIA)で規格が定められており、ラック高さの最小単位「1U(Unit)」は1.75インチ(44.45mm)である。
 ここで、サーバ等の電子機器では、中央処理装置(Central Processing Unit:CPU)を保守交換するためのソケット等が基板上に実装される。そのため、高さが「1U」のラックに搭載されるサーバ(以下、「1Uサーバ」とも言う)等の薄型の電子機器では、CPUを冷却するための冷却装置に許容されるスペースは25mm程度の高さに限られることになる。
 一方、上述したように、関連する沸騰冷却装置では冷媒蒸気の浮力と液体冷媒の重力を利用するサーモサイフォン方式を採用しているため、凝縮部を沸騰部に対して鉛直上方に配置した構成とする必要がある。しかしながら、上述した25mm程度の空間内に凝縮部と沸騰部とを配置すると、充分な高低差が得られず、冷媒の重力による還流が阻害されてしまう。そのため、充分な冷却性能を得ることが困難となる。
 また、関連する沸騰冷却装置では、冷却ファン540などによって送風される空気(AIR)により凝縮部520を冷却することとしている。しかし、関連する沸騰冷却装置を薄型の電子機器に搭載すると冷却ファンからの送風経路が制限され、凝縮部520において吸熱した暖気が電子機器内を流動することになる。そのため、電子機器全体の冷却効率が低下してしまうという問題があった。
 このように、関連する沸騰冷却装置においては、薄型の電子機器に実装すると充分な冷却性能が得られないばかりでなく、電子機器全体の冷却効率が低下するという問題があった。
 本発明の目的は、上述した課題である、沸騰冷却方式を用いた冷却装置においては、薄型の電子機器に実装すると充分な冷却性能が得られないばかりでなく、電子機器全体の冷却効率が低下する、という課題を解決する冷却装置及びそれを用いた電子機器を提供することにある。
 本発明の冷却装置は、冷媒を貯蔵する蒸発手段と、蒸発手段で気化した気相冷媒を凝縮液化させて放熱を行う凝縮手段と、蒸発手段と凝縮手段を接続する配管と、凝縮手段を通過する空気の流動方向を制御する整流手段、とを有し、蒸発手段と凝縮手段は、鉛直方向に対して略同一高さに位置し、蒸発手段は、蒸発容器と、蒸発容器内に配置された冷媒を仕切る隔壁手段とを備え、隔壁手段の高さは、冷媒の気液界面の高さ以上であり、かつ蒸発容器の高さ未満であり、配管は、気相冷媒が流動する蒸気管と、凝縮液化した液相冷媒が流動する液管を含み、凝縮手段は、凝縮手段を構成する凝縮容器の鉛直方向の高さである凝縮手段高さが異なる第1の凝縮手段と第2の凝縮手段を含み、第1の凝縮手段の凝縮手段高さは、第2の凝縮手段の凝縮手段高さよりも高く、第1の凝縮手段は、第2の凝縮手段の凝縮手段高さよりも鉛直上方の位置に、蒸気管と接続する蒸気管接続部を備え、整流手段は、第2の凝縮手段の上部に配置している。
 本発明の電子機器は、冷却装置と、発熱体と、放熱手段を有し、冷却装置は、冷媒を貯蔵する蒸発手段と、蒸発手段で気化した気相冷媒を凝縮液化させて放熱を行う凝縮手段と、蒸発手段と凝縮手段を接続する配管と、凝縮手段を通過する空気の流動方向を制御する整流手段、とを有し、蒸発手段と凝縮手段は、鉛直方向に対して略同一高さに位置し、蒸発手段は、蒸発容器と、蒸発容器内に配置された冷媒を仕切る隔壁手段とを備え、隔壁手段の高さは、冷媒の気液界面の高さ以上であり、かつ蒸発容器の高さ未満であり、配管は、気相冷媒が流動する蒸気管と、凝縮液化した液相冷媒が流動する液管を含み、凝縮手段は、凝縮手段を構成する凝縮容器の鉛直方向の高さである凝縮手段高さが異なる第1の凝縮手段と第2の凝縮手段を含み、第1の凝縮手段の凝縮手段高さは、第2の凝縮手段の凝縮手段高さよりも高く、第1の凝縮手段は、第2の凝縮手段の凝縮手段高さよりも鉛直上方の位置に、蒸気管と接続する蒸気管接続手段を備え、整流手段は、第2の凝縮手段の上部に配置しており、蒸発手段は、発熱体の上部に熱的に接続して配置しており、凝縮手段は、放熱手段の上部に熱的に接続して配置している。
 本発明の冷却装置によれば、薄型の電子機器に実装した場合であっても、充分な冷却性能を有し、しかも電子機器全体の冷却効率の低下を回避することができる沸騰冷却方式の冷却装置が得られる。
本発明の第1の実施形態に係る冷却装置の構成を示す側面断面図である。 本発明の第1の実施形態に係る冷却装置の構成を示す図であり、図1中のII-II線断面図である。 本発明の第1の実施形態に係る冷却装置の凝縮部近傍の構成を示す透視斜視図である。 本発明の第1の実施形態に係る冷却装置の構成を示す上面図である。 本発明の第1の実施形態に係る冷却装置の別の構成を示す上面図である。 本発明の第2の実施形態に係る冷却装置の構成を示す側面断面図である。 本発明の第3の実施形態に係る冷却装置の構成を示す側面断面図である。 本発明の第3の実施形態に係る冷却装置の構成を示す図であり、図7中のVIII-VIII線断面図である。 本発明の第3の実施形態に係る冷却装置の凝縮部近傍の構成を示す透視分解斜視図である。 本発明の第3の実施形態に係る冷却装置の別の構成を示す図であり、図7中のVIII-VIII線断面図である。 本発明の第4の実施形態に係る電子機器の構成を示す側面断面図である。 本発明の第4の実施形態に係る電子機器の別の構成を示す側面断面図である。 関連する沸騰冷却装置の構成を示す側面断面図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る冷却装置100の構成を示す側面断面図である。冷却装置100は、冷媒130を貯蔵する蒸発部110、蒸発部110で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部120、および蒸発部110と凝縮部120を接続する配管140を有する。したがって、凝縮部120は、蒸発部110と熱的に接続する発熱体160と離間して配置することができる。ここで蒸発部110と凝縮部120は、鉛直方向に対して略同一高さに位置している。これにより、装置の高さが制限される薄型の電子機器に搭載することが可能となる。
