WO2013102725A2 - Cellule photovoltaïque et procédé de réalisation - Google Patents

Cellule photovoltaïque et procédé de réalisation Download PDF

Info

Publication number
WO2013102725A2
WO2013102725A2 PCT/FR2013/000006 FR2013000006W WO2013102725A2 WO 2013102725 A2 WO2013102725 A2 WO 2013102725A2 FR 2013000006 W FR2013000006 W FR 2013000006W WO 2013102725 A2 WO2013102725 A2 WO 2013102725A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
amorphous
substrate
electrically insulating
insulating layer
Prior art date
Application number
PCT/FR2013/000006
Other languages
English (en)
Other versions
WO2013102725A3 (fr
Inventor
Thibaut Desrues
Sylvain DE VECCHI
Florent Souche
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives (C.E.A.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives (C.E.A.) filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives (C.E.A.)
Priority to EP13704145.5A priority Critical patent/EP2801116A2/fr
Priority to JP2014550744A priority patent/JP2015506584A/ja
Priority to US14/370,857 priority patent/US20140373919A1/en
Priority to KR1020147021671A priority patent/KR20140112537A/ko
Publication of WO2013102725A2 publication Critical patent/WO2013102725A2/fr
Publication of WO2013102725A3 publication Critical patent/WO2013102725A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the invention relates to a photovoltaic cell.
  • the invention also relates to a method for producing a photovoltaic cell.
  • the research focuses mainly on improving the conversion efficiency of the cell, for example by reducing the recombination of photogenerated charge carriers and / or by reducing the resistive losses, and on the simplification of the process realization of photovoltaic cells.
  • a photovoltaic cell is formed by a diode, for example, a p / n type junction made of a semiconductor material such as silicon.
  • the diode then comprises a zone doped with a p-type impurity, for example boron, and a zone doped with an n-type impurity, for example phosphorus.
  • a p-type impurity for example boron
  • an n-type impurity for example phosphorus
  • cells with heterojunctions of silicon combine a crystalline silicon substrate, c-Si, associated with ultra-thin layers of amorphous silicon a-Si: H, deposited to form junctions with crystalline silicon.
  • the gap energy of a-Si: H (1, 5eV ⁇ E G ⁇ 1, 9eV) is more higher than that of c-Si (1, 12eV).
  • the first developments of heterojunction cells were performed on structures where only the emitter consisted of a film of a-Si: H, with interesting yields. Research has also been conducted to improve the collection of electron-hole pairs, the Back Surface Field configuration in English or BSF is advantageous.
  • This field improves the electrical characteristics of the solar cell, in particular the open circuit voltage by reducing the dark current.
  • porters who become minority after their injection into the rear zone move away from the depletion zone.
  • the rear electric field "BSF" pushes them towards the junction.
  • the spaces and overlaps of the different layers of the photovoltaic cell impose tolerances in the geometry of the masks and in the alignments between the deposits to avoid short circuits. For example, it is a question of having a good alignment between the different levels of layers made on the substrate.
  • the invention relates to a photovoltaic cell whose structure is compact while facilitating the formation of contacts to maintain good yields.
  • the invention also relates to a method for producing a photovoltaic cell that is robust, easy to implement and that allows a reduction in the number of technological steps. This object is approached by the appended claims.
  • FIG. schematically, in section, a photovoltaic cell
  • FIG. 2, 3 and 4 represent, schematically, in section, a photovoltaic cell being developed
  • the photovoltaic cell comprises a substrate 1 of a first conductivity type provided with a main face.
  • the substrate 1 is crystalline, that is to say mono-crystalline or polycrystalline.
  • the substrate 1 is formed by a semiconductor material, for example a material of the type, IV, such as Si, Ge, an alloy of these materials, a material of the type III-V or II-VI.
  • first amorphous semiconductor layer of the first conductivity type 2 and a second amorphous semiconductor layer of a second conductivity type 4, both in contact with the main face of the substrate 1.
  • the first and second amorphous layers are electrically connected to the substrate 1 so as to form a junction with the substrate and / or to allow the passage of the charge carriers between the amorphous layers and the substrate.
  • the first and / or second amorphous layers can thus have an interface with the substrate. Preferably, the interfaces are steep.
  • This structure is called heterojunction photovoltaic cell because the two materials that constitute this junction have a different energy band gap (EQ).
  • the second type of conductivity is opposite to the first type of conductivity.
  • the heterojunction is preferably between an amorphous material and an identical mono or polycrystalline material.
  • the heterojunction is of the a-Si: H / c-Si type.
  • the substrate may optionally have a passivation layer, for example a layer of Al 2 O 3 , thermal SiO 2 , or any material capable of passivating the surface of c-Si.
  • the properties of the passivation layer are configured to maintain the junction between the substrate and the amorphous layer.
  • the heterojunction is for example made of silicon or any other suitable material, for example a junction like CdS / CdTe or based on organic materials such as PEDOT / PSS (Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)). It may also be indium copper di-selenide or gallium arsenide.
  • PEDOT / PSS Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)
  • PEDOT / PSS Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)
  • It may also be indium copper di-selenide or gallium arsenide.
  • the first amorphous layer of the first conductivity type is preferably doped amorphous silicon.
  • the first amorphous layer 2 is an n-doped amorphous silicon, a-Si: H Un.
  • the first amorphous layer makes it possible to form a rear electric field BSF.
  • the second amorphous layer of the second conductivity type 4 is preferably p-doped amorphous silicon, a-Si: H i / p.
  • the second amorphous layer forms a junction p / n with the substrate, which makes it possible to recover the current of carriers generated inside the photovoltaic cell.
  • This second amorphous layer can also be called transmitter.
  • the photovoltaic cell also has, on its main face, a first electrical contact 3 formed on the first layer and a second electrical contact 5 formed on the second layer.
  • the electrical contact materials are electrically conductive, such as aluminum and / or ⁇ .
  • the interfaces between the electrical contacts and the amorphous materials are abrupt or formed by means of a silicide.
  • the photovoltaic cell also comprises, on its main face, an electrically insulating layer 6.
  • the material of the electrically insulating layer 6 is, for example, a silicon oxide, a silicon nitride, a silicon carbide or a type of material. -If: H stoichiometric or not.
  • the material of the electrically insulating layer 6 may also be a stack or a mixture of these latter materials.
  • the layer 6 consists of a stack of a low Si layer covered with a Si-rich layer.
  • the layer 6 may be for example Al 2 O 3 or a stack of oxide or silicon nitride, with a first protective layer poor in Si covered with an absorbent layer rich in Si. This stack has the advantage of being easy to use. engrave.