 蒸発部110は、蒸発容器111と、蒸発容器111内に配置された冷媒130を仕切る隔壁部112とを備える。ここで、隔壁部112の高さは、冷媒130の気液界面の高さ以上であり、かつ蒸発容器111の高さ未満である。ここで、冷媒の気液界面とは、液相状態の冷媒と気相状態の冷媒の界面を言う。なお、配管140には、気相冷媒が流動する蒸気管141と、凝縮液化した液相冷媒が流動する液管142が含まれる。
 冷媒130に低沸点の材料を用い、蒸発容器111に冷媒130を注入した後に真空排気することにより、蒸発容器111の内部は常に冷媒130の飽和蒸気圧に維持することができる。図1中、蒸発部110および凝縮部120におけるハッチング部分は液相状態の冷媒を示し、ハッチング部分の点線は冷媒130の気液界面を示す。冷媒130としては例えば、絶縁性を有し不活性な材料であるハイドロフロロカーボンやハイドロフロロエーテルなどの低沸点冷媒を用いることができる。また、蒸発部110および凝縮部120を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。
 次に、凝縮部120近傍の構成についてさら詳細に説明する。図2は、図1中のII-II線断面図である。凝縮部120は、凝縮部120を構成する凝縮容器121の鉛直方向の高さである凝縮部高さが異なる第1の凝縮部122と第2の凝縮部123を含んでいる。ここで第1の凝縮部122の凝縮部高さは、第2の凝縮部123の凝縮部高さよりも高く構成されている。そして、第1の凝縮部122は、第2の凝縮部123の凝縮部高さよりも鉛直上方の位置に、蒸気管141と接続する蒸気管接続部124を備えている。さらに本実施形態の冷却装置100は、第2の凝縮部123の上面部に配置された整流部150を備える。整流部150は凝縮部120を通過する空気の流動方向を制御する。このような構成により、冷却装置100によれば、凝縮部120における気相状態の冷媒(冷媒蒸気)が占める容積を確保しつつ、凝縮部高さの増大を招くことなく整流部150を配置することが可能となる。
 整流部150の具体的な構成の一例を図3、図4に示す。図3は、本実施形態による冷却装置100の凝縮部120近傍の構成を示す透視斜視図である。また、図4は本実施形態による冷却装置100の構成を示す上面図である。図3、図4に示すように、整流部150は長方形状の薄板が立設した複数の整流薄板152を含む構成とすることができる。このとき、凝縮部に流入する空気(冷却風170)の一部は、整流薄板152に沿って流動する。冷却風170は例えば、冷却装置100が搭載される電子機器を冷却するための冷却ファンが送出する構成とすることができる。
 図4に示すように、整流薄板152の延伸方向は、凝縮部120に流入する空気(冷却風170)の流入方向に対して傾斜して配置することができる。これにより、冷却風の流動方向を、凝縮部120に流入する方向から所望の方向に変更することが可能になる。図4の例では、冷却風の流動方向を冷却装置100の斜め下流方向に配置された発熱部品180に向かう方向(図4中の破線矢印)に変更している。これにより、冷却風170の一部は凝縮部120を通過して吸熱し、暖気となって流動するが、整流部150を通過する冷却風170の一部は冷気のまま発熱部品180に到達する。したがって、電子機器を構成する発熱部品180をも効率よく冷却することができる。発熱部品180としては例えば、許容温度範囲(温度マージン)が小さいCPU周辺素子(チップセット)などがある。
 以上説明したように、本実施形態による冷却装置100によれば、蒸発部110と熱的に接続する発熱体160は、凝縮部120において放熱することにより冷却される。同時に、電子機器に実装された他の発熱部品180は、整流部150によって流動方向を制御された冷却風により冷却することが可能になる。すなわち、本実施形態の冷却装置100によれば、薄型の電子機器に実装した場合であっても、充分な冷却性能を有し、しかも電子機器全体の冷却効率の低下を回避することができる。
 なお、整流部150の構成は図4に示したものに限らず、発熱部品180が配置された方向に冷却風が流動するように整流薄板152を構成することができる。このとき図5に示すように、第1の凝縮部122と第2の凝縮部123の境界部における凝縮容器121の側面が、凝縮部120に流入する空気の流入方向に対して傾斜した構成としてもよい。これにより、発熱部品が配置された方向への冷却風の流動をさらに促進することができる。
 次に、本実施形態による冷却装置100の動作について詳細に説明する。図1に示すように、冷却装置100は蒸発部110の下部に例えば中央処理装置(Central Processing Unit:CPU)などの発熱体160を配置し、蒸発部110と熱的に接続して使用する。蒸発部110と発熱体160をグリース等の熱伝導部材を介して実装することにより、良好な熱的接続を得ることができる。発熱体からの熱量が蒸発部110の蒸発容器111を介して冷媒130に伝達され、冷媒130が気化する。このとき、発熱体からの熱量は気化熱として冷媒に奪われるため、発熱体の温度上昇が抑制される。
 ここで冷媒130の注入量は、発熱体160の発熱量と冷媒の気化熱から算出される量以上であって、冷媒130の気液界面の高さが隔壁部112の高さ以下となるように定める。また隔壁部112の高さは、隔壁部112の上端と蒸発容器111の天板部分との間に約5~10mm程度の空間が配置される高さとすることができる。
 蒸発部110において気化した冷媒蒸気は、液相から体積膨張し蒸発容器111内に充満するが、隔壁部112の存在により蒸発容器111内で圧力差が生じる。すなわち、隔壁部112の高さは冷媒130の気液界面の高さ以上であるため、隔壁部112の領域にも冷媒蒸気が存在する。ところが隔壁部112においては、冷媒蒸気は隔壁部112によって仕切られているため体積が制限される。そのため冷媒蒸気の圧力は、隔壁部112における方が、隔壁部112の上端と蒸発容器111の天板部分との間の領域におけるよりも大きくなる。ここで隔壁部112は、例えば長方形状の薄板が立設した複数の隔壁薄板(フィン)を含む構成とすることができる。このとき隔壁部112において冷媒蒸気が占める体積は、隔壁薄板(フィン)の間隔によって制限されることになる。
 一方、凝縮部120においては、冷媒蒸気は凝縮容器121などに接触して冷却され、凝縮液化する。冷媒蒸気は液体へ相変化すると体積が急激に縮小するため、凝縮容器121内の気相冷媒による圧力は蒸発容器111におけるよりも低くなる。以上より、蒸発部110の隔壁部112、隔壁部112の上端と蒸発容器111の天板部分との間の領域、および凝縮容器121との間で、この順に冷媒蒸気の圧力勾配が生じる。したがって、本実施形態による冷却装置100によれば、蒸発部110と凝縮部120が鉛直方向に対して略同一高さに位置するため、冷媒蒸気の浮力による循環を利用できない場合であっても、冷媒蒸気を蒸発部110から凝縮部120に輸送することが可能となる。
 また、蒸発部110において液相の冷媒が気化し気泡となって離脱することにより、蒸発部110における冷媒の気液界面は低下する。しかし、蒸発部110と凝縮部120における冷媒の気液界面を一定に保つように、液相冷媒が液管142を通して凝縮部120から蒸発部110へ直ちに供給される。これにより、蒸発部110と凝縮部120が鉛直方向に対して略同一高さに位置し、重力による液相冷媒の循環を利用することができない場合であっても、液相冷媒を蒸発部110と凝縮部120との間で循環させることが可能となる。
 ここで配管140は上述したように、気相冷媒が流動する蒸気管141と、凝縮液化した液相冷媒が流動する液管142を含む構成としている。このとき、蒸気管141は隔壁部112の高さ以上の位置において蒸発容器111と接続する構成とすることが望ましい。また液管142は、冷媒の気液界面の高さ以下の位置において蒸発容器111および凝縮容器121とそれぞれ接続する構成とすることが望ましい。このような構成とすることにより、冷媒の循環を促進することができる。
 以上述べたように、本実施形態による冷却装置100によれば、蒸発部110と凝縮部120を鉛直方向に対して略同一高さに配置する必要がある場合、例えば、薄型の電子機器に実装した場合であっても、充分な冷却性能を有する沸騰冷却方式の冷却装置が得られる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図6は、本発明の第2の実施形態による冷却装置200の構成を示す側面断面図である。冷却装置200は、冷媒130を貯蔵する蒸発部110、蒸発部110で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部220、および蒸発部110と凝縮部220を接続する配管140を有する。ここで蒸発部110と凝縮部220は、鉛直方向に対して略同一高さに位置している。また蒸発部110は、蒸発容器111と蒸発容器111内に配置された冷媒130を仕切る隔壁部112とを備え、隔壁部112の高さは、冷媒130の気液界面の高さ以上であり、かつ蒸発容器111の高さ未満である。なお、配管140には、気相冷媒が流動する蒸気管141と、凝縮液化した液相冷媒が流動する液管142が含まれる。
 凝縮部220は、凝縮部220を構成する凝縮容器121の鉛直方向の高さである凝縮部高さが異なる第1の凝縮部122と第2の凝縮部123を含んでいる。ここで第1の凝縮部122の凝縮部高さは、第2の凝縮部123の凝縮部高さよりも高く構成されている。そして、第1の凝縮部122は、第2の凝縮部123の凝縮部高さよりも鉛直上方の位置に、蒸気管141と接続する蒸気管接続部124を備えている。さらに本実施形態の冷却装置200は、第2の凝縮部123の上面部に配置された整流部150を備える。整流部150は凝縮部220を通過する空気の流動方向を制御する。
 本実施形態による冷却装置200は、凝縮部220の構成が第1の実施形態の冷却装置100と異なり、他の構成は同様であるので詳細な説明は省略する。凝縮部220は凝縮容器121内に、気相冷媒の放熱を促進する凝縮板部225を備える。この凝縮板部225により凝縮部220における冷媒蒸気の冷却および凝縮液化が促進されるので、冷却装置200の冷却性能の向上を図ることができる。
 蒸発部110で発生した冷媒蒸気を凝縮板部225において効率よく凝縮液化するために、凝縮板部225の表面積は大きい方が望ましい。そこで、凝縮板部225は長方形状の薄板が立設した複数の凝縮薄板(フィン)を含む構成とすることができる。また、第1の凝縮部122に限らず第2の凝縮部123にも凝縮板部225を配置するために、凝縮板部225の高さは第2の凝縮部123の凝縮部高さよりも低い構成とすることが望ましい。