  • the layer 6 can for example be produced by plasma-activated vapor deposition PECVD, LPCVD low-pressure chemical vapor deposition, screen-printing or ink-jet.
  • the electrically insulating layer 6 is integrally formed on the first amorphous layer 2.
  • the electrically insulating layer 6 may interface with the first amorphous layer 2. It has no interface with the substrate 1. Thus, the effect of the rear electric field BSF and the output is increased.
  • the surface of the second amorphous layer 4 is left free for the contact 5.
  • the first and second contacts 3 and 5 respectively extend on the first and second amorphous layers by extending on the electrically insulating layer 6 to increase the active surface of the contacts on the main face without increasing the risk of short circuits.
  • This architecture makes it easy to reduce resistive losses.
  • the other opposite main face is free to optimize the collection surface of the light radiation.
  • the first electrical contact 3 and the second electrical contact 5 are electrically dissociated.
  • the contacts have no interface with the substrate to prevent short circuits and they are preferably formed on the same face of the electrically insulating layer 6.
  • part of the second amorphous layer 4 covers the electrically insulating layer 6 and this electrically insulating layer 6 covers part of the first amorphous layer 2.
  • the electrically insulating layer 6 isolates the amorphous layers 2 and 4 different types of conductivity. The performance of the photovoltaic cell is thus improved and the lifetime of the photovoltaic cells is increased.
  • the second amorphous layer 4, electrically connected to the substrate 1, is completely covered by the electrical contacts and more particularly by the second electrical contact 5. It has been observed that a complete or almost complete coverage of the second layer 4 by the second contact 5 makes it possible to increase the electrical performance of the photovoltaic cell, even if the additional contact surface has a negligible effect on the transport of charges.
  • the second amorphous layer 4 is completely covered by the electrical contact 5, the layer 4 is protected from the external environment, which makes it possible to increase its lifetime.
  • fully covered surface is meant the surface of the layer 4 which has an interface with the substrate 1. This surface must be covered with more than 95% and advantageously 100%.
  • the surface of the layer 4 which has an interface with the insulating layer 6 can only be partially covered by the contact 5.
  • the main surface of the substrate 1 is completely covered by the first amorphous layer 2 and the second amorphous layer 4. This makes it possible to increase the efficiency of the cell by using the entire main surface usable to recover the photogenerated stream or to form the rear surface field.
  • only the side faces of the amorphous layers 2 and 4 are in contact.
  • the amorphous layers 2 and 4 connected to the substrate 1, form a junction p / n.
  • the layer 4 it is possible to use a stack of a first thin or slightly doped thin layer (1 to 10 nm) coated with a doped layer. It is also possible to locally modify the layer 2 near the layer 4 by doping (p or hydrogen) to make it locally insulating. It is also possible to modify layer 4 locally.
  • fully covered surface is meant a surface covered to more than 95% and preferably 100%.
  • the structure comprises, in a direction perpendicular to the main face, a stack successively comprising the substrate 1, the first amorphous layer 2, the electrically insulating layer 6, the second layer amorphous 4, the electrical contact 5.
  • the contact 5 and the first layer 2 are separated, perpendicularly to the substrate, by the electrically insulating layer 6 and the second layer 4.
  • the shift between the contact 5 and the first layer 2 is defined by the thicknesses of the second layer 4 and the electrically insulating layer 6, and not by means of one or more photolithography steps, which allows a compact architecture.
  • this allows a better overlap of the different layers while ensuring maximum coverage of the contacts 3 and 5 on the layers amorphous 2 and 4. This reduces or even eliminates the risk of direct contact between the first amorphous layer 2 and the electrical contact of the second amorphous layer 5.
  • the electrical contacts 3 and 5 extend above the electrically insulating layer 6 and are electrically dissociated.
  • the insulating groove is defined between the contacts 3 and 5 and it preferably extends inside the second layer 4 to reduce the risk of leakage when the latter has a portion which is in electrical contact with the first contact 3. even more preferentially, this groove makes it possible to avoid any accumulation of conductive dust during the production process or during the lifetime of the photovoltaic cell, which would make the contact of the first amorphous layer 3 with the second contact in electrical contact. 5.
  • the photovoltaic cell is formed in the following manner. As illustrated in FIG. 2, it is necessary to provide a substrate 1 comprising a semiconductor material layer of a first conductivity type.
  • the substrate 1 is partially covered by a first pattern comprising a first amorphous layer 2 of the first conductivity type and an electrically insulating layer 6.
  • the electrically insulating layer 6 is separated from the substrate 1 by the first amorphous layer 2.
  • the substrate 1 and the first pattern are covered by a second amorphous layer 4 of a second conductivity type.
  • the layer 2 of the first conductivity type is deposited by any suitable technique, for example an n-doped ⁇ -Si: H layer.
  • the first layer 2 may be deposited by plasma-activated vapor deposition PECVD, LPCVD low-pressure chemical vapor deposition or at atmospheric pressure APCVD, for example.
  • the layer of the first conductivity type 2 has, preferably, a thickness of between 5 nm and 50 nm after deposition. This thickness range advantageously makes it possible to properly passivate the surface while avoiding resistive losses in the layers.
  • This first amorphous layer 2 is covered by an electrically insulating layer 6.
  • the first amorphous layer 2 and the electrically insulating layer 6 have the same design and are perfectly aligned, that is to say that the lateral faces 2 and 6 are in continuity with one another.
  • the material of the electrically insulating layer 6 is preferably obtained by means of plasma-enhanced chemical vapor deposition. It is also possible to use plasma assisted atomic layer deposition techniques (ALD, PEALD). It is also possible to deposit materials like AI 2 O 3 , the choice is made according to the structure and the constraints present.
  • the electrically insulating layer 6 preferably has a thickness of between 10 nm and 2000 nm. This thickness range advantageously makes it possible to obtain a good compromise between the thickness, the deposition time and the insulating properties of the layer.
  • the electrically insulating layer 6 and the first amorphous layer 2 are then etched by means of the same etching mask so as to self-align the pattern formed in the electrically insulating layer 6 and the pattern formed in the first layer 2.
  • the substrate is then partially covered by the first pattern.
  • Part of the surface of the first layer 2 and / or the electrically insulating layer 6 may be etched, preferably by laser irradiation and / or by wet etching, for example.
  • the amorphous layer 4 of the second conductivity type is then deposited by any suitable technique, for example a p-doped a-Si: H layer deposited by plasma-activated vapor deposition PECVD, low-level chemical vapor deposition. pressure LPCVD or at atmospheric pressure APCVD for example.