 以上述べたように、本実施形態による冷却装置200によれば、凝縮容器121内に配置した凝縮板部225によって冷媒蒸気の冷却および凝縮液化が促進されるので、冷却性能のさらなる向上を図ることができる。同時に、電子機器に実装された他の発熱部品180は、整流部150によって流動方向を制御された冷却風により冷却することが可能になる。すなわち、本実施形態の冷却装置200によれば、薄型の電子機器に実装した場合であっても、充分な冷却性能を有し、しかも電子機器全体の冷却効率の低下を回避することができる。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図7は、本発明の第3の実施形態による冷却装置300の構成を示す側面断面図である。冷却装置300は、冷媒130を貯蔵する蒸発部110、蒸発部110で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部220、および蒸発部110と凝縮部220を接続する配管140を有する。ここで蒸発部110と凝縮部220は、鉛直方向に対して略同一高さに位置している。また蒸発部110は、蒸発容器111と蒸発容器111内に配置された冷媒130を仕切る隔壁部112とを備え、隔壁部112の高さは、冷媒130の気液界面の高さ以上であり、かつ蒸発容器111の高さ未満である。また、凝縮部220は凝縮容器121内に、気相冷媒の放熱を促進する凝縮板部225を備える構成とした。なお、配管140には、気相冷媒が流動する蒸気管141と、凝縮液化した液相冷媒が流動する液管142が含まれる。
 次に、凝縮部220近傍の構成についてさら詳細に説明する。図8は、図7中のVIII-VIII線断面図である。また図9は、本実施形態による冷却装置300の凝縮部220近傍の構成を示す透視分解斜視図である。
 凝縮部220は、凝縮部220を構成する凝縮容器121の鉛直方向の高さである凝縮部高さが異なる第1の凝縮部122と第2の凝縮部123を含んでいる。ここで第1の凝縮部122の凝縮部高さは、第2の凝縮部123の凝縮部高さよりも高く構成されている。そして、第1の凝縮部122は、第2の凝縮部123の凝縮部高さよりも鉛直上方の位置に、蒸気管141と接続する蒸気管接続部124を備えている。さらに、冷却装置300は第2の凝縮部123の上面部に配置された整流部150を備える。整流部150は長方形状の薄板が立設した複数の整流薄板152を含み、凝縮部220を通過する空気の流動方向を制御する。また本実施形態では、凝縮部220は凝縮容器121内に、気相冷媒の放熱を促進する凝縮板部225を備える構成とした。
 本実施形態による冷却装置300は、凝縮部220と熱的に接続する放熱部310をさらに備える点で第2の実施形態の冷却装置200と異なる。他の構成は第2の実施形態と同様であるので詳細な説明は省略する。図8、図9に示すように、放熱部310は凝縮部220の下部に配置しており、長方形状の薄板が立設した複数の放熱薄板312を含んだ構成とすることができる。放熱薄板312は典型的にはフィン形状であり、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いて形成することができる。放熱部310と凝縮板部225は一体として形成してもよいし、別個に形成した後に熱的に接続することとしても良い。
 ここで、本実施形態の冷却装置300において、整流薄板152の間隔は放熱薄板312の間隔よりも大きい構成とすることができる。この構成により、整流薄板152は凝縮部220を通過する空気の流動方向を制御し、放熱薄板312は凝縮部220における冷媒蒸気の冷却を促進する、というそれぞれの機能がより有効に発揮される。それぞれの間隔は具体的には例えば、整流薄板152の間隔は約7mm程度、放熱薄板312の間隔は約2mm程度とすることができる。
 この放熱部310により凝縮部220における冷媒蒸気の冷却および凝縮液化が促進されるので、冷却装置300の冷却性能のさらなる向上を図ることができる。さらに、本実施形態の冷却装置300によれば、蒸発部110と凝縮部220が鉛直方向に対して略同一高さに位置している構成であっても冷媒の循環が可能である。そのため、放熱部310を発熱体160と同じ側である凝縮部220の下部に配置することができる。したがって、放熱部310を設置するために別の領域を確保する必要がないので、薄型の電子機器に実装することが可能となる。
 なお図8では、放熱部310の構成として、放熱薄板312が凝縮部220の下部の全領域に配置している場合を示した。しかし、これに限らず、放熱薄板312が配置されていない送風領域314を含む構成としてもよい。例えば、図10に示すように、液管142が接続される近傍の領域には放熱薄板312が配置されない送風領域314を有する構成とすることができる。送風領域314では、冷却風170が放熱薄板312から受熱することなく冷気のまま放熱部310近傍を通過する。そのため、冷却風の流入方向の延長にある発熱部品も冷却することが可能になる。すなわち、冷却風の流入方向の延長にある発熱部品は、整流部150によって流動方向を制御された冷却風によっては冷却されないが、送風領域314を通過する冷却風170の一部によって冷却されることになる。
 以上述べたように、本実施形態による冷却装置300によれば、凝縮部220と熱的に接続した放熱部310によって冷媒蒸気の冷却および凝縮液化が促進されるので、冷却性能のさらなる向上を図ることができる。同時に、電子機器に実装された他の発熱部品は、整流部150によって流動方向を制御された冷却風により冷却することが可能になる。すなわち、本実施形態の冷却装置300によれば、薄型の電子機器に実装した場合であっても、充分な冷却性能を有し、しかも電子機器全体の冷却効率の低下を回避することができる。
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図11は、本発明の第4の実施形態による電子機器400の構成を示す側面断面図である。電子機器400は、冷却装置、発熱体160、および放熱部310を有する。冷却装置は第1の実施形態による冷却装置100の構成と同様である。つまり冷却装置は、冷媒130を貯蔵する蒸発部110、蒸発部110で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部120、蒸発部110と凝縮部120を接続する配管140、および凝縮部120を通過する空気の流動方向を制御する整流部150を備える。ここで蒸発部110と凝縮部120は、鉛直方向に対して略同一高さに位置している。また蒸発部110は、蒸発容器111と、蒸発容器111内に配置された冷媒130を仕切る隔壁部112とを備え、隔壁部112の高さは、冷媒130の気液界面の高さ以上であり、かつ蒸発容器111の高さ未満である。なお配管140には、気相冷媒が流動する蒸気管と、凝縮液化した液相冷媒が流動する液管が含まれる。
 凝縮部120は、凝縮部120を構成する凝縮容器の鉛直方向の高さである凝縮部高さが異なる第1の凝縮部と第2の凝縮部を含み、第1の凝縮部の凝縮部高さは、第2の凝縮部の凝縮部高さよりも高く構成されている。そして、第1の凝縮部は、第2の凝縮部の凝縮部高さよりも鉛直上方の位置に、蒸気管と接続する蒸気管接続部を備えている。ここで、整流部150は第2の凝縮部の上部に配置している。
 本実施形態による電子機器400においては、蒸発部110は発熱体160の上部に熱的に接続して配置しており、また凝縮部120は放熱部310の上部に熱的に接続して配置している。
 電子機器400は、例えば発熱体160としての中央処理装置(Central Processing Unit:CPU)を備えたサーバ等であり、基板410に配置され筐体420に格納される。CPUなどの発熱体160はソケット430などに装着された状態で基板410上に実装される。発熱体160の上部には、例えばグリースなどの熱伝導部材を介して蒸発部110が実装される。一方、蒸発部110と配管140で接続された凝縮部120は、発熱体160とは離間した位置に放熱部310と共に配置される。そして発熱体160からの熱量は、冷媒130が気液二相流として移動することによって熱輸送され、その結果、発熱体160が冷却される。同時に、電子機器に実装された他の発熱部品は、整流部150によって流動方向を制御された冷却風により冷却することが可能になる。
 図11では、凝縮部120と放熱部310が略同一幅を有する構成について示した。しかし、電子機器400の構成はこれに限らず、例えば図12に示すように、凝縮部120の幅が蒸発部110に向かう方向に延伸した構成としてもよい。これにより、凝縮部120の容積が増大するので気相冷媒が占める体積も増大する。その結果、冷却装置100の内圧の増大による冷媒の沸点上昇が緩和されるので、蒸発部110における液相冷媒の気化が抑制されるのを回避することができる。そのため、冷却装置100の冷却性能をさらに向上させることが可能となる。
 以上述べたように、本実施形態の電子機器400によれば、蒸発部110と凝縮部120を鉛直方向に対して略同一高さに配置した場合であっても、熱輸送能力に優れた沸騰冷却方式による冷却装置を用いることができる。そのため、例えばラックの高さが1U(44.45mm)である場合に対応した薄型の電子機器であっても、充分な冷却性能を得ることができる。さらに、電子機器全体の冷却効率の低下を回避することができる。
 本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
 この出願は、2012年1月4日に出願された日本出願特願2012-000039を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200、300  冷却装置
 110  蒸発部
 111  蒸発容器
 112  隔壁部
 120、220  凝縮部
 121  凝縮容器
 122  第1の凝縮部
 123  第2の凝縮部
 124  蒸気管接続部
 130  冷媒
 140  配管
 141  蒸気管
 142  液管
 150  整流部
 152  整流薄板
 160  発熱体
 170  冷却風
 180  発熱部品
 225  凝縮板部
 310  放熱部
 312  放熱薄板
 314  送風領域
 400  電子機器
 410  基板
 420  筐体
 430  ソケット
 500  関連する沸騰冷却装置
 501  回路基板
 502  半導体デバイス
 510  沸騰部
 520  凝縮部
 531  蒸気管
 532  液戻り管
 540  冷却ファン

Claims (10)

  1. 冷媒を貯蔵する蒸発手段と、
     前記蒸発手段で気化した気相冷媒を凝縮液化させて放熱を行う凝縮手段と、
     前記蒸発手段と前記凝縮手段を接続する配管と、
     前記凝縮手段を通過する空気の流動方向を制御する整流手段、とを有し、
     前記蒸発手段と前記凝縮手段は、鉛直方向に対して略同一高さに位置し、
     前記蒸発手段は、蒸発容器と、前記蒸発容器内に配置された前記冷媒を仕切る隔壁手段とを備え、
     前記隔壁手段の高さは、前記冷媒の気液界面の高さ以上であり、かつ前記蒸発容器の高さ未満であり、
     前記配管は、前記気相冷媒が流動する蒸気管と、凝縮液化した液相冷媒が流動する液管を含み、
     前記凝縮手段は、前記凝縮手段を構成する凝縮容器の鉛直方向の高さである凝縮手段高さが異なる第1の凝縮手段と第2の凝縮手段を含み、前記第1の凝縮手段の凝縮手段高さは、前記第2の凝縮手段の凝縮手段高さよりも高く、
      前記第1の凝縮手段は、前記第2の凝縮手段の凝縮手段高さよりも鉛直上方の位置に、前記蒸気管と接続する蒸気管接続部を備え、
     前記整流手段は、前記第2の凝縮手段の上部に配置している
     冷却装置。
  2. 請求項1に記載した冷却装置において、
     前記整流手段は、長方形状の薄板が立設した複数の整流薄板を含み、
     前記整流薄板の延伸方向は、前記凝縮手段に流入する空気の流入方向に対して傾斜している
     冷却装置。
  3. 請求項1または2に記載した冷却装置において、
     前記蒸気管は、前記隔壁手段の高さ以上の位置において前記蒸発容器と接続し、