  • the amorphous layer of the second conductivity type 4 has, preferably, a thickness of between 5 nm and 50 nm after deposition. This thickness range makes it possible to passively pass the surface while avoiding resistive losses in the layers.
  • the second layer 4 is deposited in a non-selective manner and it covers the substrate and the first pattern.
  • the layers 2 and 4 may advantageously consist of a stack of two layers.
  • the first layer, in contact with the substrate, is not or little doped and passive interface. Effective passivation can be achieved by means of a first layer having a thickness of between 1 and 10 nm.
  • the second layer is doped and provides the electric field necessary for the collection of carriers.
  • the second amorphous layer 4 and the first pattern are then partially etched to release a portion of the first amorphous layer 2, the substrate 1 being left covered by the second amorphous layer 4, as illustrated in FIG. 3.
  • the etching of the second layer amorphous 4 and the electrically insulating layer 6 is made above the first amorphous layer 2, at the left side as shown in Figure 3.
  • the etching stops on the amorphous layer 2 and defines a pad of electrically insulating material extending vertically between the two amorphous layers.
  • Part of the surface of the second amorphous layer 4 and the electrically insulating layer 6 may be etched preferentially by laser irradiation and / or by wet etching, for example.
  • a contact of the first amorphous layer 3 and a contact of the second amorphous layer 5 are formed by means of an electrically conductive material, the two contacts partially covering the electrically insulating layer 6 and being dissociated electrically.
  • the contacts are formed by deposition of the electrically conductive material on the first amorphous layer 2 and the second amorphous layer 4.
  • the electrically conductive contacts 3 and / or 5 are deposited by any suitable technique, preferably by spraying, electrochemical deposition, screen printing, evaporation, inkjet.
  • the thickness of the electrical contacts is for example between 1 pm and 50 pm after deposition so as not to cause partial or total depletions of the doped areas or to cause problems of series resistance.
  • the electrically conductive material 6 is etched to form the two contacts 3 and 5.
  • the second amorphous layer 4 can then be etched above the electrically insulating layer 6 in the extension of the hole formed in the electrically conductive material to release a portion of the electrically insulating layer 6, to electrically dissociate the two contacts 3 and 5 and optionally two parts of the second layer 4.
  • the layer 4 is etched so as to reduce the electrical losses between the contacts 3 and 5. However, given its low conductivity, it can be engraved partially or not engraved.
  • the contacts 3 and 5 have a shape of slot nested one inside the other, the contacts being separated by the layer 6.
  • the etching of the electrically insulating material 6 is carried out above the second layer 4.
  • the second layer 4 can be eliminated so as to prevent the contact 3 from being associated with material forming the second layer 4. configuration depends on the extent of the area to be etched and its position above the electrically insulating layer 6.
  • the electrically insulating layer 6 comprises: a first absorbent layer (rich in silicon for example) and a second protective layer (low in silicon for example), the protective layer being in contact with the amorphous layer of first conductivity 2.
  • the laser irradiation then opens the absorbent layer, rich in Si, but does not deteriorate the layer 2 thanks to the protective layer. The latter is then easily etched by the wet route.
  • the absorbent layer can be easily structured by laser irradiation.
  • the absorbent layer will be etched by laser irradiation and the protective layer by chemical etching.
  • the laser etching removes a portion of the absorbent layer, separating the absorbent layer in its middle into two uncontacted portions and leaving free a portion of the protective layer.
  • the protective layer thus serves as a barrier layer for laser irradiation.
  • a trench is formed in a simple manner in the electrically insulating layer 6.
  • the electrically insulating layer 6 is not completely etched so as to leave a space between the contacts 3 and 5 and protect the layer 2.
  • the etching of the second amorphous layer 4, the electrically conductive material and / or possibly part of the electrically insulating layer 6 can be carried out in a single step, preferably by laser irradiation.
  • the etching is performed above the electrically insulating layer 6, it is sufficient to align the laser above this layer.
  • One of the side faces of the second amorphous layer 4 and the contact 5 are thus self-aligned to have a complete or almost complete coverage of the second layer 4 by the contact 5.
  • the contacts 3 and 5 are separated by the same distance above the electrically insulating layer 6. There is therefore no short circuit between the contacts 3 and 5.
  • the photovoltaic cell thus has low tolerance values for technological steps requiring alignments and can achieve high efficiency while limiting the risk of short circuits.
  • the laser irradiation will preferably be carried out with a wavelength of less than 600 nm, a fluence of between 0.01 J / cm 2 and 10 J / cm 2, a frequency of between 10 kHz and 10,000 kHz and a pitch of between 1 ⁇ m and 100 ⁇ m.
  • the laser irradiation is used to etch at once a part of the electrically insulating layer 6, a part of the second amorphous layer 4 and the electrical contacts 3 and 5.
  • at least a part of engravings can also be made by wet etching. The duration is 2 minutes and the etching solution is 2% HF.
  • the electrically insulating layer provides the mask function, which simplifies this process by reducing the number of steps necessary for the realization of the photovoltaic cell and by using easily industrializable techniques, such as laser irradiation or chemical etching, unlike more conventional techniques and more difficult to industrialize, such as photolithography, metal masks or screen printing for example.
  • Layers 2 and 4 have been presented as amorphous layers to form a double heterojunction cell, but another crystal structure may be employed for one and / or the other. Those skilled in the art will keep in mind that additional steps of localization of the different layers described above are possible, for example to modify the extent of the second layer 4 on the electrically insulating layer 6, or to form a spacer on the edges of the pattern in materials 2 and 6.
  • the layers 2 and 4 can be inverted, for example, if the area of the layer 2 covered by the layer 6 is very narrow, less than 10 ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Cellule photovoltaïque comportant un substrat semi-conducteur d'un premier type de conductivité (1) muni d'une face principale, une première couche en matériau semi-conducteur amorphe (2) du premier type de conductivité en contact avec la face principale du substrat (1 ), un premier contact électrique (3) formé sur la première couche amorphe (2), une deuxième couche en matériau semi-conducteur amorphe (4) d'un second type de conductivité en contact avec la face principale du substrat (1), un second contact électrique (5) formé sur la deuxième couche amorphe (4) et une couche électriquement isolante (6), cellule caractérisée en ce que la couche électriquement isolante (6) est formée intégralement sur la première couche amorphe (2) et que les premier et deuxième contacts (3,5) s'étendent sur la couche électriquement isolante (6).