     前記液管は、前記冷媒の気液界面の高さ以下の位置において前記蒸発容器と接続する
     冷却装置。
  4. 請求項1から3のいずれか一項に記載した冷却装置において、
     前記隔壁手段は、長方形状の薄板が立設した複数の隔壁薄板を含む
     冷却装置。
  5. 請求項1から4のいずれか一項に記載した冷却装置において、
     前記凝縮手段は、前記凝縮容器内に配置された前記気相冷媒の放熱を促進する凝縮板手段を備え、
     前記凝縮板手段は、長方形状の薄板が立設した複数の凝縮薄板を含み、
     前記凝縮板手段の高さが、前記第2の凝縮手段の凝縮手段高さよりも低い
     冷却装置。
  6. 請求項1から5のいずれか一項に記載した冷却装置において、
     前記液管は、前記冷媒の気液界面の高さ以下の位置において前記凝縮容器と接続する
     冷却装置。
  7. 請求項1から6のいずれか一項に記載した冷却装置において、
     前記凝縮手段と熱的に接続する放熱手段をさらに有し、
     前記放熱手段は、前記凝縮手段の下部に配置している
     冷却装置。
  8. 請求項7に記載した冷却装置において、
     前記整流手段は、長方形状の薄板が立設した複数の整流薄板を含み、
     前記放熱手段は、長方形状の薄板が立設した複数の放熱薄板を含み、
     前記整流薄板の間隔が、前記放熱薄板の間隔よりも大きい
     冷却装置。
  9. 請求項1から8のいずれか一項に記載した冷却装置において、
     前記第1の凝縮手段と前記第2の凝縮手段の境界部における前記凝縮容器の側面が、前記凝縮手段に流入する空気の流入方向に対して傾斜している
     冷却装置。
  10. 冷却装置と、発熱体と、放熱手段を有し、
     前記冷却装置は、
      冷媒を貯蔵する蒸発手段と、
      前記蒸発手段で気化した気相冷媒を凝縮液化させて放熱を行う凝縮手段と、
      前記蒸発手段と前記凝縮手段を接続する配管と、
      前記凝縮手段を通過する空気の流動方向を制御する整流手段、とを有し、
      前記蒸発手段と前記凝縮手段は、鉛直方向に対して略同一高さに位置し、
      前記蒸発手段は、蒸発容器と、前記蒸発容器内に配置された前記冷媒を仕切る隔壁手段とを備え、
      前記隔壁手段の高さは、前記冷媒の気液界面の高さ以上であり、かつ前記蒸発容器の高さ未満であり、
      前記配管は、前記気相冷媒が流動する蒸気管と、凝縮液化した液相冷媒が流動する液管を含み、
      前記凝縮手段は、前記凝縮手段を構成する凝縮容器の鉛直方向の高さである凝縮手段高さが異なる第1の凝縮手段と第2の凝縮手段を含み、前記第1の凝縮手段の凝縮手段高さは、前記第2の凝縮手段の凝縮手段高さよりも高く、
       前記第1の凝縮手段は、前記第2の凝縮手段の凝縮手段高さよりも鉛直上方の位置に、前記蒸気管と接続する蒸気管接続手段を備え、
      前記整流手段は、前記第2の凝縮手段の上部に配置しており、
     前記蒸発手段は、前記発熱体の上部に熱的に接続して配置しており、
     前記凝縮手段は、前記放熱手段の上部に熱的に接続して配置している
     電子機器。
PCT/JP2012/007941 2012-01-04 2012-12-12 冷却装置及びそれを用いた電子機器 WO2013102973A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12864294.9A EP2801780B1 (en) 2012-01-04 2012-12-12 Cooling device and electronic device using the same
JP2013552343A JP6015675B2 (ja) 2012-01-04 2012-12-12 冷却装置及びそれを用いた電子機器
CN201280066148.4A CN104040278A (zh) 2012-01-04 2012-12-12 冷却装置和使用该冷却装置的电子装置
US14/370,190 US20140331709A1 (en) 2012-01-04 2012-12-12 Cooling device and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012000039 2012-01-04
JP2012-000039 2012-01-04

Publications (1)

Publication Number Publication Date
WO2013102973A1 true WO2013102973A1 (ja) 2013-07-11

Family

ID=48745050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007941 WO2013102973A1 (ja) 2012-01-04 2012-12-12 冷却装置及びそれを用いた電子機器

Country Status (5)

Country Link
US (1) US20140331709A1 (ja)
EP (1) EP2801780B1 (ja)
JP (1) JP6015675B2 (ja)
CN (1) CN104040278A (ja)
WO (1) WO2013102973A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044018A (ja) * 2012-08-28 2014-03-13 Sumitomo Heavy Ind Ltd 極低温冷凍機
WO2015111205A1 (ja) * 2014-01-27 2015-07-30 株式会社日立製作所 冷却装置及び冷却装置を備える電子機器
WO2015115028A1 (ja) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 冷却装置とこれを備えたデータセンター
CN105814684A (zh) * 2013-11-26 2016-07-27 株式会社村田制作所 电子仪器
WO2019006886A1 (zh) * 2017-07-05 2019-01-10 南通远征冷冻设备有限公司 一种新型蒸发器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140761A1 (ja) * 2012-03-22 2013-09-26 日本電気株式会社 電子基板の冷却構造及びそれを用いた電子装置
WO2015146110A1 (ja) 2014-03-26 2015-10-01 日本電気株式会社 相変化冷却器および相変化冷却方法
EP3702711A1 (en) * 2015-02-19 2020-09-02 JR Thermal LLC Intermittent thermosyphon
US9713286B2 (en) * 2015-03-03 2017-07-18 International Business Machines Corporation Active control for two-phase cooling
US9894815B1 (en) 2016-08-08 2018-02-13 General Electric Company Heat removal assembly for use with a power converter
CN107787156A (zh) 2016-08-24 2018-03-09 台达电子工业股份有限公司 散热组件
US11236948B2 (en) 2016-08-24 2022-02-01 Delta Electronics, Inc. Heat dissipation assembly
TWI635248B (zh) 2016-09-02 2018-09-11 宏碁股份有限公司 蒸發器及其製作方法
CN106855741B (zh) * 2016-12-29 2023-11-10 中国航天空气动力技术研究院 一种用于刀片服务器芯片的散热装置和系统
CN106937517B (zh) * 2017-04-17 2023-09-29 中国航天空气动力技术研究院 一种用于机架服务器芯片的散热装置
WO2019142310A1 (ja) * 2018-01-19 2019-07-25 住友精密工業株式会社 沸騰式冷却器
US11209215B2 (en) * 2018-07-27 2021-12-28 Qualcomm Incorporated Enhanced cooling of an electronic device using micropumps in thermosiphons
RU2731439C2 (ru) * 2018-08-14 2020-09-02 Константин Викторович Котельник Система охлаждения электронной системы
IT201800009390A1 (it) * 2018-10-12 2020-04-12 Francesco Romanello Sistema di raffreddamento bifase a convezione forzata
CN111615291B (zh) * 2019-02-25 2023-04-11 富联精密电子(天津)有限公司 浸没式冷却装置
US20200404805A1 (en) * 2019-06-19 2020-12-24 Baidu Usa Llc Enhanced cooling device
CN114264183B (zh) * 2021-12-30 2023-09-22 东营联合石化有限责任公司 一种油气冷却器
US11732976B1 (en) * 2022-03-02 2023-08-22 Aic Inc. Rapid heat dissipation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085186A (ja) * 2002-07-05 2004-03-18 Sony Corp 冷却装置、電子機器装置、音響装置及び冷却装置の製造方法。
JP2005300038A (ja) * 2004-04-13 2005-10-27 Sony Corp 熱輸送装置、熱輸送装置の製造方法及び電子機器
JP2011047616A (ja) 2009-08-28 2011-03-10 Hitachi Ltd 冷却システム、及び、それを用いる電子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431071B2 (en) * 2003-10-15 2008-10-07 Thermal Corp. Fluid circuit heat transfer device for plural heat sources
US7958935B2 (en) * 2004-03-31 2011-06-14 Belits Computer Systems, Inc. Low-profile thermosyphon-based cooling system for computers and other electronic devices
JP4381998B2 (ja) * 2005-02-24 2009-12-09 株式会社日立製作所 液冷システム
CN100383963C (zh) * 2005-07-08 2008-04-23 富准精密工业(深圳)有限公司 薄型环路式散热装置