Description

Cellule photovoltaïque et procédé de réalisation
Domaine technique de l'invention
L'invention est relative à une cellule photovoltaïque.
L'invention est également relative à un procédé de réalisation d'une cellule photovoltaïque.
État de la technique
Dans le domaine des cellules photovoltaïques, la recherche se focalise principalement sur l'amélioration du rendement de conversion de la cellule, par exemple en réduisant la recombinaison de porteurs de charges photogénérés et/ou en diminuant les pertes résistives, et sur la simplification du procédé de réalisation des cellules photovoltaïques.
De manière conventionnelle, une cellule photovoltaïque est formée par une diode, par exemple, une jonction de type p/n réalisée dans un matériau semiconducteur tel que le silicium. La diode comporte alors une zone dopée par une impureté de type p, par exemple du bore, et une zone dopée par une impureté de type n, par exemple du phosphore. Afin d'améliorer le rendement de conversion des cellules photovoltaïques, différentes architectures ont été proposées.
En premier lieu, les cellules à hétérojonctions de silicium, combinent un substrat en silicium cristallin, c-Si, associé à des couches ultra-minces de silicium amorphe a-Si : H, déposées pour former des jonctions avec le silicium cristallin. L'énergie de gap du a-Si : H (1 ,5eV<EG<1 ,9eV) est plus élevée que celle du c-Si (1 ,12eV). Les premiers développements des cellules à hétérojonction ont été réalisées sur des structures où seul l'émetteur était constitué d'un film de a-Si : H, avec des rendements intéressants. Des recherches ont également été réalisées afin d'améliorer la collecte des paires électron-trou, la configuration à champ arrière « Back Surface Field » en anglais ou BSF est avantageuse. Ce champ améliore les caractéristiques électriques de la cellule solaire, en particulier, la tension en circuit ouvert par réduction du courant d'obscurité. En effet, les porteurs devenus minoritaires après leur injection dans la zone arrière s'éloignent de la zone de déplétion. Le champ électrique arrière « BSF » les repousse vers la jonction.
Enfin, de nouvelles architectures ont été proposées afin de libérer la surface de collection, la surface avant. Les cellules à contact en face arrière, en anglais « Rear Contact Cell » RCC, permettent d'avoir les zones d'émetteur et BSF localisés sur la face arrière et ainsi d'éviter les ombrages dus à la métallisation de la face avant. Des architectures de cellules à hétérojonctions, et particulièrement des cellules à double hétérojonction avec un émetteur et un BSF réalisés en a-Si : H, en face arrière, sont décrites dans les documents US 7, 199,395 et US 2004/0043528.
Ces architectures sont, de plus, relativement longues à mettre en œuvre et présentent des risques de mauvais rendement.
En effet, les espaces et recouvrements des différentes couches de la cellule photovoltaïque imposent des tolérances dans la géométrie des masques et dans les alignements entre les dépôts pour éviter les courts-circuits. Par exemple, il s'agit d'avoir un bon alignement entre les différents niveaux de couches réalisés sur le substrat. Ainsi, plus la géométrie de la face arrière est complexe et plus elle nécessite d'étapes de localisation. A chaque étape de localisation est ajoutée une tolérance, ce qui augmente la largeur du dispositif et peut réduire ses performances. Il reste donc un besoin d'élaborer une cellule photovoltaïque de géométrie simple en face arrière afin d'obtenir de hauts rendements de conversion.
Objet de l'invention
L'invention a pour objet une cellule photovoltaïque dont la structure est compacte tout en facilitant la formation des contacts afin de conserver de bons rendements.
L'invention a également pour objet un procédé de réalisation d'une cellule photovoltaïque qui soit robuste, facile à mettre en œuvre et qui permette une réduction du nombre d'étapes technologiques. On tend vers cet objet par les revendications annexées.
Description sommaire des dessins D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : - la figure 1 représente, de manière schématique, en coupe, une cellule photovoltaïque,
- la figure 2, 3 et 4 représentent, de manière schématique, en coupe, une cellule photovoltaïque en cours d'élaboration,
- la figure 5 représente de manière schématique la cellule photovoltaïque vue de dessus. Description d'un mode de réalisation préférentiel de l'invention
Comme illustré à la figure 1 , la cellule photovoltaïque comprend un substrat 1 d'un premier type de conductivité muni d'une face principale. Le substrat 1 est cristallin, c'est-à-dire mono-cristallin ou polycristallin. Le substrat 1 est formé par un matériau semi-conducteur, par exemple, un matériau du type , IV, comme Si, Ge, un alliage de ces matériaux, un matériau de type lll-V ou ll-VI.
II comporte, sur sa face principale, une première couche en semi-conducteur amorphe du premier type de conductivité 2 et une deuxième couche en semiconducteur amorphe d'un second type de conductivité 4, toutes deux en contact avec la face principale du substrat 1 . La première et deuxième couches amorphes sont connectées électriquement au substrat 1 de manière à former une jonction avec le substrat et/ou à autoriser le passage des porteurs de charge entre les couches amorphes et le substrat. La première et/ou la deuxième couches amorphes peuvent ainsi avoir une interface avec le substrat. De manière préférentielle, les interfaces sont abruptes.
Cette structure est appelée cellule photovoltaïque à hétérojonction car les deux matériaux qui constituent cette jonction ont une énergie de bande interdite (EQ) différente.
Le second type de conductivité est opposé au premier type de conductivité.
L'hétérojonction est préférentiellement entre un matériau amorphe et un matériau mono ou polycristallin identique. Avantageusement, l'hétérojonction est du type a-Si : H/c-Si. Le substrat peut éventuellement présenter une couche de passivation comme par exemple une couche de Al203, de S1O2 thermique, ou tout matériau capable de passiver la surface du c-Si. Les propriétés de la couche de passivation sont configurées de manière à conserver la jonction entre le substrat et la couche amorphe. L'hétérojonction est par exemple en silicium ou en tout autre matériau adapté, par exemple une jonction comme CdS/CdTe ou à base de matériaux organique comme PEDOT/PSS (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)). Il peut s'agir aussi de di-séléniure de cuivre indium ou d'arseniure de gallium.
La première couche amorphe du premier type de conductivité est préférentiellement du silicium amorphe dopé. De préférence, la première couche amorphe 2 est un silicium amorphe dopé n, a-Si : H Un. Préférentiellement, la première couche amorphe permet de former un champ électrique arrière BSF.
La deuxième couche amorphe du second type de conductivité 4 est préférentiellement du silicium amorphe dopé p, a-Si : H i/p. La seconde couche amorphe forme une jonction p/n avec le substrat, ce qui permet de récupérer le courant de porteurs générés à l'intérieur de la cellule photovoltaïque. Cette seconde couche amorphe peut être également appelée émetteur. La cellule photovoltaïque comporte aussi, sur sa face principale, un premier contact électrique 3 formé sur la première couche et un second contact électrique 5 formé sur la deuxième couche. Les matériaux de contact électrique sont électriquement conducteurs, comme par exemple de l'aluminium et/ou de ΙΊΤΟ. De manière préférentielle, les interfaces entre les contacts électriques et les matériaux amorphes sont abruptes ou formées au moyen d'un siliciure.
La cellule photovoltaïque comporte aussi, sur sa face principale, une couche électriquement isolante 6. Le matériau de la couche électriquement isolante 6 est, par exemple, un oxyde de silicium, un nitrure de silicium, un carbure de silicium ou un matériau de type a-Si:H stœchiométrique ou non. Le matériau de la couche électriquement isolante 6 peut également être un empilement ou un mélange de ces derniers matériaux. De manière préférentielle, la couche 6 est constituée d'un empilement d'une couche pauvre en Si recouverte d'une couche riche en Si. Par exemple, on peut avoir une première couche de nitrure pauvre en silicium obtenu grâce un flux de gaz NH3/SiH4 avec un rapport compris entre 2 et 10 recouverte d'une deuxième couche de nitrure riche en silicium obtenue avec un rapport de gaz proche de 1 , typiquement inférieur à 2.
La couche 6 peut être par exemple en AI2O3 ou un empilement d'oxyde ou de nitrure de silicium, avec une première couche protectrice pauvre en Si recouverte d'une couche absorbante riche en Si. Cet empilement présente l'avantage d'être facile à graver.
La couche 6 peut par exemple être élaborée par déposition en phase vapeur activé par plasma PECVD, déposition chimique en phase vapeur à basse pression LPCVD, sérigraphie ou par jet d'encre.
La couche électriquement isolante 6 est formée intégralement sur la première couche amorphe 2. La couche électriquement isolante 6 peut avoir une interface avec la première couche amorphe 2. Elle n'a pas d'interface avec le substrat 1. Ainsi, l'effet du champ électrique arrière BSF et le rendement est augmenté. De plus, la surface de la seconde couche amorphe 4 est laissée libre pour le contact 5. Avantageusement, on obtient une meilleure compacité de la cellule photovoltaïque. Les premier et deuxième contacts 3 et 5 s'étendent respectivement sur la première et la deuxième couches amorphes en se prolongeant sur la couche électriquement isolante 6 pour augmenter la surface active des contacts sur la face principale sans augmenter le risque de courts-circuits. Cette architecture permet facilement de réduire les pertes résistives. Avantageusement, l'autre face principale opposée est libre permettant d'optimiser la surface de collection du rayonnement lumineux. Le premier contact électrique 3 et le deuxième contact électrique 5 sont électriquement dissociés. Les contacts n'ont pas d'interface avec le substrat pour empêcher les courts-circuits et ils sont formés préférentiellement sur une même face de la couche électriquement isolante 6.
Dans un mode de réalisation préférentiel, une partie de la deuxième couche amorphe 4 recouvre la couche électriquement isolante 6 et cette couche électriquement isolante 6 recouvre une partie de la première couche amorphe 2. La couche électriquement isolante 6 permet d'isoler les couches amorphes 2 et 4 de différents types de conductivité. Les performances de la cellule photovoltaïque sont ainsi améliorées et la durée de vie des cellules photovoltaïques est augmentée. La seconde couche amorphe 4, connectée électriquement au substrat 1 , est totalement recouverte par les contacts électriques et plus particulièrement par le deuxième contact électrique 5. Il a été observé qu'une couverture complète ou quasi-complète de la deuxième couche 4 par le deuxième contact 5 permet d'accroître les performances électriques de la cellule photovoltaïque, même si la surface supplémentaire de contact a un effet négligeable sur le transport des charges. De plus, comme la seconde couche amorphe 4 est totalement recouverte par le contact électrique 5, la couche 4 est protégée de l'environnement extérieur, ce qui permet d'augmenter sa durée de vie.
Par surface totalement recouverte, on entend la surface de la couche 4 qui a une interface avec le substrat 1. Cette surface doit être recouverte à plus de 95% et avantageusement à 100%. En revanche la surface de la couche 4 qui a une interface avec la couche isolante 6 peut être seulement partiellement recouverte par le contact 5. Dans un mode de réalisation pouvant être combiné avec les précédents, la surface principale du substrat 1 est entièrement recouverte par la première couche amorphe 2 et la seconde couche amorphe 4. Ceci permet d'accroître le rendement de la cellule en utilisant toute la face principale utilisable pour récupérer le courant photogénéré ou pour former le champ de surface arrière. Selon un mode de réalisation préférentiel, seules les faces latérales des couches amorphes 2 et 4 sont en contact. Dans cette architecture, les couches amorphes 2 et 4, connectées au substrat 1 , forment une jonction p/n.
Selon un mode de réalisation, pour éviter des fuites trop importantes entre les couches 2 et 4 plusieurs solutions sont possibles. On peut utiliser pour la couche 4 un empilement d'une première couche non ou peu dopée fine (1 à 10 nm) recouverte d'une couche dopée. On peut prévoir également de modifier localement la couche 2 à proximité de la couche 4 en la dopant (p ou hydrogène) pour la rendre localement isolante. Il est également possible de modifier localement la couche 4.
Par surface entièrement recouverte, on entend une surface recouverte à plus de 95% et avantageusement à 100%.
Dans un mode de réalisation particulier, pouvant être combiné avec les précédents, la structure comporte, dans une direction perpendiculaire à la face principale, un empilement comprenant successivement le substrat 1 , la première couche amorphe 2, la couche électriquement isolante 6, la deuxième couche amorphe 4, le contact électrique 5. Le contact 5 et la première couche 2 sont séparés, perpendiculairement au substrat, par la couche électriquement isolante 6 et la deuxième couche 4. Le décalage entre le contact 5 et la première couche 2 est défini par les épaisseurs de la deuxième couche 4 et de la couche électriquement isolante 6, et non au moyen d'une ou plusieurs étapes de photolithographie, ce qui permet une architecture compacte.
De plus, cela permet un meilleur recouvrement des différentes couches tout en assurant une couverture maximale des contacts 3 et 5 sur les couches amorphes 2 et 4. Cela réduit voire annule les risques de contact direct entre la première couche amorphe 2 et le contact électrique de la seconde couche amorphe 5.
Les contacts électriques 3 et 5 s'étendent au-dessus de la couche électriquement isolante 6 et sont électriquement dissociés. Dans un mode de réalisation particulier pouvant être combiné avec les modes précédents, il existe entre les deux contacts 3 et 5 une rainure électriquement isolante. La rainure isolante est définie entre les contacts 3 et 5 et elle s'étend préférentiellement à l'intérieur de la deuxième couche 4 pour réduire les risques de fuite lorsque cette dernière possède une partie qui est en contact électrique avec le premier contact 3. De manière encore plus préférentielle, cette rainure permet d'éviter une éventuelle accumulation de poussière conductrice durant le procédé de réalisation ou durant la durée de vie de la cellule photovoltaïque, qui mettrait en contact électrique le contact de la première couche amorphe 3 avec le deuxième contact 5.
Dans un mode de réalisation particulier, la cellule photovoltaïque est formée de la manière suivante. Comme illustré à la figure 2, il faut prévoir un substrat 1 comportant une couche en matériau semi-conducteur d'un premier type de conductivité. Le substrat 1 est partiellement recouvert par un premier motif comportant une première couche amorphe 2 du premier type de conductivité et une couche électriquement isolante 6. La couche électriquement isolante 6 est séparée du substrat 1 par la première couche amorphe 2. Le substrat 1 et le premier motif sont recouverts par une deuxième couche amorphe 4 d'un second type de conductivité.
Pour obtenir ce type de substrat, on peut préférentiellement recouvrir le substrat 1 de support par une couche amorphe 2 du premier type de conductivité. La couche 2 du premier type de conductivité est déposée par toute technique adaptée, c'est par exemple une couche de a-Si : H dopée n. La première couche 2 peut être déposée par déposition en phase vapeur activé par plasma PECVD, déposition chimique en phase vapeur à basse pression LPCVD ou à pression atmosphérique APCVD par exemple. La couche du premier type de conductivité 2 présente, préférentiellement, une épaisseur comprise entre 5nm et 50nm après dépôt. Cette gamme d'épaisseur permet avantageusement de passiver correctement la surface tout en évitant les pertes résistives dans les couches.
Cette première couche amorphe 2 est recouverte par une couche électriquement isolante 6. Préférentiellement, la première couche amorphe 2 et la couche électriquement isolante 6 ont le même dessin et sont parfaitement alignées, c'est-à-dire que les faces latérales 2 et 6 sont dans la continuité l'une de l'autre. Le matériau de la couche électriquement isolante 6 est préférentiellement obtenu au moyen d'un dépôt chimique en phase vapeur assisté par plasma. On peut également utiliser les techniques de dépôt de couches atomiques assistées ou non par plasma (ALD, PEALD). Il est aussi possible de déposer des matériaux comme AI2O3, le choix est réalisé selon la structure et les contraintes présentes.
La couche électriquement isolante 6 a préférentiellement une épaisseur comprise entre 10nm et 2000nm. Cette gamme d'épaisseur permet avantageusement d'obtenir un bon compromis entre l'épaisseur, le temps de dépôt et les propriétés isolantes de la couche.
La couche électriquement isolante 6 et la première couche amorphe 2 sont ensuite gravées au moyen du même masque de gravure de manière à auto- aligner le motif formé dans la couche électriquement isolante 6 et le motif formé dans la première couche 2. Le substrat est alors partiellement recouvert par le premier motif. Une partie de la surface de la première couche 2 et/ou de la couche électriquement isolante 6 peut être gravée, préférentiellement, par irradiation Laser et/ou par gravure humide par exemple.
La couche amorphe 4 du second type de conductivité est ensuite déposée par toute technique adaptée, c'est par exemple une couche de a-Si : H dopée p déposée par déposition en phase vapeur activé par plasma PECVD, déposition chimique en phase vapeur à basse pression LPCVD ou à pression atmosphérique APCVD par exemple. La couche amorphe du second type de conductivité 4 présente, préférentiellement, une épaisseur comprise entre 5nm et 50nm après dépôt. Cette gamme d'épaisseur permet de passiver correctement la surface tout en évitant les pertes résistives dans les couches.
La deuxième couche 4 est déposée de manière non sélective et elle recouvre le substrat et le premier motif.
Les couches 2 et 4 peuvent être avantageusement constituées d'un empilement de deux couches. La première couche, en contact avec le substrat, est pas ou peu dopée et passive l'interface. Une passivation efficace peut être obtenue au moyen d'une première couche ayant une épaisseur comprise entre 1 et 10 nm. La deuxième couche est dopée et assure le champ électrique nécessaire à la collecte des porteurs.
La deuxième couche amorphe 4 et le premier motif sont ensuite gravés partiellement pour libérer une partie de la première couche amorphe 2, le substrat 1 étant laissé recouvert par la deuxième couche amorphe 4, comme illustré à la figure 3. La gravure de la seconde couche amorphe 4 et de la couche électriquement isolante 6 est réalisée au-dessus de la première couche amorphe 2, au niveau de la partie gauche comme illustré figure 3. La gravure s'arrête sur la couche amorphe 2 et définit un plot en matériau électriquement isolant s'étendant verticalement entre les deux couches amorphes. Une partie de la surface de la deuxième couche amorphe 4 et de la couche électriquement isolante 6 peut être gravée préférentiellement par irradiation Laser et/ou par gravure humide par exemple. Après, comme illustré à la figure 4, un contact de la première couche amorphe 3 et un contact de la deuxième couche amorphe 5 sont formés au moyen d'un matériau électriquement conducteur, les deux contacts recouvrant partiellement la couche électriquement isolante 6 et étant dissociés électriquement.
Dans un mode de réalisation particulier, les contacts sont formés par dépôt du matériau électriquement conducteur sur la première couche amorphe 2 et la deuxième couche amorphe 4.
Les contacts électriquement conducteurs 3 et/ou 5 sont déposés par toute technique adaptée, préférentiellement par pulvérisation, dépôt électrochimique, sérigraphie, évaporation, jet d'encre. L'épaisseur des contacts électriques est par exemple comprise entre 1 pm et 50pm après dépôt afin de ne pas entraîner des déplétions partielles ou totales des zones dopées ou d'engendrer des problèmes de résistance série.
Le matériau électriquement conducteur 6 est gravé pour former les deux contacts 3 et 5. La deuxième couche amorphe 4 peut être ensuite gravée au-dessus de la couche électriquement isolante 6 dans le prolongement du trou formé dans le matériau électriquement conducteur pour libérer une partie de la couche électriquement isolante 6, pour dissocier électriquement les deux contacts 3 et 5 et éventuellement deux parties de la deuxième couche 4. Avantageusement, la couche 4 est gravée de manière à réduire les pertes électriques entre les contacts 3 et 5. Cependant, vu sa faible conductivité, elle peut être gravée partiellement ou pas gravée.
Selon un mode de réalisation préférentiel et comme représenté à la figure 5, selon une vue de dessus, les contacts 3 et 5 présentent une forme de créneau s'emboîtant l'un dans l'autre, les contacts étant séparés par la couche 6.
La gravure du matériau électriquement isolant 6 est réalisée au-dessus de la deuxième couche 4. Lors de la gravure, la deuxième couche 4 peut être éliminée de manière à éviter que le contact 3 soit associé à du matériau formant la deuxième couche 4. Cette configuration dépend de l'étendue de la zone à graver et de sa position au-dessus de la couche électriquement isolante 6.
De manière préférentielle, la couche électriquement isolante 6 comporte : une première couche absorbante (riche en silicium par exemple) et une seconde couche protectrice (pauvre en silicium par exemple), la couche protectrice étant en contact avec la couche amorphe de première conductivité 2. L'irradiation Laser ouvre alors la couche absorbante, riche en Si, mais ne détériore pas la couche 2 grâce à la couche protectrice. Cette dernière se grave ensuite facilement par voie humide.
La couche absorbante peut être aisément structurée par irradiation laser. Préférentiellement, la couche absorbante sera gravée par irradiation Laser et la couche protectrice par gravure chimique.
De manière préférentielle, la gravure par laser enlève une partie de la couche absorbante, séparant en son milieu en deux parties non contactées la couche absorbante et laissant libre une partie de la couche protectrice. La couche protectrice sert ainsi de couche d'arrêt à l'irradiation laser. Ainsi, une tranchée est formée de manière simple dans la couche électriquement isolante 6.
Dans le cas où la gravure de la couche électriquement isolante 6 va jusqu'à la première couche amorphe 2, la couche électriquement isolante étant totalement gravée dans son épaisseur, il existe deux motifs élémentaires de la couche électriquement isolante 6 dont un utilisé par l'empilement substrat 1 /première couche amorphe 21 couche électriquement isolante 6/ deuxième couche amorphe 4/ contact électrique 5.
De manière préférentielle, la couche électriquement isolante 6 n'est pas complètement gravée afin de laisser un espace entre les contacts 3 et 5 et protéger la couche 2.
La gravure de la deuxième couche amorphe 4, du matériau électriquement conducteur et/ou éventuellement d'une partie de la couche électriquement isolante 6 peut être réalisée en une seule étape préférentiellement par irradiation Laser.
Comme la gravure est réalisée au-dessus de la couche électriquement isolante 6, il suffit juste d'aligner le laser au-dessus de cette couche. Une des faces latérales de la seconde couche amorphe 4 et du contact 5 sont ainsi auto-alignées pour avoir une couverture complète ou quasi-complète de la deuxième couche 4 par le contact 5. Les contacts 3 et 5 sont séparés d'une même distance au-dessus de la couche électriquement isolante 6. Il n'y a donc pas de court-circuit entre les contacts 3 et 5.
La cellule photovoltaïque a ainsi de faibles valeurs de tolérance aux étapes technologiques nécessitant des alignements et peut atteindre de haut rendement tout en limitant les risques de courts-circuits.
Afin que la cellule photovoltaïque puisse être mise en œuvre au moyen d'un procédé de réalisation robuste, facile à mettre en œuvre et qui assure des cadences compatibles avec une réalisation industrielle, il est avantageux de réaliser la gravure par irradiation Laser. L'irradiation Laser sera préférentiellement réalisée avec une longueur d'onde inférieure à 600nm, une fluence comprise entre 0,01J/cm2 et 10J/cm2, une fréquence comprise entre 10kHz et 10000kHz et un pas compris entre 1 pm et 100μηι. Préférentiellement, l'irradiation Laser est utilisée pour graver en une seule fois une partie de la couche électriquement isolante 6, une partie de la seconde couche amorphe 4 et les contacts électriques 3 et 5. Dans un autre mode de réalisation, au moins une partie des gravures peut aussi être réalisée par gravure humide. La durée est de 2 minutes et la solution de gravure est du HF à 2%.
La couche électriquement isolante assure la fonction de masque, ce qui permet de simplifier ce procédé en réduisant le nombre d'étapes nécessaires à la réalisation de la cellule photovoltaïques et en utilisant des techniques facilement industrialisables, comme l'irradiation laser ou la gravure chimique, contrairement à des techniques plus classiques et plus difficilement industrialisables, comme la photolithographie, les masques métalliques ou la sérigraphie par exemple.
Les couches 2 et 4 ont été présentées comme des couches amorphes pour former une cellule à double hétérojonction, mais une autre structure cristalline peut être employée pour l'une et/ou pour l'autre. L'homme du métier gardera à l'esprit que des étapes supplémentaires de localisation des différentes couches décrites ci-dessus sont possibles, par exemple pour modifier l'étendue de la deuxième couche 4 sur la couche électriquement isolante 6, ou pour former un espaceur sur les bords du motif en matériaux 2 et 6.
Selon un mode de réalisation particulier, les couches 2 et 4 peuvent être inversées, par exemple, si la zone de la couche 2 recouverte par la couche 6 est très étroite, inférieure à 10μιη.

Claims

Revendications
1. Cellule photovoltaïque comportant :
- un substrat semi-conducteur d'un premier type de conductivité (1) muni d'une face principale,
- une première couche en matériau semi-conducteur amorphe (2) du premier type de conductivité en contact avec la face principale du substrat (1 ),
- un premier contact électrique (3) formé sur la première couche amorphe (2),
- une deuxième couche en matériau semi-conducteur amorphe (4) d'un second type de conductivité en contact avec la face principale du substrat (1).
- un second contact électrique (5) formé sur la deuxième couche amorphe (4) et
- une couche électriquement isolante (6),
cellule caractérisée en ce que la couche électriquement isolante (6) est formée intégralement sur la première couche amorphe (2) et que les premier et deuxième contacts (3,5) s'étendent sur la couche électriquement isolante (6).
2. Cellule photovoltaïque selon la revendication 1 , caractérisée en ce que la deuxième couche amorphe (4) est totalement recouverte par le contact électriques (5) et recouvre la couche isolante (6).
3. Cellule photovoltaïque selon l'une quelconque des revendications 1 à 2, caractérisée en ce que la deuxième couche amorphe (4), connectée électriquement au substrat (1), est totalement recouverte par le deuxième contact électrique (5).
4. Cellule photovoltaïque selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la surface principale du substrat (1 ) est entièrement . recouverte par la première couche amorphe (2) et la seconde couche amorphe (4).
5. Cellule photovoltaïque selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la couche électriquement isolante (6) comporte une première couche absorbante et une seconde couche protectrice.
6. Cellule photovoltaïque selon la revendication 5, caractérisée en ce que la couche absorbante de la couche électriquement isolante (6) est séparée en son milieu en deux parties non contactées, laissant libre une partie de la couche protectrice.
7. Cellule photovoltaïque selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte au moins un empilement comprenant successivement le substrat (1 ), la première couche amorphe (2), la couche électriquement isolante (6), la deuxième couche amorphe (4), l'un des contacts électriques (3,5) dans une direction perpendiculaire à la face principale.
8. Procédé de réalisation d'une cellule photovoltaïque, caractérisé en ce qu'il comporte les étapes suivantes :
- Prévoir un substrat (1) comportant une couche en matériau semiconducteur d'un premier type de conductivité, le substrat (1 ) étant partiellement recouvert par un premier motif comportant une première couche amorphe (2) du premier type de conductivité et une couche électriquement isolante (6), la couche électriquement isolante (6) étant séparée du substrat (1 ) par la première couche amorphe (2), le substrat (1 ) et le premier motif étant recouverts par une deuxième couche amorphe (4) d'un second type de conductivité,
- Graver partiellement la deuxième couche amorphe (4) et le premier motif pour libérer une partie de la première couche amorphe, une partie du substrat (1 ) étant laissée recouverte par la deuxième couche amorphe (4),
- Former un premier contact (3) de la première couche amorphe (2) et un deuxième contact (5) de la deuxième couche amorphe (4) au moyen d'un matériau électriquement conducteur, les deux contacts 3,5) recouvrant partiellement la couche électriquement isolante (6) et étant dissociés électriquement.
Procédé selon la revendication 8, caractérisé en ce que les premier et deuxième contacts (3,5) sont formés par :
- Dépôt du matériau électriquement conducteur sur la première et la deuxième couches amorphes (2,4),
- Gravure du matériau électriquement conducteur et de la deuxième couche amorphe (4) sur la couche électriquement isolante (6) pour libérer une partie de la couche électriquement isolante (6) et dissocier électriquement les deux contacts (3,5).
10. Procédé selon la revendication 9, caractérisé en ce que, la couche électriquement isolante (6) comportant une couche protectrice et une couche absorbante, la gravure est effectuée par irradiation laser et enlève uniquement une partie de la couche absorbante, séparant en deux parties non contactées la couche absorbante et laissant libre une partie de la couche protectrice.
PCT/FR2013/000006 2012-01-05 2013-01-03 Cellule photovoltaïque et procédé de réalisation WO2013102725A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13704145.5A EP2801116A2 (fr) 2012-01-05 2013-01-03 Cellule photovoltaïque et procédé de réalisation
JP2014550744A JP2015506584A (ja) 2012-01-05 2013-01-03 光起電力セル及び製造方法
US14/370,857 US20140373919A1 (en) 2012-01-05 2013-01-03 Photovoltaic cell and manufacturing process
KR1020147021671A KR20140112537A (ko) 2012-01-05 2013-01-03 광기전력 셀 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1200037 2012-01-05
FR1200037A FR2985608B1 (fr) 2012-01-05 2012-01-05 Cellule photovoltaique et procede de realisation

Publications (2)

Publication Number Publication Date
WO2013102725A2 true WO2013102725A2 (fr) 2013-07-11
WO2013102725A3 WO2013102725A3 (fr) 2014-05-01

Family

ID=47714384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/000006 WO2013102725A2 (fr) 2012-01-05 2013-01-03 Cellule photovoltaïque et procédé de réalisation

Country Status (6)

Country Link
US (1) US20140373919A1 (fr)
EP (1) EP2801116A2 (fr)
JP (1) JP2015506584A (fr)
KR (1) KR20140112537A (fr)
FR (1) FR2985608B1 (fr)
WO (1) WO2013102725A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408599B (zh) 2015-03-24 2020-11-27 松下知识产权经营株式会社 太阳能电池单元的制造方法
DE102015112046A1 (de) 2015-07-23 2017-01-26 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Herstellung einseitig angeordneter strukturierter Kontakte in einer Schichtanordnung für ein photovoltaisches Bauelement
EP3163632A1 (fr) 2015-11-02 2017-05-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Dispositif photovoltaïque et son procédé de fabrication
US10770505B2 (en) * 2017-04-05 2020-09-08 Intel Corporation Per-pixel performance improvement for combined visible and ultraviolet image sensor arrays
CN113748522A (zh) 2019-03-29 2021-12-03 太阳电力公司 具有包括区分开的p型和n型区与偏置触点的混合结构的太阳能电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043528A1 (en) 2000-09-13 2004-03-04 Wolfgang Kruhler Photovoltaic component and module
US7199395B2 (en) 2003-09-24 2007-04-03 Sanyo Electric Co., Ltd. Photovoltaic cell and method of fabricating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369601B (zh) * 2009-03-30 2015-04-29 三洋电机株式会社 太阳能电池
JP5845445B2 (ja) * 2010-01-26 2016-01-20 パナソニックIpマネジメント株式会社 太陽電池及びその製造方法
JP5906393B2 (ja) * 2010-02-26 2016-04-20 パナソニックIpマネジメント株式会社 太陽電池及び太陽電池の製造方法
KR20130056364A (ko) * 2010-04-23 2013-05-29 솔렉셀, 인크. 고효율 태양 전지 극 저 표면 재결합 속도를 달성하기 위한 패시베이션 방법 및 장치
JP5485060B2 (ja) * 2010-07-28 2014-05-07 三洋電機株式会社 太陽電池の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043528A1 (en) 2000-09-13 2004-03-04 Wolfgang Kruhler Photovoltaic component and module
US7199395B2 (en) 2003-09-24 2007-04-03 Sanyo Electric Co., Ltd. Photovoltaic cell and method of fabricating the same

Also Published As

Publication number Publication date
JP2015506584A (ja) 2015-03-02
FR2985608B1 (fr) 2016-11-18
EP2801116A2 (fr) 2014-11-12
FR2985608A1 (fr) 2013-07-12
KR20140112537A (ko) 2014-09-23
WO2013102725A3 (fr) 2014-05-01
US20140373919A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
US10461208B2 (en) Solar cell and method for producing same
US20070023082A1 (en) Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
EP2513978B1 (fr) Cellule photovoltaïque a heterojonction a contact arriere
WO2006077343A1 (fr) Dispositif semi-conducteur a heterojonctions et a structure inter-digitee
JP2012516567A (ja) コンタクトを製造する方法、コンタクト、およびコンタクトを含む太陽電池
EP2801116A2 (fr) Cellule photovoltaïque et procédé de réalisation
US20110284060A1 (en) Solar cell and method of fabricating the same
WO2015071285A1 (fr) Cellule photovoltaique a hereojonction de silicium
WO2015152816A1 (fr) Cellule solaire à contacts tous à l&#39;arrière hybride et son procédé de fabrication
JP7126444B2 (ja) 光起電力デバイスおよびその製造方法
US8114702B2 (en) Method of manufacturing a monolithic thin-film photovoltaic device with enhanced output voltage
JP6336517B2 (ja) 太陽電池及びその製造方法
CN113875025A (zh) 太阳能电池和太阳能电池的制造方法
EP2898543B1 (fr) Procédé de réalisation d&#39;une cellule photovoltaïque à hétérojonction
FR3037721B1 (fr) Procede de realisation d’une cellule photovoltaique a heterojonction et cellule photovoltaique ainsi obtenue.
WO2016021267A1 (fr) Élément de conversion photoélectrique
EP3316319B1 (fr) Cellules photovoltaïques a contacts arriere et leur procede de fabrication
EP4199122A1 (fr) Cellule photovoltaïque a contacts passives et a revêtement antireflet
TW201537757A (zh) 太陽電池以及製造太陽電池的方法
EP4315429A1 (fr) Dispositif photovoltaïque à contact passivé et procédé de fabrication correspondant
EP2782145A1 (fr) Procédé de fabrication d&#39;un dispositif photovoltaïque multi-jonctions et dispositif photovoltaïque multi-jonctions ainsi obtenu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13704145

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014550744

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14370857

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013704145

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147021671

Country of ref document: KR

Kind code of ref document: A