CN101340798A (zh) * 2007-07-06 2009-01-07 王卫民 蒸发冷凝冷却器及应用
EP2119993A1 (en) * 2008-05-14 2009-11-18 ABB Research Ltd. Two-phase cooling circuit
CN101998807A (zh) * 2009-08-19 2011-03-30 富瑞精密组件(昆山)有限公司 散热装置
US9727101B2 (en) * 2010-03-30 2017-08-08 Nec Corporation Cooling apparatus and cooling system for electronic-device exhaustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085186A (ja) * 2002-07-05 2004-03-18 Sony Corp 冷却装置、電子機器装置、音響装置及び冷却装置の製造方法。
JP2005300038A (ja) * 2004-04-13 2005-10-27 Sony Corp 熱輸送装置、熱輸送装置の製造方法及び電子機器
JP2011047616A (ja) 2009-08-28 2011-03-10 Hitachi Ltd 冷却システム、及び、それを用いる電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2801780A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044018A (ja) * 2012-08-28 2014-03-13 Sumitomo Heavy Ind Ltd 極低温冷凍機
CN105814684A (zh) * 2013-11-26 2016-07-27 株式会社村田制作所 电子仪器
CN105814684B (zh) * 2013-11-26 2019-01-11 株式会社村田制作所 电子仪器
WO2015111205A1 (ja) * 2014-01-27 2015-07-30 株式会社日立製作所 冷却装置及び冷却装置を備える電子機器
WO2015115028A1 (ja) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 冷却装置とこれを備えたデータセンター
WO2019006886A1 (zh) * 2017-07-05 2019-01-10 南通远征冷冻设备有限公司 一种新型蒸发器

Also Published As

Publication number Publication date
CN104040278A (zh) 2014-09-10
EP2801780A4 (en) 2016-01-13
US20140331709A1 (en) 2014-11-13
EP2801780B1 (en) 2019-09-18
JP6015675B2 (ja) 2016-10-26
EP2801780A1 (en) 2014-11-12
JPWO2013102973A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6015675B2 (ja) 冷却装置及びそれを用いた電子機器
TWI631888B (zh) 冷卻在一資料中心中之電子裝置
WO2013018667A1 (ja) 冷却装置及びそれを用いた電子機器
US20140318167A1 (en) Evaporator, cooling device, and electronic apparatus
US9560794B2 (en) Cooling device for cooling rack-type server, and data center provided with same
US7231961B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
US7958935B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
JP6269478B2 (ja) 電子基板の冷却構造及びそれを用いた電子装置
WO2015146110A1 (ja) 相変化冷却器および相変化冷却方法
JP2010079401A (ja) 冷却システム及びそれを用いた電子機器
JP2013007501A (ja) 冷却装置
JP2013033807A (ja) 冷却装置およびそれを用いた電子機器
JP6164089B2 (ja) 薄型電子機器の冷却構造及びそれを用いた電子装置
WO2015128951A1 (ja) 半導体素子冷却装置および電子機器
JP5860728B2 (ja) 電子機器の冷却システム
EP2801781B1 (en) Cooling device
WO2017208461A1 (ja) 沸騰冷却装置、及びそれを搭載した電子装置
WO2013073696A1 (ja) 冷却装置およびそれを用いた電子機器
JP6127983B2 (ja) 冷却構造及びそれを用いた電子装置
US20160334168A1 (en) Cooling device and electronic device provided with cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552343

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012864294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14370190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE